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1. In the following, | would like speak on the implicats that the concept of a one-
parameter group of contact transformations, as welasinfinitesimal transformations,
has in the calculus of variations — and also for thé&iphei extremal integrals with many
desired functions. For one-dimensional extremal integtiae relation to the geometry of
contact transformations — which is already implicitiamilton’s %) optical works — are
well-known, if they are, however, perhaps not alwayffigently discussed in the
textbooks.

Lie %), without referring to Hamilton, has stated severalesinthat the simplest
example of a one-parameter group of contact transfarnsativas given by the wave
motions, and that the group property of all dilatatioress intimately connected with
Huygens’s principle. In a similar way, the images @lugface under aarbitrary one-
parameter group of contact transformationan be regarded as originating in a wave
process in a permanent regime that satisfies Huygpnsaiple of ray optics. An initial
wave surface,, which after a time® becomes a certain wave surfaces To 2o (by
means of a contact transformation) has, at the ®@meo’, the positionle+o 2o = Te Z,
which originates from the new initial locatiénh after the time®@': Te:+o = To 7o; the
time © is the canonical parameter.

The partial differential equatiorof first order for the wave process is obtained from
the assumption that the infinitesimal contact trameégion, by way of its Lie
characteristic function, (essentially) gives the rarvelocity of the wave for each
direction of the wave normal at every point. If @oes a distance from the origin that is
equal to the normal velocity at a certain point foradale normal direction, as well as the
plane that it is normal to it, then this enveloppait structure: theay surfaceat the
point considered. From this, one obtains, by a simdduction of 1 tod® in the time
incrementdd, the ‘elementary wavethat is produced at each of the individual points of
the surface elements and, as they vary, gives theogevelf the infinitesimally close

1) A somewnhat extended version of a presentation thatjivas to the Baden-Baden meeting of the D.
M. V. (Sept., 1938).

2) W. R. Hamilton, Third Supplement to an Essay on theofjhef Systems of Rays (1832). In
particular, articles 2, 26, Math. Papers I, Cambridge 1931h{encf., also the remarks of the eds. A. W.
Conway and J. L. Synge, pp. XXI, 189), as well in theesypiedited by G. Prange: Uber W. R. Hamiltons
Abhandlungen zur Strahlenoptik, Leipzig 1933, as welhaddotnote on this, in particular, pp. 168, et seq.
cf., Prange, Nova Acta (?) Acad. (?) (1923), No. 1. Endkinath. Wiss. IV, 12 and 13, No. 13.

%) Cf., Lie and Scheffers, Geometrie der Berilhrungswamsftionen, Bd. I, Leipzig 1896, pp. 966. (?),
as well as Lie, Die infinitesimalen BerUhrungstransiationen der Optik, Ges. Abh., Bd. 6, pp. 615-617.
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wave surface. With this envelope construction (whichkeswise also valid for finite
contact transformations), one has outlined the scopliypdens’s principle.

By means of this wave picture, the notion of a onespatar group of
transformations resolves to a “particle picture.” Thisuble aspect represents, in
Hamilton’s theory, a bridge across the dualism of Huggewave theory and Newton’s
emission theory that led Hamilton to make the tramsifrom applying his method to
optics to applying it to mechanics, and which was the stisnfiir Schrédingef) a
hundred years later that led up to the new physical systbhewave mechanics.

In this particle picture one focuses on freghsof the individual surface elements
under the transformations of the group, which aredkig optically speaking. They lead
from the contact point of the elementary wave togheelope and are given by certain
ordinary differential equationsvhose right-hand side is derived from Lie’s charadieris
function of the infinitesimal contact transformation.

There now exists the fundamental connection thap#ths of the group are, at the
same time,extremals (minimals) of a variational problem — the one in whitie
indicatrix is given by the ray surface: The rays sgtfigrmat’s principleof shortest time.
Correspondingly, in mechanics the paths satisfy threejple of least action (in the Jacobi
form) when the energy constant is fixed.

