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The correspondence between the Dirac electron and the pole-dipole particle will be examined.  The parallel 
correspondence can be pursued in an especially clear way through the distinction between the even and odd 
parts of the Dirac electron and through the calculation of typical expectation values for them (Section 1).  
That method will be applied to the details of the macro-motion and the micro-motion (i.e., zitterbewegung) 
of the electron (Section 2), proper angular momentum (Section 3), and the energy function (Section 4).  In 
all cases, there is a very precise correspondence that suggests that one can regard the pole-dipole particle as 
the classical model for the Dirac electron. 
 
 
 This third part of the examination of the internal motion of electrons pursues the 
objective of confirming in detail the correspondence that was described in the first two 
parts between the physical systems that are characterized by pole-dipole particles (1) and 
the Dirac electron.  In any event, the simple relativistic mass-point cannot be considered 
to be the corpuscular counterpart to the Dirac electron, since it has no internal degrees of 
freedom that would correspond to the electron spin.  The pole-dipole particle behaves 
quite differently, since its internal rotational motion possesses a proper angular 
momentum that makes it possible to draw a parallel with electron spin.  We shall now 
investigate the extent to which that correspondence reaches in detail; i.e., the extent to 
which the pole-dipole particle can serve as a classical model for the Dirac electron.  We 
glimpse that the problem for the model is to present a corpuscular counterpart to the 
wave picture of Dirac’s wave mechanics for the spinning electron that behaves in relation 
to it in the manner that the simple (relativistic) mass-point relates to the de Broglie-
Schrödinger matter waves. 
 We would like to confine ourselves to force-free motion in the comparison that is to 
be carried out.  In that case, the Dirac electron will be described in a well-known way by 
the wave equation: 

Hψ + 
i t

ψ∂
∂

ℏ
= 0,     (1) 

with the Hamiltonian operator: 
 

H = c (α1 P1 + α2 P2 + α3 P3) + α4 µ0 c
2,   (2) 

 

                                                
 (1) Hönl and Papapetrou, Part I: Zeit. Phys. 112 (1939), 512; Part II: Zeit. Phys. 114 (1939), 478 
(referred to as I and II in what follows). 



Hönl and Papapetrou – On the internal motion of electrons. III. 2 

in which one has the commutation relations: 
 

Pk x1 – x1 Pk = 
i

ℏ δkl   (k, l = 1, 2, 3),   (3a) 

 
ακ αλ + αλ ακ = 2 δκλ  (κ, λ = 1, 2, 3),  (3b) 

 
(E0 = µ0 c2 is the rest energy of the electron).  As Breit  (1) first remarked and 
Schrödinger (2) followed through with in detail, the well-known “trivial” connection 
between impulse and velocity in the mechanics of point-masses is abolished for the Dirac 
electron.  Namely, if one takes the time derivative xk then one will get: 
 

kdx

dt
= 

i

ℏ
(H xk – xk H) = c αk      (4) 

 
from the general prescription for taking the time derivative of an operator and from (2), 
(3a), and (3b); i.e., a quantity whose eigenvalues are ± c.  The expectation value of dxk / 
dt will then generally possess an order of magnitude c in any case.  That will be true 
independently of the expectation value for the impulse, and for a wave group with a 
sufficiently-sharply-defined macrovelocity (3), that impulse will be connected with that 
velocity in the usual manner for a relativistic point-mass.  Schrödinger has interpreted 
that discrepancy between microvelocity and macrovelocity by saying that the Dirac 
electron does not move rectilinearly, but performs a kind of zitterbewegung (jittering 
motion), in such a way that the center-of-mass of the charge cloud moves back and forth 
with a very small computable amplitude and an oscillatory speed of light, and therefore 
advances with a macrovelocity that is very small in some situations.  All of the details of 
that zitterbewegung are obtained by integrating equation (4) in the sense of the operator 
calculus (Section 1). 
 The behavior of the Dirac electron now exhibits a striking similarity with the 
behavior of the pole-dipole particle, which one can describe classically.  From I, that 
particle shall be characterized by the following system of equations (4): 
 

Pd

ds c
α 

 
 

 ≡ 
d

ds
(m uα – 2 βπɺ uβ uα + απɺ ) = 0  (α, β = 1, 2, 3, 4), (5) 

 
u uα β β απ π−ɺ ɺ = 0.      (6) 

 

                                                
 (1) G. Breit, Proc. Amer. Acad. 14 (1928), 553.  
 (2) E. Schrödinger, Berl. Ber. (1930), 418; ibid. (1931), 63 (cited as A and B in what follows).  
 (3) The “macrovelocity” is then sharply-defined when one is dealing with a (monochromatic) wave 
group with sharply-defined impulse components.  We shall avoid using the word “group velocity” for it, 
since the center-of-mass of the wave group takes part in precisely the “zitterbewegung.” 
 (4) In that article, we especially considered the system of equations that arises from the general eq. [I, 
(43)] by setting the tensor nαβ equal to zero; cf., also Section II, Section 3.  The four-vector pα that was 
introduced there is referred to as πα here. 
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Pα is then the energy-impulse vector, so (5) will express the conservation of energy and 
impulse (force-free motion).  The uα are the velocity components dxα / ds of the particle, 
in which the derivatives of the coordinates xα are taken with respect to proper time s, such 

that one will have uα uα = 1 at every point of the path (in particular, u4 = 1 / 21 β− , 

when β = v / c is the speed of the particle divided by c).  Correspondingly, the derivatives 
that are denoted by a dot will be understood to mean derivatives with respect to proper 
time.  The internal structure of the particle will characterized by its mass pole m (scalar) 
and its dipole moment πα (four-vector). 
 Now, as was shown in Part I, the system of equations (5), (6) possesses solutions that 
correspond to a circular motion of the pole-dipole with constant velocity, while at the 
same time, the resultant impulse P will vanish (i.e., a particle that is macroscopically at 
rest).  The macro-impulse P and the internal (micro-) velocity of the particle are then to 
be regarded as also being coupled by that to a great extent.  If one overlays the circular 
motion of the “rest” particle with a translation then the constant impulse P will assume 
the magnitude that belongs to its macroscopic velocity, in the sense of the relativistic 
mechanics of point-masses (Pα = four-vector).  It is, moreover, remarkable that the 
formulas for the circular motion admit the passage to the limit: microvelocity v → speed 
of light c without the rest mass and impulse moment becoming infinite in the process (1).  
In what follows, that limiting case shall always be invoked when one compares things 
with the Dirac electron. 
 The following conception of Schrödinger’s zitterbewegung will then be based upon 
our model: In that model, the zitterbewegung of the coordinates of the Dirac electron that 
remains when one solves for the macro-motion will be represented by a periodic orbiting 
of the particle around a circular path that is initially oriented arbitrarily; the electron spin 
comes about with the speed of light by the orbiting of the particle.  We will show that this 
model-based conception of the proper properties of the Dirac electron will largely justify 
the motion that Schrödinger discussed for force-free motion, up to the more complicated 
details.  For the time being, we would like to satisfy ourselves by establishing that in the 

limiting case of v → c, the model will yield a frequency 
02 cµ

 
= 
 

ℏ
 and radius 

2
02 cµ 

= 
 ℏ

 

for the circular orbit that coincide with the frequency and amplitude, resp., of the 
coordinate oscillation for the Dirac electron when one assumes that the internal impulse 
moment (spin) in the model is quantized in units of 1

2 ℏ  (cf., Section 2). 

 Naturally, the concrete intuitive character of the model goes far beyond the Dirac 
electron (2).  That can already be expressed by, e.g., the fact that the measured valued of 

                                                
 (1) Moreover, that passage to the limit sheds a peculiar light on the problem of the self-energy of the 
particle that is due to its electric charge.  Namely, it shows that the infinite self-energy of the point-charge 
of the particle is not only consistent with a finite rest mass, but that the going to infinity of the mass pole m 
is even the condition for the internal (micro-) velocity of the particle to attain the speed of light 
(asymptotically).  (I, Section 2.2) 
 (2) The fundamental impossibility of verifying the statements of the model by experiments shall not be 
discussed here.  In that regard, it is, however, of great interest that, from Schrödinger, the geometric 
configuration of a system with rest mass µ0 can be observed with a linear precision of l0 = ℏ / 2µ0 c

2, at 
best.  It emerges from that imprecision that it will be impossible to make any concrete statement about the 
details of the internal motion.  On that, cf., Schrödinger, Berl. Ber. (1931), 238; in particular, equations (5) 
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any velocity component (eigenvalue of cαk) is capable of taking on only the values ± c 
for the Dirac electron, while in our model, all intermediate values between + c and – c 
will be possible, and the extreme values still depend upon the orientation of the orbital 
plane (1).  One should then perhaps expect that the model must break down for the details 
of the spin motion.  However, the fact that this is in no way the case, and the fact that, in 
contrast, it underscores a very far-reaching correspondence will emerge in the following 
sections. 
 The physical systems that are defined, on the one hand, by (1), (2), and (3a, b), and 
(5) and (6), on the other, seem to have no similarity with each other, on first glance.  
However, if one eliminates the απɺ  from equations (5) then one will get the energy c / i P4 

in the form: 

