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Summary: The conditions of compatibility and the jump conditiamfsWeingarten and Volterra are
derived for a multiply-connected Cosserat continuum. Thetiegsaof compatibility are shown to be
natural conditions from Castigliano’s principle.

1. Introduction
If one interprets the defining equations of the deforonatensor:
2 (0 Wk + 0k U) = &k

in the classical linear theory of elasticity as atesysof differential equations for the
displacement vector fieldi then the integration of those differential equation w
produce a vector fieldy that is single-valued in a regi@ when the tensor fieldi in
satisfies certain compatibility conditions @& In a simply-connected regidd, those
conditions are known to read:

€ip e&mqal Om &g = 0.

If G is multiply-connected then the deformation tensodfigl must satisfy additional
integral conditions. One can either derive all ofsthoconditions from a simple
kinematical argumentl], [2], or obtain them fronCastigliano’svariational principle as
natural conditionsd].

If one drops the requirement of single-valuedness displacement vector field in
a multiply-connected regio@, but still assumes continuity and twice-differentiigpiof
the tensor fieldsx in G, as well as the fulfillment of the differential cpatibility
conditions, then one will get th&Veingarten-Volterrajump conditions for the
displacement vector field, which are meaningful in theoty of dislocations4], [5], [6].
The goal of the present study is to derive the compayilaihd jump conditions for the
kinematics of th&Cosseratcontinuum.
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2. The kinematics of the Cosseratontinuum

In a Cosseratcontinuum, any point will have six degrees of freedom:, tizmee
translational degrees of freedom and three rotatiorgreds of freedom. In order to be
able to speak of the rotation of a point, we think of gamint as being the carrier of a
rigid dreibein. By the rotation of the point, we thaean the rotation of the dreibein
relative to a spatially-fixed, Cartesian reference systén the initial, undeformed state,
all of the dreibeins shall be directed parallel to theizlbafixed coordinate system.
Under displacement and rotation of the points, we take the continuum to a deformed
state, in which we would like to assume that the gradief the displacement vector
components ar@; U (X1, X2, X3) <1, and the rotations of the rigid dreibeins can be
described by rotation vecto®y (X1, X2, X3). The deformation state of thigosserat
continuum is then characterized by the following tenisdd:f

&k =5 (0i Ug + 0k W), (1)
¢ =D — 1ew 0 U, (2)
Kik = 0; P. (3

&k Is the symmetric displacement deformation tengpris the rotational deformation
vector, which yields the difference between the absobteion®; and the displacement
vector field, andki is the curvature tensor.

We shall calculate in Cartesian coordinates and wri@s an abbreviation for the
gradient operatod / 0x; . e IS the completely-antisymmetric permutation tenses;E
+1,e3,=—1,e123= 0, etc.), and we shall employ tBensteinsummation rule: Indices
that occur twice shall be summed over from 1 to 3.

We construct the asymmetric deformation tensor frbpagd (2):

M« =Ek—€k @ . (4)
We then get:
0i U = i + & Py (5)

for the gradient tensor of the displacement veaadd.f If we now regard (3) and (5) as
differential equations fo®y, anduy then the solutions for these differential equations ca
be written [7]:

Py (P) = B (Po) + [ KL, (6)

U (P) = U (Po) + €10 @1 (Po) Dién (P) =X (POl + [ (Ve X B =& i} &0 (7)

Uk (Po) and @y (Py) are the displacement vector and rotation vectsp., at a poinPy
with the coordinatesy (Po); & is a point on the path of integration frdPto P. If the
line integrals in (6) and (7) are path-independienta regionG then we will get
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continuous and single-valued vector fiellg andux . That will then be the case when
the given tensor fieldsy and y satisfy the compatibility conditions.

