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1. A simple intuitive model for the pole-dipole parti(RDP) treated in Part | will be proposed (viz.,
the two-mass model).

2. 1t will be shown that when the two-mass modeldated relativistically, it will be identical to the
PDP that is computed from the approximate solutionegythvitational equations.

3. The case in which the tensgy that was introduced in | does not vanish will be examined.

In what follows, several considerations that are supphtary to the general theory
of the pole-dipole particle (i.e., electron) that véeveloped in Part I'Y of this article
will added to that theory. In Part Ill, the connentibetween that theory and
Schrddingers “zitterbewegung” of th®irac electrons will be presented.

8 1. The two-mass model for the pole-dipole particle.

It is simple, as well as instructive, to give an it model for the pole-dipole
particle. The new fundamental assumption consistheffact that we shall introduce
positive, as well aregative masses.

First, let two free positive massas andm, be given. One dynamically-possible
state of motion for the system is the one in whiah ttho masses rotate about the rest
center-of-mass that lies between them with an angedéocity that is given by the
equilibrium of their Newtonian force of attractiondatheir centripetal force (e.g., a
double-star system). Nothing in this will change, in rgaiftwe assume that one of the
masses — saym — is negative. The difference will then consist lné fact that the
motion will then result about a center-of-mass ties dutsideof the masses, and that
stationary orbits for free masses will be possible evibgnm, > | m, |. One will then
easily see that formy > | m |, the acceleration of both masses will be centidigeta
directed towards the center-of-mass, andnfipx | m, |, it will be centripetally directed
away from it. (Observe that the Newtonian forcegoévity between masses with
dissimilar signs will be a mutual “repulsion,” but accat®on and force will have
opposite directions for negative masses.)

In that form, the structure is not specialized enoughofar purposes. We then
introduce a “rigid” connection between the twe andm, , which will have the effect

() Zeit. Phys112(1939), 512; referred to as | in what follows.
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that the rest case will now become possible, as we&lbe the Newtonian reaction
between the two masses will be cancelled by the mgKnection between the two
masses. The general state of motion of the sydameg@arding translation) will then be
such that the system rotates about the center-of-ofadse masses with aarbitrary
angular velocity.

at
O X

Figure 1. The coordinate representation of the two-masglmo

From now on, we would like to assume that we areemed with two masses with
nearly equal magnitudes” andm  and different signs, in such a manner that the size of
the structure will be small in comparison to the distatacéhe center-of-mass (which
corresponds to passing to an inextended structure thaégathbut a center at a finite
distance from it). We would now like to consider thetion of such a structure more
closely.

We assume tha” > |m™ | (), and lets be the distance between the two masses, such
that the center-of-mas3 will lie on the side of" at a distanc® from it (Fig. 1), and the
center-of-mass theorem will give:

(1) mR=|m | R+Y9).
It will then follow from the requirement that R <« 1 that:
(1a) m=|m|>m-|m|.

Obviously, the structure corresponds to the assumptairotie has a pole of strength:

(2a) mp=m"—|m |
and a dipole of moment:
(2b) p=m's=|m |s.

We first consideismall angular velocitiesv for the system, so that we can use the
formulas of non-relativistic mechanics. The kinetiergy will then become:

Evn =3 [MR —|m | R+9)7 dJ,

() As we will establish later on, this assumption cspands to ositivetotal energy for the particle.
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and then, from (1) and (2):
(3) Ein=—1mRsd =-1psd.

