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 The equilibrium conditions of the Cosserat continuum are satisfied identically by a complete stress 
function representation of the stresses.  For a kinematically compatible stress state in an isotropic 
elastic continuum, the stress functions can be expressed in terms of potential functions and solutions of 
the Helmholtz equations. 
 

Introduction 
 

 One can mathematically formulate an elastostatic problem in classical linear elasticity 
theory as either a boundary-value problem for the displacement vector field or a 
boundary-value problem for the stress function tensor field.  In both cases, the solutions 
of the field equations can be expressed with the help of certain Ansätze regarding 
potential functions; the Ansatz for the displacement vector field was found by NEUBER 
[1] and PAPKOWICH [2], while SCHAEFER [3] found the stress function Ansatz. 
 Analogously, the elastostatic problem for the linear isotropically-elastic COSSERAT 
continuum can be formulated as either a boundary-value problem for the displacement 
and rotation vector fields or as a boundary-value problem for the two tensor fields of the 
stress functions.  NEUBER [4] has shown that one can convert the solutions of the six 
coupled differential equations for the kinematic fields by certain Ansätze on the solutions 
of potential equations and Helmholtz equations.  In the present paper, the corresponding 
Ansätze for the stress functions will be derived and compared to the NEUBER Ansätze. 
 
 

Preface 
 

 We compute in Cartesian coordinates and employ the summation convention that 
Greek indices are to be summed over from 1 to 3.  It will be assumed that all scalar, 
vector, and tensor fields are defined in a simply-connected, but possibly multiply-
bounded, region G with an outer surface ∂G and that they are continuously-differentiable 
as many times as is required. 
 The equations of kinematics and statics of COSSERAT continuum can be written 
quite simply with the use certain well-defined differential operators.  Certain relations 
between these differential operators characterize the analogies that exist with the 
differential operators of vector analysis; their interpretation in the calculus of alternating 
differential forms was recognized by SCHAEFER [5]. 
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 We combine the tensor fields ∂iVk and (∂iWk − eikα Vα), which are defined by the two 
vector fields Vi and Wi, and define them as the result of applying a differential operator – 
“Grad” – to the vector fields V and W: 
 

(1)     Grad 
 
 
 

V

W
 ≡ 

.
i k

i k ik

V

W e Vα α

∂
∂ −

 

 
Similarly, we define a “Div” operator that acts on two tensor fields of rank two Q and R: 
 

(2)     Div 
 
 
 

Q

R
 ≡ k

k k

Q

R e Q
α α

α α αβ αβ

∂
∂ +

 

 
and a “Rot” operator that likewise acts on two tensor fields: 
 

(3)     Rot 
 
 
 

Q

R
 ≡ 

( ).
i k

i k k

e Q

e R e Q
αβ α β

αβ α β αγ βγ

∂
 ∂ +

 

 
In this, eikl is the permutation symbol that is skew-symmetric in all indices. 
 In addition to the operators defined in (1) to (3), we also define the operators Grad*, 
Div*, and Rot*: 

(1)*,    Grad* 
 
 
 

V

W
 ≡ 

,
i k

i k ik

V

W e Vα α

∂
∂ +

 

 

(2)*    Div* 
 
 
 

Q

R
 ≡ 

,
k

k k

Q

R e Q
α α

α α αβ αβ

∂
∂ −

 

 

(3)*    Rot* 
 
 
 

Q

R
 ≡ 

( ).
i k

i k k

e Q

e R e Q
αβ α β

αβ α β αγ βγ

∂
 ∂ −

 

 
One may easily check that the following identities exist: 
 
(4), (5) Div Grad*  = ∆, Div* Grad  = ∆, 
(6), (7) Div Rot = 0, Div* Rot*  = 0, 
(8), (9) Rot Grad  = 0, Rot Rot* = Grad* Div – ∆, 
 
 

Kinematics, statics, and the material law of the linear,  
isotropically-elastic Cosserat continuum 

 
 We assume: Any “point” of the COSSERAT continuum is orientable and has the 
possible motions of a rigid body.  We describe the six functional degrees of freedom of 
the continuum by a displacement vector field u(xi) and – for small rotations – by a 
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rotation vector field ϕϕϕϕ(xi).  The deformation state of the COSSERAT continuum is 
described by the two deformation tensors χχχχ and εεεε: 
 

(10)     
 
 
 

χχχχ
εεεε

 = Grad 
 
 
 u

ϕϕϕϕ
. 

