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Memoir on the propagation of motion in an indegrfiuid
(Part one)

By H. HUGONIOT ()

Translated by D. H. Delphenich

1. The theory of propagation of motion in an indefinitadltemains incomplete up
to now. One can scarcely treat the case of thegeghas, at least if one seeks to study
the phenomenon with some degree of rigor. Moreovee, loa@s introduced some
hypotheses into the equations that hydrodynamics has pdofadéhe representation of
the motion of these bodies, that are, it is truegused behind the name of
approximationsbut which singularly alter the value of the resuitst tone may deduce.

The lack of success of the tentative efforts made upisaday seems to suggest that
geometers may only obtain the expression for the wglad propagation of motion
crudely by means of the integrals of the equations, inegrat remain unknown up to
now, at least in a general form, and that we do nohsd@se to discovering.

In this work, | would like to show that the analyticapeession for the velocity of
propagation of motion in an indefinite fluid is easilyt@bed in the most general manner
by the simple consideration of the equations of hydrodyramithout actually needing
to be preoccupied with the form of the integrals.

For this, it will suffice for me to generalize theinmiples that | made use of in a
previous work {), which was, moreover, dedicated in a large part to ticplar case of
fluid motion where the motion takes place in parakttions, in such a manner that in
each section the velocity of all points is the saimeagh instant and normal to the plane
of the section.

2. Inthis first part, | will take for my point of departutfee well-known equations of
hydrodynamics, such as were established by Euler. Ieetend part, | will re-address
the question by taking the equations of Lagrange, which pesta extend the theory to
some cases where the Euler equations become inapplicable

Referring the fluid to three rectangular coordinatesa®e Oy, and @, letx, y, zbe
the coordinates of a point of the fluid at the instaand letu, v, w be the components of

() This posthumous memoir, which was recovered from plag@ers left by Hugoniot, was
communicated to us by Léauté.

(® Mémoire sur la propagation du movement dans le corps, et spécialdamnties gaz parfaits,
presented at I'’Académie des Sciences on 26 October 1885.
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its velocity. Finally, for the same point letbe the densityp be the pressure, and X, Y,
Z be the components of the exterior force acting onitamass.

The components X, Y, Z may be given functionx,0f, z, andt, but they may also
depend upon the state of the fluid at the instant comsldeihis is what happens, for
example, when one takes into account the mutual atimacthat are exerted by the
various molecules. In the sequel, one will always ss@gbat the components X, Y, Z
are independent of the acceleration; the results still remain the same if these
components are functions of the velocities.

Having said this, the Euler equations are:

16,0_X_@_u6u_vau

E&_ ot ox oy z

ia_p:Y—%—ua_V—vav ov
p oy ot odx o9y

la_pzz—a_vv—ua_vv—va_vv— aW

p 0z ot ox dy 0
9, 0(pu)  3(pY) , 0(pW _
ot 0x oy 0z

(1)

3. The preceding four equations are the same for all fluids, for all bodies in
which the pressure on an element is normal to the surfébey refer to five unknown
functions ofx, y, z, andt and may not, as a result, determine them. One rhestfore
add a fifth equation, but it will depend upon the nature effthd.

Here, | will occupy myself with only the case whéne heat conductivity of the body
may be neglected. The relation between pressure antlydeins given element of mass
is then always the same and depends only upon the ingial although this is provided
that it does not produce discontinuities, i.e., thatviHecity is never subjected to a finite
variation in an infinitely small time interval. Thelation in question is nothing but the
one that corresponds to what one catlsabatic relaxationn thermodynamics. One will
suppose in what follows that this relation is the samall points of the fluid, which is
true, for example, when it is homogeneous and hasdhee temperature at all of its
points in the initial state, and one represents it byetjuation:

(2) p=Fp),
which becomes, when the fluid is a perfect gas:
(3) p=Kp'™,

K denoting a constant amd the ratio of the two specific heats.
The number of equations is then equal to that of theawmkriunctions.



