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In the introduction to hisMechanik Heinrich Hertz (*) said thatHamilton’s
principle often yields results that are physically falée order to document that, he cited
a case in which one could, as he himself remarked, af#sessiotions that can be
performed, as well as the ones that would correspofthtoilton’s principle, through a
mere consideration without calculatiohlertz added that the result would not change if
one employed theéMaupertuisian principle of least action, instead éfamilton’s
principle. Let us consider an example. It considta ball whose entire inertia rolls
without slipping on a fixed horizontal plan®.( According toHertz, the motions that
correspond tdHamilton’s principle here are the ones that arrive at themigoal in
shortest time for a given constaris vivg which would imply that passing from any
initial point to any final point would have to be possiblihout the action of a force.
That conclusion, which is more closely connected vighgrinciple of least action than it
is with that ofHamilton, was reached approximately. If one chooses the iamilfinal
positions of the ball arbitrarily then there will alysabe a pure rolling passag® from
the one to the other. Among those transitions, edokhach should come about at
constantvis vivaand all of which should have the same constentiva there will be
one of them that takes the least tifie (In Hertz’s opinion, that will correspond to
Hamilton’s principle and the principle of least actiohlertz contrasted that result with
the fact that in reality, despite the arbitraringsst the initial velocity is stuck with, no
natural transition from any position to any other omgassible without forces being
involved.

() Gesammelte Werk#&894, Bd. IIl, pp. 23

() The ball does not need to be homogeneous. If it iveneogeneous then a uniform motion of the
center of the ball, combined with a uniform rotatmfithe ball around a fixed axis that goes through the
center, would occur.

() Inregard to the existence of that passage, one shbuhk final remark of 82. The fact that the
passage, which will be contrived here for the proogl$® one of rolling without slipping was not stated
expressly byHertz at that point. However, one could not arrive at the esaonclusion without
establishing that. The fact that | have echbedltz’s opinion correctly by adding the proof of the latter
will emerge from numbers 347, 358, 112, 111.

(Y That might be added here, although it could still bellehged from a rigorous mathematical
standpoint.
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The aforementioned truth, which was self-explanatoryHertz, can, in fact, be
inferred by mere observation. To that end, we needtordpnsider that the motion must
be determined by the initial state of the ball. Othantthe initial position, all that one
needs to determine the initial state are the instantaaxis of rotation (which we shall
assume goes through the center of the ball), the assdcangular velocity, and a
displacement velocity. However, the magnitude aneéction of the displacement
velocity will then be determined, because rolling witlp@ing must take place on the
horizontal plane. Nothing can be said about the magnitidéne initial rotational
velocity. However, since the initial rotational agan be chosen in a double infinitude of
ways, and each choice of axis will lead to a simpfinite manifold of positions for the
ball, one can arrive at only a triple infinitude of plesis when one starts from a given
position. By contrast, the totality of all positiookthe ball define a five-fold manifold,
because the center can be placed in a double infinitudeaysd, while the ball can be
positioned about its center in a triple infinitude ofysia That implies the impossibility of
going from a given position to any other one withoutatigon of forces.

The attempt to clarify the contradiction that corabsut from the fact that, strictly
speaking, no rolling occurs in nature that is not coupletd atitleast a small amount of
slipping did not satisfyHertz. It also emerges from the foregoing well enough tlea¢ h
one is not dealing with a contradiction in which ordynanechanics should take the
advice of experiments as much as with contradictory lasimms of the different
arguments. The contradiction must then be removedtiertheory.

The thorough developments ltertz’'s book contain such a solution. In order to
understand that, one must focus on the condition equabwpnghich the motion of a
material system can be constrainétdertz allowed only condition equations that did not
contain time. However, the coordinates of the poifitth® system could also appear in
the form of differentials. More precisely, the caimh equations are assumed to have the
form ():

(1) 2 (8, dx, +¢, dy, +x, dz)=0 (=12 ..
)

in which the symbol®, ¢, y denote dimensionless functions of the coordinates:

X1, Y1, 4, X2, Y2, 22, X3,Y3, 23,

of the material points. Now, there is a specialec@a which the totality of conditions (1)
is equivalent to a complex of conditions of thenfor

(2) chl = 0, chl = 0, veey

i.e., one that is “completely integrable.” In tlwtse,Hertz called the material system
holonomic (¥). His solution to the previous contradiction fEst The basic laws of

mechanics that he presented were true in genarddofin holonomic systems and non-
holonomic systems, but he arrived Hamilton’s principle and the principle of least

() Cf., no.124 VoR already treated such conditions before; cf., Math. Anr25, pp. 258t seq.
() Cf., no.123 132 133
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action only by adding the restriction to holonomic syste The ball that rolls on the
plane presents a non-holonomic system, which the negde slip would destroy.

If that solution were satisfied then that would nohtcadict the general belief that
Hamilton’s principle is merely another form @fAlembert’s, and that this would be
true in general. The deviation from the usual picturédeftz’'s theory can also not
explain the fact that it has placed a new law atfthmdations, since his basic law is
equivalent tad’Alembert’s principle in the cases that he considerdd {That raises the
basically-mathematical question: Does the usual désivaif Hamilton’s principle from
d’Alembert’s require a restricting condition? The present artileserve to answer that
guestion. That answer that it will give is that widAlembert’s principle is true in
general, Hamilton’s must also be generally true in its most completendgation.
However, if one chooses the formulation tiédrtz assumed then restriction that he
pointed out will, in fact, enter into it. In this papémill explain yet another point, and
in more detail that it has been given up to now: Fifsillpthe concept of the variation of
a motion itself will be discussed, and then the fornagd the principle of least action can
take, along with the relationship of that principleHamilton’s, which can encompass
both principles with a more general integral principi.the same time, it will be shown
that the principle of least action can also be fdated in such a way that it will remain
valid when time enters into the condition equations.

Whenever both principles are at issue, above albuldvlike to at least suggest that
here by once more considering the motions of the lalking its actual motion, which is
one of pure rolling, the ball will assume a continuous esgion of positions. The
application of the aforementioned principles will dewhaonly a small change in the
motion. In order to accomplish that, we will firsspliace each of the original running
positions of the ball slightly, such that a second icaous succession of positions will

() ConferHertz’s no. 394. As far as his basic law is concerned, whizghinnecessarily restricted to
free systems (nos. 309, 122, 117), it includes two statemené&spOihem determines the constancy of the
differential quotients with respect to tirde/ dt. The quantitys is the defined by the equation:

ds’Sm, = T m (d + dy + df),
(v) (v)

in which my, m, ... mean the masses of the system points. Obviobsiypart of the basic law is nothing
but the law of conservation ofs viva The other part is derived from the fact that the tityan

dz)g/ 2 ﬂz dzz/ 2
i R ERE)

is continually a minimum under the motion. If onésse= const.x t in the last sum then one will obtain
essentially the same expression that was supposed tmipgnaum in Gausss principle of least pressure,
in which all of the forces thadtlertz excluded from the foundations are set to zero. Oneldloompare
this to my own presentation of his basic lanHartz nos. 309, 266, 263, 55, 100, 106, 151, 152, 153. |
have once more introduced the usual notation of recl@ngoordinates in place of his notation for
coordinates.

