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It is shown that one can obtain canonically-defined dynamical equations for non-conservative mechanical
systems by starting with a first variation functional, instead of an action functional, and finding their ze-
roes. The kernel of the first variation functional, as an integral functional, is a 1-form on the manifold of
kinematical states, which then represents the dynamical state of the system. If the 1-form is exact then the
first variation functional is associated with the first variation of an action functional in the usual manner.
The dynamical equations then follow from the vanishing of the dual of the Spencer operator that acts on the
dynamical state. This operator, in turn, relates to the integrability of the kinematical states. The method is
applied to the modeling of damped oscillators.
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1 Introduction

One of the most, if not the most, fundamental principles of all physics is the least-action principle, which
states that nature favors the state of least action, if one defines the terms “state” and “action” in the correct
way. Applications of this principle can take the form of the path of least distance, the path of least time,
the surface of least area, the deformation of an elastic body with the lowest deformation energy, and more
general fields that minimize the action functional. The least-action principle then has the advantage of
singling out an often unique, canonical, element from what usually amounts to an infinite-dimensional
space of possibilities.

However, there are limits to the applicability of the least-action principle. For instance, in physical
mechanics, one can only deal with conservative systems, which leaves out many common examples, such
as mechanical systems that include friction or viscous drag, as well as open systems, in which energy is
added or subtracted from “external” sources. Actually, one can regard friction and drag as a type of external
energy source or sink in the sense that one is dealing with forms of energy that are beyond the scope of the
model, except as essentially stochastic contributions.

Another common physical milieu in which the least-action principle apparently breaks down – if only
temporarily – is in quantum physics. One of the more popular approaches to the dynamics of quantum
systems – i.e., systems of interacting atomic or subatomic particles – is the Feynman path integral, or more
generally, the functional integral approach. With this technique, one basically suggests that the transition
probability from a given incoming scattering state to a given outgoing one involves contributions from
more than just the extremal path that connects them. This leads to the notion of a “loop” expansion, which
puts the contribution from the extremal solution at the zero loop, or “tree” order of approximation and
adds increasingly non-classical contributions from higher-loop diagrams in a manner that is analogous to
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46 D. H. Delphenich: Integrability and non-conservative systems

the asymptotic expansions of diffraction theory in geometrical optics. However, one can often arrive at
an “effective” action functional whose extremal solutions then represent the quantum-corrected classical
extremals.

Much of the methodology of quantum field theory is by analogy with corresponding concepts in non-
equilibrium thermodynamics, in which one addresses the excitations of the equilibrium – or ground –
state from the standpoint of both small perturbations, which defines the linear theory, and large excita-
tions, which defines the nonlinear theory, and is not always perturbative in character. For the instance, the
methodology of spontaneous symmetry breaking and phase transitions comes out of this nonlinear theory
of non-equilibrium thermodynamics.

One thing that becomes clear in the study of conservative mechanical systems is that invariably all that
one is dealing with are essentially “accounting” principles. That is, whether or not some physical quantity
that is associated with a mechanical system is conserved has a lot to do with the degree of completeness in
one’s statement of the various forms that the quantity can take in the system. For instance, when one first
encounters elementary collisions in physics, one is told that there are two types of collisions: elastic ones,
in which total energy is conserved and inelastic ones, in which it is not. One then learns that the first law
of thermodynamics is that total energy is always conserved. The way that one resolves this contradiction is
to understand that the total energy in the collision of hard spheres moving on frictionless surfaces included
only the kinetic energy, but not, for instance, the binding energy that is absorbed if they stick together or
the energy of deformation.

Hence, one is always dealing with the issue of the completeness of the system definition, and whether
the system interacts with another unmodeled system. This unmodeled system can be external, in the sense
of a heat bath or more astronomical systems, or internal, such as motion and energy at the atomic level
when one is modeling a macroscopic process.

Now, one of the unavoidable realities of all logical systems, such as the laws of nature and the basic
premises of any physical model, is Gödel’s theorem that a logical system can be at best either logically con-
sistent or logically complete, but not both. That is, if, as scientists always insist upon, the basic premises of
science do not lead to any contradictions then there must be well-posed questions whose truth or falsehood
cannot be resolved by that system. This suggests that any conservation law represents a level of approx-
imation, just as symmetry and homogeneity are usually introduced into a model as an approximation for
something more intractable.

