On the equations of electromagnetism

Note $\left({ }^{1}\right)$ by F. GONSETH and G. JUVET
Communicated by J. Hadamard

Translated by D. H. Delphenich (${ }^{\dagger}$)

In order to afford more clarity to the attempt that was made to reduce the theory of the electromagnetic field to relativity in five dimensions $\left({ }^{2}\right)$, it seems good for us to specify that the usual expression for the ponderomotive force according to Lorentz leads to a theory of that type.

In the Minkowski universe E_{4}, let ξ^{i} be the components of the world-impulse of the moving point considered, let m is its rest mass, and let e be its charge. Furthermore, let u^{i} be the components of its world-velocity, let $F^{i k}$ be those of the tensor that represents the electromagnetic field, let s^{i} be those of the current, and finally, let p^{i} be those of the force. One will have:

$$
d \xi^{i}=p^{i} d s, \quad \xi^{i}=m u^{i},
$$

and
(i and $k=0,1,2,3$)

$$
p^{i}=-F^{i k} s_{k}, \quad s^{k}=e u^{k},
$$

and consequently:

$$
\begin{equation*}
d \xi^{i}=-\frac{e}{m} F_{\cdot, k}^{i \cdot} \xi^{k} d s \tag{1}
\end{equation*}
$$

These equations cannot be interpreted as the Levi-Civita transport of the impulse vector Ξ in E_{4}, but these can be interpreted in that way in a space E_{5} in which one sets the fifth coordinate x^{4} equal to:

$$
\begin{equation*}
d x^{4}=\frac{e}{m} d s \tag{2}
\end{equation*}
$$

The components of the corresponding affine connection will then be equal to either 0 or $F_{,, k}^{i \cdot}$. In the space of general relativity, one will have:

[^0]\[

$$
\begin{equation*}
m\left(\frac{d^{2} x^{i}}{d s^{2}}+\Gamma_{k l}^{i} \frac{d x^{k}}{d s} \frac{d x^{i}}{d s}\right)=p^{i} \quad(i=0,1,2,3) \tag{3}
\end{equation*}
$$

\]

and here again, one has:

$$
p_{i}=-F_{i k} s^{k}, \quad F_{i k}=\frac{\partial \varphi_{i}}{\partial x_{k}}-\frac{\partial \varphi_{k}}{\partial x_{i}} .
$$

Equations (3) can then be written:

$$
\begin{equation*}
d \xi^{i}+\Gamma_{k l}^{i} \xi^{k} d x^{l}+\frac{e}{m} F_{\cdot k}^{l} \xi^{k} d s=0 \tag{4}
\end{equation*}
$$

moreover, or rather, upon again setting:

$$
\begin{equation*}
d x^{4}=\frac{e}{m} d s \tag{2}
\end{equation*}
$$

and then taking the components $G_{\alpha \beta}^{\gamma}$ of the affine connection in the space E_{5} of $\left(x_{0}, x_{1}, x_{2}\right.$, x_{3}, x_{4}) to be:

$$
\left\{\begin{array}{l}
G_{i}^{l k}=\Gamma_{i k}^{l}, \tag{5}\\
G_{4 i}^{l}=G_{i 4}^{l}=F_{\cdot i}^{l}, \\
G_{44}^{i}=G_{4 k}^{4}=G_{i k}^{4}=G_{44}^{4},
\end{array}\right.
$$

one will have:

$$
\begin{equation*}
d \xi^{i}+G_{\alpha \beta}^{i} \xi^{\alpha} d x^{\beta}=0 \quad(i=0,1,2,3) \tag{6}
\end{equation*}
$$

in which the Greek indices takes the values $(0,1,2,3,4)$, while the Latin indices take only the values $(0,1,2,3)$. The fifth equation:

$$
d \xi^{4}+G_{\alpha \beta}^{4} \xi^{\alpha} d x^{\beta}=0
$$

will be satisfied identically when one assumes the invariability of charge, because:

$$
\xi^{4}=m \frac{d x^{4}}{d s}=e
$$

The object of this note is to formulate a theory of relativity in five dimensions whose equations provide the laws of gravitational field, the electromagnetic field, the laws of motion of a charged material point, and the Schrödinger wave equation. We will then have a context that will include the laws of gravitation and electromagnetism, and in which it will be possible to also include quantum theory.

