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 1.  In the following, I would like speak on the implications that the concept of a one-
parameter group of contact transformations, as well as their infinitesimal transformations, 
has in the calculus of variations – and also for the multiple extremal integrals with many 
desired functions.  For one-dimensional extremal integrals, the relation to the geometry of 
contact transformations – which is already implicit in Hamilton’s 2) optical works – are 
well-known, if they are, however, perhaps not always sufficiently discussed in the 
textbooks. 
 Lie 3), without referring to Hamilton, has stated several times that the simplest 
example of a one-parameter group of contact transformations was given by the wave 
motions, and that the group property of all dilatations was intimately connected with 
Huygens’s principle.  In a similar way, the images of a surface under an arbitrary one-
parameter group of contact transformations can be regarded as originating in a wave 
process in a permanent regime that satisfies Huygens’s principle of ray optics.  An initial 
wave surface Σ0 , which after a time Θ becomes a certain wave surface Σ = TΘ Σ0 (by 
means of a contact transformation) has, at the time Θ + Θ′, the position TΘ + Θ′ Σ0 = TΘ′ Σ, 
which originates from the new initial location Σ after the time Θ′: TΘ + Θ′ = TΘ ΤΘ′; the 
time Θ is the canonical parameter. 
 The partial differential equation of first order for the wave process is obtained from 
the assumption that the infinitesimal contact transformation, by way of its Lie 
characteristic function, (essentially) gives the normal velocity of the wave for each 
direction of the wave normal at every point.  If one goes a distance from the origin that is 
equal to the normal velocity at a certain point for variable normal direction, as well as the 
plane that it is normal to it, then this envelops a point structure: the ray surface at the 
point considered.  From this, one obtains, by a similar reduction of 1 to δΘ in the time 
increment δΘ, the “elementary wave” that is produced at each of the individual points of 
the surface elements and, as they vary, gives the envelope of the infinitesimally close 

                                                
 1 ) A somewhat extended version of a presentation that was given to the Baden-Baden meeting of the D. 
M. V.  (Sept., 1938). 
 2 ) W. R. Hamilton, Third Supplement to an Essay on the Theory of Systems of Rays (1832).  In 
particular, articles 2, 26, Math. Papers I, Cambridge 1931 (on this, cf., also the remarks of the eds. A. W. 
Conway and J. L. Synge, pp. XXI, 189), as well in the survey edited by G. Prange: Über W. R. Hamiltons 
Abhandlungen zur Strahlenoptik, Leipzig 1933, as well as the footnote on this, in particular, pp. 168, et seq. 
cf., Prange, Nova Acta (?) Acad. (?) (1923), No. 1.  Enzykl. d. math. Wiss. IV, 12 and 13, No. 13. 
 3 ) Cf., Lie and Scheffers, Geometrie der Berührungstransformationen, Bd. I, Leipzig 1896, pp. 966. (?), 
as well as Lie, Die infinitesimalen Berührungstransformationen der Optik, Ges. Abh., Bd. 6, pp. 615-617. 
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wave surface.  With this envelope construction (which is likewise also valid for finite 
contact transformations), one has outlined the scope of Huygens’s principle. 
 By means of this wave picture, the notion of a one-parameter group of 
transformations resolves to a “particle picture.” This double aspect represents, in 
Hamilton’s theory, a bridge across the dualism of Huygens’s wave theory and Newton’s 
emission theory that led Hamilton to make the transition from applying his method to 
optics to applying it to mechanics, and which was the stimulus for Schrödinger 4) a 
hundred years later that led up to the new physical synthesis of wave mechanics. 
 In this particle picture one focuses on the paths of the individual surface elements 
under the transformations of the group, which are the rays, optically speaking.  They lead 
from the contact point of the elementary wave to the envelope and are given by certain 
ordinary differential equations whose right-hand side is derived from Lie’s characteristic 
function of the infinitesimal contact transformation. 
 There now exists the fundamental connection that the paths of the group are, at the 
same time, extremals (minimals) of a variational problem – the one in which the 
indicatrix is given by the ray surface: The rays satisfy Fermat’s principle of shortest time.  
Correspondingly, in mechanics the paths satisfy the principle of least action (in the Jacobi 
form) when the energy constant is fixed. 
 I would like to briefly derive this connection anew on the basis of the very 
penetrating examination of Vessiot 5) (which is independent of the optical aspects), 
simply from Lie’s notion of a one-parameter group of contact transformations.  Thus, I 
will use the inhomogeneous formulation by singling out an axis, as opposed to the most 
commonly used homogeneous representation that is often suitable in the beginning – 
particularly, when one goes to the multi-dimensional variational calculus. 
 By singling out a t-axis, we thus consider transformations of a space of coordinates (t, 
xi) that take the surface element (t, xi, Pi) to another surface element, and that take an n-
dimensional union of surface elements dt + Pi dxi = 0 into another such union.  The 
position coordinates Pi are thus − ∂t / ∂xi = Pi . 
 We now treat a one-parameter group G of contact transformations: 

 
(1)  t' = g(t, xj, Pj, Θ), ix′ = gi(t, xj, Pj, Θ), iP′= hi(t, xj, Pj, Θ), 

 
( , , )

( , , )
i i

j j

t x P

t x P

′ ′ ′∂
∂

≠ 0. 