It is worth noting thaEi, < O, so the total enerdy will decrease during the motion;
cf., (2a) and (3):
(3) E=(m - |m|)c®+En=mc*—1p RJ.
On the other hand, from the center-of-mass theoremh@)momentur® will vanish:
(4) P=[mR-|m|R+9)] w=0.
One finds from (1) and (9 that the angular momentuirs:
(5) J=[MR-|m|R+9] w=—-mMRw=-pRa
We shall now compare those results with the consegseof the general theory of
pole-dipole particles in I, in which we heuristicallytriduced the apparently-obvious

assumption than=m, . Furthermore, we have assumed fRat/ c = = 1, so the mass
m that was introduced in | will have an order of magnitutdgo; cf., [I, (58) and (48)]:

R/
pCZng_gﬁZ, Up =

(6) n =

Consequently, from @ and (d), the center-of-mass theorem (1) can also be writte
the form:

1) p=mR
which is identical with the relation (39) that was give I:
p=(m-2mMR,
up to magnitudes of ordg#>. The expression (5) for angular momentum agrees with [I

(88)], and with the same accuracy. (Furthermore, from [l, (50)], when we develop the
energy up to ordef?, we will have [cf., (6)]:

E=(m-2n)uc®= mc —2m’c2=mcz—§pR(J
1- B 2
(3P 2] 2
_(m 2R'BjC

() From [I, (88)], one will havd = - cpy wherecu = Rwug, U = 1.
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As a comparison with (Bwill show, the agreement up to terms of orgéris also lost
here. However, the discrepancy is only a result @fassumption that = myp, and will
be removed by the rigorous relations betweemdm, that will be given later on.

We would now like to examine the consequences of our nfodé&rge velocities
(i.e., Barbitrarily close to 1). We will then have that gheergy is:

(7) S E=m'y-|m|uy,

in which one can assume that, perhap$, = up, and is obtained from the series

expansion:
PR

[cf., I, eq. (8b)]. From that, we will then get:

1 + _
(7) ?E:(m =|m |)ug—m up = (Mo —n) W,

ass/R - 0, just as in (@), (2), and (6). The center-of-mass theorem (1) will now
assume the form:

®) M’y R= |7 [y (R+9),

and similarly, that will express the vanishing of momentuhen one multiplies it byu
As for the angular momentum, it will follow from (&)at:

) 3= [y R- |7 |u; (R+9)] @=-m'"( Rs w=—c pBuo,

which is identical to [, eq. (88)].
When one compares'{#vith [I, (50)]:

(10) C—le:(m—m') Uo ,

one will gather that the assumption that m, for the two-mass model will suppress an
energy term -mup ¢ ; i.e., precisely the “field enerds” that was introduced in [l, eq.
(83)]. By comparison, eq. '(j7and (10) will agree when one assumes that the faligwi
relation exists betwean, andm:

(11) my = m-—nt.

Furthermore, on the basis of (11), the center-of-rtressrem (8) will become:
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(8) |m™ [ s=(m-|m|g)F

and from (®), (7) and (10) will also assume the form (59) that veagired in I:
(12) p=(m-21)R

One can also transform the last equation into:

p -
_+m_rrb1
R

which, from (6), will turn into:

2
(13) R=%
m,

As one confirms by a brief calculation, that relatisndentical with formula [I, (6],
and says that for a given particle (i.e., for a giwanand p), the R will not remain
constant, but will increase with increasing angulaoei&y. The smallest value & will
be determined by the “static” relation (1)')(Tesp.].

In the next section, we will show that, in geneead, (11) actually represents the
correct relation betweemy, and m (when one neglects the gravitational interaction of
both masses). As far as that is concerned, we aamfos now, in summation, thatur
simple two-mass model reproduces all of the properties of the pole-giadlele that
were described in Part I.

2. At this point, we would like to make a remark that hasry hypothetical nature,
although it will lead to some remarkable consequencdse Newtonian interaction of
two masses of the particles:

km™m

(14) Epot = +

(k = gravitational constant) was not introduced exprdaastyour equations up to now. If
we would now like to take that energy, which is alwaysitpe (since masses with
different signs will repel) under consideration thems subsequent assumptions about
the internal structure of the particle will suggesibelves: The particle shall originally
be conceived to be pure dipole— viz., two masses M and —M, with a mutual
separation 0§ — and its pole-terrmy shall be attributed to only the interaction energy of
that two masses:

_ kMm?

(15) =l

p=Ms.

It will be easy to state a relation fdtrthen. First, from (7) and (8), we will have:
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(16) E- puC _ Msyc
R R

Furthermore, from (13) and (15), we will have:

pu, _ m, _ kM?

