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Introduction 
 

 It is well-known in ordinary differential geometry that the theorem of the invariance 
of the curvature integra of a closed surface follows from the Gauss-Bonnet theorem 1); it 
may be expressed as follows: “If an everywhere regular metric is defined on a closed 
surface by an element of arc length ds, and if K is the Gaussian curvature, which is 
computed from the coefficients of ds2 in a well-known way, then the integral of K over 
the entire surface is equal to the product of the area 4π of the boundary surface of a unit 
sphere with a whole-number topological invariant of the surface.”  Thus, in order for this 
theorem to be valid it is not necessary to restrict oneself to surfaces that lie in three-
dimensional Euclidian space and carry a metric that they inherit from it.  In the present 
investigation of the curvature integra of higher-dimensional manifolds, we shall 
nonetheless assume the aforementioned restriction: We consider n-dimensional closed 
hypersurfaces (which are usually allowed to be self-intersecting) that are embedded in 
(n+1)-dimensional Euclidian space, and ask just what values that the curvature integra of 
such hypersurfaces can provide that are the “model” for one and the same manifold.  
From the Gaussian definition of the curvature by means of the normal map it emerges, 
with no further assumptions, that the curvature integra of a hypersurface m is equal to the 
product of the boundary surface volume of the n-dimensional unit sphere and the 
“degree” of the map from the manifold that represents the model m that takes the normals 
to m onto the “direction sphere” of (n+1)-dimensional space.  This mapping degree, 
which we would like to call – by abuse of notation – the curvature integra of m thus 
defines the center of the investigation 2). 
 As a result, this is closely linked with the theory of mapping degree, which is based 
on the works of Brouwer; in particular, the paper “Über Abbilding von 
Mannigfaltigkeiten,” 3), as well as parts of the paper “Über Jordansche 
Mannigfaltigkeiten” 3).  In what follows, we shall frequently employ his concept 

                                                
 1) See, e.g., Blaschke, Vorles. über Diff.-Geom.  1 (Berlin, 1921), § 64. 
 2) Kronecker, in his treatise “Über Systeme von Funktionen  mehrerer Variabeln” (Monatsber. d. Kgl. 
Preuss. Akad. d. Wiss. zu Berlin 1869, 2. Abhandl.), has shown that the curvature integra of the surface 
F(x, y, z) = 0 agrees with the “characteristic” of the system of functions F, ∂F/∂x, ∂F/∂y, ∂F/∂z, multiplied 
by 4π; this is identical with the degree of the map considered in the text.  On this, one confers Hadamard 
“Note sur quelques applications de l’indice de Kronecker,” printed in Tannery, Introduction à la théorie 
des fonctions II, 2nd ed., (1910), as well as Dyck, “Beiträge zur Analysis Situs I,” Math. Annalen 32 (1888). 
 3 ) Math. Annalen 71 (1912). 
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definitions, methods of proof, and terminology – particularly in §§ 1, 2 – so that we do 
not always have to refer to him in the text, and his results must be assumed as known. 
 The contents of this paper is briefly summarized as follows: In § 1, the notion of the 
“index” of a singularity of a continuous vector field, which was essentially introduced by 
Poincaré 4) and plays an important role in Brouwer’s investigations of fixed points, will 
be extended in such a way that one can equip a point of an n-dimensional region that goes 
to the same image point under two different maps, while such an agreement does not 
enter into its neighborhood at all, with a “coincidence index;” on this, some things will be 
proved that will prove useful for later purposes − in particular, its invariance under 
topological transformations, and thus its independence of the coordinate system.  In § 2, 
two maps of an n-dimensional manifold m onto the n-dimensional ball will be 
considered; it will be shown that the sum of the coincidence indices – assuming that the 
maps have only finitely many points of coincidence – is, independently of the topological 
properties of m, equal to the sum of the two mapping degrees for even n and the 
difference for odd n; this is a generalization of the theorem of Poincaré-Bohl 5), which 
says, inter alia, that the two mapping degrees differ by the factor (−1)n+1, in the event that 
no points of coincidence appear.  The fact that one can determine the one degree and the 
other from the index sum using the stated theorem will be used for the examination of the 
curvature integra in § 3.  There, two hypersurfaces that model m will be considered; a 
classification follows that was introduced into topology by Antoine 6) in another 
connection, and we distinguish whether the map between the two models on µ can be 
extended to a map of elements (that contain the model), or only to a neighborhood (that 
contains the model), or whether the possibility of such an extension is not known.  It is 
shown that for even n the curvatura integra is a topological invariant of µ; i.e., that it 
remains unchanged under the maps of all three classes.  For odd n, by comparison, the 
curvature integra still remains indeed unchanged under the maps of the first class (at 
least, under certain differentiability assumptions), but no longer for those of the second 
class; here, there are indeed homeomorphic Jordan hypersurfaces, i.e., ones that are 
intersection-free, that have different values of the curvature integra (and not only up to 
sign).  Obviously, the question remains here of whether (for odd n ≥ 3) one can prescribe 
arbitrary values for the curvature integra of a – not necessarily Jordan – model for a 
given manifold, and whether the Jordan model of the n-dimensional ball always has the 
curvature integra ± 1; in this paper, the latter question will be resolved only under the 
simplifying assumption that the model is the boundary of an element, an assumption for 
which it is not whether that represents a restriction. 
 On the other hand, in another direction, we will arrive at the result: In the course of 
the investigations of § 3, it results that the index sum of the singularities of a vector field 
that is tangential to a hypersurface must have an even degree, namely, for odd n, it must 
be zero, and for even n, it must be twice the curvatura integra of the hypersurface.  From 
this fact, a necessary condition for an n-dimensional manifold to possess a hypersurface 
in (n+1)-dimensional Euclidian space as a model will be derived in § 4.  On the basis of 
this condition it is found in § 5 that the totality of the complex points of the 2k-

                                                
 4) Poincaré, “Sur les courbes définies par les equations différentielles (3iéme partie),” Chap. 13 (Journ. de 
Math. (4) 1 (1885), (4) 2 (1886). 
 5) Hadamard, loc. cit., pp. 476 et seq.  
 6) Antoine, “Sur l’homéomorphie de deux figures et de leurs voisinages,” Journ. de Math. (8) 4 (1921).  
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dimensional projective space, which is a 4k-dimensional, simply-connected, closed 
manifold, may not be represented by a hypersurface in (4k+1)-dimensional Euclidian 
space, even when one ignores self-intersections. 
 
 

§ 1. 
 

The index of a coincidence point of two maps 
 

 Let a right-angled Cartesian coordinate system ξ1, …, ξn be introduced in the 
neighborhood of an n-dimensional region Γ that contains a point Ω.  We make the 
following assumptions relative to the indicatrix, which are valid for all considerations in 
this paper, unless expressly stated to the contrary: The positive indicatrix is defined by 
the sequence of vertices (0, …, 0); (1, 0, …, 0); (0, 1, …, 0); …; (0, 0, …, 1) of the 
simplex S that they determine; the positive indicatrix of the boundary of S is thus 
simultaneously established by this.  As the “natural” orientation of a Jordan manifold m, 
we mean the one for which the interior has the order + 1, and we determine the order of a 
point A by projecting µ from A onto a simplex χ around A that has sides parallel to those 
of S and is oriented correspondingly.  If m is an oriented (n – 1)-dimensional surface 
piece that possesses an (n − 1)-dimensional tangent space ϑΠ at each point Π that varies 
continuously with Π then the positive indicatrix of ϑΠ is to be chosen in such a way that 
the topological map that is carried out by perpendicular projection of a sufficiently small 
region of m that includes Π onto ϑΠ takes the positive indicatrix of m to that of ϑΠ .  We 
say that a ray that originates at Π and is not tangential to m is directed towards the 
“positive” side of m when the positive boundary indicatrix that is defined by the natural 
orientation of an n-dimensional simplex that is defined by a point of the ray and an (n 
−1)-dimensional simplex of ϑΠ is the positive indicatrix of ϑΠ .  Thus, the interior 
normals of a naturally oriented (n – 1)-dimensional sphere have a positive direction.  The 
orientation of ϑΠ is therefore the one whose midpoint lies on the positive normal of m, 
whether or not one regards ϑΠ as a tangent space to m or to a sphere. 
 Let H1 and H2 be two maps 7) of Γ onto point sets of the region G, which possesses 
coordinates x1, …, xn and is likewise oriented in the required manner; let Ω be an isolated 
point of coincidence of H1 and H2 ; let H1(Ω) = H2(Ω) = 0, but H1(Π) ≠ H2(Π) when Π ≠ 
Ω. 
 We associate each point Π of Γ that is different from Ω with the vector v(Π) that 
points from H1(Π) to H2(Π), as well as the point of the “direction sphere R” of G that 
belongs to v(Π); i.e., the intersection point of a fixed, naturally oriented sphere K that 
“represents R” with the ray that originates from the midpoint and is parallel to v(Π).  We 
call the degree of the thus-defined map of a naturally oriented Jordan manifold µ that lies 
in Γ and includes Ω in its interior onto R the “degree a12(µ) of µ;” it is obviously 
independent of the choice of sphere that represents the direction sphere; it is independent 
of the choice of µ.  χ is then a sphere around Ω, Π1 is the intersection point of χ with the 
ray Ω Π0 , where Π0 = Π is a point of µ, Πt is the point on the line segment Π0 Π1 , that 