                                                
 4 ) E. Schrödinger, Abhandlungen zur Wellenmechanik, 2nd ed., Leipzig 1928, pp. 489 et seq. 
 5 ) E. Vessiot. a)  Sur l’interpretation des transformations de contact infinitésimales, Bull. Soc. math. de 
France 34 (1906), pp. 320-269.  Vessiot also treated a time-varying medium, b) Essai sur la propagation par 
ondes, Annales de l’Éc. Normale sup. (3) 26 (1909), pp. 405-448.  For the corresponding questions for the 
Lagrange problem, cf., Vessiot, c) Sur la théorie des multiplicités et le Calcul de Variations, Bull. Soc. 
math. de France 40 (1912), pp. 68 to 139; d) Sur la propagation par ondes et sur le problème de Mayer, 
Journal de Math. (6) 9 (1913), pp. 39-76. 
 Further representations are given for the case of an n-dimensional ray surface by T. Levi-Civita and U. 
Amaldi, Lezzioni di Meccanica razionale II, pp. 456-469 (Bologna 1927), L. P. Eisenhart, Continuous 
groups of tansfromations (Princeton 1933), p. 263-273 and G. Juvet, Mécanique analytique et mécanique 
ondulatoire, Mémorial Sci. Math. Fasc. 83 (Paris 1937). 
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This has the function F(t, xj, Pj) ≠ 0 as the Lie characteristic function of the infinitesimal 
transformation; it makes F δΘ the infinitesimal displacement of the surface element in 
the direction of the t-axis if Θ is the canonical parameter of the group.  The paths of the 
group: 
(2)   t = 0 0 0( , , , )j jg t x P Θ , xi =

0 0 0( , , , )i j jg t x P Θ , Pi =
0 0 0( , , , )i j jh t x P Θ , 

 
obey the differential relations 6): 
 

(3)    dt + Pi dxi = F dΘ + Gh dch ,  hG∂
∂Θ

= Ft ⋅ Gh , 

 
in which ch means an arbitrary parameter upon which the initial values t0, 0

jx , 0
jP depend; 

perhaps one can set ch = 0
jx  and fix 0

jx and 0
jP .  Just like t, xi , Pi , F and Gh then depend 

upon Θ, c1, c2 , …  One then has: 

(4)      
F∂

∂Θ
= Ft ⋅ F. 

 
 Conversely, a 2n-parameter family: 
 
(5)  t = t(c1, c2 , …, c2n ; Θ),     xi = xi(c1, c2 , …c2n ; Θ),    Pi = Pi(c1, c2 , …c2n ; Θ), 
 
with: 

(6)      
1 2

( , )

( , , )
i i

n

x P

c c

∂
∂ ⋯

≠ 0 

                                                
 6 ) From the system of differential equations for the paths: 
 

(3a)     

i

i

i

i P

i
P i

i
x i t

dt
F PF

d
dx

F
d
dP

F PF
d

 = − = −Φ Θ

 = = Π Θ
 = − + Θ

 

 
that are associated with the infinitesimal contact transformation and the canonical parameter Θ, it follows 
that there is agreement between the coefficients of dΘ on the left-hand and right-hand sides of the 
differential relation (3)1, which thus defines the quantities Gh; in order to do this, one then calculates the 
derivative (3)2 . 
 Herglotz, in particular, treated the differential relations (3) in his seminar on continuum mechanics, 
Göttingen 1925/26. – There, one will also find the basic facts of ray optics derived from the second-order 
differential equations of continuum mechanics.  He also treats the general case of variable regimes, which 
leads into the Mayer problem; cf., Vessiot, loc. cit. 5)  b) The specialization to permanent regimes produced 
the ordinary variational problem in homogeneous form.  Heglotz has treated a one-parameter group of 
contact transformations in the plane in his seminar on differential equations, Göttingen Summer 1928, in 
which the paths were treated as extremals in a variational problem, and are denoted by the same 
independent variable x as the transversals in inhomogeneous form. 
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is characterized by the differential relation (3)1 , along with (3)2 , as the family of paths of 
a one-parameter group of contact transformations. 
 In order to go from the group of contact transformations to the associated family of 
canonical transformations, one writes: 
 

(7)     
1

( , , );

i
i

j j

P

F

t x
F

π

ϕ π

=

− =
 

 
from the first equations, under the assumption that Φ ≠ 0, the Pi may be represented as 
expressions in the new variables (impulses) πi 

7), which will then be substituted in – F−1.  
When one substitutes Θ for t by means of (5)1 and substitutes in (5)2,3 , under the same 
assumption that Φ ≠ 0, formula (5) now gives the family: 
 
(8)    xi = ξi(c1, …, c2n ; t), πi = ηi(c1, …, c2n ; t),  
with: 

(9)     
1 2

( , )
( , , )

i i

n

x
c c

π∂
∂ ⋯

=
1 2

( , )( , )
( , ) ( , , )

j

j j n

ii i x Px
x P c c

π ∂∂
∂ ∂ ⋯

≠ 0, 

                                                
 7 ) They are, in fact: 
 

i

jP

π∂

∂
=

2

1

F
(δij F – Pi Πj), det i

jP

π ∂ 
 ∂ 

 =
1

2

n

n

F

F

−
(F – Pi Πi) = −

1nF +
Φ

. 