H * = v1 P1 + v2 P2 + v3 P3 + 0

4

u

u
µ0 c

2,   (7) 

 
in which u0 represents the value of u4 for a particle that is macroscopically at rest [I, eq. 
(70)].  Now, when one observes (4) and regards u0 / u4 as a parallel to α4, the expression 
(7) will, in fact, exhibit a striking analogy with the Hamilton operator H of the Dirac 
electron.  In the final Section 4, we will go further than that and see that this formal 
analogy is based upon a deeper-lying correspondence.  One would also have to expect 
corresponding relationships for other operators – e.g., position coordinates, spin – 
(Section 2 and 3). 
 The negative-energy states, which are anomalies of the Dirac electron, play an 
essential role in the following investigation.  They first make it possible to carry out the 
comparison of the Dirac electron with the model of the orbiting mass-point in detail, and 
indeed without appealing to Dirac’s theory of positrons.  Whether or not the choice of 
certain special representative wave functions that we shall base the comparison upon 
might not seem mandatory a priori, the results will allow one to recognize an even more 
striking analogy between the behavior of the model and the Dirac electron.  The deeper 
physical basis for that correspondence can perhaps be sought in the fact that the relativity 
postulate upon which the unification with the principles of quantum theory in Dirac’s 
theory is based already represents such a narrow conceptual framework that any electron 
model that is free from internal contradictions and allows one to calculate electron spin in 
a relativistically-invariant way will agree with the Dirac electron (2). 
 The comparison that is carried out in what follows will be based upon the two cited 
papers by Schrödinger on the quantum dynamics of electrons.  The results that are 
obtained will rest completely upon the “method of time-dependent operators” that will be 
introduced there, and which consists of the fact that the time-dependency of the wave 

                                                                                                                                            
and (10); cf., also H. T. Flint  and O. W. Richardson, Proc. Roy. Soc. London (A) 117 (1928), 625 and 
637. 
 (1) From the model, one would expect the correspondence: 

c2 = 2 2 2

1 2 3
v v v+ +  → c2 2 2 2

1 2 3
)(α α α+ + ; 

however, in reality, one has 2
k

α = 1 for every individual k.  Correspondingly, the measured value of the 

square of every velocity component, and therefore, the expectation value, as well, is always c2 in the Dirac 
model. 
 (2) The authors thank Herrn Prof. W. Heisenberg for a discussion of that viewpoint.  
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function ψ in equation (1) will be “inherited” from the operators.  That method has the 
great advantage for us that, of all the quantum-mechanical methods, it comes closest to 
the viewpoint of corpuscular theory. 
 
 

§ 1.  General considerations regarding Schrödinger’s zitterbewegung. 
Viewpoint for the comparison with the model. 

 
 1. The “equation of motion” for the arbitrary operator A: 
 

dA

i dt

ℏ
 = HA – AH,     (8) 

 
can be generally integrated in the sense of the operator calculus (1): 
 

A(t) = / /(0)iHt iHte A e−ℏ ℏ .     (9) 
 
H is to be regarded as an operator in (9), as well as in (8); t is a c-number.  A(t) 
accordingly emerges from A(0) by a special unitary transformation, which is entirely 
analogous to the way that motion can arise from a sequence of infinitesimal contact 

transformations in classical mechanics.  The expectation value tA  of A at the time t is 

then: 

tA  = (0) ( ) (0)A t dxψ ψ∗
∫ ,    (10)  

 
in which ψ(0) means the wave function at time t = 0, which is assumed to be normalized: 
 

(0) (0)dxψ ψ∗
∫ = 1.     (10′) 

 
[Integration over the coordinate space x1, x2, x3 ; summation over the spin indices has 
been suppressed in the notation of (10) and (10′).] 
 Now, the distinction between even and odd operators plays a fundamental role in this 
method of time-dependent operators, and it is linked with the existence of states of 
positive and negative energy in the Dirac electron (2).  We shall understand an even 
operator G (†) to mean one that takes a wave function ψ + that consists of an aggregate of 
eigenfunctions with only positive energies to other such wave functions, and likewise 
converts a wave function ψ − that consists of eigenfunctions with only negative energies 
to another such wave function.  By contrast, an odd operator U will take ψ + to ψ − and 
ψ − to ψ +; in formulas: 
 

G ψ + = ψ +′,  G ψ − = ψ −′,  U ψ + = ψ −′, U ψ − = ψ +′.  (11) 

                                                
 (1) E. Schrödinger, A, § 2.  
 (2) E. Schrödinger, B, § 2. 
 [†] Translators note: G = gerade = even, U = ungerade = odd.  
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It is easy to see that every arbitrary operator A can be split uniquely into an even and an 
odd part: 

A = G + U.     (12) 
 

Namely, if one represents the operator A by a matrix field A (E, E′) whose “elements” are 
ordered by the eigenvalues E, E′ of the energy function H then that field will decompose 
into four separate regions I, II, III, IV, since | E | (| E′ |, resp.) is always ≥ µ0 c

2 (Fig. 1): 
The matrix fields I and III by themselves will yield the representation of G, and II and IV 
by themselves will yield the representation of U. 
 

 − E 

− E 
 

+ E 

+ E 

II III 

IV I 2mc2 

2mc2 

 
 Figure 1.  Matrix element (E, E′) for an arbitrary operator A = G + U.  The diagonals E = E′ (E = − E′, 
resp.) correspond to the representation of an operator that commutes (anticommutes, resp.) with H.  (The 
locations in the interior of the central cross with beam width 2 µ0 c

2 are meaningless.) 
 
 A sufficient, but not necessary, condition for an operator A to belong to the even or 
odd type is that is must commute (anticommute, resp.) with H (1): 
 

HG – GH = 0,  HU + UH = 0.    (13) 
 
Since the representation of H in the eigen-system contains only diagonal elements, which 
we can express symbolically by: 
 

H (E, E′) = E ⋅⋅⋅⋅ δ (E – E′) 
 
(with the Dirac δ-function), we will get from (13) that: 
 

                                                
 (1) According to Schrödinger (B), the necessary condition for an operator A to be even or odd is that a 
finite commutator (anticommutator, resp.) of A must vanish.  Hence, the first commutator of A is K1 = HA – 
AH, the second one, K2 = HK1 – K1H, etc.; the first, second, etc. anticommutator of A is defined 
correspondingly.  A general analytic prescription for splitting an operator into its even and odd parts was 
given by W. Pauli, Handb. d. Phys., XXIV/1, pp. 229; however, such a decomposition is unnecessary for 
the calculation of expectation values (cf., infra). 



Hönl and Papapetrou – On the internal motion of electrons. III. 7 

( , )( ) 0,

( , )( ) 0.

G E E E E

U E E E E

′ ′− = 
′ ′+ = 

    (13′) 

 
G (E, E′) can then possess non-vanishing elements only for E′ = E, and U (E, E′), only for 
E′ = − E, which agrees with our assertion.  It will then follow from (9) that for all even 
(off, resp.) operators that commute (anticommute, resp.) with H, one will have: 
 

G (t) = G (0) = const.     (14a) 
or 

U (t) = 
2Ht

i
e

+
ℏ U (0) = U (0) 

2Ht
i

e
−
ℏ ,   (14b) 

 
resp.  The result (14a) is obvious; however, from (14b), U takes on a universal, apparent, 
“periodic” time-dependency of the operator with a “frequency” of 2 /H ℏ . 
 The “zitterbewegung” of the position coordinates xk in the Dirac electron that was 
mentioned in the introduction is now based upon the fact that one part of xk (which will 
be denoted by ξk, in what follows) can be split off that has odd type and anticommutes 
with H; its time-dependency has the type of (14b), accordingly.  However, the arguments 
in this section show that any dynamical variable will perform a corresponding 
zitterbewegung that possesses a component that anticommutes with H; i.e., in general, 
any variable that is not a constant of the motion.  However, in order to recognize the 
nature of that zitterbewegung more precisely, it is instructive to go from operators to 
expectation values.  Furthermore, that shall happen in a general manner. 
 