 
The asymmetric tensor χχχχ is the tensor of curvature deformation, the symmetric part of εεεε is 
the deformation tensor of classical linear elasticity theory, and the skew-symmetric part 
of εεεε measures the difference between the local rigid rotation that is determined by the 
displacement vector field and the absolute rotation of the “points” of continuum.  If the 
deformation tensor fields χχχχ and εεεε are given in a simply-connected region G then we can 
calculate a rotation vector field and a translation vector field uniquely from them – up to 
a rigid rotation – when the compatibility conditions: 
 

(11)     Rot 
 
 
 

χχχχ
εεεε

 = 0 

are fulfilled in G. 
 The deformation tensor εεεε can be associated with a force stress tensor σσσσ and the 
curvature tensor χχχχ, with a moment-stress tensor µµµµ under the principle of virtual 
displacements and the LAGRANGE liberation principle [6].  For a surface element dF 
with the external unit normal vector n that is loaded with a force p dF and a moment m 
dF, one has: 
(12)    n ⋅ σσσσ  = p, n ⋅ µµµµ  = m. 
 
The differential equilibrium conditions for a volume element of the continuum that is 
loaded with the volume force X and the volume moment Y read: 
 

(13)     Div 
 
 
 

σσσσ
µµµµ

 = − 
 
 
 

X

Y
. 

 
The material law for the linear isotropically-elastic body is [7]: 
 

(14)   

1 1

2 2 2
3

1 1
2 ,

2 4 2 4 1 2

1 1
2 ;

2 4 2 4

ik ik ki ik

ik ik ki ik

c c
G

c c
GL c

αα

αα

νσ ε ε δ ε
ν

µ χ χ δ χ

     = + + − +     −     


     = + + − +         

 

 

(15)   

3
2

2 2 3

1 1

1 1 1 1 1
,

2 2 2 1 3

1 1 1 1 1

2 2 2 1 2

ik ik ki ik

ik ik ki ik

c

GL c c c

G c c

αα

αα

χ χ µ δ µ

νε σ σ δ σ
ν

     
= + + − −      +     


     = + + − −     −    
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includes six material constants: the shear modulus G, the transverse contraction number 
ν, a material constant L with the dimension of a length, and the three-dimensional 
material constants c1, c2, c3 . 
 For brevity, we write: 
 

(16)  
 
 
 

σσσσ
µµµµ

 = (1)

(2)

0

0

   
   

  

M

M
χχχχ
εεεε

,  
 
 
 

χχχχ
εεεε

 = 
1

(2)
1

(1)

0

0

−

−

   
   
    

M

M

σσσσ
µµµµ

, 

 
in which ( )iM  and 1

( )i
−M  are isotropic tensors of rank four. 

 
 

The basic elastic equations and the solution Ansatz of Neuber 
 

 For the determination of the displacement and rotation vector field in a body G, for 
which the kinematic degrees of freedom are restricted on the outer surface ∂G or that 
outer surface ∂G is loaded with force and moment stresses, we have the basic elastic 
equations: 

(17)    (1)

(2)

0
Div  Grad 

0

   
   

  

M

M u

ϕϕϕϕ
 = 0, 

 
with consideration to the corresponding boundary conditions to be solved.  More 
specifically, these equations read: 
 

(18)  

1 1
1

1 2 1
3 3

1
1  grad div +  rot 0,

2 1 2 2

2 1
1 1 2  grad div + rot  0;

2 2 2

c c
c

c c c
c

L

ν
   + ∆ + − =    −   

      + ∆ + − + − =         

u u

u

ϕϕϕϕ

ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ
 

 
it will be solved by an Ansatz [4] that corresponds to the NEUBER-PAPKOWICH 
Ansatz of classical elasticity theory: 
 

(19)   

2
0 1

1

1

1
grad div ,

4(1 )

21
rot grad ,

2

l

c

c

ν

χ

  
= − Φ + ⋅ + + +  − 


 + = + + 
 

u r ψ ψψ ψψ ψψ ψ

ϕ ψϕ ψϕ ψϕ ψ

Φ ΦΦ ΦΦ ΦΦ Φ

ΦΦΦΦ
 

 
(20), (21)   ∆Φ0 = 0, ∆ΦΦΦΦ = 0, 
 

(22)   
2
1

1

l

 
∆ − 
 

ψψψψ  = 0, 2
1l  = 2 1 2

1

(2 )(2 )

8

c c
L

c

+ +
, 
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(23)   
2
2

1

l
χ

 
∆ − 
 

 = 0, 2
2l  = 2 3

1

1 c
L

c

+
. 

