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Following a lecture delivered by Herglotz in 1925/26, weeftyitreat acceleration waves in
hyperelastic materials. Our main result is a divergerguation for the squared Euclidian norm of the so-
called “wave vector.” We then apply Herglotz’s method igk¥ for acceleration waves) to the
propagation of such first order discontinuities in eldstidies as were treated by Christoffel in [1].

Introduction

In the previous article we briefly referred to the temts of the middle part of an
unpublished three-part lecture “Mechanik der Kontinua” thagldéz gave at Gottingen
in 1925/26. It was prepared for the Gottinger Mathematischitutnisy Frau Ph. Salié. |
am grateful to her for the knowledge of this lecture. New are remembering the one-
hundredth birthday of Herglotz (b. 2.2.1881, d. 22.3.1953). Asdar can see, after
Christoffel, Herglotz was the first to carry out theeatment of the spreading of
discontinuities to such an extent that the divergeetation for the norm of the wave
vectors emerges as the orthogonality condition ferdétermination of the higher (i.e.,
third) order jumps. This gives the meaning of the rayshasshadow boundary of
geometric optics. At the conclusion of this artickes show how the computations of
Herglotz for the second order discontinuities can bevelgéfrom Christoffel’s first order
discontinuities without his symbolism.

1. Herglotz's treatment of acceleration waves

In the following, letD 0 R* be an open set that decomposes into two open siibsets
D, by means of a portion of a sufficiently flat, oriethteypersurface iR*:

>={(xt) |xOR% t=1(x) OR}

in this, we let: G -~ R, G —» R® be a sufficiently many times continuously partial
differentiable function.

) This work was commissioned by the Deutschen Forschumgsgschaft. My collaborator is Herr
Dipl.-Math. Hans-Jurgen Béttger.
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We now consider a motion of a hyperelastic continuanX iwhose first partial
derivatives of the Eulerian position coordinates and whsexond partial derivatives of
these coordinates are discontinuousonrlhe discontinuity surface will also be called
the “wave surface” in what follows, and the jump astbdecomes a functiog that is
continuous in the complement & which, since the time of Christoffel, has been
denoted §]. _ _

The Eulerian coordinates of a particle at tinvéll be denoted by' = x'(t, X), i = 1,

2, 3, in whichx = (x*, X%, X°) mean the (Lagrangian) position coordinates of the pagicle
an arbitrary, but fixed, time=t, (a number). Let the functions, i = 1, 2, 3 belong to
CY(D) n C*D; O D,), and its second partial derivatives with respedt 16, a = 1, 2, 3
shall possess regular, finite limiting values @\ (D, resp.) under one-sided
approximation; the second partial derivatives of the larneposition coordinates will
therefore have a jump discontinuity Bpas required.

On both sides of thex', i = 1, 2, 3 satisfy the equations of motion:

v 2
dw . i=1,2,3, with X': = a—zx";
dx? ot

pxi= X+
pis the density in a fixed relative configuratiofl,is thei™ component of the external
force, andW” is one component of the (first) Piola-Kirchhoff tenste set:

psi = ai i,3=1,2,3, anddemandthat W*/=——
ox?

with an internal energy functiow = W( dﬂ(t, X, X (i.e., hyperelasticity) that shall be

sufficiently many times continuously differentiable.
The equations of motions on both sides of the wave sutiaceread:

oW oW opk
+

B K= X+ — : ,
®) o op, X 0p, 0 0¥

i=1,2,3;

in this — and everywhere in the sequel — we sum over adleiedhat appear twice. One
sets:
. 0P or

D= and P,:=- , i,a =1, 2, 3.
A oy a ox“ p

With the help of a well-known lemma of Hadamard (&, [§8 72 or [3], § 174), one
derives the following jump relation for the fu nctiop'ga onzx:

[Psl = [X'1R P,
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If one _takes this into account, along with( C'(D), then it follows, v_vith the assumption
that [X] = 0,i = 1, 2, 3, and when one further introduces the notatios [X'],i =1, 2,
3, that:

i 0W ‘ o
on _ap‘ﬂap'; P, P7", i=1,2,3.
We write:
i :Xij /7i, with Xij 1= i—alz\Nk PHF};.
p 0p), o
This gives: _
0 = Xj — )77, i=1,2,3,

in which g refers to the Kronecker symbol. The veator (17, 777, 7°) will be referred

to as the “wave vector.” Due to the discontinuify 3¢'on 3, one hasy # 0, and it
follows that:

0 = det{Xi(t, x, P) =g} = : F(t, x, P) with P = (P, P2, P3).