 
 2. For what follows, we assume that U is Hermitian and anticommutes with H 
(which are two conditions that will be fulfilled by all of the operators that will be 
considered in what follows).  Now, it should be remarked from the outset that the 
expectation value of U will always vanish when U is applied to a “pure positive” wave 
function (ψ +) or a “pure negative” one (ψ −), since, from (11), Uψ will then possess the 
opposite character to ψ and the wave functions ψ + and ψ − are orthogonal to each other.  
U can then possess a non-zero, time-dependent expectation value only for a “mixed” 
wave function ψ = ψ + + ψ −. 
 Since the eigenfunctions of the force-free moving particle can be represented by: 
 

( ) /
1 2 3( , , ) ia p p p eρ

± px ℏ , 

 
in which p (p1, p2, p3) means an eigenvector of the impulse and the amplitudes aρ

+  shall 

belong to a positive-energy state, while the amplitudes aρ
−  shall belong to a state of 

negative energy (ρ = 1, 2, 3, 4), we set: 
 

ψρ (x) = { } ( ) /( ) ( ) ia p a p e dpρ ρ
+ −+∫

px ℏ ,    (15) 
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in the case of a general superposition, in which x and p means a triple of values x1, x2, x3 
(p1, p2, p3, resp.) , and the integration extends over all of impulse space (dp = dp1 dp2 
dp3).  With the abbreviation: 

ψ (p) = ( ) /ie px ℏ ,     (16) 
 

from (10), the expectation value tU  will become: 

 

tU  = { } { }( ) ( ) ( ) ( ) ( ) ( )a p a p p dp U a p a p p dp dxρ ρ ρ ρ
ρ

ψ ψ+∗ −∗ ∗ + −′ ′ ′ ′+ ⋅ +∑∫∫∫ . (17) 

 
Now, since U is odd, one will have: 
 

( ) ( ) ( ) ( )a p p U a p p dxρ ρ
ρ

ψ ψ+∗ ∗ + ′ ′∑∫ = ( ) ( ) ( ) ( )a p p U a p p dxρ ρ
ρ

ψ ψ−∗ ∗ − ′ ′∑∫ = 0, 

 
and due to the Hermiticity of U [cf., (16)]: 
 

( ) ( ) ( ) ( )a p p U a p p dxρ ρ
ρ

ψ ψ−∗ ∗ − ′ ′∑∫ = ( ) ( ) ( ) ( )a p p U a p p dxρ ρ
ρ

ψ ψ
∗

+∗ ∗ − 
′ ′ 

 
∑∫ . 

 
Hence, (17) will become: 
 

tU = ( ) ( ) ( ) ( )a p p dp U a p p dp dxρ ρ
ρ

ψ ψ+∗ ∗ − ′ ′ ′∑∫∫∫  + conj.   (17′) 

 
Moreover, if one considers (14b) (viz., the anticommutation of U and H), as well as the 
fact that ( )a pρ

− ′ ψ (p′) is an eigenfunction of H with the eigenvalue – ε (p′), and if the 

eigenvalues of H are denoted by: 
 

E = 2 2 2 2 2
0 1 2 3c c p p pµ± + + +  = ± ε (p), 

then (17′) will become: 
 

tU = 2 ( ) /( ) ( ) (0) ( ) ( ) i p ta p p dpU a p p e dp dxε
ρ ρ

ρ
ψ ψ ′+∗ ∗ − ′ ′ ′∑∫∫∫

ℏ  + conj. (17″) 

 
Since the operator U(0) acts upon the spin variable ρ, it can be represented by a matrix 

0U ρρ ′ , such that: 

 

tU = 0 2 ( ) /( ) ( ) ( ) ( ) i p ta p p dp U a p p e dp dxε
ρ ρρ ρ

ρ ρ
ψ ψ ′+∗ ∗ −

′
′

′ ′ ′∑ ∑∫∫∫
ℏ  + conj. (17″′) 
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 At this point, we would like to make the assumption that the operator U depends upon 
only the quantities ακ and Pk (but not upon the xk) (

1), which is an assumption that will be 
fulfilled for all of the special operators that are considered in what follows.  Due to the 
orthogonality relation: 
 

( ) ( )p p dxψ ψ∗ ∗ ′∫  = 3
1 1 2 2 3 3(2 ) ( ) ( ) ( )p p p p p pπ δ δ δ′ ′ ′⋅ − − −ℏ   (16′) 

 
the integrations over x and p′ in (17) can be performed immediately.  One will then get 
(2): 

tU = 3 0 2 ( ) /(2 ) ( ) ( ) ( ) i p ta p U p a p e dpε
ρ ρρ ρ

ρ ρ
π +∗ −

′
′

∑∑∫
ℏ

ℏ + conj.,  (18) 

 
which will imply the dependency of the matrix element 0 ( )U pρρ ′  on the pk when one 

replaces every Pk with its eigenvalue pk . 
 An analogous argument that pertains to the even part G will lead to the result that: 
 

G  = { }3 0 0(2 ) ( ) ( ) ( ) ( ) ( ) ( )a p G p a p a p G p a p dpρ ρρ ρ ρ ρρ ρ
ρ ρ

π +∗ + −∗ −
′ ′ ′ ′

′
+∑∑∫ℏ ,  (19) 

 
in which 0 ( )G pρρ ′  is defined in a manner that corresponds to 0 ( )U pρρ ′ .  (Here, as well, it 

will be assumed that G depends upon only ακ and Pk .) 
 The expressions (18) and (19) admit an extension that we will make frequent use of in 
what follows: Let an operator A = G + U be given, whose parts G and U depend upon 

only ακ and Pk , so the expectation values G  and tU  can be calculated in such a way that 

one applies the schema in formulas (18) and (19) simply to A, instead of G (U, resp.) (3): 
 

G = 
g

A = { }3 0 0(2 ) ( ) ( ) ( ) ( ) ( ) ( )a p A p a p a p A p a p dpρ ρρ ρ ρ ρρ ρ
ρ ρ

π +∗ + −∗ −
′ ′ ′ ′

′
+∑∑∫ℏ ,  (20a) 

                                                
 (1) More precisely: in the form of a sum of products of powers: 

n mk
k

k

Pκ
κ

κ
α∏ ∏⋅ , 

whose matrix elements are represented by: 

( )mk
k kk

n
p p pκκ

κ ρρ

δα
′

′ ′ ′′−
 
 ∏ 
 

∏i  

(p-representation).  Upon introducing that representation in place of 0U ρρ′  in (17″′), a further integration 

over p″ will be needed.  (One must then write p″, instead of p′, in the part of the integration in (17) that 

follows from 0U ρρ′ .) 

 (2) More precisely: over x, p′, and p″; cf., the previous remark. 
 (3) In fact, one has, in general, for A = G + U, with ψ = ψ + + ψ − : 
 ∫ ψ * G ψ dx = ∫ (ψ +* G ψ + + ψ −* G ψ −) dx =  ∫ (ψ +* A ψ + + ψ −* A ψ −) dx, 
 ∫ ψ * U ψ dx = ∫ (ψ +* U ψ + + ψ −* U ψ −) dx =  ∫ (ψ +* A ψ − + ψ −* A ψ +) dx, 
from which the assertion will emerge immediately. 
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tU = 3 0 2 ( ) /(2 ) ( ) ( ) ( ) i p ta p A p a p e dpε
ρ ρρ ρ

ρ ρ
π +∗ −

′
′

∑∑∫
ℏ

ℏ + conj.,   (20b) 

 
[with the corresponding meaning for the matrices 0Aρρ ′  as 0Gρρ ′  (

0U ρρ ′ , resp.)].  We would 

like to refer briefly to the expectation values of A that are constructed in that way as even 
and odd expectation values.  In the event that A depends upon only the αk and Pk (but not, 
by contrast, on the xk), those expectation values can be calculated without the algebraic 
decomposition of A into G + U (1). 
 The general outline of zitterbewegung can now be read off from the expressions (18) 

and (20b) with no further assumptions.  One first sees that tU ( 0
tA , resp.) will always 

vanish when the positive and negative spectral domains a+ (p) ≠ 0 and a− (p) ≠ 0 overlap 
at least partially (2).  Moreover, the time-dependency of Ut is clearly almost-periodic, in 
general, since the time factor in the integrand will be integrated over p.  It is only in the 
limiting case when one is dealing with the superposition of two monochromatic wave 

systems of equal and opposite energies that tU  will be strictly periodic, and indeed with 

a frequency that corresponds to twice the energy of the wave system.  However, in the 
individual cases, the form of the zitterbewegung can prove to be very different depending 
upon the composition of the wave group. 
 
 
 3. We would now like to turn to the application of these general considerations to 
the comparison between the Dirac electron and our model that we would like to pursue.  
One would initially expect that, in general, an analogy exists between the analytical 
expressions that characterize the dynamical state quantities of the model and the 
corresponding operators of quantum-mechanical systems in a manner that is similar to the 
way that the dynamical variables of many systems can be carried over to quantum 
mechanics directly (e.g., the Bohr model of the atom).  However, if one goes from the 
operators to the expectation values then one will encounter the fundamental difficulty that 
the concept of a well-defined physical situation that would be represented by the wave 
function ψ in quantum mechanics is foreign to classical dynamics.  One would then 
expect only that a model might correctly give the characteristic outline of certain types of 
situations, in some approximation.  That will imply a general viewpoint for the following 
investigation: 
 Any dynamical variable A*(t) of our model (3) – e.g., coordinate, proper impulse 
moment, terms in the eigenfunction – proves to be a function of time for an arbitrary, 
translating particle, from which a certain periodically-oscillating part can be split off that 
is due to the internal rotational motion.  One can suspect that this splitting of A*(t) has its 
quantum-mechanical analogue in the aforementioned splitting of the corresponding 
operator A into even and odd parts, and then seek to perform that splitting with the most 
precise analogy that is possible.  The separation of the periodically-oscillating part of 

                                                
 (1) It is easy to see that the conditions (13) will always be fulfilled for operators A that depend upon 
only αk and Pk (in the form of products of powers), and one will therefore have (14a) and (14b).  
 (2) Cf., on that, L. de Broglie, L’électron magnetique, Paris, 1924, pp. 299.  
 (3) The quantities that pertain to the model will be denoted with an * in what follows.  
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A*(t) will then become unique in the cases examined, since the correspondence with the 
even and odd parts of A is, in fact, very precise.  As a uniqueness criterion, we shall now 
demand that the periodic part of A* that remains after splitting – viz., the “even” part G* − 
must correspond exactly with the corresponding expectation value G  for the Dirac 
electron for a wave group with sufficiently sharply-defined impulse and sharply-defined 
(positive) energy.  However, such a splitting of A* will, on the other hand, already 
approach the form of the corresponding operator A, and can then be performed in each 
case in a completely casual way (1). 

