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In a previous article by the author, it was shown that one could effectively give a variational formulation
to non-conservative mechanical systems by starting with the first variation functional instead of an action
functional. In this article, it is shown that this same approach will also allow one to give a variational
formulation to systems with non-holonomic constraints. The key is to use an adapted anholonomic local
frame field in the formulation, which then implies the replacement of ordinary derivatives with covariant
ones. The method is then applied to the case of a vertical disc rolling without slipping or friction on a plane.
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1 Introduction

Although Hamilton’s principle of least action is far-reaching in its profundity in the eyes of physics, as well
as other disciplines, it is not without it limitations. In effect, the action functional that one starts with is a
sort of “infinite-dimensional” potential function, which means that when one is dealing with mechanical
systems in which non-potential sorts of effects are present, there is a fundamental error being made in the
formulation by trying to work around the non-existence of potential functions.

For instance, when the forces acting on a system include dissipative forces, such as friction, not all of the
forces that contribute to the resultant will be represented by exact 1-forms on the configuration manifold.
Another example is given by non-holonomic forces of constraint, while a third example is given by open
systems in which one must account for “external” influences on the system.

Previously [1], the author addressed the variational formulation of non-conservative systems and showed
that since the extremals of the action functional S[x] are more fundamentally related to the zeroes of the
first variation functional δS[δx], it is more appropriate to regard that latter functional as the fundamental
one. Its integrand is defined by a fundamental 1-form:

φ = Fμx
μ + Πa

μdx
μ
a (1.1)

on the manifold J1(O;M) of 1-jets of local differentiable functions x : O → M ; here, O is an r-
dimensional parameter manifold with boundary and M is an m-dimensional configuration manifold. The
first term in φ represents the generalizes forces that act on the system, while the second term represents
the generalized momenta, which can include infinitesimal stresses. One then regards the action functional
as a special case scenario in which the fundamental 1-form φ is exact and representable as dL for some
Lagrangian density function L on J1(O;M).
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650 D. H. Delphenich: On the variational formulation of systems with non-holonomic constraints

The key to obtaining equations of motion from the first variation functional is to recognize that it de-
pends upon the vector field δx on the image of x by the intermediary of its 1-jet prolongation δ1x; such a
vector field on J1(O; M) is then integrable. When one evaluates φ(δ1x) one then finds that precisely the
same steps that one uses when φ = dL lead to an integrand of the form:

D∗φ(δx)V =
[(
Fμ − ∂Πa

μ

∂ta

)
δxμ

]
V (1.2)

that is integrated over O and another one that is integrated over ∂O; With the usual boundary conditions
on δx, this gives equations of motion in the form:

D∗φ =
(
Fμ − ∂Πa

μ

∂ta

)
dxμ = 0, (1.3)

and when φ = dL, one finds that one has, indeed:

D∗φ =
δL
δxμ

dxμ , (1.4)

since:

Fμ =
∂L
∂xμ

, Πμ
a =

∂L
∂xμ

a
(1.5)

when φ = dL.
One sees that, in effect, one is really using a generalization of d’Alembert’s principle of virtual work (cf.,

e.g., Lanczos [2]) in place of Hamilton’s principle of least action as the basis for the dynamical principle,
since D∗φ(δx) takes the form of the virtual work that is done when the variation δx is regarded as a virtual
displacement of the object in M that is described by the map x.

This fact is particularly relevant to the present investigation since the power of d’Alembert’s principle is
felt most acutely in the context of constrained motions. In the variational formulation, one finds that what
one is doing is to restrict the set of physically acceptable variations δx to not just the ones that vanish on
the boundary of x or satisfy the transversality condition for a free-boundary variational problem, but also
must lie in some specified submanifold CxM of each tangent space TxM to each x ∈M . In the following
discussion, we shall confine ourselves to the most commonly encountered case of submanifolds that take
the form of linear subspaces, but the method can be generalized.

The set C(M) of all these constraint subspaces then defines a vector sub-bundle of the vector bundle
T (M), and the issue of holonomity versus non-holonomity is that of the integrability of that sub-bundle,
respectively. When C(M) is integrable there is a foliation of M by leaves whose dimension equals the
dimension of each Cx, which we will assume to be the same everywhere on M . The imposition of holo-
nomic constraints then reduces the basic variational problem to a corresponding problem on each leaf. In
the non-integrable case, no such foliation exists, and one sees that the dimension of each constraint space
CxM will be strictly less than the dimension of the configuration manifold, which is still all of M , in
general.

As we will see, when one starts with the first variation functional all that is necessary in order to account
for non-holonomic constraints in one’s basic variational problem of finding the zeroes of the first variation
functional is to use anholonomic1 local frame fields that are adapted to the sub-bundle C(M) and replace
the ordinary partial derivatives ∂μ with respect to the coordinates xμ of a chart on M with “generalized

1 It may sound inconsistent to use the word “non-holonomic” to describe the constraint and “anholonomic” to describe the
adapted local frame field when they are so clearly related, but the use of both terms in their respective fields of application –
viz., constrained mechanics and the geometry of moving frames – is so well-established that we shall simply use both terms
as the situation dictates.
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covariant derivatives” ∇μ with respect to a generalized connection that is defined by the adapted local
frame field.

In the next section, we shall discuss the geometrical nature of constrained configuration spaces, while in
the following section we shall apply these considerations to the problem of obtaining variational equations
of motion for constrained mechanical system. In section 4, we shall show how everything applies to a
common problem of a mechanical system with a linear non-holonomic constraint, namely, a disc rolling
with slipping or dissipative forces on a plane. Finally, we discuss how the same approach of starting with
the first variation functional might be applied to systems with external influences, such as the measurements
that act on quantum systems.

2 Linearly constrained mechanical systems

The mechanical systems that we shall be dealing with will have states that take the form of objects defined
by differentiable maps x : O → M , t �→ x(t) from an r-dimensional parameter manifold O that has a
boundary ∂O into an m-dimensional configuration manifold M ; we shall, moreover, assume that r ≤ m.
If (U , ta) is a coordinate chart on some open subset U ⊂ O and (V , xμ) is a chart on some open subset
V ⊂ M that contains the image x(O) then one can express this map in the form of a system of equations
of the form:

xμ = xμ(ta). (2.1)

One can then regard the map x as defining a submanifold of M .
At each point t ∈ O, one can define the differential map dx|t : TtO → Tx(t)M , which is a linear map

from the r-dimensional vector space TtO into them-dimensional vector space Tx(t)M . Its local expression
in terms of the chosen coordinate systems is then the matrix xμ

,a = ∂xμ/∂ta. It will be convenient in what
follows to also regard dx|t as an element of the tensor product space T ∗

t O ⊗ Tx(t)M , and express it in the
local form:

dx|t = xμ
,adta ⊗ ∂μ. (2.2)

One must be aware that unless one restricts the nature of the map x suitably the differential map will
not necessarily map the r-dimensional vector space TtO to an r-dimensional subspace of Tx(t)M . This is
true iff the rank of dx|t is r, which is equivalent to saying that it is a linear injection. If this is the case for
all t ∈ O then, by definition, x defines an immersed submanifold of M . Such submanifolds can still have
singularities, such as self-intersections, so a stronger condition is to make x an embedded submanifold
of M , which also makes x a homeomorphism onto its image x(O), when one gives that subspace the
topology whose open subsets are all intersections of open subsets of M with x(O) itself. However, if one
is dealing locally with points of x(O) and their tangent objects, the distinction between an immersion and
an embedding is not significant, since that distinction has a more global character.