I would like to briefly derive this connection anew on thasis of the very
penetrating examination of Vessiot (which is independent of the optical aspects),
simply from Lie’s notion of a one-parameter group oftachtransformations. Thus, |
will use the inhomogeneous formulation by singling out s, as opposed to the most
commonly used homogeneous representation that is ofte&blsuin the beginning —
particularly, when one goes to the multi-dimensionailatmmal calculus.

~ By singling out &-axis, we thus consider transformations of a spaceafmatest(
X) that take thesurface elemertt, X, P') to another surface element, and that taka-an
dimensionalunion of surface elementdt + P, dx = O into another such union. The
position coordinateB; are thus-0t/dx =P; .
We now treat ane-parameter group of contact transformations:

(1) t=9txP,0), x=g(xP,0), R=htx,P;,0),

a(t” Xi” PI’) Z O
a(t,x;,P)

*) E. Schrodinger, Abhandlungen zur Wellenmecharifke@., Leipzig 1928, pp. 489 et seq.

®) E. Vessiot. a) Sur l'interpretation des transfations de contact infinitésimales, Bull. Soc. math. de
France34 (1906), pp. 320-269. Vessiot also treated a time-varyirdjume b) Essai sur la propagation par
ondes, Annales de I'Ec. Normale sup. 28)(1909), pp. 405-448. For the corresponding questions for the
Lagrange problem, cf., Vessiot, ¢) Sur la théorie deftipticités et le Calcul de Variations, Bull. Soc.
math. de Francd0 (1912), pp. 68 to 139; d) Sur la propagation par ondesrde gprobléme de Mayer,
Journal de Math. (6) (1913), pp. 39-76.

Further representations are given for the case ofdimensional ray surface by T. Levi-Civita and U.
Amaldi, Lezzioni di Meccanica razionale Il, pp. 456-469l@na 1927), L. P. Eisenhart, Continuous
groups of tansfromations (Princeton 1933), p. 263-273 and ®t, Mécanique analytique et mécanique
ondulatoire, Mémorial Sci. Math. Fa88 (Paris 1937).
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This has the functiok(t, x, Pj) # O as theLie characteristic function of the infinitesimal
transformation;it makesF JO the infinitesimal displacement of the surface elemen

the direction of the-axis if © is the canonical parameter of the group. The pathiseof
group:

) t=g(t’, X, R*.0), x=g(t°x,F0), P=h(tx,F0)

obey the differential relatiorf3:

9G, _

3 dt+ P dx =F dO + G, dg,
(3) X h AG, 30

Fe (G,
in which ¢, means an arbitrary parameter upon which the initial va?ueé, Pjodepend;
perhaps one can set= X} and fixx’andP’. Just liket, x;, P, F andG then depend

upon®, ¢, ¢z, ... One then has:

oF
4 T R E
“) e

Conversely, ar2parameter family:
B) t=t(c, 2, ...,Cn;0), X =x(C,C2, ...C0n;0), Pi=Pi(c,C2, ...Cn; O),

with:
©) 0.R) .,
0(cy, -+, Cyy)

®) From the system of differential equations for ththp:

—= F-RR, =-0

(3&) = FP =M.

dt
do
dx
de
dp
do

—L= -F, +PF

X it

that are associated with the infinitesimal conteamigformation and the canonical param@eit follows
that there is agreement between the coefficientd@fon the left-hand and right-hand sides of the
differential relation (3) which thus defines the quantiti€; in order to do this, one then calculates the
derivative (3) .

Herglotz, in particular, treated the differential tiglas (3) in his seminar on continuum mechanics,
Gottingen 1925/26. — There, one will also find the basitsfatray optics derived from the second-order
differential equations of continuum mechanics. He #ilsats the general case of variable regimes, which
leads into the Mayer problem:; cf., Vessiot, loc. 3itb) The specialization to permanent regimes produced
the ordinary variational problem in homogeneous forkheglotz has treated a one-parameter group of
contact transformations in the plane in his semimadifferential equations, Géttingen Summer 1928, in
which the paths were treated as extremals in a varatiproblem, and are denoted by the same
independent variabbeas the transversals in inhomogeneous form.



The infinitesimal contact transformations of vaoatl calculus 4

is characterized by the differential relatiom(3along with (3) , as the family of paths of
a one-parameter group of contact transformations.