Propagation of motion in an indefinite fluid 3

4. When one desires to apply the preceding equations toultie @t the propagation
of motion in perfect gases, one assumes that thei@xferces are null, and that the
expression:

udx +vdy+wdz

is the exact differential of a functighof the coordinates. From a well-known theorem
of Lagrange, if this condition is satisfied at an aditrinstant then it is true for all later
instants.

Therefore, denoting the initial density pyand the initial pressure Ipg, one has:
P=po(l+)™, p=p(l+)7

yrepresenting the cubic dilatation. One then deduefotlowing two equations from
the Euler equations:

i&[(]_.{- y)m+1_1]+%+1{(%j2 +[%j +(%j2}: 0,
m-1p, ot 2|\ ox oy 0z

5_1’+%5_V+%5_V+%0_Vj-02¢ L9000

1+ )™ = .
@+ (at X x dydy 0z02z X oy 07

Considering only small motions that alter the densityhe fluid very weakly, one
neglects the squares of the velocities and the povieygyeater than unity in the first
equation; it then becomes:

upon setting:

In the second equation, one neglgetghen compared to unity and the products such

as 99 oy when compared tgz ; it then reduces to:
ot ox 0x

oy _0°¢p 9°¢p 9%
L= + + ,
ot ox* o9y 07

or, by reason of the previous value that was obtaineg for

« o0 o[20.7.2%)

Tl 9y oz



Propagation of motion in an indefinite fluid 4

This is the equation that Poisson made use of in hisrels f). One sees from the
preceding that it is established only by means of approxmatihat must singularly
distort real phenomena, and which will be very diffictdt justify. Moreover, they
amount to changing the hypotheses that were originalerahout the properties of the
gas.

It was by integrating the preceding equation by means ffiteeintegrals that
Poisson studied the propagation of motion in gasesll $how later on that if one limits
oneself to the study of the velocity of propagation otion then it is quite useless to
determine the integrals of equation (4); however, befoeedoes this it is important to
define thevelocity of propagationmvith precision.

5. When a motion is governed by a system of partial déffeal equations, any
system of integrals of these equations represents al@s®tion. One must intend this
to mean that if an indefinite mass of fluid is fouatl,a given moment, to be animated
with a motion that the systems of integrals represems this will be true for all later
moments. Moreover, if one considers a finite porodfluid bounded by a surface and
animated, at a given moment, with a motion that imeefiby a system of integrals, then
the motion always continues to be represented by dhee sntegrals if the conditions
imposed on the surface are compatible with the lattes.onThis is what happens, for
example, when the exterior pressure applied to the sutfas precisely the value that
furnishes these integrals at each instant.

However, if one wishes to modify the conditions imgmb®n a certain part of the
bounded surface then it is necessary that it give siserhotion that is different from the
first one in a neighborhood of that surface portion, wisctieveloped into the fluid and
extended gradually by substituting for the original fluidhattpart. There thus exists at
each instant a certain surface in the fluid massdbparates the parts of this fluid, each
of which are animated with a different motion, and whidplace by deforming in time.
One will then give that surface the namewave surfaceand one will say that the
second motiopropagatesnto the first one.

Let S be the wave surface at the instaabd S, the position that it occupies at the
instantt + dt. Construct the normal to a poity, zof the first surface and lein denote
the portion of that normal that lies between S ahd Bhe rationdn/dt represents the
velocity of propagatiomf the second motion into the first one.

The preceding definitions generalize the ones that | gaway previously-cited
memoirSur la propagation du mouvement dans les cotpghat work, | showed that for
a gas that is confined to a pipe, for example, it issafficient to juxtapose two arbitrary
possible motions in order for the phenomenon of propagatoresult. It is further
necessary that the representative surfaces agreeaatmmgmorcharacteristic.

This is obviously true, moreover, when, instead of motioparallel sections, one
considers the most general motion of a body. Ifa gliven moment, two contiguous
portions of the same body are each animated by aeatitfenotion then the phenomenon
that takes place at the separation surface is geneamatiplex and has, as a consequence,
the birth of new motions that are represented by systEnntegrals that are different
from the first ones.