Examples of mechanical systems that can be expressed in the form that we have chosen include differen-
tiable curve segments, static surfaces or moving filaments, static volumes or moving membranes, moving
rigid bodies, and harmonic oscillators. In the case of dynamical systems, one can include time as one of the
parameters in O. One of the advantages of the d’Alembertian formulation of dynamics – in addition to its
significance for constrained mechanical systems – is the fact that it allows one to treat dynamical problems
as essentially static problems in a higher-dimensional space.

Mechanical systems can generally have two basic types of constraints on their kinematical variables:
constraints on the possible positions – or, more generally, states – of the system and constraints on the
parameter derivatives xμ

,a of these states. The first type of constraint is already accounted for the definition
of the configuration manifold M , which might take the form of a region with boundary in Rm or perhaps
the torus Tm, in the case where the position variables are independent angles.
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652 D. H. Delphenich: On the variational formulation of systems with non-holonomic constraints

Constraints on the parameter derivatives xμ
,a generally take the form of specifying that all m of the

tangent vectors:

xa = xμ
,a∂μ, a = 1, . . ., r (2.3)

in each Tx(t)M for each t ∈ O lie in some specified subspace Cx(t)M of Tx(t)M .
One immediately classifies the constraint as linear or nonlinear according to whether the subspace

CxM is a linear subspace at every point of x or not.
Most commonly, in the linear case one defines the constraint spaces to be the annihilating subspaces of

some linearly independent set of local 1-forms θα, α = N + 1, . . .,m on some open subspace U ⊂ M ,
where N is the dimension of any vector space CxM ; i.e. for any tangent vector v ∈ CxM , one must have:

θα(v) = 0, α = N + 1, . . .m. (2.4)

Typically, one would complete the m-N -coframe θα to an m-frame θμ, μ = 1, . . .m by means of N
complementary linearly independent 1-forms θi, i = 1, . . .N on U . Its reciprocal local frame field on U
consists of the m linearly independent local vector fields eμ, μ = 1, . . .m that are defined by:

θμ(eν) = δμ
ν . (2.5)

One refers to such a local frame field and its reciprocal coframe field as being adapted to the linear sub-
spaces that are defined by the fibers of C(M).

Since the components of v with respect to the frame eμ are:

vμ = θμ(v) (2.6)

one can also express the constraint in the forms:

vα = 0, α = N + 1, . . .m, (2.7)

or:

v = viei, i = 1, . . .N. (2.8)

A typical nonlinear constraint might take the form of requiring that the xa always lie on the surface of
a sphere in each tangent space. However, we shall consider only the linear case in the sequel.

One can also distinguish constraint sub-bundles according to whether they are integrable or not. One
then refers to the constraints as holonomic or non-holonomic, respectively, which we clarify in the fol-
lowing subsections, after we briefly summarize the geometry of adapted local frame fields. In particular,
we discuss a useful example of a non-holonomic constraint that is called semi-holonomic, and is based in
the way that Chaplygin represented linear non-holonomic constraints (cf., e.g., Neimark and Fufaev [3] on
this).

2.1 Adapted local frame fields

Suppose C(M) is a vector sub-bundle of T (M) that has constant rank N ; i.e., its fibers have the same
dimension N everywhere. A local frame field {eμ, μ = 1, . . .,m} on an open subset U ⊂ M is said
to be adapted to the sub-bundle C(M) iff one can partition it into to subsets {ei, i = 1, . . ., N} and
{eα, α = N + 1, . . . ,m} such that the former N -frame spans CxU at each point x ∈ U . Although the
latter subset spans a complementary m − N -dimensional subspace, as well, that fact is usually regard as
irrelevant, unless one has been given a complementary sub-bundle to C(M).

The reciprocal coframe field θμ to eμ will then have the property that the subspacesCxU are annihilated
bym-N -coframe field {θα, α = N+1, . . .m} on U , while the complementary subspaces that are spanned
by {eα, α = N + 1, . . .m} will be annihilated by the {θi, i = 1, . . .N}.
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A general notion that we need to introduce at this point is the concept of the structure functions of a
local frame field. Since the eμ define a basis for each tangent space to U , any tangent vector – including
[eμ, eν ] for each combination of μ and ν – can be expressed as a linear combination of the frame vectors:

[eμ, eν ] = cλμνeλ. (2.9)

Since the eμ are functions of the points of U the coefficients cλμν will be functions of those points, as
well, and one calls them the structure functions of the local frame field eμ . In the case where M is the
manifold of a Lie groupG and the frame field is left-invariant, they will be constants, and indeed they will
be the structure constants of the Lie algebra of G, as they are usually defined (see Sattinger and Weaver
[4], for example, on this).

The natural local frame field {∂μ, μ = 1, . . .m} that is associated with any coordinate chart (U , xμ)
has the property that the Lie subalgebra of X(U) that it spans is Abelian. Hence:

[eμ, eν ] = 0; (2.10)

i.e.:

cλμν = 0. (2.11)

Such a local frame field is called holonomic; otherwise, one calls it anholonomic.
When U is given a coordinate system xμ one can always express an arbitrary local frame field eμ by

means of a transition functionA : U → GL(m):

eμ(x) = Aν
μ(x)∂ν , (2.12)

In such a representation, the structure functions can be obtained in terms of the partial derivatives of A
by direct evaluation of (2.9) using (2.12):

cλμν = (Aκ
μ∂κA

ρ
ν −Aκ

ν∂κA
ρ
μ)Ãλ

ρ , (2.13)

in which the tilde over the matrix signifies that one is using the inverse of that matrix.
When the local frame field eμ is adapted to C(U) one can partition its elements into {ei, i = 1, . . ., N}

and {eα, α = N + 1, . . .m}, and then further partition the commutation relations for the local frame field
into:

[ei, ej ] = ckijek + cαijeα, (2.14a)

[ei, eα] = ckiαek + cβiαeβ, (2.14b)

[eα, eβ ] = ckαβek + cγαβeγ . (2.14c)

One can formulate the commutation relations for eμ in terms of its reciprocal coframe field θμ by using
the “intrinsic” formula for the exterior derivative2 dθμ :

dθλ(eμ, eν) = eμθ
λ(eν) − eνθ

λ(eμ) − θλ([eμ, eν ]). (2.15)

The first two terms vanish since the coframe field is reciprocal, and by introducing the structure functions
in the last term, one finds:

dθλ(eμ, eν) = −cλμν ; (2.16)

2 This notion is discussed in any book that covers the basics of exterior differential forms, such as Warner [5].
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hence:

dθλ = − 1
2 c

λ
μνθ

μ ∧ θν . (2.17)

In the case where M is a Lie group manifold and eμ is left-invariant these become the Maurer-Cartan
equations.

