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On the curvatura integra of closed hyper surfaces

By H. Hopf, in Berlin

Translated by D. H. Delphenich

Introduction

It is well-known in ordinary differential geometryaththe theorem of the invariance
of thecurvature integreof a closed surface follows from the Gauss-Bonneirta?); it
may be expressed as follows: “If an everywhere regukrienis defined on a closed
surface by an element of arc lengtg and if K is the Gaussian curvature, which is
computed from the coefficients d€ in a well-known way, then the integral Kfover
the entire surface is equal to the product of the areaf 4he boundary surface of a unit
sphere with a whole-number topological invariant of thdage.” Thus, in order for this
theorem to be valid it is not necessary to restimself to surfaces that lie in three-
dimensional Euclidian space and carry a metric they thherit from it. In the present
investigation of thecurvature integraof higher-dimensional manifolds, we shall
nonetheless assume the aforementioned restrictien:covisidem-dimensional closed
hypersurfaces (which are usually allowed to be self-intérgg that are embedded in
(n+1)-dimensional Euclidian space, and ask just what valueshghetirvature integreof
such hypersurfaces can provide that are the “model’ f@ and the same manifold.
From the Gaussian definition of the curvature by mearnttehormal map it emerges,
with no further assumptions, that thigrvature integreof a hypersurface is equal to the
product of the boundary surface volume of thelimensional unit sphere and the
“degree” of the map from the manifold that representsribdelm that takes the normals
to m onto the “direction sphere” oh{l)-dimensional space. This mapping degree,
which we would like to call — by abuse of notation — tuevature integraof m thus
defines the center of the investigatfon

As a result, this is closely linked with the theorynadipping degree, which is based
on the works of Brouwer; in particular, the paper “Uberbbiiding von
Mannigfaltigkeiten,” %), as well as parts of the paper “Uber Jordansche
Mannigfaltigkeiten” ®). In what follows, we shall frequently employ hisncept

) See, e.g., Blaschke, Vorles. iiber Diff.-Geadh(Berlin, 1921), § 64.

%) Kronecker, in his treatise “Uber Systeme von Funktiomeehrerer Variabeln” (Monatsber. d. Kgl.
Preuss. Akad. d. Wiss. zu Berlin 1869, 2. Abhandl.), has rshioat thecurvature integraof the surface
F(x, y, 2 = 0 agrees with the “characteristic” of the systnfunctionsF, oF/0x, dF/dy, dF/0z, multiplied
by 47 this is identical with the degree of the map considaratie text. On this, one confers Hadamard
“Note sur quelques applications de l'indice de Kroneckelifitpd in Tannery)ntroduction a la théorie
des fonctions 112" ed., (1910), as well as Dyck, “Beitrage zur Analysis Sjtuslath. Annalen32 (1888).

®) Math. Annaler71 (1912).
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definitions, methods of proof, and terminology — partidular 88 1, 2 — so that we do
not always have to refer to him in the text, and hisltesnust be assumed as known.

The contents of this paper is briefly summarized 8svis: In § 1, the notion of the
“index” of a singularity of a continuous vector field, wihizvas essentially introduced by
Poincaré®) and plays an important role in Brouwer's investigatiohfixed points, will
be extended in such a way that one can equip a pointreflanensional region that goes
to the same image point under two different maps, whitd in agreement does not
enter into its neighborhood at all, with a “coincidema#ex;” on this, some things will be
proved that will prove useful for later purposesin particular, its invariance under
topological transformations, and thus its independefdbe coordinate system. In § 2,
two maps of ann-dimensional manifoldm onto the n-dimensional ball will be
considered; it will be shown that the sum of the cigi@nce indices — assuming that the
maps have only finitely many points of coincidence -nidependently of the topological
properties ofm, equal to the sum of the two mapping degrees for evamd the
difference for oddh; this is a generalization of the theorem of Poin&uwél °), which
says,nter alia, that the two mapping degrees differ by the factd)'(*, in the event that
no points of coincidence appear. The fact that oneletarmine the one degree and the
other from the index sum using the stated theorem willskd tor the examination of the
curvature integrain 8 3. There, two hypersurfaces that madelill be considered; a
classification follows that was introduced into topglogy Antoine ®) in another
connection, and we distinguish whether the map betweenwo models op/ can be
extended to a map of elements (that contain the maatednly to a neighborhood (that
contains the model), or whether the possibility of saclextension is not known. 1t is
shown that foreven nthe curvatura integrais a topological invariant of; i.e., that it
remains unchanged under the maps of all three class®sodd n, by comparison, the
curvature integrastill remains indeed unchanged under the maps of thecfass (at
least, under certain differentiability assumptions), moitlonger for those of the second
class; here, there are indeed homeomorphic Jordan hypeesyrfee, ones that are
intersection-free, that have different values of ¢bevature integra(and not only up to
sign). Obviously, the question remains here of whetloeroddn = 3) one can prescribe
arbitrary values for theurvature integraof a — not necessarily Jordan — model for a
given manifold, and whether the Jordan model ofrtlikmensional ball always has the
curvature integrat 1; in this paper, the latter question will be resolvety ander the
simplifying assumption that the model is the boundarynoélement, an assumption for
which it is not whether that represents a restriction

On the other hand, in another direction, we willerrat the result: In the course of
the investigations of 8 3, it results that the index s@ithe singularities of a vector field
that is tangential to a hypersurface must havewemdegree, namely, favdd n it must
be zero, and foeven nit must be twice theurvatura integraof the hypersurface. From
this fact, a necessary condition for madimensional manifold to possess a hypersurface
in (n+1)-dimensional Euclidian space as a model will be denweég4. On the basis of
this condition it is found in 8§ 5 that the totality of tllemplex points of the k2

%) Poincaré, “Sur les courbes définies par les equatiifiésentielles (8™ partie),” Chap. 13 (Journ. de
Math. (4)1 (1885), (4)2 (1886).

®) Hadamard, loc. cit., pp. 476 et seq.

®) Antoine, “Sur ’lhoméomorphie de deux figures et de levisinages,” Journ. de Math. (8)1921).
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dimensional projective space, which is &dimensional, simply-connected, closed
manifold, may not be represented by a hypersurface kiljddimensional Euclidian
space, even when one ignores self-intersections.

81
Theindex of a coincidence point of two maps

Let a right-angled Cartesian coordinate systém..., & be introduced in the
neighborhood of am-dimensional regiorl” that contains a poin. We make the
following assumptions relative to the indicatrix, waimiare valid for all considerations in
this paper, unless expressly stated to the contrary: Téigveoindicatrix is defined by
the sequence of vertices (O, ..., 0); (1, O, ..., 0); (O, 1, ...,.Q)(0, O, ..., 1) of the
simplex S that they determine; the positive indicatrix of theumdary ofS is thus
simultaneously established by this. As the “natural’rdagon of a Jordan manifolah,
we mean the one for which the interior has the orderand we determine the order of a
point A by projectingu from A onto a simplexy aroundA that has sides parallel to those
of S and is oriented correspondingly. rifis an orientedn(— 1)-dimensional surface
piece that possesses an—1)-dimensional tangent spaéh at each poinfl that varies
continuously with'l then the positive indicatrix af, is to be chosen in such a way that
the topological map that is carried out by perpendigoiajection of a sufficiently small
region ofm that included1 onto 4, takes the positive indicatrix of to that ofd,. We
say that a ray that originates [@t and is not tangential to is directed towards the
“positive” side ofm when the positive boundary indicatrix that is definedhgy natural
orientation of am-dimensional simplex that is defined by a point of thg and anr{
—-1)-dimensional simplex ot} is the positive indicatrix of;. Thus, the interior
normals of a naturally oriented ¢ 1)-dimensional sphere have a positive directione T
orientation of is therefore the one whose midpoint lies on thetpesnormal ofm,
whether or not one regards as a tangent spacertoor to a sphere.

