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Summary: The conditions of compatibility and the jump conditions of Weingarten and Volterra are 
derived for a multiply-connected Cosserat continuum.  The equations of compatibility are shown to be 
natural conditions from Castigliano’s principle. 
 
 

1. Introduction 
 

 If one interprets the defining equations of the deformation tensor: 
 

1
2 (∂i uk + ∂k ui) = εik 

 
in the classical linear theory of elasticity as a system of differential equations for the 
displacement vector field uk then the integration of those differential equations will 
produce a vector field uk that is single-valued in a region G when the tensor field εik in 
satisfies certain compatibility conditions in G.  In a simply-connected region G, those 
conditions are known to read: 

eilp ekmq ∂l ∂m εpq = 0 . 
 
If G is multiply-connected then the deformation tensor field εik must satisfy additional 
integral conditions.  One can either derive all of those conditions from a simple 
kinematical argument [1], [2], or obtain them from Castigliano’s variational principle as 
natural conditions [3]. 
 If one drops the requirement of single-valuedness for the displacement vector field in 
a multiply-connected region G, but still assumes continuity and twice-differentiability of 
the tensor field εik in G, as well as the fulfillment of the differential compatibility 
conditions, then one will get the Weingarten-Volterra jump conditions for the 
displacement vector field, which are meaningful in the theory of dislocations [4], [5], [6].  
The goal of the present study is to derive the compatibility and jump conditions for the 
kinematics of the Cosserat continuum. 
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2. The kinematics of the Cosserat continuum 
 

 In a Cosserat continuum, any point will have six degrees of freedom: viz., three 
translational degrees of freedom and three rotational degrees of freedom.  In order to be 
able to speak of the rotation of a point, we think of each point as being the carrier of a 
rigid dreibein.  By the rotation of the point, we then mean the rotation of the dreibein 
relative to a spatially-fixed, Cartesian reference system.  In the initial, undeformed state, 
all of the dreibeins shall be directed parallel to the spatially-fixed coordinate system.  
Under displacement and rotation of the points, we will take the continuum to a deformed 
state, in which we would like to assume that the gradients of the displacement vector 
components are ∂i uk (x1, x2, x3) ≪1, and the rotations of the rigid dreibeins can be 
described by rotation vectors Φk (x1, x2, x3).  The deformation state of the Cosserat 
continuum is then characterized by the following tensor field: 
 

εik = 1
2 (∂i uk + ∂k ui),      (1) 

 
ϕi = Φi − 1

2 eikl ∂i uk ,      (2) 

 
κik = ∂i Φk .       (3) 

 
εik is the symmetric displacement deformation tensor, ϕi is the rotational deformation 
vector, which yields the difference between the absolute rotation Φi and the displacement 
vector field, and κik is the curvature tensor. 
 We shall calculate in Cartesian coordinates and write ∂i as an abbreviation for the 
gradient operator ∂ / ∂xi .  eikl is the completely-antisymmetric permutation tensor (e123 = 
+ 1, e132 = − 1, e123 = 0, etc.), and we shall employ the Einstein summation rule: Indices 
that occur twice shall be summed over from 1 to 3. 
 We construct the asymmetric deformation tensor from (1) and (2): 
 

γik = εik − eikl ϕl .      (4) 
We then get: 

∂i uk = γik + eikl Φl     (5)  
 
for the gradient tensor of the displacement vector field.  If we now regard (3) and (5) as 
differential equations for Φk and uk then the solutions for these differential equations can 
be written [7]: 

Φk (P) = Φk (P0) + 
0

P

mk mP
dκ ξ∫ ,    (6) 

uk (P) = uk (P0) + eikl Φl (P0) [xm (P) − xm (P0)] + 
0

{ [ ( ) ] }
P

mk ikl i i ml mP
e x P dγ ξ κ ξ+ −∫ .    (7) 

 
uk (P0) and Φk (P0) are the displacement vector and rotation vector, resp., at a point P0 
with the coordinates xk (P0); ξi is a point on the path of integration from P0 to P.  If the 
line integrals in (6) and (7) are path-independent in a region G then we will get 
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continuous and single-valued vector fields Φk and uk .  That will then be the case when 
the given tensor fields κik and γik satisfy the compatibility conditions. 
 
