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Summary

1. The decomposition of the angular momentum of teetremagnetic radiation into three terms is
studied: Two of those terms present a formal resemblavite an orbital momentum and a spin
momentum, respectively. The third one, which isréase term, has often been wrongfully neglected. A
new form for the flux of angular momentum is given tt@tesponds to that decomposition. It allows one
to make the calculation of that flux without it being @&gary to know the terms in the potentials and fields
that have a magnitude of B/ (in particular, without knowing the longitudinal fields).

2. The general considerations of the first parag@ghapplied to the electric dipole radiation in
order to elucidate a paradoxde Brogli€'s theory of the photon that was pointed outibéhéniau

3. The case of the plane wave is also studied withinctmext of the first paragraph. The
Abraham-Sommerfeld formula is established for a quasi-plane wave. HRindlis pointed out that there
exists an ambiguity in the definition of the angular mommantfia wave that is rigorously planar.

1. Moment of impulse and flux of moment of impulse-

a) The classical expression for the moment of impolsan electromagnetic field
that is contained in a volumes well known. It is defined by

M:EJ' R O(E OH)dv (1)
C \Y

if the moment is defined with respect to the origirthef coordinate axes, a”Rj E, and

H denote the radius vector, electric field, and magnetid,frespectively. Furthermore,

let A be the vector potential. Up to an interaction tertwben the radiation and the
possible sources that are present, ithe expression (1) can be decomposed into the sum
of three terms |:

() [Translator’s note: Apparently, the author is usingr'the cross product andfor the dot product,
while the dot means scalar multiplication.]
() Itisin that decomposed form that one obtains thegbadntribution to the moment of total impulse

that is provided by the Lagrange function of radiatio% (E2 —H?. That method of obtaining the moment
of impulse was presented independently fhyJ. Belinfante [1] and L. Rosenfeld [2]; the former
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y,Z
MO:%Z jVEiRDgradA dv, ()
1
Ms==[ EDAdv, (D)
C \Y
1
m:——j R OAI[E xnds, (2)
C S

in whichs is the surface that bounds the volume, mimglthe unit vector that is carried by
the exterior normal to the surface elemast If one sets:

M =Mo+Ms+m (3)

then one will have, rigorously:
M=M +1[ ROAdVEdv. 4)
C v

The first termMo of M, in which the operatoR * grad appears, has the form of an
orbital moment, while the second ok has the form of an intrinsic moment or spin,
since the quantity that appears under the integratign is independent of the point with
respect to which the moment is calculated.

In general, it is not sufficient to take a volutmat extends to infinity in order to
makem become negligible, since at a great distaRdeom the sources of radiatioA,
will have order of magnitude 1R, while the producR ~ A CE n will have order 1 R,
and the surface integral cannot possible be canceled by angular integratibthat is,
in fact, the case then we cannot, however, furthgrthat the decomposition that is then

realized byM = Mg + Mg is unique and that it is physically meaningfuhcg the terms
Mo and Ms (and m) do not separately possess gauge invariance ehninvariany.
That is why one cannot change M, and M by adding the gradient é&flog R, which

must bek R / R? (k is a constant with suitable dimensions)AtaalthoughM, andM s can
become individually very different from what theyowld be with another choice of
potential.

The case of an electromagnetic field is thereéssentially different from the case of
the meson field, for which, due to the uniquenestheé definition of the potentials, the
decomposition into an orbital moment and a spin ewmvill be unique. In the domain
of frequencies that are presently observable, mBslus decrease exponentially, and the
surface terrm will disappear when one integrates over all spada.the contrary, if the
frequency of the meson field is sufficiently larfpe there to be a “radiation field” then
there will no longer be an exponential decreasthénmeson field3], and the surface
integralm will not be zero, as was shown bySerpe[4]. This case of the meson field

systematically neglected all surface integrals. Ftam(@), (3), and (4) are the application of formulas
(74), (75), and (96) in the paper byRosenfeldto the particular case of electromagnetism.
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will then become similar to that of the electromeigmfield, and since there is a transport
of moment of impulse, it will be the flux of that quiaythat crosses a given surface that
will be interesting to know, rather than the momehtnapulse that is contained in the
volume that is bounded by the surface.

