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The correspondence between the Dirac electron and ltelipole particle will be examined. The parallel
correspondence can be pursued in an especially cleahmagh the distinction between the even and odd
parts of the Dirac electron and through the calculatiotymical expectation values for them (Section 1).
That method will be applied to the details of the macrdionand the micro-motion (i.e., zitterbewegung)
of the electron (Section 2), proper angular momentugati@ 3), and the energy function (Section 4). In
all cases, there is a very precise correspondencstupgests that one can regard the pole-dipole particle as
the classical model for the Dirac electron.

This third part of the examination of the internal motof electrons pursues the
objective of confirming in detail the correspondence thas described in the first two
parts between the physical systems that are chawztdsy pole-dipole particle$)(and
the Dirac electron. In any event, the simple relativistic rasmt cannotbe considered
to be the corpuscular counterpart to the Dirac elecsimge it has no internal degrees of
freedom that would correspond to the electron spin. die-dipole particle behaves
quite differently, since its internal rotational motigpossesses a proper angular
momentum that makes it possible to draw a parallel ®lstron spin. We shall now
investigate the extent to which that correspondence reanhéetail; i.e., the extent to
which the pole-dipole particle can serve as a clasmicalel for the Dirac electronWe
glimpse that the problem for the model is to present a corpuscular courtéoptire
wave picture oDirac’'s wave mechanics for the spinning electtbat behaves in relation
to it in the manner that the simple (relativistic) ssgpoint relates to thde Broglie-
Schrédinger matter waves.

We would like to confine ourselves torce-freemotion in the comparison that is to
be carried out. In that case, theac electronwill be described in a well-known way by
the wave equation:

hoy
Hy+ —-—]=0, 1
v i ot )
with the Hamiltonian operator:
H:C(O'l Pi+ax P+ a3 P3)+0'4,UQC2, (2)

() Hénl and Papapetroy Part I: Zeit. Phys112 (1939), 512; Part II: Zeit. Phyd.14 (1939), 478
(referred to as | and Il in what follows).
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in which one has the commutation relations:
7l
Pk X1 —X1 Pc=—da k1=1,23), (3a)
i

Qe Q) + Q) Q= 2 Ox) (K, A=1,2,3), (3b)
(Eo = i ¢ is the rest energy of the electron). Bseit (‘) first remarked and
Schradinger (%) followed through with in detail, the well-known “tradi’ connection
between impulse and velocity in the mechanics of poads®s is abolished for the Dirac
electron. Namely, if one takes the time derivatigvehen one will get:

dx _ i
X = _(Hx—%H) = 4
ot h(XkX()CO'k (4)

from the general prescription for taking the time denwaof an operator and from (2),
(3a), and (3b); i.e., a quantity whose eigenvalues are The expectation value df /
dt will then generally possess an order of magnitadie any case. That will be true
independently of the expectation value for the impulséd, fan a wave group with a
sufficiently-sharply-defined macrovelocity)( that impulse will be connected with that
velocity in the usual manner for a relativistic pointssilaSchrodinger has interpreted
that discrepancy between microvelocity and macrovglocy saying that the Dirac
electron does not move rectilinearly, but performs a kahaitterbewegundjittering
motion), in such a way that the center-of-mass efdlarge cloud moves back and forth
with a very small computable amplitude and an oscillaspged of light, and therefore
advances with a macrovelocity that is very smalloms situations. All of the details of
that zitterbewegung are obtained by integrating equatiom (#jei sense of the operator
calculus (Section 1).

The behavior of the Dirac electron now exhibits akisty similarity with the
behavior of thepole-dipole particle which one can describe classically. From I, that
particle shall be characterized by the following systéequations):

i(ijsi(muﬂ—Zﬂﬁuﬁua+ﬂ”):0 @B=1,2,34), (5
ds\ c ds

U, —mu,=0. (6)

() G. Breit, Proc. Amer. Acadl4 (1928), 553.

() E. Schradinger, Berl. Ber. (1930), 418bid. (1931), 63 (cited as A and B in what follows).

() The “macrovelocity” is then sharply-defined when dsalealing with a (monochromatic) wave
group with sharply-defined impulse components. We shaltavsing the word “group velocity” for it,
since the center-of-mass of the wave group takes ppreaisely the “zitterbewegung.”

() In that article, we especially considered the systemgahtions that arises from the general eq. [,
(43)] by setting the tensar,z equal to zero; cf., also Section Il, Section 3. Tdhe-vectorp, that was
introduced there is referred to ashere.
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P, is then the energy-impulse vector, so (5) will exptéssconservation of energy and
impulse (force-free motion). The, are the velocity componends, / ds of the particle,
in which the derivatives of the coordinatgsare taken with respect to proper tispasuch

that one will haveu” u, = 1 at every point of the path (in particulag,= 1/ /1-3*,

wheng=v/cis the speed of the particle dividedd)y Correspondingly, the derivatives
that are denoted by a dot will be understood tomuerivatives with respect to proper
time. The internal structure of the particle veitlaracterized by its mass pafe(scalar)
and its dipole momemt, (four-vector).

Now, as was shown in Part |, the system of eqnat{b), (6) possesses solutions that
correspond to aircular motion of the pole-dipole with constant velocity, while the
same time, the resultant impulBewill vanish (i.e., a particle that is macroscoflicat
rest). The macro-impulde and the internal (micro-) velocity of the partieee then to
be regarded as also being coupled by that to 4 greent. If one overlays the circular
motion of the “rest” particle with a translationeththeconstantimpulseP will assume
the magnitude that belongs to its macroscopic Wglom the sense of the relativistic
mechanics of point-masseB,(= four-vector). It is, moreover, remarkable thhae
formulas for the circular motion admit tipassage to the limitmicrovelocity v— speed
of light cwithout the rest mass and impulse moment becoiniimte in the process').

In what follows, that limiting case shall always iowoked when one compares things
with the Dirac electron.

The following conception oschrédingers zitterbewegung will then be based upon
our model: In that model, the zitterbewegung ofcberdinates of the Dirac electron that
remains when one solves for the macro-motion veltépresented by a periodic orbiting
of the particle around a circular path that isiatly oriented arbitrarily; the electron spin
comes about with the speed of light by the orbibh¢he particle.We will show that this
model-based conception of the proper properties of the Dirac electrolangély justify
the motion that Schrédingeliscussed for force-free motion, up to the more complicated
details. For the time being, we would like to satisfy alves by establishing that in the

2
limiting case ol - c, the model will yield a frequenc[y: 2h cj and radiu{:_zﬁil)c j
Ho

for the circular orbit that coincide with the fremcy and amplitude, resp., of the
coordinate oscillation for the Dirac electron wheare assumes that the internal impulse
moment (spin) in the model is quantized in units bf(cf., Section 2).