                                                
 7) The term “map” will always be understood to mean a single-valued and continuous map. 
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divides it with the ratio t : (1 – t), and if one considers the maps αt of µ onto R that are 
mediated by the vectors v(Πt), when t increases from 0 to 1, then the map of degree a12(µ) 
goes continuously over to the map α1, and thus with conservation of the degree.  
However, this combines the map of µ onto χ by means of projection of Ω, which, by the 
definition of “order” and our orientation prescription, has degree + 1, and the map of 
degree a12(χ) of the sphere χ onto R.  Since the degree gets multiplied when two maps are 
composed, it then follows that a12(µ) = a12(χ), from which the independence of the 
degree a12 of the choice of µ is proved. 
 We call a12 the “index of coincidence” of H1 and H2 at Ω. – If one exchanges H1 and 
H2 then the vectors v go to their opposites, from which, a21 = (−1)n a12 . − If one changes 
the orientation of Γ or that of G then a12 changes sign, since µ (R, resp.) then becomes a 
map of degree – 1; if one changes both indicatrices then a12 remains  unchanged. 
 Let the points Π that differ from Ω be associated with a continuous family of simple, 
closed, continuously differentiable curve segments s(Π) that link H1(Π) to H2(Π), and 
whose tangent vectors w(Π) at H1(Π) change continuously with Π.  Just like the vectors 
v, the vectors w also define an “index” for Ω: It is equal to a12 .  If H(Π, t) denotes the 
point that divides s(Π) with the ratio (1 – t) : t and v(Π, t) denotes the vector that points 
from H1(Π) = H(Π, 1) to H(Π, t) then as t runs continuously from 0 to 1 the vector field 
of v(Π) = v(Π, 0) the goes continuously to w(Π) = v(Π, 1). – The initial directions of the 
curves s can also be employed for the determination of a12 instead of the directions of the 
line segments that go from H1(Π) to H2(Π). 
 If Γ were taken to an oriented region Γ′ by a topological map ϕ then two maps 

1( )H ′ ′Π = 1
1 ( )H ϕ −′ ′Π  and 2( )H ′ ′Π = 1

2 ( )H ϕ −′ ′Π  are defined in it that have an isolated 

coincidence point at Ω′ = ϕ(Ω).  Under ϕ, the natural orientation of a Jordan manifold µ 
goes to the natural orientation of µ′ = ϕ(µ) or its opposite, according to whether ϕ does or 
does not preserve the indicatrix.  From the definition of indicatrix, it follows immediately 
that: 
 
 The index of an isolated coincidence point of two maps H1, H2 remains unchanged 
under a topological map ϕ of the domain of definition of H1 and H2 or picks up a factor 
of – 1, according to whether ϕ  preserves the indicatrix or inverts it. 
 
 The analogous theorem is true for topological maps of G: 
 
 The index of coincidence is – at best, up to sign, as before – invariant under 
topological maps of the domain of definition. 
 
 Proof:  Let f be a topological map of a neighborhood G of O onto the neighborhood 
G′ of the point O′ = f(O), let k be a sphere about O that lies in the domain of definition of 
f, let µ be sufficiently small that H1(µ) and H1(µ) lie in the interior of k, and let H(Π) be 
the intersection point of k with the ray H1(Π) H2(Π).  We continuously carry over the 
vectors H1(Π) → H(Π) that determine the coincidence index to the vectors O → H(Π) by 
letting their starting points run from H1(Π) to O in time 1, and in a uniform, rectilinear 
way.  If we now choose a sphere about O as direction sphere R then the desired index of 
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the degree of the map of µ onto R, which is mediated by the projection of H(µ) onto O, 
then equal to the “order of O relative to H(µ).” 
 We transform the vectors that point from fH1(Π) to fH2(Π) that define the coincidence 
index of fH1 and fH2 under examination continuously into the vectors that point from O′ 
to fH(Π), during which we: 
 1. Let their endpoints run uniformly (in the sense of the geometry of G) to fH(Π) 
along the images of the line segments H2(Π) H(Π) that are provided by f. 
 2. Let their final points run uniformly to O along the images of the line segments 
H1(Π)O. 
 If we choose a sphere around O′ as the direction sphere R′ then we recognize that the 
index in question is equal to the “order of f(O) relative to fH(µ).” 
 The assertion of the invariance of the coincidence index thus leads us back to the 
invariance of the order of O relative to H(µ) under the topological map f.  We show the 
validity of this assertion when we prove it for a sequence H(µ) of uniformly 
approximating simplicial maps H(ν)(µ) and a sequence f of uniformly approximating 
simplicial maps fλ ; thus, for the construction of the basic simplexes for f1, as well as the 
image simplexes for fλ and H(ν), the Euclidian metric of G (G′, resp.) is fundamental. 
 If K = H(ν)  is one of the approximations to H then image set K(µ) is composed of a 
finite number of (n – 1)-dimensional simplexes.  We draw a ray through a point A that 
does not belong to K(µ) and that does not meet any (n – 2)-dimensional side of one of 
these simplexes.  If p and p′ are the numbers of sub-simplexes of K, which is the basis for 
the decomposition of µ, whose image simplexes intersect the ray in the positive 
(negative, resp.) sense then p − p′ is the order of A relative to K(µ).  Let q − q′ be the 
corresponding number for ray that goes from A to infinity that meets no (n − 2)-
dimensional side of an image simplex, and on which, no corner point lies on K(µ).  We 
assert that q − q′ = p − p′. – This is proved when it is shown that the corresponding 
number for each closed, oriented polygon is equal to 0.  If W is such a polygon then from 
now on we can assume that position of its vertices has been modified in such a way that 
the extension of no side meets an (n – 2)-dimensional side of K(µ), At each vertex of W, 
we add the two rays that define the extension of the sides that come together there, and 
understand them to have the directional sense that is determined by the sides in question.  
The difference to be examined is increased by the order of the vertex under the addition 
of a ray, while it is decreased by this order number under the addition of the other rays; in 
total it thus remains unchanged.  The system of line segments and rays that now lies 
before us decomposes into a finite number of directed lines.  For each line, the difference 
of the numbers of positive and negative intersections is 0, which one sees when one 
considers the lines as composed of two rays.  Thus, the desired number is, in fact, equal 
to 0. It is thus shown that the difference q − q′ , which is determined by an arbitrary line 
segment from A to infinity, is equal to the order of A 8).  From this, it further follows that 
for a line segment from A to B this difference is equal to the order of A minus the order of 
B. 
 We now assume that K is fixed and show that when fλ is a sufficiently good 
approximation to f, the order of O relative to K(µ) changes under the map fλ at most by a 

                                                
 8 Cf., Brouwer, Über Jordansche Mannigfaltigkeiten, pp. 323, as well as Hadamard, loc. cit.  



H. Hopf, On the curvature integra of closed hypersurfaces                              6 

sign.  Since this change comes about under a reflection, for the sake of convenience, we 
can assume f preserves the indicatrix, and then we must prove that the sign of the order 
also remains unchanged. – First, let a simplicial approximation fλ′ of f be given; we must 

refine it, in a suitable way, to a map fλ of the desired type.  The simplicial decomposition 
of G that is based onfλ′  fulfills the following assumptions: O is a corner point of a basic 

simplex, such that one then hasfλ′ (O) = f(O) = O′.  Let t be a ray that emanates from O 

and meets no (n − 2)-dimensional side of K(µ).  Let each intersection point of t with K(µ) 
be the interior points of a basic simplex.  If P1, P2 , …, Pr are the points of µ for which 
K(Pρ) lies on t then we can assume that 

1
( )K Pρ ≠

2
( )K Pρ  for ρ1 ≠ ρ2 , since that can be 

arranged by an arbitrarily small modification of K.  Let sρ be the basic simplexes of µ that 
contain the Pρ , and let Sρ be the basic simplexes of G that contain the K(Pρ), which are 
chosen such that the points K(Pρ) lie in their interiors.  Let the Sρ be so small that no 
points of K(µ) besides those of K(sρ) lie at each Sρ .  K(sρ) divides Sρ into two parts 1Sρ , 

2Sρ ; let 1Aρ , 2Aρ  be two points of t that lie in the interior of 1Sρ  ( 2Sρ , resp.), and let the 

direction 1Aρ → 2Aρ  emanate from O. – We now thicken the current simplicial 

decomposition of G to a decomposition ζλ with the following properties: 
 1. The K(Pρ) lie in the interior of the basic simplexes. 
 