 
 I then compute the differential: 

dϕ = 
2

1 1
i i

i
t x i P i

P
F dt F dx F Fd FPd

F FF

  + + −  
  

, 

i.e.: 

− Φ dϕ = (F – Pi Πi) dϕ = 
2
t i

i i in

FF x
dt dx d

FF
π+ + Π . 

 
 Combining this with the Legendre transformation (13) gives: 
 

pi = − iΠ
Φ

, f =
1 i iP

F F

Π
−

Φ
 = − 1

Φ
, 

 
hence, the birational involutory contact transformation (F, Pi, Πi) → (f, pi, πi): 
 

(7a)    f = − 1
Φ

,  ϕ = − 1
F

, pi = − iΠ
Φ

, πi = iP

F
, 

 
that Haar presented (in another connection: Über adjungierte Variationsprobleme und adjungierte 
Extremalflächen. Math. Ann. 100 (1928), pp. 487 et seq.)  and Carathéodory, loc. cit. 11) d) pp. 194 et seq. 
has used in a definitive formulation of his generalized Legendre transformation; we shall discuss this in no. 
2.  The formulas with one independent variable that one subsequently needs are naturally much easier to 
prove. 
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for which, (3), after dividing by F, yields: 
 

(10)   − ϕ dt + πi dxi = dΘ + Ch dch , hC

t

∂
∂

= 0. 

 
However, the differential relation (10) characterizes (8), with (9), as the family of 
solutions of the canonical system: 
 

(11)    idx

dt
= 

iπϕ , id

dt

π
= −

ixϕ  

 
with the Hamilton function ϕ(t, xi, πi). 
 With no further restrictions, the family of canonical transformations is then also given 
by: 

xi =
0 0( , ; )i j jx x tπ , πi = 0 0( , ; )i j jx tπ π . 

 
 With this, we have the bridge to the variational problem: 
 

(12)   f dt∫ = min for the curve xi = xi(t) 

 
(for given endpoints), whose extremals are the paths of the group.  Its basic Lagrange 
function f(t, xi, pi), with pi = dxi /dt, goes over, in a well-known way, by using the 
Legendre transformation: 
(13)    pi = 

iπϕ , f = − ϕ + pi πi , 

 
to the Hamilton function ϕ and thus to the Lie characteristic function F 8). 
 The value of the extremal integral along a path segment is equal to the associated 
canonical parameter increment Θ. 
 Our representation allows us to immediately recognize that, conversely, the entire 
path of the variational problem can also be obtained from the family of canonical 
transformations as one runs through the one-parameter group of contact transformations.  
The transformation of the desired functions is now (under the assumption that f ⋅ ϕ ≠ 0), 
from (7): 

                                                
 8 ) Here, we restrict ourselves the case in which the Hessian determinant satisfies: 
 

(13a)     
i jπ πϕ  =

2

2( ) i jP

n

Pn

F
F

+

+−Φ
 ≠ 0. 

 
In other cases, one is led to a Lagrange problem, cf., Vessiot, loc. cit. 5), pp. 81, 107, as well as more 
recently in the textbook of Carathéodory, loc. cit. 11), a), pp. 354 et seq., and also Boerner 11), pp. 201, 
second formula from the top, where the first two factors on the right must be (fF)2(n+µ) – nµ.  
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(14)     
1

,

i
iP

F

π
ϕ

ϕ

 = −


 = −


 

 
in which (similar to (7)1 in rem. 7)), under the assumption that f ≠ 0, the first equation 
(14)1 can be solved for the πi (on this, cf., also Carathéodory, loc. cit. 11), pp. 358) and its 
expressions in t, xi, Pi can be substituted in (14)2; as the independent variable, one 
introduces ∫ f dt  = Θ along the extremal.  If (8) and the differential relations (10), as well 
as (9), are true for this situation then the differential relation (3), as well as (6), follows 
for (5), which characterizes (5) as the path of a one-parameter group of contact 
transformations. 
 In the variational calculus, one says that a surface element (t, xi , Pi) intersects its path 
(with the line element (t, xi , pi)) transversally.  With the addition of the impulse πi the 
transversality is expressed by (7), ((14, resp.). 
 If one then takes an initial surface (union) 0nM and subjects it to the contact 

transformation TΘ of the group G then on any image surface (union) Mn the canonical 

parameter will, in a certain neighborhood, describe a function of position 9): 
 
(15)     Θ = S(t, xi). 
 