() Journal de I'Ecole Polytechnique VIL.
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There is propagation when, at the instart dt, the motion of the body is again
represented by the two original systems of integrals, dbparation surface being
nevertheless displaced and deformed only infinitesimally.

When one motion may propagate in another then one ayiltisat the two motions
arecompatiblewith each other.

6. In the study that follows, one will essentially suppdbat continuity is not
disturbed. Now, when a motion A is propagated in a mddidhen a point that was first
animated by the motion A will be instantaneously animatdd tie motion B at the
moment when the wave surface passes through this paintheTtwo motions A and B,
there must correspond the same values of the velsddr the points that, at the instant
are found on the wave surface.

7. Before starting with the general equations of hydrodycsnone first considers,
for more simplicity, just the equation that Poissomenase of:

0’ _ _,(0°¢ 3% 0%
) aﬁ_a[a%+af+afj'

The cubic dilatation is proportional%%, and the components of the velocity are

g 9p 3¢

equal to——,—,——, respectively.
O oy "oz TooPeCVEY
Let ¢ and ¢, be two integrals that represent compatible motionsnédflets:
pr1— =0

then the functiorP obviously satisfies equation (4), in such a way thathase

2 2 2 2
5) a¢:¥(a¢+a¢ a¢}

+
ot? x> ay* 07
Continuity of the velocities demands that one h&weall points of the wave surface:

aﬁ:o aﬁ:o, aﬁ:o
0x oy 0z

Moreover, it is easy to see that if the velocid@snot experience any brief variation
then the dilatation cannot vary briefly, either. Téfere, along the wave surface the two
values of the dilatation must be the same, in sughyathat:

W, 00, 00,
ot ot ’ ot
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The four partial derivatives of the functi@m are thus null along the wave surface.
Therefore, ifA, i, and v denote the direction cosines of the normal to this saréd a
point then one has three systems of equations:

A oy v
20 % W’
x> 0xy 0¥z

A oy v
%0 > %D
oxoy o0y 0yz

A u v
%0 D D
0xdz 90z 072

(6)

Suppose one of the partial derivativesdois null at the poink, y, z of the wave
surface that corresponds to the paoinfThe same must be true for the instantdt at the
points whose coordinates are:

X+ Adn, y + udn, z +vdn,

since this point belongs to the wave surface tbhatsponds to the timtet dt. One has
the four equations:

oz arl oot “aver Vo

PO _dnf 9% 0% 0%
A +Uu +v

ot dil" 92 ooy Vo9 z

0°d dn 0°® 0’0 9 _
A +u +v =0,
c')yat dt 00y " 0y 0y z

9°® dn( , 0% 0°® %D ) _
+—| A +u +y
0z0t dt\ 0z "oyvz 0%

acb dn( 0’0 9% a?qaj
A + t

L. 07D 9°D 0D
oxot dyot dzot

gives

azcb_(@jz)l P pIP VP (A0 9B VoW
ot® dt ox )laxay 210Xz ,u@x’iy 6§/ PR
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g )

or, taking equations (6) into account:

AOD potd 9%
Vaxay Vv oy 622

GZCD_(dnj 07+ g 4y L0 OO 0%
o dt X oy o7
:(@jz P ' 0%
at) (o2 "oy ' o7

The comparison of this equation with equationd@nands that one have:

(&) -
dt
The formula that gives the velocity of sound omrengenerally, the velocity of

propagation of one motion in another, is thus fotmbe established without having to be
preoccupied with the form of the integrals.

a.

8. | would now like to apply an analogous methodtlie general equations of
hydrodynamics:

100 _ ou au Ju Adu
—F-x-== —-V—— W—,
0 0X ot ox dy 0z
10p _ ov o0v O0v 0V
oy -y v — - w—,

y yoXo ot o0x 0y 0z

(1) 10p_, ow_ ow_ dw__dw
—=,——U—-V— W,
p 0z ot o0x dy 0z
F(p)(dp, 9P, 0P, 0P} du dv dw .
F(p)lot ~ox dy 9z} ax 6y 0z

The last of equations’(lis the equation of continuity where we have reptho with

its value Fp).