The preceding considerations, and on the other hand, the fact that we do not know of any phenomena in which a variation of the charge occurs $\left({ }^{1}\right)$ oblige us to consider only changes of variable of the form:

$$
\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \quad \text { into } \quad\left(\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}\right),
$$

such that:

$$
\begin{cases}\left(\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right) & \text { are functions of only }\left(x_{0}, x_{1}, x_{2}, x_{3}\right), \tag{7}\\ \text { and } \bar{x}_{4} & \text { is a function of only } x_{4} .\end{cases}
$$

Moreover, we shall assume that the functions that enter into our argument do not depend upon the variable x^{4}. Under those conditions, equations (5) will be invariant under the changes of variable (7). If one makes a transformation (7) then one will have:

$$
\begin{gathered}
\bar{G}_{i k}^{l}=\bar{\Gamma}_{i k}^{l}, \quad \bar{G}_{4 i}^{l}=\bar{G}_{i 4}^{l}=\bar{F}_{. i}^{l}, \\
\bar{G}_{i k}^{k}=\bar{G}_{4 k}^{4}=\bar{G}_{44}^{i}=\bar{G}_{44}^{4}=0
\end{gathered}
$$

for the components of the affine connection in the new coordinate system.
In order to summarize this note, we shall say that equation (6) expresses the idea that:
If one attaches a charged material point that moves in an electromagnetic field and a gravitational field to the vector whose components five-dimensional space are:

$$
\begin{equation*}
m \frac{d x^{0}}{d s}, \quad m \frac{d x^{1}}{d s}, \quad m \frac{d x^{2}}{d s}, \quad m \frac{d x^{3}}{d s}, \quad e \tag{8}
\end{equation*}
$$

then that vector will displace parallel to itself.
That will permit one to define inertial systems for both gravitation and electromagnetism at the same time. They will be the systems that are geodesics in E_{5} through the point $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$ in the sense Weyl $\left({ }^{2}\right)$.

[^1]"Sur la métrique de l'espace à 5 dimensions de l'électromagnetique and de la gravitation," C. R. Acad. Sci. Paris 185 (1927), 412-413.

On the metric of the five-dimensional space of electromagnetism and gravitation

Note $\left({ }^{1}\right)$ by F. GONSETH and G. JUVET
Communicated by Hadamard

Translated by D. H. Delphenich

The components of the affine connection in the five-dimensional universe E_{5} that we wrote out in a previous note $\left({ }^{2}\right)$ correspond to a metric that we shall specify first of all. In that E_{5}, the coordinates $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ are once more separate from x_{4}, and we will have, in particular, that:

$$
G_{i k}^{l}=\Gamma_{i k}^{l}
$$

in which the $\Gamma_{i k}^{l}$ are the Christoffel indices of the second kind for the $d s^{2}$ on the E_{4} of all $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$. Under those conditions, the law of transformation of the $G_{i k}^{l}$ in E_{5} demands simply that the $\Gamma_{i k}^{l}$ must transform like the components of an affine connection, and the $F_{\cdot k}^{i}$, like those of a tensor in E_{4}.

The connection thus-determined possesses a fifteen-parameter fundamental group that is the Lorentz group, just as the group of Galilean kinematics is the group of displacements in an E_{3}. In particular, it is not a group that can be characterized by a nondegenerate $d s^{2}$ in an E_{5}.

Meanwhile, we shall determine a $d s^{2}$ that will provide us with almost the same connection. It is clear that we will abandon the land of classical electromagnetism in doing so (and also modify the expression for the force that Lorentz gave).

Suppose, first of all, that for $i, k=0,1,2,3$, the $g_{i k}$ are those Einstein's universe, which satisfy our equations:

$$
G_{i k}^{l}=\Gamma_{i k}^{l} .
$$

The equations:

$$
G_{4 i}^{l}=G_{i 4}^{l}=F_{\cdot i}^{l}
$$

will then give:

$$
\begin{equation*}
G_{4 i, l}+G_{i 4, l}=F_{l i}, \tag{1}
\end{equation*}
$$

because $G_{i 4}^{4}=0$, and $F_{. i}^{4}$ has no meaning in itself.