R u, UusC

The energy (16) can also be written:

2
(17) - M°
U,S

Upon multiplying (16) and (17% will drop out, and one will get the energy in the form:

k M3c?
18 E=u= :
(18) uc =

when one solves this fdd, one will get:

(18) M:S/R’u—kzcz_

If one introduces the quantized angular momengiminto the last formula, by way of
its corresponding radius [I, (95)]:

(19) R=—,

then one will finally have:
(20) M = o K
2k

For an electronn= 0.9x 10°%’ g), that will give:

M= 6x 10" g!

However, an approximate determination of the plarig not possible. Indeed, there will
be an upper bound @y because if one demands tifat 1 (i.e.,up > 1) for an electron



Honl and Papapetrou — On the internal motion of elastri. 7

then from [I, (52)], one must havey, <M. However, that is the only restriction gn
which will then actually remain undetermined within furtherits (*).

We see from those considerations that, in principlie, possible to imagine that our
particle starts out as a pure dipole particle. Howewmee, must emphasize that we have
thus completely neglected the electrical field eneeqy that it is, moreover, doubtful
whether the Ansatz (14) will be justified by a more rigartheory of gravitation. In any
event, it is questionable whether the masdsin (20), with its very odd order of
magnitude, has any physical meaning.

8 2. A general theorem about the approximate solution of the grawtional
equations. The use of pole-dipole particles.

1. In Part I, we obtained the equations of motiontfa pole-dipole particle (PDP)
from the method of the rigorous equations for the grawmitat field ¢*. In that

approximation, the gravitational potentig#§ are computed as solutions to the equations

[, 9)I:
(21) O =- 2T

(TXis the matter tensor, andis the relativistic gravitational constant) that muastthe
same time, satisfy the auxiliary condition [l, (10)]:

op _
(22) 2= 0

Equations (21) show that the gravitational potentials depgah the corresponding
components of the matter tensor linearly. The varparss of the material system that
the gravitational field in question produces will contréotd the existing constituents of
the gravitational potentials purely additively. It follswdirectly from this that in this
approximate solution, each gravitational interaction haroduced between the various
parts of the material system should be neglectet fEmark will be made more precise
in the following analysis.

Obviously, due to the auxiliary conditions (22), the compts&/ cannot take on

arbitrarily-given values. We will find the conditionsrfT* when we differentiate eq.
(21) with respect ta and sum ovek:

k k
%:—2 Gl

oxk o

which will then show that, because of (22), we will étav

() For that matter, it remains for us to pass toié & — 0, in the sense of the considerations that we
derived in Part | in general (viz., inextended particlebjowever, such a passage to the limit can be
realized in principle only within the context of a rigesaheory of gravitation.
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(23) L= Q.

Conversely, when eq. (23) is satisfied, the conditi@2} for the ¢ themselves will be

satisfied, as one will easily convince oneself. Thedit@ms (23) for theT* are then
entirely equivalent to (22).

However, in the four-dimensional realm, with the neegy, = J,,, the conditions
(23) will be identical to the equations of motion in specidativity (). One will then
obtain the following theorem: The approximate solutiontfe gravitational equations
yield the potentials for the gravitational field of a er&l system whose state of motion
can be sufficiently described by the equations of speelativity. One can use that
potential, e.g., to determine the motion of an exterrsdl particle in the gravitational
field of the system consideredHowever, as for the state of motion of the system in
guestion itself, the results of the approximate solution to the gravitdtequations will
agree precisely with the equations of motion in the special theoejabiivity.

2. If we now apply that theorem to the PDP that wasrered in Part | on the basis
of the approximate solution to the gravitational equatidres twe will find that this
particle can also be described from the standpoint aiapelativity. In what follows,
we will have to show that this new representation lef PDP is identical with the
relativistically-treated two-mass model. As we sisak later on, that also suggests the
possibility of finding a precise meaning for the charadierguantities for the PDP that
were introduced in Part 1.