In my opinion, the significance ¢fertz’s book does not take the form of a basic law, but thietfet
the forces can be nonetheless constructed mathetiyafiioen a basic law that does not contain forces, a
it is now formulated. | shall go no further into tltahstruction, which first appears in the later partsi®f
book and lies beyond the scope of the present study.
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arise. At the same time, the positions of this nejyusece can be related to the positions
of the first sequence. The second motion is stilldesermined completely in that way,
since it has not been stated that the corresponding passafoitme two motions will be
passed through at the same time. That is requirdddoyilton’s principle, while the
principle of least action requires something else. Heweboth principles will be
applied here in such a way that aforementioned smalladtisment of the ball should
result from a simple rolling motion, whilelertz, in contrast to that, employed the
condition that the second motion — i.e., the varied 6 should also itself exhibit rolling
without slipping. If one performs the variations in tw@rect way then that will imply
the rolling motion of the ball in precisely the way tlédrtz said corresponds to the
facts. It is not distinguishelom the motions of its kingven when it, in fact, requires
less time. However, we have lived upon a differentisbdsr a long time that
conceptualizes the principle of least action &amilton’s principle only to the extent
that the variation of an integral or an integral tbantains a variation should be set to
zero. Of course, the name “principle of least attwili no longer be appropriate then.

8 1. — Variation of a motion.

In order to make the concept of the variation of aionotlearer, we would first like
to consider a free material point. Its motion sho@d/éried in such a way that the initial
position A and final positiorB will remain unchanged. The original motion is the one
that actually takes place, while the new varied onenlg an auxiliary mathematical
notion. Now, one can choose the path of the newomdtom A to B such that it differs
slightly from the old path and runs approximately paratieitt(*), and arbitrarily, in
general. After that, one let can the motion alongih& path evolve over time in various
ways. We imagine that both motions begirAait the same time. They do not need to
arrive atB at the same time, which will not be the case, silgen the actual motion takes
less time than the varied one. Now, in order to fmpeecise picture of the variation in
mind, one must refer each position that is assumed byatied motion to a position that
was assumed in the original motidi. (Without such a relation, e.g., the variation @ th
integral:

det,

in which T represents thesis viva and t represents the time, would probably be
meaningful, but the equation:

5j T dt= j S(T dt)

would make no sense. One associates the (idgnti¢&ll positions with each other, and
similarly, the final positions. In that way, it cear that in the event that the motions do
not arrive atB at the same time, the relation could not be pteseim such a way that
corresponding positions of both motions would bsspd through simultaneously. One

() Cf., the first remark in 8.
() Naturally, this important state of affairs has athg been observed in the geometric problems of the
calculus of variationsiVeierstrassalways emphasized that in his own lectures.
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would then produce an arbitrary point-wise relationship betwthe two paths, and
observe that corresponding positions are separateddazh other by very little distance
(). One might wonder if that point-wise associatioh the paths is physically
meaningless here, and whether that association, lkeahation of the motion itself, is
only an auxiliary mathematical construction. We shalhsider the simpler way of
expressing things, so for the moment, the time-pointhatiwboth motions begin &
will be the origin of time. Now, i€ andC’ are associated positions of the motions then
one could logically refer to the time that it takes the original motion to flow from to

C by rand the time that it takes for the varied motiondavffromAto C by 7+ or. The
variation or of time is therefore nothing but the difference between the aitneich
corresponding positions will be passed throughhe variation of the time differential is
the algebraic overshoot of the time that it takes allspart of the new motion to flow
over the time that is used by the associated part afitheotion £). If one compares the
initial and final times for both motions along thosealimieces then one will easily see
that the variation of the time differential is eqt@althe differential of the time variation.
That corresponds to the known general theorem onahmenatability of the symbols
andd.

Now, the variation of the motion of our points woblel best carried out as follows:
One first gives each point of the original path a disptaent such that a new path will
arise that related to the old one point-wise. One thetermines the velocity for each
point of the new path. It must differ from the vetgcat the corresponding location on
the old path only slightly, but it can otherwise be takere arbitrary. However, we
shall now distinguish between two special ways of ddiad determination.

Thefirst kind of variation arises from the condition tltrresponding locations on
both paths are passed through simultaneousbth motions would then have to arrive at
B at the same time.

The secondkind of variation relates to the forces under whod®madhe original
motion proceeded. If we imagine the forces here in sualay that we can speak of a
“potential energy” then we can define this kind of vaoiatas follows:The total energy
of the corresponding states of the motions being compared must be the $aate.
variational condition will be formulated somewhat diffetly later on such that it will
also be suitable for the remaining cases. The toeaggns composed of thas vivaand
the potential energy. Now, since the original moi®thought of as being given, thies
viva and the potential energy will also be given for a lloca€C on its path. For the
corresponding locatio@” on the varied path, at first, only the potential, whdepends
upon just the position, will be known. One will thent gee vis vivafor the locationC’
from the variational condition that is required hemed thus, the velocity.

Hence, once the new path and its point-wise reldtipn® the old path has been
established, the varied path will be determined complebglythe first variational
condition, as well as the second one, and in diffene&ys each timeThe time is varied
for the second kind of variation, but not for the first one.

() More precisely, two corresponding, infinitely-smats of both paths must have a well-defined ratio
for each location, and that ratio should differ from onky glightly. On that subject, cf., the first rem.8
2.

() A more rigorous use of pure mathematics, that would disthgsi between differentials and
changes and between variations and changes, would be iicgdrhere.
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The relationships for the motion of a material sysem analogous. If we, with
Hertz, take the concept of the “position of a system” tolude the totality of all
positions of the points of the system then motion eglhsist of a continuous succession
of system positions that follow in time in a certainywan order to vary that original
motion, one will first assign a small displacemineach system position such that a new
continuous succession of system positions will aridé.the original sequence goes
through a position twice then one will have two ovgplag motions that can naturally be
displaced in different ways. The new paths of systemmts and the association between
the locations on those paths are now established. hebréason, one can choose the
velocity at all locations of the new path for a syst@mmt for the most general kind of
variation. However, if one establishes that eithernew positions are passed through at
the same times as the associated old positions bthbawo associated states of both
motions should have the same energy then one woulchde&ehow the new succession
of system positions is to be passed through completeéhat way.

Previously, we did not take any condition equations atoount. If a motion is
subject to some conditions then it will not be excludethat way that we can compare it
to a varied motion that does not satisfy those canti

8 2. — Derivation of the integral principles.

| shall now consider a material system that moveteuthe influence of forces and
the simultaneous constraint of condition equationshé dense of ordinary mechanics.
Time can once more enter into the condition equatidnsuill suffice to assume that the
coordinates are rectangular. Now, when | vary theianptl shall temporarily not
concern myself with the condition equations at all. mif ny, ... are the masses of
material points then that will imply the variationtbkvis viva

_ dx, .dx  dy . dy dz qu
3 oT = ) oY+ By B4
3) (ZV;‘m’(dt gt atCar atl at

Now, one has, e.g)(

() This formula from the calculus of variations mustused here, since the quantities that are based
upon differentiation will be varied. If one would like &woid that then one would have introduce yet
another variable?, as e.g.v. Helmholtz did. One then relates the positions of the orignation to the
values of the parameté? and associates the corresponding positions in thedvaraion to the same
values ofd. & will not be varied in that way, but possibly the timeThe following picture is especially
intuitive: Let 7 be the time that it takes for the initial positidrof the system to flow to the positi@ of
the original motion, and ler + Jdr be the time that elapses between the initial posidod the
corresponding positio€’ of the varied motion. All quantities, including, can be regarded as functions
of . Now, d (dx, / dt) is the difference between the velocity componentgnalong the:-axis, of the
massm, for the varied and unvaried motion. Obviously, one thign have:

d
SO d0x+ox) g g T

dt  d(r+or) dt

_dy

d
L rrary A
dr
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a_d>g, _ odx, [dt—Jdtldy _ dox, Ldt— dd tlidy
dt dt? dt? '

If one now converts the right-hand side of (3) with tiedp of that equation and its
analogous equations then one will find that:

a_r:zmv(d& doy  dy dy dz d”ZJ—ZTﬂ.
dt dt dt dt dt dt dt

v)

This equation should be multiplied lly and integrated over the time intergal.. t; in
which the original motion takes place. After atjgdintegration, one will get');

@ [ormt=-[*Y dy Wy dy Dy, dz d.2) 4 o1 g5y
3 oo at Tt dt dt | dt b b '

The position of the system is thought of as beingauied forty andt;, which will make
the terms that appear before the integral as d i@&sine partial integration vanish.