In electromagnetism, it is indispensabledifine the moment of impulse with the
surface ternm, since the sunM, + M does not possess gauge invariance. On the
contrary, it is permissible to drop that term from tladinition of the moment of impulse
of a field — such as the meson field, whose potenti@afined uniquely, sincelo +
Mg, like M, satisfies a conservation law. In regard to thatpaiat thatL. Rosenfeld[5]
has studied the conditions under which the moment ofIgepilux of a radiation field
will be independent of whether one has defined the mowkempulse of such a field
with or without the surface term.

b) Returning to the case of electromagnetism more edpgeat is then natural to
now look into whether it is possible to put the momanimpulse flux into a form that is
analogous to the one that was just given (4) for thal tobment of impulse that is
contained in a volume.

If the charges do not cross the surfader which it is calculated then we will know
that the moment of impulse flux that leaves the r@per unit time will be:

CD:—LRDTnds, (5)

in which T is theMaxwell tensor, anadh is the unit vector that is carried by the exterior
normal to the surface elemedg We will then have:

Tn=EExn+HHxn-1(E*+H?)n. (6)

From now on, we shall suppose that the sources agdegitin a neighborhood of the
origin of the reference axes, and that the suréasea sphere of radiuR that is centered
at that origin. It will result from this that = R?, if R =R / R. Moreover, we suppose
that the radiuR is very large, and from now on, we shall neglecttdrens inR * T n
that have order 1R, as opposed to the ones that have ordeR?l /Sinceds has order
R?, that amounts to neglecting the terms in the flux tecrease when the surfasés
stretched to infinity, in order to keep only the constantns: viz., “the flux at infinity.”
If one then decomposé&sandH into their transversal components (i.e., norma&}an 1
/ Rand 1 /R? and their longitudinal ones (i.e., parallelR) in 1 / R*, without it being
necessary to calculate them as functions of thecesuthen it will be easy to verify that
one will have:

EAH=-Tn, (7
up to terms in 1 R".

From this, we deduce that, with the adopted approximatiorilukehat leaves can

be written:

q::j RN (E~H)ds (8)
or
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q:zzi:j E R"gradA ds+[ E~Ads-| (Exgrad) R"A), 9)

since we have:

RAN(E"rotA) =Y ER"gradA +E"A— (E x grad) RN A),
identically.
We let M(s + As) denote the moment of impulse that is contained iphere of

radiusR + ¢ At, which will be represented s/ As, and letM(s) denote the moment of

impulse that is contained in the sphereUp to higher-order infinitesimals @, the flux
that leaves during the time intervdl t + At will be:

® At = M(s +As) — M(9), (10)

since a comparison of (1) and (8) will show that ithe moment of impulse that is
contained between the sphesesAs ands. Since the charge densgy= div E is zero on
s, we will have, by virtue of (10) and (4), and upon utilizihg tlecomposition (3) ol :

cht:Zj E R”gradA dsat+ [ E~Adsht

- %[ s+AsR OA [E xn ds—'[SR UA [E xn d%,

which is a formula that can be deduced immediately f@mmoreover.

We have supposed that we can arrange, by gauge invariantes fvector potential
A to have order of magnitude R/ Since it is a “retarded quantity,” that means that (

A(R,t):—;a(RO,t—R/c)+O(1/R2).
Under those conditions, the longitudinal component hef ¢lectric field can be
written in the form:

E (R ,t)xn:%b(Ro,t—R/c)+O(1/R3).

It will result from this that:

0 0
j RAAEExnds:j RAA [E x nds—At ij roARLY DR 4 + .
s+As s dt s R R'a o mic

in which the unwritten terms have order:

() O(1/R) means: + terms of order R} 1 /R™, ...
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2 3
(Atij - (Atij .
dt dt

It is, moreover, obvious that if we calculate the genal mean of the flux at infinity
when the state of the sources is a periodic functigh vespect to time (oalmost-
periodic in the sense dil. Bohr [6]) then we can write:

RUOATE xn [ds = LR OA [E xn [ds = vector that is constant at infinity.

st+As

The symbol over a quantity indicates its temporahmehe mean flux will
then reduce to the remarkable expression:

® = [EROgradA ds+ [EDA de (11)