Naturally, the concrete intuitive character of thedel goes far beyond thairac
electron ). That can already be expressed by, e.g., theHatthe measured valued of

() Moreover, that passage to the limit sheds a peculiat ¢ig the problem of theelf-energyof the
particle that is due to its electric charge. Namelghws that the infinite self-energy of the point-charge
of the particle is not only consistent with a finitetrmass, but that the going to infinity of the mass pole
is even the condition for the internal (micro-) véigpcof the particle to attain the speed of light
(asymptotically). (I, Section 2.2)

() The fundamental impossibility of verifying the statenseof the model by experiments shall not be
discussed here. In that regard, it is, however, of greatest that, fronSchrédinger, the geometric
configuration of a system with rest maggscan be observed with a linear precisioroof 7/ 2u, ¢, at
best. It emerges from that imprecision that it walimpossible to make any concrete statement about the
details of the internal motion. On that, Schrddinger, Berl. Ber. (1931), 238; in particular, equations (5)
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any velocitycomponen{eigenvalue otay) is capable of taking on only the values
for the Dirac electron, while in our model, all intediae values betweenceand —c
will be possible, and the extreme values still depend uperotientation of the orbital
plane ¢). One should then perhaps expect that the model must Bosvn for the details
of the spin motion. However, the fact that thisnii0 way the case, and the fact that, in
contrast, it underscores a very far-reaching correspoadeiicemerge in the following
sections.

The physical systems that are defined, on the one band,), (2), and (3a, b), and
(5) and (6), on the other, seem to have no similavith each other, on first glance.
However, if one eliminates th&, from equations (5) then one will get the enecdy P.

in the form:

H*:V1P1+V2P2+V3P3+ﬁ,uoC2, (7)
u,

in which up represents the value of for a particle that is macroscopically at restefd,
(70)]. Now, when one observes (4) and regardal, as a parallel tar, the expression
(7) will, in fact, exhibit a striking analogy with theakhilton operatoH of the Dirac
electron. In the final Section 4, we will go furthéah that and see that this formal
analogy is based upon a deeper-lying correspondence. Qrlé also have to expect
corresponding relationships for other operators — e.g.ftiggoscoordinates, spin —
(Section 2 and 3).

The negative-energy statesvhich are anomalies of the Dirac electron, play an
essential role in the following investigation. Thetfimake it possible to carry out the
comparison of the Dirac electron with the model ofahgiting mass-point in detail, and
indeed without appealing irac’s theory of positrons. Whether or not the choice of
certain special representative wave functions that lvedl $ase the comparison upon
might not seem mandatoaypriori, the results will allow one to recognize an even more
striking analogy between the behavior of the model andirec electron. The deeper
physical basis for that correspondence can perhapauétsa the fact that the relativity
postulate upon which the unification with the principlesgaéntum theory iirac’s
theory is based already represents such a narrow caatépimework that any electron
model that is free from internal contradictions andvedl@ne to calculate electron spin in
a relativistically-invariant way will agree with ther@¢ electron?).

The comparison that is carried out in what followd & based upon the two cited
papers bySchrddinger on the quantum dynamics of electrons. The results ate
obtained will rest completely upon the “method of tidegpendent operators” that will be
introduced there, and which consists of the fact thatithe-dependency of the wave

and (10); cf., alstd. T. Flint andO. W. Richardson Proc. Roy. Soc. London (A)17 (1928), 625 and
637.
() From the model, one would expect the correspondence:

2 2 2 2 2 2.
c' =V, +V2+V§ - Cz(a'1 ta,+a,);
however, in reality, one haafz 1 for every individual k Correspondingly, the measured value of the

square of every velocity component, and therefore, the &tfmrvalue, as well, is alway$ in the Dirac
model.
() The authors thank Herrn Pr#fl. Heisenbergfor a discussion of that viewpoint.
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function ¢ in equation (1) will be “inherited” from the operatorshal method has the
great advantage for us that, of all the quantum-mechaniggdoats, it comes closest to
the viewpoint of corpuscular theory.

8 1. General considerations regarding Schrodinger’s zitterbveegung.
Viewpoint for the comparison with the model.

1. The “equation of motion” for the arbitrary operafor

hOA LA AH, ®)
i dt

can be generally integrated in the sense of the opetulus ?):
A(t) = eth/h A(O) e—th/h. (9)

H is to be regarded as an operator in (9), as well as int (8);a c-number. A(t)
accordingly emerges frorA(0) by a special unitary transformation, which is eihtire
analogous to the way that motion can arise from a seguef infinitesimal contact
transformations in classical mechanics. The expectatalue A of A at the timet is

then:

A = [ ¢ 0)AM)w (0)dx, (10)
in which ¢0) means the wave function at titne 0, which is assumed to be normalized:
[ ¢ 0w (0)dx=1. (10)

[Integration over the coordinate spage Xz, X3 ; summation over the spin indices has
been suppressed in the notation of (10) ant.{10

Now, the distinction betweegvenandodd operators plays a fundamental role in this
method of time-dependent operators, and it is tnkéth the existence of states of
positive and negative energy in the Dirac electfdn We shall understand an even
operatorG (') to mean one that takes a wave funcgphthat consists of an aggregate of
eigenfunctions withonly positive energies to other such wave functionsl létewise
converts a wave functiogg~ that consists of eigenfunctions wibhly negative energies
to another such wave function. By contrast, an @oeratorU will take ¢* to ¢/~ and
¢~ toy™; in formulas:

Gy'=y", Gy =y, Uy =y~, Uy =y". (11)

() E. Schrodinger, A, § 2.
(®) E. Schrédinger, B, § 2.
[l Translators noteG = gerade= evenU = ungerade= odd.
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It is easy to see that every arbitrary operdt@an be spliuniquelyinto an even and an
odd part:

A=G+U. (12)
Namely, if one represents the operaidsy a matrix fieldA (E, E') whose “elements” are
ordered by the eigenvalués E' of the energy functiof then that field will decompose
into four separate regions I, I, lll, 1V, sinc&|| (|E' |, resp.) is alwayg o ¢ (Fig. 1):
The matrix fields | and Il by themselves will yield trepresentation d&, and Il and IV
by themselves will yield the representatiorof

-E

2mcé

+E

Figure 1. Matrix elemeng( E') for an arbitrary operategk =G + U. The diagonalE =E' (E=-F,
resp.) correspond to the representation of an opetsibicommutes (anticommutes, resp.) with (The
locations in the interior of the central cross visteam width 2 ¢? are meaningless.)

A sufficient, but not necessary, condition for anrap® A to belong to the even or
odd type is that is must commute (anticommute, resith)hv(}):

HG — GH=0, HU + UH = 0. (13)

Since the representation ldfin the eigen-system contains only diagonal elemeriighw
we can express symbolically by:

H (E,E') =E 5 (E - E)

(with theDirac o-function), we will get from (13) that:

() According toSchrédinger (B), the necessary condition for an operdtdo be even or odd is that a
finite commutator (anticommutator, resp.)fomust vanish. Hence, the first commutatoAa$ K; = HA —
AH, the second on&{, = HK; — K;H, etc.; the first, second, etc. anticommutatorAofs defined
correspondingly. A general analytic prescription for 8plitan operator into its even and odd parts was
given byW. Pauli, Handb. d. Phys.XXIV/1, pp. 229; however, such a decomposition is unrsscgsor
the calculation of expectation values (offra).
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(13)
U(E, E')(E+ E)=0.