Let H; andH. be two maps) of I onto point sets of the regid®, which possesses
coordinatesy, ..., X, and is likewise oriented in the required mannerfldte an isolated
point of coincidence dfl; andH;; let H1(Q) = Hx(Q) = 0, butH;(I1) # Hy(M) whenl1 #

Q.

We associate each poift of I' that is different fronQQ with the vectorv(I1) that
points fromH; (M) to Hy(M), as well as the point of the “direction sph&®eof G that
belongs tov(M); i.e., the intersection point of a fixed, naturallyeoted spher& that
“represent®R’ with the ray that originates from the midpoint and isaflal tov(I'1). We
call the degree of the thus-defined map of a naturalgnted Jordan manifold that lies
in I and includesQ in its interior ontoR the “degreeaix (1) of ;" it is obviously
independent of the choice of sphere that representsrdwiahn sphere; it is independent
of the choice ofs. yxis then a sphere aroufq ', is the intersection point of with the
ray Q Ny, wherelly =1 is a point ofy, N is the point on the line segmdng N, , that

" The term “map” will always be understood to mean a siugleed and continuous map.
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divides it with the ratid : (1 —t), and if one considers the magsof 1 ontoR that are
mediated by the vectox4l1;), whent increases from 0 to 1, then the map of degigg/)
goes continuously over to the map, and thus with conservation of the degree.
However, this combines the map@bnto y by means of projection @&, which, by the
definition of “order” and our orientation prescriptiomas degree + 1, and the map of
degreea;»(x) of the sphergrontoR. Since the degree gets multiplied when two maps are
composed, it then follows that(4) = aix()), from which the independence of the
degreea;, of the choice of: is proved.

We calla;, the “index of coincidence” dfl; andH, atQ. — If one exchangead; and
H, then the vectors go to their opposites, from which; = (-1)" a;». — If one changes
the orientation of or that ofG thena;, changes sign, singe (R, resp.) then becomes a
map of degree — 1; if one changes both indicatricesahaemains unchanged.

Let the pointd1 that differ fromQ be associated with a continuous family of simple,
closed, continuously differentiable curve segmex(ity) that link H1(I') to Hy(IM), and
whose tangent vectorgl1) at Hi(I') change continuously witAl. Just like the vectors
v, the vectorsv also define an “index” fof2: It is equal toa;, . If H(I1, t) denotes the
point that dividess(I') with the ratio (1 ) : t andv(I1, t) denotes the vector that points
from Hy(M) = H(M, 1) toH(, t) then ag runs continuously from O to 1 the vector field
of v(I'T) = v(I, 0) the goes continuously 1) = v(1, 1). — The initial directions of the
curvess can also be employed for the determinatioa;ginstead of the directions of the
line segments that go frokm (1) to Ha(IN).

If  were taken to an oriented regidh by a topological magp then two maps
H;(M")= H;¢p™(N") and H,(MN")=H)¢(N') are defined in it that have an isolated
coincidence point a' = ¢(Q). Underg, the natural orientation of a Jordan manifeld
goes to the natural orientation gf= ¢(w) or its opposite, according to whethgdoes or
does not preserve the indicatrix. From the definigbimdicatrix, it follows immediately
that:

The index of an isolated coincidence point of two mapdHkiremains unchanged
under a topological mag of the domain of definition ofi+and H or picks up a factor
of —1, according to whetheg preserves the indicatrix or inverts it.

The analogous theorem is true for topological mays: of

The index of coincidence is — at best, up to sign, as before — invariant under
topological maps of the domain of definition.

Proof: Letf be a topological map of a neighborhd@f O onto the neighborhood
G’of the pointO’=1f(0O), letk be a sphere abo@that lies in the domain of definition of
f, let 1 be sufficiently small thaidi(¢) andHi(x) lie in the interior ok, and letH(I) be
the intersection point df with the rayH;(I) Hx(1). We continuously carry over the
vectorsHi(I) — H(M) that determine the coincidence index to the ved®rs H(IM) by
letting their starting points run froids(I1) to O in time 1, and in a uniform, rectilinear
way. If we now choose a sphere ab@uas direction sphere then the desired index of
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the degree of the map pfonto R, which is mediated by the projection léf) onto O,
then equal to the “order & relative toH(L).”

We transform the vectors that point frdidh (1) to fH2(1) that define the coincidence
index offH; andfH, under examination continuously into the vectors that doomh O’
to fH(I'), during which we:

1. Let their endpoints run uniformly (in the sense ofdghemetry ofG) to fH(IM)
along the images of the line segmerél1) H(M) that are provided biy

2. Let their final points run uniformly t® along the images of the line segments
H(M)O.

If we choose a sphere arou@das the direction sphefR’ then we recognize that the
index in question is equal to the “orderf() relative tofH().”

The assertion of the invariance of the coincidencexiritlas leads us back to the
invariance of the order of O relative to(i under the topological map fWe show the
validity of this assertion when we prove it for a seweeH(y) of uniformly
approximating simplicial mapsi’(1) and a sequenck of uniformly approximating
simplicial mapd, ; thus, for the construction of the basic simpleed;, as well as the
image simplexes fd andH", the Euclidian metric o6 (G’ resp.) is fundamental.

If K =H" is one of the approximations kbthen image se(z) is composed of a
finite number of i — 1)-dimensional simplexes. We draw a ray through at gothat
does not belong t&(x) and that does not meet any- 2)-dimensional side of one of
these simplexes. Handp’are the numbers of sub-simplexeXofvhich is the basis for
the decomposition ofs, whose image simplexes intersect the ray in thetigesi
(negative, resp.) sense then- p’is the order ofA relative toK(z). Letq —q’be the
corresponding number for ray that goes frémo infinity that meets non( - 2)-
dimensional side of an image simplex, and on which¢armer point lies oik(x). We
assert thatj —q'=p — p’. — This is proved when it is shown that the correspandin
number for each closed, oriented polygon is equal to W i$fsuch a polygon then from
now on we can assume that position of its verticssbleen modified in such a way that
the extension of no side meets an-(2)-dimensional side d€(x), At each vertex o¥V,
we add the two rays that define the extension of tthessihat come together there, and
understand them to have the directional sense thataentiaed by the sides in question.
The difference to be examined is increased by the ordireofertex under the addition
of a ray, while it is decreased by this order number ur@deaddition of the other rays; in
total it thus remains unchanged. The system of line setgn@and rays that now lies
before us decomposes into a finite number of directed. lik®r each line, the difference
of the numbers of positive and negative intersectior3, iwhich one sees when one
considers the lines as composed of two rays. Thuslesieed number is, in fact, equal
to 0. It is thus shown that the differenge-q’, which is determined by an arbitrary line
segment fronA to infinity, is equal to the order @®). From this, it further follows that
for a line segment frorA to B this difference is equal to the orderfominus the order of
B.