In order to go from the group of contact transformatito the associated family of
canonical transformations, one writes:

]7i'

(7)

M|+~ 7o

=o(t, %, 1),

from the first equations, under the assumption @hat 0, theP; may be represented as
expressions in the new variables (impulsg<), which will then be substituted inF™.
When one substitute® for t by means of (3)and substitutes in (5) , under the same
assumption tha® # 0, formula (5) now gives the family:

(8) X =¢&(cy, ...,Cont), m=ni(cy ..., Con; 1),
with:
(9) o(x.77) _0(x.7) 9%.B) 4

9(C,,Gy)  9(x,P)0(G,,G,) "

") They are, in fact:

o 1 o | _F"
—_— = ~F—Pil'l-, det| —- | = F—Pil'li =
=10 ) e[ap_ o )=

an ]

| then compute the differential:

1 R 1
d¢ Fz{FthF,S dx+ FP.( Fd?'— FFﬁdEH ,

— _ R Fx
-®dp=(F-PM)dg= L dt+ ' dx +N dr.
F2n F 1 i 1

Combining this with the Legendre transformation (13) gjive

=v)

- -1 =_I =n
(7a) f=-0 $=-=, P =

that Haar presented (in another connection: Uber adjttegiVariationsprobleme und adjungierte
Extremalflachen. Math. AnrL00(1928), pp. 487 et seq.) and Carathéodory, loct}itl) pp. 194 et seq.
has used in a definitive formulation of his generalizegelnelre transformation; we shall discuss this in no.
2. The formulas with one independent variable that onsesutently needs are naturally much easier to
prove.
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for which, (3), after dividing by, yields:

9G, _
ot

(10) — ¢ dt+ 7d% =dO + Cy day 0.

However, the differential relation (10) characteriZ&, with (9), as the family of
solutions of the canonical system:

(11) L

with the Hamilton functiorg(t, x;, 7).
With no further restrictions, the family of canonit@nsformations is then also given
by:
X =X (X, 7;1), =1 (X,77;1).

With this, we have the bridge to the variational peail
(12) j f dt=min for the curves = x(t)

(for given endpoints), whose extremals are the pattibe group. Its basic Lagrange
function f(t, x, pi), with pi = dx /dt, goes over, in a well-known way, by using the
Legendre transformation:

(13) pi=9,, f=-¢+pm,

to the Hamilton functio and thus to the Lie characteristic functi®f).

The value of the extremal integral along a path segmseequal to the associated
canonical parameter incremedt

Our representation allows us to immediately recognia¢, tonversely, the entire
path of the variational problem can also be obtainedn fthe family of canonical
transformations as one runs through the one-parametap gfccontact transformations.
The transformation of the desired functions is nander the assumption thiatlp # 0),
from (7):

8) Here, we restrict ourselves the case in which #ssldn determinant satisfies:

Fn+2

(13a) v £0,

= (~0)™2 Frp

In other cases, one is led to a Lagrange problemVessiot, loc. cit®), pp. 81, 107, as well as more
recently in the textbook of Carathéodory, loc. ti}, a), pp. 354 et seq., and also BoerHgrpp. 201,
second formula from the top, where the first twodesbn the right must b&)?** ",
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R=-y

(14
F=-1,
¢

in which (similar to (7) in rem.”)), under the assumption thiag 0, the first equation
(14, can be solved for the (on this, cf., also Carathéodory, loc. &f), pp. 358) and its
expressions irt, x, P; can be substituted in (14)as the independent variable, one
introduceqd f dt = © along the extremal. If (8) and the differentialations (10), as well
as (9), are true for this situation then the ddferal relation (3), as well as (6), follows
for (5), which characterizes (5) as the path of re-parameter group of contact
transformations.

In the variational calculus, one says that a serfelementt( %, P)) intersects its path
(with the line elementt(x; , pi)) transversally. With the addition of the impulsg the
transversality is expressed by (7), ((14, resp.).