Obviously, the evidence for our assertion can be deducettfr® following method:
The relativistically-treated two-mass model represensdlution to eq. (23). We will
now compute the gravitational potential for that systerm (21) [(22) is itself satisfied,
since (23) is satisfied], and we will compare that grawemall potential with the
corresponding one in Part | for the PDP. With thateptial, we will naturally envision
the particle moving in the rest orbit, in particular.

We next sum the potentials of both massésandm’, to which, we must add the
potential of the tension that acts along the line tbanhects them. From [I, (24)] and [I,
(25a)], the potentials of both masses are:

+ 4+

uiu U4
(24) @ap)mar=m" £ = m | uan‘% '

n+

We now decompose the magnitude of the larger mas&cording to ():

(25) m =|m | +m,

() Cf.,W. Pauli, Enzyklopadie d. mathem. Wiss., Bd. V, pp. 682.
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Through which, the two-mass system will reduce to a padad a dipole (+in" |, — |m]).
From formula (24), we will now have:

(26) @aﬂ)mat: (¢aﬂ)pole+ (¢aﬂ)dipole,

(263, b) (Pap)pole = Mo uar:Jﬂ , (Pap)dipoe= | M| (u{;: 7 ‘%}

The mean values for the partialg, n were inserted into (20, since the distinction
betweenu;, u_, etc., as pole-terms is irrelevant [cf., assumptia)].

X

Figure 2. The world-line of the two—mass system:
A" andA™ are the retarded positions of the magaeandn’, resp., relative t@.
The dipole moment is in the direction of the “simaniéous” pointé\" andA'".

We now pass on to the computation of the dipole te2®is).( In Fig. 2, letP(x,) be
an arbitrary world-point that intersects the past-pogight-cone of the world-line of

both mass points at the world-poiAt (X;) and A (X;). From [I, (13)] and [l, (14)],
and when we observe thaf andu, are the velocity components that correspond to the
point A" andA, resp., we will then have:

(27) 1> =X =X, N =10, =X =Xs, n =1lu".
We set:
(28) I; _I;:da, U;—U; :d.la, n+—n_:d'l,

and consider another poift™ (X ") along the world-line fromin™ | that has the same

time coordinates a&":
(29) 17 —17= X} = X, =0,

That point will serve to introduce the dipole momenirfgector:
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(30) I (7 = 12) =Ppa-

(Cf., Part I, in which one hadh = O for rest motion.) We now write (BBin the form:

-
(31) @ap)dipote = ‘ - ‘ (N Uy Aug+ N Ug AUy —Ug Ug ON).

Our task is now to express the variatialig and on as functions of the vectots, pa,

I, and their time derivatives.
First, we writedu, in the form:

(32) Qo= U -4y = (U —U)+ (4 - ).

(u;, are the components of the velocity at the positijn.) In order to determine the
first terms in (32), we differentiate (30):

(33) dir —dr~ = 2P
[m |
and divide byds" :
(34) u;—dl”+ =P
ds [m™ |

However, we now have:
(ds)Y?=difdi**,  (ds)?=dI dI'",

with the auxiliary condition (33):
dp,

diy =dI + :
a a |m— |

in which the second term is very small in comparisothe first one. It follows from this
by simple calculation that:

(35) ds’ = ds - (1+ﬂj,

[m |

up to terms of order one ip,/ | m |, and from (34), that:

(36) T L)

The second term in (32) includes the magnitudehef\elocity along the world-line.
Hence, ifds is the four-dimensional line elemedt (|, A") then we will have:
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(37) u, —u, =—u,o0s.

a

For the determination of8, one must consider thaf’, as well asA”, lies on the light-
cone atP:

17197 =0, [197=0.
Hence, from the first of egs. (28), it will follow tha
(38) la d%=0.