The simplicial map fλ associated with ζλ approximates f so well that: 
 
 2. If tρ denotes the line segment1Aρ

2Aρ , wρ , the circumference of Sρ , and µρ , the 

subset of µ for which K(µ2) lies in Sρ then fλ(tρ) is disjoint from fλ(wρ) and fλ(µ − µρ), 
while ( )f t tλ ρ

ρ
−∑  is disjoint from ( )fλ ρ

ρ
µ µ−∑ , 

 
and that: 
 
 3. If uρ is the circumference of 1Sρ  then the orders of 1( )f Aλ ρ  and 2( )f Aλ ρ  relative to 

fλ(uρ) are equal to the orders of 1( )f Aρ  ( 2( )f Aρ , resp.) relative to f(uρ). 

 
 If these conditions are fulfilled then the only intersection points of the line segment 
fλ(t) with fλ K(µ) are the intersection points of the fλ(tρ) with the fλ K(µρ), and for each ρ 
the difference in the numbers of positive and negative intersection points is equal to the 
order of 1( )f Aρ  relative to f(uρ) minus the order of 2( )f Aρ  relative to f(uρ).  The 

indicatrix of uρ is thus established through that of µρ . 
 Now, the order of 2Aρ  relative to uρ is equal to 0, that of 1Aρ  relative to uρ is equal to ± 

1, according to whether the circulation in K(Pρ) is positive or negative, respectively.  
With that, our theorem comes down to a simple special case, namely, the assertion that 
under the topological map f the order of a point relative to the Jordan manifold uρ 
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changes by ± 1 for the interior points and remains 0 for the exterior ones.  The validity of 
this assertion, however, follows from well-known theorems of Brouwer 9). 
 Thus, the topological invariance of the order of a point relative to H(µ) – in any 
event, ignoring the sign – is proved, and likewise the same is true for the coincidence 
index of two maps.  This fact may also be expressed by saying that these numbers are 
independent of the coordinate system for a correct consideration of the sign. 
 
 An application of the previous results that will of use to later is the following one: If 
H1, H2 are maps of Γ onto a region G that belongs to a sphere then for the determination 
of the coincidence index it is irrelevant whether we employ the great circle arc or the 
circular arc through an arbitrary fixed point A of the sphere as the curve s(Π) that links 
H1(Π) to H2(Π), through whose starting direction the coincidence index is to be 
determined (cf., supra), as well as whether we carry over the Cartesian coordinate system 
in G that we need for the determination of the index by stereographic or any other 
projection of a planar space onto G, as long as the indicatrix remains the same. 
 The following consideration leads to still more important applications: 
 If Γ is identical with G and H1 is the identity map then Ω is an isolated fixed point of 
H2 and a = a12 is its “index;” the foregoing statements remain valid, but one must observe 
that if Γ = G is a topological map that inverts the indicatrix then this inversion will be 
present in Γ, as well as G, so the sign of a12 will not change; the theorem that emerges is 
thus: 
 
 The index of a fixed point is a topological invariant. 
 
 If v(Π) is a continuous vector field in Γ with an isolated singularity given at Ω then 
we understand the “index” a of this singularity to mean the degree of the map of a sphere 
χ that surrounds Ω onto the direction sphere, which will be established by the vectors of 
the field that are brought to χ.  It is equal to the index of the fixed point Ω of that map H2 
that displaces each point Π in the direction of its vector v(Π) along a line segment ε(Π), 
where ε(Π) is a continuous function that vanishes at Ω and is positive everywhere else.  If 
Γ were subjected to a differentiable map f with a non-vanishing functional determinant 
then the vector field would go to a new vector field v′ = fv and H2 would go to fH2 under 
this map.  We determine the index of the fixed point f(Ω) under the map fH2 by the 
starting direction f v(Π) of the curve s(Π) that leads from f(Π) to fH2(Π), which is the 

image of the line segment 2( )HΠ Π .  It is, on the one hand, equal to a, and on the other 

hand, equal to the index of the singularity f(Ω) of the vector field fv.  It is thus shown 
that: 
 
 The index of a singularity of a continuous vector field does not change under a map 
with a non-vanishing functional determinant 10). 
 
 The most important application of this theorem for us is the following one: 

                                                
 9) Brouwer, Über Jordansche Mannigfaltigkeiten, §§ 4, 5. 
 10) This fact is also easy to prove without our theorem on the invariance of the index of a fixed point. 
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 By a “model” for a closed, n-dimensional manifold µ, we understand this to mean a 
point set m that lies in an (n + 1)-dimensional Euclidian space, onto which m is mapped 
in a single-valued and continuous way such that this map F is also uniquely invertible in 
the small; i.e., that there is a neighborhood UP around each point P that is topologically 
related to its image set F(UP). – We consider models that are “hypersurfaces;” this means 
that to each point P of µ there exists an n-dimensional planar tangent space ϑP on F(UP) 
that varies continuously with P.  There, for each P there is a neighborhood PU ∗  that is 

mapped topologically onto ϑP by perpendicular projection of( )PF U ∗ by means of the 

map ( )PS F U∗ . 

 Let a continuous field of tangent vectors with finitely many singularities be given on 
m; i.e., with finitely many omissions P1, P2, …, Pr , there is at each point P of µ, a vector 
v(P) associated with F(P) that is tangential to F(UP) and varies continuously with P.  
Each of the points F(Pρ) (ρ = 1, …, r) possesses a well-defined index aρ , which can be 
determined by – say – projecting the coordinate system of ϑP onto ( )PF U ∗ .  (r ≥ 0.) 

 We define a continuous function ε(P) on µ that vanishes at the points Pρ and is 
positive everywhere else.  We associate each point P with that point tP′  of the tangent ray 

that is determined by v(P), and which has the distance t ⋅ ε(P) from F(P), where t is a 
parameter.  There is a number t0 > 0 such that for all P and for 0 < t ≤ t0 the point tP′  lies 

in ( )PS F U∗ ; let it be the image of the point Pt under the map S F.  The map Pt = h(P, t) is 

single-valued and continuous on all of µ and for all t (0 < t ≤ t0) and possesses the r fixed 
– i.e., independent of t − points Pρ with the indices aρ . 
 If there is now a second model m′  = F′(µ) that is likewise a hypersurface, so it is 
continuous and possesses a planar tangent space Pϑ′ , then we choose t sufficiently small 

that none of the chords F′(P) F′(Pt) to F′(P) are perpendicular to ( )PF U′ ′ , and project 

these chords onto the tangent space Pϑ′  in the direction of the normal at F′(P).  A 

continuous tangent vector field on m′ will then be generated that is singular only at the 
points F′(Pρ), and the indices of the singularities are again equal to the indices aρ of the 
fixed points of the transformation h that is defined in µ. – It is thus shown that: 
 
 If there is a continuous, tangent vector field on m with r singularities whose indices 
are a1, …, ar then there is a continuous, tangent vector field on any other model m′ for 
the same manifold µ that has the same number of singularities and the same indices. (r ≥ 
0) 11) 
 
 The coincidence locus of two maps onto the sphere will be of particular interest for us 
later on, and is defined as follows: 
 Let Γ be an n-dimensional, continuously differentiable, orientable surface patch that 
lies in (n + 1)-dimensional space.  At the points of Γ, let there be given two continuous 

                                                
 11) In the event that the relation between m and m′ that is mediated by µ fulfills suitable differentiability 
assumptions, the proof of our theorem is obviously essentially simpler to complete than was done in the 
text. 
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distributions C1 and C2 of (n + 1)-dimensional vectors with the property that all of the 

vectors C1 have negative directions relative to Γ, and the vectors C1(Ω) and C2(Ω) 

coincide for one and only one point Ω of Γ.  The maps H1 and H2 of Γ onto the direction 
sphere R that are mediated by C1 and C2 thus agree at Ω and only there; let the associated 

index be a12 . 
 At each point Ω of Γ that differs from the point Π, the vectors C1(Π), whose opposite 

vector is 1( )ΠC , and C2(Π) determine a half-plane that, since C1(Π) is not tangential, cuts 

the planar tangent space ϑP at a vector v12(Π).  The field of v12 , which we call the tangent 
field generated by C1, C2, has a singularity at Ω, which we will show has an index of a12 : 