If one then takes an initial surface (unioé)’and subjects it to the contact
transformationTe of the group® then on any image surface (unidvl) the canonical
parameter will, in a certain neighborhood, descailfienction of positiof):

(15) O =4t x).
The family ofeo* My St, x) = © = const. is called geodetic field it intersects the paths

transversally (and together with them defines a complete figurethe sense of
Carathéodory).

) This is true under the assumption that 0, which we have already madg.= O represents another
first-order partial differential equation, namely:

F (t,x,—,—:;]: 0,

for onesurfacet = t(x) in the same, x space by which it is determined that it includes théasarelement
with F = 0 that lies on an—1-dimensional manifold. This surface has the propertyithaurface elements
are displaced intthemselvesinder the one-parameter group of contact transfoonstiso any surface
element withF = 0 will be displaced to an infinitely close element isainitedwith it on the characteristic
strip that is determined by the initial element. Cf.l.i8, Ges. Abh. IV, pp. 287, as well as pp. 591, VI, pp.
636, as well as footnote pp. 905; furthermore, see thadtest of Engels in Bd. Ill, pp. 615, and Theorie
der Transformationsgruppen Il, pp. 256 (Leipzig 1890). In tesgresentations, in the construction of the
integral surface as the characteristic strip, misstly not emphasized that it can be described by a one-
parameter group of contact transformations on theeespiace of integral elements.

| remark that the paths that appear here (as anoméihe elements) at@undary curveswhich
can be either minima or maxima of the variational femwb Cf., Vessiot, loc. cif) c), pp. 69, as well as
Carathéodory, loc. cif) a), pp. 283.

Different formal considerations are presentedlits tase by M. Herzberger, Theory of transversal
curves and the connections between the calculus oftieadaand the theory of partial differential
equations. Proc. Nat. Acad. Scien2dg1938), pp. 466-473.
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For S, x), one has the partial differential equatidn

(16) SF=1.
The equation:
(17) S =R S

then exhibitsP; as an expression in the derivativesSf By means of (7), this also
makes:

(18) S+ ¢ =0,
with:
(19) T=S,,

which is the first-order differential equation of HamitJacobi.
The extremal integral over aawrbitrary comparison curve that runs through the
geodetic field is:

(20) [fdt=@+]&dt

where O is the difference between ti#value at the endpoint of the arc and at the
starting point. If thee-function > 0 here then one obtains the minimizing priypefthe

extremals (paths).

We have derived the complete connection betweenotieparameter group of
contact transformations and the variational problem somewhat different manner from
that of Vessiot, and in the (inhomogeneous) formulatiwoughout, which represents a
one-dimensional case of the general formulas disdubye Carathéodory for multi-
dimensional variational calculus. In the stated spease, we added the interpretation
of Carathéodory’§ as the Lie characteristic function.

In the new representation that Carathéodrgave in his textbook on the variational
calculus, as well as in his Geometrische Optik, forfonen of variational calculus — | am
speaking, at the moment, of a line integral — will, in @age, from the outset, be
regarded as a certain embodiment of both the prinogflésrmat and Huygens; thus, the
selfsame origin in the group viewpoint is not completelylized here. The
representation — without the apparatus of the contansformations — will therefore be

%) OnM,, one has:
(15a) Stdt + S)q d>i<= 0, dt+ P, dx =0.

Furthermore, one has:
(15b) S-D) + Syﬁ |‘|i =1.

From (15a), one deduces (17), and then from (15b), by méé&Be)o also (16).

) C. Carathéodory, a) Variationsrechnung und partielilef®ntialgleichungen erster Ordnung.
Leipzig 1935. b) Geometrische Optik, Erg. d. Maths. IBerlin 1937. Cf., above all, also C. Carathéodory,
c¢) Les transformations canoniques de glissment et ledicafpn a I'optique géométriques, Rom. Linc.
Rend. (6) 12 (1930} , pp. 353-360, in particular, pp. 357 et seq. Die mehrdimeasion
Variationsrechnung bei mehrfacher Integralen, Acta Sr@g€1928-29), pp. 193-216. Cf., also the
representation of H. Boerner, Uber die Extremalen undigeschen Felder in der Variationsrechnung der
mehrfachen Integrale. Math. Annaléh2 (1936), pp. 187-220.
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briefly unsurpassed, and, what is extremely importanmeyhe didactic advantage, it is
suitable for the generalization to multiple extrenmatiegrals (with many unknown
functions) that Carathéodory has based his theory on.

