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We give a brief historical account of the developmernhefmathematical theory of the propagation of
discontinuities in gases, fluids, or elastic materidlae theory was initiated by Riemann, who investigated
the propagation of shocks in one-dimensional isentrgpi flow. Riemann’s methods were used by
Christoffel to treat, more generally, the propagatidn(fost order) discontinuity surfaces in three-
dimensional flows of perfect fluids. Subsequently, Cbfist applied his general theory to first order
waves in certain elastic materials. Independently of Rieend Christoffel, significant contributions
were made by Hugoniot. The theory was completed in HadHisicelebrated monograph [31] where,
among many other things, acceleration waves in hypeacelasties were treated correctly. Later, Prandtl,
A. Busemann, et al., attached the problem of discontinflmwsfrom the more practical point of view of
the engineer and obtained many important results. elfirthl section of our report, we briefly survey some
recent global weak existence theorems for Riemann andafj€@euchy initial value problems of general
strictly hyperbolic conservation laws.

1. The pioneering work of Riemann, Christoffel, Hugoniot, and Hadamard

B. Riemann [63] was one of the first to treat the agirgg of discontinuity waves in
gases. Along with his effort, one must point out theost simultaneous work of
Earnshaw [27], which generally did not go as far as éenRemann treatise. Riemann
investigated the system of partial differential equatiartbe Eulerian variables t:
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for an unsteady one-dimensional gas flow, in whicks the flow velocity,p is the
density, ang is the pressure of the flowing gas. The prespusdl also be assumed to
be a functionpof only the density, such that one has:

1) This work was commissioned by the Deutschen Forschangsinschaft. My collaborator is Herr
Dipl.-Math. Hans-Jurgen Béttger, who also compiled tisedaction.
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With a® : = ¢(p) and the functiow : = j;adlogp, that is conjugate to, along with

r:=@u+v)/2s:=(Uu-\Vv/2 Riemann obtained frontj, (E) the hyperbolic system (in
characteristic form):
rn+u+ars=0, g+@U-as=0.

In [34], | was interested in finding implicit notis from Riemann’s differential
geometry and function theory in his derivation bége differential equations. The
resulting differential equations of one-dimensionakteady gas flow are then precisely
the (hyperbolic) Cauchy-Riemann differential eqorast

(€-R du_av.
dl dn

with respect to the indefinite Riemannian mettit = (a2 — u?) dt® + 2u dt dx— dx¢ with
two arbitrary directions, n that are orthogonal with respect d& and have opposite
norms. Each of the two null directions of the naefre., characteristics = Mach waves)
dx dt =u + a is perpendicular to itself, and therefore the @gtiRiemann equatior(—

R) has:

:% (u+v) =const., :% (u-v) = const.,

as integrals. Riemann introduced these “invarfants as new independent variables in
place ofx, t (this is possible as long as one la@s t)/d(r, s) = 2rx s¢ #0), and thus
obtained a system of linear equations, for whichtteen developed his well-known
method of integration.

One can easily bring Riemann’s considerations ageeement with the curvilinear
coordinates on the solution surfaze= (X, y) of the flow function that H. Lewy
introduced in the theory of characteristics, andctialways remain useful, at least in the
small; they are simply the parametess [ of the intersection point of the two
characteristics that go through a point with tteetstg curve, which becomes= £. The
novelty is Lewy's difference method, which givesetisolution of the differential
equations that emerge from the characteristic énsatnd the proof that for vanishing
mesh width it converges to the solution of theiahivalue problem of the hyperbolic
differential equation. | will not go into Lewy'sifterence method, which is important in
both theory and practice, nor will I go into thesfiorder system with several desired
functions that was treated by Friedrichs and Levych systems occur immediately in
gas dynamics when one must determine the entropglas, perhaps, in response to a
condensation jump (one must then have tha& known from its initial value). As
characteristics, one then has not only the condiensavaves, but the streamlines.
Further initial and boundary-value problems weeated by Beckert [3], [4]. As a result,
two more auxiliary functions were introduced.
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We return from this excursion to Riemann’s work. Unitherassumption that(p) =
C?0* with a constan€ O R, Riemann proved that a solution of the Cauchy initédilie
problem for the above hyperbolic system also includelseontinuity in general for
continuous initial values, from which a shock wave (“corsdgion jump”) emerges.
With the help of a simple physical principle (conseopratof impulse for a volume
element of the gas that goes through the discontjpilRemann obtained the velocity
with which the discontinuity expanded through the gas, faritier obtained a relation
between the values of the density and the velocityhef gas on both sides of the
condensation jump. These results enabled Riemann to pxestenee of a solution of
the initial value problem for the above hyperbolic sys(€m (E) with the initial values:

(u,p,) forx<0,

(u, P)(x, 0) :{(Uz,pz) for x>0,

with constantsi;, W, o1, 0>, and to describe its structure precisely.

The equation of state that Riemann assupred?c", with a pre-established constant
C, then leads to the fact that in some particularesasf motion through a gas a
condensation jump can introduce an energy loss. RAay|éR) criticized the work of
Riemann on this basis. The contradiction with tletbm of the conservation of energy
that Rayleigh spoke of as following as a consequendeievhann’s work can — as he
showed — be satisfactorily removed by the thermodynaomsiderations of Hugoniot.
Hugoniot demanded that the quantityn the state equation not have different values on
the two sides of the condensation jump. The (spgaintropys of the gas is then no
longer constant across the condensation jump, as itfevaRiemann, whereas the
theorem of energy conservation remains valid along pii lines; therefore, on a
condensation jump there will be, e.g., a conversionrwdtid energy into heat. Riemann
did not arrive at such consequences.