We call the surface iR® that is defined b¥(t, x, P) = 0 (with the running variable) the
“normal surface.”F is a polynomial irP of the formF = Fg + F4 + F» — 1, in which the
Fw, k=2, 4, 6 are homogeneous polynomials of deliad-.

An interesting interpretation fd¥ derives from the fact that the wave motion can be
described by a one-parameter group of contact transfommsaticthe surface elements (
X, P), whose generating function igt, x, P) precisely. With the canonical parame&gr
one obtains the following differential equations foe thdividual pathlines of the surface
elements of the wave surface, which are displacedeath other by the transformations
of the group in such a way that= 0:

%:Fp::ni,
doe '

ﬁz_Fi'*'FtPi, i=1,2,3, —E:Piﬂi::CD,
do X do

These are obviously the equations for the charadbsrisif the first order partial
differential equation:

I I I U I aT .
0=F(,xp), t=1x, P =(p,P 0), pi:—Pizg, i=1,2,3.

Hadamard called these differential equations for the thg “bicharacteristics of the
equations of motion” for the characteristic wawer(x).
Along with the wave vecton, one also introduces the “ray vecta’= (', p% p°)
through:
i 1 0Q . . P
= i=1,2,3, with Q : =X;
p 20 9P i n
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(sincen # 0, one obviously haQ # 0). On the grounds of the homogeneity{bin the
P,i=1, 2, 3, one next remarks that: _

-1=PR p'.
In the case where the matriX;j(— g;) has rank two, one further has:

F. = kp, kOR - {0}, i=1,2,3.

One sees this perhaps in the following way: E& h, k = 1, 2, 3 be the adjoint that is
associated witlX; — g;; since rankX; — ;) = 2, one has:

F*=n"A$ hk=1,2,3, with A“OR.

Since for at least one ordered pdir, k), hi, k O{1, 2, 3} one must hav&"™ # 0, one
deduces, becau§d® = F":

k
/\k:’77, AOR-{0}, k=1,2,3, e, Fhk:%lyhlyk.

It follows that:

0X 1 Xy _10Q 2Q
F :Fhk—hk:_ 7tk = = 777 — 727 '.
g oP )l”h”k oP  A0P A
Hence — /A =k=-®:
p_n .
=, i=1,2,3.
P -®

The vectorp = (p*, p% p°), p :n—cbthat emanate from the null point define the soechll

‘ray surface.” If one takes into account the emunstP; p = -1 that we just proved and
the fact thatF, = kp, k# 0,i = 1, 2, 3 then one easily sees that the samedomship

exists between the rays and the normal sufi§te, p') = 0, withp' = (p,, p,, B,), P : =

- P, i =1, 2, 3 through the reciprocal transformationamely, the polar relationship in
the real unit sphere — which, according to Minkowslefines an ordinary variational
problem between the indicatrix and the figuratrix.

If rank(X;; — g;) < 2 then the foregoing conclusions are not vahdthe sequel, this
case shall be omitted.