 Let R be represented by a sphere that contacts ϑΩ at Ω, whose center A lies on the 
positive normal to Γ, and thus, in a part of space that does not belong to C1(Ω).  We 

perform the central projection Z from A onto ϑΩ on the half that lies between ϑΩ and the 
space through A that is parallel to it; thus (cf., supra), the positive indicatrix of R goes 
over to the positive indicatrix of ϑΩ , and we obtain two maps Z H1 = 1H ′  and Z H2 = 2H ′  
of Γ onto ϑΩ whose coincidence at Ω likewise has the index a12 .  The vector that points 
from 1( )H ′ Π  to 2( )H ′ Π  is parallel to the vector w(Π), at which the ϑΩ that is constructed 

from the half-plane in Π that includes C1(Π), 1( )ΠC , C2(Π), v12(Π) is intersected; we 

take the w(Π), which we can therefore use for the determination of a12, from a 
neighborhood of Ω continuously over to the vectors w′(Π): We take the C1(Π), while 

preserving its initial point, over to the vector parallel to C1(Ω), by means of the angle 

defined by the directions C1(Π) and C1(Ω), which happens in the vicinity of Ω without 

having to go through ϑΩ . 
 Throughout this process, we observe the change that the vector v(Π, t) suffers, at 
which ϑΩ will be intersected by the half-plane C1(P, t), 1( , )tΠC , v12(Π), where C1(Π, t) is 

the moving vector: The v(Π, t) will be continuously transformed from w(Π) to the vectors 
w′(Π) that arise from the v12(Π) under parallel projection onto ϑΩ in the direction of 
C1(Ω).  The degree of the map of an (n − 1)-dimensional manifold surrounding Ω in ϑΩ 

onto the direction sphere r of ϑΩ that is mediated by w′ is therefore, on the one hand, 
equal to a12, and on the other, equal to the index of Ω relative to the field of v12, and with 
this, the assertion is proved.  One can therefore replace the determination of a12 with that 
of the index of Ω relative to the field of v12 . 
 If we subject the (n + 1)-dimensional neighborhood of Ω to a single-valued, 
continuously-differentiable map ϕ with a non-vanishing functional determinant then the 
C1(Π),C2(Π), v12(Π) go to 1′C , 2′C , 12v′ ; we  then choose the orientation of the image Γ′ of 

Γ in such a way that the 1′C  is also negatively directed.  The 1′C  and 2′C  have an isolated 

coincidence point at Ω′, whose index 12a′  is equal to the index of Ω′ relative to the 

tangential vector field 12v′  = ϕ(v12) to Γ′, which is obviously identical with the tangent 

field that is generated by 1′C  and 2′C  (since the linear independence of the vectors C1, C2, 

v12 at each point is preserved by the map).  Now, since the index of Ω relative to v12 does 
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not change under the map, as was proved above, the same is true for the index a12 of the 
coincidence of C1 and C2 at Ω. – Conversely, if we impose the aforementioned 

assumption on the positive indicatrix in such a way that the map of Γ onto Γ′ has the 
degree + 1 then we must distinguish whether the functional determinant D of ϕ is positive 
or negative; i.e., whether ϕ preserves the indicatrix or inverts it: In the first case, the 
negative side of Γ goes to the negative side of Γ′, so one has 12a′ = a12 .  In the second 

case, the 1′C  and 2′C  are then positively directed, and the coincidence index 1
12( 1)n a+ ′−  of 

the negatively-directed maps, which are mediated by the vector distributions 1′C , 2′C  that 

are diametrically opposite to 1′C , 2′C , is equal to the index of Ω′ relative to the tangential 

vector field that is generated by 1′C  and 2′C , which is diametrically  opposite to 12v′ , and 

thus equal to (−1)n+1a12 , since Ω has the index a12 relative to 12v′ ; from 1
12( 1)n a+ ′−  = 

(−1)na12 , it follows that 12a′  = − a12 , and one sees that 12a′  = ± a12, according to whether 

D > 0 or D < 0. 
 

§ 2. 
 

The coincidence number of two maps of a  
closed, two-sided manifold onto the sphere 

 
 Let the closed, two-sided, oriented, n-dimensional manifold µ be mapped onto the n-

dimensional sphere K that is given by the equation 
1

2

1

n

xν
ν

+

=
∑  = 1 by the maps f1 and f2 .  f1 

and f2 shall agree only at finitely many points Pχ (χ = 1, …, k) of µ.  The sum of the 

indices of these coincidences ( )
12

1

k

a χ

χ =
∑  = I12 = (−1)n I21 is called the “coincidence number” 

of f1 and f2 . 
 We construct two essentially simplicial approximating maps for f1, f2 with the same 
coincidence points Pχ (indices ( )

12a χ , resp.) : 

 Let ζ be a simplicial decomposition of µ, for which the Pχ are interior points of the 
simplexes Sχ , and which is sufficiently dense that the images fλ(Sχ) and f2(Sχ) can be 
separated by spheres Hχ [χ = 1, …, k] whose spherical radii are smaller than π/2, such 

that one can connect any two points in them by a unique circular arc, and whose set union 
still leaves a region N of K free.  If one now lets µ′ denote the subset of µ that comes 

about by omitting the interior region of Sχ from µ and m is the minimum of the spherical 

distances 1 2( ) ( )f P f P  for all points P of µ′ for all points P of µ′ then we carry out a 

subdivision ζ′ of ζ that is sufficiently dense that for each of the two associated simplicial 

approximations δ1, δ2 of f1, f 2 , the spherical distance ( ) ( )i iP f Pδ  < m/2 in all of µ, and 

that the images δ1(Sχ) and δ2(Sχ) also lie completely in the interiors of the Hχ .  Thus, the 

natural coordinates are chosen for the representation of the simplicial approximations as 
coordinates in K; i.e., for the center of mass of n + 1 masses at the corners 1

ix , 2
ix , …, 
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1
i
nx +  [i = 1, …, n – 1] of a spherical complex S, one considers the point of S whose 

coordinates ξν behave like the n + 1 numbers 
1

1

n
i i

i

x mν

+

=
∑ ; the simplicial maps of µ into all 

of µ will be defined continuously on the basis of these coordinates 12).  Due to the 

relations i ifδ < m/2 [i = 1, 2], 1 2f f  ≥ m, δ1 and δ2 have no coincidence point on µ′ and 

thus, in particular, on the boundaries of the Sχ ; thus, there can be infinitely many 
coincidence points in the interior of the Sχ .  In order to eliminate them, we replace δ2 
with a map 2δ ′ : Let 2δ ′  = δ2 on µ′.  At each Sχ , we consider the pencil of rays that 

originate from Pχ and the continuous function α, which vanishes only at Pχ and is 
positive everywhere else, which, at each boundary point RP

χ
of Sχ , is equal to the distance 

1 2( ) ( )R RP P
χ χ

δ δ  and decreases on the ray RP P
χ χ in proportion to the distance from Pχ .  We 

now associate the point P of the ray RP P
χ χ  with that point 2( )Pδ ′  of K that has the 

spherical distance α from δ1(P), and for which, under stereographic projection of the 
antipodal point pχ from the point δ1(Pχ) the vector δ1(P) → 2( )Pδ ′  is parallel to the vector 

1( )RP
χ

δ → 2( )RP
χ

δ .  2δ ′  is then continuous in all of µ and identical with δ2 in µ′, and thus, 

simplicial.  The images 2( )Sχδ ′  likewise lie completely in the sphere Hχ ; 2δ ′  agrees with 

δ1 only at the Pχ .  The index of this coincidence at Pχ is ( )
12a χ ; it may then be determined 

by basing the Euclidian coordinate system that is provided by the stereographic 
projection from pχ by means of the initial directions of the circular arc 1( )RP

χ
δ 2( )RP

χ
δ  

that belongs to the boundary points RP
χ
.  Inside of Hχ , one can continuously transform 

the totality of these arcs by a uniform motion of their starting and ending points into the 
totality of great circular arcs 1 2( ) ( )R Rf P f P

χ χ
, and no arc will degenerate into a point 

under this transformation, due to the inequality i ifδ  < 1
1 22 f f  [i = 1, 2].  As a result, the 

starting directions of the arcs 1( )RP
χ

δ 2( )RP
χ

δ  and the arcs 1 2( ) ( )R Rf P f P
χ χ

deliver maps of 

equal degree onto the direction sphere of the coordinate system; i.e., the coincidence 
index of δ1 and 2δ ′  at Pχ is ( )

12a χ . 