Hence, it might be more prudent to deal with conservation laws in their “strong” form instead of their
“weak” form. The terminology that we are using is that the weak statement of a conservation law is that
the total amount of some physical quantity – e.g., mass, energy, momentum, angular momentum – remains
constant in the course of the time evolution of the state of the system. The strong statement of that con-
servation law would be that the time derivative of that quantity is equal to some other specified quantity;
one also refers to such laws as balance laws in continuum mechanics, thermodynamics, and statistical me-
chanics. For instance, Newton’s first law of motion becomes the weak form of the law of conservation of
momentum and his second law, when expressed in the form

∑
F = dp/dt, gives the strong form of that

law, or balance law.
What we are proposing to do in this study is to show that there is a physically useful expansion of scope

of the least-action principle that exhibits the extremal motion of classical mechanics as being like the weak
form of a conservation law when there is a strong form that includes it as a limiting approximation. The
key to presenting a statement of that more general principle is to formulate the conventional calculus of
variations in the language of jets and then show how one can use the integrability of sections of these
fibered manifolds to deduce equations that subsume the Euler-Lagrange equations that one derives by
starting with a Lagrangian function L, but without actually having to start with a Lagrangian. Indeed, one
basically replaces the exact 1-form dL with a more general 1-form φ, as we shall see.

In Sect. 2, we summarize the relevant facts from the formulation of the calculus of variations in terms
of jets that we will generalize. In Sect. 3, we will make the generalization of these constructions that
will enable us to address the mechanics of non-conservative systems. In Sect. 4, we briefly describe the
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relationship between the dynamical equations that we defined in Sect. 3 and the integrability of sections of
the projection of the jet manifold onto the parameter space. In Sect. 5, we give examples of how to apply
the general method to the modeling of damped one-dimensional oscillators with both linear and nonlinear
restoring and damping forces. Finally, in Sect. 6, we summarize the key points of the method and propose
the immediate directions for further development.

Many of the ideas that are presented below have been discussed in greater mathematical and physi-
cal detail in Delphenich [1]. One will find that the method that is proposed here of deriving dynamical
equations from the dual of the Spencer operator is a generalization of the method that was proposed by
Pommaret [2], which still began with the definition of an action functional.

2 The calculus of variations in the language of jets1

The 1-jet of a differentiable function f : M → N at a point u ∈ M is defined to be the equivalence class
of all differentiable functions that are defined in some neighborhood of u and have the same value as a
function at u as f – i.e., f(u) – and the same value of their derivative at u as df |u. We then denote this
equivalence class by j1fu. Note that since it is not necessary for the functions to be globally defined it is
still possible to speak of 1-jets when global functions do not exist, such as 1-jets of sections of principle
fiber bundles when the bundle in question is not trivial. For instance, one can define 1-jets of local frame
fields on manifolds that are not parallelizable.

The disjoint union J1(M,N) of all 1-jets at all of the points of M projects onto M , N , and M × N
by way of the maps πM , πN , and π1,0 that take j1fu to u ∈ M , f(u) ∈ N , and (u, f(u)) ∈ M × N ,
respectively; one gives J1(M,N) the topology that is induced by the projection in the last case. Further-
more, one can give it a differential structure by starting with a chart (U , ua) about any u ∈M and a chart
(V, xi) about any x ∈ N and defining a chart on a subset of π1,0(U × V ) by the coordinates (ua, xi,
xia) ∈ Rm × Rn × Rmn. We shall then refer to J1(M,N) with this differential structure as the manifold
of 1-jets of differentiable maps from M to N .

The projections πM : J1(M,N) → M and πN : J1(M,N) → N do not define fibrations, but
only fibered manifolds; that is, these projections are onto and so are their differential maps. However, the
projection π1,0 : J1(M,N) →M ×N is a fibration, and the typical fiber is an affine space that is modeled
on Hom(Rm, Rn), that is, the vector space of linear maps from Rm to Rn, which is linearly isomorphic
to Rmn. One can then think of the elements of the resulting affine bundle as representing the differential
parts of the 1-jets, since the fiber coordinates are the xia in this case.