2. Herglotz’'s proof of a divergence equations for the wave arrdy vectors

In the following, letD O R* again be an open set that decomposes through akie w
surface> = {(x, t) | x O R® t = #(X) O R} into two open subset®;, Dy: D =D, 0 = 0 D..
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Let the functions<', i = 1, 2, 3 belong t€3 (D1 n D,) n CYD). For a multi-indexy =
(Lo, 14, 1o, L), Mo, L4, o, 15 O N — {0} with 1o + 4 + (& + (13, One sets:

aﬂo+ﬂ1+ﬂz+/‘3

(at)#o (axl)m (aXZ)/Iz (a )(3)#3 !

u. _

one has for all such multi-indices and all poing(k))[] :

0 = lim sup{|D* x(y) =D*X'(2) |y, 2O Dk, |y = & 7(¥)) |oa + |2 &, 70))]. < &}

i=1,23k=1,2
We introduce the following notations:
pi'_ﬂ P, = X p"=—asxli ¢ =[x i =X
T 0tax? T T ataxfax T TP attoxf T T et
and:
i d i
1= —[X
o= g tX1-

A simple calculation gives the jump relationsxan

Q) [p]=17 Ps,

(2 [P I=[Ps]Ps=1 PPy,

3) Bl =n,+ ¢ Ps,

@) [Py)=17 Py +n,Ps+ P+ PsPy;

one proves this, say, by repeated applicationeftbrementioned lemma of Hadamard.
We now consider the equations of motion:

ow” avvﬂ
ox? 6p"

(B) pxi= X+ Pis. i=1,2,3,

and differentiate with respect to

0°W’
6pa6xﬂ e 6pa pkﬂ ap;ag

50, i=1,2,3.

oX =X+

The equations are true on both sides of the wadfacgu It follows that:
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, az\Nﬂ awﬂ
5 p¢= 207 O — =P,

‘ "W
{df(n )t 5+ ¢ E’,B} aéag[@p Bl

i =1, 2, 3, in which we have assumed thét] = 0. One sets:

2 241§

. 02X B
Al = C =
P, . ||)(1XT(X)) ox y(y) and Pg,

(¥, (X, 7)) U .

I(im( ) Ox” OXP
Yo (X7 (X
Vi X’ X

Sincex' O CY(D) (as one sees from the Hadamard lemma):

Wpiﬁp};}—p;i%, B yi=1,2 3 orf.

This yields:

d (oW” owWs o oW d aewWe

— | —1 P (= ! P + P + r j I p p

dxﬂ{ad;n aj 6p§6Xﬂ,7 a apk d)g Y ) agag(gﬁ q, ﬂ),7 o
and

;_d [owW”f oW” 0°W*

6 P P, + + - biPA“P).
( ) pZ {ad( aj a k (’70 Z ) ap a J([ paﬂ py] plﬁ ﬁ’] )

Now, on account of (1), (2):

K -5

[paﬂpy]_(paﬂ+,7 )(Q:J+’7J D)= B P
=p, NP R +n'n'RBP- g’ P

ie.:
oW’ oW’ 0°W# 1 ‘
7 =——| —nP P,+{“P B)+2 PP PR.
() Z {aﬁn aj ak(’?a Z ) apaj(py 2 y),7 a’'p
With:
] 2
‘+J- H
By v I(Ixr(x»ataxy(y)

one has, due to (1), the equation:
il o 1,
p,’ +§/f Py =5 ( P +pt).

We introduce the following abbreviations:
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1 oW P 2 1 0W?
QP|:==——=PaPsl ¢, Qf:=-=—"1]Pa,
P 0p, 0p; P 0p,

k
and:
1 oW i , ,
:_— P P ’ +J + " _J .
When one observes that:

d (ow? d
. ! P |(=— ﬂ ,

WP AW, Q7 dn*
P=-—pok =T
apk ,7H B~ apl o7 e B '06,7| dx’
and
B

opl 7 EYrd

P1{),

one arrives at:

. _d(ef) 097 d7*  p o0
od = o pa” " 2M(F’IZ)WQ

or

(8)

B B k
{56—9( 10)- z} W), p02% S .