 

3. Compatibility conditions in a simply-connected body 
 

 In a simply-connected body V, let the tensor fields γik and κik be given as once-
continuously-differentiable functions (γik , κik ∈ C1 in V).  If we assume that the line 
integrals in (6) and (7) are path-independent then those integrals with have the value zero 
for arbitrary closed paths in V: 

ml m

K

dκ ξ∫�  = 0,      (8) 

 

{ [ ( ) ] }mk kli i i ml m

K

e x P dγ ξ κ ξ+ −∫�  = 0.    (9) 

 
If we take equations (8) into account in (9) then we will get: 
 

[ ]mk kli i ml m

K

e dγ ξ κ ξ−∫�  = 0.    (10) 

 
Any closed curve K in V can be regarded as the boundary curve of a surface f that lies 
completely within V.  With the help of Stokes’s theorem, one can now convert the 
integrals (8) and (10) into surface integrals over one such surface f: 
 

ipq p ql i

f

e n dfκ∂∫∫ = 0,     (11) 

( )ipq p qk kli i ql i

f

e e x n dfγ κ∂ −∫∫ = 0,   (12) 

 
in which ni is the unit normal vector to a surface element.  Since the surface f is arbitrary, 
(11) and (12) will imply the eighteen (in total) differential compatibility conditions: 
 

eipq ∂i κqk  = 0,      (13) 
 in V 

eipq ∂i γqk + δik κqq − κkl = 0.     (14) 
 
Those conditions are necessary and sufficient for the existence of single-valued 
displacement and rotation vector fields in V. 
 
 

4. Compatibility conditions in a doubly-connected body. 
 

 Let γik and κik ∈ C1 be given in a doubly-connected body V, and assume that the 
compatibility conditions (13) and (14) are fulfilled.  However, due to the double-
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connectedness, there will now be closed curves K in V that do not bound any surface that 
lies completely with V, and we cannot conclude from (13) and (14) that the line integral 
over K will vanish. 

 

K 
K′ 

S 

V 

Q 
Q′ 

− 
+ 

 
Figure 1. 

 
 The simply-connected body V′ will arise when one makes a cut S in V.  We shall call 
the values of uk and Φk on the edges of the cut ku+ , k

+Φ  and ku− , k
−Φ  resp.  We denote the 

jumps in those vector fields when one crosses the cut surface S at the location Q by: 
 

[uk](Q) ≡ ku+ (Q) − ku− (Q),    (15) 

[Φk](Q) ≡ k
+Φ (Q) − k

−Φ (Q),    (16) 

and we will arrive at: 
[uk] = 0,     (17) 
[Φk] = 0     (18) 

on S. 
 We get from (6) and (7) that: 
 

[uk](Q) = { [ ( ) ] }mk ikl i i ml m

K

e x P dγ ξ κ ξ+ −∫  = 0,  (19) 

[Φk](Q) = lk lK
dκ ξ∫ = 0,     (20) 

 
and for an arbitrary point Q′ on S: 
 

[uk](Q′ ) = { [ ( ) ] }mk ikl i i ml m

K

e x P dγ ξ κ ξ
′

+ −∫  = 0,  (19a) 

[Φk](Q′ ) = lk lK
dκ ξ

′∫ = 0.     (20a) 

 
 The first integral condition for the compatibility of the deformation tensor field 
follows from (20) and (20a): 

lk l

K

dκ ξ∫�  = 0,      (21) 

 
for any curve K that surrounds the hole. 
 With (21), (19) and (19a) will yield the second integral condition: 
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[ ]mk kli i ml m

K

e dγ ξ κ ξ−∫� = 0,    (22) 

 
for every curve K that surrounds the hole.  Since the differential compatibility conditions 
are fulfilled in V, by assumption, when these integral conditions are fulfilled on any curve 
K, it will suffice that V cannot be contracted to a point. 
 In an n-fold-connected body V, γik and κik will yield single-valued, continuous vector 
fields uk and Φk in V when 2 (n – 1) integral conditions of the type that was given above 
are fulfilled along with the differential compatibility conditions. 
 
