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 We shall base our investigation upon a differential equation for two functions y and z of one 

variable x. It possesses the form: 

 

(1)     , , , , , , , ;
n n

n n

d y dy d z dz
F y z x

dx dx dx dx

 
 
 

 = 0 , 

 

and we would like to assume that this differential equation cannot be obtained by differentiating a 

differential equation of the same form and lower order one or more times and linearly combining 

the differential equations that arise in that way. 

 We now set: 

 

(2)    

; , , , , , , , , , ,

; , , , , , , , , , ,

; , , , , , , , , , ,

n n

n n

n n

n n

n n

n n

dy d y dz d z
x y z

dx dx dx dx

dy d y dz d z
x y z

dx dx dx dx

dy d y dz d z
x y z

dx dx dx dx

 

 

 

  
=  

 
  

=  
 

  
 =  
  

 

 

in which the variable x and the functions y, z appear as arguments on the right, along with their 

derivatives up to a certain order, and express: 

 

 
 (*) Reproduced from the Festschrift Heinrich Weber (Leipzig, Teubner, 1912). 
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in terms of x and y, z, along with their derivatives with respect to x. Therefore, in general (i.e., 

when the functions , ,  do not satisfy any special condition equations), the quantities x, y, z can 

be expressed in terms of  and , , along with their derivatives with respect to , as follows: 

 

(3)     

2 2

2 2

2 2

2 2

2 2

2 2

; , , , , , , , ,

; , , , , , , , ,

; , , , , , , , .
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d d d d

d d d d
y h

d d d d

d d d d
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d d d d

   
  

   

   
  

   

   
  

   

  
=  
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In that way, (1) will go to a differential equation for ,  as functions of  that has the form: 

 

(4)     
2

2
, , , , , , , ;

d d d d

d d d d





   
  

   

 
 

 
 = 0 . 

 

We say of the transformation (2) [(3), resp.] that it transforms the differential equations (1) and (4) 

into each other invertibly without integration. We shall classify all differential equations like (4) 

that can be converted into (1) invertibly without integration in the same class of differential 

equations. 

 In the theory of differential relations between two functions y (x) and z (x), the concepts of an 

invertible transformation without integration and that of class that were just introduced are 

analogous to the concepts in the theory of algebraic functions of one variable that are known as an 

invertible single-valued (viz., birational) transformation in the Riemannian picture and the 

Riemannian concept of the class of an algebraic function, respectively. 

 On the other hand, we shall now set: 
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(5)  

1

1

1

( , , , , ) ,

( , , , , ) ,

( , , , , ) ,

r

r

r

x t w w w

y t w w w

z t w w w







=


=
 =

 

 

where the functions , ,  are not precisely of the special type that all of them depend upon only 

one coupling of their arguments t, w, w1, …, wr, and we further understand w to mean an arbitrary 

function of the variable t, while: 

w1 = 
dw

dt
, …, wr = 

r

r

d w

dt
 

 

mean its derivatives with respect to t, and define: 

 

(6)     

2

2 3

2

2 3

, , ,

, , ,

dy d y

dx dx

dz d z

dx dx

    

 

    

 

     −
= =  


    − = =

  

 

in which one sets: 

  = 
d

dt


 = t + w1 w + 

12 1 rw r ww w ++ + , 

   = 
d

dt


 = t + w1 w + 

12 1 rw r ww w ++ + , 

…………………………………………………, 

 

while here, in turn, the lower indices t, w, w1, …, wr mean partial derivatives with respect to those 

quantities. Therefore, if the differential equation (1) is fulfilled by any arbitrary function w (t) (i.e., 

identically in t, w, w1, w2, …), after taking (5), (6) into account, then we will say that the differential 

equation (1) possesses the solution without integration (5). That shows that the following theorem 

is valid: 

 

 All differential equations that can be solved without integration define one and the same class 

of differential equations. 

 

 According to Monge, the first-order differential equations of the form (1) (i.e., n = 1, m = 1) 

can be solved without integration. As a result of our general assertion, all first-order differential 

equations must then be capable of being transformed into each other invertibly without integration. 

 In fact, according to Monge, for any given first-order differential equation: 

 

(7)      , , , ,
dy dz

F x y z
dx dx

 
 
 

 = 0 , 
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one can find a function J (x, y, z, ) of the variables x, y, z, and one parameter  such that one will 

once more arrive at the differential equation (7) by eliminating the parameter  from the equations: 

 

(8)      
J J dy J dz

x y dx z dx

  
+ +

  
 = 0 , 

 

(9)  
2 2 2J J dy J dz

x y dx z dx  

  
+ +

     
 = 0 . 