[^2]As for the functions that we consider to not depend upon x_{4}, equations (1) can be written:

$$
\frac{\partial g_{4 l}}{\partial x_{i}}-\frac{\partial g_{4 i}}{\partial x_{l}}=2\left(\frac{\partial \varphi_{l}}{\partial x_{i}}-\frac{\partial \varphi_{i}}{\partial x_{l}}\right)
$$

we solve them by setting $\left({ }^{1}\right)$:

$$
g_{4 l}=2 \varphi_{l} .
$$

One will further have:

$$
\begin{aligned}
G_{i 4,4} & =g_{4 l} G_{i 4}^{l}+g_{44} G_{i 4}^{4}=2 \varphi_{i} F_{. l}^{l}, \\
G_{44, i} & =g_{i l} G_{44}^{l}+g_{i 4} G_{44}^{4}=0 ;
\end{aligned}
$$

hence, on the one hand:

$$
\frac{\partial g_{44}}{\partial x_{i}}=4 \varphi_{l} F_{\cdot i}^{l},
$$

and on the other hand:

$$
\frac{\partial g_{44}}{\partial x_{i}}=0
$$

We can then remain faithful to the connection that we introduced to begin with as a consequence of classical electromagnetism. We then set:

$$
g_{44}=\psi^{2}
$$

in which ψ is a function of the $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.
Here is the $d s^{2}$ for E_{5} that we propose to put at the roots of a new form of electromagnetism:

$$
-d s^{2}=g_{i k} d x^{i} d x^{k}+2 \varphi_{i} d x^{i} d x^{4}+\psi^{2} d x^{4} d x^{4}
$$

in which the $g_{i k}(i, k=0,1,2,3)$ are functions of $x_{0}, x_{1}, x_{2}, x_{3}$ that reduce to the coefficients of the Einstein $d s^{2}$ that relates to the given gravitational field in the absence of an electromagnetic field.

The $g_{i 4}=2 \varphi_{i}(i=0,1,2,3)$ are the components of the electromagnetic potential, up to a factor of 2 .

Finally, $\psi=\sqrt{g_{44}}$ is a function of $x_{0}, x_{1}, x_{2}, x_{3}$.
The trajectories of a charged material point are the geodesics of that $d s^{2}$, with $\frac{d x^{4}}{d s}=$ $\frac{e}{m}$, while e is the charge of the point.

[^3]"Sur l'équation de M. Schrödinger," C. R. Acad. Sci. Paris 185 (1927), 448-450.

On the Schrödinger equation

Note $\left({ }^{1}\right)$ by F. GONSETH and G. JUVET
Communicated by Hadamard

Translated by D. H. Delphenich (${ }^{\dagger}$)

Schrödinger, while pursuing the ideas that L. de Broglie set down in his own beautiful theory, formulated a theory that that one could rightfully call "wave mechanics." It then permitted one to give an interpretation of the quantum conditions that did not represent an essential discontinuity in dynamical phenomena (${ }^{2}$).

Schrödinger's ideas can be expressed very simply if one uses the theory of characteristics and bicharacteristics of second-order equation. That is what one will perceive upon approaching the beautiful papers of E. Vessiot $\left({ }^{3}\right)$ on the propagation of waves by means of the remarkable analysis that Hadamard presented in his two classic treatises on second-order equations $\left({ }^{4}\right)$.

Here are the principles that we have found to be useful: When one is given secondorder partial differential equation (O) that is linear in the second derivatives, one can define some multiplicities that are called "characteristic" by means of a first-order partial differential equation (J) and some curves that are called "bicharacteristics" of the (O), which are the characteristics of (J). If one identifies (J) with the Jacobi equation of motion of a material point then the trajectories of that material point will be the characteristics of certain equations (O), among which one finds the Schrödinger equation, which is easy to attach to (J) by invariance in many cases, moreover.

Consider the universe E_{5} of our preceding notes then $\left({ }^{5}\right)$, but suppose that the φ_{i} in them are all zero. The coefficients of $d s^{2}$ for E_{5} are then given by the following table:

[^4]\[

\left|$$
\begin{array}{ccccc}
g_{00} & g_{01} & g_{02} & g_{03} & 0 \tag{1}\\
g_{10} & g_{11} & g_{12} & g_{13} & 0 \\
g_{20} & g_{21} & g_{22} & g_{23} & 0 \\
g_{30} & g_{31} & g_{32} & g_{33} & 0 \\
0 & 0 & 0 & 0 & \psi^{2}
\end{array}
$$\right| .
\]