Let ug, vi, Wi, o1, P1; Uz, Vo, Wo, 2, P2 be two systems of integrals that represent
compatible motions. Setting:

u—u=U, Vi—V =V, -wWw =W, pr—p2=P,

continuity demands that one have along the wavacerr

) U=0, V=0, W = 0.
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Moreover, since the velocity varies in a continuowner, it is necessary that the
same be true for the density. Thus, along the wavacidne has:

PL= P2,
and, sincep = F(p) it then results that:

(8) PL—p2=0, P=0
along that surface.

If one then successively substitutes the two syste#nmsegrals in any of equations
(1), and if one attributes values to the varialleg z, andt that correspond to a point of
the surface then when one takes the difference theiges, Y, and Z will disappear.
The functionsu, v, w, o, andp take unchanged values, in such a way that one may
dispense with the indices; one thus obtains four empusti

10P_ oU o0U o0U 0U
—— = —U—-V—— W,
P 0X ot ox oy 0z
10P_ oV 0V o0V oV
——— = —U—-V—— W,
p oy ot ox dy 0z
©) 10P oW ow ow oW
== -u —V—— W

pdz At ax ay a4z’

F(p)(oP oP 0P 0 ouU oV idWwW_
— —+u—+VvV—F+w— |[+—F+—+—=0,
F(p)lot ox dy dz) O0x 0y 0z

which are valid for each point of the wave surface.

9. Denoting, as in the preceding, the directionmesiof the normal at a point of the
wave surface by, k4, v, equations (7) and (8) demand that one have:

Ay _ v
oU oU oU’
ox dy oz
Ay _ v
VANV
(10) ox o0y 0z
A u v
oW oW oW’
ox dy 0z
A J7
oP 0P aP
ox 9y 0z
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On the other hand, by differentiating each of equati@pand (8) along the normal to
the wave surface one obtains:

oU  on( ,oU ou duU)_
—+—| A—+pu—+v— | =0,
ot odt{ o0x ay 0z
ov  on( ,oV o oV )_
—+—| A—+pu—+v— | =0,
(1) ot otl\ ox oy 0z
oW on{ ., oW oW oW ) _
—+—| A +U +v =0,
ot ot 0x ay 0z
oP on( , 0P 0P 0P
—+—| A—+pu—+v—|=0.
ot oJt{ ox dy 0z

Equations (9), (10), and (11) are sixteen in number. Taey moreover,

homogeneous with respect to the sixteen derivat%%sg—u, ... Therefore, if all of
X oy

these derivatives are simultaneously null then therdebant must be annulled.
In other words, the elimination of the sixteen denxeg will furnish an equation that
gives a condition between the values of the functignsw, o, andp and the velocity of

propagation%, from which one can deduce the value of that wladf propagation.

10. The elimination is carried out very simply bysfirexpressing all of the
derivatives of a given function by means of onlg @i them and transporting the values
thus obtained into equations (9).

Equations (10) first give:

oU_uouU oU_vou

dy Aox 0z Aox

The first of equations (11) then gives:

U, 1dnou_
ot A dt ox
Likewise, for V, W, and P the partial derivativee eexpressed linearly as functions
ofa—v,a—w, anda—P. Substituting in equations (9), one obtains:
ox 0X ox

ia_P:[@—(Au+luv+V\N)}a_U’
pox | dt 0x
Ea_l:):[@—(ju+luv+vvv)}a_v’
pox | dt 0x
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voP | dn ow
—— = ——-(Au+ v +vw) |—,
P 0X [dt ( a W)} 0x

ou ov oW

dn P
Au+pv +v =A—+U—+v—
[ ~(Auru W)} ox  0x ”ax X

F(p)
F(p)

Multiplying the first three equations by u, v, respectively, adding then, and then
dividing the sum by the fourth equation, one fingson remarking thap = F(p):

F(p)[ —(AU+uV+vx)}

From this, one deduces the following two valuadlie velocity of propagation:

@:)lu+,uv+ Wy

dt F(p)

The quantitydu + v + vw is nothing but the projection of the velocity hetpoint
considered onto the normal to the wave surfaceprdgenting this projection by N and
remarking:

1 _dp

F(p) dp’

the preceding formula may be written:

(12) dn_ s 9P
dt dp

We remark that the right-hand side of that equaisodetermined as soon as one of
the motions is given, which gives us this theorémemarkable generality:

The velocity of propagation of a motion in a fluid depends upon the state bfidhe f
but it is independent of the nature of the motion that is propagating, prothdédt
produces no discontinuities.

11. The preceding formula gives thbésolutevalue of the velocity of propagation; it
is found to be referred to fixed coordinate ax&ke two values are different according to
whether the propagation takes place in one seng® efnit normal or the other.

However, it is more natural to refer this velocity the fluid itself, which must be
regarded as displacing in the direction of the rawith a velocity N. The velocity of
propagation is then to be taken equal to:
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i\/—,l =+ [P
F(p) do

these two values are then equal and of opposite sigre afhlytic expression is,
moreover, the same as the one that was obtainedrsydeoing the motion of fluids in
pipes.

The general formula (12) gives an account of a fac¢tishaell-known to physicists:
When the atmosphere is agitated the normal veloeftysound is augmented or
diminished by a quantity equal to the projection of thedwielocity onto the direction of
propagation.

In the particular case where the exterior forces raull, the fluid may obviously
remain at rest, in such a way thet 0,v=0,w =0, 0= m, p = po constitute a system of
integrals. If, in formula (12), one attributes the vai¢o p, and if one sets, in addition,
N = 0 then one obtains:

dn 1

t ~JF(p,)

which is the velocity of propagation of motion in a fluad rest. This velocity is
independent of the nature of the motion that propagates,dewbvhat it produces no
discontinuities.

12. The right-hand side of the first three equations épyesents the components of
the acceleration relative to the point considerechefwave surface. Now one has, from
(20):

A u v
10P 10P 10P’
pPOX poy poz

which shows thathe relative acceleration is directed along the normal to the wave
surface.
It is well-known that if one considers an elementvofume in the fluid then the
guantities:
ov_ow ow 0Ju ou_ o0v

9z ay'  ox 9z’ dy ox
are annulled for any point of the wave surface.
Now, upon multiplying the second of equations (9) by V #edthird one by -« and

adding, the left-hand side is annulled by virtue of equati@@s As for the right-hand
side, it becomes, taking into account equations (10) and (11):

dn ov _ow
——(Au+ puv+v ——— .
[dt s M}(az 6yj
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Since the velocity of propagatiodg? is different fromAu + /v + ww, it then results

that one must have:
oV _ow _
0z 0y

which proves the theorem.

13. When the fluid considered is a perfect gas ose ha

p=F{) = Kp'™,
Fr(p) :5 pl/m—lzil
m mp

The velocity of propagation referred to the fluscthus represented by:

mp

0

and by Mk when the propagation is in a medium at rest. Tra@ary formula for the
V o

velocity of propagation is thus found to be essdt#d in an entirely rigorous manner; its
analytic expression is, moreover, the same whenconsiders the propagation of one
motion in another. However, the numerical valupeshels upon the pressure and the
density that corresponds to the original motion.

14. When the fluid considered is a liquid the relatlmetween the pressure and the
density reduces to essentially:

p=Ap+B,

A and B denoting constants. The velocity of pratmg referred to this fluid is then
equal to:

1

A

It is an absolute constant, independent of not tidymotion that propagates, but also the
original motion.

15. Despite its general character, the precedingryhsostill incomplete, because
one must suppose that the relatmr F(p) is the same for all of the points of the fluid.
To go further, it is necessary to regard the fuorctr) as depending upon the initial
coordinates of the molecules. In the second Hatti® memoir, | will show how one
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arrives at this result by taking the equations of hydrodycgmithe form that they were
given by Lagrange.