If we now set: 

 

(10)      J (x, y, z, ) =  , 

 

(11) 
( , , , )J x y z 






 =  , 

 

and calculate the quantities , ,  as functions of x, y, z, dy / dx, dz / dx using (8), (10), (11) then 

we will have: 

d

d




 = 

dJ

d
 = 

J J dy J dz dx J

x y dx z dx d 

    
+ + + 

    
 =  , 

 

and we will have then obtained a transformation of the differential equation (7) into the special 

form: 

d

d




 =  . 

 

Furthermore, that transformation is invertible without integration, because when one recalls (9), it 

will follow from (11) by differentiation that: 

 

(12) 
2

2

( , , , )J x y z 






 = 

d

d




, 

 

and it will follow from (10), (11), (12) that x, y, z can then be expressed as functions of , , , d 

/ d. 

 The differential equation: 

dz

dx
 = 

2
dy

dx

 
 
 

 

will serve as an example. One has: 

J = 
2 x  + 2 y + z 
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for it, and one will get the following equations for determining the transformation without 

integration above and its inverse: 

   = 2 x  + 2 y + z , 

   = 2 x + 2y , 

  
d

d




= 2x , 

  2 2
dy dz

dx dx
 + + = 0 , 

   + 
dy

dx
 = 0 . 

 

 In the theory of algebraic functions, the differential equations that can be solved without 

integration correspond to the class of rationally-soluble equations in two variables, i.e., the 

algebraic objects of genus zero. 

 In what follows, I would like to prove that there are, in any event, already second-order 

differential equations that do not belong to the class of differential equations that can be solved 

without integration. 

 To that end, we shall first examine the special differential equation: 

 

(13) 
dz

dx
 = 

2
2

2

d y

dx

 
 
 

 

 

and assume (in contrast to our assertion) that it possesses the solution without integration: 

 

  x =  (t, w, w1, …, wr) , 

(14) y =  (t, w, w1, …, wr) , 

  z =  (t, w, w1, …, wr) , 

 

in which, as in (5), w means the arbitrary function of the variable t, and we have set: 

 

w1 = 
dw

dt
, …, wr = 

r

r

d w

dt
 . 

 

Moreover, as before, we shall use lower indices t, w, w1, w2, … to denote the partial derivatives 

with respect to those quantities, and if  means any function of t, w, w1, w2, … then we shall 

generally set: 

   = 
d

dt


 = 

11 2t w ww w  + + + ,  
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to abbreviate. Since the case in which one of the functions , ,  is constant has obviously been 

overlooked, none of the expressions  ,   ,   will be equal to zero identically in all arguments. 

 From now on, let wr be the highest derivative of the arbitrary function w that actually occurs 

in the right-hand side of the solution without integration (14), and accordingly let the expressions 

rw , 
rw , 

rw  be not all zero identically in all arguments. 

 We find from (14) that: 

(15) 
dz

dx
 = 








 = 

1 1

1 1

r

r

t w r w

t w r w

w w

w w

  

  

+

+

+ + +

+ + +
, 

(16)    
dy

dx
 = 








 = 

1 1

1 1

r

r

t w r w

t w r w

w w

w w

  

  

+

+

+ + +

+ + +
, 

and if we set: 

 = 







, 

to abbreviate, then: 

(17)    
2

2

d y

dx
 = 








 = 11 1 2

1 1

r r

r

t w r w r w

t w r w

w w w

w w

   

  
++ +

+

+ + + +

+ + +
. 

 

Equation (13) must be fulfilled identically in the quantities t, w, w1, …, wr+2 after substituting (15) 

and (17). However, since the quantity wr+2 does not enter into the left-hand in /   , the right-

hand side, i.e., /   , must also be free of wr+2 , so it will then follow identically that: 

 

1rw
+

 = 0 , 

 

i.e.,  is independent of wr+1 . As a result, due to (17), /    will take the form of an entire or 

fractional linear function of wr+1 , and with our substitution the right-hand side of (13) will then 

take the form of a fractional quadratic function of wr+1, while the function (15) that is linear in wr+1 

will appear on the left-hand side. Both sides can then prove to be identical to each other only when 

each of the two expressions: 








  and 








 

 

proves to be independent of wr+1 . It will then follow immediately from (15), (17) that: 

 

rw









 = 

rw , 

rw









 = 

rw , 

 

and since  is also independent of wr+1 , from the above, due to (16), we will also have: 
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rw   = 
rw . 

 

Now, if one of the quantities 
rw , 

rw , 
rw  is zero identically then each of them must vanish 

identically as a result of those relations, i.e., , ,  must all be independent of wr, which 

contradicts our original assumption. 