 

5. The Weingarten-Volterra jump conditions 
 

 We shall again consider a doubly-connected body V that is cut into a simply-
connected body V′ by a surface S (Fig. 1).  Let γik and κik ∈ C1, which satisfy the 
differential compatibility conditions, be given in V.  Under that assumption, we shall 
answer the question of whether discontinuities in the rotational vector field Φk and the 
displacement vector field uk are possible on S. 
 With (6) and (7), one will have: 
 

[uk](Q) = { [ ( ) ] }mk kli i i ml m

K

e x P dγ ξ κ ξ+ −∫  = 0,  (23) 

[Φk](Q) = mk mK
dκ ξ∫ = 0,     (24) 

and 

[uk](Q′ ) = { [ ( ) ] }mk kli i i ml m

K

e x P dγ ξ κ ξ
′

+ −∫  = 0,  (23a) 

[Φk](Q′ ) = mk mK
dκ ξ

′∫ = 0.     (24a) 

 
Due to the continuity of κik on the cut-surface S, one will have: 
 

Q

mk m

Q

dκ ξ−

′
∫ = − 

Q

mk m

Q

dκ ξ
′

+
∫ ,     (25) 

 
and due to the validity of (13) in V′, one will finally have: 
 

mk m

K

dκ ξ
′
∫� = mk m

K

dκ ξ∫� ,     (26) 

 
such that we will get a constant vector ak on S for the rotational jump [Φk]: 
 

[Φk] = ak .      (27) 
With that result, one will have: 
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[uk](Q) = [ ]mk kli i ml m

K

e dγ ξ κ ξ−∫� + ekli al xi (Q)   (28) 

and 

[uk](Q′ ) = [ ]mk kli i ml m

K

e dγ ξ κ ξ
′

−∫� + ekli al xi (Q′ ).   (28a) 

 
Since the compatibility conditions (14) are true in V′, and γik is also continuous on S, we 
will then immediately get: 
 

[uk](Q′ ) = [uk](Q) + ekli al [xi (Q′ ) − xi (Q)]    (29) 
 
for the displacement jump across S.  If we denote the displacement jump at the fixed 
position Q by bk : 

[uk](Q) = bk ,      (30) 
then 

[uk](Q′ ) = bk + ekli al [xi (Q′ ) − xi (Q)]   (29a) 
 
will mean that the two edges of the cut by S can be moved apart by that infinitesimal rigid 
motion if one would like to obtain an everywhere single-valued and continuous 
deformation state on V from the “welding” of V′ to V (viz., a proper stress state). 
 In addition, that will show that a rotational jump is not compatible with only the 
assumptions on γik and κik that were given above. 
 If the constants ak and bk , which are characteristic of the discontinuities in the 
displacement and rotational vector fields, are given in a doubly-connected body then the 
deformation tensor fields γik and κik that will have to satisfy the integral conditions: 
 

mk m

K

dκ ξ∫� = ak ,     (31) 

 

[ ]
Q

mk kli i ml m

K

e dγ ξ κ ξ−∫� = bk − ekli al xi (Q),    (32) 

 
in which KQ is a curve through the point Q that surround the hole, in addition to the 
differential conditions (13) and (14). 
 Equations (27) and (29a) agree formally with the Weingarten and Volterra [2], [6] 
that are true in a classical continuum.  One calls the displacement jump (29a) a Volterra 
distortion. 
 

6. Jump conditions in a classical continuum 
 

 In order to conclude the kinematical arguments, we treat the special case of the 
classical continuum, for which one sets: 
 

ϕk ≡ 0.      (33) 
That will imply: 
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Φk = 1
2 eklm ∂l um ,      (34) 

γmk = εmk = ε(mk) ,     (35) 
and 

κmk = ∂m Φl = elpq ∂p εqm ,    (36) 
so: 

∂m Φl = 1
2 elpq ∂p ωqm , 

ωpq = 1
4 epqi eikl (∂k ul − ∂l uk), 

∂m ωpq = 1
4 epql eikl (∂k εml − ∂l εmk). 