Now, if X, , Y,, Z, are the components of the force that acts upomtesm, then
the symbold” U shall be defined by the formula:

(5) FU=3 (X, 0% +YIy+ Zd 7).
()

Equation (5) is once more multiplied by and integrated and then added to (4), which
will yield:

(6) | :1[2T dt+(3T+J U) df

g {8 o

t Y dt? dt?

- (%dﬁnj@@j_dﬁ
dr dr dr dt

If one now develops this and neglects terms of highaeran the derivatives of the variations then one will
get:

dox, dy dor
dr  dt dr’

viz., the formula in the text. At the same timeg avill see that not only must the variations be assutoe
be small, but also their derivatives.

() This formula is basically already Berret, Comptes rendus de I'’Acad. des Scierit2$1871), pp.
700, no. (7).
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At the same time, if one performs that variation tbé motion such that the
quantitiesox,, dy,, oz, represent &irtual displacement of the system then the right-

hand side of the last equation will be equal to zeron fitAlembert’s principle. One
then has the theorem:

If one compares the actual motion of a material system with a motionléhattes
from it slightly and for which the starting and ending positions of the raystenain
unvaried, and the displacements of each position of the actual motion to the
corresponding positions of the varied motion are virtual displacementg‘then

(7) j[zT dot+(oT+J'U) df = 0.

In this equation, T means the vis viva adidl means the work that is done by the
effective forces under the aforementioned displacenwhich is merely imagined.

Here, one can specialize the variations by intcody the first or second of the
special kinds of variation that were presented1n 8

1) We demand that the corresponding positionshé gctual and varied motions
must be passed through at the same time (i.e.einv® s 0) and obtain:

j(éT+5U)dt =0.
That isHamilton’s principle.

2) We generalize the previous second kind of tiangby setting:
(8) oT=0"U.

We then require that the difference betweenvikevivafor corresponding states of the
two motions should be equal to the work that tHectilve forces do a displacement that
connects corresponding positions. That will deteentnow the continuous succession of
varied positions should be traversed. One can tiglace the quantity’U in (7) with

ol and then get:

o:j(Td5t+5Tdt): j(Tadtdet) :ja(Tdt)

for those special variations; i.8):(
0=JT dt.

() Actually, the integral will only be infinitely-smalbf higher order when the quantities that were
referred to as small up to now are made infinitelyaiof order one.

() The validity of the formula{ o(Tdy= 5! T dtwill not be impaired by the fact that the time intérva

changes under the variation. In order to see that,me'VMesf T dtinto its elements and subtracts from
each of those elements the quantity that correspontmtthe varied motion.
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That isthe principle of least action in its extended fdfin
The other form of that principle will be discussag#.

8 3. — Virtual displacements. Equivalence of the principles

The concept of virtual displacement is to be understwd in precisely the same
way as in the analytical formulation @fAlembert’s principle. According to that
principle, when one takes into account the couplings dmtwhe material points that
exist at the moment, the external forces will bequikbrium at each time. For example,
if the material points are constrained to move in ataace with the conditions:

9) W (X1, Y1, 21, oo %, ¥r, Z 3 1) =0 (=1,2,..)

then one must introduce the momentary valuet.fofhose momentary couplings allow
one to have displacements that satisfy the equations:

Jw Jw ow Jw Jw Jw
LOX +—L0y, +—L0z+- - +—O0x+—0y+——0z=0.
%, X dy Y1 9z, Z dx X dy Yy 37 VA

1

(10)

Those displacements are virtual, and they are introduntedhe equilibrium condition
for the external forces; i.e., into:

d? d? o
%‘,{Xv-m dg»jw(y- Wzﬂja y{ - mS2 dtfjavz}

The fact that there is no term of the fordw / dt) dt in equation (10) will also be
paraphrased by the remark that time is not varied in pipdéication ofd’Alembert’s
principle. We will satisfy that prescription when aiation of time takes places in a
different way. Taking into account what we must lotlycalenote byodw here, the
equations that determine the virtual displacements:

() v. Helmholtz discussed this form of the principle in detail in thez@igsberichten der Berliner
Akademie for 1887Helmholtz’'s Ges. Abhandlungeri895, Bd. Ill, pp. 249). It would probably be better
to refer to the quantitly that he referred to as “potential energy” as theyatiee force function.” Namely,
sinceF must include time, as well as the coordinates, the equ#tainmotivates the term “potential
energy” would break down. One can object to the presentinatHelmholtz gave in other ways. If one
compares the equations on pp. 259 that were denotedabd 1, then that will show that the terraR / at)

a in the development of the variati@r will drop out and that it is only in that way that thguations of
motion will be obtained correctly.Helmholtz based his procedure on the remark thatan also be
regarded as a function of the coordinates anf] aistead of (cf., by first rem. in this paragraph). Now,

will not be varied; however, it is expressly assumed tina¢ will be varied. t will then be a different
function of & for the varied motion that it was for the originaltron. For that reason, the process is not
permissible. However, the entire presentation wittobee correct when one regards the quantity that
Helmholtz referred to asd~ as the work. Correspondingly, the variational conditroust also be
formulated differently then.
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(12) oy ———a&=0.

If the motion of the system is subject to conditsmuations of the form (1):

> (¢, dx, +y, dy, +x, dz) =0 (=12 ..),
)

in which the functionsg, ¢, x depend upon only the coordinates, then the virtual
displacements will satisfy the relatiort: (

z(¢/v 5Xv +Y, 5yv X 54) =0 i=1,2 ...
()

It should be remarked that in all cases the digwteent of the individual positions of
the system are independent of each other. Forglhabn, the displacements can also be
assumed to be non-zero only for an infinitely-snpaltt of the motion. If one links that
concept with equation (6) then that will imply aokvm argument from the calculus of
variations that the continual vanishing of the-tedind side of (6) will also bring with it
the vanishing of each individual element in theegmal that one finds on the right-hand
side. The demand that the integral (7) shouldskafor all variations will once more
imply the fulfillment ofd’Alembert’s principle. Let us consider the right-hand safe
(6) in more detail. We think of the forces anduattmotion of the material system as
being given. Hence, the aforementioned right-hsidé is determined merely by the
displacements of the system positions. It doeslapend upon how the new succession
of positions in time that arises from the displaeets is run through. For that reason, it
does not matter whether we let the variation of ti@ion be general, except for the
unallowable conditions, or we restrict ourselvest first or second of the special kinds
of variations.

That and the contents of the previous paragraghgh&n imply thatHamilton’s
principle, as well as the principle of least actiorihe form above, will be equivalent to
d’Alembert’s principle ).

() The analogy leads to the suggestion ¥aR made loc. cit, pp. 286) that one should take the
condition in the motion in the form:

(Z)(¢,Vd>$+t//,v dy +x, dz) =0 (i=12..),

in which the functionsp, ¢, ), winclude the coordinates and time. That will yield #ggiations of the
virtual displacements when one repladeby 0 anddx, , dy, , dz, with &, , dy,, &, . A suitable example

of that would be that of a ball that rolls without slippion a plane, while the plane advances in a
prescribed manner in time.