 We can write the relations that we just found in the form: 

 

(18)      = 







 = r

r

w

w




, 

 

(19) 







 = r

r

w

w




, 

 

(20) 







 = r

r

w

w




. 

 

 If the functions , ,  include only the arguments t, w then (18), (20) would imply the 

equations: 

t w – w t = 0 , 

t w – w t = 0 , 

 

and since w  0, the functions , ,  would then be of the special type that is such that they 

depend upon only one coupling of the arguments t, w, which is a case that was excluded from the 

outset. 

 Due to that argument, we can assume that the highest order of the differential quotients that 

occur in (14) is r  1. 

 We shall now calculate the quantity wr in terms of t, w, w1, …, wr−1, x by means of: 

 

x =  (t, w, w1, …, wr) 

 

and introduce the expression for wr thus-obtained into  and . We denote the functions that arise 

in that way by: 

f (t, w, w1, …, wr−1, x),  g (t, w, w1, …, wr−1, x), resp. 

 

Furthermore, in what follows, the symbol  will always mean that both sides will become identical 

to each other in t, w, w1, …, wr as soon as we introduce x = . We will certainly have: 

 

(21)        f 

 

and 
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(22)        g 

 

then. Finally, if k is any function of t, w, w1, …, wr−1, x then we shall set: 

 

k  = kt + w1 kw + 
1 12 rw r ww k w k

−
+ + , 

to abbreviate. 

 Upon differentiating (21) with respect to t, we will get: 

 

    xf f  + , 

 

and upon differentiating with respect to wr, we will get: 

 

rw   
rx wf  . 

 

By means of (18), it follows from this that: 

 

(23)        fx  

 

and 

 

(24)      f   0 . 

 

It likewise follows from (23), by means of (19), that: 

 

(25)      







  fxx 

and 

 

(26)      ( )xf    0 , 

 

and finally, it follows from (22), by means of (20), that: 

 

(27)      







  gx 

and 

 

(28)      g    0 . 

 

 We will now differentiate (24) with respect to wr, which will then give: 
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1( )
r rx w wf f −

 +   0 , 

 

and due to (26), it will follow from this that: 

 

1rwf −
  0 . 

 

However, since f, and as a result
1rwf −
 as well, do not contain the quantity wr explicitly, it will 

follow from this that one also has: 

1rwf −
 = 0 

 

identically in t, w, w1, …, wr−1, x, i.e., f does not include the quantity wr−1 explicitly, either. As a 

result of the latter situation, f   will not, in turn, include the quantity wr explicitly, and due to (24), 

it will follow from this that one has: 

 f   = 0 

identically in t, w, w1, …, wr−1, x, i.e.: 

 

1 21 1 2 1 rw w r wf w f w f w f
−−+ + + +  = 0 . 

 

We infer from that equation, in succession, that: 

 

2rwf −
 = 0,  

3rwf −
 = 0, …, fw = 0,  ft = 0, 

 

and ultimately recognize that f cannot include any of the quantities t, w, w1, …, wr−1 explicitly, but 

it can depend upon only x. 

 We infer from (17) and (25) that: 
2

2

d y

dx
 = fxx , 

and from (15) and (27) that: 

dz

dx
 = gx . 

 

As a result, the given differential equation (13) will go to: 

 

gx = 2

xxf . 

 

That shows that gx is always just a function of x alone, and it follows from this that: 

 

g = X + W, 
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in which X depends upon only x, and W depends upon only t, w, w1, …, wr−1 . It follows from (28) 

that: 

W  = 0, 

 

i.e., W is a constant. Hence, g also depends upon only x. 

 With that, we see that in any case, , ,  depend upon only one coupling of the quantities t, 

w, w1, …, wr−1, which is an eventuality that was excluded from the outset. Our original assumption 

is then impossible, and we have then proved the following theorem: 

 

 The second-order differential equation: 

dz

dx
 = 

2
2

2

d y

dx

 
 
 

 

possesses no solution without integration. 

 

 The line of reasoning that was just applied to the special differential equation (13) is valid in 

precisely the same way for the more general differential equation: 

 

(29)     
dz

dx
 = 

2

2
, , , ,

d y dy
F y z x

dx dx

 
 
 

 , 

 

when F is not exactly an entire or fractional linear function of 
2 2/d y dx . 