G(E, E)(E- E)=0, }
G (E, E') can then possess non-vanishing elements only ferE, andU (E, E'), only for

E' = - E, which agrees with our assertion. It will then folldnom (9) that for all even
(off, resp.) operators that commute (anticommute, regfh)H, one will have:

G (t) =G (0) = const. (14a)
or
U(=e " U(O)=U(0)e ", (14b)

resp. The result (14a) is obvious; however, from (14ldpkes on a universal, apparent,
“periodic” time-dependency of the operator with a “freqeye of 2H /7.

The “zitterbewegung” of the position coordinatesin the Dirac electron that was
mentioned in the introduction is now based upon the fattahe part ok« (which will
be denoted by, in what follows) can be split off that has odd typé anticommutes
with H; its time-dependency has the type of (14b), accordinglywever, the arguments
in this section show thatny dynamical variable will perform a corresponding
zitterbewegung that possesses a component that antigeswwithH; i.e., in general,
any variable that is not a constant of the motion. &i@s, in order to recognize the
nature of that zitterbewegung more precisely, it is utsive to go from operators to
expectation values. Furthermore, that shall happen inexgemanner.

2. For what follows, we assume that is Hermitian and anticommutes with
(which are two conditions that will be fulfilled by adif the operators that will be
considered in what follows). Now, it should be remdrdkeom the outset that the
expectation value df) will always vanish whetJ is applied to a “pure positive” wave
function (") or a “pure negative” oney("), since, from (11)U ¢ will then possess the
opposite character tg and the wave functiongg™ and ¢/~ are orthogonal to each other.
U can then possess a non-zero, time-dependent expectatien only for a “mixed”
wave function =" + .

Since the eigenfunctions of the force-free moving pdartian be represented by:

a,(p, P, p,) €,

in whichp (p1, p2, ps) means an eigenvector of the impulse and the amplitafieshall
belong to a positive-energy state, while the amplitudgsshall belong to a state of
negative energyd=1, 2, 3, 4), we set:

W) = [{a (P +4,(p} € dr, (15)
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in the case of a general superposition, in whkiemdp means a triple of values, x,, X3
(p1, P2, Ps, resp.) , and the integration extends over all of isggpacedp = dp; dp
dps). With the abbreviation:

W (p) = e, (16)

from (10), the expectation valig will become:
U = ([ {arm+a (p}e(n oy 4( B+ a( Ble( D dpc a7)

Now, sinceU is odd, one will have:

Y (Pe(p U B P d=) [a Py (pUg(Be(p d=0,

and due to the Hermiticity & [cf., (16)]:

; [a(Pe(PUg(B@( P b= 2 [a(Pe(PUF(BE( B d%m.
Hence, (17) will become:
U = Z [[[ & (P (P dpU g( Bew( B dpd + con;. (17
Moreover, if one considers (14b) (viz., the anticomation ofU andH), as well as the

fact thata, (p) ¢ (p) is an eigenfunction ofl with the eigenvalue < (p'), and if the
eigenvalues ofl are denoted by:

E=zc i+ pi+ g+ B =2 (D)
then (17) will become:

U= Y [[[ 2(p¢ (P dpU0) g( D@ ( p) 8" dpd+con.  (17)

Since the operatdd(0) acts upon the spin varialte it can be represented by a matrix
U, such that:

U,

> ZIJI a (py(pdpU, g( Hw( H &P dpd+conj. (17')
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At this point, we would like to make the assumption thatoperatot) depends upon
only the quantitiesr, andP, (but not upon thes) (*), which is an assumption that will be
fulfilled for all of the special operators that amnsidered in what follows. Due to the
orthogonality relation:

[w Py (p)dx = 2m)B(p, - P)A(R,- B)O(R- B)  (16)

tgle integrations ovex andp’ in (17) can be performed immediately. One witriget
():
U, = myY Y [a(p) Uy, (p) g (P & ©*" dp+ conj, (18)
p P

which will imply the dependency of the matrix eleméJgp,(p) on thepx when one

replaces everl with its eigenvalug .
An analogous argument that pertains to the evarGwill lead to the result that:

G =m’ Yy [{a (PG, (Mg (p+a(p G(bach d (19)

in which G,
will be assumed thab depends upon only, andPx.)

The expressions (18) and (19) admit an extensiatwvte will make frequent use of in
what follows: Let an operatdk = G + U be given, whose parts andU depend upon

only a, andPy, so the expectation valués andLTt can be calculated in such a way that
one applies the schema in formulas (18) and (1lgito A, instead of3 (U, resp.) }):

.(p) is defined in a manner that correspondyﬁg(p). (Here, as well, it

G=A'=(2my Y Y [{a (M A, (g A+ (D A (D a(Y d (20a)

() More precisely: in the form of a sum of productpoivers:
Max OIR™,

K k

whose matrix elements are represented by:
(I‘Iaﬂk] [ s om0
K oo’

. . . . . 0 . " . .
(p-representation). Upon introducing that representation iremét)  in (17"), a further integration

over p" will be needed. (One must then wri€ instead ofy', in the part of the integration in (17) that
follows from U? )
() More precisely: ovex, p, andp”; cf., the previous remark.
() In fact, one has, in general, fa= G + U, with = ¢* + ¢~ :
[ Gudx=l (" Gy +y Gy )dx=TW Ay +y~ Ay)dx
Fo " Ugdx=T (@~ Uy +y~ Uy )dx=T(@ " Ay +y~ Ay dx

from which the assertion will emerge immediately.
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U = @)y 3 [a(p) A, (P 3 (P € dr+ conj, (200)

[with the corresponding meaning for the matridegg as Ggp. (ng,, resp.)]. We would

like to refer briefly to the expectation valuesfothat are constructed in that wayeagn
and odd expectation value$n the event thah depends upon only the andPy (but not,
by contrast, on th&), those expectation values can be calculated wittiee algebraic
decomposition oA into G + U (4.

The general outline of zitterbewegung can nowdaal roff from the expressions (18)

and (20b) with no further assumptions. One fiwssthatLTt(E, resp.) will always

vanish when the positive and negative spectral dwswa (p) # 0 anda” (p) # 0 overlap
at least partially(). Moreover, the time-dependencyldfis clearlyalmost-periodic in
general, since the time factor in the integrand el integrated ovep. It is only in the
limiting casewhen one is dealing with the superposition of tnwwonochromatic wave

systems of equal and opposite energhm;LTt will be strictly periodic and indeed with

a frequency that correspondstwice the energy of the wave system. However, in the
individual cases, the form of the zitterbewegung peove to be very different depending
upon the composition of the wave group.