(® The derivation of the differential equations of rontis also given bydamilton’s principle and the
principle of least action then, while new coordinatesldawise be introduced. It was given in symbolic
form byVoR (loc. cit, pp. 263), while our concept of the variation of a motidhaiways permit an actual
application of the principle. The derivation of the doues from the least-action principle has led to
various discussion (cfRodrigues Correspondance sur I'école impériale polytechnique pablHachette,
vol. lll, pp. 159, andA. Mayer, Ber. d. K. Sachs. Ges. d. W. math.-phys. Cl. 1886, pp. 348 simplest
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8 4. — Modifications of the principles.

If a force functiorlJ exists then equation (5) will assume the form:

U U U
o'uU= —Jxv+—5yv+—é'z,j.
%[6& oy, 0z,

Now, whenU includes the timé, along with the coordinate, in the event that timeas
varied, one will then have:
(12) ouU=4a,

and one can exprebtamilton’s principle by means of the equation:
5j (T +U)dt = 0.

If one is dealing with the variations that theskeaction principle demands then one
must have a force functiod that is free of time if equation (12) is to beetruThe
variational condition (8) can then be expresseduch a way that the quantify — U
should have the same value for two correspondetgsiof the actual and varied motion.
Now, if time does not enter into the condition eiprss, in addition, which might then be
differential equations of the form (1) or ordinaguations, thei — Uwould be constant
for the actual motion'). One then calls U the potential energy anfl — U, the total
energy, and it is clear that the total energy nait change at all during either the motion
or the variation. In that way, one will get thdéldaving restricted form of the least-action
principle:

That form of the principle assumes that the actualtion obeys the law of the
constancy of energy, and that motion will deterrmmare precisely the fact that when
one compares it with a motion that deviates sligfitbm it and has the same constant
energy motion, it will fulfill the condition:

5j T dt=0.

In that way, the variations of positions will betual displacements, and the initial and
final positions will remain unvaried. That morestective form is applicable when a

to follow our path above backwards. One devel@f)i dtzf (0T dt + T Dodt) for arbitrary coordinates
and with the help of equation (8), one then replaces the iuardt that enters here explicitly and
implicitly with an expression that is multiplied byt and includes variations of position and their
derivatives. One removes those derivatives by pantiedjration. An integral will arise that is analogous
to the right-hand side of (6). When that integral is setzéro, while observing that the virtual
displacements are independent of the individual system qositihat will yield the differential equations
of motion.
() Cf., §5. Cf., alsovoR, loc. cit, pp. 266.
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force-function that is independent of time exists, and time does not appdhe
condition equations, eithé?).

8 5. — The broader form of the principle of least action
and the law of conservation of energy.

The restricted form of the last-action principlewasss the law of the constancy of
energy, but not the broader form. We can also deheelaw of constancy of energy
from the broader form of the principle when we asstiméthere is a force function that
is free of time, along with the condition equations. &$sume that the law is unknown
and we imagine that, e.g., the quanfity U continually increases, in the algebraic sense,
during a time intervalt(, t") of the actual motion. Now, the positions thattateen when
t < t’andt > t" might not be displaced. Every positiGrthat is taken whetY <t <t” will
be varied into on€’that will itself be taken in the actual motion, buadater time-point

() Insofar as one can already speak of a definite plmeiith Maupertuis, and which was shared by
the ideas of others — in particul&uler — |1 would not like to examine it here (cA, Mayer, Geschichte
des Princips der kleinsten Actiof877, andHelmholtz, loc. cit). One finds a derivation of the least-
action principle byLagrange in his Mécanique analytiqué2™ ed., 1811, t. I, pp. 296t sed. He
assumed that the equation that expresses the law afreatisn of energy will continue to be true under
the variation, with no change in the constants thatreinto it. In that way, he obtained a relation that
corresponded to equation (8) in the present article. Qms¢ oonclude from the stated assumption that
Lagrange had the restricted form of the principle in mind at tited place. However, if one introduces
equation (8) directly as a variational condition th@&grange's method of proof will remain completely
unchanged, and if one asks what the narrowest assumptiaitsveounder which it is still true then one be
led to a broader form of the principle. One will afsal that form suggested in his earlier work in the
Miscellanea Taurinensia. Il, 1760-1761 Qeuvres 1867, t. 1, pp. 36%t seq.. Namely, it will be stated
in no. XIll that the relationl) that is presented in no. VIII, which is nothing lur equation (8), can be
employed in the case of completely-arbitrary forcesostvbf Lagrange’s followers have taken only the
more restricted form of the principle, such as, &lgmilton in the Philosophical Transactions of 1834, pp.
253. Jacobi has granted that form of the principle with anothquression, in which he expressed the
guantityR dtunder the integral in terms of space-elements awhstant that is nothing but the valuéeTof
— U, which is constant and unvaried her&orfesungen tiber Dynamik866, & Lecture) Helmholtz, in
the cited work, was the first to distill the broademioof the principle froniLagrange’s works. As far as
the relationship between that form of the least-actionciple andHamilton’s principle (Philosophical
Transactions, 1835, pp. 99) is concerned, in contra$éhmholtz, | find that both of them can be obtained
from each other rigorously. Since both of them arévatgnt tod’Alembert’s principle, they will also be
consequences of each other. Nevertheless, neithlthe divo principles is subordinate to the other one,
since they relate to different kinds of variations. ldeer, both principles are implied when one
specializes the integral principle that was containegjiration (7) in this article, in which, the variatiais
the motion were more general. Integral (7) has adlelstionship télelmholtz’s integral formula g:

3 [/\F+(1+it9j L}dﬁ :

Namely, if one carried out the variation under the irgeere, in which one leavésunvaried, varieslt,
and (see the last rem. inZ replacesd with a form of work (viz., the 9" U in this article) then an
integral will come about that will coincide with onelhaf our integral (7) fol. =T, A=-1/2,9=t. In
order to be able to sét=t after the variationone must only regard as the time that is required to reach
a certain position under the actual motion.
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that lies between” andt”. For that reason, since time does not appear icdhdition
equations, those displacements will be virtual displacesn). From the variational
conditions, in the form that they can now be expmssdere a force function that is free
of time exists,T — U must have the value for the positiGrof the varied motion that is
had for the positio©’ of the actual motion. Now, we have imagined thatU increases
from C to C"under the actual motionT — U, and therefore theis viva T as well, must
be smaller for the varied motion than it was for élstual one. We can perhaps assume
that the ratio of these twis vivasis like & : 1, wheres < 1. Now, under the transition
to the system positio@, all velocities of the varied motion will have theioas : 1 with
the ones that occur for the actual motion, since #fsem paths of both motions
coincide. One now compares two small intervalshef varied and actual motion, and
indeed intervals for which position are traversed thdedibnly slightly fromC’, and
which are not regarded as associated under the variagon The elapsed times would
then relate to each other like % :while the partial integrals will relate like: 1. Hence,

the partial integraf T dtthat extends from’ to t” and represents the “action” will be
reduced by the chosen variation. A more precise consimenaill show that the other
part of the integral will not vary. That will imply r@duction in the total integral, and it
can be shown that this reduction will generally hawesame order as the variations of
the coordinates and the quantity E.—If the position of the system were displacedha t

opposite sense then that would yield an enlargemelﬁtToﬁt by the variation. One
would then think of the quantity — U as non-increasing for the actual motion, if one
would not like to contradict the principle of least antinaturally, the same thing would
be true if it were decreasing. — Uis constant.