 If F is a fractional linear function of 
2 2/d y dx  then the differential equation can be put into the 

form: 

(30)     
dz

dx
 = 

2

2

2

2

d y

dx

d y

dx

 



+

+

, 

 

where , ,  mean functions of x, y, z, dy / dx, and  cannot be equal to  identically. Moreover, 

it is also permissible to assume that  is not identically zero, since one must certainly have that   

 0 in the case of  = 0, and if we then replace the function y with y + 2x  in: 

 

dz

dx
 = 

2

2

2

2

d y

dx

d y

dx



+

 

 

then we will get a differential equation of the same form as (30) with one non-zero term . 

 We now apply the special (Legendre) transformation to (30): 

 



Hilbert – On the concept of the class of a differential equation. 11 
 

(31)    

, ,

, ,

, .

dy d
x

dx d

dy d
x y y

dx d

z z







  



 

= =

= − = −

= =

 

 

We will then get a differential equation of the form: 

 

d

d




 = 

2

2 2

22

2
1

d

d d

dd

d


 

 






+

+

 , 

 

in which a, ,  are functions of , , , d / d . Since   0, the right-hand side of this is certainly 

quadratic in 2 2/d d   in the numerator, and we conclude from this, while recalling our previous 

argument, that the differential equation (30) also possesses no solution without integration. 

Therefore, the differential equation (29) can certainly possess a solution without integration only 

in the case when F is an entire linear function of 
2 2/d d  . 

 Formulas (31) serve as an example of a transformation that admits an inversion without 

integration without having to refer to a well-defined basic differential equation. To distinguish 

them from the transformations that are invertible without integration that were treated up to now, 

transformations that can be inverted without integration that can, like (31), be applied to y (x), z(x), 

[ (),  (), resp.] will be called unrestricted transformations that can be inverted without 

integration. They define the analogues of the everywhere-invertible rational (i.e., Cremona) 

transformations of two variables that are known in algebra. 

 When we previously proved the existence of differential equations that are not soluble without 

integration, we showed that in in addition to the class of differential equations that can be solved 

without integration, there is, in any event, yet another class of differential equations that is different 

from the latter. The fact that there are actually infinitely-many distinct classes of differential 

equations can be understood in a different way that is analogous to the one above that was used to 

prove the existence of differential equation that cannot be solved without integration and which I 

would like to briefly characterize here. 

 Consider the two special differential equations: 

 

(32)     
d

d




 = 

2
2

2

d

d





 
 
 

, 

and 

(33)     
dz

dx
 = 

2
3

3

d y

dx

 
 
 

. 
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As was shown before, the first of these cannot be solved without integration, and when one regards 

the dy / dx in the second differential equation as an unknown function, it will follow that it is not 

soluble without integration either. We must then show that there is no transformation of the form: 

 

x =  (, , 1, …, r, ) , 

y =  (, , 1, …, r, ) , 

z =  (, , 1, …, r, ) , 

 

by means of which (32) will become the differential equation (33). We have set: 

 

1 = 
d

d




, …, r = 

r

r

d

d




 

in the above, to abbreviate. 

 We now have, in general: 

 

   = 
d

d




 = 

1

2

1 2 1 2rr            ++ + + + + . 

We will then get: 

(34) 
dz

dx
  = 








, 

  
dy

dx
  = 








 = , 

  
2

2

d y

dx
 = 








 = , 

(35) 
3

3

d y

dx
 = 








. 

 

After substituting (34) and (35), in the event that the transformation (32) should go to (33), 

equation (33) will be fulfilled identically in: 

 

, , 1, …, r+3,  . 

 

We easily conclude from this that for r  3 the expressions: 

 








, , , 








 

 

must be independent of r+1, r+2, r+3, and that the identities must therefore exist: 
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r









 = 

r , 

  
r    = 

r , 

  
r    = 

r , 

  
r









 = 

r . 

 

We can conclude the impossibility of our assumption from those identities in a manner that is 

entirely analogous to the argument above. In the cases r = 1, r = 2, we will require a specialized, 

but very simple, argument to arrive at the same conclusion. With that, the existence of three 

different classes is guaranteed, and at the same time it will become clear how the process can be 

continued so that one could prove the existence of arbitrarily-many classes of differential 

equations. 

 A deeper and more systematic study of differential equations of the form (1) and the concept 

of class would require one to add the methods of the calculus of variations, and indeed it then 

seems to me that the following definitions and conceptual picture would mainly be required. 

 Any pair of functions y (x), z (x) that satisfy the differential equation (1) identically in x is 

called a solution to (1). Now, if the differential equation (1) can be converted into the differential 

equation (4) by a transformation that is invertible without integration then (3) will imply that in 

general any solution of the transformed differential equation (4) will correspond to a solution of 

the original differential equation (1). However, there can be special solutions of (1) that cannot be 

represented by means of (3) in that way, i.e., as we would like to say, they are omitted. On the 

other hand, we call those special solutions of (1) for which the variation vanishes the 

discriminating solutions of (1). The discriminating solutions will become, in turn, all or part of the 

discriminating solutions under a transformation that is invertible without integration. 