We now assume tha is fixed and show that whefy is a sufficiently good
approximation td, the order oD relative toK(x) changes under the m§pat most by a

8 cf., Brouwer, Uber Jordansche Mannigfaltigkeiten, pp. 3@8vell as Hadamard, loc. cit.
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sign. Since this change comes about under a reflefbiothe sake of convenience, we
can assume preserves the indicatrix, and then we must prove beasign of the order

also remains unchanged. — First, let a simplicial appratiim f, of f be given; we must

refine it, in a suitable way, to a m§pof the desired type. The simplicial decomposition
of G that is based ofy fulfills the following assumptiong is a corner point of a basic

simplex, such that one then HggO) = f(O) = O”. Lett be a ray that emanates fr@n

and meets non(- 2)-dimensional side df(x). Let each intersection point bivith K(L)
be the interior points of a basic simplex.Pif P2, ..., P, are the points ofs for which
K(Pp) lies ont then we can assume the{(P,) #K(P,) for o1 # p,, since that can be

arranged by an arbitrarily small modificationkf Lets, be the basic simplexes gfthat
contain theP,, and letS, be the basic simplexes Gfthat contain th&(P,), which are
chosen such that the poif¢P,) lie in their interiors. Let th&, be so small that no
points ofK(4) besides those df(s,) lie at eacts, . K(s,) dividesS, into two partsS},
S); letA;, A’ be two points of that lie in the interior ofS; (S?, resp.), and let the
direction A; - Af, emanate fromO. — We now thicken the current simplicial

decomposition o6 to a decompositiog; with the following properties:
1. TheK(P,) lie in the interior of the basic simplexes.

The simplicial mag, associated witlg) approximate$ so well that:

2. Ift, denotes the line segmeXt A, w,, the circumference of,, and ), the

subset ofu for which K(z») lies in'S, thenf,(ty) is disjoint fromfa(w,) andfi(u — 1),
while fﬂ(t—th) is disjoint fromfﬂ(,u—z,up),
P P

and that:

3. Ifu,is the circumference o®, then the orders of,(A;) and f,(A’) relative to
fi(uy) are equal to the orders 6f(A)) (f(A), resp.) relative tf(u,).

If these conditions are fulfilled then the onlyarsection points of the line segment
fa(t) with f, K(4) are the intersection points of thgt,) with thef, K(4,), and for eaclp
the difference in the numbers of positive and ngganhtersection points is equal to the

order of f(Aj,) relative tof(u,) minus the order off(Aj) relative tof(uy). The
indicatrix ofu, is thus established through thaygf.
Now, the order ofAf, relative tou, is equal to O, that OA; relative tou, is equal tat

1, according to whether the circulation K{P,) is positive or negative, respectively.
With that, our theorem comes down to a simple gppe@se, namely, the assertion that
under the topological map the order of a point relative to thlrdan manifold u
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changes by 1 for the interior points and remains O for the egteones. The validity of
this assertion, however, follows from well-knowndhems of Brouwe¥).

Thus, the topological invariance of the order of a poahtive toH(x) — in any
event, ignoring the sign — is proved, and likewise thraes& true for the coincidence
index of two maps. This fact may also be expressed byngdlgat these numbers are
independent of the coordinate system for a correct coasioierof the sign.

An application of the previous results that will of uedater is the following one: If
Hi, H, are maps of onto a regiorG that belongs to a sphere then for the determination
of the coincidence index it is irrelevant whether we lemphe great circle arc or the
circular arc through an arbitrary fixed poistof the sphere as the curs@l) that links
Ha(M) to Hy(IM), through whose starting direction the coincidence indexo be
determined (cf.suprg, as well as whether we carry over the Cartestamdinate system
in G that we need for the determination of the index by stgagbic or any other
projection of a planar space orp as long as the indicatrix remains the same.

The following consideration leads to still more impmitapplications:

If I is identical withG andH; is the identity map thefd is an isolatedixed pointof
H, anda = a;; is its “index;” the foregoing statements remain valid, dng must observe
that if T = G is a topological map that inverts the indicatrixrthifis inversion will be
present i, as well as5, so the sign o&;, will not change; the theorem that emerges is
thus:

The index of a fixed point is a topological invariant.

If v(M) is a continuous vector field ih with an isolated singularity given & then
we understand the “index of this singularity to mean the degree of the map syfteere
X that surround$ onto the direction sphere, which will be establishgdhe vectors of
the field that are brought tp It is equal to the index of the fixed poftof that mapH.
that displaces each poiht in the direction of its vector(IT) along a line segmeI1),
whereg() is a continuous function that vanishefaand is positive everywhere else. If
" were subjected to a differentiable mlawith a non-vanishing functional determinant
then the vector field would go to a new vector fiele fv andH, would go tofH, under
this map. We determine the index of the fixed p&ifX) under the magH, by the
starting directiorf (I1) of the curves(T) that leads froni() to fHx(I), which is the

image of the line segmeiit H, (). It is, on the one hand, equaldoand on the other

hand, equal to the index of the singulafi{f) of the vector fieldfv. It is thus shown
that:

The index of a singularity of a continuous vector field does not change undgy a m
with a non-vanishing functional determinaf

The most important application of this theorem forsuhe following one:

®)  Brouwer, Uber Jordansche Mannigfaltigkeiten, §§ 4, 5.
9 This fact is also easy to prove without our theooenthe invariance of the index of a fixed point.
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By a “model” for a closedp-dimensional manifolgl,, we understand this to mean a
point setm that lies in anr{ + 1)-dimensional Euclidian space, onto whmhs mapped
in a single-valued and continuous way such that this fngpalso uniquely invertible in
the small; i.e., that there is a neighborhafidaround each poir® that is topologically
related to its image s€(Up). — We consider models that are “hypersurfaces;” thsnse
that to each poin® of i there exists an-dimensional planar tangent spageon F(Up)

that varies continuously witR. There, for eaclP there is a neighborhood/ that is
mapped topologically onté% by perpendicular projection &(U;)by means of the
mapS F(Uy).

Let a continuous field of tangent vectors with fiytetany singularities be given on
m; i.e., with finitely many omissionBs, P, ..., P, , there is at each poiRtof 4, a vector
v(P) associated with=(P) that is tangential td~(Up) and varies continuously witR.
Each of the point&(P,) (0 =1, ...,r) possesses a well-defined indgx which can be
determined by — say — projecting the coordinate systefa@fitoF (U;). (r=0.)

We define a continuous functiogfP) on x4 that vanishes at the poink, and is
positive everywhere else. We associate each poarith that pointR’ of the tangent ray

that is determined by(P), and which has the distanté&lg(P) from F(P), wheret is a
parameter. There is a numliep 0 such that for alP and for O < < to the pointR’ lies

in S F(US); let it be the image of the poiRt under the mag F The magP; = h(P, t) is

single-valued and continuous on allgénd for allt (0 <t < tg) and possesses théxed
— i.e., independent of- pointsP, with the indicesa,.