 δ2 and 2δ ′  have equal degree, since the region N will be covered by both maps of the 

same points of µ.  Thus, if g1, g2 are the degrees of f1, f2 then they are also the degrees of 
the simplicial approximations, and therefore also those of δ1 and 2δ ′ . 
 We choose a point O of N that does not lie on the boundary of an image simplex of δ1 

or δ2 ; since N will be covered by both maps only by points of µ′ and there one has 2δ ′  ≡ 

δ2 , both of these maps are simplicial for all points of m that go to points of the 
neighborhood of O under one of the maps δ1 and 2δ ′ . 
                                                
 12) For Brouwer, Über Abbildung von Mannigfaltigkeiten, § 1, the simplicial maps of µ will then be 
defined only for those basic simplexes of µ whose vertex images belong to the same element of K; thus, it 
seems to me that the simplicial maps onto the sphere in § 3 of the Brouwer paper are based on the 
modification of the definition that was employed in the text above. 
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 Now, we associate the points P of µ with those vectors that are tangential to the 
circular arc from O leading to 2( )Pδ ′  over δ1(P) 12a).  This association is undetermined at 

the following points P*, and only at those points: 
 1. The points Pχ . 
 2. The points A1, …, Ar for which one has δ1(Ar) = O. 
 3. The points B1, …, Bs for which one has 2( )Bσδ ′  = δ2(Br) = O. 

Each of these points P* lies in the interior of a basic simplex S*(P*) of the decomposition 
ζ′.  If S**  is sub-simplex of S* 13) that contains only one of these singular points then the 
periphery (Umfang) of S** , through the vectors that are associated with its points, will be 
mapped onto the direction sphere of the tangential planar space to K at δ1(P*) by means 

of stereographic projection.  The degree of this map is called the “index” I(P*).  We 
determine ( )

P

I P
∗

∗∑  by the rule: 

 1. It is I(Pχ) = ( )
12a χ , so ( )

P P

I P
χ

∗

∗

=
∑ = I12 . 

 2. The index of the singularity δ1(Aρ) = O of the vector field that is defined by the 
vectors at the points of δ1(S

** (Aρ)) that are associated with the points of S** (Aρ) is + 1 14); 
thus, I(Aρ) = ± 1, according to whether δ1(S

** (Aρ)) is a positive or negative image simplex 
of S** (Aρ).  However, since the degree g1 of f1 is the number of times that O positively 
covers the image simplex minus the number of times that O covers it negatively, one 
has ( )

P A

I P
ρ

∗

∗

=
∑  = g1. 

 3. The index of the singularity δ1(Bρ) of the vector field that is defined by the vectors 
at the points of δ1(S

** (Bρ)) that are associated with the points of S** (Aρ) is ∓ 1, according 
to whether the simplexes δ1(S

** (Bρ)) and δ2(S
** (Bρ)) have equal or unequal signs 14); thus, 

I(Bσ) = ∓ 1, according to whether δ2(S
** (Bρ)) is a positive or negative image simplex.  

Thus, ( )
P B

I P
ρ

∗

∗

=
∑  = − g2 . 

 Thus, one has: 12 1 2( )
P

I P I g g
∗

∗ = + −∑ . 

 We now determine ( )
P

I P
∗

∗∑  in yet another way: 

 We choose an arbitrary point Q on K that does not belong to any boundary of an 

image simplex of δ1, but is covered by at least one such point.  It will be positively 
(negatively, resp.) covered by δ1 with p′ image simplexes T1, …, Tp ; 1T′ , …, pT ′′ ; one has 

p − p′ = g1 .  As mediating maps, for the sake of introducing Euclidian coordinate system 
for the determination of the indices of P*, we use basic simplexes for this whose images 
are the T and T′ under stereographic projection from the antipodal point Q  to Q, and all 

                                                
 12a ) The rest of this paragraph is merely a modification of the considerations of Brouwer in the treatise 
“Über Abbildung von Mannigfaltigkeiten.” 
 13) An A and a B can then belong to the same S*. 
 14) Brouwer, Über Abbildung von Mannigfaltigkeiten, § 3. 
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of the other basic simplexes are stereographically projected from Q.  Thus, the boundary 
of each Ti ( jT′ , resp.) will be subjected to a map Li ( jL′ , resp.) onto the direction sphere of 

ϑQ and a map iL  ( jL′ , resp.) onto the direction sphere of 
Q

ϑ ; if the degrees of these maps 

are: 
ci , jc′ ;  ic , jc′ ;  [i = 1, …, p; j = 1, …, p′] 

 
then one has 14): 

c cν ν+ = c cν ν′ ′+ = 1 + (− 1)n. 

 
Now, ( )

P

I P
∗

∗∑  is, however, equal to the sum of the mapping degrees of all peripheries of 

the basic simplexes of m onto the corresponding direction spheres, and in this summation 
the two contributions from each (n – 1)-dimensional face cancel, as long as they do not 
correspond to the face of a T or a T′, and will thus be mapped onto two different direction 
spheres.  One thus has: 
 

( )
P

I P
∗

∗∑ = 1 j i j
i j i j

c c c c′ ′− + −∑ ∑ ∑ ∑  

=
1 1

( ) ( )
p p

i i j j
i j

c c c c
′

= =

′ ′+ − +∑ ∑ = (p – p′) (1 + (− 1)n) = 1 1( 1)ng g+ − . 

 
Earlier, we found that ( )

P

I P
∗

∗∑ = I12 + g1 – g2, so 15): 

12 1 2( 1)nI g g= − ⋅ + .  

 
 

§ 3. 
 

On the curvature integra of an n-dimensional model 
 

 Let a hypersurface m be given, which is [cf., § 1] a model of an n-dimensional, 
closed, two-sided, oriented manifold µ.  We choose the positive indicatrix of m such that 
the map F of UP has the degree + 1, and determine the positive normal direction from the 
previously given prescription. – If F is one-to-one in all of µ then we call m a “simple” or 
“Jordan” model; the positive normal direction of not necessarily directed into it, but 
depends upon the orientation of µ. – 
 We understand C(m) – the “curvature integra” of m − to mean degree of the map of µ 
onto the direction sphere R that is mediated by the negative normals to m that belong to 

                                                
 15) In the case n = 2, the formula I12 = g1 + g2 may be confirmed function-theoretically: If F(z, w) is a 
complete rational irreducible function in z and w of degree g1 (g2 , resp.), µ, the Riemann surface of the 
structure defined analytically by F(z, w) = 0, then, by the associated consideration of the infinitely distant 
points the equation F(z, z) = 0 has precisely g1 + g2 roots – assuming that one does not have F ≡ k(z – w), so 
that F(z, z) ≡ 0. 
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the points P.  If one changes the orientation of µ then the normals must be replaced with 
their diametrically-opposite vectors, so in order to obtain the new curvatura integra 
C′(m) one must map: 
 1. µ onto itself with degree – 1. 
 2. µ onto R with degree C. 
 3. R onto itself with degree (−1)n+1. 
This yields: 

C′ = − 1 ⋅ C ⋅ (−1)n+1 = (−1)n C. 
 
C(m) is thus independent of the orientation of µ for even n, and for odd n, its sign 
depends upon it.  – Instead of the normals, from the theorem Poincaré-Bohl [cf., 
Introduction], one may use any other vectors that vary continuously with P and are 
directed towards the negative side of F(UP) for the determination of C.  For the time 
being, as was explained in the previous paragraphs on all of µ, we employ a simplicially 
modified approximation γ1 to the normal map. 
 
 We now examine how C(m) is obtained for certain types of transitions from m to 
other models for m: 
 First, let an element E that contains m in its interior be subjected to a continuously 
differentiable map ϕ with non-vanishing functional determinant: 
 

xν′  = ϕν(x1, …, xn+1),  [n = 1, 2; …, n + 1], 

 

D(x1, …, xn+1) = 1 1

1 1

( , , )

( , , )
n

nx x

ϕ ϕ +

+

∂
∂
⋯

⋯
 ≠ 0. 

 
m then goes over to the model m′ = ϕ(m).  From our assumption, the orientation of m′ is 
to be chosen in such a way that ϕ takes the positive indicatrix of m to the positive 
indicatrix of m′; the vectors C1 on m that are mediated by the γ1 and point in the negative 

direction to negatively (positively, resp.) directed vectors 1′C  on m′ according to whether 

ϕ does or does not change the indicatrix of E; i.e., whether D > 0 or D < 0.  As a result, 
the degree of the map 1γ ′  of µ onto R that is mediated by the 1′C  is therefore (±1)n+1C′, 
where C′ = C(m′).  We now choose a point A of R and bring to each point of m the 
parallel vectors C2 that correspond to A, which relate to µ by the map γ2(P) = A of degree 

0 onto R.  C1 and C2 agree at (at most) finitely many points, and one has (from § 2) I12 = 

(−1)n C.  Under ϕ, the C2 go to vectors 2′C , by means of a map 2γ ′  of µ onto R of degree 

2c′ , and the coincidence number of 1γ ′  and 2γ ′  is: 

 

12I ′  = (−1)n+1 C + 2c′ . 