When eμ is holonomic one also must have:

dθμ = 0, all μ = 1, . . .m. (2.18)

If θμ is adapted to C(U) – so each CxU is annihilated by all θα, α = N + 1, . . .m – then one can
partition it into {θi, i = 1, . . .N} and {θα, α = N + 1, . . .m}, which then allows one to also partition
(2.17) into:

dθi = − 1
2 c

i
jkθ

j ∧ θk + 1
2 c

i
jβθ

j ∧ θβ + 1
2 c

i
βγθ

β ∧ θγ . (2.19a)

dθα = − 1
2 c

α
jkθ

j ∧ θk + 1
2 c

α
jβθ

j ∧ θβ + 1
2 c

α
βγθ

β ∧ θγ . (2.19b)

When eμ is related to ∂μ as in (2.12) one then has that θμ is related to dxμ by way of:

θμ = Ãμ
νdx

ν (2.20)

since that coframe field must be reciprocal to the frame field eμ

2.2 Holonomic constraints

When one is given a vector sub-bundle of T (M), such asC(M), withN -dimensional fibers one can always
regard such a sub-bundle as a differential system on M The question then arises whether there is some
unique embeddedN -dimensional submanifold ι : L → M that passes through each point x ∈ M and has
a tangent space3 Tx(L) that coincides with Cx(M). Such a submanifold is called an integral submanifold
of the differential system C(M) and the set of all such integral submanifolds defines a partition of M
into disjoint integral submanifolds. Such a partition is called a foliation of M of dimension N and the
individual integral submanifolds are called its leaves.

The necessary and sufficient condition for the complete integrability 4 of C(M) is that if X,Y ∈ X(C),
which is the vector space of all vector fields onM that take their values in the fibers of C(M), then [X,Y]
is also a vector field in X(C); i.e., X(C) is a Lie subalgebra of the Lie algebra X(M) of all vector fields on
M .

If eμ, μ = 1, . . .m is a local frame field on U ⊂ M that is adapted to C(U) then one can express X as
X iei and Y as Y jej , which makes:

[X,Y] = X iY j [ei, ej ]. (2.21)

Hence, the real issue is whether [ei, ej] is a vector in the subspace spanned by the ei for each possi-
ble value of i and j. Using the structure functions for eμ, one sees that the differential system C(U) is
completely integrable on U iff:

cαij = 0 all i, j = 1, . . .N, α = N + 1, . . .m. (2.22)

3 By this, we mean the image of the corresponding tangent space to L under the map ι and not the tangent to M at the point x;
the former will be of dimension N , while the latter has dimension m.

4 The use of the word “complete” implies that the integral submanifolds have maximal dimension N . It is possible that integral
submanifolds of lower dimension might exist, more generally, though.
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In such an event, one can find a – generally non-constant – frame transition functionA : U → GL(N),
x �→ Ai

j(x) that makes:

ei(x) = Ai
j(x)∂i (2.23)

for some natural N -frame field ∂i that is defined by a coordinate chart (U, xμ) on U that is adapted to
C(U).

Hence, although complete integrability of the constraint sub-bundle C(U) does not demand that the
chosen adapted local frame field be holonomic, nonetheless, when C(M) is completely integrable there
will always be a change of adapted frame field that takes the N -frame ei that is tangent to the leaves of the
foliation of U to a natural – hence, holonomic – local frame field.

The subtlety that is hiding in this statement is the fact that although when U is given a coordinate
system xμ one can always express eμ by means of a transition function A : U → GL(m), as in (2.12),
nevertheless, it is only when U is foliated by integral submanifolds in the manner above that one can
restrict the values of A to a GL(N) subgroup in such a manner that the subspaces CxU are preserved at
each x ∈ U under the transition.

When the constraint C(M) is holonomic, one can say that the number of degrees of freedom in the
mechanical system – i.e., the dimension N of each fiber of C(M) – is equal to the dimension of its
configuration space of allowable positions – namely, the leaf through each point. Hence, the concept of
degrees of freedom has more to do with the allowable directions of velocity vectors than it does with
allowable positions.

2.3 Non-holonomic constraints

If the constraint sub-bundle C(M) is non-holonomic then this latter situation is no longer true. In general,
the number of degrees of freedom will be strictly less than the dimension of the configuration space.

Any adapted local frame field to such a C(M) will have to satisfy:

cαij 
= 0 for some i, j = 1, . . . N, α = N + 1, . . .m. (2.24)

Since the complementary linear subspace to CxU that is spanned by the eα, α = N + 1, . . .m is
somewhat irrelevant, a useful choice of anholonomic local frame field for the purposes of non-holonomic
mechanical constraints is given the semi-holonomic local frame fields. For such local frame fields, the eα

all commute amongst themselves:

[eα, eβ ] = 0 for all α, β = N + 1, . . .m. (2.25)

This makes:

ciαβ = cγαβ = 0 for all i = 1, . . . N, α, β, γ = N + 1, . . .m. (2.26)

Hence, it is no loss of generality to set:

eα = ∂α (2.27)

for some coordinate system (U, xμ).
If one considers linear constraints of the Chaplygin form:

vi arbitrary, vα = aα
i v

i, (2.28)

relative to a natural local frame field, then this suggests that one should define:

θi = dxi, θα = −aα
i dx

i + dxα, (2.29)
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in order to make the constraint take the form:

θα(v) = 0. (2.30)

From (2.29), one can then express the matrix Ãμ
ν that appears in (2.20) in block form:

Ãμ
ν =

⎡
⎣ δi

j 0

−aα
j δα

β

⎤
⎦ . (2.31)

The inverse of this matrix, which is obtained by simply solving (2.29) for the dxi and dxα, is:

Aμ
ν =

⎡
⎣ δi

j 0

aα
j δα

β

⎤
⎦ , (2.32)

which is of the same block-matrix form.
Furthermore, if one multiplies Aμ

ν by another matrix Bμ
ν that has the same block-matrix form, except

that the non-trivial sub-matrix is bαj , then the result is:

[AB]μν =

⎡
⎣ δi

j 0

aα
j + bαj δα

β

⎤
⎦ . (2.33)

Therefore, the set of all matrices of the form (2.32) represents a Lie group that is isomorphic to the group
of translations of RN(m−N).

Using (2.32), we can express the local semi-holonomic frame field that is reciprocal to θμ in the form:

ei = ∂i + aα
i ∂α, eα = ∂α. (2.34)

In order to obtain the structure functions for this local frame field, we can use either (2.29) or (2.34); we
choose the former and obtain:

dθi = 0, (2.35a)

dθα = − 1
2 (aα

i,j + aα
i,βa

β
j − aα

j,i − aα
j,βa

β
i )θi ∧ θj . (2.35b)

The form of the expression in parentheses is particularly interesting, since it takes the form of an anti-
symmetrized total derivative of the matrix aα

i with respect to xi, under the assumptions that xα is a function
of xi and aα

i = ∂xα/∂xi .
From (2.35a,b), we obtain the non-zero structure functions by inspection:

cαij = aα
i,j + aα

i,βa
β
j − aα

j,i − aα
j,βa

β
i . (2.36)

2.4 Derivatives in anholonomic frames

Chaplygin, and later Neimark and Fufaev [3], attempted to give a variational formulation to mechanical
systems with non-holonomic constraints by the introduction of what they were calling “quasi-coordinates.”
One can see that what these quasi-coordinates actually represented were the path-dependent functions on
configuration space that one obtains by integrating 1-forms that are not exact along paths that lead away
from some chosen initial point. Hence, in the present context, it becomes clear that it is preferable to deal
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with the non-exact 1-forms directly, which is what we are doing by considering the 1-forms θα to be the
fundamental objects.