3. Compatibility conditionsin a smply-connected body
In a simply-connected body, let the tensor fieldg« and «x be given as once-
continuously-differentiable functionga(, xx 0 C' in V). If we assume that the line

integrals in (6) and (7) are path-independent then thosgrals with have the value zero
for arbitrary closed paths M

$xndé, =0, (8)

Cﬁ{ymk+ekl[ )§( P _ﬂ Km} CEm =0. 9)

If we take equations (8) into account in (9) thenwill get:

Cﬁ[ymk_ekligi Kl O¢,, = 0. (10)

Any closed curveK in V can be regarded as the boundary curve of a suffdu lies
completely withinV. With the help ofStokes’stheorem, one can now convert the
integrals (8) and (10) into surface integrals avae such surfade

[[ €42 g 1 df=0, (11)

f

[] €540 o (V= 84 XK 4) 1 df= 0, (12)

f
in whichn; is the unit normal vector to a surface elemenhcé&the surfacéis arbitrary,
(11) and (12) will imply the eighteen (in totalfférential compatibility conditions:

apq ai qu = 0, (13)

inV
8pq 0i Jak+ Ak Kag — Kk = 0. (14)

Those conditions are necessary and sufficient fog éxistence of single-valued
displacement and rotation vector fieldsvin

4. Compatibility conditionsin a doubly-connected body.

Let ) and ki O C* be given in a doubly-connected body and assume that the
compatibility conditions (13) and (14) are fulfdle However, due to the double-
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connectedness, there will now be closed cuk/esV that do not bound any surface that
lies completely withv, and we cannot conclude from (13) and (14) that the lirgnat
overK will vanish.

\%

Figure 1.

The simply-connected bod¥ will arise when one makes a ¢caitn V. We shall call
the values ofik and®y on the edges of the cuf, ®, andu,, ®, resp. We denote the
jumps in those vector fields when one crosses thewtdceS at the locatior by:

[u](Q) = y (Q) - u, (Q), (15)
[®(Q) = @, (Q) - P, (Q), (16)
and we will arrive at:
[ud =0, a7
[®] =0 (18)

onS
We get from (6) and (7) that:

[W(Q) = [{Vu+ed X B -& &} &, =0, (19)
[©d(Q) :KJK Ky d& =0, (20)
and for an arbitrary poir@’onS
[W(Q) = [ U red X(B =l ko &, =0, (192)
[®d(Q") :KJK, Ky d& = 0. (20a)
The first integral condition for the compatibilityf the deformation tensor field

follows from (20) and (20a):
$r, d& =0, (21)
K

for any curveK that surrounds the hole.
With (21), (19) and (19a) will yield the secondeigral condition:
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CJ‘D[mG —€4¢i K] dS,= 0, (22)

for every curveK that surrounds the hole. Since the differential coibgit conditions
are fulfilled inV, by assumption, when these integral conditions dfidefd on any curve
K, it will suffice thatV cannot be contracted to a point.

In ann-fold-connected body, u and «i will yield single-valued, continuous vector
fields uxy and®y in V when 2 (1 — 1) integral conditions of the type that was giveavab
are fulfilled along with the differential compatibiligonditions.

5. The Weingarten-Volterrajump conditions

We shall again consider a doubly-connected bWdthat is cut into a simply-
connected body’ by a surfaceS (Fig. 1). Lety and i O C', which satisfy the
differential compatibility conditions, be given M. Under that assumption, we shall
answer the question of whether discontinuities inrtitational vector fielddx and the
displacement vector field; are possible 08.

With (6) and (7), one will have:

[W(Q) = [+l X(P —El &} &, =0, (23)
[®d(Q) = | K dE,=0, (24)
and
[Wd(Q) = [{Vmc+ed X(P ~El K} &, =0, (232)
[®d(Q") = [ K dE,=0. (24a)

Due to the continuity ok on the cut-surfacg, one will have:
Q Q
[Kned&n== [ K dé,, (25)
Q Q

and due to the validity of (13) M’, one will finally have:
<ﬁ/(mk dg(mzcﬁ/(mk dg(m’ (26)
K’ K

such that we will get a constant vectéion Sfor the rotational jumpdy:

[Py = & . (27)
With that result, one will have:
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[U(Q) = Pk — B K] 0, + € @ % (Q) (28)

and

[UJ(Q) = P ik — €€ K] B+ 81 @ % (Q). (28a)

Since the compatibility conditions (14) are trué/ifiand i« is also continuous o8 we
will then immediately get:

[ud(Q") = [Ud(Q) + & a [% (Q) —x (Q)] (29)
for the displacement jump acroSs If we denote the displacement jump at the fixed
positionQ by by :
[ud(Q) = b, (30)

[ud(Q") =bx +&di & [% (Q") = x (Q)] (29a)

then

will mean that the two edges of the cutdbgan be moved apart by that infinitesimal rigid
motion if one would like to obtain an everywherengie-valued and continuous
deformation state ovf from the “welding” ofV’toV (viz., a proper stress state).