3. We would now like to turn to the application oefe general considerations to
the comparison between the Dirac electron and adefrthat we would like to pursue.
One would initially expect that, in general, an lagg exists between the analytical
expressions that characterize the dynamical staemtijies of the model and the
corresponding operators of quantum-mechanical syste a manner that is similar to the
way that the dynamical variables of many systems loa carried over to quantum
mechanics directly (e.g., tlgohr model of the atom). However, if one goes from the
operators to the expectation values then one wibanter the fundamental difficulty that
the concept of a well-defined physical situatioattivould be represented by the wave
function ¢ in quantum mechanics is foreign to classical dyinam One would then
expect only that a model might correctly give tharacteristic outline of certatgpesof
situations, in some approximation. That will imalygeneral viewpoint for the following
investigation:

Any dynamical variableA’(t) of our model {) — e.g., coordinate, proper impulse
moment, terms in the eigenfunction — proves to anation of time for an arbitrary,
translating particle, from which a certain periadig-oscillating part can be split off that
is due to the internal rotational motion. One saspecthat this splitting of At) has its
guantum-mechanical analogue in the aforementiongldtisg of the corresponding
operator A into even and odd partad then seek to perform that splitting with nhest
precise analogy that is possible. The separatiotiheo periodically-oscillating part of

() ltis easy to see that the conditions (13) will alsvle fulfilled for operatoré\ that depend upon
onlg/ ay andPy (in the form of products of powers), and one will therefoave (14a) and (14b).

() Cf., onthatL. de Broglie, L'électron magnetiqueParis, 1924, pp. 299.

() The quantities that pertain to the model will be dedatith an * in what follows.
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A’(t) will then becomeuniquein the cases examined, since the correspondence with th
even and odd parts éfis, in fact, very precise. As a uniquenesgerion, we shall now
demand that the periodic partAfthat remains after splitting — viz., the “even” part-
must correspondxactly with the corresponding expectation val@ for the Dirac
electron for a wave group with sufficiently sharplyidetl impulse and sharply-defined
(positive) energy. However, such a splitting Af will, on the other hand, already
approach the form of the corresponding operatoand can then be performed in each
case in a completely casual way (

On the other hand, since, as we have seen, the tinatidn U, of the expectation

value ofU(t) depends upon the basic wave functipbm an entirely essential way, there
would generally be no unambiguous sense to speaking ofnaplitade.” It might be
helpful for one to then go frot(t) to its squaréJ?, which is even and time-independent;
the calculation ofJ? for a wave group with a sharp impulse would then cleairlg g
measure for the “amplitude” ad(t). However,U? would still not encompass all of the

detailed behavior olfTt (characteristic of this is the fact that the tim@eledency ot(t)

will drop out when one forms?, for which no analogue exists in the classical model!).
For the comparison with the model-specific quaritit{t), one will have to choose a

wave function that leads to the most representative Ead}i!m:valueLTt that is possible.

That being the case, we would like to regard the stretmglg-periodic limiting case that
was considered above and consists of the superpositiomoofmbnochromatic wave
trains withequal impulse and equal, but opposite, energiie choice of wave function
will still not generally be established uniquely with tlafinition, and we will have to
make an even narrower choice later on (Section 2).

In fact, we shall now show that for a suitably-admwspecial wave function in the
most important special cases that will be examineda &nallparticle velocityv' (more
precisely, up to the terms that direear in 8=V / ¢) (%), one will get precise agreement

between the behavior OtTt and the model-related quantity () [assuming that one

goes to the limiting case for the model that was maatan the introduction for which
the internal (micro-) velocity of the particle attaithe speed of light]. Noticeable
deviations first appear for large particle velocities gmdw with increasing particle

velocity until finally the correspondence breaks down mamed more in the

neighborhood of the speed of ligh}. (

() By contrast, it does not seem justified from the efuts perform the separation of the periodic part
U of A in such a way that itemporalmean will vanish, since no precise analogue for thatsekis

quantum dynamics. Sindg, is onlyalmostperiodic, in general, the temporal meanuof does not need

to vanish. (The sequence of integrations qvandt is not arbitrary, in general.) Thoperatornotation
(14b) gives only thempressiorthat the “temporal mean bf (t)” must vanish.

() The “particle velocity’v' is the velocity that belongs to the eigenvalue of ithpulsep' (the
expectation value of the macrovelocity would be equal tor@hfe special wave function that we have
assumed, cf., Section 2).

() One might perhaps be inclined suspect that the incrégsinticeable lack of correspondence with
increasing particle velocity is a contradiction to telativity postulate; cf., however, concluding remarks to
Section 2.
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8 2. Macrovelocity and microvelocity. Coordinate oscillation.

1. According toSchrédinger, theBreit equation (4):

d)&
— K= 4
at Cax ( )

can be integrated on the basis of the remark thatnot, in fact, thex themselves, but
probably, as one confirms immediately, the quantities:

M= ac—c H P, (21)
that anticommute withi:

Hn+ e H=0. (21
Hence:

/7k - ,7|(() e—|2Ht /h: e|2Ht/h/7|?a (22)

in which the 70 mean the ‘“initial values” of the operatoms at the timet = 0 (i.e.,

integration constants). Upon substituting (22) in (21), onié get, after repeated
integration:

Xk:ak+C2 H1 Pkt_cz;—?ﬂEH_le_iZHt/h, (23)

with ax as further integration constants. It is significdratt ho integration constants that
would correspond to the impulse of the particle appea 2B). Moreover, the
expectation value of the impulse at titre O is determined from the initial wave function
= 0).

From (23), the coordinate can then be decomposed into two components of an
essentially different character:

X = X, + &, (24)

% = ac+ P H Pt (24a)
Ch o1 imum_ Ch_ . a_ Ch .

g(k:_Em(()H I 2Ht/r:_E,7kH l:EH 1,7k. (24b)

That decomposition corresponds to the splittingxahto an even and an odd part. The
even part ) % increases linearly in time. One sees that mostlgifnpm the original

definition (10) of the expectation values; for a wavehvatsharply-defined propagation
vector (viz., impulse) and positive energy, one willrtlyet:

() One easily confirms that tlecondcommutator ofx vanishes, so from the definition in rem. 1 on

pp. 6, % will be even. Thdirst commutator ofX will then be the component of the macroscopic
velocity of the particle, up to the factar/i .
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1 2
c’H'R =¢? ’8 (25)

ijuwdx \/,

%= g +V L. (28)

and correspondingly:

However, the calculation will require a special ekation in the limiting case of
strongly-periodic expectation valuegu = g?k

Next, the “amplitude” of the oscillatiof can be estimated when one goes fi§to
its squareé’, which is even, and then calculate its expectatidnevavith the wave

function of the particle at rest. Singe can be replaced with for the rest motion, one
will then get directly from (24b), (2} and (3b):

2 _ CH Y H = Ch) —Z729 _| h ’
fk—( jnk nH ‘(2.) a’H —(Zﬂocj. (26)

From (22) [(24Db), resp.], the associated frequemithybe:

= 2_E0 = _Z’UOC (26)
i ho

if Eo = 1 ¢ is the rest energy of the particle.

It is very remarkable that the expressions (2@) @®) for the expectation value of
the amplitude-squared of the coordinate oscillatod the frequency, resp., correspond
precisely with the corresponding expressions ferrttodel t). In fact, from [I, (91)], the
magnitude of the impulse moment will pgcR if R denotes the radius of the orbit. For
a particle with a quantized impulse moment of magis 17, one will then have:

h C _ 24C
2u,c’ R h

R= (27)

2. We now want to link the more precise discussiothefcorrespondence between
the Dirac electron and the model to formulas (28&a) (20b) for the even and odd
expectation values of an operator. The choice sditable customized solution to the
wave equation will prove decisive in that.