The family of ∞1 Mn: S(t, xi) = Θ = const. is called a geodetic field; it intersects the paths 
transversally (and together with them defines a complete figure in the sense of 
Carathéodory). 
 

                                                
 9 ) This is true under the assumption that F ≠ 0, which we have already made.  F = 0 represents another 
first-order partial differential equation, namely: 

, ,i
i

t
t x

x
F
 ∂−  ∂ 

= 0, 

 
for one surface t = t(xi) in the same t, xi space by which it is determined that it includes the surface element 
with F = 0 that lies on an n−1-dimensional manifold.  This surface has the property that its surface elements 
are displaced into themselves under the one-parameter group of contact transformations, so any surface 
element with F = 0 will be displaced to an infinitely close element that is united with it on the characteristic 
strip that is determined by the initial element.  Cf., S. Lie, Ges. Abh. IV, pp. 287, as well as pp. 591; VI, pp. 
636, as well as footnote pp. 905; furthermore, see the footnotes of Engels in Bd. III, pp. 615, and Theorie 
der Transformationsgruppen II, pp. 256 (Leipzig 1890).  In recent representations, in the construction of the 
integral surface as the characteristic strip, it is mostly not emphasized that it can be described by a one-
parameter group of contact transformations on the entire space of integral elements. 
  I remark that the paths that appear here (as anomalous line elements) are boundary curves, which 
can be either minima or maxima of the variational problem. Cf., Vessiot, loc. cit. 5) c), pp. 69, as well as 
Carathéodory, loc. cit 11) a), pp. 283. 
  Different formal considerations are presented for this case by M. Herzberger, Theory of transversal 
curves and the connections between the calculus of variations and the theory of partial differential 
equations. Proc. Nat. Acad. Sciences 24 (1938), pp. 466-473. 
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 For S(t, xi), one has the partial differential equation 10): 
 
(16)    StF = 1. 
The equation: 
(17)    

ixS = Pi St 

 
then exhibits Pi as an expression in the derivatives of S.  By means of (7), this also 
makes: 
(18)    St + ϕ = 0, 
with: 
(19)    πi =

ixS , 

 
which is the first-order differential equation of Hamilton-Jacobi. 
 The extremal integral over an arbitrary comparison curve that runs through the 
geodetic field is: 
(20)    ∫ f dt = Θ + ∫ E dt, 

 
where Θ is the difference between the S-value at the endpoint of the arc and at the 
starting point.  If the E-function > 0 here then one obtains the minimizing property of the 

extremals (paths). 
 We have derived the complete connection between the one-parameter group of 
contact transformations and the variational problem in a somewhat different manner from 
that of Vessiot, and in the (inhomogeneous) formulation throughout, which represents a 
one-dimensional case of the general formulas discussed by Carathéodory for multi-
dimensional variational calculus.  In the stated special case, we added the interpretation 
of Carathéodory’s F as the Lie characteristic function. 
 In the new representation that Carathéodory 11) gave in his textbook on the variational 
calculus, as well as in his Geometrische Optik, for the form of variational calculus – I am 
speaking, at the moment, of a line integral – will, in any case, from the outset, be 
regarded as a certain embodiment of both the principles of Fermat and Huygens; thus, the 
selfsame origin in the group viewpoint is not completely realized here.  The 
representation – without the apparatus of the contact transformations – will therefore be 
                                                
 10 ) On Mn, one has: 

(15a)     
ix i

dt S dxtS + = 0,  dt + Pi dxi = 0. 

Furthermore, one has: 

(15b)      S(− Φ) + 
ix i

S Π = 1. 

 
From (15a), one deduces (17), and then from (15b), by means of (3a)1, also (16). 
 11 ) C. Carathéodory, a) Variationsrechnung und partielle Differentialgleichungen erster Ordnung. 
Leipzig 1935. b) Geometrische Optik, Erg. d. Math. IV5. Berlin 1937.  Cf., above all, also C. Carathéodory, 
c) Les transformations canoniques de glissment et leur application a l’optique géométriques, Rom. Linc. 
Rend. (6) 12 (1930)2 , pp. 353-360, in particular, pp. 357 et seq.  Die mehrdimensionale 
Variationsrechnung bei mehrfacher Integralen, Acta Szeged 4 (1928-29), pp. 193-216.  Cf., also the 
representation of H. Boerner, Über die Extremalen und geodätischen Felder in der Variationsrechnung der 
mehrfachen Integrale. Math. Annalen 112 (1936), pp. 187-220. 
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briefly unsurpassed, and, what is extremely important beyond the didactic advantage, it is 
suitable for the generalization to multiple extremal integrals (with many unknown 
functions) that Carathéodory has based his theory on. 
 