 On the other hand, since, as we have seen, the time function tU  of the expectation 

value of U(t) depends upon the basic wave function ψ in an entirely essential way, there 
would generally be no unambiguous sense to speaking of an “amplitude.”  It might be 
helpful for one to then go from U(t) to its square U2, which is even and time-independent; 
the calculation of U2 for a wave group with a sharp impulse would then clearly give a 
measure for the “amplitude” of U(t).  However, U2 would still not encompass all of the 

detailed behavior of tU  (characteristic of this is the fact that the time-dependency of U(t) 

will drop out when one forms U2, for which no analogue exists in the classical model!).  
 For the comparison with the model-specific quantity U*(t), one will have to choose a 

wave function that leads to the most representative expectation value tU that is possible.  

That being the case, we would like to regard the strongly-time-periodic limiting case that 
was considered above and consists of the superposition of two monochromatic wave 
trains with equal impulse and equal, but opposite, energy.  The choice of wave function 
will still not generally be established uniquely with that definition, and we will have to 
make an even narrower choice later on (Section 2). 
 In fact, we shall now show that for a suitably-chosen special wave function in the 
most important special cases that will be examined, for a small particle velocity v′ (more 
precisely, up to the terms that are linear in β′ = v′ / c) (2), one will get precise agreement 

between the behavior of  tU  and the model-related quantity U*(t) [assuming that one 

goes to the limiting case for the model that was mentioned in the introduction for which 
the internal (micro-) velocity of the particle attains the speed of light].  Noticeable 
deviations first appear for large particle velocities and grow with increasing particle 
velocity until finally the correspondence breaks down more and more in the 
neighborhood of the speed of light (3). 
 
 
                                                
 (1) By contrast, it does not seem justified from the outset to perform the separation of the periodic part 
U* of A* in such a way that its temporal mean will vanish, since no precise analogue for that exists in 
quantum dynamics.  Since tU  is only almost-periodic, in general, the temporal mean of tU  does not need 
to vanish. (The sequence of integrations over p and t is not arbitrary, in general.)  The operator notation 
(14b) gives only the impression that the “temporal mean of U (t)” must vanish. 
 (2)  The “particle velocity” v′ is the velocity that belongs to the eigenvalue of the impulse p′ (the 
expectation value of the macrovelocity would be equal to 0 for the special wave function that we have 
assumed, cf., Section 2). 
 (3) One might perhaps be inclined suspect that the increasingly noticeable lack of correspondence with 
increasing particle velocity is a contradiction to the relativity postulate; cf., however, concluding remarks to 
Section 2. 
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§ 2.  Macrovelocity and microvelocity.  Coordinate oscillation. 
 

 1. According to Schrödinger, the Breit  equation (4): 
 

kdx

dt
= cαk       (4) 

 
can be integrated on the basis of the remark that it is not, in fact, the αk themselves, but 
probably, as one confirms immediately, the quantities: 
 

ηk = αk − c H−1 Pk      (21) 
that anticommute with H: 

Hηk + ηk H = 0.     (21′) 
Hence: 

ηk = 0 2 /i Ht
k eη − ℏ= 2 / 0i Ht

ke ηℏ ,    (22) 

 
in which the 0

kη  mean the “initial values” of the operators ηk at the time t = 0 (i.e., 

integration constants).  Upon substituting (22) in (21), one will get, after repeated 
integration: 

xk = ak + c2 H−1 Pk t − 0 1 2 /

2
i Ht

k

c
H e

i
η − − ℏℏ

,  (23) 

 
with ak as further integration constants.  It is significant that no integration constants that 
would correspond to the impulse of the particle appear in (23).  Moreover, the 
expectation value of the impulse at time t = 0 is determined from the initial wave function 
ψ = ψ(0). 
 From (23), the coordinate xk can then be decomposed into two components of an 
essentially different character: 
 

xk = kxɶ  + ξk ,         (24) 

kxɶ = ak + c2 H−1 Pk t,       (24a) 

ξk = − 0 1 2 /

2
i Ht

k

c
H e

i
η − − ℏℏ

= − 1

2 k

c
H

i
η −ℏ

= 1

2 k

c
H

i
η−ℏ

.   (24b) 

 
That decomposition corresponds to the splitting of xk into an even and an odd part.  The 
even part (1) kxɶ  increases linearly in time.  One sees that most simply from the original 

definition (10) of the expectation values; for a wave with a sharply-defined propagation 
vector (viz., impulse) and positive energy, one will then get: 
 

                                                
 (1) One easily confirms that the second commutator of 

k
xɶ  vanishes, so from the definition in rem. 1 on 

pp.  6, 
k

xɶ  will be even.  The first commutator of 
k

xɶ  will then be the component 
k

vɶ  of the macroscopic 

velocity of the particle, up to the factor / iℏ . 
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2 1
kc H P−  = 

2
2 0

2 2
0

1

1
kv

c dx
c

β µ ψ ψ
µ β

∗′ ′−
⋅

′− ∫ = kv′ ,   (25) 

and correspondingly: 
g

kx = k ka v t′ ′+ .     (25′) 
 
 However, the calculation will require a special examination in the limiting case of  

strongly-periodic expectation values  
u

kx  = kξ . 

 Next, the “amplitude” of the oscillation ξk can be estimated when one goes from ξk to 
its square 2

kξ , which is even, and then calculate its expectation value with the wave 

function of the particle at rest.  Since ηk can be replaced with αk for the rest motion, one 
will then get directly from (24b), (21′), and (3b): 
 

2
kξ  = 

2
1 1

2

g

k k

c
H H

i
η η− − 

 
 

ℏ
= 

2
2 2

2

g

k

c
H

i
α − 

 
 

ℏ
 = 

2

02 cµ
 
 
 

ℏ
.  (26) 

 
From (22) [(24b), resp.], the associated frequency will be: 
 

ω = 02E

ℏ
 = 02 cµ

ℏ
,     (26′) 

 
if E0 = µ0 c

2 is the rest energy of the particle. 
 It is very remarkable that the expressions (26) and (26′) for the expectation value of 
the amplitude-squared of the coordinate oscillation and the frequency, resp., correspond 
precisely with the corresponding expressions for the model (1).  In fact, from [I, (91)], the 
magnitude of the impulse moment will be µ0 cR, if R denotes the radius of the orbit.  For 
a particle with a quantized impulse moment of magnitude 12 ℏ , one will then have: 

 

R = 
02 cµ
ℏ

, ω = 
c

R
 = 

2
02 cµ
ℏ

.    (27) 

 
 
 2. We now want to link the more precise discussion of the correspondence between 
the Dirac electron and the model to formulas (20a) and (20b) for the even and odd 
expectation values of an operator.  The choice of a suitable customized solution to the 
wave equation will prove decisive in that. 

                                                
 (1) One should therefore observe that the expectation value (26) of 2

k
ξ  is independent of the index k.  

Naturally, that argument cannot be interpreted intuitively in the model.  However, cf., the sharpening of the 

correspondence in what follows by comparing the odd expectation values kξ  and 
u

kcα  with the quantities 
in the model. 
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 We next notate the solutions of the Dirac wave equation that will be required in what 
follows.  If we make the Ansatz of a plane wave: 
 

ψρ (x, t) = aρ ⋅⋅⋅⋅ 1 1 2 2 3 3( ) /i p x p x p x Ete + + − ℏ ,    (28) 
 

and employ the usual representation for the αk matrices: 
 

1 2

3 4

1

1
, ,

1

1

1 1

1 1
,

1 1

1 1

i

i

i

i

α α

α α

   
   −    = =
   
   −    




        −   = =    −     − −    

   (29) 

 
then the Dirac equation (1), (2) will belong to a system of equations for the amplitudes aρ 
in a well-known way, which will possess non-zero solutions if and only if the energy 
parameter assumes one of the eigenvalues: 
 

E =± c 2 2 2 2 2
0 1 2 3c p p pµ + + + = ± ε. 