() One should therefore observe that the expectation ya)eof {f is independent of the indekx
Naturally, that argument cannot be interpreted intuijiuelthe model. However, cf., the sharpening of the

correspondence in what follows by comparing didd expectation valueg, andca, with the quantities
in the model.
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We next notate the solutions of the Dirac wave equdhat will be required in what
follows. If we make the Ansatz ofpdane wave:

[/Ip (X, t) - a,D I:bi(p1X1+ PaXot P3Xg~ EY/ 2 , (28)

and employ the usual representation fordhenatrices:

(29)

K
Il
R
Il

then the Dirac equation (1), (2) will belong toyatem of equations for the amplitudes
in a well-known way, which will possess non-zerdusons if and only if the energy
parameter assumes one of the eigenvalues:

E=tc \/,u0202+ PP+ pi+ p=zte
Any two of the coefficientsy, are freely available (which will be denoted by eppase
letters in what follows), while the other two aretekmined by them. That implies the
following cases:

a) Positive energyE > 0 (¢=E):

8.1:A, a2:B, a3: p3A+(r‘1+ Ip2) B a4: (pl_ipZ)A_ QB (30a)

glc+uc glc+
b) Negative energy: E O (¢=- E):

a1:_p3C+(I01+'Pz)D, azz_(pl_lpZ)C_ p3D, a=C, a=D. (30a)
glc+py,c glc+ e

Finally, we record the eigenvalue of energy, theomponent of the impulse momeht
and the magnetic momeht for a rest particle that has only one of the doeffitsA, B,
C, D non-zero:
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Eigenfunction E J3 M3
g (AZ0)........ + 1o & -1n + &
2 2/,C
W BZ0)........ + + -
Y (Cz£0)........ - - -
W (DZ0)........ - + +

We now go on to the definition of tleeld expectation values for the microveloctty
a, which, from (21), will belong predominantly toettodd type for small impulse. In
general, from (21) and (21

a, =1, (31)

since the operator of macrovelociyH™ Py is even

The choice o$pecial wave functioshall now result in the fact that one superimposes
solutions of the Dirac equation with positive andgative energy (Section 1) that
correspond to particles with the same sense otiogbii.e. (for the same sign on the
charge), they possessagnetic moments that point in the same directiblamely, it
proves that with precisely that choice of wave fiorg one can recognize an especially
striking analogy between the Dirac electron andnioelel of orbiting mass-pointd) (

For a macroscopic partictt restand a positive sense of orbiting, the wave fumctio

will then be determined by the superposition of shecial states, and a, (cf., Table
1):

&, =" (1,0,0,005 ¥ @Y (B)"
\/_ (32)
(2mm)~~ 32 12
a = (0.0,015 P (Y ®)"
2
in which the normalization is performed in suchaywhat ?):
@myY [ [ [{| a5 (2| +| & (2]} dp dp dg=1. (33)

() As a foundation for thagpecialchoice of wave function, one can cite the fact thataarethink of
the classical model (viz., the “pole-dipole particle$)@ing composed of a positive and a negative mass
that rotate in the same sense (cf., Part Il). Hemnewe do not place any significant weight on that
argument, since the physical sense of the superpositipositive and negative-energy states is hardly
clear; that foundation can also seem less compellingdifferent regard. By the superposition of other
special eigen-solutions of equal and opposite energy, ohgetjlin part, quite bizarre results (e.g., linear
oscillations, instead of circular ones).

() The normalization condition (33) is equivalent to tlenmalization (10 of the ¢+function, as one
easily confirms upon observing (15), (16), and)16
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With that, one immediately gets from (20b) and (32)] aten one observes that only
the (1, 4) element of the matréx will give a contribution:

ca, :%c(éz%”h + € 2‘50‘”’) = cmos% :
ca, :%c(éz%”h - g% ’h) = - d@3in 220'[ , (34a)
ca3u =0
At the same time, the eigenvalues of even typewaitlish:
ca,’=ca,’=ca,’ = 0. (34b)

For the special choice of wave functi(2B), (32),the expectation valugg84a) of the
microvelocity @ will then correspond to a circular motion of a particle in itxg x2)-
plane that possesses the speed of light at all points of the orbit.

We would also like to calculate the expectatiofuea for the odd operator of the
coordinate oscillatiod explicitly in a corresponding way. Since we caplacer with
ax andH with 14 Ga, for the rest motion, from (24b), we will have:

G=Lyrp L =S g N DG (35)
2i 2i uc? 2u,c i
Now, with the matrix representation (29), one \wdlve:
=i 1 =i
) - ) -1 ) I
a, a =1 i , s 0> =1 1 , s a3z =1 i . (36)
I 1 =i
Thus, from (24b), (32), and (35), one will have:
?1 _ /] B]:(_ieiz‘sot/h +ié'2£(;/h) _ h E;inZ&‘Ot ’
2u,c 2 24,c h
?2: h G]:(eiZSOt/h +ézg(;/h) _ h ©o 2&t ’ (37)
2u,c 2 2u,c h
&=0
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These expectation values, in turn, correspond to the rpoeleisely. Obviously, one has
[cf., (34a), (34b), and (37)]:

K = X = Ca/ku, di: . (38)

TheBreit relation (4) is thus in complete harmony with the model

3. With that, an analogue of the coordinate oscillatiantfanslating particles shall
be examined. One finds the squarédfom a simple computatiori)(

&2 = (7’_20) H?(1-c®H? R2). (39)

The associated (even) expectation value for a wave avéharply-defined impulse will
be:

&’ :[ i j (1L —-F2)(1-B2). (39)

24,

if =V /cand B, =v,/c are the macroscopic velocity (velocity componeresp.) of

the particle. Obviouslyé,> grows with increasing translatory velocity of gharticle in
all spatial directions, but generally most stronglyha direction of translation itself.

In order examine the phenomena that appear uratesiation more closely, we again
consider thedd eigenvalues ofai (the expectation values &f, resp.). Once more, we
correspondingly superimpose states of positiversauative energy with sharply-defined
impulses and equal (positive) senses of orbitingh §;, x2)-plane. The translation
initially results in thex;-direction @, # 0), so, from (30a) and (30b), we can set:

a =%[L°’°ﬁj[@”’“ 1Y (Y (R}

a; _ (27771)_3/2 [ -p,

JN Lele+uc

in analogy with (32), in which, due to (33):

12
By j g'=cA i+ pr. (40)

M=2|1+—1
(€'1c+ f10)

(40)

,o,o,ljtﬂa(pl—p;)a(pz)a(g}“z,

() E. Schradinger, A, eq. (18)gt seq.
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Hence, it will follow from the matrix representati@2f) that:

N 12 )
ca, = 1 I . —
N (&'/c+ pe)

12
ca, = i W w— LT
N (&'/c+ p4c)

ca, =0.
After a simple intermediate calculation, one wil/ba

T
(¢'1c+ ) _

= 1-5%, (41)
1+ pl

(¢'1c+ )
if B’is the velocity that belongs tp, divided byc. One will then get:

c_alu =c41-5"7 H’JOSZ‘;;—t, c_a'zu =c @inﬁ , c_aau =0. (42)

Translation along thecx-direction yields nothing new (except for the olmso

difference that,/ 1~ 32 appears as a factor oy, , instead ofca, ), By contrast, the

translation along thes-direction s # 0) that then results “perpendicular to the orbital
plane is of interest. According to (30a) and (30 set:

a+ - (2777;1)_3/2 1 O pl

7 N T ele+ g
a_ _ (2777/.1)—3/2 O _pl
N UeleHpe

with the corresponding meaning flrand&” as in (40. It then follows from the matrix
representation (29), since the normalization faltdrops out in each case:

OJEW(H ¥ ()Y (R- B},
(43)

,o,g@a(gw(pz)é(a— B8},

ca,’= cleos™ ", ca,'=-cmin®, ca;=0.  (44)
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The amplitudes of the odd expectation valme)§u (k=1, 2, 3) will not be influenced by
translation perpendicular to the orbital plane then.