 2.  If we now consider a variational problem for a multiple integral: 
 
(21)     ∫ f dt1 … dtµ = min., 
in order to define the basic function: 

f = f(tα , xi , piα) 
for a µ-dimensional surface: 
(22)     xi = xi(tα), 
 
that lies in the space Rn+µ of the variables tα , xi (α = 1, …, µ; i = 1, …, n), while we 
define piα = ∂xi / ∂tα to be its surface element.  This is to be integrated over a region Gt in 
the t-space, and the comparison functions shall be given on the boundary of Gt .  Let the 
desired extremal surface be Eµ :  xi = xi(tα). 

 Carathéodory now takes a family of n-dimensional surfaces that depend upon µ 
parameters Θ1 , …, Θµ  thus: 
 
(23)   ∞µ Mn : Sα(tβ  , xj) = Θα = const. 
 
(which will then be the family of surfaces that are transversal to the geodetic field) and, 
with the help of the basic function f, converts to an equivalent f – ∆, which is associated 
with the same extremal surface Eµ .  Therefore, the integral over ∆ must depend only 

upon the boundary of the comparison surface segment; Carathéodory defines ∆ to be the 
determinant: 

(24)   ∆ = 
S

t
α

β

∂
∂

= | Siα + Siα piβ | = ∆(tα , xi , piα), 

Sαβ = tS
βα , Siα = 

ixSα . 

 
 The family of Mn shall now be chosen in such a way that at one particular point (tα , 
xi) the difference f − ∆, which is regarded as a function of the piα , possesses a null: 
 
(25)     f – ∆ ≥ 0; 
 
thus, the equality symbol shall obtain for a certain surface element (tα , xi , piα), which 
will “ transversally intersect the geodetic family (23) at the point in question.” 
 A family that is geodetic at any point of a certain region in the space Rn+µ is called a 
geodetic field.  That is the fundamental notion that Carathéodory introduced.  The family 
that is geodetic at one point is only an auxiliary construction that I introduce in order to 
later on realize the covariance of the notion of transversality simply and independently of 
the (yet to be constructed) geodetic field. 
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 The analytical condition for the family (23) to be geodetic at a point is obtained by 
the same considerations that Carathéodory has applied to the geodetic field, if they indeed 
always relate to just one point.  We write Mn in the form tα = tα(xi ; Θβ) and set: 
 

(26)    − 
i

t

x
α∂

∂
= Piα ,  Sαi = Sαρ Piρ , 

 
in other words, such that it expresses, in the event that the family (23) in (tα , xi) is 
geodetic, the surface element (tα , xi , Piα) in terms of only the transversally intersecting 
(tα , xi , piα) (in term of only tα , xi , πiα , resp., where πiα = 

ipf
α

) 12): 

 

(27)     Piα = i

a

a
αβ

βπ . 

 
In this condition for the µ-dimensional surface element (tα , xi , piα) to be transversally 
intersected by the n-dimensional surface element (tα , xi , Piα), one similarly defines the 
Hamilton function to be: 
 
(28)   ϕ(tα , xi , piα) = − f + piα πiα with πiα =

ipf
α

, 

(29)    − aαβ = − f δαβ + piα πiβ , a = det(aαβ) 
 
and aαβ is the algebraic complement of aαβ in (aαβ). 

 Carathéodory then introduced a construction of F that is similar to the one-
dimensional case, namely: 
 

                                                
 12 ) From the property (23), it follows for the minimum, with the introduction of the algebraic 

complement cαβ to cαβ ≡ Sαβ  − Sαi piβ , that: 

 

f = ∆ ≡ | cαβ |, πiα ≡ 
ip

f
α

= 
ipα

∆ , 

from which: 

      πiα = Sρi cρβ  

     aαβ = f δαβ – piα πiβ = 
i i

p Sc c cρα ρβ α ρ ρβ− = cSαβ ρβ . 

 
If Piα were introduced by way of (26)2 then this would make: 
 

πiβ = Piα aαβ ; 
 
moreover, one has a = | Sαβ | f

µ −1, hence, with F, (30), one also has | Sαβ | F = 1.  By generalizing the 
considerations that pertained to (14) one sees: Equations (27) are soluble in terms of the πiβ ; the 
expressions for the πiβ in terms of the tα , xi , Piα will be substituted in (30) on the right.  Cf., Boerner, loc. 
cit. 11), pp. 200 et seq.  We shall not require the detailed formulation of the Carathéodory transformation 
here. 
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(30)     F = 
1f

a

µ −

, 

 
which proves to be a function F(tα , xi , Piα), when one expresses the piα in terms of the 
πiα , and these, in turn, in terms of the Piα , by means of the transversality condition (27). 
 One then has the further condition 12): 
 
(31)    | Sαβ | ⋅ F = 1 
 
for the geodetic field.  Thus, by way of: 
 