 
From § 1 (last paragraph), however, one has I12 = 12I ′± , so: 
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(±1)n C′ = C 2( 1)nc′ −∓ . 

 
Now, the totality of all parallel vectors that correspond to A and are attached to points of 
E go to a vector distribution ∆′ that is single-valued and continuous on all of E′ = ϕ(E) 
and associated with the 2′C .  Inside of E′, since E′ is an element, m′ may be contracted to 

a point Q by a single-valued and continuous deformation.  Thus, when one, at each 
moment of the process of deformation, associates the point P of µ with the point of R that 
belongs to the vector ∆′ that is attached to the momentary image point of P, the map 2γ ′  
goes to a map that associates all points of µ with the same point ∆′(Q).  Thus, 2c′  = 0, C′ 
= (±1)n C, and we have obtained the theorem: 
 
  Under a continuously differentiable map with non-vanishing functional determinant 
D of an element included in m, C(m) always changes by the factor – 1; indeed, this 
change comes about when and only when D < 0 and n is odd. 
 
 The question now remains whether one can omit the differentiability assumption.  
The following theorem teaches us that this is possible, at least, for a particularly simple 
special case: 
 
 The boundary m of an element has the curvature integra (±1)n. 
 
 Proof: If m has the “natural” orientation then the degree of the map that is mediated 
by taking the interior normals N to m onto R is (−1)n+1C.  This field of N projects m 
continuously onto a neighboring parallel surface m1 of m, and may be, by contraction of 
m1 to an interior point, deformed into a distribution of vectors that point to this point, 
which has the index (±1)n.  Thus, C = 1 and for an arbitrary orientation of m, one has C = 
(±1)n.  (Concerning the sign, one can confer the first paragraph of this section.) 
 
 We now extend the class of the maps in question: ϕ no longer needs to be defined on 
all of E, but only on a neighborhood of m – i.e., in the set union of the neighborhoods of 
all points of m.  Everywhere else, all assumptions and notations remain unchanged.  One 
now has: 

(±1)n C′ = 2( 1)nC c′ −∓ . 

 
 Along with the vectors C2 that belong to A, we also consider the vectors 

2
C  that are 

diametrically opposite to them.  They go to the vectors ′
2
C , which is mediated by a map 

2γ ′  of degree 2c′ , and one has: 

(±1)n C′ = 2( 1)nC c′ −∓ , 

 
so 2c′  = 2c′ .  Since the vectors 

2
C  and ′

2
C  are diametrically opposite to each other, one 

has, however, that 2c′  = (−1)n+1
2c′ ; for even n one then also has that 2c′  = 0, so C′ = C. 

 We will show that for odd n one can have 2c′  ≠ 0: 
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 We perform a transformation through reciprocal radii with a point Q that does not lie 
on m for its center; this map fulfills our assumption.  ϕ is then continuously differentiable 
with a negative functional determinant at all points that differ from Q.  ϕ takes m to a 
model m′ and the infinitely distant points to the point Q.  Let the order of Q relative to m′ 
be q.  (We understand this to mean, as before, the degree of the map of µ onto k that is 
provided by projection of the model m′ for Q onto a sphere k around Q; it is usually easy 
to see that it is equal to the order of Q relative to m.)  Under ϕ, the totality of all vectors 
in the domain of definition for ϕ that correspond to points A of R goes to a vector field ∆′ 
with the isolated singularity Q; its index is + 2.  ϕ may then be represented as follows: 
One first projects the entire space stereographically onto an (n+1)-dimensional sphere 
Kn+1 that lives in (n+2)-dimensional space and contacts Q; thus, the vectors that belong to 
A go to a single-valued, continuous vector field that is singular only at the antipodal point 
Q* to Q, and thus has index +2 at Q* 14).  One then projects Kn+1 stereographically from Q 
onto the contact space at Q* and then back to the original space perpendicularly.  Thus, 
Q* goes to Q with conservation of the index. 
 In order to determine 2c′ , we let the points of m′ go uniformly to the rays that emanate 

from Q onto a sphere k around Q in time 1, and then observe the vectors of ∆′ at the 
running points at each moment: At first, they are the vectors 2′C , and at the end, they are 

vectors that sit on k.  The map of m onto R that is provided by the latter is composed of 
the projection of m′ from Q onto k, which has the degree q, and the map of k onto R of 
degree 2 – which makes 2c′  = 2q – so: 

C + C′ = 2q. 
 

In particular, if m and m′ are simple, and if Q lies in the interior of m then Q also lies in 
the interior of m′, since Q and the infinitely distant point through m will be separated 
from each other, which then makes q = ± 1, C + C′ = ± 2, and one sees that: 
 
 If, for odd n, the simple model m possesses a curvature integra that is invariant in its 
absolute value under maps of the type in question then it is equal to ± 1. 
 
 We now show that for each odd n ≥ 3 there is a simple model with C(m) = 0 ≠ ± 1.  
We consider the one-parameter group of motions x′ = f(x; α) of the (n+1)-dimensional 
space that is given by the equations: 
 
   2 1x ν −′ = f2ν−1(x1, …, xn+1; α) =    cos α ⋅ x2ν−1 + sin α ⋅ x2ν 

   2x ν′   = f2ν    (x1, …, xn+1; α) = − sin α ⋅ x2ν−1 + cos α ⋅ x2ν 

1
1, ,

2

nν + =  
⋯ . 

 
The trajectory of any point is a circle; two such circles are disjoint.  Then, since f(f(x; α); 
β) = f(x; α+β), it follows from the fact that f(x; α) = f(y; β) that for each γ one has: f(x; 
α+γ) = f(y; β+γ); i.e., that the trajectory circles of x and y coincide.  The single fixed point 
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of the motions is the null point; at every other point the vector of the direction of motion 
is distinguished. 

 The (n−1)-dimensional sphere K0: 
2

1

( 2)
n

xν
ν =

−∑ = 1, xn+1 = 0 does not contain the null 

point.  Furthermore, no trajectory circle will cut it at two points; if one had y = f(x; α) 
with α ≠ 0 for two points x and y of the sphere then it would follow from: 
 
     yn    =    cos α ⋅ xn + sin α ⋅ xn+1 
     yn+1 = − sin α ⋅ xn + cos α ⋅ xn+1  

xn+1 = yn+1 = 0 
 

that either xn = 0, which is not consistent with the equation of the sphere, or that α = π 
and yν = − xν  for ν = 1, 2, …, n+1 .  However, from the fact that: 
 

2

1

( 2)
n

xν
ν =

−∑ = 1  and  2

1

( 2)
n

xν
ν =

− −∑ = 1 

 
it would follow by addition that 8n + 2 2xν∑  = 2, 2xν∑ = 1 – 4n < 0. 

 Likewise, one obtains each sphere Ka into which K0 goes under our motions.  Thus, 
the surface r that is described by K0 – i.e., the totality of all points f(x; α), for which f(x, 
0) lies on K0 – has the property that f(x; α) = f(y; β), when and only when x = y, α = β.  r 
is thus a simple model of the product manifold that is composed of a circle and an (n – 
1)-dimensional sphere 16). 
 From the Poincaré-Bohl theorem, in order to determine C(r) we can employ the r 
tangential direction vectors of the motion.  The map onto R that they define has degree 0, 
since r may thus be continuously contracted to a point inside the field of the motion 
vectors without passing through any of the singular null points that lie outside of it.  
Thus, C(r) = 0, and from C + C′ = ± 2 it then follows that C′ = C(r) = ± 2. 
 The product manifold µ, whose simple model is r, provides an example that is 
interesting in another direction.  It shows that there can be infinitely many models of a 
manifold with completely different values for C that are generally not simple.  Namely, 
since the circle is a q-fold unbranched covering space of itself for each positive whole 
number q, the same is true for each product manifold that contains the circle as a factor.  
One can thus represent r as a q-fold covering of a model rq over µ; Q then has the order ± 
q relative to ϕ(rq), so C(ϕ(rq)) = ± 2q, since C(rq) = 0. 
 For a simple model m with C(m) = ± 1 − thus, in particular, for the n-dimensional 
sphere − the transformation through reciprocal radii provides no homeomorphic simple 
model m′ with C(m′) ≠ C(m).  It is also not known to me whether there is a simple model 
m for the n-dimensional sphere with C(m) ≠ ± 1. 
 