8 6. — Inequivalence of the true and varied motions.
Everywhere, we have observed the condition that thatms of the positions must
be virtual displacements. Something else would happen Wweve to demand that the

varied motion should satisfy the same condition equostias the actual one. For
example, if the condition equations are given in thenf(®) — i.e., as ordinary equations:

@ (X1, Y1, 20, oo %, Yr, Ze, 1) =0 (=1,2..),
then the last demand would imply that:
CL}(X]_‘Fd(l, YA e/ d) =0,

and thus that one would also havey = 0. However, an application of mechanical
principles would call for equations (11):

() Cf., G. Kirchhoff’s Mechanik pps. 25 and 34. The relationship between virtual andakct
displacements thdilertz expressed in no. 111 is based upon the fact that he didahatle time in his
condition equations.
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ow
oy ——Lo0t=0 =1, 2 ..).
7] o ( )

Indeed, those equations will agree wdida = O when:

i.e., when time does not enter into (9), and likewiben ot = 0, i.e., wherHamilton’s
principle should be applied. By contrast, for the ppleciof least action, one should
observe the aforementioned difference when timeremtéo the condition equations (9).
The actual and varied motions are not equivalent irctss.

That inequivalence will also appear witlamilton’s principle ¢) when the condition
equations are given as differential equations in the fd)mnto which time does not
enter. That will be illuminated by the example in text paragraph. Here, it will only
be stressed that the inequivalence of the motions wailish again when one treats
Hertz’'s holonomic material systems. The conditions gt ttase can be assumed to also
have the form (2):

do, =0 (=12 ..).

It says that®;, ®,, ... should remain constant under the motion without thadees
having to be prescribed initially. Now, should the edrimotion satisfy the same
conditions, one could choose other constant vaduesb,, ... for that motionper se.
However, that is excluded by the fact that one doesamytthe initial and final positions.
Now, one sees that the result would be the sameeifvdriation were performed
according to the equations:

ap, =0 (=12 ..).

However, the latter equations arise from the conditibmotion when one replaces the
coordinate differentials with coordinate variations.o3é equations will then correspond
here to the true demand that the variations of posimust be virtual displacements.
Now, that explains why the conception of the princigdé$laupertuis and Hamilton
that Hertz chose brought with it the restriction to holononystems. NamelyHertz
assumed that the varied was possible — i.e., as onedtisfied the same conditions as
the actual pathf).

() C. Neumann had already emphasized that fact for rolling motion, whidinst noted during its
publication. Compare Ber. d. Séchs. Ges. d. W. npiys: Cl., 1888, pp. 34, and especially the words:
“By contrast, the fictitious motion will corresponalthe character of the system in general.”

() Cf., nos. 347, 358, 110, 112, 113.
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§ 7. — Special conditions of motion for a point.

It would be appropriate to explain the foregoing by wayroegample. Since only
the difficulties in the variation should be discussedehit would seem permissible for
me to choose a simple (although probably not realizamie)ion. Furthermore, it
belongs to the ones thidertz allowed {). The motion of a material point upon which no
force acts shall be constrained by the condition egjuati

(13) gy, dx+@(xy 2 dy+x(xy,2dz=0.

The point will then be forced to move along a givenaefelement at each location.
The direction cosines of the surface element thiaings tox, y, z will have the ratios:

Py, D: Xy, xxy 2.
Equation (13) can be integrated only in special casé®ifotm:
w(X, Y, 2) = const.
In those cases, we call equation (13) integrable. AtiomQ (x, y, 2 will then exist

such that when it multiplies the left-hand side of #wuation, it will go to a total
differential. In order for that to happe®@,must satisfy the conditions:

0QLp) _oQly) oQly) _oQLy) o(QLy) _ o(QLy)
oy ox = 0z dy = ox 0z '

which can be put into the forms:

Q(2— ) =Q Y- 9,
Q(—x) =2 x —Q3 ¢,
Q—¢3)=Qs¢ —Qu

in which the partial derivatives with respectq, z are denoted by 1, 2, 3, resp. If one
multiplies these equations hyy ¢, ¢y and adds them then that will give:

(14) X(@2—h) + o (s—x2) + (1 —@3) = 0.

That is the integrability condition, which is raltvays fulfilled €). It only when it is
fulfilled that the material point subjected to tladove condition will represent a
holonomic system.

() It was treated already BbgoR (loc. cit, pp. 280).

() The integrability condition that we found is also miéht (cf., A. Mayer, Math. Ann., Bd. 5, pp.
450 to 452 and heorie der Transformationsgruppésg Lie, with the collaboration df. Engel 1888, first
Sections, pp. 90 to 93).
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§ 8. — Varying the path.

The variation of a motion basically involves only thehga Let us consider a path
that obeys equation (13). The application of mechanigatiptes requires variations of
position that are virtual displacements; i.e., theyespond to the equation:

(15) PX+Yoy+xy=0.

Since that is true for the displacements of all @daalong the original path, one will also
have:

(16) d(¢ K+ wdy+y& =0,

By contrast, if one would like to vary in such a way it varied path satisfies the same
condition as the original one then equation (13) mustusefor two small corresponding
pieces of both paths. Subtracting the two equations thiasred will yield:

(16) O(¢pdx+ ¢dy+ xyda =0.

The behavior of the two requirements that were poseel foe the variation will
become clearer when we look for the variations fidfill both requirements. If
equations (16) and (17) were developed and then subtractece&omother then the
result would be the equation:

(18) @2—yn)(dxdy —dy d¥ + (Yo — x1)(dy dz -Gz dy + (Y1 — #3)(0z dx —x d3 = 0.

Equation (13), together with the relation (13) that existste original path, gives the
proportion:
(oxdy—oydy:(0ydz—-zdy:(0zdx—-xd)=x:¢:.

However, that proportion is compatible with (18) only wheither the integrability
condition (14) is fulfilled or:
(19 X:.oy.Z=dx:dy:dz

The latter case represents an entirely special vamnjatiamely, a variation of the path;
such a variation corresponds to the one that applied5n $owever, equation (15)
admits a more general type of solution. Likewise, eqodti7) —i.e.,:

() If one initially assumes that the variations arété and that the varied path should satisfy the same
condition (13) as the original one then that would actuadply the validity of the equation:

OB Y F D (x4 )+ P Y+ 8 ZEE) O (y+ )
do do
FYX+ XY+, 2+ X) i (z+ = 0,
do

in which gis any variable that one can make depend upon a variablegbang the original path. The
equation in the text will emerge from this equation aftex subtracts:
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99 55+ 5y+22 52 x| 25622 5 w9 5 4
0x oy 0z 0 X ay 0z

+ a—)(5x+a—)(5y+a—)(5z dx+gdXx+yddy+xdd=0
0x oy 0z

can be satisfied by variations that vanish at the emtgof the path and do not satisfy
the proportion (19) along the path.

If the integrability condition is fulfilled then théwo requirements will lead to
different type of variations. One can illustrate gheariations roughly as follows: From
(13), a surface element will belong to each point of tiigir@al path. Those planes will
envelop a developable surfage The varied path will always run parallel to thegoral
one, so the two will collectively define a narrow ribboRow, under the variations that
correspond to mechanical principles, the segment thmsiste of the components, Jdy,
oz will lie in the surface element that belongs to thepr, vy, z, and thus the surface
as well; that is not the case for the other varregi For that reason, one can regard the
ribbon approximately as something that is cut franm the former case, while in the
latter case, it will generally make a finite anglehwtiihe developable surfacealong the
original path.