Now, due to (28) and (30), we will have:

(39) d7= (-1 +00 )= vy
[m |
Thus, (38) will become:
WP ra=o,
[m |
from which, it will follow that:
& = P u, —u, =-u, va_ :

njm |
and by substituting (36) and (40) into (32):
(41) I 1 o=, =0, (4 B -y 2P
Now, we also computén from (27) and (28):
(42) N=1u"=1-u" =1, +u,

We will get the quantitiedu” from (41), while thed, are obtained from (39) and the first

of eq. (40):
da: —1 (pa_ua va j
n

L

Finally, when we consider [I, (22)], we will get:

on

422 Clh=1,p -ny B -
(422) |m™ | P -ny, o

0.
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If we introduce the values (41) and &dnto (31) then we will finally get, from
simple calculations:

o (P'ULY ). RY+yp ., Yy
4 ap)dipole = — - E—
(43) @ap)dipol 6x”( - j" - up—

in which use was also made of the differential rijlé21)].

3. We now go on to the computation of the parts of the griganal potential in
which the tension originates. Since the masdies in the interior of the orbit (cf., Fig.
1), a force of pressui¢ whose magnitude is equal to the centripetal force ttiatugpon
m’ (the centripetal force that acts upmn, resp.) will exist along the line that connects
the two masses:

(44) K :‘ Pl Res

We will assume that the tension in question acts atly small distance from the
connecting line; e.g., over a small cross-sectioiihe force of pressuess will then be
in the directioné of the line that connects the masses; i.e., thanteheous position of
the orbital radius (Fig. 1):

I .

j p&(dv:j pe fdv=Ks
or, with the value (44) fokK, and upon considering Ifp
(45) j P dv = pu; R,

All of the remaining components of the tension will wmias long as one remains in a
Cartesian coordinate system that h@&s a coordinate axis.

The components of the tension tensor are given inatedgifor the rest coordinate
system,)x, y, z on the basis of the rule that they must transfoken the products of the
corresponding coordinates:

(46a) P11=="Po, P12= Py, P22=—Pyy.

In order to avoid a detailed discussion of the constanofs &, etc.) that were left out of
the integration of (21), we shall now remark that the mak(26a) of the mass pole is
given in terms of the matter tensor by the followiniggration:

U,Uy _ 1 U
(epoae= | B2 = o Top e = G0 Top .
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dv is the volume element in the coordinate system,ivelab which, the element of
matter is instantaneously at rest, and the fagier dv, / dv corresponds to the Lorentz
contraction itself. Correspondingly, we have tinat gravitational potential of the tension
is:

u
(48) @aﬁ)tens.: CTOI']'[ Pes dv.

If we now replacey; with up in (45) then it will follow from (45), (46), and (4pthat
the various components are:

¢11:—C71npu§Ra?co§ , ¢22:—C71npu§Ra}sin2 a,

1 .
$1o=———PU:R & sin at cosal,
c’n

which one can also summarize as:

au + !
(482) Pophions =~k T
2n
on the basis of the kinematic relations [l,"(B&nd [I, (57)].
Upon adding (28), (43), and (48), we will get the total gravitational potential ihie
two-mass system as:

+(my - py) 22

n n n

(49) ¢aﬁ=‘aia(pl::ﬂ+“w9+ Y+ W P

On the other hand, from [I, (26)] and [I, (29)]tvh,z = O, the potential of the PDP will
be:

(50) pop=— 0 {p”uauﬂ}*nzh Gyryga, mup

ox’ n n n n
in which, from [l, (38)] and [l, (40)]g, and *myp are taken to be:
(50) QaUp+Uals= PUs +U, B -2P YOy y,
(50" "Map= 5 (P,Us + U ) -

A comparison of (49) and (50) will now show thab$k two expressions will agree
precisely when we set:

(51) mo=m-p’u, =m-n.
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However, (51) is identical with the relation (11) thatsagiven in Part IWe thus come to
the conclusion that the relativistically-treated two-mass modalngpéetely equivalent to
the PDP that is computed from the approximate solutions to the gravitagqoation.
Therefore, the difficulty that was connected witle tHield energy” E; that was
introduced in Part | will also vanishH)( For that reason, that energy term must be
introduced only because the quantiywvas erroneously identified with the primary pole
term mp there §). Naturally, the validity of all of the formulas iPart | remain
unchanged, except that one must give the quamtttye corresponding charged meaning
(51). Here, we would like to transform only formula(B2)] according to (51); we will
get:
(52) B - J1-4,

c® U,

which now represents a peculiar counterpart todlaion:

E _ m
1- 3

for the energy of a simple mass-pole. [One mustdver, observe that (52) is valid only
for the orbital motion of the particle “at rest.”]