The point at which one needs to be especially careful is in the treatment of differentials and derivatives
when one is looking at their components with respect to anholonomic frame fields.

These considerations are not relevant when one is considering the differential df of a differential func-
tion f on M , since the local components of df transform from a holonomic local coframe field dxμ to an
anholonomic one θμ = Aμ

νdx
ν by way of the inverse of the transition functionA:

df = f,μdx
μ = f,νÃ

ν
μθ

μ = f̄,μθ
μ, (2.37)

which means that the transformation of components is simply:

f̄,μ = Ãν
μf,ν . (2.38)

However, when one goes to vector fields, covector fields, and higher-rank tensor fields, one must in-
evitably differentiate the transition function itself and this adds a contribution to the transformed compo-
nents. For instance, for a vector field:

X = Xμ∂μ = X̄μeμ = (XνÃμ
ν )eμ (2.39)

one finds that:

dX = dXμ ⊗ ∂μ = Xμ
,ν dxν ⊗ ∂μ (2.40)

relative to the holonomic frame field, while:

dX = dX̄μ ⊗ eμ + X̄μ ⊗ deμ (2.41)

relative to the anholonomic one, since the differential of the local frame field eμ does not, presumably,
vanish identically.

In order to evaluate this differential, one can express eμ in terms of ∂μ by means of the transition
function A and differentiate the components:

deμ = dAν
μ ⊗ ∂ν = dAλ

μÃ
ν
λ ⊗ eν ≡ −γν

μ ⊗ eν , (2.42)

in which we have introduced the local 1-form:

γν
μ = −dAλ

μÃ
ν
λ = −Aλ

μ,κÃ
ν
λdx

κ = −(Aλ
μ,ρÃ

ν
λÃ

ρ
κ)θκ ≡ γν

μκθ
κ, (2.43)

which can be regarded as either a matrix of local 1-forms or a local form that takes its values in the Lie
algebra gl(m) to the Lie group GL(m). In particular, we single out the definition in (2.43):

γν
μκ = Aλ

μ,ρÃ
ν
λÃ

ρ
κ, (2.44)

which then exhibits the fact that the anti-symmetrized components of γν
μ are the structure functions of the

local frame field that we are using.
We can now put (2.41) into the form:

dX = (dX̄μ + γμ
ν X̄

ν) ⊗ eμ ≡ ∇X̄μ ⊗ eμ, (2.45)

in which we have introduced the local covariant differential of the components X̄μ:

∇X̄μ = dX̄μ + γμ
ν X̄

ν . (2.46)
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Since any discussion of differentials of local frame fields must inevitably come around to the subject
of local connections, we point out that what we have defined above in the form of γν

μ is a local linear
connection that is canonically associated with the local frame field in question. One can think of it as the
“teleparallelism” connection that makes the local frame field parallel. In general, this canonical local linear
connection cannot be assembled into a global linear connection on the bundleGL(M) of linear frames on
M in a canonical way, unless M is itself parallelizable; i.e., unless M admits a global frame field. One
can, however, assemble such local connections into a global linear connection in a non-canonical way by
means of a partition of unity (see, Sternberg [6] on this).

When one introduces a more general linear connection ων
μ on the local frame field eμ, one cannot regard

ων
μeν as the definition of deμ, since that geometrical object is defined independently of the introduction of

any connection, and, as we have seen, implies only the introduction of the connection γν
μ. Rather, one must

substitute ων
μeν for deμ in the differentiation of any local tensor field.

In order to find the components of the differential of a local covector field:

α = αμ dxμ = ᾱμθ
μ = (ανA

ν
μ)θμ (2.47)

we see that the only essential differences between (2.47) and (2.39) are in the replacement of Ãμ
ν with Aμ

ν

and eμ with its reciprocal θμ. Under differentiation, this has the effect of replacing γν
μ with −γν

μ, since the

differentiation of Ãμ
κA

κ
ν = δμ

ν gives:

dÃμ
κA

κ
ν + Ãμ

κdA
κ
ν = 0. (2.48)

Hence, one finds that:

dα = dαμ ⊗ dxμ = ∇ᾱμ ⊗ θμ, (2.49)

in which we now have:

∇ᾱμ = dᾱμ − γν
μᾱν (2.50)

as the dual analogue of (2.46).
The extension of the above to higher-rank tensor fields is immediate and based on the fact that the

covariant derivative operator is a linear derivation with respect to the tensor product:

∇(T1 ⊗ T2) = ∇T1 ⊗ T2 + T1 ⊗∇T2, (2.51)

which extends to higher-rank tensor products by the associativity of the tensor product.
Since every local tensor field is a finite linear combination of tensor products of local vector fields and

local covector fields with coefficients in the ring of smooth local functions, one can obtain the covariant
derivative of any tensor field from the rules given above for functions, vector fields, and covector fields, by
using (2.51) repeatedly.

One can also anti-symmetrize the covariant derivative of k-forms – i.e., completely anti-symmetric
covariant tensor fields of rank k – to obtain and exterior covariant derivative:

∇∧φ = d∧φ+ γ∧φ. (2.52)

This notation is really a shorthand for the more elaborate expression that pertains to the components of
d∧φ. For instance, when φ = φμθ

μ is a local 1-form, the components of ∇∧φ with respect to θμ are most
easily obtained from exterior differentiation:

d∧φ = d∧φ∧μθ
μ + φμd∧θμ = 1

2 (∇∧φ)μνθ
μ ∧ θν . (2.53)
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When one uses the fact that:

d∧θμ = γμ
ν ∧ θν = − 1

2 (γμ
κν − γμ

νκ)θκ ∧ θν , (2.54)

along with:

d∧θμ = − 1
2 c

μ
κνθ

κ ∧ θν , (2.55)

which we derived above, we see that we indeed have:

cμκν = γμ
κν − γμ

νκ. (2.56)

This makes the components of the 2-form d∧φ with respect to the local coframe field θμ become:

(∇∧φ)μν = −(φμ, ν − φν, μ + cκμνφκ). (2.57)

Since the set of 2-forms:

Θμ = ∇∧θμ = d∧θμ + γμ
ν ∧ θν = 2d∧θμ (2.58)

represents the torsion of the local linear connection γμ
ν , one sees that this torsion is essentially defined by

the structure functions of the local coframe field that we are using. Had we used a connection 1-form with
vanishing torsion, such as the Levi-Civita connection for some metric on T (M), we would have found
that in a holonomic coframe field the exterior covariant derivative of any k-form agrees with the exterior
derivative.

For the sake of completeness, we also point out that the curvature 2-form of the connection 1-form γμ
ν

always vanishes:

Ωμ
ν ≡ ∇∧γμ

ν = d∧γμ
ν + γμ

κ ∧ γκ
ν = 0. (2.59)

This can be verified by direct calculation or by noting that the existence of a parallel local frame field is
possible only if the curvature of the connection vanishes.

When M is a Lie group manifold, and θμ is left-invariant the connection form γμ
ν that we defined is

the Maurer-Cartan form, and the Maurer-Cartan equations can be obtained from (2.59), since the structure
functions are constant. One can think of γμ

ν as a generalized “intrinsic angular velocity” of the local frame
field eμ or its reciprocal coframe field θμ, as this is how obtains the Coriolis corrections to the velocity
and the Coriolis and centripetal corrections to the accelerations when they are measured in a rotating – i.e.,
anholonomic – local frame field in rotational mechanics.