(32)    Sαρ Piρ = Sαi , 
 
the Piα are expressed in terms of the partial derivatives Sαβ , Sαi of the Sα (under the 
assumption that | Sαβ | ≠ 0) and substituted into F.  One thus obtain one first-order partial 
differential equation for the Sα ; this characterizes the geodetic field 13). 
 With the help of the geodetic field, Carathéodory presented the “Legendre condition” 
and the “Weierstrass E-function” for multiple integrals; they do not appear as one would 

presume.  The most important thing is the fact that the functions Sα of the geodetic field 
drop out: All that remains are the piα or the Piα .  Nonetheless, it is important to the 
construction of the theory, as well as the establishment of a strong minimum (for a 
positive E-function), for a given extremal Eµ to be embedded in a geodetic field that 

transversally intersects it. 
 Before I go into that, I remark that above all the notion of the geodetic field, and 
likewise that of being transversally intersected, is originally defined by (25) in manner 
that is independent of the choice of variables – that is only meaningful relative to the 
extremal integral that was given a priori. 
 We transform this to new independent variables tα , which are functions of tα and xi : 

 

(33)   tα = Tα(tβ , xi) with | Tαβ | ≠ 0, Tαβ = 
T

t
α

β

∂
∂

; 

 
the xi will remain the same.  This transformation is arranged such that a comparison 
surface (lying in the neighborhood of the extremal in question) xi = xi(tα) intersects the µ-

                                                
 13 ) In addition, the indicated consideration shows: To given numerical values Piα one can always very 
easily determine a geodetic family at the point (tα , xi), which has an Mn that goes through (tα , xi) with 
precisely the position Piα :  One chooses the Sαβ at (tα , xi) arbitrarily, except that the determinant satisfies: 
 

| Sαβ  | = 
1

( , , )i iF t x Pα α
, 

 
and then determines the Sαi by means of (32) at the point (tα , xi).  The functions Sα (tβ , xi) must then have 
the computed first derivatives Sαβ  , Sαi only at (tα , xi). 
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parameter family of n-dimensional coordinate manifolds tα
ɶ = const. in such a way that for 

the assembled function: 
(34)     tα

ɶ = Tα(tβ , xj(tβ)) 

the functional determinant is: 
 

(34)1  d = 
( )

( )

d t

d t
α

β

ɶ
 = | dαβ | > 0, dαβ = j

j

T T
p

t x
α α

β
β

∂ ∂+
∂ ∂

=
dt

dt
α

β

ɶ
. 

 
If one solves (34) for tβ then one obtains the following for the surface: 
 

(35)    xi = ( )iX tβɶ ɶ , ipαɶ = 
dt

dt
α

β

ɶ
, 

 
and from the identity xi = iXɶ (Tα(tβ , xj(tβ)), it further follows that: 

 
(36)     piα = ip dγ γαɶ , 

 
where dγα depends only upon tβ , xj , piα , such that, with the algebraic complement dαβ in 

the determinant d, the new expressions: 
 

(37)     ip βɶ = i

d
p

d
βα

α  

 
will be expressed in terms of only tβ , xj , piα  . 
 Moreover, it follows from the required invariance of the extremal integrals that were 

given a priori, i.e., from the demand that f dt1… dtµ = 1f dt dtµ
ɶ ɶ ɶ⋯ , which gives the 

transformation character of the basic function f = fɶ ⋅ d, hence: 
 

(38)     fɶ = 1
d f , 

 
where on the right-hand side the tβ are expressed in terms of thetα

ɶ and the xi , piα in terms 

of the tα
ɶ , xi , ipαɶ − simply by switching the roles of tα and tα

ɶ . 

 The “path of the independent integral” ∫ dΘ1 … dΘµ also allows one to convert the 
tα
ɶ , where the invariant integral is represented by (35).   If the conversion equations for 

the family (23) read: 

(39)     ( , )jS t xα β
ɶ ɶ = Θα 

then one will have: 
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(40)  ∫ dΘ1 … dΘµ = 1dt dtµ∆∫ ɶ ɶ ɶ⋯  with ∆ɶ = 
dS

dt
α

β

ɶ

ɶ
 = i iS S pαβ α β+ɶ ɶ ɶ ; 

 
since, on the other hand, this integral is: 
 

(41)  ∫ dΘ1 … dΘµ = ∫ ∆ dt1 … dtµ = 1
1d dt dtµ∆⋅∫ ɶ ɶ ɶ⋯ , 

one then has: 
(42)     ∆ɶ = 1

d ∆ , 

 
which one can also verify directly quite easily. 
 Under the transition to the new variables, one also merely multiplies the left-hand 
side of the fundamental relation (25) by 1/d > 0; one has: 
 

(43)    f − ∆ɶ ɶ = 1
d (f – ∆) ≥ 0 

 
when and only when f – ∆ ≥ 0 is true, resp.: The geodetic field retains the property that 
the same is true for a family that is geodetic at a point, and thus an n-dimensional surface 
element that is transversal to a µ-dimensional surface element also remains transversal 
after the coordinate transformation – relative to transformed basic function of our (a 
priori  given) extremal integral.  The position coordinates and the equations of the family 
of surfaces (23) are naturally to be converted, but the analytic relations (27), (30), (31), 
(32), which are obvious consequences of the fundamental inequality (25), are covariant: 

They have the old form with regard to the unconverted basic function fɶ . 
 I further remark that in the recent work of Finsler and Cartan 14) such invariance 
considerations are presented in terms of the geometry of a space whose metric is based on 
the multiple extremal integral (with only one unknown function). 
 