2. If we now consider a variational problem for a npiéiintegral:

(21) [fdt ...dt,=min.,
in order to define the basic function:
f=1f(ta, X , Pia)
for a y~dimensional surface:
(22) X =X%i(ta),

that lies in the spacR,., of the variabled,, X (o =1, ..., i1 =1, ...,n), while we
definepi, = 0% / 0t, to be its surface element. This is to be integrated a regiorG; in
thet-space, and the comparison functions shall be givehe@bdundary o6, . Let the

desired extremal surface Bg: x =xi(to).

Carathéodory now takes a family ofdimensional surfaces that depend ugon
parameter®; , ..., 0, thus:

(23) oo Mp : St , %) = Oq = const.

(which will then be the family of surfaces that ar@nsversal to the geodetic field) and,
with the help of the basic functidnconverts to aequivalentf — A, which is associated

with the same extremal surfaég . Therefore, the integral ovér must depend only

upon the boundary of the comparison surface segment;h€aditry defined to be the
determinant:

3s,

(24) A=
at,

=|Sa+Sapis| =A(ta , Xi , Pia),

Sp=S,. Sa=S,.

The family ofM, shall now be chosen in such a way thabreg particular point {; ,
x) the differencd — A, which is regarded as a function of fhe, possesses a null:

(25) f-A>0;

thus, the equality symbol shall obtain for a certairfasar elementtf , X , pia), Which
will “ transversally intersedhe geodetic famil{23) at the point in questioh.

A family that is geodetic any point of a certain region in the spaRe, is called a
geodetic field That is the fundamental notion that Carathéodorgdhtced. The family
that is geodetic at one point is only an auxiliary cartsion that | introduce in order to
later on realize the covariance of the notion ahsversality simply and independently of
the (yet to be constructed) geodetic field.
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The analytical condition for the family (23) to be detic at a point is obtained by
the same considerations that Carathéodory has applibd geodetic field, if they indeed
always relate to jusinepoint. We writeM, in the formt, = t4(X ; ©p) and set:

(26) - —+=Pia, S = Sup Pip,

in other words, such that it expresses, in the eventthigatamily (23) in {, , %) is
geodetic, the surface elementy (X, Piy) in terms of only the transversally intersecting
(ta, X%, Pia) (in term of onlyty , %, 774, resp., whereg, = f, )9

a

(27) Py = %ﬂniﬂ.

In this condition for theu-dimensional surface element ( X , pi) to be transversally
intersected by the-dimensional surface elemertt, ( X, Pis), one similarly defines the
Hamilton function to be:

(28) P(ta, X, Pia) =—F+pia7te with 77, = fna )
(29) —agp=—T dup* Pia 713, a = det@uy)

and g, is the algebraic complementads in (aqy).

Carathéodory then introduced a construction Fofthat is similar to the one-
dimensional case, namely:

12) From the property (23), it follows for the minimumijtlw the introduction of the algebraic

complementéaﬁ to C,3=Syp — Sii P, that:

f=A=|Cqpl, Ma=1, =4, .

from which:

Mg =S Cpﬁ

=T Oup—Pia Tp= cmépﬁ - pmspi‘cpﬁz Saﬁépﬁ.
If P, were introduced by way of (26fhen this would make:

TT3=Poag;

moreover, one haa = | Sy | 71, hence, withF, (30), one also hasS,; | F = 1. By generalizing the
considerations that pertained to (14) one sees: Equat&f)safe soluble in terms of the; ; the
expressions for the in terms of the, , X , P, will be substituted in (30) on the right. Cf., Boarriec.
cit. '), pp. 200 et seq. We shall not require the detailed forionlaf the Carathéodory transformation
here.
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frt
(30) F= :
a

which proves to be a functidf(t, , X , Pig), when one expresses thg in terms of the
7T, and these, in turn, in terms of tAg, by means of the transversality condition (27).
One then has the further condititht