If there is now a second mod®al = F'(x) that is likewise a hypersurface, so it is
continuous and possesses a planar tangent sfadéen we choosesufficiently small

that none of the chords (P) F'(P;) to F'(P) are perpendicular té&-'(U,), and project
these chords onto the tangent spa&e in the direction of the normal &'(P). A

continuous tangent vector field on will then be generated that is singular only at the
pointsF'(P,), and the indices of the singularities are again equéid indicesa, of the
fixed points of the transformatidnthat is defined im. — It is thus shown that:

If there is a continuous, tangent vector field on m with r singuéaritvhose indices
are a, ..., & then there is a continuous, tangent vector field on any other model m
the same manifolgl that has the same number of singularities and the same infices.
O) ll)

The coincidence locus of two maps onto the spheldowibf particular interest for us
later on, and is defined as follows:

Let ' be ann-dimensional, continuously differentiable, orientableface patch that
lies in (0 + 1)-dimensional space. At the pointsioflet there be given two continuous

) In the event that the relation betweamndni that is mediated by fulfills suitable differentiability
assumptions, the proof of our theorem is obviouslyredly simpler to complete than was done in the
text.
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distributions¢; and ¢, of (n + 1)-dimensional vectors with the property that alltoe
vectors ¢; have negative directions relative [Q and the vector®€;(Q) and €;(Q)

coincide for one and only one poftof I'. The map4$1; andH, of I' onto the direction
sphereR that are mediated %, and¢, thus agree @ and only there; let the associated

index bealz .
At each poinQ of I' that differs from the poirfil, the vectors(I1), whose opposite
vector is@, (M), and¢,(M) determine a half-plane that, singgI) is not tangential, cuts

the planar tangent spaée at a vector:x(I1). The field ofvi2, which we call theangent

field generated by, ¢,, has a singularity &, which we will show has an index af> :
Let R be represented by a sphere that cont&gtat Q, whose centeA lies on the

positive normal td", and thus, in a part of space that does not belorgy(fe). We

perform the central projectian from A onto g, on the half that lies betwee#, and the
space througl that is parallel to it; thus (cfsuprg, the positive indicatrix oR goes
over to the positive indicatrix of, , and we obtain two ma@gsH; = H; andZ H, = H,

of ' onto J, whose coincidence & likewise has the indea, . The vector that points
from H;(M) to H,(M) is parallel to the vectam(N), at which thed, that is constructed

from the half-plane il that includesgy(M), €, (M), €x(M), vixM) is intersected; we
take thew(I), which we can therefore use for the determinationapf from a
neighborhood of) continuously over to the vectové(l): We take thegy(I1), while
preserving its initial point, over to the vector paratel®;(Q), by means of the angle
defined by the directiong;(IM) and €41(Q), which happens in the vicinity & without
having to go througkf, .

Throughout this process, we observe the change thavettorv(l1, t) suffers, at
which Jo will be intersected by the half-pladg(P, t), &, (1,t), vio(IT), where€y(I1, t) is
the moving vector: Theg(IT, t) will be continuously transformed from(I) to the vectors

w (M) that arise from the;o(IM) under parallel projection ontég in the direction of
¢1(Q). The degree of the map of an« 1)-dimensional manifold surroundir§g in Jq

onto the direction sphemeof J, that is mediated by is therefore, on the one hand,
equal toa;», and on the other, equal to the indexXofelative to the field o¥1,, and with
this, the assertion is proved. One can thereforaceghe determination af, with that
of the index ofQ relative to the field o¥> .

If we subject the { + 1)-dimensional neighborhood @ to a single-valued,
continuously-differentiable mag with a non-vanishing functional determinant then the
&4(MM),&2(IN), vax(IM) go to €7, €., v;,; we then choose the orientation of the imagef

I in such a way that the’ is also negatively directed. Ti& and <), have an isolated
coincidence point af2’, whose indexa,, is equal to the index o®' relative to the
tangential vector fieldy, = @(vi2) to ', which is obviously identical with the tangent
field that is generated bg; and c, (since the linear independence of the veotar<,,
vi2 at each point is preserved by the map). Now, sincentiex ofQ relative tov;, does
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not change under the map, as was proved above, theiséme for the index®;, of the
coincidence of¢; and ¢, at Q. — Conversely, if we impose the aforementioned

assumption on the positive indicatrix in such a way thatmap off ontol" has the
degree + 1 then we must distinguish whether the fundtaiarminanD of ¢ is positive
or negative; i.e., whethep preserves the indicatrix or inverts it: In the firstse, the
negative side ofF goes to the negative side I0f so one hasy,= a;> . In the second

case, the?] and ¢, are then positively directed, and the coincidence inddya;, of
the negatively-directed maps, which are mediated byehtor distributionsZ;, €, that
are diametrically opposite 16, ¢, is equal to the index @' relative to the tangential
vector field that is generated I®; and ¢’,, which is diametrically opposite tg,, and
thus equal to«1)""a;», sinceQ has the indexy. relative tov,,; from (-1)™*a;, =
(-1)"as2, it follows thata;, = —a;», and one sees that, = + a;,, according to whether
D>0orD<0.

§2.

The coincidence number of two maps of a
closed, two-sided manifold onto the sphere

Let the closed, two-sided, orienteddimensional manifolg/ be mapped onto the

n+l

dimensional spherg& that is given by the equatioExf = 1 by the map§ andf, . f;

v=1

andf, shall agree only at finitely many poing& (x = 1, ...,K) of . The sum of the
k

indices of these coincidences ay’ =11, = (-1)" l»1 is called the “coincidence number”
x=1
of fy andf, .
We construct two essentially simplicial approximatingps forf;, f, with the same

coincidence pointB, (indicesal’, resp.) :

Let { be a simplicial decomposition @f for which theP, are interior points of the
simplexesS, , and which is sufficiently dense that the imag€s,) andf.(S,) can be
separated by sphergs, [x = 1, ...,K] whose spherical radii are smaller thafi2, such

that one can connect any two points in them by a unigaoelar arc, and whose set union
still leaves a regiodt of R free. If one now letg/ denote the subset pfthat comes
about by omitting the interior region 8f from x andm is the minimum of the spherical
distances f,(P) f,(P) for all pointsP of // for all pointsP of x/ then we carry out a
subdivisiond of {that is sufficiently dense that for each of the associated simplicial
approximationsdy, &, of fy, f 2, the spherical distanc& (P) f (P) <m/2 in all of &, and
that the image#i(S,) and(S,) also lie completely in the interiors of thg . Thus, the
natural coordinates are chosen for the representatithre simplicial approximations as
coordinates ing; i.e., for the center of mass of+ 1 masses at the cornex§ x,, ...,
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X, [i =1, ...,n— 1] of a spherical comple®, one considers the point & whose
n+l

coordinates, behave like the + 1 numbers)_ x,ni ; the simplicial maps of into all

i=1
of x4 will be defined continuously on the basis of these dioates Due to the
relations 3 f <m2 [i = 1, 2], f,f, = m, & and & have no coincidence point gn and
thus, in particular, on the boundaries of Be; thus, there can be infinitely many
coincidence points in the interior of s . In order to eliminate them, we replage
with a map Jd;: Let J, = & on /. At eachS;, we consider the pencil of rays that

originate fromP, and the continuous functioa, which vanishes only aP, and is
positive everywhere else, which, at each boundary p@jruf Sy, Is equal to the distance

12).