8 9. — Equations of motion. True and geodetic paths.
We now define the differential equations for the motad the material point. We
would like to apply the principle of least work in its regted form. Ifs means the arc

length of the path then, from the conservation ofgnehe velocity:

ds
20 =c
(20) p

will be constant for the actual motion. One must tlwhkhe varied motion as having the
same constant velocity. Now, that principle willipthat:

%:5 Tdt = 5[cdt = 5] ds =0.

Upon developing that, one will find:

B YD+ Uy DL+ py )= 0
Y do Y do XX, do

and neglecting certain terms. One must then regardatiiegions and their derivatives as small quantities
of first order and omit terms of higher order.
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dxd dx+ dyo dy d? d
ds

= j(%d 5x+ﬂ’d5y+izd5zj: 0.
ds ds ds

S[ds= [ads = |

One splits the three parts in the last integral antatigirintegrates. Afterward, due to
the vanishing of the initial and final variations, onel gét:

d?x d? &’z
21 - OX+ oy+ 0z|ds=0.
D) I(d§xd§yd§2j

The variations are determined in such a way that dy, dz represent virtual
displacements; i.e., they satisfy the equation:

pX+yYyoy+xo=0.

The left-hand side of that equation is multiplied bids and then added under the last
integral. In that way, one first gets:

j{/w—z—:j‘jax{w— Zzgyj5y+()l)(—%zjéz} de= 0,

and from that:

d*x
E_)W’
d’y
ds’
d’z _
rri

(22) =AY,

Ax.

SinceA means an unknown variable here, the content of easa{i?) consists of

just the proportions:
(23) d’x d’y d*z

ds’  ds’ ds’

=9 X

However, from a known theorem, the second diffeagmfilotientsd® x / d<’, d 2y / d<’,

d?z/ d¢ behave like the direction cosines of the normalsght path that lie in the
osculating plane. That normal is then identical wite normal to the surface element
that is assigned to the pomty, z by way of (13). Hence, the osculating plane at each
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point ?f the curve will be perpendicular to the surface element shassigned to that
point ().

Equations (20) and (22) correspond to the two statemerisriz’s basic laws 3)
that the differential equations (22), together with (&termine whatertz called the
straightest patt(®).

We have just now determined the actual path with the dfghe equation:

(24) 5jds =0.

We now present the same equation, but with a diffenayt of picturing the variation.
We shall now no longer demand that variations of theitipos should be virtual
displacements, but we will demand that the varied ptbuld satisfy the same
differential equation (13) that we prescribed for theechpath. That will generally pose
an entirely different problem in the calculus of vaolas from which the actual paths of
material points will not generally emerge. In the peofyl one must subject the variations
to the condition (17); i.e., to the equation:

(25) 3 Ctix + Oy [ty + Oy [z + ¢ UK + @ Wy + y [z = 0.

If one now develops (24) as before then that will yield g&fgin. One must adttimes
(25) under the integral in the latter equatidn (After one has partially integrated part of
the terms under the integral, one will then get, inkiln@wvn way:

2
dx_)l(cwdx oy dy, dox d1+ dé¢):0,

a2 "\ oxds ax ds 9 xd

2
d’y_ (3¢ dx, oy dy, dx d2), ?](w) 0
a2 dy ds aydsay
d

A
2
d z_)l(cw dx, 9y dy, dx d(j; )IS‘/') 0.

E azdsa_zdsaz

One can also give those equations the form:

() Cf., VoB, pp. 280. If one treats the varied path as if it livadtiee developable surfaceof the
previous paragraph then the conditidhds = 0 would yield the actual path in the form of tfemdetic line

on the surfacer in the ordinary sense of the term. However, in that wag would arrive directly at the
geometric property that is expressed in the text.

() No.309

() Cf.,Hertz, no.155. Since we have derived those paths from the lesishaminciple, it would not
mean anything here to say that they are the “stresgjhpaths.

() Inregard to that rule from the calculus of variatiaris,Scheefer Math. Ann.55 (1885), pp. 558t
seqg.andA Mayer, Ber. d. Sachs. Ges. d. Wiss. (1885), (1895), and Math.2&11886).
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Gx g (2p 00 Agy_(a_x_%yﬁzzo,
ds {(0x 0y dslod x 0 ds
2
26) d_ywﬂ x_ow),dz (9¢ oy, dx
ds? ds (dy 0z ds oy o ds
2
d’z Xd)l (6¢ 6)()3)' dx_(ay ox )l_dy:0
d¢? ds \oz 0 ds z 0 ds

Together with (13), they determine the so-catieddetic pathg').

Hertz showed that for his holonomic systems the geodeticspaiimcided with the
straightest ones — i.e., the actual orf@s (Namely, when the integrability condition is
fulfilled, one can also think of equation (13) as being givesuch a way thag dx +
Y dy+ y dzwill be a total differential. The relations thexist:

0p _dy dp _dx 9y _dx

dy ox 9z oOx 0z oy’

and if one recalls equations (26) then that means nothingthe validity of the
proportion (23).

§ 10. — Manifold of the true and geodetic paths.

The actual path of the material point is determined det@ly when the initial
position and direction are given. That follows on hasdcal grounds, but also allows
one to verify the actual paths from its geometric prigge One can then still choose the
initial direction in the surface element that is assted with the poinfA arbitrarily. A
simple infinitude of actual paths will then emanate framell-defined location.

The geodetic paths will behave differently when thegirability condition is not
fulfilled. They will be determined by equations (26), thieh one adds (13). When (13)
is differentiated, that will give:

d?x 2y
ds’ §

d 6¢dx6¢ dy6¢d
e e i

6xdsa ydsa z
(27)

4| 0¥ dx 0y dy 0y dz) dy foy dxox dyox dr c_,
oOx ds 0y ds 0z dg ds(d xdsd yds zjds

() Hertz, no. 181a.VoR, pp. 282.
() No. 190.
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d’x d’y d’z dA dx dy dz
One can express—-, : , — In terms ofx, y, z, A, : —. The
IS99’ 42’ dg’ ds &2 s ds' ds’
quantitiesx, y, zz A can be determined as functions gf with the help of the
dx dy dz

aforementioned equations when the initial values, §f z, — , A are given for

ds’ ds’ ds’
an initial value ofs. On the other hand, if one performs the integrabib(26) and (27)
with any initial values whatsoever then due to equata) that will yield functionsp,
Y, x that satisfy the condition:
dz

¢2(+[/I +X—dc Cl;

in which C; means a constant. Moreover, since equations (26), mhéiplied by%,

dyd

ds’ , resp., and added will have the consequence:

dxdx dzydy dzdz( _x _dy i
ds’ ds d$é ds ds ds¢ ds dsX 0

then the functions that one obtains must also ffalfé¢ condition:

2 2 2
ERHECES
ds ds d
C, is constant here. The initial values must now li@sen such that; = 0 andC, = 1
In that way, it will be clear that as long as thdiahipositionx, y, z is given, one can

choose only the initial values sf A, and perhaps((j—)s(:g—z
said about the initial value of and one will thus introduce two constants into the
geodetic path to be determined. However, that showisthkeainitial value ofA will
influence the path only when the integrability conditiohd) is not fulfilled ).