The explicit calculation of the expectation valuaa be omitted here, since, from (4)
and (24), one has, in full generality [cf., (38)]:

dé,
—X = ca . 38
p k (38)

By employing the special wave functions (40) and (48), ridwestation parallel tog will
then be:

2£’t

12 2£t - h 1 ﬁlZ h ?3 - 0’ (45a)

2,u i <2 = 24,C

and parallel tog :

— i 2t — i 2£’t —
1- ' sin—, 1-8%c¢ =0. 45b
é = 211 V1-8 5 $, = 2116 B°c h é (45Db)

[Cf., the even expectation valueT§, equation (39.]
- 9
. d . . . .
The even expectation valu%% also vanishes in the case of translation, since the
states of positive and negative energy make equdl apposite contributions. (The
impulse and velocity are oppositely direct for shates of negative energy.)

4. 1t is of especial interest to refer to the diffeces from the classical models.
According to (45a) and (45b), the frequency of therdinate oscillation of the Dirac

electron will be 2’ /n, so it has been enlarged by a factor—gef: 1 in

& A1-p7
comparison to the rest partic.( On the other hand, the intuitive model is corape
to a translating clock, and accordingly, its fremgie has been slowed down (time

dilatation) by a factor of\/1- /% in comparison to a classical particle at rest.

Obviously, that discrepancy is directly connectethwhe fundamental wave-particle
duality and cannot be omitted by any change inrtioelel. Likewise, from (45a) and
(45b), the Dirac electron can also have no “normadtentz contraction, as in the
intuitive circular path model. Both kinds of denems have an order of magnitude of
[’ and one will then establish théie correspondence (in the narrow sense) between
the Dirac electron and the intuitive model will lost when one goes to at least quadratic
terms ing".

() One must recall that energy and frequency transfbersame way under a Lorentz transformation
for a de Broglie-Dirac waves(= hv is Lorentz invariant!).
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On the other hand, in the example of the coordinatdlai®n and velocity, it will
become especially clear that one cannot direct ongénteon to the characteristic
limiting cases of the motion that correspond to timeitihg case of even and odd
expectation valueat the same time, but only in successiobhus, forming the even
expectation values ofc will yield a motion that is uniform and rectilinear, damill
exhibit no sort of oscillation. By contrast, thetterbewegung” will show itself when
one forms the odd expectation values, and for a spegidinly case, it will assume
precisely the same character that corresponds to thgive picture of the orbiting
particle. In that regard, the Dirac electron wiltessarily differ fundamentally from any
intuitive model in which translation and internal rotatican differ simultaneously. One
should not regard the fact that for large translatimeddcities there are discrepancies
between the expectation values for the Dirac elearmhthe corresponding quantities for
the model as a fundamental lack cfecialmodel then. Here, and in the following, we
will have to content ourselves with the proof that @hveperties of the model then
separatelyapproach the emergent processes of macroscopic andsoapio motion of
the Dirac electron in certain limiting cases (e.gpecal eigenfunctions, slow
macroscopic motion) asymptotically.

§ 3. Proper impulse moment?).
1. Spin is the true characteristic of the Dirac elattr Its existence as an impulse

moment that is supplementary to the orbital impulse ewdrfx, P] is implied by the fact
that a conservation lavf)(emerges from (2), (3), (8), and (29):

J=[x P] + %s: const., (46)
in which one sets:
[a, a] = 2is, 47)
to abbreviate. Let:
7l 7}
Js = [X, P, =—J[a, al=—5s, 48
B=[X P 7 [a, a] > (48)

so Jg is the orbital impulse moment of the particle & its proper impulse moment
(i.e., spin moment). It follows further from the dwation (47) that:

S=s=s=1, [s, g = 2is, (49)

as well as the fact that tt® have the eigenvalues 1; that further implies that the
measured values of the components of the spin momestar in any spatial direction.

() In the following two sections, the quantitiesP, s, S ... with noindex will always mean spatial
vectors the componentg, Py, s, &, .- k=1, 2, 3).
(®) E. Schradinger, A, pp. 424 gt seq.
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Now, it is known that for force-free translatory tiom, the orbital impulse moment
and spin moment are by no means individually constantpbiyt their sumJs + S'is
constant. Hence, the oscillations of those two camapts must cancel out.

The oscillations ofls and S, which we denote byAJs and AS, can now be given
immediately in explicit form. Namely, sincgis the part ok that is “periodic” in time,
one will have ):

AJg =—AS=[¢ P]. (50)

The spin oscillation is connected with the coordinatllaton ¢ immediately with that.
The associated differential law reads:

d\]B:_d_Szi[x’ p]:[%, } (51)
dt dt dt dt
or also, if one recalls (4):
d
— =-c|a, P]. 51
o [a, P] (51)

The right-hand side of (50) can also be given &snation of time in operator notation
when one correspondingly substitutes (24b)&@nd observes the definition (21) of
One will then get:

AS= ‘;—h [a,P]H™ = ;—?_l[a, Plo H te2th
| |

in which [a, Plois the initial value of the operatoer[P]. That gives the general integral
of (51) as:

S:§+ c2:_h [a, P]O H_le_ZHt/h, (52)
|

in which S= %é means the constant part®f

As long as the macroscopic velociyH™ P (precisely: the expectation value of that
operator for a sharply-defined impulse and energymall compared with the speed of
light, the amplitude of the variable part 8fwill also be small compared with the
constant one, and indeed, it will have order of nitagle 5. It emerges from (51) that
the oscillation must prove to be “perpendicularPtcsuch that:

(S P) = (S, P) = const. (53)

™) Inloc. cit, equation (50) was derived by integration, in the sendeeadperator calculus, while here
we shall be content to use a more intuitive foundatt@t makes the comparison with the model even
simpler.
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2. 1t will now be shown that all of the analogous las¥scillation can be derived
for the proper impulse moment.