 
Any two of the coefficients aρ are freely available (which will be denoted by upper-case 
letters in what follows), while the other two are determined by them.  That implies the 
following cases: 
 
 a) Positive energy: E > 0 (ε = E): 
 

a1 = A,      a2 = B,      a3 = 3 1 2

0

( )

/

p A p ip B

c cε µ
+ +

+
,      a4 = 1 2 3

0

( )

/

p ip A p B

c cε µ
− −

+
.  (30a) 

 
 b) Negative energy: E < 0 (ε = − E): 
 

a1 = − 3 1 2

0

( )

/

p C p ip D

c cε µ
+ +

+
,      a2 = − 1 2 3

0

( )

/

p ip C p D

c cε µ
− −

+
,      a3 = C,      a4 = D. (30a) 

 
Finally, we record the eigenvalue of energy, the x3-component of the impulse moment J, 
and the magnetic moment M for a rest particle that has only one of the coefficients A, B, 
C, D non-zero: 
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Eigenfunction 
 

 

E 
 

J3 
 

M3 

 

     ψ1 (A ≠ 0)…….. 
 

+ µ0 c
2 

 

− 1
2 ℏ  + 

02

c

cµ
ℏ

 

    ψ2 (B ≠ 0)…….. + + − 
    ψ3 (C ≠ 0)…….. − − − 
    ψ4 (D ≠ 0)…….. − + + 
 
 We now go on to the definition of the odd expectation values for the microvelocity c 
αααα, which, from (21), will belong predominantly to the odd type for small impulse.  In 
general, from (21) and (21′): 

u

kα = kη ,     (31) 

 
since the operator of macrovelocity c2 H−1 Pk is even 
 The choice of special wave function shall now result in the fact that one superimposes 
solutions of the Dirac equation with positive and negative energy (Section 1) that 
correspond to particles with the same sense of orbiting; i.e. (for the same sign on the 
charge), they possess magnetic moments that point in the same direction.  Namely, it 
proves that with precisely that choice of wave function, one can recognize an especially 
striking analogy between the Dirac electron and the model of orbiting mass-points (1). 
 For a macroscopic particle at rest and a positive sense of orbiting, the wave function 
will then be determined by the superposition of the special states aρ

+  and aρ
−  (cf., Table 

1): 

{ }

{ }

3/ 2
1/2

1 2 3

3/ 2
1/2

1 2 3

(2 )
(1,0,0,0) ( ) ( ) ( ) ,

2

(2 )
(0,0,0,1) ( ) ( ) ( ) ,

2

a p p p

a p p p

ρ

ρ

π δ δ δ

π δ δ δ

−
+

−
−


= ⋅ 



= ⋅



ℏ

ℏ
   (32) 

 
in which the normalization is performed in such a way that (2): 
 

{ }3 2 2
1 2 3(2 ) ( ) ( )a p a p dp dp dpρ ρ

ρ
π

+∞
+ −

−∞

+∑∫ ∫ ∫ℏ  = 1.  (33) 

 

                                                
 (1) As a foundation for that special choice of wave function, one can cite the fact that one can think of 
the classical model (viz., the “pole-dipole particle”) as being composed of a positive and a negative mass 
that rotate in the same sense (cf., Part II).  However, we do not place any significant weight on that 
argument, since the physical sense of the superposition of positive and negative-energy states is hardly 
clear; that foundation can also seem less compelling in a different regard.  By the superposition of other 
special eigen-solutions of equal and opposite energy, one will get, in part, quite bizarre results (e.g., linear 
oscillations, instead of circular ones). 
 (2) The normalization condition (33) is equivalent to the normalization (10′) of the ψ-function, as one 
easily confirms upon observing (15), (16), and (16′).  
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With that, one immediately gets from (20b) and (32), and when one observes that only 
the (1, 4) element of the matrix αk will give a contribution: 
 

( )

( )

0 0

0 0

2 / 2 / 01
1 2

2 / 2 / 01
2 2

3

2
cos ,

2
sin ,

0.

u i t i t

u i t i t

u

t
c c e e c

t
c c e e c

c

ε ε

ε ε

εα

εα

α

−

−

= + = ⋅ 

= − = − ⋅ 

=



ℏ ℏ

ℏ ℏ

ℏ

ℏ
  (34a) 

At the same time, the eigenvalues of even type will vanish: 
 

1

g
cα = 2

g
cα = 3

g
cα = 0.    (34b) 

 
For the special choice of wave function (28), (32), the expectation values (34a) of the 
microvelocity cαααα will then correspond to a circular motion of a particle in the (x1, x2)-
plane that possesses the speed of light at all points of the orbit. 
 
 We would also like to calculate the expectation values for the odd operator of the 
coordinate oscillation ξk explicitly in a corresponding way.  Since we can replace ηk with 
αk and H with µ0 c

2α4 for the rest motion, from (24b), we will have: 
 

ξk = 
2

c

i

ℏ
H−1ηk → = 

1
4

2
02

c

i c

α
µ

−
ℏ

 αk = 4

02
k

c i

α α
µ
ℏ

.  (35) 

 
Now, with the matrix representation (29), one will have: 
 

α4 α1 = 

i

i
i

i

i

− 
 − 
 
 
 

,   α4 α2 = 

1

1

1

1

i

 
 − 
 −
 
 

,   α4 α3 = 

i

i
i

i

i

− 
 
 
 
 − 

.   (36) 

 
Thus, from (24b), (32), and (35), one will have: 
 

( )

( )

0 0

0 0

2 / 2 / 0
1

0 0

2 / 2 / 0
2

0 0

2

21
sin ,

2 2 2

21
cos ,

2 2 2

0.

i t i t

i t i t

t
i e i e

c c

t
e e

c c

ε ε

ε ε

εξ
µ µ

εξ
µ µ

ξ

= ⋅ − + = ⋅ 



= ⋅ + = ⋅ 

=



ℏ ℏ

ℏ ℏ

ℏ ℏ

ℏ

ℏ ℏ

ℏ
  (37) 
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These expectation values, in turn, correspond to the model precisely.  Obviously, one has 
[cf., (34a), (34b), and (37)]: 
 

u

kd x

dt
= kd

dt

ξ
= 

u

kcα ,  
g

kd x

dt
= 0.   (38) 

 
The Breit  relation (4) is thus in complete harmony with the model. 
 
 
 3. With that, an analogue of the coordinate oscillation for translating particles shall 
be examined.  One finds the square of ξk from a simple computation (1): 
 

2
kξ  = 

2

2

c 
 
 

ℏ
H−2 (1 – c2 H−2 2

kP ).    (39) 

 
The associated (even) expectation value for a wave with a sharply-defined impulse will 
be: 

2
kξ  = 

2

02 cµ
 
 
 

ℏ  (1 – β′ 2 )(1 − 2
kβ ′ ).    (39′) 

 
if β′ = v′ / c and kβ ′  = /kv c′  are the macroscopic velocity (velocity components, resp.) of 

the particle.  Obviously, 2
kξ  grows with increasing translatory velocity of the particle in 

all spatial directions, but generally most strongly in the direction of translation itself. 
 In order examine the phenomena that appear under translation more closely, we again 
consider the odd eigenvalues of cαk (the expectation values of ξk , resp.).  Once more, we 
correspondingly superimpose states of positive and negative energy with sharply-defined 
impulses and equal (positive) senses of orbiting in the (x1, x2)-plane.  The translation 
initially results in the x1-direction (p1 ≠ 0), so, from (30a) and (30b), we can set: 
 

{ }

{ }

3/2
1/21

1 1 2 3
0

3/ 2
1/ 21

1 1 2 3
0

(2 )
1,0,0, ( ) ( ) ( ) ,

/

(2 )
,0,0,1 ( ) ( ) ( ) ,

/

p
a p p p p

c cN

p
a p p p p

c cN

ρ

ρ

π δ δ δ
ε µ

π δ δ δ
ε µ

−
+

−
−

 
′= ⋅ −  +  


 − ′= ⋅ −  +  

ℏ

ℏ
  (40) 

 
in analogy with (32), in which, due to (33): 
 

M = 2 
2

1
2

0

1
( / )

p

c cε µ
 ′

+ ′ + 
, ε′ = c 2 2 2

0 1c pµ ′+ .   (40′) 

 

                                                
 (1) E. Schrödinger, A, eq. (18), et seq.  
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Hence, it will follow from the matrix representation (29) that: 
 

 1

u
cα = 

( )
2

2 /1
2

0

1
1

/
i tp

c e
N c c

ε

ε µ

 ′
⋅ − 
 ′ + 

ℏ + conj., 

 

 2

u
cα = 

( )
2

2 /1
2

0

1
1

/
i tp

ci e
N c c

ε

ε µ

 ′
⋅ + 
 ′ + 

ℏ+ conj., 

 

 3

u
cα = 0. 