Christoffel recognized the significance of Riemann’'stise [64] and spoke of it
during (1859/60) in the “Fortschritten der Physik.” In thstfwwork [12], Christoffel then
investigated, with the help of the methods that Riemantieappghe three-dimensional
spreading of discontinuity surfaces in ideal fluids (¢hesnsiderations are also valid for
the motion of a discontinuity through a gas at rest).

If (X, t) is a surface that expands in spa¥e=(spatial coordinatet, = time), on
which a density, pressurg, or flow velocityx of the fluid is discontinuous (a so-called
first-order discontinuity) then Christoffel next dedudexin the continuity of the flow on
the discontinuity surfack(X, t), the jump relationgu] = 0, withU : =X - u,, in which
u» means the velocity in the normal direction to the adiray surface, whilé is the
component of the flow velocity of the fluid in the nmal direction; the square brackets
denote — since Christoffel onward — the difference hef tleft” and “right” limiting
values ofpU on the discontinuity surface. Under the assumptiahane is dealing with
an ideal fluid (i.e., no shear stresses or stressesalforce couples appear), Christoffel
immediately obtained o&(X, t) the further relationdn + - U*x= 0, wheren is the

normal vector ang’, o, U*, U™ mean the limiting values qf (U, resp.) orE(X, t) when
one approaches the surface in the direction of the fpesit‘negative,” resp.) normal.
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Christoffel derived these “impulse equations” (or aldme tdynamical compatibility
equations”) immediately from the Riemann model, wheré sagiations were proved for
one-dimensional gas flow. As a corollary to the equiati one immediately finds, for
instance, that the pressupemust be continuous oR&(X, t) when Z(X, t) is not a
condensation jump (i.e., whdgn] [h = 0 is true), and that in ideal fluids jump waees

always longitudinal, moreover (whgiU* # 0).

Christoffel (deviating from Riemann) now lineardzehe density and the pressure
for which he demanded that= o + &S, p = po + &S, with a variableS and constantg,,
Po, and substituted this into the existing relatioAdong with that, he demanded that the
initial state of the fluid be one of rest. FronmsthChristoffel then deduced that a fluid
cell that overtake& (X, t) includes a jump that results in the directiortiod normal to
>(X, t) at the point X, t) where the cell is found at the time point of jinep. Christoffel
further concluded that each tangent planeXat)( moves in the direction of its normal
with the constant velocity a, andZ(X, t) is an orthogonal trajectory of a fixed system of
normals for allt > 0, which is determined from the position BfX, 0). Finally,
Christoffel determined the jumig[= S — S from the linearized basic hydrodynamical
equations that were valid on both sides@X, t). Therefore, he did not need to solve
these equations, but he used what he called “pbamn@t discontinuity conditions on
>(X, t), which he derived for the first partial derivass/of an arbitrary function that was
differentiable on both sides of the surfacebut whose first derivative was discontinuous
onZ itself. Christoffel’'s phornomic discontinuity cditions essentially corresponded to
compatibility conditions (kinematical compatibilitgonditions of first order) that
Hugoniot and Hadamard introduced, but they are mowwieldy. The thought of
proposing such conditions had already been foung onplicitly in the work of
Riemann, so its discovery was Christoffel's owniaedment. With his phoronomic
conditions, Christoffel obtained an expression tteg normal derivatived{dn)[S], and
from this, he concluded that for an “infinitely thibundle of normals o&(X, t) with a

certain surface elemeng(X, t) the product § /A>(X,t) is constant as long & (X, t)

propagates along the normal bundle. In the last gfathe treatise [12], Christoffel

treated bounded fluids and showed that a discatyisurface will be reflected by an

encounter with a boundary that is impenetrablether fluid, and that the surface that
results from the reflection with the boundary leelvise a discontinuity surface whose
normals are created by reflection of the normaltheooriginal discontinuity surface on
the boundary (with the usual law of reflection).

The results that Christoffel proved are also smubiul and interesting that one must
not overlook the fact that his conclusions are velall, quite particular to the consequent
linearization. Correspondingly, Hadamard [31], 68, pp. 82, et seq., expressed the
opinion that “...he (i.e., Christoffel) is limited twery exceptional waves, the shock
waves (waves of first order) whose existence wascodered by Riemann, and,
moreover, since the study of these waves presgetsad difficulties, he is forced to
consider only a limiting case, the one where trseahtinuities are infinitely small...
(Hugoniot) brought to light a fundamental notiomatt of compatibility...whose necessity
seems not to have dawned on Christoffel, as waggmbiout by Riemann in the case of
rectilinear motion...” Hadamard therefore seemed twmtappreciate Christoffel's
phoronomic discontinuity conditions, which indeedas we remarked above — are
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compatibility conditions for discontinuities of order(fierhaps it has to do with the
peculiar name that Christoffel gave to them).