In Part I, it was shown that a conservation lawtfe total impulse moment of the
system can be inferred from equations (5) and (6) in aegtemamely, in analogy with
(45) and (38), one will havé)(

J =J)+S =[x,P]+c[7u] = const. (54)
Since the first componend; once more represents the orbital impulse momens, it i

assumed that the second compor&nwill correspond to the spin of the Dirac electron.
We then expect that the proper moment obey the fallgworrespondence:

el - %s. (55)

A confirmation of that suggestion next lies in the fduett a law of oscillation is true for
Jg andS” that is analogous to the one fiy andS Namely, it follows immediately
from (54) that:

d\]B :_E ZE[X*, P*] = {E,PD}, (56)
dt dt dt dt

whigh corresponds precisely to (§1). One further reafdsarh (56) that the oscillation
of S proves to be perpendicular o, so:

(S”, P") = const. (57)
which is analogous to (53). One can also set:

A =-AS =A[x,P]=[&,P] (58)
here, corresponding to (59), as long as one introduces:

&=x - (59)
as the difference between tsienultaneougposition vectorsk and X of the particle and
its center-of-mass, respectively. (54) will then fallammediately from uniform,
rectilinear motion of the particle.

In summary, one can say that the formal laws oillason for the electron spin and
the internal angular impulse in the model correspom each other complete().

™ I, egs. (89) and (90)]. — Here, we characterize théabies that relate to the model by an *, to
distinguish them from the corresponding quantities thategipear for the Dirac electron.

(® Moreover, that is true independently of whether theétairivelocity of the particle in the model
attains the speed of light or possesses a smalleraaybialue.
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3. Equation (58) makes it possible to form an immediatéupgcof the type of
oscillations of the proper impulse moment in the modetr & translation in thes-

direction (P"’=P"), one will have:
AS’=-EP, AS)= &P, AS!=0. (58a)

Now, since ¢, and & are periodic functions with a phase differencerf4, S will

uniformly describe a “cone of precession” aroundxfaxis whose vertex angle, which
one obtains from the magnitude &, will possess the magnitudg for small
translational velocities (cf., Fig. 2a). By contrafsr a translation in theg-direction

(P"= P"), one will have:
1
AS’=0, AS’=0, AS)=¢E0P, (58b)

and therefore onhAS; is non-zero. The oscillation & here consists of a time-periodic

oscillation with a magnitude & and no change in direction. The amplitude of the spin
variables is also equal #®here, up to the factok/ 2 (again, except for terms of higher

order inp) (Fig. 2b).
. 1 ﬂ} 2AS
P

éD

— ¥

(a). P = P (b). P = P”

Figure 2. Oscillations of the proper impulse montruf the model under translation.

(a). Translational direction perpendicular to the otipiane " = Pf): S describes a cone of precession.
(b). Translational direction lies in the orbitahpe P* = PlD): S oscillates in magnitude, but not direction.

The expectation valug" of the Dirac electron exhibits an analogous behavior.

4. We would now like to extend the foregoing consideratibypscalculating the
expectation values of the spin variable for the Diractedbn. SinceS in (52) is even (as
a constant of the motion), amlS is odd (since it anticommutes witH, is a time-
“periodic” function, resp.), the even and odd expectat@mnes of the components 8f
will be:
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S’=S. S =bS,=-[&F],. (60)
Now, from (48), one has:
_ha,a, _haa, _haa,
=— , =— , =— , 61
= 2 i = 2 i = 2 i (61)
or, in matrix form:
-1 =i -1
nl -1 Bl 7 1
- , - , - 61
= 2 -1 = 2 —i = 2 -1 (61)
-1 i 1

The expectation values can also be calculated effslitlés the case of translation from
that.

We once more base the calculation of the expectaatres upon the special wave
functions (40) and (43). If we consider a translationhixs-direction then (43) will
imply that:

—g —

9 —o_ _h1 Py h
=S, =0, s o (1e— =3 62a
3 =S > +2N( (s’/c+,uoc)2j NP (622)

by contrast, for a translation alorg (40) will imply:

12

-35%- SR S DY - SRR PNy P
2=5%=0 > ) (1 (s’/c+,u0c)2j NP -5 (62a)

The expectation value relates to a wave group of posiggative energy, and in fact, the
upper sign corresponds to a wave function with an amplidfidg , while the lower sign
corresponds to a wave function with an amplitude af; correspondingly the
normalization factor in that is replaced with:

12 12
N=1+— P or =1+—P  resp. (62b)
('/c+ 140)° ('/c+ 140)°

It is just as simple to get the odd expectation valoethe wave groups with sharply-
defined impulse and equal, but opposite, energy. For gldtemm alongks, (61) implies
that:
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S ———E-l_27p3 &' + conj.= —Eﬁ' cosZt :
2N &'/c+y,c 2 h

g _hl [_]7_2”31 ety conj.=+— h B [Sm—zgt (63a)
2N &'/c+py,c 2 h

S, =0.

Likewise, for the translation along:

S'=0, § =0,

—u L o _ ' (63b)

S -kl , 2R gt +conJ.:+E,[>” Et:oszit :
2N &'/c+u,c 2 h

One sees that for small translational velocitibg odd expectation values of the
components o that are calculated in that way — i.e., their kettons — will coincide
precisely with the corresponding oscillations foe imodel-based quantities, up to terms
of orderf’. It is first for large translational velocitielsat one will get deviations, as we
already know from the coordinate oscillations. Btorer, as a comparison of (50) and
(58) will show immediately, the deviations are cected directly with the behavior &

for large translational velocities.

5. In what follows, we would like to consider the m@spondence between teeen
expectation values (62a) and (62b) and the modkgtleick expressions in more detail.

We initial direct our attention to the casere$t motionfor the model. For thaf*
will be identical with radius vectar = of the orbit (referred to the center of the ciezul
orbit). In I, it was shown, on the basis of (5§46), that the spin moment of the system
could be expressed in that case as:

dr"
S = {r E} (64)

in whichdr™ / dt is the “microvelocity” of the particle (whose mamule equals), and
thus o dr / dt will be the “micro-impulse” of the particlé)(

It is natural to ask whether the constant (i.eeng part of the spin moment can also
be understood in terms of the micro-motion of taetiple for the Dirac electron, in such
a way that one can combine the “lever arfnvith a suitably-chosen micro-impulse in
the form of a vector product.Schrodinger proved the following connection in that

regard 9):
28= 1 = | &1 | = 112, (65)

N,

&) Cf., I, eq. (92)].
() E. Schradinger, A, eq. (30).
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as one can confirm easily upon the basis of (21) and (2Af) would like to bring (65)
into a somewhat different form that will ease tleenparison with the model. One sees
immediately thaH# / ¢ actually represents a kind of micro-impulse, if ongritesdx/

dt from (24), (4), and (24a):

dé _ d(x—% _ _ 1py —
g dt =c(a-cHP)=cn. (66)
(65) then goes to:
so_|gHde| _Hi dd

Now, the quantity%% obviously means the “micro-impulse” of the systeimceH /

c? is indeed the mass, amtf / dt is the “microvelocity” of the Dirac electron. The
analogy with (64) and (67) immediately comes todnirHowever, two aspects of (67)
[(65), resp.] are worthy of note: First of all, thector 2 on the left (it is an immediate
consequence of the commutation relations for df)e second, its fragility in regard to
sign (whether a positive or a negative sign appéafere the bracket of the vector
product depends upon the position of the “mas®fadt / ¢?). It is significant that the
factor of 2 from the Dirac model doaest appear in the intuitive model. By contrg«,
appears with anegativesign in (64) f), while on the other hand the sign remains
undetermined in the corresponding expression (6@He correspondence will even exist
in this case, as well, as one could only expect.