51(PRX)52(PRX) and decreases on the @4 P.in proportion to the distance froRy . We
now associate the poift of the ray PRXF;( with that point J,(P) of K that has the

spherical distancer from &(P), and for which, under stereographic projectiontiod
antipodal poinp, from the pointd(P,) the vectord(P) - J,(P) is parallel to the vector

a(R) —~ 0 (R)- 0, is then continuous in all gf and identical with in ¢/, and thus,
simplicial. The image®;(S,) likewise lie completely in the sphefg, ; J, agrees with
A only at theP, . The index of this coincidence Bt is a’; it may then be determined
by basing the Euclidian coordinate system that rngvided by the stereographic
projection fromp, by means of the initial directions of the circuéc ,(F; ) 9,(F; )
that belongs to the boundary poirﬁ’,%. Inside offy,, one can continuously transform
the totality of these arcs by a uniform motion ledit starting and ending points into the
totality of great circular arcsfl(PRX)fz(PRx), and no arc will degenerate into a point
under this transformation, due to the inequalty, < 1§ f,[i =1, 2]. Asa resul, the
starting directions of the araﬁ(PRX) 52(PRX) and the arcs‘l(PRX) fz(PRX) deliver maps of
equal degree onto the direction sphere of the coatel system; i.e., the coincidence
index of & and J;, atPy is al¥’.

& and J, have equal degree, since the regidwill be covered by both maps of the

same points of. Thus, ifg;, g, are the degrees &f, f, then they are also the degrees of
the simplicial approximations, and therefore alsase ofd, and J,.

We choose a poir®d of 91 that does not lie on the boundary of an image leixnpf &
or &; sinceM will be covered by both maps only by pointstofaind there one hag, =

o, , both of these maps are simplicial for all poiofsm that go to points of the
neighborhood o® under one of the mags and J,.

3 For Brouwer, Uber Abbildung von Mannigfaltigkeiten, § 1, tirepdicial maps ofu will then be
defined only for those basic simplexeswoivhose vertex images belong to the same elemeft thius, it
seems to me that the simplicial maps onto the spime& 3 of the Brouwer paper are based on the
modification of the definition that was employed in thet sbove.
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Now, we associate the poinBsof 4 with those vectors that are tangential to the
circular arc fromO leading tod,(P) over &(P) 123 ' This association is undetermined at
the following pointsP’, and only at those points:

1. The point$, .

2. The pointg\, ..., A for which one hag,(A;) = O.

3. The pointd, ..., Bsfor which one ha®),(B,) = &(Br) =O.

Each of these poin8 lies in the interior of a basic simpl&(P") of the decomposition
¢. IfS” is sub-simplex o8 *3) that contains only one of these singular points then t
periphery (Umfang) o8, through the vectors that are associated with itstgoivill be
mapped onto the direction sphere of the tangentiabplspace ta? at o'(P) by means

of stereographic projection. The degree of this map iectahe “index”I(P). We
determine)_ | (P) by the rule:
PD

1. Itisl(Py) =a%,s0 > I(PY)=lsy.
P=p,

2. The index of the singularit§y(Ay) = O of the vector field that is defined by the
vectors at the points @ (S (A,) that are associated with the pointsSofA,) is + 1*%);
thus,I(A,) ==+ 1, according to whethe% (S~ (Ap)) is a positive or negative image simplex
of S (Ap. However, since the degree of f1 is the number of times th& positively
covers the image simplex minus the number of tithes O covers it negatively, one
has > I(P") =qu.

P =4,

3. The index of the singularitd(B,) of the vector field that is defined by the vestor
at the points oBy(S” (B,)) that are associated with the pointsSofA,) is ¥ 1, according
to whether the simplexa&(S” (B,)) and (S (B,)) have equal or unequal sigit thus,
I(Bs) = F¥1, according to Whethe@(S**(Bp)) IS a positive or negative image simplex.
Thus, > I(P") =-gq.

P°=B,

Thus, one has) I (P%)=1,+9,-g,.
PU

We now determinez | (P”) in yet another way:
PD

We choose an arbitrary poi@ on £ that does not belong to any boundary of an
image simplex ofd, but is covered by at least one such point. It be positively
(negatively, resp.) covered ky with p' image simplexe$s, ..., Tp; T/, ..., T;; one has
p-p =g . As mediating maps, for the sake of introdudinglidian coordinate system
for the determination of the indices Bf, we use basic simplexes for this whose images
are theT and T’ under stereographic projection from the antipguaht Q to Q, and all

122) The rest of this paragraph is merely a modificatibthe considerations of Brouwer in the treatise

“Uber Abbildung von Mannigfaltigkeiten.”
13 An A and aB can then belong to the sarfie
% Brouwer, Uber Abbildung von Mannigfaltigkeiten, § 3.
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of the other basic simplexes are stereographically gexjefromQ. Thus, the boundary
of eachT; (T;, resp.) will be subjected to a map(L;, resp.) onto the direction sphere of

9o and a mag, (E} , resp.) onto the direction sphered&f; if the degrees of these maps
are:

then one ha¥):
G+G=¢+T=1+¢1)
Now, z | (P”) is, however, equal to the sum of the mapping degoé all peripheries of
PD

the basic simplexes ofi onto the corresponding direction spheres, andilmsummation
the two contributions from each ¢ 1)-dimensional face cancel, as long as theyato n
correspond to the face offeor aT’, and will thus be mapped onto two different dii@at
spheres. One thus has:

2IPY=Ya-2d+X5-2T
:Zp(cl +c)_i(dj +¢): (p—p’) (l + (— l)n) = M
Earlier, we found thad" I (P”) =112 + g1 — gz, S0™):

I, =(-1)"[@,+9,.

§3.
On thecurvature integra of an n-dimensional model

Let a hypersurfacen be given, which is [cf.,, § 1] a model of ardimensional,
closed, two-sided, oriented manifgdld We choose the positive indicatrix mfsuch that
the mapF of Up has the degree + 1, and determine the positivealatirection from the
previously given prescription. — K is one-to-one in all of then we calm a “simple” or
“Jordan” model; the positive normal direction oftnmecessarily directed into it, but
depends upon the orientationof—

We understan@(m) — the ‘turvature integra’of m—to mean degree of the mapof
onto the direction spheiRe that is mediated by the negative nhormalsntthat belong to

% In the case = 2, the formuld,, = g; + g, may be confirmed function-theoretically: iz, w) is a
complete rational irreducible function mandw of degreeg; (g, resp.),4, the Riemann surface of the
structure defined analytically By(z, w) = 0, then, by the associated consideration of theitielfy distant
points the equatioR(z 2) = 0 has preciselg; + g, roots — assuming that one does not Ha®ek(z —w), so
thatF(z 2) =0.
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the pointsP. If one changes the orientation@then the normals must be replaced with
their diametrically-opposite vectors, so in order tgtamn the newcurvatura integra
C'(m) one must map:

1. wponto itself with degree — 1.

2. pontoR with degreeC.

3. Ronto itself with degree-)™*.
This yields:

C =-1CcO-1)"'=(-1)C.

C(m) is thus independent of the orientation foffor evenn, and for oddn, its sign
depends upon it. — Instead of the normals, from theréhed?oincaré-Bohl [cf.,
Introduction], one may use any other vectors that wamtinuously withP and are
directed towards the negative sideFK{fJp) for the determination o€. For the time
being, as was explained in the previous paragraphs onzalived employ a simplicially
modified approximatiory to the normal map.

We now examine houZ(m) is obtained for certain types of transitions fromto
other models fom:

First, let an elemerE that containsn in its interior be subjected to a continuously
differentiable mapp with non-vanishing functional determinant:

X, = PUXL, +.r Xnr1), [N=1,2;..n+1],

a(¢11"' ’¢n+1) 0.