A section of the projection πM : J1(M,N) → M is then a map ψ : M → J1(M,N) that takes each
u ∈ M to some 1-jet ψ(u) in the fiber over u. Hence, one must have that the composition πM · ψ is the
identity map on M . The local form for the image ψ(U) of a local section ψ : U → J1(M,N) when ψ(U)
is contained in a chart on J1(M,N) is:

ψ(u) = (ua, xi(u), xia(u)) . (2.1)

It is essential in what follows to clearly distinguish this general section from the more particular case of
a section of πM that is the 1-jet prolongation j1f : M → J1(M,N), u �→ j1fu, of a differentiable map
from M to N . It will take the local form:

j1f(u) = (ua, xi(u), xi,a(u)) , (2.2)

in which the comma denotes partial differentiation with respect to the independent variable ua. If ψ takes
the form of j1f for some differentiable map f then one says that ψ is integrable.

1 For the geometry of jet manifolds, see Pommaret [2] or Saunders [3]. The approach that is taken here to the calculus of
variations in the language of jets is closest to the work of Dedecker [4] and Goldschmidt and Sternberg [5]. The application to
mechanics is related to the work of Gallisot [6].
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48 D. H. Delphenich: Integrability and non-conservative systems

We shall return to this issue in a later section in which we account for our extension of the least-
action principle. First, however, we shall summarize the usual calculus of variations, at least for first order
Lagrangians, as it is expressed in the language of 1-jets.

For the sake of convenience, we assume thatM , which we now callK , is a compact connected subset of
Rm, which then plays the role of a parameter space for whatever object the embedding of K in N would
represent. For instance, in point mechanics, one might use K = [a, b] ⊂ R, which represents a finite
proper time parameter interval2. The compactumK might or might not have a non-vacuous boundary ∂K .

In order to define an action functional on the differentiable maps of K into M, one first chooses a
differentiable function L : J1(K,M) → R that one calls the Lagrangian density for the action functional.
Hence, it will take the local form L(ua, xi, xia).

If V ∈ Λm(K) is a volume element on K then one can lift it to an m-form V̂ ∈ Λm(J1(K,M))
by means of the projection πM . The scalar multiple LV̂ is another m-form on J1(K,M), and when one
chooses a section ψ : K → J1(K,M) one can pull LV̂ down to the m-form LV on K . If this seems a bit
roundabout, keep in mind that we will need to exterior differentiate the m-form LV̂ , and if we did that on
K then we would only get zero, since all m+ 1-forms on an m-dimensional manifold are null.

We then define the action functional on differentiable maps f : K → N to be the association of f with
the number:

S[f ] =
∫

K

L(j1f)V̂ =
∫

K

L(ua, xi(u), xi,a(u)) du1 ∧ · · · ∧ dum . (2.3)

Although it is not always analytically rigorous, or at least computationally useful, to regard the set
C1(K,N) as an infinite-dimensional differentiable manifold and the action functional as a differentiable
function on that manifold, it is certainly heuristically useful to imagine that what the calculus of varia-
tions really represents is the “calculus of infinity variables,” or, at least, the theory of critical points of
differentiable functions on infinite-dimensional differentiable manifolds.

In particular, if f : K → N is a “point” of this “manifold” then a “tangent vector” at f takes the form
of a vector field δx on f(K). One also refers to this vector field as the first variation of f , since it will
be the infinitesimal generator of a one-parameter family of diffeomorphisms of f(K) into M . It will then
have the local form:

δx = δxi
∂

∂xi
. (2.4)

Hence, we are not assuming that the parameter space K is being deformed as a result of δx.
The first variation δx of f then has a prolongation to a vector field δ1x on J1(K,M), which has the

local form:

δ1x = δxi
∂

∂xi
+
∂(δxi)
∂ua

∂

∂xia
. (2.5)

We can then define the first variation of the action functional at f to be a “1-form” on our “manifold”
C1(K,N) that takes the “tangent vector” δ1x to the number:

δS|f [δ1x] =
∫

K

Lδ1x(LV̂ ) =
∫

M

iδ1x(dL ∧ V̂ ) =
∫

K

dL(δ1x)V̂ , (2.6)

in which LX = iXd + diX is the Lie derivative operator with respect to the vector field X , as it acts on
differential forms.