Therefore, if the quantity:

arbitrarily. Nothing can be

()  When one takes into account (13) and the factshaans the arc length, equations (26) will imply

the relation:
l//dx dzy dz+ chy_ d dx 4z d (
ds’ dg | ds ds 025 ds as %j

=(E-wx+ -y ¢+ (a—¢s) Y A

If the expression (28) does not perhaps vanish for thee graith them will be a given function of position
along a geodetic path. Two geodetic paths that emanate from the samddacand belong to different
initial values of/A will certainly be different then when the expression ([@8&ero for the initial location,
and therefore also for its neighborhood. Howeve28) {ranishes for all values gfy, zthen the remark
that was made at the conclusion of the last paragtepiidsbe considered.
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(28) ¢ (=)o) + ¢ (xi—@3) + x (92— )

at a location then a double infinitude of geodetic pathsemilanate from the that place
and only a simple infinitude of actual paths.

That result is analogous to the one that is foundherall. For the ball, the motions
that emanate from a given position and satisfy thenmim problem in the introduction
will define a higher-dimensional manifold of those mosiahat the ball can perform
starting from a given position without the action arfces.

8 11. — Rolling motion of the ball. Condition equations.

We would now like to exhibit the differential equat#ofor the rolling motion of the
ball. Leté 1, ¢ be the coordinates relative to a rectangular coomiggstem that is
fixed in space. The ball rolls without slipping on the dixgy-plane Letx, y, andz be
coordinates that refer to a rectangular coordinate syttat is invariably coupled with
the ball. That system shall have its origin at teter of the ball. Now, i§, 7, { andx,
y, z are the coordinates of the same spatial point theegbhations:

f=za+mx+my+asz
n=B+Bx+Ry +Az
(= y+tUX +py+ K2

x=a({-a)+B(n-p+ 1K (-
(29) y=a(-a)+L0-P+ -
z2=m (- +BN-P+p-).

and

In the first coordinate systemd,= a, 7 = B, { = yare the coordinates of the center of the
ball, anda, £, 0 are the coordinates of the point at which the ballaszis thef;-plane. y

is constant and equal to the radausf the ball. The particle of the ball that is fouatd
precisely the contact point must have the velocity @hat moment, since otherwise
slipping would take place. Hence, the relations:

da  da, . da,
—+ X+
dt dt dt dt

(30) g, 96, .95, 95,
de dt = dt° dt
dy dn 9 dK o

dt dt dt dt
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Here,X, y, z mean those values that (29) will give whér a, n= £, {= 0. One will
then have to substitute:

X=— Wi =—ap,
:—m :—alé,
Z=-ys =-—ap
in (30). Inthat way, one will get:
d_a:a ydal+y d02+y da,
dt Ydt TP odt 7P odt)
dg dj dg ds
31 ——=a L+ 2+ it
(1) dt "o T Ta T a
dy dyy . dy, ,  dys
——=a + + ,
dt T a  a

Of these equations, the last one is fulfilled by its&liceyis constant, and the right-hand
side will vanish by means of the relations of the @gtinal coordinate transformation.
The figst two of equations (31), together wit¥ a, are the conditions for pure rolling
them ().

8 12. — Character of the condition equations.

In order to understand the character of the conditmasexpress the coefficients of
the coordinate transformation by tBaler formulas ¢):

a, =—cosgp cosf cof - sig sih

B, =-sing cosf cog’+ cog sih

y, = cosf sing,

a, =—cosp sinf cog+ sigp cob
(32) B, =-sing sinf cos’- cog cob

¥, = sinf sing,

, = COSp sing ,

B, = sing sing,

¥, = CO0SJ.

If those values were introduced into equations (31) thenibiald yield:

() Cf.,Neumann Séchs. Ber. 1888, pp. 358.
() Novi Commentarii Acad. Petrofi5 (1770), pp. 75. For the geometric meaning of the anliss,
cf., e.g. Kirchhoff 's Mechanik 1877, pp. 43 and 44.
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(33) { da = - asing sing df + acog d9

df = acosg sing df + asirg d?

Those equations are not completely integrable, sireyedbe not integrable to begin with
(*). The ball that can roll on a plane but not slideiowill then represent a non-
holonomic material system.

8 13. — New form of the conditions.

The momentary state of motion of the ball will ndoe regarded as a combined
rotation about an axis that goes through the center digplacement. Lep, g, r be the
components of the angular velocity, anduet, w be the displacement velocity, and both
of them are replaced they, zaxes. Those components are given by the equafipns (

() That is, there is no functiow (a, B, ¢, f, J) whose differential vanishes because of equations (33)
either. Namely, such a function must satisfy the pladifferential equations [cfA. Mayer, Math. Ann.5
(1872), pp. 449 andie Theorie der Transformationsgruppedection I, pp. 91 and 92]:

ow _
0¢

99 _ asing sing 2% + a cop siw 2% = 0,
of oa 0

Ol

ai‘)+acos¢a—w+asir¢a—w =0.
04 oa 0B

Those equations, which do not define a complete systerC(ebsch Journal fur reine und angewandte
Math. 65, pp. 258), can be extended to such a system and then slectlydivhat one can also verify that
they will be satisfied by only a constant.

The nonexistence of a functianwith the aforementioned property can be inferred fthm fact that
such a function would have to maintain a constant,rasut of the differential equations (33). However,
one can go from each system of valagsf., ¢., f1, 71 to anothem,, 5, &, f,, £, in which the ball can roll
without slipping from any position to any other withbiarming equations (33) as a result of the transition.
Since that fact was also employedHbgrtz, if should be explained to some degreew fheans a constant
angle that is expressed in terms of arc length, agfdsfalso assumed to be constant then equations (33)
will be satisfied for:

asind asind . "
0s g, L=w sin @, f=—2¢.

21T 21T 21T

Here, ¢ can mean any function of time, and one will be dgahith a known motion. 1% runs through the
interval from 0 to Zrthena, S and [cf., (32)]as, 5, )5 will finally have the same values that they had to
be begin with. One will obtain the same final positigna pure rolling that one would reach if one only
rotated around theaxis. Sincd will then increase by, w will be the magnitude of that rotation. The
axis has no special direction. One can then replacg egttion around the center with just a rolling
motion and produce the same final result. Now, in sumniiis clear that one can find a pure rolling
transition from any initial position to any final pasit. Since that motion is composed of pieces, it would
introduce discontinuities into the velocity that can, haveke eliminated by a small alteration.

() CF., e.g.Kirchhoff 's Mechanik pp. 50.
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da, d ,[)’2 d y2

P=4a Py dt "° dt’
da d,[>’3 dy3
4= A dt "' dt’
,6’ dyl
r=
+5, e
and
da ,[>’ dy
a,—+
R Ao at Ve
da d,[>’ dy
34 a,—+ —,
(34) vV=a, dt B—— e g
_ dg . dy
w= + :
Pogr dt  7° dt
Furthermore, the relations exis):(
%zar—aq dazza p—asr da3=a g-—azp
dt 2 34 dt 3 11, dt 1 2 M
d d d
(33) T'[i)l:ﬁzr—&q, ﬁz‘ﬁsp Bat, 'BS—ﬁlq B2p,
dy; dy, dy,
—_—= r — , —== r, —==
at yor—-ysq ot Vsp—y1 ot yiq-Jy2p.
da dfg

If one now replaces the quant|t|e¥ in (34) with 0 and— prafiere with the right-hand

sides of (31), but afterwards replaces the quantities:

da, da, da, dB dB, dg
dt ' dt ' dt’ dt ' dt ' dt

with the right-hand sides of (35) then, after onedraployed the relations that pertain to
orthogonal coordinate transformations, one will get:

u =a(sq-)n),
(36) vV =a(Ar—-p),
w =a(pp-a).

() Ibidem
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When rolling without slipping takes place, those equatiotisr@present the connection
that exists between rotation and displacem®nt The components, g, r of the angular
velocity can be chosen arbitrarily.