 We already recognize the fundamental significance of this general concept from the example 

of the first-order (Monge) differential equation. Namely, it shows that all of the discriminating 

solutions of the Monge differential equations are omitted solutions, and essentially only them (*). 

 We would like to prove the assertion that was just made in regard to discriminating solutions 

of the Monge differential equation, and indeed for the sake of brevity, in the example of the special 

Monge differential equation: 

(36) 
dz

dx
 = 

2
dy

dx

 
 
 

. 

 

Upon setting the first variation of the integral: 

 

z = 

2
dy

dx
dx

 
 
 

  

 

 
 (*) Cf., the following paper of W. Gross that came about at my suggestion. 
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equal to zero, we will get the differential equation: 

 
2

2

d y

dx
 = 0 , 

 

and as a result, the discriminating solutions of (36) will read: 

 

(37) 
2

,

,

y a x b

z a x c

= +

= +
 

 

in which a, b, c are understood to mean constants. 

 The solution without integration of (36) reads: 

 

x = 2 2 2tt tt w t w w− + , 

(38) y = t wtt – wt , 

  z = wtt . 

 Now let: 

y = f (x) , z = g (x) 

 

be a system of solutions of the differential equation (36). In order to represent it by means of the 

formulas (38), it is necessary and sufficient for one to find a function w (t) that satisfies the two 

differential equations: 

 

(39) t wtt – wt  = 2( 2 2 )tt tf t w t w w− + ,  

(40) wtt  = 2( 2 2 )tt tg t w t w w− + , 

 

and for which the expression: 

x = 2 2 2tt tt w t w w− +  

does not prove to be constant, so: 

dx

dt
 = 2

tttt w   0 , 

i.e.: 

 

(41)      tttw   0 . 

 

Upon differentiating (39), (40) with respect to t, one will get: 

 

(42) tttt w  = 2

tttt w f  , 

(43) tttw  = 2

tttt w g , 

or, due to (41): 
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(44)      1 = t f  , 

(45)      1 = 2t g . 

 

 Now, if f, g is not one of the discriminating solutions (37) then f   will not prove to be constant, 

and we can then bring (44) into the form: 

 

(46)     2 2 2tt tt w t w w− +  = 
1

h
t

 
 
 

 

 

by inversion, in which h is a function of 1 / t that does not prove to be constant. That differential 

equation for w is certainly always soluble. Let 0w  be a particular solution of it. 

 Due to the fact that: 

g   = 2( )f  , 

 

it will follow from (44) that (45) is likewise fulfilled when we replace w with 0w  in it. Therefore, 

(42), (43) will also be fulfilled for w = 0w , and since those equations arise from (39), (40) upon 

differentiation, we can infer the existence of two constants A, B from this such that: 

 

(47)    0 0

tt tt w w A− +  = 2 0 0 0( 2 2 )tt tf t w t w w− + , 

(48) 0

ttw B+  = 2 0 0 0( 2 2 )tt tg t w t w w− + . 

 

If we set: 

w = 0 21
2

w Bt At+ −  

 

then due to (47), (48), that function will satisfy the differential equations (39), (40), and due to 

(46), the expression: 
2 2 2tt tt w t w w− +  = 2 0 0 02 2tt tt w t w w− +  

 

will not prove to be equal to a constant. With that, it is show that our solution can, in fact, be 

represented by (38). 

 On the other hand, let f, g be a discriminating solution, as one might get from (37). (39) will 

then go to: 

tt tt w w−  = 2( 2 2 )tt ta t w t w w b− + + . 

 

Upon differentiating that with respect to t, we will get: 

 
2( ) tttt at w−  = 0 , 

and as a result: 

wttt = 0 , 
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i.e., our solution cannot be represented by (38), and with that, the theorem that I posed that the 

discriminating solutions are omitted solutions, and only them, is proved completely. 

 In conclusion, let it be mentioned that the Monge differential equation likewise serves as an 

example of how the discriminating solutions will not, in any case, possess an invariant character 

with respect to the transformations that are invertible without integration, but we saw above that 

any Monge differential equation (7) can be transformed into the special form: 

 

d

d




 =  

 

invertibly without integration, and the latter differential equation obviously possesses no 

discriminating solution at all. The situation that was highlighted here has an intimate connection 

then with the previous theorem that all discriminating solutions are, at the same time, omitted 

solutions in the case of the Monge differential equation. 

 

___________ 

 

 