Equation (64) cannot be generalized in any simphly for the case of the
macroscopicallynovingparticle, even though the corresponding relat®f) (s true for
the Dirac electron, in general. The basis for thatrepancy is to be found in the fact
that theSchrédinger operatoré corresponds to the vector= x in the modeprecisely
only for P = 0, and even for slow velocities, it will corresp only approximately.

However, S is even, and one must then expect that a rigocotrespondence with the
model will exist for it, as well (as has been tfae all even operators, up to now); i.e.,
that the relations (62a, b) that were establisbedhie Dirac electron (for positive energy)
will also be true for the model with no changede Tact that this suggestion is actually
true can be proved most simply on the basis ofrehta transformation with the use of a
theorem on the dependency of the position of theeceof-mass of a closed, material
system on the reference system in relativistic meids ¢). In that way, the model-
based conception d@fas the difference between the position vectohefgarticle and its
center-of-mass, which depends upon the referersteray will be corroborated [cf., (24)
and (59)]. However, we shall avoid presentinggteof of that here again.

*(l) The classical model behaves as ifegativemass —4 orbits at a distance of | | with a velocity of
dr /dt; cf., [I, Section 4.2].
() A. Papapetroy Praktika Akad. Atherd4 (1939), 540.
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8§ 4. Energy functions.

1. We have already referred to the analogy between #mailténian function (2) of
the Dirac electron and the energy function (7) of oud@han the introduction. That
analogy will emerge even more clearly when we nowngose the individual terms in
the Hamiltonian (2) into their even and odd componentd, caiculate the associated
distinguished expectation values.

To that end, we decompose the Hamiltonian (2):

H=H;+H,, H. =c(a, P), Ho = as o & (68)

The splitting ofH; into an even and an odd component will come about winen o
substitutes they that corresponds to (21) for. . One will then get:

Hi=c PPH™ +c (10, P) &' (69)

With the introduction of:
Na=an— o H?Y, (70)

which anticommutes witk and is therefore “periodicH, can be split correspondingly:

H2 — (/jo C2)2 H—l + Lo C2/740 e—i 2Ht /h (71)

(170 and 77! are the initial values of and 7 , resp.). Now, it follows from (69) and (71)
that:
H={CP*+ ) H +c(n,P) + 1 fio ©
=H+c(7,P) + Mt C,
or
AH1 +AH, = ¢ (1, P) + na tio 62 = 0. (72)

The sum of the odd parisH; and AH; in H is zero then, as it must be, sindeis
constant. From (72) and (70), we can alsa#iit andAH, into the form:

AH; = (%, Pj , AHo = (as— o S H, (73)

which are expressions that can be carried ovdretonodel immediately.

2. In the context of the model, one can decompbsén eq. (7) analogous to (68):

H = H +HJ, H = [C:j—)f[D,PDj, H= %,UQCZ. (74)
4
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The correspondence betweet] andH; is now implied directly by th@reit relation
(4). ForH;, one will correspondingly shift:

L (75)
u,

The oscillationsAH,” and AH; of H,” and H, resp. will be, analogous to (73):

0 2
AH = (d; ,PDJ, AHD= (i—%juo c (76)

4

(E = energy constant). From (74) and the meanind¢of/ dt as the microvelocity, one
easily confirms that the oscillationsH," and AH; will cancel each other, in analogy
with (72):

AH+AH = 0. (77)

3. It only remains to be proved that the even expectatmlnes ofH; and H,
coincideexactlywith the constant partsl,’—AH,’ and H; -=AH, resp., in the model for

arbitrary translational velocities, while they wibiacide with the oscillating partaH,’

and AH;, resp., only forsmall translational velocities. In that way, the paialle
correspondence (75) will also be fully ensured. Now,la® in fact:

J— R V’2 3

H'=cPH =AY =Sy g - Hi-aHL, (78a)
: Nk LA,

H,’= (4,%)?H™ = 1- B2 - HP-AHY, (78b)

in whichv' = 8’ c is the group velocity for a wave group with a giwdefined impulse
p' and positive energy)

() In the previous presentation of the correspondenaeebet the Hamiltonian operator for the Dirac
electron (2) with the classichbrentz electron energy:

k=1

2
Ho,C > HoVic 2 2
E=—— =2V +UcTA\1- 67,
ll_ﬂz k [1_182 0
it was causally suggested that since one can deal vativelocity componentsy in parallel with the

matricesc ai , one must also lef/1- [ correspond tax, . [G. Breit, loc. cit; cf., alsoV. Fock, Zeit.

Phys.55 (1929), 127.] We can now make that concept more precisgebys of our distinction between
expectation values of even and odd type. If one restmetsetf to theevenexpectation values of the terms
in the Dirac operatdr then, from (78a) and (78b), one will led to preciselyltbieentz electron energy (in
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As far as the odd expectation values are concerne@, tianslation alongs, as in
(43), and with the matrix representation (29), one williggmediately that:

AH, =ty c?Oa, =0. (79)

That will correspond to the fact that one also hak' = 0 in the model, since [cf., (76)]

Uo / g , as well asip ¢ / E, will assume the valuey/1-5° . AHlu and AH; will

correspondingly vanish. For a translation aloag(40) and (40 will yield, after a
simple calculation:

AH; - i : _2p1 eiza’t/h+ Conj. - ﬁ’COSE. (80)
Uc® N &/c+u,c h

The relative amplitudes of oscillatiohH, and AH, will then possess the magnitugé

On the other hand, one will g&H, when one reverts to (76) with the help of a Lazent
transformation to the circular motion of the modafelts rest system (with the coordinate
system that is coupled with the center-of-masst Ul = B’u, be thex;-component of

the four-velocity of the particle in its rest systehe (76) will imply, with a Lorentz
transformation, that:

Bt g = O i

HC® U, W+Ad (81)

T BB

BB

Now, one will haveg’ = cos%for a particle that rotates with the speed of ligint

which tq is the time coordinateE, = 1 ¢ is the energy in the rest system. On the other
hand:to =t, Eo = E, up to quantities if8’2. For slow translational velocity, one will then
have:

which one must naturally replacg with the sharply-defined , and g’ with §). It will then be more

reasonable to associate the summands inLtrentz energy expressions with theven parts of the
operatordd; andH, . The decomposition &1, andH, into even and odd parts:

Hi=c(a—-nP)+c(n P), Ha =¢ (aa— 1) to C = Na o
[corresponding to (69) and (71)] will imply the following asition:

Vi » (@c—n) =P HY

\’1—32 - Qa— s = Lo C2 H_l.
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O [}
AH; = - ,[:"COSE. (82)
HoC h

One sees from this that asymptotic agreement with ghectation value (80) fdDirac’s
theory will be achieved once more.

ErlangenandAthens May 1940.