When θμ is adapted to a constraint sub-bundleC(M) in the semi-holonomic manner that we have been
describing all along, the only difference in the calculation of differential components amounts to the use
of ordinary differentials and derivatives for the holonomic frame members and covariant differentials and
derivatives for the anholonomic ones. For instance, if:

β = βi dxi + βαθ
α, (2.60)

then:

dβ = dβi ⊗ dxi + ∇βαθ
α. (2.61)

3 Linearly constrained variations

Now that we have done the geometrical overhead of calculating the components of differentials of vari-
ous geometric objects in anholonomic local frame fields, the inclusion of non-holonomic constraints into
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the formulation of variational problems in mechanics becomes quite straightforward. The two essential
modifications are:

1. Defining the basic variational problem in terms of the first variation functional, instead of the usual
action functional.

2. Expressing the mechanical variables in terms of an adapted anholonomic local frame, which then
implies the replacement of ordinary differentials with covariant ones.

We begin by discussing the first point in the next subsection and then include the constraints in the
following one.

3.1 Variational calculus in terms of the first variation functional

As discussed in a previous paper by the author [1], it is not necessary to define an action functional in order
to obtain the differential equations of an extremal. We briefly summarize the key points of the previous
argument.

Suppose that the objects being varied are differentiable functions x : O → M , where O is an r-
dimensional orientable differentiable manifold with boundary and M is an m-dimensional differentiable
manifold. The manifold O will play the role of a parameter manifold for describing the objects in M and
we will usually denote local coordinates for it by ta, a = 1, . . . r; for simplicity, one can think of it as a
compact subset of Rr. M will represent the configuration manifold of the motion in question.

A finite variation of x is a differentiable homotopy, i.e., a differentiable map F : [0, 1] × O → M ,
(s, t) �→ F (s, t) such that F (0, t) = x(t). Although one could define F (1, t) : O → M to be a finite de-
formation of the object, since the calculus of variations is only concerned with infinitesimal deformations,
one usually does not specify what the final object F(1, t) represents. By partial differentiation of F (s, t),
one obtains a vector field on x:

δx(t) =
∂F (s, t)
∂s

∣∣∣∣
s=0

(3.1)

that one calls the variation of x that is associated with the finite variation F . More generally, one regards
any vector field along x as a variation of x, although there is clearly no unique finite variation that extends
it, in general.

If (U, xμ) is a local coordinate system on U ⊂ M then the components of δx(t) with respect to the
natural frame field will be denoted by δxμ(t); that is, they are functions of t, not functions of the corre-
sponding point x(t) in M . Similarly, if eμ is an anholonomic local frame field on U then the components
of δx(t) will be denoted byδx̄μ(t).

In the conventional approach to the calculus of variations [2, 7, 8], one defines a “performance index”
on the objects x in the form of an action functional. This takes the form of the association of a number S[x]
to each x that one obtains by integrating a Lagrangian density function L(ta, xμ, xμ

,a) over the parameter
manifold O:

S[x] =
∫
O
L(ta, xμ(t), xμ

,a(t))dt1 · · · dtr (3.2)

The classic variational problem then takes the form of finding the x for which this action function is
minimized – or perhaps maximized. Since this is an infinite-dimensional analogue of the minimization for
differentiable functions of a finite number of real variables, one proceeds analogously by first looking for
the “critical points” of the functional; that is, “points” x of the “infinite-dimensional manifold” of all such
objects. One then refers to such critical objects as extrema of the action functional. The reason that we
are using quotation marks in the preceding remarks is because to actually make those terms rigorous is
possible, but not always the most useful approach to the calculus of variations.
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When one applies a variation δx to x the effect on S[x] defines the first variation functional, which, for
each x, associates the variation δx with the number:

δS|x[δx] =
∫
O

(
∂L
∂xμ

δxμ +
∂L
∂xμ

a

∂(δxμ)
∂ta

)
dt1 · · ·dtr. (3.3)

This functional, which is linear in the variations δx, then plays the role of the “differential” of the functional
S[x] at the “point” x, and an extremum of S[x] becomes a zero of δS|x[δx], at least when one restricts δx
to some subspace that is defined by the behavior of δx on the boundary. However, in order to guarantee that
an extremum is actually a minimum, one must move on to the second variation; however, that is beyond
the scope of the immediate investigation.

In order to illuminate the most reasonable constraints on the boundary values of δx, one performs the
usual integration by parts to express δS|x[δx] as:

δS|x[δx] =
∫
O

δL
δxμ

δxμ dt1 · · · dtr +
∫

∂O

(
∂L
∂xμ

a
δxμ

)
naV∂O, (3.4)

in which:

δL
δxμ

=
∂L
∂xμ

− ∂

∂ta
∂L
∂xμ

a
(3.5)

is the variational derivative of L with respect to δx and V∂O represents the volume element on ∂O, while
na represents its unit normal 5.

The two basic boundary conditions in δx are:
1. Fixed boundary: δx(t) = 0 then t ∈ O.

2. Free boundary: δx(t) must then satisfy the transversality condition:

∂L
∂xμ

a
δxμ = 0 for all a = 1, . . ., r (3.6)

in order for the boundary contribution to the first variation to vanish.
One obtains the differential equations of the extremal in the form:

δL
δxμ

= 0, (3.7)

which are referred to as the Euler-Lagrange equations.
Now, one can just as well start the above argument with the first variation functional, suitably general-

ized. Instead of posing the variational problem as that of minimizing the action functional S[x], one simply
poses it is the problem of finding the zeroes of the first variation functional, with the same constraints of
δx.

Let us define the first variation function more generally by:

δS|x[δx] =
∫
O

(
Fμδx

μ + Πa
μ

∂(δxμ)
∂ta

)
dt1 · · ·dtr, (3.8)

in which Fμ = Fμ(ta, xν , xν
a) represent the components of a generalized force density and the Πa

μ =
Πa

μ(tb, xν , xν
b ) represent the components of a generalized momentum density, which can also represent

infinitesimal stresses. By the same integration by parts, one obtains:

δS|x[δx] =
∫
O

(
Fμ − ∂Πa

μ

∂ta

)
δxμdt1 · · · dtr +

∫
∂O

(
Πa

μδx
μ
)
naV∂O, (3.9)

5 With respect to – say – the metric that is induced from the Euclidian metric on Rr ; however, the boundary integrand can be
defined in the absence of a metric.
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If δx(t) satisfies the previous boundary conditions that make the second integral vanish then the zeroes
of δS|x[δx] are the x for which:

(
Fμ − ∂Πa

μ

∂ta

)
δxμ = 0 (3.10)

for all variations δx(t) that satisfy those constraints.
Now, (3.10) is simply a generalization of d’Alembert’s principle, which amounts to saying that the

virtual work δW done by the virtual displacement δxmust vanish in any case, if one regards the divergence
in the parenthetical expression as a generalization of the “inertial force” associated with the motion of x.
Actually, depending upon the nature of O these equations can just as well be regarded as equations of static
equilibrium if one thinks of Fμ as the body forces and Πa

μ as the infinitesimal stresses.
The extremal equations that follow from (3.10) are then:

Fμ =
∂Πa

μ

∂ta
, (3.11)

which then generalize Newton’s equations of motion, as well as the equations of elastostatics and elasto-
dynamics.