 The following consideration serves as an aid for the examination of the behavior of 
C(m) under maps, for which nothing less than before will be assumed: 

                                                
 16) See, e.g., Steinitz, Beiträge zur Analysis Situs (Sitz.-Ber. d. Berl. Math. Ges. 7 1908). 
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 We attach an arbitrary field V of tangent vectors with at most finitely many singular 
loci to m; i.e., we associate each point P of µ, with finitely many omissions, with a 
tangent vector at F(P) to m that varies continuously with P (e.g., we can choose V to be 
the tangential vector field that is generated by the vector fields C1 and C2 (cf., § 1)).  Let s 

be the sum of the indices of the singularities of V.  We define a continuous function w(P) 
on m that equals 0 at the singular points, is positive and < 1 everywhere else, and then 
associate each non-singular point P with the vector H(P) that lies in the quadrant spanned 
by V(P) and the negative normal N(P) and defines the angle w ⋅ π/2 with N(P); for the Pχ, 
we set H(Pχ) = N(Pχ).  H is then continuous on all of m and agrees with the N at the Pχ.  
From § 1, the coincidence number of the map of µ onto R that is provided by N and H is 
I12 = s.  On the other hand, from the Poincaré-Bohl theorem both maps have the same 
degree C = C(m), so, from the result of § 2, one has: 
 

s = I12 = C + (−1)n C, 
so for even n one has: 

s = 2C. 
 

Now since, from § 1, a vector field with the same index sum s exists on any arbitrary 
model m′ for µ, the theorem now follows that: 
 
 The curvature integra of the model for a closed, two-sided manifold µ of even 
dimension is an invariant of µ. 
 

§ 4. 
 

Curvatura integra and index sum; conditions for the representability 
of an n-dimensional manifold in an (n+1)-dimensional space 

 
 The relation between the index s of the singularities of a tangential vector field to m 
and the curvatura integra C(m): 

s = C ⋅ (1 + (−1)n) 
 
leads to some consequences that, indeed, do not relate immediately to the curvatura 
integra, but shall still be mentioned.  First, one can derive the following theorem from it: 
 
 The index sum of the singularities of a tangential vector field to a model for µ is a 
topological invariant of µ − i.e., it is independent of the choice of model, as well as the 
vector field – and indeed this invariant is always 0 for odd n. 
 
 This theorem was expressed by Hadamard 17), and indeed, with the extension that the 
model in question might lie in a space of arbitrary dimension.  Thus, no proof is given in 
the cited chapter, which possesses only the character of a report, nor is any such proof 
known to me in the existing literature.  It is noteworthy that in the cases in which s has 
been computed, namely, for n = 2 4), for odd n, for n-dimensional spheres 14), and for the 
                                                
 17) Loc. cit., pp. 474 et seq. 
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manifolds that will be considered in the next paragraph, s is equal to the characteristic of 

the manifold; i.e., it equals 
0

( 1)
n

k
k

k

α
=

−∑ , if αk denotes the number of k-dimensional 

simplexes that occur in a simplicial decomposition *). 
 We can now make a sharper statement than the theorem on the invariance of the 
index sum.  Namely, we know that: 
 
 The index sum of the model for µ is an even number. 
 
 Thus, as always, it is assumed that µ is two-sided and that the model lies in (n+1)-
dimensional Euclidian space.  This provides the possibility of answering the question of 
whether each n-dimensional manifold m possesses such a model: Namely, if m admits a 
continuous deformation P′ = f(P; t), 0 ≤ t ≤ 1, f(P, 0) = P that possesses no fixed points 
except for finitely many fixed – i.e., independent of t – points for t > 0, and if σ is the 
sum of the indices of this fixed point then σ must be even when µ possesses a model.  
Then, analogously to the process carried out in § 1, a tangential vector field with the 
index sum s = σ may be constructed on the model.  We consider a particularly simple sort 
of fixed point: We call an isolated fixed point a “center” when it lies in a closed, 
otherwise fixed-point free element that goes to itself.  A center always has the index 
(−1)n, since one can continuously vary the vectors that point from the points P of the 
boundary of the element to the points f(P) while preserving their initial points into ones 
that point to a fixed point in the interior.  We can thus express the theorem by saying that 
a manifold possesses no hypersurface as a model when it admits a deformation whose 
fixed points are centers, and an odd number of them are present.  On the basis of this fact, 
one may prove: 
 
 The totality Z2k of complex points of the 2k-dimensional projective space is a 4k-
dimensional, closed, two-sided manifold that possesses no hypersurface in (4k+1)-
dimensional Euclidian space as a model. 
 
 The proof is obtained from the foregoing as soon as one shows that Zr is a closed, 
two-sided manifold and that a deformation of the required type with (r+1) centers exists.  
This will be proved in the next paragraph, in which the characteristic of Zr will be 
computed, in addition.  It is likewise (r+1), which, in light of what was said above, is also 
of interest in other cases where an agreement between the characteristic and the index 
sum is present. 
 

§ 5. 
 

The complex projective space 
 

 Let Zr denote the totality of all complex points in the r-dimensional projective space − 
i.e., the totality of all ratios z0 : z1 : … : zr in which the zρ are complex numbers do not all 

                                                
 *) Added by the editor: A proof of the theorem stated by Hadamard, with the addition that the invariant 
that appears in the index sum is the characteristic, will be published in these Annalen by the author. 



H. Hopf, On the curvature integra of closed hypersurfaces                              20 

vanish.  Zr is 2r-dimensional, and in the case r = 1 it is known to be homeomorphic to the 
sphere. 
 Zr is a closed manifold with characteristic r+1. 
 Proof: We decompose Zr into r+1 parts Eρ: Eρ is the totality of all points of Zr for 
which | zρ | ≥ | zσ | (σ = 0, …, r).  Since zρ ≠ 0 in Eρ , we can normalize the coordinates of 
all points of Eρ that one always has zρ = 1.  If we then set zσ = xσ + i yσ then Eρ is mapped 
topologically onto the piece Eρ′  of a 2r-dimensional Euclidian space that is defined by 

inequality 2 2x yσ σ+ ≤ 1 with 0 ≤ σ(≠ ρ) ≤ r.  We can represent Eρ′  by r circular discs K ρ
σ (0 

≤ σ(≠ ρ) ≤ r) of radius 1, in which we refer to each group of r points Aρ
σ , to which the 

point Aρ
σ  of the disc K ρ

σ  belongs, as points of Eρ′ .   From the fact that, without changing 

the topological structure of Eρ , instead of the circular discs K ρ
σ , we can also use the 

square discs that are defined by | xσ | ≤ 1, | yσ | ≤ 1 − thus, a 2r-dimensional cube can be 
used instead of Eρ′  − it comes out that Eρ  is an element.  A point of Zr belongs to both 

1
Eρ and 

2
Eρ when and only when 

1
zρ  = 

2
zρ  ≥ | zρ |; i.e., if the point 1

2
Aρ

ρ  of the point 

group 1Aρ
σ , in the aforementioned representation of 

1
Eρ′ , lies on the boundary of 1

2
K ρ

ρ .  

From this, it is apparent that when ρ1, …, ρs, are s of the numbers 0, …, r, the 
intersection 

1 s
Eρ ρ⋯ of the elements 

1
Eρ , …, 

s
Eρ is homeomorphic to the product manifold 

that is composed of s – 1 circles and r – s + 1 closed circular discs; hence, it has the 
dimension s – 1 + 2(r – s + 1) = 2r – s + 1. 
 We carry out a decomposition of Zr into elements, which shows that Zr is a 
“manifold” according to Brouwer’s 3) definition, and furthermore has the property that 
for each s, each of the manifolds 

1 s
Eρ ρ⋯ is comprised exclusively of (2r – s + 1)-

dimensional element faces of the decomposition.  We demonstrate that one can present 
one such decomposition, in the case of r = 2 18): The intersection E012 of the three 
elements E0, E1, E2 is a product manifold composed of two circles, and thus it is 
homeomorphic to a toral surface.  We can define E012 by way of: 
 

z0 = 1,  z1 = 1ieϕ , z2 = 2ieϕ ; 0 ≤ (ϕ1, ϕ2) ≤ 2π; 
or: 

z0 = 1ieϕ , z1 = 1,  z2 = 2ieϕ ; 0 ≤ (ϕ2, ϕ0) ≤ 2π; 
or: 

z0 = 0ieϕ , z1 = 1ieϕ , z2 = 1;  0 ≤ (ϕ0, ϕ1) ≤ 2π. 
 