Finally, we can give the ultimate conclusion oé ttlevelopment in this particular
section: The “classical Dirac equation” [I, (70drcbe founded upon the principle of
special relativity exclusively without making angtaal use of the theory of gravitation.

§ 3. Several supplementary remarks about Part |. The tensar; .

1. The classical Dirac equation [l, (70)] came abautder the simplifying
assumption thah,s = 0. It is interesting to remark that this sirfipltion is not
necessary, and that one will also arrive at [l)](p@ecisely in the general case. In order
to that, one must start with the general equatio@®B)], multiply it byu,, and sum over
a.

EP"ua:m—m’ +2n""y, u,,
C

in which use was made of the relations [I, (121 @in(49)]. However, as a result of the
antisymmetry ofizz, one will now have:

n“u, u,= 0.

() Cf., the remarks at the beginning of this section, ickv all gravitational interactions between
different particles of the system in question were ohiftem the approximate solution so that energy that
would be due to the gravitational field would not arise.

() From [l, (33)], the relatiomy, = m" — |m" | =mis completely valid for the static casg € u, = us =
0); however, in the general case, that relation mustgdaced with (51).
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One will then get:

EP"ua:m—m’,
c

which is identical to [I, (51)]. [l, (70)] will then fadw from this the same calculations
that were given in Part I. One will then come to theult thatthe classical Dirac
equation represents the characteristic equation for the generalized pole-giaicle.

We would now like to examine how the expressiondogular momentuncan be
generalized for non-vanishing,s . That question can be answered most simply by
saying that one makes use of the constancy of the aoiglar momentum of the
particles [cf., I, (89)et seqd. We must now differentiate the angular momentunh wit
respect to proper time:

d d
— (Jorb. = — (X Pk=%P) =u P« — w P,
ds ds

from [I, (43)]. When we considers [I, (41)], after sosimple calculations, we will get:

d d
- ('Jik)orb. =—C— (2 Nik + Pi Uk — ui).
ds ds

It will follow from this that the internal angular mentum (i.e., spin) of the particle is:
(53) Jk=cC (2 Nik + Pi Uk — Ui).

[I, (88)] is then completed by the termc2ny, . The assignment of the spatial tensor
componentgi is a result of the choice of [I, (4)] of real andagmary coordinates:

(53) Jio=-3;, Jog = — Jy, J31:—Jy.

2. We would now like to generalize the expression for réigha that orbits in the
rest space that was treated in Part I, by assuminghi#aénson,z does not vanish. We
must make the following obvious assumption about the sgatmponents ofiys:

(54) N> = const# 0, N3 =gy = 0,

from which, the angular momentum of the particle wémain perpendicular to the
orbital plane. Furthermore, we assume that the ereot p, is exactly as it was in Part
I, so egs. [I, (57) and (58)] will still remain valid witto changes. Next, the remaining
components of,s can also be determined from the orthogonality relati(80). One
will then confirm immediately that [I, (41)] is satisdl identically. Finally, the energy-
momentum equation [l, (43)] will lead to the following gealization of the relations [I,
(59)] and [I, (50)]:
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(55) (n —21) R=p + 2112 Bo, u:%§+3%5.

From (53) and (53, when one inferp from the first of eq. (55), the angular momentum
of that particle will now be:
(56) J:JZ:—,uvR—ﬂ.