(31) |Sup | OF = 1
for the geodetic field. Thus, by way of:

the P, are expressed in terms of the partial derivatBgs, S, of the S, (under the
assumption that$,z | # 0) and substituted intb. One thus obtaionefirst-order partial
differential equation for th&, ; this characterizes the geodetic fiély

With the help of the geodetic field, Carathéodory preeskthe “Legendre condition”

and the “Weierstras§-function” for multiple integrals; they do not appearane would

presume. The most important thing is the fact thatfinctionsS, of the geodetic field
drop out: All that remains are th®, or theP,,. Nonetheless, it is important to the
construction of the theory, as well as the establisitinoé a strong minimum (for a
positive &-function), for a given extremai, to be embedded in a geodetic field that
transversally intersects it.

Before | go into that, | remark that above all tlation of the geodetic field, and
likewise that of being transversally intersected, igioally defined by (25) in manner
that isindependent of the choice of variableghat is only meaningful relative to the
extremal integral that was givarpriori.

We transform this to new independent varialijgswvhich are functions df, andx; :

(33) E=Tots %) With [Tas|#0, Taﬁ:%;
B

the x; will remain the same. This transformation is arrangach that a comparison
surface (lying in the neighborhood of the extremal in qaeski = xi(t,) intersectshe -

13) In addition, the indicated consideration shows: To givemerical value®,, one can always very
easily determine geodetic family at the poirit, , %), which has arM, that goes throught4, x) with
precisely the positioR,: One chooses tHgzat(t,, x) arbitrarily, except that the determinant satisfies:

_ 1
S 1= xR0
and then determines tiss by means of (32) at the poirit, ( x). The functionsS, (tz, x) must then have
the computed first derivativesz , S; only at €, , x).



The infinitesimal contact transformations of vaoatl calculus 11

parameter family ofi-dimensional coordinate manifolds= const. in such a way that for
the assembled function:

(34) t, = Tolts, %(t9)

the functional determinant is:

d(t,) oT, oT,  _dt
22 = |dgp| >0,  dap= =L+ p,=—t
) 1% P, ox Pty

(34n d=

If one solves (34) fotz then one obtains the following for the surface:

5 - dt
35 = X(,), p,=-=,
( ) X' i ( ﬂ) pm dtﬂ

and from the identity; :Xi (Tats, %(tp), it further follows that:
(36) Pia= P,d,,

whered,, depends only upotg, X; , piz , such that, with the algebraic complemel_pgin
the determinand, the new expressions:

Gso

(37) Ps=7

pia

will be expressed in terms of ortly, X , pia .
Moreover, it follows from the required invariance bétextremal integrals that were

given a priori, i.e., from the demand thétdt... dt, = fdf..-df,, which gives the

transformation character of the basic funcfienf (4, hence:
(38) f=1f,

where on the right-hand side theare expressed in terms of thand thex; , pi» in terms
ofthet,, x , p,— simply by switching the roles ¢f andf, .

The “path of the independent integraltd®; ... do, also allows one to convert the
t_, where the invariant integral is represented by (3%)the conversion equations for
the family (23) read:

(39) S, (%, %)= Oa
then one will have:
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(40) Jdoy ... do, = [Adi.df, with A= % =[5, +5.):
B

since, on the other hand, this integral is:

(41) Jdo, ...do,=[ndy ...dt,= [AGdE-- o,

one then has:

(42) A= 1A,

which one can also verify directly quite easily.
Under the transition to the new variables, one alsoety multiplies the left-hand
side of the fundamental relation (25) by */0; one has:

(43) f-A=1(f-0)=0

when and only wheh—A > 0O is true, resp.: The geodetic field retains the prophai t
the same is true for a family that is geodetic atiatpand thus an-dimensional surface
element that is transversal tguedimensional surface element also remains transversal
after the coordinate transformation — relative to tiamsed basic function of oura(
priori given) extremal integral. The position coordinates @@ equations of the family
of surfaces (23) are naturally to be converted, but tlagyaic relations (27), (30), (31),
(32), which are obvious consequences of the fundamental itgq@&), arecovariant
They have the old form with regard to the unconverteit fasctionf .

| further remark that in the recent work of Finsler aratt&n* such invariance
considerations are presented in terms of the geome#rgdce whose metric is based on
the multiple extremal integral (with only one unknowndtion).