E012 decomposes the neighborhood of E0 that is homeomorphic to the three-dimensional 
sphere into the manifolds E01 and E02 that are determined by: 
 

z0 = 1,  z1 = 1ieϕ , z2 = r2 2ieϕ ; 0 ≤ (ϕ1, ϕ2) ≤ 2π; 0 ≤ r2 ≤ 1;  
z0 = 1,  z1 = r1

1ieϕ , z2 = 2ieϕ ; 0 ≤ (ϕ1, ϕ2) ≤ 2π; 0 ≤ r1 ≤ 1, 
                                                
 18) The method applied here may be carried over to arbitrary r with no further assumptions; the wording 
of the representation then becomes so complicated that the treatment of the special case r = 2 seems to 
make the situation clearer than the consideration of the general case. 
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each of which is homeomorphic to the product of a circle and a circular disc, and thus, to 
an ordinary toral space.  Analogously, the neighborhood of E1 and E2 will be decomposed 
by E012 into the toral spaces E12 and E10 (E20 and E21, resp.).  We now decompose E012 
into a system of two-dimensional elements that fulfills our requirements, by drawing, for 
example, the twelve closed curves: 
 

2

0

1

/ 2
0 1 2

/ 2
0 1 2

/2
0 1 2

1, , ;

, 1, ;

, , 1;

iik

i ik

iik

z z e z e

z e z z e

z e z e z

ϕπ

ϕ π

ϕπ

= = =
= = = 
= = = 

  0 ≤ (ϕ1, ϕ2, ϕ3) ≤ 2π; k = 0, 1, 2, 3, 

 
which define a network of 32 curvilinear triangles on E012 .  We now decompose E01 into 
the four two-dimensional element manifolds Fa (a = 1, 2, 3, 4): 
 

z0 = 1,  z1 = / 2ike π , z2 = 2
2

ir eϕ ; 0 ≤ ϕ2 ≤ 2π; k = 0, 1, 2, 3 

 
into four three-dimensional elements 01

bE  (b = 1, 2, 3, 4); the neighborhood of each 01
bE  

will be defined by two of the Fa, as well as a fourth of E012, and this fourth is now 
composed of elements of the aforementioned subdivision of E012, since both of its 
boundaries are themselves curves of the network.  In each of the two Fa that bound 01

bE , 

we draw the four curves that are defined by: 
 

z2 = / 2
2

ikr e π ;  0 ≤ r2 ≤ 1;  k = 0, 1, 2, 3. 

They emanate from the same point of Fa and end on the four vertices of the subdivision 
of E012 that lie on the boundary of Fa.  In this way, the neighborhood of 01

bE  is subjected 

to a decomposition of the desired type that agrees, in the part that belongs to E012, with 
the decomposition that is already present there.  We extend this decomposition of the 
neighborhood of 01

bE  to a decomposition of the element 01
bE  itself, in which we draw 

curves from an interior point to points of the sides and vertices of the local decomposition 
that correspond to lines under the topological map of 01

bE  to the interior of a two-

dimensional sphere.  If we proceed in this way with all four 01
bE  then we subdivide all of 

E01 into elements of the required type, and then we do the same thing with E12 and E02 .  
If we now extend the existing decomposition of the vicinity of E0, E1, E2 in the required 
manner to E0, E1, E2 itself then we obtain a decomposition of Z2 that satisfies all of the 
demands presented. 
 The property of the aforementioned decomposition of Z2 that each manifold 

1 s
Eρ ρ⋯ is 

composed of faces of elements may also be expressed as follows: Either a given element 
face has no interior points or it belongs to an entire element face of Eρ .  This compels us 
to subdivide the totality of all of the elements of arbitrary dimension of the 
decomposition in question (i.e., vertices, n-dimensional sides, 2r-dimensional faces) into 
r + 1 complexes Ks (s = 1, …, r + 1), which are determined in such a way that Ks contains 
those elements es that belong to precisely s of the Eρ .  Ks has the characteristic k(Ks) = βs, 
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i.e., let βs = 
2

( )

0

( 1)
r

sν
ν

ν
α

=
−∑ , where the number of n-dimensional elements that belong to Ks 

is denoted by ( )s
να .  We next determine βm for m ≥ 2; as a product manifold with a circle 

for a factor, 
1 s

Eρ ρ⋯  has the characteristic 
1

( )
s

k Eρ ρ⋯ = 0, since the characteristic of a 

product is equal to the product of the characteristics of the factors 16), and the circle has 
characteristic 0 19).  One then has Ss = 0, if one sets Ss = 

1
( )

s
k Eρ ρ∑ ⋯

, where the sum is to 

be taken over all of the E, which have s indices.  An element belonging to Km that lies in 

1 s
Eλ λ⋯  appears in all of the 

1 s
Eρ ρ⋯ whose indices are included among the λ1, …, λm,  and 

will thus be counted precisely 
m

s

 
 
 

 times.  Thus, one has the relations: 

 

Ss = 
1

1

r

m
m

m

s
β

+

=

 
 
 

∑ = 0 [s = 2, …, r + 1], 

 

which, since 
m

s

 
 
 

 = 0 for m < s, may be written in the form: 

 
1r

m
m s

m

s
β

+

=

 
 
 

∑ = 0  [s = 2, …, r + 1]. 

 
 The determinant of this system of equations is 1, since there are nothing but ones in 
the principal diagonal and beneath it there are zeroes; thus, βm = 0 for m ≥ 2.  For s = 1, 
the corresponding equation reads: 
 

S1 = 
0

( )
r

k Eρ
ρ =
∑ = 

1

1

r

m
m

mβ
+

=
∑  = β1 , 

 
and since Eρ , as an element, has characteristic 1, one has β1 = r + 1. – The characteristic 
of Zr is thus 20): 

( )rk Z = 
1

0

( )
r

s
s

k K
+

=
∑  = 

1

1

r

s
s

β
+

=
∑ = 1r + ,   Q.E.D. 

                                                
 19) For a product with a circle for a factor, the vanishing of the characteristic can also be derived 
without using the Steinitz theorem that was employed in the text, since such a manifold is a two-fold 
unbranched covering of itself; it then follows that k(µ) = 2k(µ), k(µ) = 0. 
 20) Herr H. Künneth has written to me that he has determined the Betti numbers of Z2 and has found that 

P1 = P3 = 1; thus, the characteristic k(Z2) follows from the formula k = 1
2

0

( 1) (1 ( 1) )
n

i n
i

i

P
=

− + + −∑  (cf., 

Tietze, Die topologischen Invarianten, …, Wiener Monatshefte 19 (1908), pp. 48) when one considers that 
P0 = Pn = 1 (Tietze, loc. cit., pp. 35, footnote 5), in agreement with out result: k(Z2) = 3. 
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 Zr is simply connected.  This is known for r = 1, and we thus need only to confirm the 
simple connectedness of Zr when we already know it for Zr−1: If a closed curve is z0(t), 
…, zr(t) then we can, with no loss of generality, assume that the point 0, 0, …, 0, 1 does 
not lie on it; the points of the curve z0(t), …, zr−1(t), λ zr(t) thus define a closed curve for 
each λ and also for λ = 0.  If λ runs from 1 to 0 then the given curve K1 will be 
continuously transformed into K0 : z0(t), …, zr−1(t), 0; it belongs to structure that is 
defined by the equation zr = 0, which is homeomorphic to Zr−1 .  Since Zr−1 is assumed to 
be simply connected, K0 can be continuously contracted to a point in the structure zr = 0, 
from which the deformation of K1 to a point is completed. 
 From simple connectivity, it follows that Zr is two-sided. 
 
 Zr admits a single-valued and continuous transformation that includes the identity: 
 

P′ = f(P, t); 0 ≤ t ≤ 1; f(P, 0) = P, 
 

which possesses 1r +  centers that are independent of t, but no fixed points for t > 0. 
 Then, under the deformation: 
 

0( , , ; )rz z z tρ′ ⋯ = 
2

1

t
i

re z
ρ π

ρ

⋅
+ ⋅   [r = 0, …, r], [0 < t ≤ 1] 

 
the r + 1 points defined by: 
 

1, 0, …, 0; 0, 1, 0, …, 0; …; 0, 0, …, 0, 1 
 

remain fixed; they are centers, since each Eρ will be deformed into itself and precisely 
one of these points is contained in the interior.  Other fixed points do not appear, though; 
if there were such a point then there would be two indices ρ1 > ρ2 with: 
 

1
zρ ≠ 0,  

2
zρ ≠ 0,  

1 2
:z zρ ρ′ ′ = 

1 2
:z zρ ρ , thus 

1 2
1

t
i

re
ρ π⋅
+ =

2 2
1

t
i

re
ρ π⋅
+ , 

 

1 2( )
2

1r

ρ ρ π− ⋅
+

 = 2kπ ≥ 2π, (ρ1 − ρ2) t ≤ r + 1, 

 
while 0 < ρ1 − ρ2 ≤ r, 0 < t ≤ 1, so (ρ1 − ρ2) t ≤ r. 
 

(Received on 7/3/1925.) 