297" o Pan axe

The vector = (&, & &) is therefore a solution of a symmetric inhomogerse
linear system of equations; the determinant of ¢befficient matrix is once again
preciselyF(t, x, P). The solution of the homogeneous linear systéegoations that is
associated to (8) will be generated by= (77, 72, 17°). Due to the symmetry of the
coefficient matrix, (8) has precisely one solutwwhen 7 is orthogonal to the right-hand
of the system of equations, hence, when one has:

; d ; 0Q7 d/7
9 '— (pQf) + 0
9) ndxﬂ(pﬂ.) P —— 6,7. e -pnQ =
or, due to the homogeneity 6% in 7:
£ ad,7 i -
=0,
(pQ) AU g ~P1Q

hence:
(10) L (on'h)= Q.
X
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The termpr'QF can, with the help of the ray vector (o', p% p°), be expressed as:

L OW_ip =- 1"’Q(Pm) QP |7’

Qfni=-= .
i papf,ap};” T 20P

With E : = (1/2)Q (P | 7) = (02)r7%, one obtains Rp® = oQ(P | n) p¥, and the solvability
condition (10) becomes:

d

—(Epf) =

7 (EP)=Q
with:

(11) Q:= ow

U'sz  P'nt —(Fl, +1'),

N

which ultimately delivers the divergence equation:

dE dE dE . 3, dp?
12 rakE:=| —,—,— and divp: = )
(12) J (dxl . dij P Z‘dxﬁ

In order to better understand the meaning of therdence relation, we consider the
“ray lines” or “rays” of the wave motion. They attee solutions of the following system
of ordinary differential equations:

dx _B, i=1,2,3 with vs: =/ plb.

ds v,

These differential equations give the chang&iwith the arc lengtls along the ray.
From (12), it follows that:

(13) VSE+Edin:Q.
ds

We now make the assumption that onefas0 along the piece of a ray in question,
while F™® = 0 does not have to be true for all determin&ffsh, k = 1, 2, 3 (cf.suprg of
the two-rowed submatrices of the coefficient matfixhe system (8); likewise, let # O.

There then exists a normalized solutign=(7,,75,73)to the homogeneous linear
system of equations:

10Q

EF( ln)-1 =0, i=1,2,3,

which will be true at no place on the ray whereolihe components are null. The actual
wave vector is then given by:

n(s) = As) 1o -
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From this, it follows that:
E=NE, Eo: :g(qo)2 >0 and Q=RA+SP

with known coefficient®k andS. Equation (13) then gives:

(14) A%+B)|+CA2:0, A=vsEg#0,

in which the expression8 and C are known functions. One then determiniesand
thereforer, along the ray by the Ricatti differential equation (14)

In particular, ifA = 0 at any locatiors = 5 then it follows from the uniqueness
theorem thatl = 0 along the entire ray that goes through this locatldawever, withA
=0, one hag =0. Thus, if the length of the wave vectpthat measures the intensity of
the wave is equal to zero at any location then itthas/alue zero all along the entire ray
that runs through this location.

In optics, the rays are characterized precisely byoaerty that is analogous to the
facts presented here. One thinks of, say, a light edbat shines upon a lampshade. Of
all of the rays that fall upon this shade the onesftiatipon the boundary of the shade
will define a shadow. From our results, the rays laedibes along which the intensity of
the light remains zero when it is once zero. Thigresses the fact that the shadow
boundary is indeed constructed from rays. This fact is itrugeave optics only for a
wavelength that converges to zero. If the wavelengtioiszero, so one has diffraction
phenomena, then there will be no sharp shadow bounday. considering the
acceleration waves, one obtains these charactepstiperties of rays in their full
strength.

Geometric meaning

One takes a closed surfaceRh LetN be the external normal to it and b be the
hypersurface element with the projections:

do = do cos(\, X).
It then follows from (11) that the hypersurface integgdahe volume integral:
[Epda=]/Qav.
As a closed surface, we now choose a “ray tube” witloranal cross-sectiomz If we

apply the formula above to this ray tube, which is bodrgethe points 1 and 2 of the
cross-section, then we obtain:

wEp cos, X) P = (Evsc)z — (Evsed1 =] Q dv= T Qw ds
S
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In the event that the differential equations are linsa® = 0, one has:
Evsw= const.

along the ray tubeE can be suitably regarded as the “energy of the wave.”