In his second treatise [13], Christoffel examined th& firder discontinuities in the
theory of elasticity, where linearization is commau@. In another place, | showed that
the general theory of second order discontinuitigeenmonlinear mechanics of continua,
which | presented after a lecture of Herglotz [33], alebvers the corresponding results
of Christoffel, but without his “symbolic decompositiochsThis gives the foundation (if
one holds it to even be necessary) for Hadamardéesssent ([31], no. 262, pp. 262, pp.
244, et seq.): “...such waves (i.e., of the first order) Hasen studied by Christoffel.
Thanks to the hypothesis that the motions are infingelall, this savant obtained results
that were, moreover, identical, at their basis, t® ¢imes that furnished the study of
acceleration waves.” What seems significant to meyelll, is the divergence relation
that Christoffel found in [13] between the ray vectnd @ahe norm of the jump vector; it
represents something that was indeed recognized by Herfidtnot in the literature,
and gives the physical interpretation of the rays ashidow boundary.

Whereas Riemann’s aforementioned work was very welkkn) this did not apply to
Christoffel's treatises. Merely Christoffel's tte@ent of the discontinuous motion of a
string that is defined by an arc was mentioned in Helmlsofamous “Lehre von den
Tonempfindungen” (see also Riemann-Weber [64]).

Independently of Riemann and Christoffel, Hugoniot [39], ,[4@]L] treated the
spreading of discontinuity waves in gases. Above Hillgoniot examined the
propagation of second order discontinuities in a moving igaspace (so-called
acceleration waves). Then he proved, among other ththgs,for the propagation
velocity a of a non-stationary wave (second order) relativa taoving gas one has the
formula a = (@p/dp)*® (p = pressure,p = density) for a general three-dimensional
barotropic gas flow; this was previously known only toe tinearized theory.

Hugoniot further treated the phenomenon that Hadamarddhafrer him, and even
discussed in his “Cours d’Analyse II” [30]. From a conststate, hence, from a planar
piece of the flow surface= ¢x, t), one may — as Hugoniot showed — connect up with a
destination that lies in one of the characteristicsis letermined in, say, a particular
case, by the (possibly also jerky) motion of a bound@y., a piston). These
consequences relate to the case that was alreadydemtsiby Riemann of a one-
dimensional unsteady gas motion. One then has adRmmvariant, perhaps= (U —
V)/2 =5 = const., for the flow surface= ¢[x, y), y = t (cf., suprg, a first order partial
differential that depends only ogk, ¢, an “integral” of the second order partial
differential equation foAx, y). The solutions of the first order differential eqaat are
the desired destinations, and this gives rise to the Hugph@tomenon. Riemann dealt
with it on a cone whose tangent planes are, e.gsfzalled rarefaction waves.

From the outset, however, Hugoniot first founded gas dyrsaanahermodynamics,
S0 as a consequence he required the conservation of elengyeach pathline, which
(cf., suprg contradicts Riemann’s (“static”) adiabatic law tlggtes through the (first
order) compression jump. The jump itself converts meicehenergy into heat, which
yields an increase in the entropy. Already, Rankine [@H] &een this in 1867, thus
twenty years before Hugoniot, without his making note ludt tfact. Also, on
thermodynamic grounds the spreading of (theoreticall}cewable) rarefaction jumps
through a gas is not possible, since when a rarefaatiom goes through a volume of gas
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the entropy of the gas must go down, which contraditis second law of
thermodynamics. Hugoniot proved, moreover, a notewortbynple, purely
thermodynamic relation, which is also called a “dyreafiistate equation,” between the
pressurep and densityo (the specific volumev = g%, resp.) of the gas, the so-called
Rankine-Hugoniot curve:

H(V, p)=e(v, p- €V, 9)+§rw—y>< B P=0,

in which the constant valugg po relate to a fixed initial state amdmeans the specific

internal energy of the gas. This curve also goveletonation.

Hadamard gave a summary and clear exposition ef rdsults discovered by
Riemann, Christoffel, and Hugoniot in his famou®lk¢31], but his work also gave a
precise classification of waves by their orderl{@grange variables), the representation
of the theory of characteristics of differentialuatjons with several independent
variables, and several functions that had been htowdter (by Beudon), the
bicharacteristics and, above all, existence thesrém using Cauchy-Kowalewsky or
even by using developments in fractional exponeitthe edge of regression). In
addition, Hadamard contributed numerous importaatiqular results relative to the
mathematical theory of the spreading of discontynwaves. As far as that is concerned,
here we will only treat acceleration waves in hgtestic media, generalizing the results
and suggestions of Christoffel and Hugoniot. Aoederation wave in an elastic body is
well-known to be a discontinuity surface that spgeeshrough the medium in such a
manner that the deformation gradient and the vgloeictoru of a point (of the medium)
ranges continuously over this surface, while theeksration vectoru of this point
experiences a finite junjp] when the wave passes through the point. Onensbtai

spreading condition of the form:

det Q(n) —pU°E) =0,

wherep is the density of the material abdmeans the (“intrinsic”) velocity of the wave
front relative to the materiat is the normal to the wave fror@(n) is a non-singular>&
matrix (the so-called acoustic tensor) dhds the %3 identity matrix. In general, the
acoustic tensor depends upon the deformation gradiee material, and the direction of
propagatiom of the acceleration wave at arbitrary points & gastic medium. The
possible spreading velocities of the wave for @giv are given by assuming that?
must be a real eigenvalue of the acoustic tendw;direction of the jump in the
acceleration vectgu] will be given by the corresponding (normalizedjeszivector of
Q(n). For the spreading of the acceleration wavelyperelastic media, in which the
acoustic tensor is well-known to be symmetric, Haaia proved the existence of three
orthogonal directions for eachin which the discontinuity of the acceleration cpnead.
Later, in [70] Truesdell represented this fact mgeaerally with remarkable clarity and
precision. One implicitly finds such results atfgan Christoffel’s treatise [13], but they
are generally not very clearly formulated. Thenspic case was treated by Hugoniot in
[39], who recognized the significance of this case.
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Duhem continued Hadamard’s treatment of elasticityj2d#], [25], [26]. The
conclusions of Hadamard’s do not take into account, #hg.thermal conductivity, of
elastic materials. Duhem [24], [26] examined materialwhich the temperature and the
entropy vary. He found that the foregoing statemebtaiaacceleration waves are also
true for thermally non-conductive substances, and fortanbss that obey the Fourier
law of thermal conductivity for a positive-definiteetimal conductivity tensor. In the
latter case — as Duhem showed — the acceleration was@tihermal; i.e., the temperature
gradient ranges continuously over the acceleration wByecontrast, for thermally non-
conductive substances the acceleration wave is iggeitnce., there is no jump in the
entropy gradients across it. Truesdell proved this orme im [70, 8 13], and in [71],
pp. 59-79] he gave a representation of the correspondingytbé@cceleration waves
that was founded by Coleman-Gurtin [14], [15] in termshefthermo-mechanical theory
of thermally conductive — so-called simple — substancgsihs quite general.

2. Mathematical contributionsto the problem of discontinuous gas motion
in thefirst third of the Twentieth Century after Hadamard.

In Germany, shortly after Hadamard’s aforementioneckpbarogress report appeared
in 1905 on the theory of the spreading of discontinuityesam gases. This was the
encyclopedia article [77] that was due to Zemplén. hig previous work, Zemplén,
acting on a suggestion of Hilbert, had derived equationsatiomand compatibility
conditions for an arbitrary elastic medium with thelp of Hamilton’s variational
principle.

In the pause of more than twenty-five years that tldlowed, as Cabannes
documented in his recent Handbuch article [8], there wenéy mathematical
inverstigations, especially Vessiot [72], [73], [74], and ¢fone [43], and the work of my
Leipzig teacher Herglotz and Lichtenstein. At the omdetelativity theory, Herglotz
[32] likewise treated the mechanics of continua withehasceleration waves. Later, in
Gottingen, he presented his beautiful lectures on the Hitak der Kontinua” in general,
whose publication had been so wished for. In a spextaiide that is required after the
middle part of this discussion (?), | will, in anotlmace, give a sketch of the treatment
of acceleration waves in the manner that Christoffeated first order discontinuity
waves in the linear case (quadratic energy density).

One finds Lichtenstein’s mathematical representatioth® theory of discontinuity
waves (in Euler variables), to which he devoted muchbiey in his “Hydrodynamik”
[46]. Like Zemplén, he based this work on Hamilton’s gplec— but only for gases, in
general. Further corollaries to the conditions hevedri(such as existence theorems)
were not deduced. Lichtenstein did not treat hyperboliblpnas at all, any more than he
discussed thermodynamics.

3. Thepractical contributions; above all, those of Prandtl and A. Busemann
Along with the encyclopedia article of Zemplén, ie ttame encyclopedia from the

year 1905, one should not overlook the article “Technischehsinik” [60] by Schroter
and Prandtl. Gas dynamics in Gottingen began with Sttengly influenced by Felix
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Klein) Prandtl and the Gottinger dissertation (1908) ofMiéyer [54] that emerged from
him (Meyer expansion waves, flow around a corner)auBtul analytical jump formulas
were also presented and later, graphical-numerical metivede developed (1929,
Prandtl-Busemann).

The renaissance of more engineering-oriented investigais marked by the articles
on gas dynamics by A. Busemann [7] and J. Ackert [1]; intiadcl there are the Atti of
the fifth Convegno Volta (Rome, 1935) [16]. At that stH#rthat era, important themes
in practice were the high-speed aerodynamics of thenigachve of a projectile (circular
cone) and its resistance, as well as correspondingtigagions on biplanes. The Volta
conference was perhaps the last time that the leadimgiloutors of the various nations,
including Prandtl, G. I. Taylor, von Karman, Pistolesi, Busemann could peacefully
exchange their secrets together.

It was ten years after the appearance of the citedeanf A. Busemann when it was
brought to the attention of H. Billharz, Hantzsche &nilt, Guderley, A. von Baranoff,
and myself at the Technische Hochschule Braunschweiddnylae of Busemann, and it
inspired me to pursue the variational principle for twamehsional problems (two-
dimensional in the stationary case and one-dimensionhé non-stationary case). | will
never forget the peaceful, morning lecture hours — befwwework began — when A.
Busemann, after lengthy, troublesome calculations and leudagons with the exponent
k, arrived at his actual geometric idea, and from the woadsdels of his pressure jump,
with a serious expression, he transferred a directi@o the enormous blackboard on
rollers that served as the flow plane by means afea.r