The path from first variation functionals back to action functionals is defined only in the event that there
is a function L = L(ta, xμ, xμ

a) such that:

Fμ =
∂L
∂xμ

,Πa
μ =

∂L
∂xμ

a
. (3.12)

As we shall see, this is the requirement a certain 1-form be exact. Hence, the first variation can be defined
in mechanical situation in which that 1-form is not exact, such as for forces that are not conservative.

In order to give the foregoing discussion a more modern geometrical context (see, e.g., Saunders [9]),
we start by observing that the space whose coordinates are (ta, xμ, xμ

a) is the manifold J1(O; M) of 1-jets
of local differentiable functions from O to M , where the 1-jet of x : O → M at t ∈ O is the equivalence
class of all differentiable functions that are defined in some neighborhood of t – and not necessarily the
same neighborhood in every case – such that they all take t to x(t) and all have the same differential at x
as dx|t; one denotes this equivalence class by j1t x.

The manifold J1(O; M) admits three canonical projections:

Source projection: J1(O; M) → O, j1i x �→ t,

Target projection: J1(O; M) →M , j1i x �→ x,

Contact projection: J1(O; M) → O ×M , j1i x �→ (t, x).

The first two of these are not fibrations, but only define a fibered manifold structure on J1(O; M). That
is, although the projections are submersions – so the rank of the differential map is maximal at every point
– they do not satisfy the local triviality requirement that is expected of a fiber bundle.

The third projection defines an affine bundle structure over O ×M the affine space over each (t, x) ∈
O ×M takes the form of T ∗

t O ⊗ TxM , since any differential map dx|t from TtO to Tx(t)M belongs to
that space. The reason that one does not regard it as a vector bundle is that under a change of coordinates
on both O and M the resulting change in the differential matrix xμ

,a is not linear, but affine, since, under
the diffeomorphic replacement of ta with t̄a(tb) and xμ with x̄μ(ta, xj), which is a diffeomorphism for
each value of ta, one must take a total derivative and obtain:

∂x̄μ

∂t̄a
=

(
∂x̄i

∂tb
+
∂x̄i

∂xj

∂xj

∂tb

)
∂tb

∂t̄a
, (3.13)
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which then generalizes to the transformation rule for the xi
a coordinates:

x̄i
a =

(
∂x̄i

∂tb
+
∂x̄i

∂xj
xj

b

)
∂tb

∂t̄a
. (3.14)

The reason that we are calling the third projection the “contact” projection is that the elements of the
fibers, being linear maps from TtO to TxM , associate tangent subspaces in each TxM with each pair (t, x),
in the form of the image of TtO under the linear map. One refers to such a subspace as a contact element
and the geometry of jets is sometimes referred to as contact geometry, for that reason. In fact, the term
“contact geometry” preceded the term “jet manifold” historically6, and served as the natural geometry for
wave mechanics, at least in the geometrical optics approximation.

Of particular interest to us are the sections of the source projection, which are differentiable maps
s : O → J1(O; M) that project back to the identity map on O. That is, the 1-jet s(t) always belongs to
the fiber over t. In local coordinates on J1(O; M) a section of the source projection will look like:

s(t) = (ta, xμ(t), xμ
a (t)). (3.15)

Notice that we are not requiring that the coordinates xμ
a(t) be obtained by differentiating the coordinates

xμ(t) with respect to the ta. This is because not all sections of the source projection take that form, but
only the integrable ones. One then says that such an s is the 1-jet prolongation j1x of a differentiable map
x : O →M , which one denotes by:

s(t) = j1x(t) = (ta, xμ(t), xμ
,a(t)). (3.16)

We can now rephrase the definition of the action functional by making L a differentiable function
J1(O; M) and pulling it back to a differentiable function on O by choosing an x and prolonging it:

S[x] =
∫
O
L(j1x)V , (3.17)

in which V is the volume element on O.
In order to define the first variation functional one must prolong the variation δx(t), as well as the

map x. This process is process is similar, in the sense that one adds components that are obtained by
differentiation. It is simplest to describe in local coordinates on J1(O; M). If δx(t) = δxμ(t)∂μ is a local
vector field on x(t) then its 1-jet prolongation is a local vector field on j1x that looks like:

δ1x(t) = δxμ(t)
∂

∂xμ
+
∂(δxμ)
∂ta

(t)
∂

∂xμ
a
. (3.18)

Although this definition can be globalized, since we shall not use the global expression, we simply refer
the curious to Saunders [9].

Hence, we can express the first variation functional in the form:

δS|x[δx] =
∫
O

[j1x∗φ(δ1x)]V , (3.19)

if we introduce the fundamental 1-form on J1(O;M):

φ = Fμdx
μ + Πa

μdx
μ
a . (3.20)

6 For some classical discussion of contact geometry and wave propagation, one can peruse Vessiot [10] or Hölder [11], and for
a more modern perspective, see Arnol’d [12].
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When this 1-form is exact there will be a smooth function L on J1(O; M) such that φ = dL. This is,
in fact, the case when and only when δS|x[δx] is obtained from an action functional. Hence, the 1-form φ
is the fundamental mechanical definition that replaces the definition of a Lagrangian for the system.

If one regards the points of J1(O; M) as kinematical states of the mechanical system in question,
while the 1-forms on J1(O; M) of the form (3.20) represent dynamical states then the expressions for the
components of φ as functions of the kinematical states then represent mechanical constitutive laws for the
system.

After integrating by parts and taking the boundary conditions on δx into account, the first variation
functional takes the form:

δS|x[δx] =
∫
O

[j1x∗D∗φ(δx)]V , (3.21)

in which we have introduced the 1-form:

D∗φ =
(
Fμ − ∂Πa

μ

∂ta

)
dxμ. (3.22)

The operator D∗ that takes φ to D∗φ then replaces the variational derivative when there is no Lagrangian
density. The extremal equations are then expressed simply as:

D∗φ = 0. (3.23)

This operator is quite subtle in its manifestation, since it amounts to an adjoint (modulo boundary terms)
to the Spencer operator D that acts on sections of the source projection. If s(t) is such a section and has
the local form that we chose above then:

Ds =
(
xμ

a − xμ
,a

)
dta ⊗ ∂μ. (3.24)

Hence,Ds vanishes iff s is integrable. This means that the way that one obtains extremal equations from the
first variation functional is fundamentally related to the integrability of sections and variations. Although
we shall not belabor the details of the integrability issue here, one might confer some of the author’s
comments on the subject in [13] and the references cited therein.

3.2 Inclusion of non-holonomic constraints

We already imposed one constraint on the vector space of allowable variations δx(t) along a submanifold
x(t) in the form of the boundary constraint that is defined by the type of variational problem. Now, let us
impose further constraints on allowable variations by requiring that they take their values in some constraint
sub-bundle C(M) in T (M); hence, we are imposing linear constraints.

If C(M) is integrable, which corresponds to holonomic linear constraints, then there is a foliation of
M by leaves L that have C(M) for their tangent bundle. Since the dimension of L equals the dimension
of any fiber of C(M) – i.e., the number of degrees of freedom in the system – any allowable submanifold
x : O → M must lie within some such leaf. Hence, in the holonomic case it is sufficient to reduce the
definition of the variational problem to that of finding extremal submanifolds in the various leaves.