2
0

Formula (56) admits a remarkable application: Nign@ne can remove the difficulty
that was spoken of at the end of | in regard todige of the angular momentum by
introducing a suitable value foi, . To that end, one has only to set:

J=-puvR-—2=+uvR
u0
from which, it will follow that:
(57) n12:—,uR,[>’u§.
One will further deduce from (55) that:
(57) p=uRG(1+B%, m=mu(1+pB%.

One can arrive once more at a particle that mov#s tiwe speed of light, and for that
reason, it will possess a finite value foandJ. Now, from (57) and (57), all of the three
guantitiesn;,, p, andm will be infinite. However, we would not like toisguss that
possibility any further, since it seems to offerreal advantages.

3. By comparison, it is interesting to examine whethés possible to get a classical
analogue of the Dirac particle that has vanishipgld moment and non-vanishing tensor
Ngs . From the general formulas (55) and (56), inseéhat this possibility will actually
exist. Namely, witlp = 0, one will get:

(58) U= 2”;;'3, J=-2cnpy;

furthermore, from the first of eq. (55):

(58) m= 20t = g,

(which is certainly not tantamount to the partipessessing a primary pole-term that is
analogous tan, for the PDP). We eliminat® in (58) and get:
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(59) j=-HR,

B
It will follow from this that one can again pass te timit 5 - 1 for a finite andJ,
from which, one will once more find that the reshlittone obtains for a PDP is:

(60) =—UcR

precisely as one had in Part I. With that, one cotodbe remarkable conclusion that
one can obviously get a “classical Dirac particle”gar 0, ni2 = 0, just as one does fpr
=0,m2#%0 ().

4. Finally, an interpretation for the tensmy; shall be sought. It is obtained from the
following consideration: The existence of a rest plat{us = u, =uz3 = 0,up = 1) is
compatible with equations [lI, (41)] and [I, (43)], from wHhien andp, will vanish, and
only the tenson,s will be non-zero. We can assume the following seapform for it:

(61) N2 =— Ny = constz 0, all othemgz = 0,

which also satisfies the orthogonality conditions(80)]. We can now determine the
gravitational potential for such a particle, which wileh give us information about the
associated matter tensor by way of (21); i.e., informmaéibout the internal structure of

the particle. The gravitational potentials can thercéleulated from [I, (26)] and [I,
(29)]. One will next get from [I, (28], with [I, (38)] and [, (40)], that:

Mgp = 0.
One will then further deduce from [I, (B9 that the only non-zero componentrof 4z is:

My a2=M 42=N12, N a1=NMp 41=—N2.

The only non-vanishing gravitational potential will finaligllow from this when one
considers that for a rest particle, from [I, (16)], ovik haven = -r, so:

(62) o= dar = Nz oL/r) boo= iz == Pz o(L/r)
6X2 axl

Conversely, from (62), one will have the meangeéb(21) from the fact that the only
non-zero components dfareT14 = T41 andTo4 = T4, fOr our particle; i.e., the only non-
zero components of the momentum are inxtjaplane. However, those components are
not pole-like at the position of the particle, lecompose into the form of a double

() The possibility that a more thorough discussion migiply that one model (presumalgy 0, ny, =
0) is superior to the other one is certainly not excludam this.
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source. Our particle will then represenmamentum vortexn the xy-plane, to some
extent. Obviously, that momentum vortex will corregphom an angular momentum of
2n;2, which agrees with formula (53).

That momentum vortex can be described by the moti@swinple material system.
One realization of it consists of the simultaneocaistion of two material rings that lie
close to each other, with opposite mass densitiesaagdlar velocities, in such a way
that the spatial componentsgg, as wellTs4, are equal to zero, and only the momentum
components are non-zero. (For jesiering, all of the components ¢ ug ug of the
matter tensor will be non-zero.) One will then caimea seemingly-complicated picture
of the momentum vortex, which contradicts the sintptessible picture of mass dipoles.
That difference will make it apparent that one mussuane thatp, and n,z are
simultaneously non-zero. With that, our assumptmhthat we should set,z = 0 due to
the non-vanishing of the dipole moment seems to hase fibsequently justified.

Athens and Stuttgart, in August, 1939.