3. All that remains is the problem of embedding a giveneexalE, (at least in the

small) in a geodetic field that intersects it transaklys Boerner'®) has given a
construction in the spaces of Carathéodory’s thetmyconclusion, | would like to show
how, when one is given an infinitesimal contact transhtion of a family ofn + 1-

dimensional manifolds- which must only be transversal & - the production of a

geodetic field that is transversaldp can lead back to the aforementioned construction of
line integrals.

1) Cf., E. Cartan, Les espaces de Finsler, Actuaditéant. et ind. no. 79. Paris 1934; Les espaces
métriques fondés sur la notion d'aire, id. no. 72, P&&31

15) H. Boerner, loc. cit'?), pp. 203-213. On the basis of another definition of thelegic field, H.
Weyl gave a field construction in: Geodesic fields in tiaéculus of variations for multiple integrals,
Annals of Math.36 (1935), pp. 607-629. Th.-H.-J. Lepage considered the two daiisivithin a unified
viewpoint in: Sur les champs géodesiques du calcul desiwagaBull. Acad. Roy. Belg. (532 (1936),
pp. 716-729 and pp. 1036-1046. Boerner has recently explained howartthé@dory theory is indicated
within this general Ansatz (talk at the Marburger 6allium, Feb., 1939).
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For the construction of a geodetic field, one mustesaolnly one first-order partial
differential equation (31) foonefunction S, in the event th&g, , @ = 2, ...,/ is given
arbitrarily; thus theéP;, in F are to be replaced with their expressions in teritheofirst
derivatives of thes, that one computes from (32). However, it is, aboljenakessary
for the field to be transversal to the given extrengls Boerner'®) thus takes the

functionsS, (t;, x) in such a way that the:
(44) P ~ N S, (4. %)= ©, = const.

is transversal t&, , i.e., it includes the transversabirections P, that are transversal to

the surface elemept, of £, .

However, we immediately convert tHi%.; to (n+1-dimensionallcoordinate planes
S, = t,= 0, Dby the introduction of new independent variables, which gagnadenoted
by t, '%); t, =t can remain trué®).
A family of o' M, must be completely contained in
Rn+1 each Ry.1 for the n-dimensional surfaced, of the
geodetic field to be constructed. Ak therefore has the
n-directionP;; =P;, P, = 0.

| now allow theM, in R.+1 to go over to each other
under a one-parameter group of contact transformations
whose infinitesimal contact transformation has the
following Lie characteristic function:

(45) F%t,x,P)=F(t0,,...,0,,%,P,0,..,0),

18) cf., loc. cit.™®), pp. 209, footnote 23.
) The fact that the properties of the transformatlmtl , fa, = Sﬂ, (t 5% ythat were required above in

(33) and (34 are satisfied can be gathered from the previoustgtdibotnote in Boerner’s work: Let; #
0 (possibly achieved by a suitable transformation thptaduced abnestarting point of the extremeiz_g[7 =

0), and then assume that tbae(tﬁ) are independent of .

'#) One can seek to carry out the suitable transfoomati=x (t) + X , 77, = 77 ) + 7, that brought

about a great simplification in Weyl, loc. cif) in the spaces of Carathéodory’s theory, as well k thie
intention of applying the contact transformation witile necessary foresight to convert the new Lagrange

function f', which vanishesalong the initial extremak = >'(|(tﬁ), Mo =77,(t;), along with its first

derivatives, and convert the likewise-obtained new iamfunctiong into f =f+ 1,5 = ¢ - 1.