 
After a simple intermediate calculation, one will have: 
 

( )

( )

2
1

2

0
2

1
2

0

1
/

1
/

p

c c

p

c c

ε µ

ε µ

′
−

′ +
′

+
′ +

 = 21 β ′− ,    (41) 

 
if β′ is the velocity that belongs to 1p′  divided by c.  One will then get: 

 

1

u
cα = c 2 2

1 cos
tεβ ′′− ⋅
ℏ

,  2

u
cα = c 

2
sin

tε ′
⋅

ℏ
,  3

u
cα = 0. (42) 

 
 Translation along the x2-direction yields nothing new (except for the obvious 

difference that 21 β ′− appears as a factor in 2

u
cα , instead of 1

u
cα ),  By contrast, the 

translation along the x3-direction (p3 ≠ 0) that then results “perpendicular to the orbital 
plane is of interest.  According to (30a) and (30b), we set: 
 

{ }

{ }

3/ 2
1/21

1 2 3 3
0

3/ 2
1/21

1 2 3 3
0

(2 )
1,0, ,0 ( ) ( ) ( ) ,

/

(2 )
0, ,0,1 ( ) ( ) ( ) ,

/

p
a p p p p

c cN

p
a p p p p

c cN

ρ

ρ

π δ δ δ
ε µ

π δ δ δ
ε µ

−
+

−
−

 
′= ⋅ −  +  


 − ′= ⋅ −  +  

ℏ

ℏ
  (43) 

 
with the corresponding meaning for N and ε′ as in (40′).  It then follows from the matrix 
representation (29), since the normalization factor N drops out in each case: 
 

1

u
cα = c

2
cos

tε ′
⋅

ℏ
,  2

u
cα = − c

2
sin

tε ′
⋅

ℏ
,  3

u
cα = 0. (44) 
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The amplitudes of the odd expectation values 
u

kcα  (k = 1, 2, 3) will not be influenced by 

translation perpendicular to the orbital plane then. 
 The explicit calculation of the expectation values can be omitted here, since, from (4) 
and (24), one has, in full generality [cf., (38)]: 
 

kd

dt

ξ
 = 

u

kcα .      (38′) 

 
By employing the special wave functions (40) and (48), the translation parallel to x1 will 
then be: 
 

1ξ  = 2

0

2
(1 )sin

2

t

c

εβ
µ

′′−ℏ

ℏ
,      2ξ  = 2

0

2
1 cos

2

t

c

εβ
µ

′′−ℏ

ℏ
,      3ξ  = 0,     (45a) 

 
and parallel to x3 : 
 

1ξ  = 2

0

2
1 sin

2

t

c

εβ
µ

′′−ℏ

ℏ
,      2ξ  = 2

0

2
1 cos

2

t

c

εβ
µ

′′−ℏ

ℏ
,      3ξ  = 0.     (45b) 

 

[Cf., the even expectation values kξ , equation (39′).] 

 The even expectation value 
g

kdx

dt
also vanishes in the case of translation, since the 

states of positive and negative energy make equal and opposite contributions. (The 
impulse and velocity are oppositely direct for the states of negative energy.) 
 
 
 4. It is of especial interest to refer to the differences from the classical models.  
According to (45a) and (45b), the frequency of the coordinate oscillation of the Dirac 

electron will be 2ε′ /ℏ , so it has been enlarged by a factor of 
0

ε
ε

′
= 

2

1

1 β ′−
 in 

comparison to the rest particle (1).  On the other hand, the intuitive model is comparable 
to a translating clock, and accordingly, its frequency has been slowed down (time 

dilatation) by a factor of 21 β ′−  in comparison to a classical particle at rest.  
Obviously, that discrepancy is directly connected with the fundamental wave-particle 
duality and cannot be omitted by any change in the model.  Likewise, from (45a) and 
(45b), the Dirac electron can also have no “normal” Lorentz contraction, as in the 
intuitive circular path model.  Both kinds of deviations have an order of magnitude of 
β′ 2, and one will then establish that the correspondence (in the narrow sense) between 
the Dirac electron and the intuitive model will be lost when one goes to at least quadratic 
terms in β′. 
                                                
 (1) One must recall that energy and frequency transform the same way under a Lorentz transformation 
for a de Broglie-Dirac wave (ε = hv is Lorentz invariant!). 
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 On the other hand, in the example of the coordinate oscillation and velocity, it will 
become especially clear that one cannot direct one’s attention to the characteristic 
limiting cases of the motion that correspond to the limiting case of even and odd 
expectation values at the same time, but only in succession.  Thus, forming the even 
expectation values of xk will yield a motion that is uniform and rectilinear, and will 
exhibit no sort of oscillation.  By contrast, the “zitterbewegung” will show itself when 
one forms the odd expectation values, and for a special limiting case, it will assume 
precisely the same character that corresponds to the intuitive picture of the orbiting 
particle.  In that regard, the Dirac electron will necessarily differ fundamentally from any 
intuitive model in which translation and internal rotation can differ simultaneously.  One 
should not regard the fact that for large translational velocities there are discrepancies 
between the expectation values for the Dirac electron and the corresponding quantities for 
the model as a fundamental lack of a special model then.  Here, and in the following, we 
will have to content ourselves with the proof that the properties of the model then 
separately approach the emergent processes of macroscopic and microscopic motion of 
the Dirac electron in certain limiting cases (e.g., special eigenfunctions, slow 
macroscopic motion) asymptotically. 
 
 

§ 3.  Proper impulse moment (1). 
 

 1. Spin is the true characteristic of the Dirac electron.  Its existence as an impulse 
moment that is supplementary to the orbital impulse moment [x, P] is implied by the fact 
that a conservation law (2) emerges from (2), (3), (8), and (29): 
 

J = [x, P] + 
2

ℏ
s = const.,    (46) 

in which one sets: 
[α, α] = 2is,     (47) 

to abbreviate.  Let: 

JB = [x, P], S = 
4i

ℏ
[α, α] =

2

ℏ
s,   (48) 

 
so JB is the orbital impulse moment of the particle and S is its proper impulse moment 
(i.e., spin moment).  It follows further from the definition (47) that: 
 

2
1s = 2

2s = 2
3s = 1, [s, s] = 2is ,   (49) 

 
as well as the fact that the sk have the eigenvalues ± 1; that further implies that the 
measured values of the components of the spin moment are ± 1

2 ℏ  in any spatial direction. 

                                                
 (1) In the following two sections, the quantities x, P, s, S, … with no index will always mean spatial 
vectors the components xk , Pk , sk , Sk , … (k = 1, 2, 3). 
 (2) E. Schrödinger, A, pp. 424, et seq.  
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 Now, it is known that for force-free translatory motion, the orbital impulse moment 
and spin moment are by no means individually constant, but only their sum JB + S is 
constant.  Hence, the oscillations of those two components must cancel out. 
 The oscillations of JB and S, which we denote by ∆JB and ∆S, can now be given 
immediately in explicit form.  Namely, since ξ is the part of x that is “periodic” in time, 
one will have (1): 

∆JB = − ∆S = [ξ, P].     (50) 
 

The spin oscillation is connected with the coordinate oscillation ξ immediately with that.  
The associated differential law reads: 
 

BdJ

dt
= − 

dS

dt
= 

d

dt
[x, P] = ,

dx
P

dt
 
  

,    (51) 

 
or also, if one recalls (4): 

dS

dt
 = − c [α, P].     (51′) 

 
The right-hand side of (50) can also be given as a function of time in operator notation 
when one correspondingly substitutes (24b) for ξ and observes the definition (21) of η.  
One will then get: 

∆S = 
2

c

i

ℏ
 [α, P] H−1 = 

2

c

i

ℏ
[α, P]0 H

−1 2 /Hte− ℏ , 

 
in which [α, P]0 is the initial value of the operator [α, P].  That gives the general integral 
of (51′) as: 

S =Sɶ + 
2

c

i

ℏ
[α, P]0 H

−1 2 /Hte− ℏ ,     (52) 

 

in which Sɶ = 
2

s
ℏ
ɶ  means the constant part of S. 

 As long as the macroscopic velocity c2 H−1 P (precisely: the expectation value of that 
operator for a sharply-defined impulse and energy) is small compared with the speed of 
light, the amplitude of the variable part of S will also be small compared with the 
constant one, and indeed, it will have order of magnitude β′.  It emerges from (51) that 
the oscillation must prove to be “perpendicular” to P, such that: 
 

(S, P) = (Sɶ , P) = const.     (53) 
 
 
 
                                                
 (1) In loc. cit., equation (50) was derived by integration, in the sense of the operator calculus, while here 
we shall be content to use a more intuitive foundation that makes the comparison with the model even 
simpler. 
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 2. It will now be shown that all of the analogous laws of oscillation can be derived 
for the proper impulse moment. 
 In Part I, it was shown that a conservation law for the total impulse moment of the 
system can be inferred from equations (5) and (6) in any event; namely, in analogy with 
(45) and (38), one will have (1): 
 

J * = BJ∗  + S * = [x*, P*] + c [π, u] = const.   (54) 

 
Since the first component BJ∗  once more represents the orbital impulse moment, it is 

assumed that the second component S * will correspond to the spin of the Dirac electron.  
We then expect that the proper moment obey the following correspondence: 
 

c [π, u] → 
2

ℏ
s.     (55) 

 
A confirmation of that suggestion next lies in the fact that a law of oscillation is true for 

BJ∗  and S * that is analogous to the one for JB and S.  Namely, it follows immediately 

from (54) that: 

BdJ

dt

∗

 = − 
dS

dt

∗

 = 
d

dt
[x*, P*] = ,

dx
P

dt

∗
∗ 

 
 

,   (56) 

 
which corresponds precisely to (51).  One further reads off from (56) that the oscillation 
of S* proves to be perpendicular to P*, so: 
 

(S *, P*) = const.     (57) 
 
which is analogous to (53).  One can also set: 
 

BJ∗∆  = − ∆S * = ∆ [x *, P*] = [ξ *, P*]    (58) 

 
here, corresponding to (59), as long as one introduces: 
 

ξ * = x* − x∗ɶ       (59) 
 
as the difference between the simultaneous position vectors x* and x∗ɶ  of the particle and 
its center-of-mass, respectively.  (54) will then follow immediately from uniform, 
rectilinear motion of the particle. 
 In summary, one can say that the formal laws of oscillation for the electron spin and 
the internal angular impulse in the model correspond to each other completely (2). 