Since dL will take the local form:

dL =
∂L

∂xi
dxi +

∂L

∂xia
dxia ≡ Fi dxi + Πa

i dx
i
a , (2.7)

2 For a more detailed discussion of this case, see Delphenich [1].
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if δ1x takes the local form that was given in (2.5) then we can say that:

δS|f [δ1x] =
∫

K

(

Fiδx
i + Πa

i

∂(δxi)
∂ua

)

V . (2.8)

Note that it is not necessary to include the contribution to dL from ∂L/∂ua dua because it will be annulled
by exterior multiplication with V̂ .

By the product rule for differentiation, which is usually referred to as an integration by parts, (2.8) can
be given the form:

δS|f [δ1x] =
∫

K

δL

δx
(δx)V −

∫

∂K

Θ(δx) , (2.9)

in which we have introduced the variational derivative 1-form δL/δx and the transversality m − 1-form
Θ, which are defined by:

δL

δx
=

(
Fi − Πa

i,a

)
dxi , Θ = Πa

i dx
i ⊗ #∂a . (2.10)

The notation #∂a refers to the m− 1-form on K that is Poincaré dual to the vector field ∂a, namely:

#∂a = i∂/∂uaV . (2.11)

The classical problems in the calculus of variations take the form of finding extrema of the action func-
tional, which are then the “points” f at which the first variation “1-form” has a zero, at least when restricted
to “tangent vectors” δx that satisfy either the fixed-boundary condition that δx = 0 when restricted to ∂K ,
or the transversality condition that Θ(δx) = 0 when restricted to ∂K , which then allows one to pose free-
boundary problems, as well. In either case, the boundary integral in (2.9) vanishes, and one finds that f is
an extremum for S[.] – i.e., a critical point – iff δS|f [δ1x] = 0 for all δx that satisfy the specified boundary
conditions iff the Euler-Lagrange equations are satisfied:

δL

δx
= 0 , (2.12)

which can also be put into the form:

Fi = Πa
i,a , (2.13)

which take the form of Newton’s second law when K = [a, b], so Πa
i takes the form of the components

pi = ∂L/∂ẋi of the momentum 1-form. In the case of dim (K) > 1, these equations generalize either the
fundamental equations of continuum statics or dynamics, depending upon the way that one interprets K .

3 Zeroes of more general first variation functionals

As we said in the last section, an action functional S[.] can be regarded, at least formally, as a differen-
tiable function on an infinite-dimensional “manifold” C1(K,N) of states. By differentiation, one obtains
a “1-form” δS[.] on that manifold, which then takes a “tangent vector” δψ at a kinematical state ψ – i.e., a
variation of that state – to a number δS[δψ] that represents the directional derivative of S in the direction
δψ. An extremal state then becomes a critical point of S, i.e., a zero of the 1-form δS.

A physically useful generalization of this is to define the first variation functional in terms of a 1-form
φ ∈ J1(K,M) that is not exact, and is therefore not derived from a Lagrangian function, in place of the
dL that we used in (2.6). The first variation functional is essentially an infinite-dimensional analogue of
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50 D. H. Delphenich: Integrability and non-conservative systems

a non-conservative force 1-form, which therefore does not admit a potential function, and, in fact, that is
precisely how we will introduce such forces into a variational formulation of non-conservative motion.

The main question to resolve is how to obtain equations of motion that are canonical in some sense
when we are no longer interpreting the zeroes of δS|f as extrema of an action functional on f . As we shall
see, the solution to this dilemma is to be found in the integrability of the 1-form φ, in a different sense than
its integrability under the exterior derivative.

The way that we define our generalization of δS is as follows: let φ be a 1-form on J1(K,N) that is
vertical for the projection J1(K,N) → K . Hence, it can be represented locally in the form:

φ = Fidx
i + Πa

i dx
i
a , (3.1)

as in (2.7).
If V̂ is the lift of the volume element V ∈ Λm(K) to J1(K,N) then one can form the m+1-form

Ω = φ ∧ V̂ on J1(K,N). Now, let ψ : K → J1(K,N) be a section of J1(K,N) → K and let δψ be a
vector field on J1(K,N) that is tangent to ψ. Hence, it will have the local form:

δψ = δxi
∂

∂xi
+ δxia

∂

∂xia
. (3.2)

One can then take the interior product iδψΩ and obtain an m-form on ψ that will have the local form:

iδψΩ = (Fiδxi + Πa
i δx

i
a)V̂ . (3.3)

One can then pull the m-form iδψΩ down to an m-form ψ∗(iδψΩ) by way of ψ. The only essential
difference between its local form and the one in (3.3) is that all of the component functions for φ and δψ
will be functions of ψ(u).