We then have to show indirectly that the temporahmof the third term in (9) is zero.
The expression (11) shows us that it is not necgd® calculate the terms of the
fields that are in 1 R? in order to obtain the temporal mean of the flixment of
impulse at infinity. Indeed, sina#sis in R? it is obvious that one can appeal solely to
the terms o andA that are in 1 R in order to calculate the second term of (11)e Th
same thing will be true for the first term, siné® tcomponents of the operato= R *

grad at a point of (with polar coordinateR, 6 ¢ are such that:

ketiky =% ei“"i—t,r“‘”cotei,
00 EP)

=2
0@
and contain neither the factBmor derivatives with respect ® R ” gradA is thenin 1
I R, like A itself. That result can seem surprising, becafree (5) and (6), it would
seem that it would be absolutely necessary to l&dhe longitudinal components of
the fieldsE x n andH x n, which are in 1 /R%. However, that paradox is easily
explained, because it is in the calculation oftthed term of (9) (whose temporal mean
we have shown to be zeeopriori) that the longitudinal fields enter explicitly. aghall
verify that in the following paragraph for the cadgean electric dipole field. However, in
a general manner, we easily remark that this refutn the fact that the gradient & (
A); will contain, along with the terms in 1R, some other ones IR’ that are introduced
because the gradient Afis not inR?, but only in 1 R, like A itself. Indeed, the gradient
of the termA;, which is in 1 R, is written:

1 1 1, ._1o0a
d|=a(R°t-R = —a(R% 1t |-= a(R° HR® ==—"
gra [Ra( /c)} {grad[Ra( )} Ra( ) }M_R/C (a c 6tj
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in which the first term is in 1®? and the second one is in R/

The expression (11) for the flux remains valid for ¢kee of a meson radiation field,
and contrary to the case of the electromagnetic figd, then yield a unique
decomposition of the moment of impulse flux into an “@bmoment flux” and a “spin
moment flux.”

2. The electric dipole wave= Consider the electric dipole wave that is emitted by a
source whose state is a periodic function of timehghat we can write the charge
density as:

p(r,t) = Re p e,

in which p = p(r). The symbol “Re [ ]” refers to “the real part”odnd will generally be
omitted in what follows. If we set:

R:jr pe®dy (12)
then we will know that with théorentz choice, the potentials for the electric dipolar
wave will be [7]:

b= ke (1—'—} R x P,
4R kR
(13)
A=—L ket [P,
4R

if k= w/ cis the wave number. If we use the property ofggamvariance oE andH
then we will see that these two quantities, whichwritten:

E=_L1 g Kkz —KJP+(%— kzj R°R"x P} :
4nR R R

(14)
H= ie“”‘(kz —Kj ROAP,
4R R
can likewise be deduced from the potentials:
¢=0,
(15)

A= i—e“kRKk2 —KJP+(%— kzj R°R%x P} :
AnkR R R
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The expressions (13), (14), and (15) are exact, up to terhgR’. LetF "~ denote
the complex conjugate d¢f. From (5), the temporal mean of the flux that leates
spheres will be:

o= %jR O(EOH%ds
ik® 1
- — R°OP"R°xPds,
167 ¢ R
1

=ik*P AP O—. (16)
127

That result can also be obtained by starting wéh (We then have the following
expression for the temporal mean of the flux:

® =3y [EROgradA’ds+3[EDA" ds-3[ Ex grad DA ),

in which the three terms on the right-hand sidé¢ belreferred to as the first, second, and
third flux terms, respectively.

One easily verifies that the first two terms oé€ tflux are calculated under the
conditions that were predicted in the precedinggaph and that the decomposition that
appears in the expression (11) is not unique. dddene finds that these two terms are
equal to:

1

0 and ikKkCP AP —,
127
respectively, with the potentials (13), and:
13 3 * A 1 13 3 * A 1
siIk[P "PO— and k[P *"PO—,
127 127

respectively, with the potentials (15). In orderiltustrate our results in the preceding
paragraph, we further carry out the calculatiothefthird flux term. With the potentials
(13), for example, we will have successively:

ROA =+ ke*RRAP
anR

grad R " A)x :# ik e*?[(yP,— zR)(-ik R —R°/R) + (0,P, — P)],
and if one preserves only the terms inRf:/

(E x grad)R "A") = N 1 ik e R (~ikRAP [ExR°—E ~P).