                                                
 (1) [I, eqs. (89) and (90)]. – Here, we characterize the variables that relate to the model by an *, to 
distinguish them from the corresponding quantities that also appear for the Dirac electron.  
 (2) Moreover, that is true independently of whether the orbital velocity of the particle in the model 
attains the speed of light or possesses a smaller, arbitrary value. 
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 3. Equation (58) makes it possible to form an immediate picture of the type of 
oscillations of the proper impulse moment in the model.  For a translation in the x3-
direction ( 3P∗ = P*), one will have: 

 

1S∗∆ = − 2ξ ∗ P*,  2S∗∆ = 1ξ ∗ P*,  3S∗∆ = 0.  (58a) 

 
Now, since 1ξ ∗  and 2ξ ∗  are periodic functions with a phase difference of π / 4, S* will 

uniformly describe a “cone of precession” around the x3-axis whose vertex angle, which 
one obtains from the magnitude of ξ *, will possess the magnitude β for small 
translational velocities (cf., Fig. 2a).  By contrast, for a translation in the x1-direction 
( 1P∗ = P*), one will have: 

1S∗∆ = 0, 2S∗∆ = 0, 3S∗∆ = 2ξ ∗ P*,   (58b) 

 
and therefore only 3S∗∆  is non-zero.  The oscillation of S* here consists of a time-periodic 

oscillation with a magnitude of S* and no change in direction.  The amplitude of the spin 
variables is also equal to β here, up to the factor / 2ℏ (again, except for terms of higher 
order in β) (Fig. 2b). 

 

β 

S* P* 

S∗ɶ  S∗ɶ  

P* 

} 2∆S* 

(a).  P* = 3P∗  (b).  P* = 1P
∗  

 
Figure 2.  Oscillations of the proper impulse moment S* of the model under translation. 

 

(a).  Translational direction perpendicular to the orbital plane (P* = 3P∗ ): S* describes a cone of precession. 

(b).  Translational direction lies in the orbital plane (P* = 1P
∗ ):  S* oscillates in magnitude, but not direction. 

 The expectation value uS  of the Dirac electron exhibits an analogous behavior. 
 
 
 4. We would now like to extend the foregoing considerations by calculating the 

expectation values of the spin variable for the Dirac electron.  Since Sɶ  in (52) is even (as 
a constant of the motion), and ∆S is odd (since it anticommutes with H, is a time-
“periodic” function, resp.), the even and odd expectation values of the components of S 
will be: 
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g

kS = kSɶ , 
u

kS = kS∆ , = − [ , ]kPξ .   (60) 

Now, from (48), one has: 

S1 = 2 3

2 i

α αℏ
, S2 = 3 1

2 i

α αℏ
, S3 = 1 2

2 i

α αℏ
,   (61) 

or, in matrix form: 
 

S1 =

1

1

12

1

− 
 − 
 −
 − 

ℏ
,    S2 =

2

i

i

i

i

− 
 
 
 −
 
 

ℏ
,    S3 =

1

1

12

1

− 
 
 
 −
 
 

ℏ
.     (61′) 

 
The expectation values can also be calculated effortlessly for the case of translation from 
that. 
 We once more base the calculation of the expectation values upon the special wave 
functions (40) and (43).  If we consider a translation in the x3-direction then (43) will 
imply that: 

1

g
S = 2

g
S =  0,  3

g
S = 

2
3

2
0

1
1

2 ( / )

p

N c cε µ
 ′

+ ′ + 

ℏ
∓ = 

2

ℏ
∓ ;  (62a) 

 
by contrast, for a translation along x1, (40) will imply: 
 

1

g
S = 2

g
S =  0,  3

g
S = 

2
1

2
0

1
1

2 ( / )

p

N c cε µ
 ′

− ′ + 

ℏ
∓ = 21

2
β ′−ℏ

∓ . (62a) 

 
The expectation value relates to a wave group of positive negative energy, and in fact, the 
upper sign corresponds to a wave function with an amplitude of aρ

+ , while the lower sign 

corresponds to a wave function with an amplitude of aρ
− ; correspondingly the 

normalization factor in that is replaced with: 
 

N = 1 + 
2

3
2

0( / )

p

c cε µ
′

′ +
  or = 1 + 

2
1

2
0( / )

p

c cε µ
′

′ +
, resp.  (62b) 

 
 It is just as simple to get the odd expectation values for the wave groups with sharply-
defined impulse and equal, but opposite, energy.  For a translation along x3, (61′) implies 
that: 
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2 /3
1

0

2 /1
2

0

3

21 2
conj. cos ,

2 / 2

21 2
conj. sin ,

2 / 2

0.

u i t

u i t

u

p t
S e

N c c

ip t
S e

N c c

S

ε

ε

εβ
ε µ

εβ
ε µ

′

′

′ ′− ′= ⋅ + = − ⋅ ′ +


′ ′− ′= ⋅ + = + ⋅ ′ + 
= 


ℏ

ℏ

ℏ ℏ

ℏ

ℏ ℏ

ℏ
  (63a) 

Likewise, for the translation along x1: 
 

1 2

2 /1
3

0

0, 0,

21 2
conj. cos ,

2 / 2

u u

u i t

S S

p t
S e

N c c
ε εβ

ε µ
′

= =

′ ′′= ⋅ + = + ⋅ ′ + 

ℏℏ ℏ

ℏ

  (63b) 

 
 One sees that for small translational velocities, the odd expectation values of the 
components of Sk that are calculated in that way – i.e., their oscillations – will coincide 
precisely with the corresponding oscillations for the model-based quantities, up to terms 
of order β′.  It is first for large translational velocities that one will get deviations, as we 
already know from the coordinate oscillations.  Moreover, as a comparison of (50) and 
(58) will show immediately, the deviations are connected directly with the behavior of kξ  

for large translational velocities. 
 
 
 5. In what follows, we would like to consider the correspondence between the even 
expectation values (62a) and (62b) and the model-related expressions in more detail. 
 We initial direct our attention to the case of rest motion for the model.  For that, ξ * 
will be identical with radius vector r * of the orbit (referred to the center of the circular 
orbit).  In I, it was shown, on the basis of (5) and (6), that the spin moment of the system 
could be expressed in that case as: 

S* = − µ0 ,
dr

r
dt

∗
∗ 

 
 

,     (64) 

 
in which dr* / dt is the “microvelocity” of the particle (whose magnitude equals c), and 
thus µ0 dr* / dt will be the “micro-impulse” of the particle (1). 
 It is natural to ask whether the constant (i.e., even) part of the spin moment can also 
be understood in terms of the micro-motion of the particle for the Dirac electron, in such 
a way that one can combine the “lever arm” ξ with a suitably-chosen micro-impulse in 
the form of a vector product.  Schrödinger proved the following connection in that 
regard (2): 

2Sɶ = sɶℏ  = ,
H

c

ηξ 
  

 = − ,
H

c

ηξ 
  

,    (65) 

                                                
 (1) Cf., [I, eq. (91)].  
 (2) E. Schrödinger, A, eq. (30).  
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as one can confirm easily upon the basis of (21) and (24b).  We would like to bring (65) 
into a somewhat different form that will ease the comparison with the model.  One sees 
immediately that Hη / c actually represents a kind of micro-impulse, if one rewrites dx / 
dt from (24), (4), and (24a): 
 

d

dt

ξ
= 

( )d x x

dt

− ɶ
= c (α – c H−1P) = c η.   (66) 

(65) then goes to: 

2Sɶ  = − 2,
H d

c dt

ξξ 
  

 = 2 ,
H d

c dt

ξξ 
  

.    (67) 

 

Now, the quantity 
2

H d

c dt

ξ
 obviously means the “micro-impulse” of the system, since H / 

c2 is indeed the mass, and dξ / dt is the “microvelocity” of the Dirac electron.  The 
analogy with (64) and (67) immediately comes to mind.  However, two aspects of (67) 
[(65), resp.] are worthy of note: First of all, the factor 2 on the left (it is an immediate 
consequence of the commutation relations for the αk); second, its fragility in regard to 
sign (whether a positive or a negative sign appears before the bracket of the vector 
product depends upon the position of the “mass factor” H / c2).  It is significant that the 
factor of 2 from the Dirac model does not appear in the intuitive model.  By contrast, µ0 
appears with a negative sign in (64) (1), while on the other hand the sign remains 
undetermined in the corresponding expression (67).  The correspondence will even exist 
in this case, as well, as one could only expect. 
 Equation (64) cannot be generalized in any simple way for the case of the 
macroscopically moving particle, even though the corresponding relation (67) is true for 
the Dirac electron, in general.  The basis for that discrepancy is to be found in the fact 
that the Schrödinger operator ξ corresponds to the vector r* = x* in the model precisely 
only for P = 0, and even for slow velocities, it will correspond only approximately.  