3. Application of the Hadamard-Herglotz treatment of the accaration waves to

the discontinuity waves of Christoffel

Christoffel treated discontinuity waves of first orddiherefore, let:

>={(xt) [xOR3 t=1x) OR}

be a first order discontinuity surface, i.e., the sohgix', i = 1, 2, 3 of the Euler
equations of motion (B) are continuous dnwhile their first partial derivatives possess
(finite) jump discontinuities. All derivatives involveshall have equal two-sided limits
onZ. Furthermore, let all of the notations and defimsiagree with the ones above, and
one has¢' 0 C°(D) n CA(D1 0 D), i =1, 2, 3, with open sef3, D1, D, as above.

For the first order discontinuities that were examlitgy Christoffel we require a
jump relation on the wave surface that one obtains with the help of Hamilton’s
principle of stationary action: From Zemplén [4], tranishing of the first variation (the

Hamilton integral) on the “edge of the kink” of an extral X'(t, x), 1 < i < 3, with
discontinuities of first order ob gives the Weierstrass-Erdmann corner conditions:on

0=&x'(r [X'](dX) - W do,), =123,

with do, = — dt d¥ dx® = Py(dx), do, = dt dX dxC = P»(dX), dos = dt dxX dx® = Ps(dX). This
gives the jump relations cn

P& -W3P,=0, i=1,2,3 with &:=[x7].

Christoffel treated classical elasticity; thereg dras the following expression for the
internal energyV:

——cﬂypﬂpy c¥=cf=const. i,j,yB=123.
Analogous to the second order discontinuities, one intexsiuc

QP|d: ;cﬂyé'épapﬁ.
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This is a biquadratic form in th&, P, with constant coefficients that are symmetric, in
j. With:
[p] =¢P, and [W’] =c[p] =¢¢P,,
this gives:
p 0Q

Pa W] = ¢ & PaPp=2—=

298 P1<$).

Thus, there exist linear equations o« (&, &, &):

* —.—Ea_Q =
*) 0=¢ 265( |£), i=1,2,3.

Sinceé # 0, the determinant of the coefficient matrix o€ thomogeneous linear system
(*) has the valué-(t, x, P) = 0, just like the second order discontinuity esv

We now obtain a divergence relation fof | in the following way: From the Euler
equations of motion:

PX =X + ?j\i\fa i=1,2,3,

it follows, under the assumption thai E 0, [X'] = 0, and since:

W= 1c”ﬂpa B

that _
pr7 =c’[ pll, =123

An easy calculation (with the help of the Hadamardma) delivers:

[Pl =[PP BIR+& R, -7 B, i,a8=123
and
(I d (N | i .
5[;-_W§(_[pﬂ]_/7 Pﬂ!

[D,] = PaPs+&P, +&,P+ & Pop.

From this, one gets:
”I_EF( |/7)—— (&P + &P+ & Pyg).
Hence, with:
' 1 a i i t

one has:



Herglotz and Christoffel on discontinuity waves 12

*% —Ea—Q =Q i =
(**) n 26/7i(P|,7) Q. i=1,23.

The coefficient matrix of the inhomogeneous linggstem of equations (**) agrees with
the coefficient matrix of the homogeneous lineastesyns of equations (*), and is
symmetric. 77 = (17", %, i°) is therefore indeed a solution of (**), as lorgame has:

§Q=0 (orthogonality condition).

One sets:
1 0Q
Q:=Q(P and = a=1,2, 3.
Pl p 209P.
One thus obtains:
a_ P 0Q — ~aB & g
— =777 — o Ps,
oQp 20p 0 & &Py

and furthermore, since =c/":

- (PP = (6 R+ EE, B +E 8 By)
= GAEGR +ER+E R)E =pQE

Together with the orthogonality conditions, thiseg:
d d
- — =—— “)=0.
3 (PP =~ (pI<T p)

This is the desired divergence relation. Chrigfoffl] has already discussed the
geometric corollaries of it concerning the ray ttle suprg.
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