677°R
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The integration of that expression ogatemands that one must kn@&w R°, which is in
1 /R?, and since we can write:

1

(Exgrad)R"A) = 1672R

Bk RAP Rx P-ik* [P " P),

the result of that integration will be:

R E(sa“f—mj PAP =0,
1677 3

as we could have predicted.

These considerations allow us to explain certasults that relate to the electric
dipole wave that were published ByGéhéniau[8] (). The surface terrm does not
enter into the expression that he adopted for #imition of the moment of impulse. It
results from this that there is no third term ia #xpression for the flux that he obtained.
He then likewise obtained the expression (11) withbowever, remarking that its use
for the electromagnetic fielé permissible only when the vector potentialnsli/R,
since otherwise one would have a flux at infinitsatt did not possess gauge invariance!
The fact that the longitudinal componentskofntervene only in the calculation of the
third flux term explains how. Géhéniauwas led to say that it was characteristic of his
theory that it permitted the calculation of theatdtux while employing only the terms in
the fields and potentials that are in R./ It is appropriate to remark that if one remarks
that if Géhéniaudid not obtain the same moment of impulse fluxhtiite two choices of
potentials (13) and (15) then that would be duth&ofact thatdle Broglie did not adopt
the usual definition15] of the moment of spin (). He added the term — £/ ¢ H dvto
them, which is obviously zero for the potential8)(1but non-zero with the potentials
(15). The origin of the present work was to expliiese results @déhéniau

3. The plane wave-

a) The electric and magnetic fields of a rigorouslyptic, monochromatic plane
wave that propagates in tle direction can be deduced from the complex potisntia

9 =0,
(17)

() It was an application df. de Broglie's theory of the photon th&@éhéniautreated, but he limited
his calculations to an approximation that was equivalenpractice, to annulling the rest mass of the
photon. It results from this that it seems natural to @dfpem this that his results would coincide exactly
with those ofMaxwell’s classical theory. He confirmed that this predicti® justified for the energy flux,
but not for the moment of impulse flux. That anomalgluse to the fact that the classical approximatien (
= 0) thatL. de Broglie used in his definition of the moment of impulse is not gangariant.

(") Cf.[8], pages 17 and 37.
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A=leiep
k )

in which: _
P = (ia, b, 0)€“ (189)

if the elliptic polarization is right, and: _
P =(a ib, 0)&“ (180)

if it is left; aandb are real, andv=ck Indeed, those fields are the real parts of:

E=e™P,
19
H=e™K°"P -

respectively, in whickk® = (0, 0, 1) is the unit vector in the direction of propigaof
the wave.

For quite some timeR. Ehrenfest[9] has said that a plane wave — thus-defined —
cannot give rise to any moment of impulse flux in tiredion of the propagation of the
wave; indeed, we hav&®(* T n), = 0,n =k°. Moreover, the component of the moment
of impulse itself along that direction is already@erWe therefore do not find, as we

would for the spherical electric dipole wave, a rafiaghe mean flux®) of moment of

impulse in the directio®z to the mean energy fluR® that is given by thébraham-
Sommerfeld formula [LO]:
®

0

2ab
=+ , 20
w(a® +b?) (20)

mN Z

according to whether the electric dipole momen) (i the form (18 or (1&), resp.

We can apply formula (9) to the calculation of thement of impulse flux of the
plane wave, since the formula (7) is rigorouslyifiest by the fields (19). A simple
calculation shows that the temporal means of tmepament alongz of the three terms
in (9), in which the symbol “Re [ ]” is implied, @aequal to:

, (21)

respectively, for a finite portiosof the plane wave, according to whetRas defined by
(18a) or (18&), respectively.