However, Sɶ  is even, and one must then expect that a rigorous correspondence with the 
model will exist for it, as well (as has been true for all even operators, up to now); i.e., 
that the relations (62a, b) that were established for the Dirac electron (for positive energy) 
will also be true for the model with no changes.  The fact that this suggestion is actually 
true can be proved most simply on the basis of a Lorentz transformation with the use of a 
theorem on the dependency of the position of the center-of-mass of a closed, material 
system on the reference system in relativistic mechanics (2).  In that way, the model-
based conception of ξ as the difference between the position vector of the particle and its 
center-of-mass, which depends upon the reference system, will be corroborated [cf., (24) 
and (59)].  However, we shall avoid presenting the proof of that here again. 
 
 
 

                                                
 (1) The classical model behaves as if a negative mass – µ0 orbits at a distance of | r* | with a velocity of 
dr* / dt; cf., [I, Section 4.2]. 
 (2) A. Papapetrou, Praktika Akad. Athen 14 (1939), 540.  
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§ 4.  Energy functions. 

 
 1. We have already referred to the analogy between the Hamiltonian function (2) of 
the Dirac electron and the energy function (7) of our model in the introduction.  That 
analogy will emerge even more clearly when we now decompose the individual terms in 
the Hamiltonian (2) into their even and odd components, and calculate the associated 
distinguished expectation values. 
 To that end, we decompose the Hamiltonian (2): 
 

H = H1 + H2 ,  H1 = c (α, P),  H2 = α4 µ0 c
2.  (68) 

 
The splitting of H1 into an even and an odd component will come about when one 
substitutes the ηk that corresponds to (21) for αk .  One will then get: 
 

H1 = c2 P2 H−1 + c (η0, P) 2 /i Hte− ℏ .    (69) 
 
With the introduction of: 

η4 = α4 − µ0 c
2 H−1,     (70) 

 
which anticommutes with H and is therefore “periodic,” H2 can be split correspondingly: 
 

H2 = (µ0 c
2)2 H−1 + µ0 c

2 0 2 /
4

i Hteη − ℏ     (71) 

 
(η0 and 0

4η  are the initial values of η and ηk , resp.).  Now, it follows from (69) and (71) 

that: 
 H = {c2 P2 + (µ0 c

2)2} H−1 + c (η, P) + η4 µ0 c
2  

  = H + c (η, P) + η4 µ0 c
2, 

or 
∆H1 + ∆H2 = c (η, P) + η4 µ0 c

2 = 0.     (72) 
 
The sum of the odd parts ∆H1 and ∆H2 in H is zero then, as it must be, since H is 
constant.  From (72) and (70), we can also put ∆H1 and ∆H2 into the form: 
 

∆H1 = ,
d

P
dt

ξ 
 
 

, ∆H2 = (α4 − µ0 c
2 H−1),   (73) 

 
which are expressions that can be carried over to the model immediately. 
 
 
 2. In the context of the model, one can decompose H * in eq. (7) analogous to (68): 
 

H * = 1 2H H∗ ∗+ , 1H ∗ = ,
dx

P
dt

∗
∗ 

 
 

, 2H ∗ = 0

4

u

u
µ0 c

2.   (74) 



Hönl and Papapetrou – On the internal motion of electrons. III. 28 

The correspondence between 1H ∗  and H1 is now implied directly by the Breit  relation 

(4).  For 2H ∗ , one will correspondingly shift: 

 

0

4

u

u
→ α4 .      (75) 

 
The oscillations 1H ∗∆  and 2H ∗∆  of 1H ∗  and 2H ∗ , resp. will be, analogous to (73): 

 

1H ∗∆ = ,
d

P
dt

ξ ∗
∗ 

 
 

,  2H ∗∆ =  
2

0 0

4

u c

u E

µ 
− 

 
µ0 c

2.   (76) 

 
(E = energy constant).  From (74) and the meaning of dξ * / dt as the microvelocity, one 
easily confirms that the oscillations 1H ∗∆  and 2H ∗∆  will cancel each other, in analogy 

with (72): 

1H ∗∆ + 2H ∗∆ = 0.     (77) 

 
 
 3. It only remains to be proved that the even expectation values of H1 and H2 
coincide exactly with the constant parts 1 1H H∗ ∗− ∆  and 2 2H H∗ ∗− ∆ , resp., in the model for 

arbitrary translational velocities, while they will coincide with the oscillating parts 1H ∗∆  

and 2H ∗∆ , resp., only for small translational velocities.  In that way, the parallel 

correspondence (75) will also be fully ensured.  Now, one has, in fact: 
 

1

g
H = 2 2 1c P H−  =

2
0

21

vµ
β
′

′−
= 

3

1
k k

k

v p
=

′ ′∑  → 1 1H H∗ ∗− ∆ ,  (78a) 

 

2

g
H = 2 2 1

0( )c Hµ −  = 2 2
0 1cµ β ′−   → 1 1H H∗ ∗− ∆ ,  (78b) 

 
in which v′ = β′ c is the group velocity for a wave group with a sharply-defined impulse 
p′ and positive energy (1). 

                                                
 (1) In the previous presentation of the correspondence between the Hamiltonian operator for the Dirac 
electron (2) with the classical Lorentz electron energy: 

E = 
2

0

21

cµ

β−
 = 

2

3
2 20

1
01

1k
k

k

v
cv

µ
β

µ β
=

+
−

−∑ , 

it was causally suggested that since one can deal with the velocity components vk in parallel with the 

matrices c αk , one must also let 21 β− correspond to α4 .  [G. Breit, loc. cit.; cf., also V. Fock, Zeit. 
Phys. 55 (1929), 127.]  We can now make that concept more precise by means of our distinction between 
expectation values of even and odd type.  If one restricts oneself to the even expectation values of the terms 
in the Dirac operator H then, from (78a) and (78b), one will led to precisely the Lorentz electron energy (in 
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 As far as the odd expectation values are concerned, for a translation along x3, as in 
(43), and with the matrix representation (29), one will get immediately that: 
 

2H∆  = µ0 c
2 ⋅⋅⋅⋅ 4

u
α = 0.    (79) 

 
That will correspond to the fact that one also has 2H ∗∆  = 0 in the model, since [cf., (76)] 

u0 / u4 , as well as µ0 c
2 / E, will assume the value  21 β− .  1

u
H∆  and 1H ∗∆  will 

correspondingly vanish.  For a translation along x1, (40) and (40′) will yield, after a 
simple calculation: 
 

2
2

0

H

cµ
∆

= 2 /1
2

0

21

/
i tp

e
N c c

ε

ε µ
′′−⋅

′ +
ℏ + conj. = − β′ cos 

2 tε ′
ℏ

.  (80) 

 

The relative amplitudes of oscillation 1H∆ and 2H∆  will then possess the magnitude β′.  

On the other hand, one will get 2H ∗∆  when one reverts to (76) with the help of a Lorentz 

transformation to the circular motion of the model in its rest system (with the coordinate 
system that is coupled with the center-of-mass).  Let 0

1u  = 0
1 0uβ  be the x1-component of 

the four-velocity of the particle in its rest system the (76) will imply, with a Lorentz 
transformation, that: 

2
2 202

02 0
0 4 0 1

0
2 1

0
1

1
1 1 ,

1 .
1

uH
u

c u u u

β
β β

µ β
β ββ

β β

∗ ′−∆ ′ ′= − − = − − 
′+ 


′ ′= − − ′+ 

  (81) 

 

Now, one will have 0
1β  = cos 0 02E t

ℏ
for a particle that rotates with the speed of light, in 

which t0 is the time coordinate.  E0 = µ0 c
2 is the energy in the rest system.  On the other 

hand: t0 ≈ t, E0 ≈ E′, up to quantities in β′ 2.  For slow translational velocity, one will then 
have: 

                                                                                                                                            
which one must naturally replace 

k
v′  with the sharply-defined vk , and β′ with β).  It will then be more 

reasonable to associate the summands in the Lorentz energy expressions with the even parts of the 
operators H1 and H2 .  The decomposition of H1 and H2 into even and odd parts: 
 

H1 = c (α – η, P) + c (η, P), H2 = c (α4 – η4) µ0 c
2 − η4 µ0 c

2 
 

[corresponding to (69) and (71)] will imply the following association: 
 

vk → (ακ – ηκ) = c2 P1 H
−1, 

21 β− → α4 – η4 = µ0 c
2 H−1. 
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2
2

0

H

cµ

∗∆
 ≈ − β′ cos 

2E t′
ℏ

.    (82) 

 
One sees from this that asymptotic agreement with the expectation value (80) for Dirac’s 
theory will be achieved once more. 
 
 Erlangen and Athens, May 1940. 
 

_____________ 
 