D(Xl, ...,Xn+1): a(Xl X )

m then goes over to the moddl = ¢(m). From our assumption, the orientatiomafis
to be chosen in such a way thattakes the positive indicatrix ah to the positive
indicatrix ofnt; the vector®; onm that are mediated by the and point in the negative

direction to negatively (positively, resp.) diregtteectors¢®; onm according to whether

@ does or does not change the indicatriEpf.e., whetheD > 0 orD < 0. As a result,
the degree of the mag of x ontoR that is mediated by the! is therefore £1)™'C,

whereC' = C(mf). We now choose a poi#t of R and bring to each point ah the
parallel vector®, that correspond t8, which relate tq by the maps(P) = A of degree

0 ontoR. ¢; and¢, agree at (at most) finitely many points, and oasg (from 8§ 2),, =
(-1)" C. Underg, the¢; go to vectorst),, by means of a map, of 1 ontoR of degree
c,, and the coincidence number gf andy, is:

L= (" CH

From § 1 (last paragraph), however, onelhas *l,,, so:
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(+1)" C =C 3¢, (-1)".

Now, the totality ofall parallel vectors that correspondAaand are attached to points of
E go to a vector distributioA’ that is single-valued and continuous on alEbf @(E)
and associated with the,. Inside ofE', sinceE' is an elementyf may be contracted to
a point Q by a single-valued and continuous deformation. Thus, vamen at each
moment of the process of deformation, associategdim P of 1 with the point oR that
belongs to the vectak' that is attached to the momentary image poirfe,ahe mag/,

goes to a map that associates all pointg with the same poim\'(Q). Thus,c, =0,C
= (x1)" C, and we have obtained the theorem:

Under a continuously differentiable map with non-vanishing functional determinant
D of an element included in m,(rG§ always changes by the facter 1; indeed, this
change comes about when and only when@and n is odd.

The question now remains whether one can omit therelffebility assumption.
The following theorem teaches us that this is possibleast, for a particularly simple
special case:

The boundary m of an element has the curvature intedrg.

Proof: If m has the “natural’ orientation then the degree ofrtia@ that is mediated
by taking the interior normalsl to m onto R is (-1)™'C. This field ofN projectsm
continuously onto a neighboring parallel surfageof m, and may be, by contraction of
my to an interior point, deformed into a distributionwactors that point to this point,
which has the indext()". Thus,C = 1 and for an arbitrary orientation mf one ha<C =
(#1)". (Concerning the sign, one can confer the first paphgothis section.)

We now extend the class of the maps in questamo longer needs to be defined on
all of E, but only on a neighborhood of— i.e., in the set union of the neighborhoods of
all points ofm. Everywhere else, all assumptions and notationsineamchanged. One
now has:

(+1)'C = CF(-1).

Along with the vectors’; that belong toA, we also consider the vectogs that are
diametrically opposite to them. They go to the vextdr, which is mediated by a map
¥, of degreec,, and one has:

(x1)"C =Cxc(-D",

so T, = C,. Since the vectorg, and ¢’ are diametrically opposite to each other, one
has, however, that, = (-1)"c,; for evenn one then also has thet = 0, soC' =C.
We will show that foodd none can have, # 0:
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We perform a transformation through reciprocal radinva pointQ that does not lie
onm for its center; this map fulfills our assumptiog.is then continuously differentiable
with a negative functional determinant at all points ttéer from Q. ¢ takesmto a
modeln and the infinitely distant points to the po@t Let the order of relative tom
beqg. (We understand this to mean, as before, the dedrie onap ofi ontok that is
provided by projection of the model for Q onto a spherk aroundQ; it is usually easy
to see that it is equal to the order®@felative tom.) Underg, the totality of all vectors
in the domain of definition fop that correspond to poinfsof R goes to a vector field’
with the isolated singularit®; its index is + 2. ¢ may then be represented as follows:
One first projects the entire space stereographically an (+1)-dimensional sphere
Kn+1 that lives in (+2)-dimensional space and conta@tghus, the vectors that belong to
A go to a single-valued, continuous vector field that is $argunly at the antipodal point
Q toQ, and thus has index +2@t *%. One then projecté,.1 stereographically fror
onto the contact space @t and then back to the original space perpendicularly. ,Thus
Q goes toQ with conservation of the index.

In order to determine,, we let the points afi go uniformly to the rays that emanate
from Q onto a spher& aroundQ in time 1, and then observe the vectorf\bht the
running points at each moment: At first, they are theors@’,, and at the end, they are
vectors that sit oR. The map ofn ontoR that is provided by the latter is composed of
the projection ofn from Q ontok, which has the degreg and the map df ontoR of
degree 2 — which makes = 29 — so:

C+C =2.

In particular, ifm andm' are simple, and i lies in the interior om thenQ also lies in
the interior ofnY, sinceQ and the infinitely distant point through will be separated
from each other, which then makgs + 1,C + C' =+ 2, and one sees that:

If, for odd n, the simple model m possesses a curvature integra thatriant in its
absolute value under maps of the type in question then it is equdl to

We now show that for each odd> 3 there is a simple model with(m) = 0# + 1.
We consider the one-parameter group of motidns f(x; a) of the fi+1l)-dimensional
space that is given by the equations:

X'2|/—1: for-1(X1, ..., Xne1; @) = €COSQ [Xpp-1 + SINQ X2
X, =fo, (X1, ..., X1, @) == sina ko1 + COSA DKoy

[V :1’...,n_+1}_
2

The trajectory of any point is a circle; two sudftles are disjoint. Then, sinég(x; a);
P =1(x; a+p), it follows from the fact thak(x; a) = f(y; p) that foreachyone hasf(x;
a+)) =1(y; £t+)); i.e., that the trajectory circles fandy coincide. The single fixed point
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of the motions is the null point; at every other pahg vector of the direction of motion
is distinguished.

The f—1)-dimensional spher&y: Z(xv -2)* =1, X1 = 0 does not contain the null

v=1
point. Furthermore, no trajectory circle will atitat two points; if one hag = f(x; a)
with a # 0 for two pointsx andy of the sphere then it would follow from:

cosa [ X, + sina Ko+t
—sina X, + cosa [Xn+1
X1 =Yne1 =0

Yhn
Yn+1

that eitherx, = 0, which is not consistent with the equatiorthe sphere, or that = 7
andy,=-x, forv=1, 2, ....n+1 . However, from the fact that:

Zi:(xV—Z)Zzl and Zi:(—xv—2)2:1

it would follow by addition thatB+ 2> x* =2,> x’=1-4<0.

Likewise, one obtains each sphétginto whichKy goes under our motions. Thus,
the surface that is described bif, — i.e., the totality of all point§x; a), for whichf(x,
0) lies onKy — has the property théix; a) = f(y; £), when and only whex=y, a=4. r
is thus a simple model of the product manifold tisatomposed of a circle and am-
1)-dimensional spher8).

From the Poincaré-Bohl theorem, in order to deieern@(r) we can employ the
tangential direction vectors of the motion. TheproatoR that they define has degree 0,
sincer may thus be continuously contracted to a poiniddeshe field of the motion
vectors without passing through any of the singulall points that lie outside of it.
Thus,C(r) = 0, and fronC + C' =+ 2 it then follows thaC' = C(r) =+ 2.