 3.  All that remains is the problem of embedding a given extremal Eµ (at least in the 

small) in a geodetic field that intersects it transversally.  Boerner 15) has given a 
construction in the spaces of Carathéodory’s theory.  In conclusion, I would like to show 
how, when one is given an infinitesimal contact transformation of a family of n + 1-
dimensional manifolds − which must only be transversal to Eµ − the production of a 

geodetic field that is transversal to Eµ can lead back to the aforementioned construction of 

line integrals. 

                                                
 14 ) Cf., E. Cartan, Les espaces de Finsler, Actualités scient. et ind. no. 79. Paris 1934; Les espaces 
métriques fondés sur la notion d’aire, id. no. 72, Paris 1933. 
 15 ) H. Boerner, loc. cit. 11), pp. 203-213.  On the basis of another definition of the geodetic field, H. 
Weyl gave a field construction in: Geodesic fields in the calculus of variations for multiple integrals, 
Annals of Math. 36 (1935), pp. 607-629.  Th.-H.-J. Lepage considered the two definitions within a unified 
viewpoint in: Sur les champs géodesiques du calcul des variations, Bull. Acad. Roy. Belg. (5) 22 (1936), 
pp. 716-729 and pp. 1036-1046.  Boerner has recently explained how the Carathéodory theory is indicated 
within this general Ansatz (talk at the Marburger Colloquium, Feb., 1939). 
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 For the construction of a geodetic field, one must solve only one first-order partial 
differential equation (31) for one function S1, in the event thatSα ′ , α' = 2, …, µ is given 

arbitrarily; thus the Piα in F are to be replaced with their expressions in terms of the first 
derivatives of the Sα that one computes from (32).  However, it is, above all, necessary 
for the field to be transversal to the given extremals Eµ  .  Boerner 16) thus takes the 

functions ( , )jS t xα β′  in such a way that the: 

 
(44)   ∞µ−1 Rn+1 : ( , )jS t xα β′ = α ′Θ = const. 

 
is transversal to Eµ  , i.e., it includes the transversal n-directions iPα  that are transversal to 

the surface element piα of Eµ  . 

 However, we immediately convert this Rn+1 to (n+1-dimensional) coordinate planes 
Sα ′ ≡ tα ′ = α ′Θ by the introduction of new independent variables, which are again denoted 

by tα ′  
17); t1 = t can remain true 18). 

 A family of ∞1 Mn must be completely contained in 
each Rn+1 for the n-dimensional surfaces Mn of the 
geodetic field to be constructed.  An Mn therefore has the 
n-direction Pi1 = Pi , iPα ′ = 0. 

 I now allow the Mn in Rn+1 to go over to each other 
under a one-parameter group of contact transformations 
whose infinitesimal contact transformation has the 
following Lie characteristic function: 
 
(45) F0(t, xi , Pi) = F(t, Θ2 , …, Θµ , xi , Pi , 0, …, 0), 
 

                                                
 16 ) Cf., loc. cit. 15), pp. 209, footnote 23. 

 17 ) The fact that the properties of the transformation 
1
tɶ = t1 , tα ′

ɶ = ( , )
i

t xSα β′ that were required above in 

(33) and (34)1 are satisfied can be gathered from the previously-cited footnote in Boerner’s work: Let g11 ≠ 

0 (possibly achieved by a suitable transformation that is produced at one starting point of the extremal 
i

Pα = 

0), and then assume that the ( )tsα β′ are independent of t1 . 

 18 ) One can seek to carry out the suitable transformation xi = ( )
i i

x t x+ɺ , πiα = ( )
i i

tα απ π+ɺ that brought 

about a great simplification in Weyl, loc. cit. 15) in the spaces of Carathéodory’s theory, as well – with the 
intention of applying the contact transformation with the necessary foresight to convert the new Lagrange 

function f*, which vanishes along the initial extremal xi = )(
i

x tβɺ , πiα = ( )
i

tα βπɺ , along with its first 

derivatives, and convert the likewise-obtained new Hamilton function ϕ* into f = f*+ 1, ϕ  = ϕ* − 1. 

  One then arrives at certain surfaces ( , )t xασ = const., which do not, however, yield the transversal 

surfaces of the original problem in the original space simply by conversion; these are, moreover, other 

surfaces that are given by Sα(tβ , xj) = const., where Sα(tβ , xj) = ( , ( )) ( ) ( , )
j i i j

S t x t t x t xα β α α βπ σ+ +ɺ ɺ . – 

Furthermore, it seems to me that in Weyl, pp. 621, one must add the (negative Hamilton function H = − ϕ* 
in formula (35) and the sum on the right-hand side of the foregoing one. 