The fact that the third term in the flux is notr@ehows us the importance of the
condition that is required for the utilization ofrfnula (11), namely, tha must be in 1/
R. The results (21) likewise show us that the tagt terms of the flux cancel on each
unit of surface, but a rigorously plane and monoofatic wave such as (19) must be
considered to extend over all space, in such a thvay the decomposition (9) is, in
reality, indeterminate. It is nevertheless intengs because it will allow us to
understand why, in calculating the flux per unitfasce for the plane wave (19),
Géhéniau[8] obtained a moment of impulse flux whose comporadotgOz is coupled
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to the energy flux by formula (20) precisely, if one &®k&o account the difference in
notations. We then see that there is no reason kadmc¢hat result, as well as what
Géhéniaudid, from some considerations Bf Henriot [11] on “radiation couples.” One
must simply attribute it to the fact that the surfategralm here plays an essential role
in the definition of the moment of impulse, since thegeral mean of the third flux term
that corresponds to it is not zero.

b) Meanwhile, one must recognize that if tAbraham-Sommerfeld formula is
valid for the wave that is defined by the fields (19) themill exhibit the interesting fact
that a plane wave can give up its moment of impulse perfectly absorbing body, and
thus make it begin rotating)( However, it is important to remark that the plaveve
that has been in question up to now extends over alespad does not possess any
physical reality (it constitutes a simple solution ke Maxwell equations for a pure
field). We must then rather expect from this that Afiaham-Sommerfeld formula
will be verified by a physical plane wave; i.e., by a wat finite spatial extentwhich
cannot be the case for either a rigorously-plane waeergorously-monochromatic one,
bTut only for a packet of waves with different frequen@es directions of propagation
().

The considerations that follow have precisely the abecof showing that the
moment of impulse and energy that are contained in sughva will verify the ratio
(20), and that will become all the more rigorous whenvihee considered differs even
less from the ideal wave (19). We can hope that (agdnme true for a monochromatic
dipole wave) the temporal means of the flux per unietiwould verify that ratio (20),
because those temporal means are agniori here ().

We assume that we can write the electric and magheld that constitute the wave
packet that we propose to study in the fornfrofirier integrals. Those fields will then
be the real part of:

ER,1)= (ZT]-):”/?,EW F(k)eiat—ika dk® ’ (220)
and the real part of:
HR, 1= (2T1)3’2Jk0 OF (k) €47%R dk® | (2)

() In quantum theory, we are led to interpret fiwaham-Sommerfeld formula by saying: For a
radiated photon of energyw, the component alon@z of the moment of impulse that is transported by a
circularly-polarized plane wave 8% (7 =h/ 27).

(") Here, we point out thatv. Westphal [12] gave a discussion of the set of difficulties that were
formerly raised by the question of the moment of impafse rigorously-plane wave. The reader will find
bibliographic references in the papersSaidowsky Poynting, Epstein, ... Since thenR. A. Beth [13]
has experimentally verified the fact that a physical plaaee can put a birefringent crystal into rotation.

(") Indeed, since the existence of a packet that is ndtetinin time and monochromaticity is not
realized rigorously, one must take the temporal meanrpetime for the entire intervdl=— oo, t = + oo,
Now, the energjlux that traverses the plam®yduring theentiretemporal interval = - T, t =+ T (T very
large) is equal to at most thatal energy in the entire packet. Since the latter isapalimited, that total
will be essentially finite. It will then result théhe mean fluxper unit timewill be very small, and zero in
the limit T =o. That argument applies just the same to the monii@mipalse flux.
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respectively, in whicklk® = dk, dk, dk,, w= |k |c andk® =k / k. The relations di& =
divH = 0 demand that:
k x F (k) =0. (23)

FromC. G. Darwin [14], the energy and moment of impulse of such a packathw
are defined by:

£=1 j: [(ReE)? + (ReH)? dk?, (24)
M = % ™ R (ReE " ReH) dk?, (25)

respectively, can be likewise written:

:%J F*XFdlés), (24)
i Lz | 1 *

M=Re— Y [F"kK°~ gragy Fi dk¥ + Re— [= F" A F dKk®, 25
ch,j : grad 2cjk (28)

With the goal of calculating these expressions wihenpacket is reasonably planar and
elliptically polarized, we shall first perform tlealculations for the case in whi¢hhas
the form:

F=(@a na - [-1i),
anda, S, y, and the constamtare real. The relation (24) demands that:

ak—yk=nak -k =0,

SO
= ak, _na k),
A y ﬁ )
and finally:
F= (ia,na,—kﬂakx +nky)j. (26)

A simple calculation shows that the enefplyas the expression:

2 k?
£= %jaz |:1+%+ n2(1+ry2j:l dk®,

Z Z

() There is good reason to compare the expressiof)saf@® (3); the term in (25that corresponds to
the termm in (3) will be zero, due to (23).
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Similarly, the components alo@y of the two terms oM are:

2 2
Mo =2 ﬂ{k——lj dK®,

2! kK
2

M= 2 (29 g,
2C k

Now suppose that tHeourier amplitudea (k) is non-zero only in a domald that is
as small as one desires and situated in a neigbbdrdf the poink, = 0,k, = 0,k; = ko .
One easily sees that this implies that the wave imei&easonably planar,” because the
amplitudey will remain bounded D, and one will see immediately that and H, can
become less than any arbitrarily small quantity in modulus,provided that the
extend ofD is itself sufficiently small.