The product manifoldy, whose simple model is, provides an example that is
interesting in another direction. It shows tharéncan be infinitely many models of a
manifold with completely different values f@ that are generally not simple. Namely,
since the circle is g-fold unbranched covering space of itself for epokitive whole
numberq, the same is true for each product manifold tleatains the circle as a factor.
One can thus represanas ag-fold covering of a modet, overy; Q then has the order
g relative tog(ry), soC(é(rq)) =+ 2q, sinceC(rq) = O.

For a simple modain with C(m) = £ 1 — thus, in particular, for thae-dimensional
sphere- the transformation through reciprocal radii pr@ddno homeomorphic simple
modelm’ with C(m') # C(m). It is also not known to me whether there isngpge model
m for then-dimensional sphere witG(m) # + 1.

The following consideration serves as an aid far éxamination of the behavior of
C(m) under maps, for which nothing less than befoilehei assumed:

%) See, e.g., Steinitz, Beitrage zur Analysis Situz($er. d. Berl. Math. Geg.1908).
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We attach an arbitrary fieNd of tangent vectors with at most finitely many singular
loci to m; i.e., we associate each poidtof 4, with finitely many omissions, with a
tangent vector af(P) to m that varies continuously witR (e.g., we can chooséto be
the tangential vector field that is generated by théovdelds¢; and¢, (cf., 8§ 1)). Lets
be the sum of the indices of the singularitie¥ofWe define a continuous functioviP)
onm that equals O at the singular points, is positive andewetywhere else, and then
associate each non-singular pdhnivith the vectoH(P) that lies in the quadrant spanned
by V(P) and the negative normb(P) and defines the angle (772 with N(P); for theP,,
we setH(P,) = N(P,). H is then continuous on all of and agrees with thi at theP,.
From 8§ 1, the coincidence number of the map ohtoR that is provided byN andH is
;2 =s. On the other hand, from the Poincaré-Bohl theobeth maps have the same
degreeC = C(m), so, from the result of § 2, one has:

S=11,=C+ (_1)n C,
so for evem one has:
s=2C.

Now since, from 8 1, a vector field with the samdex sums exists on any arbitrary
modelm’ for 4, the theorem now follows that:

The curvature integra of the model for a closed, two-sided mangotd even
dimension is an invariant gf.

§4.

Curvatura integra and index sum; conditionsfor the representability
of an n-dimensional manifold in an (n+1)-dimensional space

The relation between the indef the singularities of a tangential vector fieldnto
and thecurvatura integraC(m):
s=CO1+(1))

leads to some consequences that, indeed, do not relatediately to thecurvatura
integra, but shall still be mentioned. First, one can defiefollowing theorem from it:

The index sum of the singularities of a tangential vector field nwdel fory is a
topological invariant ofi — i.e., it is independent of the choice of model, as well as the
vector field—and indeed this invariant is alwa@gor odd n

This theorem was expressed by Hadam§rdand indeed, with the extension that the
model in question might lie in a space of arbitrary dingens Thus, no proof is given in
the cited chapter, which possesses only the characeereagdort, nor is any such proof
known to me in the existing literature. It is noteworthgt in the cases in whichhas
been computed, namely, for= 2%), for oddn, for n-dimensional spheré$), and for the

™ Loc. cit., pp. 474 et seq.
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manifolds that will be considered in the next paragrap,equal to the characteristic of

the manifold; i.e., it equalsZ(—l)"ak, if ax denotes the number d¢tdimensional
k=0

simplexes that occur in a simplicial decompositipn
We can now make a sharper statement than theetmneon the invariance of the
index sum. Namely, we know that:

The index sum of the model fors an even number.

Thus, as always, it is assumed tpais two-sided and that the model lies m1)-
dimensional Euclidian space. This provides thesipdi#y of answering the question of
whether eacm-dimensional manifoldn possesses such a model: Namelyn éidmits a
continuous deformatioR" =f(P; t), 0<t < 1, f(P, 0) =P that possesses no fixed points
except for finitely many fixed — i.e., independ@fit — points fort > 0, and ifg is the
sum of the indices of this fixed point thenmust be even when possesses a model.
Then, analogously to the process carried out in 8 fangential vector field with the
index sums = g may be constructed on the model. We considertapkarly simple sort
of fixed point: We call an isolated fixed point aehter” when it lies in a closed,
otherwise fixed-point free element that goes telfits A center always has the index
(-1)", since one can continuously vary the vectors gt from the point® of the
boundary of the element to the poift8) while preserving their initial points into ones
that point to a fixed point in the interior. Wenddaus express the theorem by saying that
a manifold possesses no hypersurface as a model iwlkemits a deformation whose
fixed points are centers, and an odd number of thienpresent. On the basis of this fact,
one may prove:

The totality 4« of complex points of th2k-dimensional projective space is4é-
dimensional, closed, two-sided manifold that possesses no hypersurfddi+in-
dimensional Euclidian space as a model.

The proof is obtained from the foregoing as sosro@e shows tha, is a closed,
two-sided manifold and that a deformation of thguieed type with (+1) centers exists.
This will be proved in the next paragraph, in whitte characteristic oz, will be
computed, in addition. It is likewiset1), which, in light of what was said above, isals
of interest in other cases where an agreement batte characteristic and the index
sum is present.

§5.
The complex projective space

Let Z; denote the totality of all complex points in thdimensional projective spaee
i.e., the totality of all ratio% : z : ... : z in which thez, are complex numbers do not all

") Added by the editor: A proof of the theorem stated by Hexld, with the addition that the invariant
that appears in the index sum is the characteristichevipublished in these Annalen by the author.
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vanish. Z; is Z-dimensional, and in the case 1 it is known to be homeomorphic to the
sphere.

Z, is a closed manifold witbharacteristic 1.

Proof: We decomposé, into r+1 partsg,. E, is the totality of all points oE, for
which |z,| 2| z5| (=0, ...,r). Sincez,# 0 InE,, we can normalize the coordinates of
all points ofE, that one always has = 1. If we then set, =X, + 1y, thenE, is mapped
topologically onto the piec&, of a Z2-dimensional Euclidian spadbat is defined by

inequality X2 + y>< 1 with 0< o(# p) <r. We can represer;, byr circular discsK/ (0
< o# p) <r) of radius 1, in which we refer to each group gioints A?, to which the
point A? of the discK/ belongs, as points d,. From the fact that, without changing

the topological structure df, , instead of the circular disa€”?, we can also use the

square discs that are defined by | < 1, |y, | < 1 - thus, a B-dimensional cube can be
used instead oE,, — it comes out thaE, is anelement A point ofZ belongs to both

E,and E, when and only whevﬁzpl‘ = ‘sz‘ 2|2z |; ie., if the pointAf,’; of the point
groupA?, in the aforementioned representation Ef, lies on the boundary oKf,’;.

From this, it is apparent that whem, ..., o, ares of the numbers 0, ...r, the
intersectionE,, , of the element<E, , ..., E, is homeomorphic to the product manifold

that is composed of — 1 circles and —s + 1 closed circular discs; hence, it has the
dimensionrs— 1+ 2¢(—-s+1)=2 —s+ 1.