That is, if the constraints are holonomic then there will be a local coordinate system (U, xμ) on U ⊂M
that is adapted to C(M) such that the constraints take the form:

δxα = 0, α = N + 1, . . .m. (3.25)

The effect of this on the extremal equations is to reduce the integrand of the first variation functional to:

D∗fiδx
i = (Fi − ∂aΠa

i )δxi. (3.26)
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The constrained extremal equations then become simply:

Fi − ∂aΠa
i = 0 , i = 1, . . . , N . (3.27)

Furthermore, the constraint implies that the extremal solution x will involve only the coordinates xi, i =
1, . . .N that lie within a particular leaf of the constraint foliation. Hence, there has been a reduction of
dimension in the extremal problem from m to N .

If C(M) is not integrable, which corresponds to non-holonomic linear constraints, then this situation is
no longer true. However, one can simplify the situation by representing the fibers of C(M) locally using
an adapted anholonomic local frame field eμ on U ⊂ M that makes the vectors X of C(U) look like
X = X iei or θα(X) = Xα = 0, α = N + 1, . . .m.

In order to include the constraints into the variational problem, all that we really need to do is to express
the components of our various geometric objects in terms of this anholonomic local frame field and its
reciprocal coframe field, whereas so far we have only used holonomic frame fields.

First, we must address the change in the derivative coordinates under the change of local frame field on
M . If eμ = Aν

μ∂ν and θμ = Ãμ
νdx

ν then one has:

xμ
a(dta ⊗ ∂μ) = x̄μ

a(dta ⊗ eμ), (3.28)

which makes:

x̄μ
a = Ãμ

νx
ν
a. (3.29)

This is not to be confused with the coordinate transformation of xμ
a that follows from replacing ta with t̄b

and xi with x̄i(t, x), since we are not actually altering the basic coordinates.
By differentiation, one then finds:

dxi
a = Aμ

ν∇x̄ν
a. (3.30)

Dually, one finds for the transformation of the local vector fields ∂/∂xi
a that in order to preserve the

reciprocal relationship between them and dxi
a one must replace them with:

ea
μ = Aν

μ

∂

∂xν
a

, (3.31)

which then makes:

∇x̄μ
a(eb

ν) = δμ
ν δ

a
b . (3.32)

When one combines this with dxi = Aμ
ν θ

ν , one finds that the fundamental 1-form φ becomes:

φ = F̄μθ
μ + Π̄a

μ∇x̄μ
a =

(
Ãν

μF̄νdx
μ + Ãν

μΠ̄a
νdx

μ
a

)
= Fμdx

μ + Πa
μdx

μ
a . (3.33)

Thus:

F̄μ = Aν
μFν , Π̄a

μ = Aν
μΠa

v . (3.34)

One must, of course, notice that the effect of introducing covariant differentials in place of ordinary ones
is to allow one to use the simpler rules for the transformation of components from holonomic to anholo-
nomic frames by absorbing the inhomogeneous part of the transformation into the covariant differential.

Dually, one finds that the 1-jet prolongation of δx becomes:

δ1x = δx̄μeμ + (∇aδx̄
μ)ea

μ, (3.35)
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which gives:

δx̄μ = Ãμ
νδx

ν , ∇aδx̄
μ = Ãμ

ν∂aδx
ν . (3.36)

Hence, the virtual work integrand in the first variation functional becomes:

φ(δ1x) = F̄μδx̄
μ + Π̄a

μ∇aδx̄
μ, (3.37)

which, when one takes into account the product rule for the covariant derivative ∇a, becomes:

φ(δ1x) = D∗φ(δx̄) + ∇a(Π̄a
μδx̄

μ), (3.38)

in which we now have:

D∗φ =
(
F̄μ −∇aΠ̄a

μ

)
θμ. (3.39)

Since the second term on the right-hand side of (3.38) becomes a boundary term under integration, the
extremal equations now take the form of:

(
F̄μ −∇aΠ̄a

μ

)
δx̄μ = 0 (3.40)

for every variation δx that is consistent with the constraints that were imposed by C(M). Of course, the
advantage of using anholonomic local frame fields and covariant differentiation is that all one needs to do
is notice that in such a local frame field the constraint on δx is simply that δx̄α = 0 for α = N + 1, . . .m.
Since this leaves the corresponding parenthetical expression (3.40) arbitrary, the ultimate effect of imposing
non-holonomic constraints is to give the extremal equations in the form:

0 = D∗φi = F̄i −∇aΠ̄a
i , i = 1, . . .N. (3.41)

The difference between this result and the reduction of dimension that would follow from a holonomic
constraint is in the fact that since θi, i = 1, . . ., N do not represent coordinate differentials, the integration
of (3.41) to obtain a constrained extremal x must still involve an x whose local coordinates in M involve
all m of the unconstrained coordinates xμ, and not just the first N of them, namely, the xi.

4 Example: disc rolling on a plane

A simple example of a mechanical system that is subject to ideal non-holonomic constraints is given by a
vertical disc, such as an ideal tire, rolling without slipping on a plane in the absence of dissipative forces.
We illustrate this situation in Fig. 1 in order to define the configuration manifold M of the system.

In this situation, our parameter manifold will be simply O = [0, 1], since we will be concerned with
1-jets of curve segments; i.e., point mechanics. The configuration manifold is four-dimensional and takes
the form of M = T 2 × R2, whose local coordinates are given by (ψ1, ψ2, x1, x2); T 2 = S1 × S1 is the
two-dimensional torus. A differentiable curve in M then takes the form of

x(t) = (ψ1(t), ψ2(t), x1(t), x2(t)). (4.1)

Hence, in the natural frame field that goes with such a coordinate system the velocity vector field along
x(t) takes the form:

v(t) = ωi ∂

∂ψi
+ vα ∂

∂xα
,

(
ωi =

dψi

dt
, vα =

dxα

dt

)
. (4.2)

The jet manifold J1(O; M) then has local coordinates of the form (t, ψi, xα, ωi, vα).
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ψ1

x2x1 α

(x1(t), x2(t)) 

RO 

ψ 2

Fig. 1 An ideal vertical disc rolling without slipping on a plane.

In order to describe the non-holonomic constraint, it is simplest to first transform to polar coordinates
in the x1x2-plane. With r defined to be [(x1)2 + (x2)2]1/2, one has:

x1 = r cosα, x2 = r sinα. (4.3)

Differentiation of these equations, under the assumption that all variables are functions of t, gives:

ẋ1 = ṙ cosα− rα̇ sinα, ẋ2 = ṙ sinα+ rα̇ cosα. (4.4)

One then derives the moving coframe {dr, rdα} for the description of velocity vectors from:
[
ẋ1

ẋ2

]
= R(−α)

[
ṙ

rα̇

]
, R(−α) =

[
cosα − sinα
sinα cosα

]
. (4.5)

However, the moving frame {ε1, ε2} that we ultimately want is obtained by a further rotation in the
x1x2-plane through ψ2 that brings the ε1 vector parallel to the plane of the disc while the ε2 vector is
perpendicular to it in the right-hand sense. Combining the two rotations gives:

εα = Rβ
α(−α− ψ2)∂β , ξα = Rα

β (α+ ψ2)dxβ . (4.6)

The constraint of rolling without slipping then takes the simple form:

ξ1(v) = v|| = Rω1, ξ2(v) = v⊥ = 0. (4.7)

Hence, we can define an adapted non-holonomic local coframe field {dψi, θα}, in which:

θα ≡ ξα − aα
j dψ

j , aα
i =

[
R 0
0 0

]
(4.8)

defines the non-holonomic constraint by way of

θα(v) = vα = 0. (4.9)

We then combine all three frame transitions into:⎡
⎢⎢⎢⎢⎢⎣

dψ1

dψ2

θ1

θ2

⎤
⎥⎥⎥⎥⎥⎦

= Aμ
ν

⎡
⎢⎢⎢⎢⎢⎣

dψ1

dψ2

dx1

dx2

⎤
⎥⎥⎥⎥⎥⎦
, (4.10)
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with:

Aμ
ν =

⎡
⎣ δi

j 0

−aα
j Rα

β (α+ ψ2)

⎤
⎦ , Ãμ

ν =

⎡
⎣ δi

j 0

Rα
β (−α− ψ2)aβ

i Rα
β (−α− ψ2)

⎤
⎦ . (4.10)

Note that this means our non-holonomic frame field is not actually semi-holonomic, in this case.
We then find that:

dAμ
ν =

⎡
⎣ 0 0

0 dRα
β (α + ψ2)

⎤
⎦ , (4.11)

so:

γμ
ν =

⎡
⎣ 0 0

dRα
βa

β
j −dRα

γ R̃
γ
β

⎤
⎦ . (4.12)

We then obtain the specific components of the desired connection in the form:

γi
j = γi

α = 0, γα
j =

[
0 0
R 0

]
(dα + dψ2), γα

β =

[
0 −1
1 0

]
(dα+ dψ2). (4.13)

We then have to express the differential dα in terms of the coframe {dψ1, dψ2, θ1, θ2}. By tedious
computation, we obtain:

dα =
1
r
R̃2

β(ψ2)(aβ
i dψ

i + θβ) =
R

r
sinψ2dψ1 +

1
r

sinψ2θ1 +
1
r

cosψ2θ2, (4.14)

which can then be substituted into (4.13).
The way that we obtain the constrained equations of motion then begins with the specification of the

fundamental 1-form φ in the holonomic coframe:

φ = τidψ
i + Fαdx

α + Lidω
i + pαdv

α. (4.15)

Under the transition to the non-holonomic coframe {dψi, θα}, this will take the form:

φ = τ̄idψ
i + F̄αθ

α + L̄idω
i + p̄α∇v̄α, (4.16)

in which the v̄α, α = 1, 2 are the last two components of the velocity vector in the eμ frame. Hence:

∇v̄α = Aα
μdv

μ = Aα
i dω

i +Aα
βdv

β . (4.17)

We then compute dvα from the inverse transformation:

dvα = Ãα
μ∇vμ = Ãα

j dω
j + Ãα

β∇v̄β . (4.18)

Substituting this into (4.15), along with the expression for θα that one obtains from (4.10), along with
some calculation, gives the transformation of the components:

τ̄i = τi + Ãα
i Fα, F̄α = Ãβ

αFβ , L̄i = Li + Ãa
i pα, p̄α = Ãβ

αpβ . (4.19)
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One immediately recognizes that these equations become much easier to work with if one uses the
second and fourth of them in the first and second of them, respectively:

τ̄i = (τ1 + F̄1R, τ2), L̄i = (L1 + p̄1R,L2). (4.19)

These expressions now have an immediate physical meaning: The total torque about the transverse axis
of the disc consists of the applied torque plus the moment of the tangential applied force that acts on the
center of mass, while the total angular momentum about that axis consists of both the “intrinsic” part:

L1 = I1ω1, (4.20)

in which I1 is the moment of inertia about that axis, plus an “orbital” part that comes from the moment of
the momentum of the center of mass:

p̄1R = mv̄1 = mRω1, (4.21)

in which m is the mass of the disc; we have implicitly lowered the velocity indices with the Euclidian
metric.

The torque about the vertical axis of the disc, as well as its angular momentum, remain unaffected by
the transformation:

τ̄2 = τ2, L̄2 = L2 = I2ω2, (4.22)

in which I2 is the moment of inertia about the vertical axis.
The general form of the equations of motion in this anholonomic coframe is:

F̄μ = ∇tp̄μ =
dp̄μ

dt
− cνμ(v)p̄ν , (4.23)

however, the constraints imply that there no motion in the transverse direction, so these equations reduce
to:

τ̄i =
dL̄i

dt
− cji (v)Lj − cαi (v)p̄α =

dL̄i

dt
, v̄α = 0. (4.24)

With the aforementioned substitutions, the first set of equations becomes:

dω1

dt
=
τ1(t) +RF̄1(t)
I1 +mR2

,
dω2

dt
=

1
I2
τ2(t). (4.25)

As long as the applied force and torque are known as functions of time, the initial-value problem for these
equations can be integrated by quadratures, in principle. Similarly, one can integrate the expressions for
ωi(t) to obtain the angles ψi(t).

One can then use the expressions for ωi(t) in the second set of equations in (4.24) to obtain dxi/dt
by quadratures, as well, by taking into account the rolling-without-slipping constraint in order to go from
angular velocity to linear velocity.

5 Discussion

So far, we have seen that by starting with the first-variation functional one can make a natural and straight-
forward variational formulation of mechanical systems that are either non-conservative or subject to non-
holonomic constraints. The picture that emerges is that starting with an action functional is only advisable
when the fundamental 1-form that we defined above is an exact form, which implies that both the general-
ized force term and the generalized momentum term must be exact.
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Although one usually assumes that the generalized momentum is associated with a generalized kinetic
energy in some way, this tends to be a consequence of starting with notions that are rooted in point me-
chanics, rather than continuum mechanics. Hence, the possibility that a momentum 1-form might have –
say – a non-vanishing exterior derivative as a function of velocity seems remote, since that suggests that
the generalized mass density would have to a function of velocity, as well; of course, that makes perfect
sense in relativistic dynamics, of one considers relative mass densities. Thus, it might be worthwhile to
examine the role of inexactness in the generalized momentum 1-form.

Another aspect of the present formalism that seems to promise considerable applications is in the for-
mulation of open mechanical systems. In such systems, there is some well-defined decomposition of the
system into a “internal” and “external” sub-system, although the external sub-system might very well take
the form of unmodeled phenomena at the atomic-to-subatomic level. Instead of conservation laws and equi-
librium, one must consider balance laws and perturbations about equilibrium, which naturally suggests the
issue of the stability of extrema.

In order to account for the issue of stability of extrema, one must re-examine the second variation.
Clearly, one cannot compute the usual Hessian in the absence of a Lagrangian, but one can use more
general methods for examining the local behavior in the neighborhood of zeroes of 1-forms.

The subject of open systems seems to have considerable application to the variational methods of quan-
tum physics. For instance, a recurring theme in most discussions of the Feynman path integral is the fact
that non-extremal paths contribute to the total transition probability from one state to another. Furthermore,
one always thinks of the mechanics of quantum systems as being non-trivially affected by external influ-
ences in the form of either measurements performed on the system or the unmodeled internal states, such
as the creation and annhilation of virtual matter-antimatter pairs during the propagation of waves, whether
in the form of photons or matter waves.
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