These engineering-intuitive, graphical-numerical procedurave allowed me to
recognize that Busemann’s pressure jump is the (Blasclguepfrix of the variational
problem of stationary plane gas dynamics — N.B., alsdldars that are not (as in the
variational principal of Bateman) potential flows, bwiwk with rotation, which must be
described by the stream functiar= ¢AX, y). My variational principle is therefore not
only another formulation of Bateman’s principle, as Bef66, pp. 204, rem. 1]
suggested. | have presented my variational principle ifirgtgpart of my (unpublished)
Lilienthal-Arbeit [35], and later in the MathematischBlachrichten [36]. The starting
point of the variational problem (also in the reactgas dynamics of equilibrium) is
obtained when one writes down the state equation ifaitre of a Mollier diagram
pressure:

(A) ¢=p=p(,s),

with specific enthalpy and specific entropg. With:
1 .
(B) 5,72+|+§(:0! U:_/7

(u = velocity) is already the figuratrix surfage= @ (&, 1) of the variational problem for
the stream functioa = y(x, y), y =t = time that follows from the equation of continuity
(C) (cf., suprg.

The Euler equation of the variational problem is the i=edgiation E) (cf., suprg of
the one-dimensional non-stationary motion. For plan@-dimensional stationary gas
flow, in place of B) one must take the Bernoulli equation for the two vigéscu = - 1, v
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= £, which follows from the equations of motion, and thdee-Lagrange equation then
becomes the rotation theorem. Analogous statememtsias for stationary rotationally-
symmetric flows, such as for the circulation in the dgita of the atmosphere and for
other wind fields of meteorology, and ultimately for ta@maally-symmetric flows of a
perfect plasma in magnetogasdynamics, cf. [37], [38].

For all of the importance that | ascribe to the pressgump as the figuratrix of my
two-dimensional variational problem, it is only the neetif a Cartanian geometry that is
based on it. Luckily, only one part of the associatadli&ian connection comes under
consideration: the absolute derivative of the unit norveator, indeed, only the mean

curvature, the trac€ =r:g’, if one would ultimately like to swear by the Chrigeb

symbols. The characteristic procedure can then be m®dgio be an approximate
construction of the extremal surface (= surface ofsrang mean Cartan curvature)
through a triangular polyhedron. The triangle inside b&g two characteristic sides, and
a kink is attached to the third side, whose “curvaturéigsrthe mean curvature of the
triangle to zero.

Something crucial that comes out of Cartan geometry isonsider the pressure
jumps (figuratrices) that are associated with diffeengropiess, s, s> . One can then
represent the density jump across a surface elexgpgbdf the flow surface, in which the
edge of the kink itself is represented by two colliding siegfalements, by the parallel
(“double-") tangent that runs through the parallel tangeaheplof the figuratri¥#_,

which meanwhile includes a second tangent plane to aterfial”) figuratrixFs (with s
> 5).

The most important work to emerge from A. Busemannsgitlit fir Gasdynamik
was G. Gunderley's investigations into characteristiccgdares (cf., G. Guderley:
Characteristikentheorie, Rep. & Transl. No. 113, Rep. @&M.ist 112). His procedure
for the calculation of density jumps is also an impar{aractical example of numerical
calculation. Moreover, Guderley originated the treatimaf “blast waves,” which are
spherical density jumps, by a difficult examination dfirat order differential equation
with many singularities. However, above all, one nmsttion the foundational book
[29] that Guderley wrote later. In it, he made a firdvamce into the realm of partial
differential equations of mixed type that was opened up i, which should be of
primary interest today, in my opinion. Such differah#quations describe flows from
subsonic to supersonic that again end in an often-undesiredydensgi into subsonic.
A transonic flow of this type, where the supersonic donteeaks up into the subsonic
one with a density jump, raises enormous mathemaircdlems. On this, one confers
the book of Bers [5], where the characteristic theisryapplied, in a large part, in
connection with the hodograph method.

4. Brief outlook

Up till now, since | recounted the story of Riemannisais on gas dynamics and
Christoffel's ideas on the general mechanics of caatimvhich | certainly did not exactly
experience, but have only heard of and have now studiezhimection with Christoffel’s
work, | must refer completely to the Handbuch artadé Cabannes [8] and R. E. Meyer
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[53] for a presentation of recent progress in the theonwy practice of discontinuity
waves, where in the latter article along with infinitesl density jumps, also strong
discontinuity jumps are mentioned.

From the textbooks of gas dynamics, | have once agammecto appreciate the
outstanding and still-fashionable work of Courant-Friddgig17]. It preserves the
Gottingen-Braunschweig tradition (Courant and Herglotp &ek part in the Prandtl
seminar on flow theory in 1929) and unites it with thenstee results and calculations
of the American researchers; among them are H. Waylyon Neumann, R. D.
Richtmyer.

5. Recent work on the existence of global weak solutions of strictly hyperbolic
systems of conservation laws

From the treatise of Riemann that was mentionetieabhset, emerged not only an
important stimulus for the development of a matherahticeory of the spreading of
discontinuity waves in gases, fluids, and elastic nma$e but also,inter alia, the
significance of the fact that in that treatment ooanfl the complete solution of an
initial-value problem (with piecewise constant initizlues) for a strictly hyperbolic
(nonlinear) system of partial differential equationst thad the form of a conservation
law (with one spatial variable). Almost one hundred yeaould elapse after the
publication of Riemann’s treatise before anyone was in gigqo$o prove corresponding
(global) existence theorems for such initial value probldaors general hyperbolic
systems of conservation laws.