§ 14. — Equations of motion.

With these preparations, the differential equationmofion ¢) can be exhibited. |
shall employHamilton’s principle. Since no forces are active, one mest s

jéTEdt: 0,

in which the type of variation must be observed. Siheesystem of coordinatesy, zis
thought of as fixed in the ball, thes viva Twill be a function ofp, q, r, u, v, w that is
given once and for all, and one will get:

(37) —op+—oq+—Ior+—Ju+—aov+—Jow| dt=0.

J» oT oT oT oT oT 0T
op 0q or ou ov ow

The variations of the velocity components that efitere must be expressed. The
variation of the motion will once more come abousuich a way that initially each of the
original positions that the ball can run through will tadce a small displacement. The
displacement will be decomposed into a rotation tHegsglace around the center and a
parallel displacement. The rotation and displacerhawe the components, q°, r“and

u’, v, w”with respect to theg, y, zaxes. Now, the variations of the velocity compadsen
are represented by the formulds (

dp ;o
=——+qr'—-q'r,
Pra

(38) & :‘fj—‘} p—1p,

:d_r' +pq’-p'q
dt ’

and
al :(fj—L:+vr'— V'r +w’q— wd,

() Itis not difficult to derive those equations geonueitiy.

() We could also emplojleumanris general equations for rolling motion, Ber. d. Séchess.@888,
pps. 36 and 39.

() Kirchhoff , pp. 58 and 59.
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(39) &:%\:+Wp’—Wp+u’r—urﬁ

JN:C;—V;,+ ug’'—u'q+v’p-—vp.

The derivation of these formulas is based upon a commwnutaefithe symbold / dt andd
(*). Such a commutation is allowed when tinig not varied; however, that is the type of
variation that is required dyamilton’s principle.

One now introduces the right-hand sides of (38) and (39pfady, or, du, ov, ow in
(37). If one takes into account the fact that theatmms should vanish for the beginning
and end of the interval in question then one will gegrafertain partial integrations:

doT 0T 9T, 0T 0T
40 -——+tr—q—twW——v—
(40) I{( dtop dq a or Wav Vawj P

doT oT 0T 0T 0T
+|——+p——-r—+u—-w—|d
dt dq or dp oJdw du

doT 0T 0T 0T 0T
+H———+g——-p—+V——Uu— | I
dt ar ap Jqg OJu 0v

( doT oT aTj ,

+ | ——+ -q— |u
dt ou ov 0w
( d oT oT aTj

t|———+p——r— |V
dt ov ow du

+ (—ia_-r-f-qa_-r— pa_Tj w b dt= 0.
dtow du ov

Up to now, the condition that constrains the motleas not been used in this
paragraph. Since the ball must roll without slipping,displacements that correspond to
the variations, which are virtual displacements, mussi abnsist of a pure rolling. Each
of those small displacements decomposes into a motatiol a displacement, and the
components of such a rotation and displacement musbbgled by relations. Those
relations are analogous to (36), and they are the fallpwnes:

u=a(sq—-pr),
vi=a(ur’-p,p’),

() Kirchhoff , pp. 58.
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w =a(pp-1naq).

If one introduces those valueswfv’, w’into (40) then, since the componeptsq’, r “ of
the rotation are arbitrary, one will get:

dor_,, doT, . doT 0T, 3T
dtop °dtov ‘dtdw dqg or

aT T oT
—-a r+ —+(—w+ —+ (W —=0,
(Vs VZQ)ar (-w @QFDa ( a&qaw

doT _ daT,  daT_

dor_,, doT,  doT 0T, 0T
dtog Tdtow ° dtou

— r_
par ap

(41)
oT oT oT

_a(yl p+y3 r)_+(_U+ /8 CD_+(W+ 4 Q—ZO,
ov ow Ju

doT__ doT, _ daT_ aT  aT

- —ay.——+ay—— - i
dtor Vegion Matav ap Pag

aT T T
-a + —+(—-Vv+ —+(ut —=0.
(.9 yamaw (-v aqﬂau (u aeﬂav

Those are the desired differential equations thdt determine the motion, in
combination with the condition (263)(

§ 15. — Special case.

We now assume that the ball has its center ofityrav its center, without actually
being homogeneous. The coordinate systeynz shall be defined by the principal axes
that are constructed at the center of gravity. Visevivais then inferred from the
equation:

2T = (P +V +W) M + Pp? + Qf + R,

in which M means the mass, ar Q, R mean the principal moments of inertia.
Equations (41) then take on the form:

() The derivative®T / dp, etc. in these equations are defined by partially-difféaéing a function that
represents theis vivafor a rolling and slipping motion of the ball. Namelypse derivatives emerge from
the calculation oBT and thevis vivaT + JT of the varied motion cannot be calculated from an exjoress
that is valid for a pure rolling motion. That fact wegerlooked in the development of the special
Neumann formulas, which relate to rolling on a fixed plane. 3&dormulas (Ber. d. Sachs. Ges. math.-
phys. Cl. 1888, pp. 42 and 1885, pp. 368) need to be correeted th
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d dv dw
Pd_? aM(y dt—yz dtj (R-Q g+ aMy,( pwv qu+y( pw i =0,

dq aM( dw du

(42) g Mg ¥ dtj (P- R rp+ aMy{ qw ry+y( qu py =0,

dt dt

Rﬂ— M(VZ%—MF\JHQ— P par aMy( ru= pywp( re qw =0.

Differentiation of (36) will yield:

du_ _(dy, dy, ., da_  dr
dt ( at e e )

(43) dv _ a(% A dr dpj

at at | at P e )

dw_ _(dy, dy dp dqj
a _rz —_
dt ( at P ey Ty

Those equations serve to make the quantl%%s% %\' known by way of (42).

Afterwards, one replace%,%,% with the right-hand sides of (35), and
furthermore u, v, w with the right-hand side of (36) and ultimatelytaibs:

d d
[P+a2M(V§+y§)]d—f— a*My,y,—- dq— My, —( Q- R o
d dr
(44) [Q+ aZM(y§+yf)]d—?—a2My2y3d -a Myzyl —( R- B rq
dr d d
[R+ & M2 +yD] o= &MY, )y 2= &My, y,—0=( P- @ pc
dt dt dt
We now have equations that are Iinear%r% dq (jlt and have a positive determinant.
dp dgq dr. .
That will yield expressions ford—t prripen —in terms of the quantitieg, )4, )5, p, q, I,
and except for the relation:
iV tYs=

they are arbitrary for the initial state.
The simplest case is the one in which:

P=Q=R
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such as, e.g., the homogeneous ball. That will th@fyieguations (44):

i.e., one has a rotational axis that is fixed in th# &nhd a uniform rotation about it.
With the help of the latter equations and the relat{d33, (35), and (36), that will now
yield:

%(alu + 0’2V+0’3W) =0,

%(ﬁlu+ﬁzv+&w):0.

That means that the center moves with a uniform,liresar motion.

From now on, we shall once more assume that thments of inertiaP, Q, R are
different, but that the initial state is such tpat q = 0. The rotational axis is one of the
principle axes at the outset. Now, equations (44) inipdy p = q = 0 andr remains
constant, and the motion in this case will proceed dsas for the homogeneous ball.
That can also be assumed. Namely, if one imaginasttie initial state obeys the
condition, but the ball is completely free and subjecho forces, then the motion will
proceed as described. Hence, if the initial state quorets to a pure rolling on the plane
then the same thing will be true for all of the stated tbllow it. If one adds the
constraint that slipping is prohibited then that will nbaiege anything in regard to the
motion.

Tlbingen, May 1896.