 
(31) and (32) then imply the well-known Weingarten formulas: 
 

lpq p qm m

K

e dε ξ∂∫� = al ,     (37) 

( )
Q

mk kli i lpq p qm m

K

e e dε ξ ε ξ− ∂∫� = bk – ekli al xi (Q).   (38) 

 
 

7. Derivation of the compatibility conditions from Castigliano’s principle 
 

 In the classical theory of elasticity, differential and integral compatibility conditions 
will follow from Castigliano’s variational principle as natural conditions, as Stickforth 
has shown [3]. 
 A variational principle of the Castigliano type can also be formulated in the theory of 
elasticity for Cosserat continua, and we will now show that the differential, as well as the 
integral, compatibility conditions will follow as natural conditions from the minimal 
principle in a multiply-connected, simply bounded body. 
 For the sake of simplicity, we shall consider a doubly-connected body V that is 
composed of an elastic Cosserat material that is loaded with volume forces Xi and 
volume moments Yi in V and with force-stresses pi and moment-stresses qi on the outer 
surface F.  Let the elastic energy density of the material be W (γik , κik).  The principle of 
minimum potential energy will then read [8]: 
 

δ { [ ( , ) ] ( ) }ik ik i i i i i i i i

V F

W X u Y dV p u q dFγ κ − − Φ − + Φ∫ ∫  = 0,  (39) 

 
when one observes the constraint conditions: 
 

γik − ∂i uk + eikl Φl = 0,     (40) 
 in V 

κik − ∂i Φk = 0.      (41) 
 
We restrict ourselves to bodies for which no kinematical constraint conditions are 
prescribed on F. 
 (39) are associated with the natural conditions: 
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σik = 
ik

W

γ
∂
∂

,      (42) 

 

µik = 
ik

W

κ
∂
∂

,       (43) 

 
which represent the definitions of the force and moment stresses: 
 

∂i σik = Xk ,      (44) 
 in V 

∂i µik + eklm σlm = Yk ,      (45) 
 
are the equilibrium conditions, and finally one has the outer surface conditions: 
 

ni σik = pk ,      (46) 
 on F 

ni µik = qk .      (47) 
 
ni is the external unit normal vector of a surface element dF.  A Friedrich transformation 
[9] will now give us the Castigliano variational principle for the Cosserat continuum: 
 In the case of equilibrium, one has: 
 

( , )ik ik

V

W dVδ σ µ∗
∫ = 0,    (48) 

 
with the constraint conditions (44) to (47).  W * (σik , µik) arises from W (γik , κik) from a 
Legendre transformation: 
 

W * (σik , µik) = γik σik + κik µik − W (γik , κik) .   (49) 
 
Correspondingly, one has: 

ik

W

σ

∗∂
∂

= γik       (50) 

and 

ik

W

µ

∗∂
∂

= κik  .      (51) 

 
 The homogeneous equilibrium conditions (44) and (45) will be satisfied identically 
when one makes the stress function Ansatz [7]: 
 

( )H
ikσ  = eipq ∂p Fqk ,     (52) 

( )H
ikµ  = eipk ∂p Gqk + δik Fpp − Fki ,    (53) 
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with the asymmetric stress-function tensors Fik and Gik .  If we let ( )P
ikσ  and ( )P

ikµ  denote 

particular solutions of the inhomogeneous equilibrium conditions then: 
 

σik = ( ) ( )P H
ik ikσ σ+      (54) 

and 
µik = ( ) ( )P H

ik ikµ µ+      (55) 

 
will be the general solutions of equations (44) to (47).  We imagine that the deformation 
tensors in: 

( )ik ik ik ik

V

dVγ δσ κ δµ+∫ = 0    (56) 

 
are expressed in terms of stress functions and fulfill the conditions: 
 

∂i δσik = 0, ∂i δσik + eklm δσlm = 0,  in V,   (57) 
ni δσik = 0, ni δµik = 0,   on F,    (58) 

 
for δσik and δµik by means of the Ansätze: 
 

δσik = eipq ∂p δFqk ,      (59) 
 in V 

δµik = eipq ∂p δ Gqk + δik δFqq – δ Fkl ,     (60) 
with 

ni eipq ∂p δFqk  = 0,      (61) 
 on F, 

ni (eipq ∂p δ Gqk + δik δFqq – δ Fkl) = 0.     (62) 
 
Equation (56) then reads: 
 

{ ( )}ik ipk p qk ik ipq p qk ik pp ki

V

e F e G F F dVγ δ κ δ δ δ δ∂ + ∂ + −∫ = 0,   (63) 

 
and a partial integration of this and an application of Gauss’s theorem will yield: 
 