In 1957 Lax [44] gave an existence proof for the Riemartmlinialue problem
(under restricted assumptions on the initial values) fpereeral system:

%u(x,t)+% f(u(x 9)=0, xOR,t0O[0, x),

u=(u, ..., Un), nON,n= 2,

with a smooth nonlinear map D - R" that is defined in an open st R". The
Jacobi matrixd,f possesses distinct, real eigenvaluesi(u) < Ax(u) < ... <A,(u) (strict
hyperbolicity) with right eigenvectorg(u), k =, ...,n, u 0 D. As for the eigenvalues, it
will be assumed that they are “truly nonlinear” or “degrate linear,” i.e., one has
r(u)MyA(u) £ 0 (r(u)MyAe(u) = 0, resp.)k =1, ...,n,u0D. A system is called truly
nonlinear (degenerate linear, resp.) when all of the eigewd(u) are truly nonlinear
(degenerate linear, resp.). Examples from mathematigadics of the systems that Lax
treated are, for instance, the isotropic gas equatithes,general equations of gas
dynamics in relativistic and non-relativistic form, ethLundquist equations of
magnetogasdynamics in Lagrangian coordinates, the egadtr the finite amplitude of
a plane elastic wave.

Even forC”-smooth initial values, one cannot, from just that, dedhae a Cauchy
initial value problem for a system + f(u)x = 0 (with nonlinear) possesses a smooth or
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even just continuous global solution, since due to theimearity off the eigenvaluelk
of the matrixd,f depends upon.

Lax thus examined weak solutions of the initial value problee., measurable and
restricted functionsi(x, t) with:

I:I:[¢tm+¢fo(u)] dtdx+j_°;cb( x0) § x0) d=0

forall® OCJ (R x [0, »), R"). Ift » x(t) DR, t=0, is a discontinuous curve for a weak
solutionu then one has the Rankine-Hugoniot relations:

(RH) (1) [u(x(®) + 0,9 = u(x(t) = 0, )] = f(u(x(® + 0,1)) = f(ux(t) - 0,1)

for all points k(t), t) on the (smooth) discontinuity curve. When onditz@hally has for
somek, 1<k<n:

(L) A1 (U(X(t) — 0,1)) <x(t) < Au(x(t) - 0, 1))
and
A(u(x(t) — 0,1)) <x(t) < Aks2(u(x(t) + 0,1)),

Lax called the discontinuity curvekeshock. Moreover, whex is degenerate linear so-
calledk-contact discontinuities appear, which are discwritty curves for whose points
(X(t), t) one hasl(u(x(t) — 0,t)) = A(u(x(t) + 0,t)) =x(t).

Under the assumption that the “initial states”u, 0 R" are close to each other in the
Euclidian norm, Lax proved for the Riemann initralue problem:

u, for x<O

(R) U +f(u)x =0, u(x 0) ={ for x>0

u

r

that their exists a global — i.e., definedRrx [0, ) — weak solution when the system of
that sort is strictly hyperbolic and the eigenvalae¢d,f are truly nonlinear or degenerate
linear. The solutiom(x, t) that Lax constructed depends only updétrand is piecewise
continuously differentiable. It assumes constaitiesu, 0 R", k=0, ...,Nn, Up : = Uy, Uy
:=Ur in the sector&: = {(x t) |akt < x< bt} a, bk DR, k=0, ...,n. S andS, k=

1 follow in sequence, i.elx-1 < a,, and there exist the following possibilities:

1. S and & have a common boundaxft) = ax t, ax = bx-1 = const. Then the
“intermediate statedlix-1, ux Will be separated by lashock, in the event that(u) I Ak #
0,ul D, and one has:

A(u(act—0,1)) > ax > A(u(ac t + 0,1)).

By contrast, when one hagu) A« = 0,u [0 D the common boundary &-; and&c is a
contact discontinuity with:

a = A(u(a t = 0,1)) = A(u(ak t + 0,1)).
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0S1 N 0S = {(ak t, t) | t = 0} is therefore a discontinuity curve along whigimakes a
jump.

2. S-1 andS have only the origin 0 as common boundary point. Themlf of the
points @&, t) of S’: = {(x, t) | bkt < X < &, t} there exists the equatioh(u(&, t) = & The
boundary lines of5' are characteristics and tkdRiemann invariants are constant&n

0S’ 0 . In this case, the intermediate states, ux will be — as Lax said — linked by

k-rarefaction wave centered on O.

The Lax conclusions were absent from [44], but thorgughésented in the very
beautiful survey article [45].

For the proof that was given by Lax of the existenca glbbal weak solution of the
Riemann problemR) the assumption that initial states u, are close to each other in the
Euclidian norm is crucial.