This m-form on K can be integrated over K to obtain a number:

Σ|ψ[δψ] =
∫

K

iδψΩ , (3.4)

and one sees that for a given ψ the association of δψ with Σ|ψ [δψ] is linear. Hence, Σ|ψ is essentially a
“1-form” on the “tangent vectors” δψ to the “manifold” of all sections ψ at the “point”ψ, and we call it the
first variation functional.

One immediately finds that one can duplicate the steps that led to the Euler-Lagrange equations that
one obtained from a Lagrangian L without the necessity of having to introduce one. The key step, viz., the
“integration by parts”, depends only upon the assumption that the variation δψ is a prolongation δ1x of a
vertical vector field δx on f(K). However, if one chooses a variation δψ that is not integrable then such a
variation would be expressible in the form:

δψ = δxi
∂

∂xi
+

(
δxi,a −Dδxia

) ∂

∂xia
, (3.5)

in which we have defined:

Dδxia = δxi,aδx
i
a . (3.6)

We now get:

iδ1xΩ =
(

Fiδx
i + Πa

i

∂(δxi)
∂uu

− Πa
iDδx

i
a

)

V̂ . (3.7)

By substituting this into (3.4), one obtains:

Σ|ψ[δ1x] =
∫

K

(

Fiδx
i + Πa

i

∂(δxi)
∂uu

− Πa
iDδx

i
a

)

V̂ . (3.8)

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Berlin) 18, No. 1 (2009) 51

whose right-hand side is essentially the same as in (2.8).
By an integration by parts this then takes the form:

Σ|ψ[δ1x] =
∫

K

[(

Fi − ∂Πa
i

∂ua

)

δxi − Πa
iDδx

i
a

]

V̂ +
∫

∂K

(Πa
i δx

i)#∂a , (3.9)

which we then write as:

Σ|ψ[δ1x] =
∫

K

[D∗F (δx) − Πa
i (Dδx

i
a)] V̂ +

∫

∂K

Θ(δx) , (3.10)

in which we have defined the 1-formD∗F on J1(K,N) by:

D∗F =
(

Fi − ∂Πa
i

∂ua

)

dxi , (3.11)

and Θ is the transversality 1-form that we defined in (2.10).
Hence, one can also regard Σ|ψ as a linear functional on the subspace of the “tangent space” at ψ that

is spanned by vector fields on ψ(K) of the form (3.2).
One sees that if one looks for the zeroes of Σ|ψ under the usual variational restrictions that δψ be the

prolongation of a variation δx – so Dδxia = 0 – and that δx make the boundary contribution vanish,
namely, the vanishing of δx on ∂K or the transversality condition Θ(δx) = 0, one finds that Σ|ψ [δx] = 0
for all such δx iff:

D∗F = 0 , (3.12)

which takes the local form (2.13).
As we shall explain in the next section, in which we discuss the origin of the D∗ operator in the in-

tegrability of sections of J1(K,N), if we define D∗Π = 0, identically, then we can extend (3.12) to the
equation:

D∗φ = 0 , (3.13)

which we will regard as the definitive one.
In order to relate this construction to the classical variational constructions in Sect. 2, one need only set

φ = dL, where L is a Lagrangian density function on J1(K,N). For such a φ, one then has:

D∗F =
δL

δx
, (3.14)

and (3.12) is, indeed, a generalization of the Euler-Lagrange equations defined by L.
Furthermore, when φ is not exact, it is often possible, at least locally, to uniquely decompose φ into a

sum dL + φa , where L is some C1 function on J1(K,N) and φa is not exact. (See the section on the
Poincaré lemma in Bott and Tu [7].)