{[ ] [ ] }ipk p ik ik pp ik qk ipq p qk ik

V

e F e G dVγ δ κ κ δ κ δ∂ + − + ∂∫  

+ ( )l lim mk ik mk ik

F

n e F G dFγ δ κ δ+∫ = 0.    (64) 

 
Since the variations δFik and δGik are arbitrary in V, we will get the differential 
compatibility conditions: 

eipq ∂p κqk = 0      (13) 
and 

eipq ∂p γqk + δik κqq – κkl = 0     (14) 
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in V.  The stress function variations in the surface integral must fulfill the homogeneous 
equilibrium conditions.  We will achieve that when we write δ Fik and δ Gik as null stress 
functions [7]: 

δ Fik = ∂i fk ,      (65) 
δ Gik = ∂i gk  − eikl fk        (66) 

 
in a neighborhood of F [10], [11].  We assume that δ Fik and δ Gik are single-valued C1 
functions in a neighborhood of F. 
 With (65) and (66), the surface integral in (63) will become: 
 

( [ ])l lim mk i k mk i k ikl l

F

n e f g e f dFγ κ∂ + ∂ −∫ = 0.   (67) 

 
After partial integration, we will get: 
 

{ ( ) ( ) ( ) }l lim i mk k i mk k i mk mk ilk k i mk k

F

n e f g e f g dFγ κ γ κ κ∂ + ∂ − ∂ + − ∂∫  = 0. (68) 

 
Due to the arbitrariness of fk and gk in a neighborhood of F, the last two terms in the 
integrand will yield the continuation of the differential compatibility conditions to F.  The 
first two terms can be transformed into a line integral by using Stokes’s theorem; in that, 
the outer surface F should be cut up canonically into a simply-connected surface F′ [10]. 

 

(2)K+  

(2)K−  

(1)K+  (1)K−  
 

Figure 2. 
 

The boundary curve K of the surface F is: K= (1) (2) (1) (2)K K K K+ − − ++ + + .  We then get the 

line integral: 

( )mk k mk k m

K

f g dγ κ ξ+∫� = 0.    (69) 

 
Since γmk and κmk are continuous on F, the integral: 
 

 
(1) (1)

mk k m mk k m

K K

f d f dγ ξ γ ξ
+ −

+∫ ∫� � , 
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for example, can be combined into an integral over K(1), in which the jump function [fk] 
will appear in the integrand: 

[ ]mk k mf dγ ξ∫� . 

 
For that reason, we can write the line integral (69) as a sum of two line integrals: 
 

(1) ( 2)

{ [ ] [ ]} { [ ] [ ]}mk k mk k m mk k mk k m

K K

f g d f g dγ κ ξ γ κ ξ
+ +

+ + +∫ ∫� � = 0.  (70) 

 
Since have assumed that the variations δFik and δGik are continuous in a neighborhood of 
F, the Weingarten-Volterra jump conditions (27) and (29) will imply that: 
 

[fk] = ak ,      (71) 
[gk] = ck + ekli al ξi ,      (72) 

 
with arbitrary infinitesimal constant vectors ak and ck ; ξi is a point on the cut curve K. 
 Equation (70) then reads: 
 

 
(1) (1)

{ ( ) } { }k mk mk lki i m k mk m

K K

a e d c dγ κ ξ ξ κ ξ
+ +

+ +∫ ∫� �  

+ 
( 2 ) ( 2 )

{ ( ) } { }k mk mk lki i m k mk m

K K

a e d c dγ κ ξ ξ κ ξ
+ +

+ +∫ ∫� �  = 0 .   (73) 

 
The line integrals over K(1) are zero, since any surface V that is bounded by K(1) will lie 
entirely within V, and the differential compatibility conditions are fulfilled in V. 
 Since ak and ck are arbitrary, (73) will finally imply the integral compatibility 
conditions: 

(2 )

( )mk mk lki i m

K

e dγ κ ξ ξ
+

−∫� = 0    (32) 

and 

(2 )

mk m

K

dκ ξ
+

∫� = 0.    (31) 

 
 The extension of the results that were derived in the section to n-fold-connected 
bodies (n > 2) will raise no difficulties. 
 We have then shown that all conditions for the compatibility of a Cosserat 
deformation state are natural conditions for Castigliano’s variational principle, which is a 
result that was not to be expected from our experience with the classical theory of 
elasticity. 
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