In the case of a truly nonlinear, strictly hyperb@stem of just two equations +
f(u, V)x = 0, vt + g(u, vV)x = 0, Smoller [68], [69] arrived at existence and uniqueness
theorems for the Riemann initial value problem withoatihg to make these very
restricting assumptions on the initial values. Smaikerved (under the assumptions that
he made for the system) that four globally defined aiemanate from each point(
vy) of the (i, v)-plane, which subdivide the plane into four quadrants, thath(due to the
global geometric properties of these curves) for all ¢) that lie in three of these
guadrants the Riemann initial value problem for the gieh system with the initial
values:

(U, v) x<O
(U.v) x>0

(u, V)(x, 0) ={

By contrast, the “correct” initial stateu( v;) lies in the fourth quadrant, such the
Riemann problem — as Smoller showed — then possesseslyr@ris restricted weak
solution when the mapi(v) - (r, s), wherer, s are the classical Riemann invariants of
the system, mapR? ontoR% In [69], Smoller proved that the solution of the Rénn
problem is unique in the class of constant states tlealirdked by means of shocks or
rarefaction waves that are centered at O.

In the cited works, Smoller made crucial use of dssumption that the strictly
hyperbolic %2 system in question is truly nonlinear. For genex@l /stems that do not
satisfy this assumption of being truly nonlinear, Daferfif, [19] and Dafermos-
DiPerna [20] constructed solutions for the Riemann probiétm general initial values
by means of the viscosity method, by which one firsteithe Riemann initial value
problem of the system perturbed by a viscosity term:

U + (U, V)x = &lx, Ve +0(U, V)x = &y, £>0,

and finally show that it yields solutions to the Riemanobfgm for the system + f(u,
V)x = 0, % + g(u, V)x = 0 when one takes the limit as- 0°. The structure of the solution
thus obtained is essentially more complicated thavottld be for truly nonlinear systems
and was examined by Dafermos [19] in detalil.
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Liu [47], [48] gave very far-reaching existence and uniquenibeorems for the
Riemann problem for strictly hyperbolix2 systems of conservation laws (in one spatial
variable) that do not have to be truly nonlinear and dotlnat these solutions satisfy an
“entropy condition” E') that represents an immediate generalization offameous
“condition (E)” that Oleneik [59] presented for scalar equations. tRay nonlinear
systemsk') is equivalent to the Lax shock conditidr) (cf., supra.

Beyond that, Liu [49] proved, for the generat33system of equations of gas
dynamics in one spatial variable and in Euler coordsat

G pa+ (k=0 o) + (a” +p)x =0, (0E): + (0uE + pu)x = 0,

(with the densityo, gas velocity, total energyE = u%/2 + e, e = specific energy) with
arbitrary initial data:

U, forx<O

U9 :{U for x>0’

r

U, = (,01, yo,1% 8 El), U, = (,Or, LU, Er) [l Rs,

that belong to the class of constant states thatried by shocks, rarefaction waves, or
contact discontinuities, possesses a solution thafisatthe entropy conditiork(); this
solution is unique. It is worthy of note that Liu did m&ed to assume the convexity
conditionpu(Vv, S) > 0 on the pressune = — e(v, s) (v = 1l/o = specific volumes =
specific entropy). Already, Bethe had shown in 1942 tbatact discontinuities must
appear whem,, is not positive everywhere, and he suspected thdtisncase solutions
would exist that had “stable” discontinuity lines in tHass of constant states that are
linked by shocks, rarefaction waves, and contact disaatiga. From Liu’s conclusions
it emerged that due td&/) the characteristics of the syste®) (point in the direction of
the discontinuity lines or parallel to them, so thecdntinuities are stable, which
confirms Bethe’s suspicion.

For the same systenG) of general gas dynamical equations, Wendroff likewise
proved an existence theorem in [75], although under othemassuns and a restriction
on the initial statebs, U, .

Smith [67] gave an exhaustive treatment of the existendeuaigueness questions
for the Riemann initial value problem of the generaleaysG). Under the assumptions
pv < 0,pw > 0,ps > 0, together with a demand on the asymptotic behavierled showed
the existence of a solution to the initial value problem ddoitrary Riemann initial
values. The solution is, moreover, not unique, even wheatisfies the Lax shock
condition and an entropy condition. Smith proved thahecessary and sufficient
conditions for the uniqueness of the solution is the inéguav(v, €) < p%/2e(v, e > 0).
The proof restsinter alia, on a precise analysis of the Hugoniot curve {cfra) in the
(v, p) plane and makes use of results of Weyl [76]. Snigb astated concrete Riemann
initial data for which the Riemann problem foG)( possesses many (at least five)
different solutions.

Along with the Riemann initial value problem with itepewise constant initial data,
the Cauchy initial value problem is naturally of intere§&limm [28] proved a global
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existence theorem for this problem for general, strigtyperbolic nxn systems of
conservation laws under restricted assumptions aboutitia¢ values.
Glimm examined the Cauchy initial value problem:

(CP) u +f(u)x =0, u(x 0) =uy(X),x OR,t=0

with given initial valuesl ; u, f, up areR"valued functionsn = 2. The system shall be
strictly hyperbolic and truly nonlinear, and the initialwesu, are defined orR as
restricted functions of restricted variationsn Furthermore, it will be assumed that for

a fixed vecto' 0 R" the expressiovﬂu0 -V + T.V. W (T. V. = total variation over

= (R")*
X) is sufficiently small. Under these assumptionan@ proved the existence of a global
weak solution of CP) with a difference procedure.
First, an approximate solution was constructed withhdkp of the solutions of a
certain Riemann problem. Lbtk > 0 be the lattice spacing along thé, resp.) axish/k
= const. h/k> mjax supfl; (1)} (Friedrich-Lewy condition). The approximate solutign
J

will be inductively defined in strips that are paralletlhex axis. Glimm next discretized
the initial values throughbiy(x, 0) : = {uo(jh), 0 Z,j=1(2), {—1h<x<( + 1h}. At
the pointsx =i,t = 0,i =0 (2) the Riemann problem:

u,((i-1h) for (i—-Lh< x<ih
u +f(U)x =0, u(x, 0) = 0((_ ) ( ) .
Uy ((i+Dh) for ih< x<(i+1h
is solved by the Lax method; in this way, one obtam®xact solutioruy(X, t) to u; +

f(u)x = 0 in the stripg < k. Now, letun(x, t) be already defined fdr< jk, j 0 N. Then
Glimm sets:

Un(x, jK) : = {un((i + 1 +aj)h, jk = 0),ih< x< (i +2h,i Z,i+j=0 (2)},

where theg; are chosen arbitrary orX, 1). un(X, jk) is a piecewise constant function of
X. At the pointsif, jK) withi +j =0 (2), one solves the Riemann problem:

u,(h+ah jK (i-)hs x< ih

U+ (U= 0, ulx Jk) :{uh((i+1+aj)h, k) ih< x< (i+Dh

in the manner of Lax; the solution is comprised of “edatary waves” that are centered
on the pointsif, jk). In this wayun(x, t) will be defined on the stripgs< (j + 1)k, and an
induction argument then gives an approximate solusiothat is defined iIrR x [0, o)
(when one observes certain additional estimates.

The crucial original idea of the proof of Glimm nownesgsts in the fact that he
defined certain nonlinear functionals one the approximalatisns that, in a certain
sense, measure the interaction of the solutions tBiti®ann problem (that appear in the
construction otu,) above with the aforementioned elementary waves. Wdeghhelp of
the assumption that the hyperbolic system of equai®mhsily nonlinear and the total
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variation of the initial values is small, Glimm olbtad estimates of these nonlinear
functionals, from which one finally obtaines the inegyal.V. un(X, t) < const.uy(X)
with constants that are independentipf anda;, j 0 N. A compactness argument that
rests upon the theorem of Helly then gives lth@)-convergenceQ O R?, of {u, i O

N} for a null sequencel, i O N} O R*. Whether the limiting function even represents a
global weak solution ofGP) depends upon the choice of sequerge U N}, g O (-1,
1); in this way, the Glimm procedure takes on a probaliltaracter. If one sefs=
(-1, 1) then Glimm can at least show that foral A — Z the sequendel,, i [J N}

converges to a global weak solution @), whereZ is a set of Lebesgue measure 0
(defined onA by the product construction). In [51], Liu managed to stiwat for each
evenly-spaced sequeneel] A in the interval £1, 1) the Glimm difference procedure
gives a global solution tdCP).

Glimm did not prove that the solutions obtained by hacedure satisfy an entropy
condition, and are therefore “physically sensibl&herefore, Chorin [10], [11], with the
help of a numerical procedure that was based on thenGhmathod, obtained results for
systems of gas dynamics and reaction gas dynamicgdkatrise to the suspicion that
the Glimm difference procedure leads to physically medmisglutions.

A modification of the conclusions of Glimm also makan existence theorem for
inhomogeneous systems possible. Under the same asswsmgbout the initial values
and withf as in Glimm, Liu [52] proved, with a modified Glimm diféince procedure for
the inhomogeneous, strictly hyperbolic system:

U + f(U)x = g(x, u),

the existence of a global weak solution of the Caushiai value problem, when tHe'-
norm ofg(x, u), gu(x, u) is sufficiently small.

The assumptions that Glimm made about the initial vedmesvery restricted; thus,
many authors could prove existence theorems for weal Igémhations to the Cauchy
initial value problem for a large class of strictly hgipalic 2x2 systems of conservation
laws, without having to assume that the oscillationher tbtal variation of the initial
values is small, cf., Bakhvarov [2], Chang T'ung-Kuo Yuf#, DiPerna [21], [22],
along with Nishida [57], Nishida-Smoller [58], Johnson-SmidW®]. For systems with
more than two equations there are no comparable exéstémeorems with the
assumptions of Liu [51]. Liu treated the system of dé#ifeial equations for one-
dimensional gas flow of a polytropic gas in Lagrangiamades:

u+tpk=0, w-u=0 E+(@pPux=0,
p(v, S) = const. exp— 1s /R Vv, y (1, 5/3)

(u = velocity,v = specific volumep = pressures = entropy,E = total energy). Under the
assumption concerning the initial valugs vy, S that (y— 1) max{T.V.uo, T.V. vy, T.V.

S} is sufficiently small, Liu can show the existence afglobal weak solution. The
assumptiony (1, 5/3) guarantees the usual shock interaction, incpéatj that during
the penetration of two shocks in a characteristic ligrthere exist a shock from the same



Discontinuity waves since Christoffel 16

family, a contact discontinuity, and a rarefactionvevabf the opposite characteristic
family (cf., J. von Neumann [56]).

It is unknown whether similar existence theoreme &alid for other strictly
hyperbolicnxn systemsh > 3. Likewise, the question of a criterion for the uniquesnef
the global weak solution of hyperbolic systems of corsg@n laws is open; on the
guestion of uniqueness, one can confer DiPerna [23].
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