The way that one does this in a coordinate chart on J1(K,N) is by means of locally-defined cochain
homotopy operator H : Λ1(J1) → Λ0(J1), where:

L(ua, xi, xia) = Hφ(ua, xi, xia) =
∫ 1

0

(iRφ)(sR)ds , (3.15)

in which:

R = ua
∂

∂ua
+ xi

∂

∂xi
+ xia

∂

∂xia
(3.16)

www.ann-phys.org c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



52 D. H. Delphenich: Integrability and non-conservative systems

is the “radius” or “position” vector field (centered at the origin) that is defined on Rm × Rn × Rmn for
the chosen coordinate chart.

The decomposition of φ into an exact part dL and an “anti-exact” part φa, which is annulled by H ,
follows from the basic property of H that it define a cochain contraction:

I = dH +Hd , (3.17)

which makes:

φ = dHφ+Hdφ = dL+ φa . (3.18)

From the linearity of D∗, one then has:

D∗φ = D∗(dL) +D∗φα , (3.19)

and Eq. (3.12) then says that:

D∗(dL) = −D∗φα , (3.20)

and when we take (3.14) into account, we obtain:

δL

δx
= −D∗φα , (3.21)

which shows what happens to the Euler-Lagrange equations for a non-conservative system. The right-hand
side of (3.21) then represents the contributions of external and non-conservative forces to the dynamical
equations.

4 The integrability of sections of J1(K, N)

As we pointed out above in Sect. 2, not all sections ψ : K → J1(K,M) represent the 1-jet prolongations
of differentiable maps f : K → M ; i.e., not all of them are integrable. The condition for integrability
can be expressed locally as a system of partial differential equations for the functions xi(ua). If ψ(u) =
(ua, xi(u), xia(u)) then they are:

∂xi

∂ua
= xia . (4.1)

One can either rephrase this in terms of a 1-form θ on J1(K,M) that takes its values in T (M) and is
called the contact form for J1(K,M), with the local representation:

θ =
(
dxi − xiadu

a
) ∂

∂xi
, (4.2)

or in terms of the Spencer operator3, which takes the form D : J1(K,M) → T ∗(K) ⊗ J0(K,M), ψ �→
Dψ = j1(π1,0ψ) − ψ, which locally looks like:

Dψ(ua, xi(u), xia(u)) = (ua, Dxi(u)) , (4.3)

in which:

Dxi =
(
∂xi

∂ua
− xia

)

dua . (4.4)

3 Donald Spencer first introduced it in his work [8] on the deformations of structures on manifolds that are defined by pseu-
dogroups of transformations, and later applied it to the integrability of over-determined systems of linear differential equa-
tions [9]. This was extended to the nonlinear case by Hubert Goldschmidt in [10].
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Here, we must point out that the Spencer operator really acts on sections of the projections involved
in its definition, not the manifolds themselves, since differentiation is not defined, otherwise. We are also
defining the manifold J0(K,N) to be K × N , which then projects on K and N in the usual way, and a
section of J0(K,N) → K is then just a differentiable map from K into N .

From (4.1), a section ψ is then integrable iff either ψ∗θ = 0 or Dψ = 0. The former condition is most
convenient when one is dealing with systems of partial differential equations as exterior differential systems
on J1(K,N), whereas the latter is more useful when on considers them in terms of fibered submanifolds of
J1(K,N). Clearly, the two approaches are not independent of each other since the fibered submanifold in
the latter case could very well be an integral submanifold of the exterior differential system that is defined
in the former.

In order to account for the operator D∗ that we introduced in the last section we first have to extend to
the next order of jets of maps fromK toN . The extension is straightforward: the 2-jet j2fu of f : K → N
at u ∈ K is the equivalence class of all C2 maps from some neighborhood of u into N that have the same
values at u as functions, along with their first and second differential maps. One then defines the manifold
J2(K,N) in a manner that is analogous to the previous definition of J1(K,N), and it is fibered over K
andN , but not as a bundle, as before, although now its projection π2,1 : J2(K,N) → J1(K,N) defines an
affine bundle whose fibers are modeled on the vector space S2(Rm)⊗Rn of symmetric covariant tensors
over Rm with values in Rn, which serves as the space of second partial derivative components. A local
coordinate chart on J2(K,N) then takes the form of (ua, xi, xia, x

i
ab).