In addition, that will show that a rotational junip not compatible with only the
assumptions opi andki that were given above.

If the constants and by , which are characteristic of the discontinuitiasthe
displacement and rotational vector fields, are igivea doubly-connected body then the
deformation tensor fieldg« andxi that will have to satisfy the integral conditions:

K dE= 2, (31)
Cﬁ[ymk_ekn@(i Kml] dgm: b — i & % (Q), (32)

in which Kq is a curve through the poi@ that surround the hole, in addition to the
differential conditions (13) and (14).

Equations (27) and (29a) agree formally with YWWeingartenand Volterra [2], [6]
that are true in a classical continuum. One ¢h#sdisplacement jump (29a)Valterra
distortion.

6. Jump conditionsin a classical continuum

In order to conclude the kinematical arguments, tveat the special case of the
classical continuum, for which one sets:

#=0. (33)
That will imply:
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®y = 1em0i Un, (34)

Yk = Emk = Emk (35)
and

Kmk = Om @) = Bpq ap E&m (36)
SO:

Om Py =3 8pq Op ym,
Ghq =% €qi Bk (Ok U — 01 W),
Om Gpg = % €l Bki (Ok Emi — 01 Emi).

(31) and (32) then imply the well-knowkieingartenformulas:
P el den=a1, (37)
K

Cﬁ (‘gmk _ekli 5. qu a p‘gqm) CEm: bk —&i a X (Q) (38)

Ko

7. Derivation of the compatibility conditions from Castigliano’sprinciple

In the classical theory of elasticity, differehtzand integral compatibility conditions
will follow from Castigliano’svariational principle as natural conditions, Ssckforth
has shown3].

A variational principle of th€astiglianotype can also be formulated in the theory of
elasticity forCosseratcontinua, and we will now show that the differentad well as the
integral, compatibility conditions will follow as natdreonditions from the minimal
principle in a multiply-connected, simply bounded body.

For the sake of simplicity, we shall consider a doublgrected body that is
composed of an elasti€osseratmaterial that is loaded with volume forc&s and
volume moment¥; in V and with force-stressgs and moment-stressegson the outer
surfaceF. Let the elastic energy density of the materia\b@ , «i). The principle of
minimum potential energy will then rea8] |

S{[IW( ¥ k) = X 4= YB] dV=[( pur qB) dF=0, (39)

when one observes the constraint conditions:

Y — 0i U + e P =0, (40)
inV
K — 0 D= 0. (41)
We restrict ourselves to bodies for which no kinematmahstraint conditions are

prescribed offr.
(39) are associated with the natural conditions:
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=W (42)
Vi

=W (43)
0K,

which represent the definitions of the force and morsgrasses:

0 G = Xy, (44)
inV
0i Uk + 8dm Om = Yk, (45)

are the equilibrium conditions, and finally one hasduter surface conditions:

Ni Ok = Pk » (46)
onF

N Ltk = Gk - (47)
n; is the external unit normal vector of a surface eletrdF. A Friedrich transformation

[9] will now give us theCastiglianovariational principle for th€osseratcontinuum:
In the case of equilibrium, one has:

S[Wa, 4) dV=0, (48)
\%
with the constraint conditions (44) to (4~ (i , () arises fromW (i , ki) from a
Legendrdransformation:
W (G, £i) = Y G + Kic i = W (M, Kid) - (49)

Correspondingly, one has:
ow" _

= 50
20, Wi (50)
and
]
AL (51)
J7N

The homogeneous equilibrium conditions (44) and (45) wilkdtesfied identically
when one makes the stress function Ansatz [

o\ = epq 0p Fok, (52)
M = epk 0p Gak + Ak Fpp = Fud, (53)
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with the asymmetric stress-function tensBgsandGi . If we let gl and 7 denote
particular solutions of the inhomogeneous equilibrium ¢@s then:

gk = 0 +o,” (54)
and
i = 1O + " (55)

will be the general solutions of equations (44) to (47). iagine that the deformation
tensors in:

I(Vika_aik +K Ol )dV=0 (56)
\Y
are expressed in terms of stress functions and finélconditions:

0i ook =0,  0; A0k + &m A0im = O, inV, (57)
n, ooy = 0, N ik = 0, onF, (58)

for dgix and dux by means of the Ansatze:

OO = €pq ap d:qk, (59)
inV
5/j|k = apq ap 5qu+ dk d:qq - 5Fk| y (60)
with
ni apq ap d:qk = 0, (61)
onF,
ni (apq ap 5qu+ dk d:qq - 5Fk|) = 0 (62)

Equation (56) then reads:

'[{ yik kaa péFqk + Kil& qua pdqu+ 5|l§ I:pp_ 5 Fl)|} dV: 01 (63)
\%

and a partial integration of this and an applicatioGatfiss’ssheorem will yield:
j{[ kaa pyik + 5ikap - Kil] 5Fqk+[ eipcfa p{( (1( 5G}k dV
\%

+ [N 8, (VI R+, 3G,) dF=0. (64)
F

Since the variationsFyi and JdGi are arbitrary inV, we will get the differential
compatibility conditions:
8pq Op Kqk = 0 (13)
and
8pq Op Yokt Ok Kaq — Kia = 0 (14)
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in V. The stress function variations in the surfacegrgkemust fulfill the homogeneous
equilibrium conditions. We will achieve that when wate J Fi andd Gy as null stress
functions [7]:
OFy =0 fx, (65)
0Gik = 0i ok — e f« (66)

in a neighborhood of [10], [11]. We assume thad Fy and J G are single-value®!

functions in a neighborhood &t
With (65) and (66), the surface integral in (63) will beeom

[N 60 (i f Kl 9~ & 1)) dF=0. (67)
!

After partial integration, we will get:

[N €00,V 1) +0( K B) ~(0 Vit K &) =9k Gk dF=0.  (68)
!

Due to the arbitrariness &f andgx in a neighborhood of, the last two terms in the
integrand will yield the continuation of the diféetial compatibility conditions t&. The
first two terms can be transformed into a line gnéd by usingStokes’sheorem; in that,
the outer surfac should be cut up canonically into a simply-conadcturfacd-"[10].

K® jKfl)
Figure 2.

The boundary curv& of the surfacé is: K= KP +K® +K®+K®. We then get the
line integral:

$ Wrifi+ kg ) dE = 0. (69)

Since ik and kmi are continuous oR, the integral:

<ﬁ ymkfkdgm+ Cﬁ ymkf kdéT m

K® KW
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for example, can be combined into an integral d¢/& in which the jump functionf;]
will appear in the integrand:

$yml FIE,.

For that reason, we can write the line integra) @9a sum of two line integrals:

GVl 11 +KL OB dE it U VTt K nlh & =0 (70)

KW K

Since have assumed that the variatidfg and &Gy are continuous in a neighborhood of
F, theWeingarten-Volterrgump conditions (27) and (29) will imply that:

[fd = a, (71)
[Od =c+eni a &, (72)

with arbitrary infinitesimal constant vectagandcy ; & is a point on the cut cunte
Equation (70) then reads:

ak{<ﬁ(ymk+Kmkelkl r}+c{<<ﬁKmk¢(}

K® KW

+af § (Yt K n&id) &3+ 4 K ), = (73)

(2) (2)

The line integrals ovek™ are zero, since any surfavethat is bounded bi® will lie
entirely withinV, and the differential compatibility conditions dudfilled in V.
Since a and ¢ are arbitrary, (73) will finally imply the integracompatibility
conditions:
Cﬁ (ymk _Kmkelkigi) dgm: 0 (32)
K®
and
¢ K dE,=0. (31)

K

The extension of the results that were derivedhi section ton-fold-connected
bodies ( > 2) will raise no difficulties.

We have then shown that all conditions for the pgatibility of a Cosserat
deformation state are natural conditions@astigliano’svariational principle, which is a
result that was not to be expected from our expeeiewith the classical theory of
elasticity.
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