On the other hand, consider the ratio:

2na’
. LIS
A;Z =1 I (27)

c 2 2 '
jaz |:1+ EXZ +n? (1+ tyzj:l dk®

It is finite and non-zero, and with an approximatibat will get better as the domdin
gets smaller, one can write:

M;_ 2n _ 2ab
£ @@+n’) @@ +b)

ifn=a/banda =kyc. One can likewise show that the ratios:

&S, %, andﬁ

& & &

will be zero in the same approximation. From tlg deduce that the moment of
impulse and energyontentof the wave packet verify the relation:

IM|_M, _  2ab

= —— 2&)
£ & wy(a”+b%)

and that this will be truevith an approximation that gets better as the ext#nthe
domain D gets smaller.

If, instead of performing the calculations feras defined by (26), we perform them
for:
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F= [a,ina,—kﬂ(kx+ inky)j,

Z

then we will get a wave whose polarization is inveas#l is such that:

Ml M, 2ab (28)
& & wy(a”+b%)

There is good reason to recall that formulas €8) (20) differ by the fact that the
latter relates to ratios of flux per unit time. wWiver, since formulas (28) were
established for spatially-bounded waves, they nolhetheless give us the right to say
that when a physical plane wave that is elliptic@blarized is absorbed by a material
body, it will not only give up its energy, but alaomoment of impulse, and the ratio of
those two quantities will verify th&braham-Sommerfeld formula (). It results from
this that the absorbing bodies will enter into tiot@aaround an axis that is parallel to the
direction of propagatior namely,Oz

Here, we point out that upon denoting the enelgydt timet by ®5(t):

dF(t) =c H (ReE " ReH) x n dx dy,
thetotal energy fluxhat is defined by:
. +T
g, = lim [ ®5(t) dt,
can be put into a form that is analogous to thah@fcontent, namely:

®F, =4[ KOxnOF* xFdk®.
That expression must reduce to that of the coriterd packet whose wave numbers
k are all reasonable parallel to the normab the plane for which the flux is calculated;
that is what we confirm, sind€ ~ n implies thatk® x n ~ 1.
By contrast, we have confirmed that the integraby parts that allowed us to make
R disappear from the expression (25) for the momémhpulse content — in order to put
it into the form (25 — will not, at the same time, allow us to do théh the expression:

() In order to avoid the fact that thraham-Sommerfeld formula will break down for the plane
wave, E. Henriot [11] believed that there was good reason to introduce soeme quantities into
electromagnetism — in particular, an “impulse momerthefsecond kind” or “momentor.” In addition to
the fact thathose quantities are not gauge-invarigmte think that the considerations above, which use
only classical definitions and have more real physibaracter, render them superfluous. The fields (19)
do not change when one adds/ k é“™* to the componen, of the vector potential and to the scalar
potential (17); however, the “momentor flux” will not thee same in both cases. Cfl], page 15.
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®E, :—.[j:dt.UR’\Tndxdy

which is that of theotal flux of the moment of impulse.
On the other hand, the latter cannot be calculatestdsying with the expression (9),
which is valid only for the “wave zone” of a spheriealve.