One then arrives at certain surfaagg(t,X) = const., which do not, however, yield the transversa
surfaces of the original problem in the original spdogply by conversion; these are, moreover, other
surfaces that are given I8(ts, x) = const., whereS,(ts, ) = S,(t, X (9)+ 77, (9 x+0, (1, %). —

Furthermore, it seems to me that in Weyl, pp. 621, on¢ atlssthe (negative Hamilton functih= — ¢
in formula (35) and the sum on the right-hand sidéefforegoing one.
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i.e., the Carathéodory function that is specializet}y te ©, = const.P,y= 0. Thus, let a
surface be chosen in eah; to be the initial surfadel ?, and which is transversal to the

(one-dimensional) intersection curgeof £, with R+, — relative taF% in Ryt .

First, the totality of alb* M, (in all R 1) defines a geodetic field in any caseMif
has the canonical paramet®r = © = t, x) = S(t, ©2, ..., ©4, ) under the group’
then the original partial differential equation (16) isidrdor the function of positiori§t,
) on Ru:1 , which is still independent of the parame®y, only with F® instead ofF,
hence:

(46) SF=1 with SP=S .

If one then again introduces the quantities with the isdicet; , @y =ty,S=5 ,P, =
Pi1 , and observes the special form of $e by means of which (32) gives 0Pr; , then
one recognizes, with no further assumptibfisthat one can write the formula (46), just
as well as the differential equation (31)Rn, .

Now, we still have to show that this geodetic fielteisects the given extremg) .
As one then realizes, that already suffices in otdeprove that allM, in R, are
transversal to the intersectiéh (of £, with R..1) — relative toF°, which is therefore the

curve&; defined by the total evolution of a surface element oéutice group=’.

Above all, one haB,= 0 for then-direction that is transversal 6§, , since, by
assumption, it indeed lies in a coordinate plRpRga. Hence, the system of equations (32)
must be satisfied fo’ = 2, ..., i by the special functior§y =ty .

From (27), one then also conclud®s7z, = 0 on&, .

The Euler partial differential equations 6y, which are written canonically as:

d drmr
_x: &:—¢Xi

47 ,
(47) dt, " dt,

19) Under certain assumptions relativeRtdhat guarantee the differentiability §f with respect to the

parameter®,, .
20) From (29), (27), under the assumption that:

1 _
4= Onpt PiaPp= 5(350,, +3, 7 P,)=
the relation follows:

fPy= Oap 7p -
ForPi»= 0, one hagyz= dypandry = 0.
Moreover, fromms = P, a,3, one obtains:

=Py a1 =P (f - pi1 1) = Pu(-9).

. -4 0 -
since a=|ag| o 5 .. ; from (29).

0o -

Thus, one has:

—h
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with the Hamilton function (28), yield, sincgy = 0, a canonical system ordinary
differential equations with independent variables= t for x, and the canonically
conjugate impulseq; = 77 :

dx o drr o
48 I , == :
(48) dt " dt &
thus, the Hamilton function is:
(49) Po(t, % , M) = @(t, Oz, ...,0,,% , 7,0, ..., 0)

which the general Hamilton function (28), when speaaliio 77, = 0.

On the grounds of the formal remarks that were madeoiméte) (that forP;, = 0,
7Ty = 0, the Carathéodory formulas (27), (30) go over to theesponding one-
dimensional formula (14)), the Hamilton functigfi is associated with the Lie function

F° = - 1/¢°, in the sense of the first section, i&,is a path, relative t6°, and indeed

consists of those surface elementsvbfthat, by construction, interse€t transversally.
Under the transformations of the grokpin R..1, the image of this initial element,
which is displaced alon&, is always transversal t3. The formula:

P
(50) T :F—'O :

which is valid on anyt; and expresses this transversality relafifen Rn.1, is the full
content of Carathéodory’s transversality condition (ZMce&, possesses the location
T = 1T, Tip = 0, and theM, (lying in R.+1) possess the locatid?h, = P, Piy = 0. From
footnote?®), due to the unique solubility of the same, the surfémmentP;, is therefore
transversal to the surface elemeptsof £, alongé&, in the space of all variabld%, =

P -
The property of the~parameter familyNl,) that is thus proved in order to construct a
geodetic field — viz., that the extrem§l intersects it transversally does not depend

upon the variables used, but has an invariant meaning foattaional problem.

(Received on 2/5/39)