 
Rn+1 

0
nM  Mn 

Eµ 

E1 
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i.e., the Carathéodory function that is specialized to tα'  = Θα' = const., Piα' = 0.  Thus, let a 
surface be chosen in each Rn+1 to be the initial surface 0

nM , and which is transversal to the 

(one-dimensional) intersection curve E1 of Eµ with Rn+1 – relative to F0 in Rn+1 . 

 First, the totality of all ∞µ Mn (in all R n+1) defines a geodetic field in any case. If Mn 
has the canonical parameter Θ1 = Θ = S(t, xi) = S1(t, Θ2 , …, Θµ , xi) under the group F0 
then the original partial differential equation (16) is valid for the function of position S(t, 
xi) on Rn+1 , which is still independent of the parameter Θα' , only with F0 instead of F, 
hence: 
(46)    Si F

0 = 1 with St Pi = 
ixS . 

 
If one then again introduces the quantities with the indices t = t1 , Θα' = tα' , S = S1 , Pi = 
Pi1 , and observes the special form of the Sα' , by means of which (32) gives 0 = Piα' , then 
one recognizes, with no further assumptions 19), that one can write the formula (46), just 
as well as the differential equation (31) in Rn+µ . 
 Now, we still have to show that this geodetic field intersects the given extremal Eµ .  

As one then realizes, that already suffices in order to prove that all Mn in Rn+1 are 
transversal to the intersection E1 (of Eµ with Rn+1) – relative to F0, which is therefore the 

curve E1 defined by the total evolution of a surface element of under the group F0. 

 Above all, one hasiPα = 0 for the n-direction that is transversal to Eµ , since, by 

assumption, it indeed lies in a coordinate plane R n+1.  Hence, the system of equations (32) 
must be satisfied for α' = 2, …, µ by the special functions Sα'  ≡ tα'  . 
 From (27), one then also concludes 20) πiα = 0 on Eµ  . 

 The Euler partial differential equations for Eµ , which are written canonically as: 

 

(47)    idx

dtα
=

iαπϕ ,  id

dt
α

α

π
= − 

ixϕ  

                                                
 19 ) Under certain assumptions relative to F that guarantee the differentiability of S1 with respect to the 
parameters Θα' . 
 20 ) From  (29), (27), under the assumption that: 
 

gαβ = δαβ + Piα piβ = 
1

( )
i ia

a a pαβ αγ γ βδ π+ =
1
a

a fαβ , 

the relation follows: 
f Piα = gαβ πiβ . 

For Piα' = 0, one has gα'β = δα'β and πiα' = 0. 
 Moreover, from πiβ = Piα  aρβ , one obtains: 
 

πi1 = Pi1  a11  = Pi1 (f − pi1 πi1) = Pi1(−ϕ). 
Thus, one has: 

− ϕ =
1
F

= 
1

a

f µ−
  since a = | aαβ | =

0 0

0

0

f

f

ϕ−
∗
∗

⋯

⋯

⋯

, from (29). 
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with the Hamilton function (28), yield, since πiα' = 0, a canonical system ordinary 
differential equations with independent variables t1 = t for xi, and the canonically 
conjugate impulse πi1 = πi : 

(48)    idx

dt
= 0

iπϕ , id

dt

π
= − 0

ixϕ ; 

 
thus, the Hamilton function is: 
 
(49)   ϕ0(t, xi , πi) = ϕ(t, Θ2 , …, Θµ , xi , πi , 0, …, 0) 
 
which the general Hamilton function (28), when specialized to πiα' = 0. 
 On the grounds of the formal remarks that were made in footnote 20) (that for Piα' = 0, 
πiα' = 0, the Carathéodory formulas (27), (30) go over to the corresponding one-
dimensional formula (14)), the Hamilton function ϕ0 is associated with the Lie function 
F0 = − 1/ϕ0, in the sense of the first section, i.e., E1 is a path, relative to F0, and indeed 

consists of those surface elements of 0
nM that, by construction, intersect E1 transversally. 

 Under the transformations of the group F0 in Rn+1, the image of this initial element, 
which is displaced along E1, is always transversal to E1 .  The formula: 

 

(50)     πi = 0
iP

F
, 

 
which is valid on any E1 and expresses this transversality relative F0 in Rn+1, is the full 

content of Carathéodory’s transversality condition (27), since Eµ possesses the location 

πi1 = πi, πiα' = 0, and the Mn (lying in Rn+1) possess the location Pi1 = Pi, Piα' = 0.  From 
footnote 20), due to the unique solubility of the same, the surface element Piα is therefore 
transversal to the surface elements piα of Eµ along Eµ in the space of all variables Piα = 

iPα . 

 The property of the µ-parameter family (Mn) that is thus proved in order to construct a 
geodetic field – viz., that the extremal Eµ intersects it transversally − does not depend 

upon the variables used, but has an invariant meaning for the variational problem. 
 
 

(Received on 2/5/39) 