¢) The result (28) that we just established cannot bepipesite of the one at the
beginning of that paragrapla)( because we found it for a problem that is clearly
different; namely, that of the moment of impulse @f spatially-unlimited wave.
Nevertheless, for the sake of completeness, itrstilains for us to see what the result
(28) will become when there exists a passage to thetlhai rigorously permits one to
pass from the fields (22) to the fields (19) when the domaieduces to the point (0, O,
ko). We shall formally realize such a passage to thé by introducing a delta function
into (22) for theFourier amplitudea, namely:

(ZT:L)S/Z'[O' dk® = a'[ Aky) dky) Ak, — ko) dKd = a

in such a way that the field&sandH will become:

E=e™" [P,
(19)
H =™ (K2 AP,

in which we have sd® = (ia, b, 0)é€“" orP = (g, ib, 0) €%, b = na, ko = (0, 0,kg) and
ki =ko/ ko . They are then indeed identical with the fig(ti8), up to notations. The
limit of the ratio (28) when the packet (22) becomes the plane wa9g (s then

rigorously:
4 IM|_ M, _, 2ab (30)

£ £ T w@+b)
On the other hand, we know that:

ij[R O(ReETReH |, dv

1 =0, (31)
Ej[(ReE)2 +(ReH §]dv

whenE andH are given by (19) or (1P

The last two results (30) and (31) then correspmnd moment of impulse that is
infinite and zero, respectively, for the rigorouphkanar wave (19! However, that is
easily explained, and does not in any way weakenrésults of paragrapl@ andb).
Indeed, the points of a physical plane wave thatrdmute the most towards a non-zero
moment of impulse for the entire packet are sidiaia the boundaries of the latter,
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because, due to diffraction, it is there that it wiffed the most from a wave that is
rigorously planar and monochromatic. If we imagineeaes of wave packets whose
fields increasingly approach the ones that constitutpldme, monochromatic solution to
the Maxwell equations then their spatial extent will automaticallgomee increasingly
greater, respectively.In the limit, for the rigorously-monochromatic case, the spatial
extent will be necessarily infinite, and the boundaries of the paaketell as its moment
of impulse content, will be pushed out to infinifyhat explains whyefiningthe moment
of impulse of aigorously-planarwave by 1 £ | R » (ReE » ReH) dv is not equivalent
to defining it by the limiting expression (25which is a fact that will introduce a
singular behavior to the electromagnetic field at ibyimvhen it is defined by the limit in
(22) (). How does one choose one definition, rather tharother one? It seems to us
that the first one is the most natural, but that guastion of personal taste that has no
great significance, sincié does not refer to a real physical situation; it is essential to
remark that they are not equivalent.

We can then summarize this third paragraph as follows:

1. A circularly-polarized physical plane wave posseasa®ment of impulse such
that its ratio to the energy content will verifyetAbraham-Sommerfeld formula; that
will become increasingly exact as the monochromgtisicomes better realized. It will
result from this that its absorption by a material yoadll make it enter into rotation
around an axis that is parallel to the mean directigraagationY).

2. By contrast, if one defines the moment of impulksa ngorously-planar wave as
one usually does then there will not exist a formudd ihanalogous to that 8braham-
Sommerfeld Meanwhile, one can reestablish that analogy with dipolar spherical
wave by defining the moment of impulse of the rigorousanar wave to be the limit of
that of a wave packet that becomes rigorously-plandr manochromatic. There is
reason to insist upon the fact that the ambiguity gharesent in the definition of the
moment of impulse of a rigorously-planar wave has notjoia significance*(}.

In concluding this paper, | would like to warmly acknowledBeofessorL.
Rosenfeld and DoctorJ. Serpe who have allowed me to bring this work to a good
conclusion, thanks to numerous conversations thatave had and the correspondences
that we have exchanged.

() This result can be compared to the fact that the fiRr whenR tends to infinity and tends to
zero is not defined uniquely. One hasgdim(lim,-o Rr) = 0 and lim (liMg= RY) = . In the problem that
we are concerned with, we likewise have to make twoagassto the limit that do not commute: one of
them, over the domaiD of the frequencies, and the other one, over a spitimhinv that must be taken to
be infinite if one wants to have the moment of impudentent of the entire wave.

(®) This interpretation is essentially classic&tom the quantum viewpointye can interpret formulas
(28) by saying that they establish the existence ocbment of impulse for a photon that is associated with
the continuousspectrum of an electromagnetic wave. That res@ssential in order to be able to account
for the conservation of the moment of impulse duringetiméssion or absorption of a photon by an optical
electron whose axial quantum numbevaries froms 1.

(") It is, however, possible that this ambiguity can plapla from the mathematical viewpoint — for
example, when one specifies the “boundary conditions” éndievelopment of an arbitrary wave into a
system of rigorously-planar waves.
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