They are determined by Einstein's equations, except for ψ^{2}. We generalize them by supposing that the $g_{i k}$, as well as ψ^{2}, are determined by the Einstein equations in E_{4}; i.e., outside of the masses, we set:

$$
R_{\alpha \beta}=0 \quad(\alpha, \beta=0,1,2,3,4)
$$

It is clear that one can first of all recover the Einstein equations of E_{4}, since we have modified the connection of E_{5}, which includes that space. However, the modification that we have referred to can be assumed to be very small initially, which amounts to assuming that ψ and its derivatives $\psi_{i}=\partial \psi / \partial x_{i}$ are very small and that all of our functions, including ψ, have derivatives with respect to x_{4} that are also very small. Under those conditions, one will find that:
1.

$$
R_{i k}=0 \quad(i, k=0,1,2,3)
$$

are precisely the Einstein equations that determine the:
of the $d s^{2}$ of Einstein's E_{4}.
2. The equations:

$$
R_{i 4}=0 \quad(i=0,1,2,3)
$$

are satisfied identically.
3.

$$
R_{44}=0
$$

can be written:

$$
\psi \frac{\partial\left(g^{k i} \psi_{i}\right)}{\partial x_{h}}+\Gamma_{i h}^{h} \psi g^{i k} \psi_{k}=0
$$

or

$$
\begin{equation*}
g^{k i} \frac{\partial^{2} \psi_{i}}{\partial x_{i} \partial x_{h}}+\left(\Gamma_{l h}^{h} g^{l i}+\frac{\partial g^{h i}}{\partial x_{h}}\right) \frac{\partial \psi}{\partial x_{i}}=0 . \tag{O}
\end{equation*}
$$

Now, if one seeks the bicharacteristics of (O) then one will find the geodesics of $d s^{2}$ for E_{4} precisely.

If one considers an Einsteinian universe E_{4} to be a section $x_{4}=$ const. of a fivedimensional universe E_{5} of $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$ whose d^{2} has the functions in the table (1) for its coefficients then the equations of gravitation will be the equations $R_{\alpha \rho}=0$ (in which $\alpha, \rho=0,1,2,3$), and the trajectories of a material point $\left.{ }^{(}{ }^{1}\right)$ in E_{4} will be the bicharacteristics of the equation $R_{44}=0$ that determines the function ψ when the $g_{i k}$ are known. That equation governs the propagation of waves; it can be identified with the Schrödinger equation.

One will then see that the fiction of a five-dimensional universe will permit one to give a deep reason for the Schrödinger equation. It is clear that this artifice will become necessary when phenomena oblige physicists to believe in the variability of charge.

We remark that the equations that Schrödinger proposed in order to interpret the spectral lines involved an electric field in a great number of cases, although we have left it out here.

[^5]"Les équations de l'électromagnetisme et l'équation de M. Schrödinger dans l'universe à cinq dimensions," C. R. Acad. Sci. Paris 185 (1927), 535-538.

The equations of electromagnetism and the Schrödinger equation in a five-dimensional universe

Note $\left({ }^{1}\right)$ by F. GONSETH and G. JUVET
Communicated by J. Hadamard

Translated by D. H. Delphenich

Take an $d s^{2}$ for an E_{5} whose coefficients are given by the table $\left({ }^{2}\right)$:

$$
\left|\begin{array}{lllll}
g_{00} & g_{01} & g_{02} & g_{03} & 2 \varphi_{0} \tag{1}\\
g_{10} & g_{11} & g_{12} & g_{13} & 2 \varphi_{1} \\
g_{20} & g_{21} & g_{22} & g_{00} & 2 \varphi_{2} \\
g_{30} & g_{31} & g_{32} & g_{33} & 2 \varphi_{3} \\
2 \varphi_{0} & 2 \varphi_{1} & 2 \varphi_{2} & 2 \varphi_{3} & \psi^{2}
\end{array}\right|
$$

and look for what the equations will become that we have proposed in order to define the coefficients in the space E_{5}. We further suppose that all of the functions that enter into play here have derivatives with respect to x_{4} that are negligible in comparison to their derivatives with respect to the other variables. Finally, if the $\psi_{i}=\partial \psi / \partial x_{i}$ are small quantities then we suppose that the φ_{i} and the $F_{i k}$ are negligible in comparison to ψ. One will then find the following approximate expressions for the components of the affine connection:

$$
G_{i k}^{l}=\Gamma_{i k}^{l} \quad(i, k=0,1,2,3),
$$

in which the $\Gamma_{i k}^{l}$ are the Christoffel symbols of the second kind that are attached to the $d s^{2}$ of the Einsteinian E_{4} of all $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$:

$$
G_{4 i}^{l}=G_{i 4}^{l}=F_{\cdot i}^{l},
$$

and the index was studied by means of the $g^{i k}$ of E_{4} :

$$
G_{i k}^{4}=0,
$$

[^6]\[

$$
\begin{aligned}
& G_{i 4}^{4}=\frac{\psi_{i}}{\psi_{4}} G_{44}^{i}=-\psi \psi^{i} \quad(\text { same remark }) \\
& G_{44}^{4}=0
\end{aligned}
$$
\]

We calculate the $R_{\alpha \beta}$, moreover:

1. The $R_{i k}(i, k=0,1,2,3)$ are those of Einstein.
2. The $R_{i 4}(i=0,1,2,3)$ are the divergences of the electromagnetic field; i.e., one has (${ }^{1}$):

$$
R_{i 4}=\frac{\partial F_{\cdot i}^{h}}{\partial x_{h}}-\Gamma_{i h}^{l} F_{\cdot l}^{h}+\Gamma_{h r}^{r} F_{\cdot i}^{h}=F_{\cdot i \mid h}^{h} .
$$

3. Finally:

$$
R_{44}=-\psi\left[\frac{\partial\left(g^{r i} \psi_{i}\right)}{\partial x_{r}}+\Gamma_{i h}^{h} \psi^{i}\right] .
$$

In order to obtain the equations of the electromagneto-gravitational field in E_{4}, it will suffice to take our inspiration from what we know in E_{4}. Now in general, we will have:

$$
\begin{equation*}
R_{i k}=\kappa\left(T_{i k}-\frac{1}{2} g_{i k} T\right) \quad(i, k=0,1,2,3) \tag{2}
\end{equation*}
$$

in E_{4}, in which $T_{i k}$ is the energy-quantity of motion tensor, and κ is a constant of order 10^{-47} CGS. Now:

$$
T_{i k}=m u_{i} u_{k} \quad \text { and } \quad T=m u_{i} u^{i} \quad\left(u^{i}=\frac{d x^{i}}{d s}\right) .
$$

We can then take the general equations in E_{5} to be:

$$
\begin{equation*}
R_{\alpha \beta}=\kappa\left(T_{\alpha \beta}-\frac{1}{2} g_{\alpha \beta} T\right) \quad(\alpha, \beta=0,1,2,3,4) \tag{3}
\end{equation*}
$$

with $T_{\alpha \beta}=m u_{\alpha} u_{\beta}$ and $T=m u_{\alpha} u^{\alpha}$.
For $\alpha, \rho=0,1,2,3$, we will have the Einstein equations in the approximation that we have assumed; for $\alpha=0,1,2,3$, and $\beta=4$, we will have:

$$
F_{. i \mid h}^{h}=\kappa\left(m u_{i} u_{4}-\frac{1}{2} g_{4 i} T\right) \quad \text { or } \quad F_{\cdot i \mid h}^{h}=\kappa m\left(u_{i} u_{4}-\varphi_{i} u_{\alpha} u^{\alpha}\right),
$$

which can be written:

[^7]\[

$$
\begin{equation*}
F_{\cdot i \mid h}^{h}=\kappa \psi^{2} s_{i} \tag{4}
\end{equation*}
$$

\]

with our approximations, in which the s_{i} are the components of the current. Now, if one compares these equations with the second group of Maxwell equations then one will see that if $\kappa \psi^{2}$ is close to unity then our general equations will imply precisely the equations that allow one to find the potentials when one knows the charges and their velocities $\left({ }^{1}\right)$.

Now, if $\kappa \psi^{2}$ has order unity then that equation will become:

$$
\begin{equation*}
\frac{\partial\left(g^{r i} \psi_{i}\right)}{\partial x_{r}}+\Gamma_{i h}^{h} \psi^{i}+\frac{1}{2} \frac{e^{2}}{m} \psi=0 . \tag{5}
\end{equation*}
$$

Finally, the equation for $\alpha=\rho=4$ is written:

$$
\frac{\partial\left(g^{r i} \psi_{i}\right)}{\partial x_{r}}+\Gamma_{i h}^{h} \psi^{i}=-\frac{1}{2} \kappa \psi^{2} \frac{e^{2}}{m} .
$$

That equation will once more admit the geodesics of the $d s^{2}$ for E_{4} as bicharacteristics, and due to our approximations, the geodesics of the $d s^{2}$ for our E_{5}.