We carry out a decomposition & into elements, which shows th&@ is a
“manifold” according to Brouwer’s) definition, and furthermore has the property that
for eachs, each of the manifold€E, ,is comprised exclusively of (2— s + 1)-

dimensional element faces of the decomposition. Weodstrate that one can present
one such decomposition, in the casercf 2 '®): The intersectiorEqs2 of the three
elementsky, Ei;, E; is a product manifold composed of two circles, and thus it
homeomorphic to a toral surface. We can defifie by way of:

=1, z =¢e”, »=¢€%"; 0< (¢, ) <277
or.

z0=¢€", z =1, z=¢€"; 0< (¢, Po) < 277
or.

zo=¢€%, z=ée", 2 =1; 0< (o, §1) < 27T

Eo12 decomposes the neighborhoodsgfthat is homeomorphic to the three-dimensional
sphere into the manifold%; andEy; that are determined by:

%=1, zn=¢e", =r€%: 0<(¢, ¢) <21 0<r,<1;
=1, n=re", z=¢€%; 0< (¢, o) <211 0<r;<1,

% The method applied here may be carried over to arbitrwith no further assumptions; the wording
of the representation then becomes so complicatedhtbateatment of the special case 2 seems to

make the situation clearer than the considerationeofémeral case.
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each of which is homeomorphic to the product of a cale a circular disc, and thus, to
an ordinary toral space. Analogously, the neighborho&d ehdE, will be decomposed
by Eoi2 into the toral spaces;; andEip (E20 andEzy, resp.). We now decompoBg:»
into a system of two-dimensional elements thatlfslbur requirements, by drawing, for
example, the twelve closed curves:

z, =1, z=d"?, z=&;
z,=¢e*  z=1, z= &%, 0< (@1, #2, #3) <277 k=0,1, 2, 3,
Zozéknlz, z= @ﬁl, ;:1;

which define a network of 32 curvilinear triang@sEy;, . We now decompodey; into
the four two-dimensional element manifolels(a = 1, 2, 3, 4):

=1, z=6e""?  n=rg% 0<¢<2m k=0,1,2,3

into four three-dimensional elemeni, (b = 1, 2, 3, 4); the neighborhood of eakEf
will be defined by two of thé=?, as well as a fourth dfq1,, and this fourth is now
composed of elements of the aforementioned suldlivief Eq1,, since both of its
boundaries are themselves curves of the netwarleath of the tw&*® that boundE?,,

we draw the four curves that are defined by:
2 = re""?; 0<ry<1; k=0,1,2,3.

They emanate from the same pointF8fand end on the four vertices of the subdivision
of Eoz2 that lie on the boundary &°. In this way, the neighborhood &, is subjected

to a decomposition of the desired type that agreethe part that belongs 12, with

the decomposition that is already present theree éitend this decomposition of the
neighborhood ofE, to a decomposition of the elemeBf, itself, in which we draw
curves from an interior point to points of the sidad vertices of the local decomposition
that correspond to lines under the topological roépE], to the interior of a two-

dimensional sphere. If we proceed in this way witifour E¢, then we subdivide all of

Eo1 Into elements of the required type, and then wéhdosame thing witk;, andEp; .
If we now extend the existing decomposition of Wanity of Ep, E;, E; in the required
manner toky, E;, E; itself then we obtain a decomposition&fthat satisfies all of the
demands presented.

The property of the aforementioned decompositibé,c¢hat each manifolcE,, , is

composed of faces of elements may also be expresstdlows: Either a given element
face has no interior points or it belongs to amremlement face dt,. This compels us
to subdivide the totality of all of the elements afbitrary dimension of the
decomposition in question (i.e., verticesjimensional sides,ralimensional faces) into
r +1 complexe&s(s=1, ...,r + 1), which are determined in such a way tatontains
those elements; that belong to precisebof theE, . Ks has the characteristi¢Ks) = 5,
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2r
e, lets = Z(—l)”afv‘s), where the number of n-dimensional elements th&tng toKs
v=0

is denoted byr'® . We next determing, for m> 2; as a product manifold with a circle

for a factor, E, , has the characteristik(E, ,)= 0, since the characteristic of a

product is equal to the product of the characiesisif the factors®), and the circle has
characteristic 3%. One then haS, = 0, if one set§, = Zk(Epl_‘_pS), where the sum is to

be taken over all of thE, which haves indices. An element belonging ko, that lies in
E,. ., appearsin all of th&, , whose indices are included among te..., Am, and

: . (m) . .
will thus be counted premse(y j times. Thus, one has the relations:
S

r+l

S= Z_@jﬁm: 0 [s=2 ..r+1]

m
which, since( j = 0 form<'s, may be written in the form:

S

i@jﬁm:o 5= 2, .. +1].

m=s

The determinant of this system of equations isirige there are nothing but ones in
the principal diagonal and beneath it there areerthusS, = 0 form=>= 2. Fors=1,
the corresponding equation reads:

r+l

S.= Y KE)= X mB, =f,

and sinceE, , as an element, has characteristic 1, onghas + 1. — The characteristic
of Z; is thus®®):

k(z)= rﬂk(Ks) = f[)’f r+1, Q.E.D.

) For a product with a circle for a factor, the vamishf the characteristic can also be derived
without using the Steinitz theorem that was employed intélkg since such a manifold is a two-fold
unbranched covering of itself; it then follows thkét) = 2&(), k() = 0.

20) Herr H. Kiinneth has written to me that he has detadnine Betti numbers @ and has found that

n
P, = P; = 1; thus, the characterisk€Z,) follows from the formule = z P(-1) +1 A+ (1)) (cf,

i=0
Tietze, Die topologischen Invarianten, ..., Wiener Monetftg 19 (1908), pp. 48) when one considers that
Py =P,=1 (Tietze, loc. cit., pp. 35, footnote 5), in agreenvétit out resultk(Z,) = 3.
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Z, is simply connectedThis is known for = 1, and we thus need only to confirm the
simple connectedness af when we already know it fof,_;: If a closed curve ig(t),
..., Z(t) then we can, with no loss of generality, assurag tite point O, O, ..., O, 1 does
not lie on it; the points of the cureg(t), ..., z-1(t), A z(t) thus define a closed curve for
eachA and also forA = 0. If A runs from 1 to O then the given cure will be
continuously transformed int&o : z(t), ..., z-1(t), O; it belongs to structure that is
defined by the equatian = 0, which is homeomorphic @, . SinceZ,-; is assumed to
be simply connected, can be continuously contracted to a point in the stregu= O,
from which the deformation d¢; to a point is completed.

From simple connectivity, it follows that is two-sided.

Z, admits a single-valued and continuous transformatidniribludes the identity:
P =f(P,t); 0s<t<1; f(P, 0) =P,

which possesses+1 centersthat are independent ffout no fixed points fotr > O.
Then, under the deformation:

z;,(zO,~--,z;o:ef%mE1zp [F=0, .. [0<t<1]

ther + 1 points defined by:
1,0..0, o01210,..0 .., 00..,01
remain fixed; they are centers, since ekglwill be deformed into itself and precisely

one of these points is contained in the interi@ther fixed points do not appear, though;
if there were such a point then there would beitwlacesp, > o, with:

Plog  Plog

z,# 0, z, # 0, z;)l: sz: 2,2, thus e* =e* |
(:01_:02)

2R =Xm=22r (Oi—-pe)t<r+1,
r+1

while0<p - <r,0<t<l,sop—p)t<r.

(Received on 7/3/1925.)