Similarly, we extend the Spencer operator to D : J2(K,N) → T ∗(K) ⊗ J1(K,N), ψ1(π2,1ψ) − ψ,
which takes the local form:

Dψ = (ua, Dxi(u), Dxia(u)) , (4.5)

with Dxi(u) defined as before, and:

Dxia =
(
∂xib
∂ua

− xiba

)

dua . (4.6)

We now have to consider the dual of the Spencer operator, which will then be a map D∗ : T (K) ⊗
T ∗(J1(K,N)) → T ∗(J2(K,N)), φ �→ D∗φ, that one obtains by pulling back a 1-form φ on T ∗(K) ⊗
J1(K,N) over Dψ(K) to a 1-formD∗φ on J2(K,N) over ψ(K).

Hence, if δψ = δxi∂/∂xi + δxia ∂/∂x
i
a is a vertical vector field on J1(K,N), which also defines a

vector field on J2(K,N) with the same local form, then we should have:

D∗φ|ψ(δψ) = φ|Dψ(δψ) ; (4.7)

however, we shall see that this is true only up to a divergence.
If we evaluate the right-hand side of (4.7) locally in the general case of δψ = δ1x−Dδψ then we get:

φ|Dψ (δψ) = Fiδx
i + Πa

i

∂(δxi)
∂ua

− Πa
iDδx

i
a

=
(

Fi − ∂Πi
a

∂ua

)

δxi +
∂(Πi

aδx
i)

∂ua
− Πi

aDδx
i
ak . (4.8)

If the left-hand side of (4.7) takes the form:

D∗φ|ψ(δψ) = D∗Fiδxi + (D∗Πa
i )δx

i
a (4.9)

then we see that if δψ is integrable then the two sides of (4.7) are consistent, up to a divergence, if we set:

D∗Fi = Fi − Πa
i.a , D∗Πi

a = 0 . (4.10)
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The divergence gives an exact form when we multiply both sides of (4.7) by V . Hence, by Stokes’s
theorem, it will contribute only a boundary term to the first variation 1-form under integration over K .
Since this boundary term is the transversality m − 1-form that we defined before, this contribution will
vanish under the assumption of a fixed or transversal boundary variation.

We have thus accounted for the appearance of D∗Fi in the equations for the zeroes of the first variation
functional δS[.]. However, it must be observed that, unlike the exact case, in which it was sufficient to deal
with 1-jets of maps, we have had to extend to 2-jets. This relates to the fact that the order of jets in the
kinematical state of the system is equal to the order of the dynamical equations, which is one less than the
order of the dynamical state. For more details on this, see Delphenich [1].

We now illustrate the results with some elementary physical examples.

5 Mechanical examples

Let us start with the forced, damped, one-dimensional harmonic oscillator, for the sake of specificity.
Customarily, the basic dynamical principle is given by Newton’s second law:

mẍ =
∑

F = −kx− bẋ+ f(τ) , (5.1)

in which k is the spring constant, b is the damping constant, and f(τ) is the forcing function.
Now, the term on the left-hand side, when multiplied by the 1-form dẋ, gives an exact 1-form:

mẋdẋ = d(KE) = d
(

1
2mẋ

2
)
. (5.2)

When the terms in the right-hand side of (5.1) are multiplied by dx, only the first one is exact:

−kx dx = −dU = −d (
1
2 kx

2
)
. (5.3)

Hence, we can define the exact part of φ by the undamped, unforced part of the oscillator:

dL = d(−U +KE) = −kx dx+mẋdẋ . (5.4)

The remaining part of φ is then:

φo = (−bẋ+ f(τ))dx = Fodx . (5.5)

We see immediately that:

dφo = b dx ∧ dẋ+ ḟ dτ ∧ dx . (5.6)

Hence, φo is not closed, so it cannot be exact.
Since φo is independent of momentum, we then see that:

D∗φo = (D∗Fo)dx = φo . (5.7)

Thus, the dynamical equations (3.21) that follow from our extended dynamical principleD∗φ = 0 take the
form:

δL

δx
= φo , (5.8)

which gives (5.1) upon substitution.
The restriction to a damped linear oscillator is not necessary in the foregoing, and one can easily extend

to damped nonlinear oscillators of the Duffing and Van der Pol type (see Thompson and Stewart [11]
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or Guckenheimer and Holmes [12]). The best way to summarize the various possibilities it to point out
that they are all based in giving a specific functional form to the components Fi = Fi(ua, xi, xia), which
becomes F = F (τ, x, ẋi) when K = [a, b]. This basically amounts to defining a mechanical constitutive
law that associates a dynamical state φ to the kinematical state ψ. One can also generalize the functional
form of the components Πi

a = Πi
a(ua, xi, xia), which is essential in the case of continuum mechanics, but

in the case of point mechanics, most commonly, one sets the momentum components pi equal to mẋi,
where the covelocity ẋi is obtained from the velocity ẋi by way of a spacetime metric; viz., ẋi = gij ẋ

j .
For instance, most of the traditional constitutive laws for one-dimensional motion take the form F =

f(τ) + dU(x) +Fd(ẋ), in which f(τ) is an external forcing term, U(x) is a potential function, and Fd(ẋ)
represents the damping force. Note that in dimension one all 1-forms are closed, hence, locally exact, so
there is no inexact contribution to F (x).

For the Duffing oscillator, one retains the linear damping, but replaces the linear restoring force with a
force that is cubic in the displacement from equilibrium, so one has:

U(x) = 1
4 ax

4 , Fd(ẋ) = bẋ . (5.9)

One can then think of this oscillator as a linearly damped anharmonic oscillator.
For the Rayleigh-Van der Pol oscillator, one retains the linear restoring force and replaces the linear

damping force with a force that depends upon both x and ẋ:

U(x) = 1
2 kx

2 , Fd(x, ẋ) = b(x2)ẋ . (5.10)

This can be interpreted by saying that the damping coefficient b varies symmetrically with the distance
from the equilibrium position.

The situation in continuum mechanics is complicated by not only the fact that dim(K) > 1, which
means replacing total derivatives with respect to τ with partial derivatives with respect to ua, but also the
fact that the kinematical state needs more explanation. We shall address these issues in a subsequent study,
but, for now, we just point out that examples of how to apply the method to continuum mechanics include
deformations of viscoelastic media and the Navier-Stokes equation in hydrodynamics.

6 Discussion

To summarize:
(i) One can still arrive at canonically defined dynamical equations for non-conservative physical systems

by variational methods if one starts, not with an action functionalS[.] that is based on a Lagrangian density,
but with a first variation functional δS[.] that is based on a 1-form φ that represents the dynamical state of
the system on a jet manifold J1(K,N) that represents the kinematical state space of the system.

(ii) The reduction to an action functional comes from using an exact dynamical 1-form dL for φ.
(iii) The specification of a particular functional form for the components of φ in terms of the kinematical

state variables represents a choice of mechanical constitutive law for the system.
(iv) The dynamical equations, D∗φ = 0, which generalize the Euler-Lagrange equations, follow from

the vanishing of the dual of the Spencer operator D∗ that acts on the dynamical state. This operator is
rooted in the integrability of kinematical states.

(v) When φ is decomposed into the sum of an exact 1-form dL and an inexact one φo, the resulting form
of the dynamical equations is δL/δx = −D∗φo, which applies to many of the common physical examples
of dynamical equations for non-conservative systems, such as damped oscillators.

In addition to extending the physical examples to continuum mechanics, one can also extend the basic
formalism to field theories in a straightforward way. One mostly has to specialize the manifoldN to a fiber
bundle N → K over K and specialize the differentiable maps from K to N to differentiable sections of
that fibration. The jet manifold J1(K,N) then represents 1-jets of local C1 sections of that bundle.
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In the context of field theories, one must naturally address the issue of what happens to Noether’s the-
orem. When one is dealing with non-conservative systems, it is reasonable to expect that the conserved
currents associated with symmetries of the action functional give way to non-conserved currents that are
associated with symmetries of the first variation functional. One also expects that when φ is decomposed
into an exact form and an inexact one, the conservation law for the current takes the form δJ = − (some-
thing obtained from the inexact part). These issues will also be dealt with in a subsequent study.

Another issue that must be addressed eventually is the relationship of the integrability of the first vari-
ation functional to the loop expansion of the effective actions in quantum field theory, which suggests a
recursive process of the decomposition into exact and inexact 1-forms over successive submanifolds of an
infinite-dimensional manifold.
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