Remarks. - It is clear that our approximations will no longer be valid when the φ_{i} are appreciable, which is the case in the theory of spectra. One must then seek what our equations will become in the case where one neglects the derivatives of the $g_{i k}$ in comparison to $g_{i 4}=2 \varphi_{i}$.

Our results lead back to the macroscopic wave mechanics that L. de Broglie called geometrical, as opposed to what he called physical, in the same way that geometrical optics is opposed to physical optics.

If one writes equations (3) rigorously for a $d s^{2}$ of the type (1) then the equation for α $=\rho=4$ will remain linear in the second derivatives of ψ, and the same relationship will exist between that equation and the geodesics of E_{5} that exists between a wave equation and its bicharacteristics.

[^8]
[^0]: (${ }^{1}$) Session on 11 July 1927.
 ${ }^{\dagger}{ }^{\dagger}$) Translator's note: The Erratum that was corrected on pp. 483 of this same volume has been incorporated into the translation.
 $\left(^{2}\right) \quad$ Cf., KALUZA, Sitzungsber. d. preuss. Akad. d. Wiss. (II) (1921), 966-972.

[^1]: $\left.{ }^{1}{ }^{1}\right)$ One might employ some suggestions that were made by L. de Broglie (cf., his book: Ondes et Mouvements, pp. 62)
 (${ }^{2}$) Cf., WEYL, Temps, Espace, Matière, pp. 97. In the expression in (8), it is intended that the $d s$ is the one in E_{4}.

[^2]: $\left({ }^{1}\right)$ Session on 1 August 1927.
 $\left(^{2}\right)$ C. R. Acad. Sci. Paris, 185 (1927), 341-343.

[^3]: $\left(^{1}\right)$ One can get a more general solution by setting $g_{4 i}=2 \varphi_{i}+\partial \lambda / \partial x_{l}$, in which λ is an arbitrary function of $x_{0}, x_{1}, x_{2}, x_{3}$.

[^4]: (1) Session on 8 August 1927.
 ${ }^{(}{ }^{\dagger}$) Translator's note: The Errata that were cited on pp. 624 of this volume were incorporated into the translation.
 $\left({ }^{2}\right) \quad$ Cf., Ann. Phys. (Leipzig) 79 (1926), 361-376 and 489-527.
 $\left(^{3}\right)$ "Essai sur la propagation des ondes," Ann. Ec. Norm. sup. (3) 26 (1909), 403-449, and above all: "Sur l'interprétation mécanique des transformations de contact infinitesimales," Bull. Soc. Math. de France 34 (1906), 265-269. At the end of that paper, one will already find a discussion of the entire of theory of waves attached to a moving material point for which the vis viva and the force function do not depend upon time. On the advice of Vessiot, we have resorted to general relativity for the generalizations that we have in mind for the case of the impermanent regime. We take this opportunity to point out that his friendly advice has taken us much further than we had originally imagined possible.
 (${ }^{4}$) Leçons sur la propagation des ondes, Hermann, Paris, 1903, pages 263 et seq. and Lectures on Cauchy's Problem in linear partial differential equations, Yale University Press, 1923, pp. 75, 76, 83, 192.
 $\left({ }^{5}\right)$ C. R. Acad. Sci. Paris 185 (1927), pp. 341 and 412.

[^5]: (${ }^{1}$) Of course, without modifying the field appreciably.

[^6]: $\left.{ }^{1}{ }^{1}\right)$ Session on 22 August 1927.
 $\left(^{2}\right)$ Cf., our preceding Notes [C. R. Acad. Sci. Paris 185 (1927), pp. 341, 412, 448].

[^7]: $\left({ }^{1}\right)$ Cf., KALUZA, Sitzungsber. d. preuss. Akad. d. Wiss. 2 (1921), 966-972.

[^8]: ${ }^{1}$) Cf., KALUZA, loc. cit.; that author showed that the first group of Maxwell equations will result from an identity between the Christoffel symbols for E_{5}.