 
 

The stress function solution 
 

 The integration of the elastostatic problem with the help of stress functions comes 
from an Ansatz for the stresses that the equilibrium conditions satisfy identically. 
 
 THEOREM: Any equilibrium system of force and moment stresses may be 
represented in the form: 

(24)    
 
 
 

σσσσ
µµµµ

 = Rot Grad∗
   

+   
   

S

T

F

G
, 

in which [8]: 

(25), (26)   Div  ∗  
 
 

F

G
 = 0,  

 
∆  
 

S

T
 = − 

 
 
 

X

Y
. 

 
Proof: Let 

(27), (28)  
 
 
 

H

K
 = − 1 1

4 G
dV

rπ
 
 
 

∫
σσσσ
µµµµ

,  Div 
 
 
 

σσσσ
µµµµ

 = − 
 
 
 

X

Y
. 

 
Then, from (27), one has: 

(29)     
 

∆  
 

H

K
 = 

 
 
 

σσσσ
µµµµ

 

and with (9): 

(30)    Rot Rot Grad Div∗ ∗   
+   

   

H H

K K
 = 

 
 
 

σσσσ
µµµµ

 

We now set: 

(31)    Div  ∗  
 
 

F

G
 = − Div* Rot* 

 
 
 

H

K
 = 0, 

with: 

(34)   
 

∆  
 

S

T
 =  Div Div  

∆   
∆ −   ∆   

H H

K K
 = Div

 
 
 

σσσσ
µµµµ

 = − 
 
 
 

X

Y
. 

 
With that, we have shown that we can find a representation of the form (24) for any 
equilibrium stress state. 
 
 For the following, we assume that the volume force X and the volume element Y are 
zero.  The vectors S and T in the stress function Ansatz (24) will then be harmonic 
vectors: 
(35)     ∆S = 0,  ∆T = 0. 
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We consider the auxiliary condition (25), in which the stress function tensors of first 
order F and G are expressed in terms of stress function tensors of second order F and G: 

 

(36)      
 
 
 

F

G
 = Rot* 

 
 
 

F

G
. 

 
The stress function Ansatz (24) then reads: 
 

(37)    
 
 
 

σσσσ
µµµµ

 = Rot Rot* 
 
 
 

F

G
 + Grad* 

 
 
 

S

T
 

or 

(38)    
 
 
 

σσσσ
µµµµ

 = Grad* Div 
      

+ − ∆      
      

F S F

G T G
, 

 

(38′)   
,

.
ik i k i k ik

ik i k i k i k k ik

F S F

G e F T e S G
α α

α α αβ αβ αβ α

σ
µ

= ∂ ∂ + ∂ − ∆
 = ∂ ∂ + ∂ + ∂ + − ∆

 

 
Since the body G is simply connected, we can exclude the existence of proper stresses; 
the stress functions must then be determined in such a way that the equilibrium stress 
state (38) is compatible, so, from (11), it must satisfy the condition: 
 

(39)   Rot 
1

(2)
1

(1)

0
Grad Div  

0

−
∗

−

          + − ∆         
            

M F S F

M G T G
= 0. 

This means that: 
 

1
(2)

1
(1)

0
Grad Div  

0

−
∗

−

          + − ∆         
            

M F S F

M G T G
 = Grad 

 
 
 u

ϕϕϕϕ
. 

 
On the left-hand side of this equation, after a series of conversions, one may split off a 
“gradient”: 
 

(40)   Grad
(1)

(2)

 
 
 

N

N
 + 

(1)

(2)

( , )

( , )

 
 
 

F G

F G

L

L
 = Grad

 
 
 u

ϕϕϕϕ
. 

Thus, one has: 

(41)  (1)
iN = 

2

1

2GL
(∂α Gαi + 2Fi + Ti), 

(2)
iN = 

1

2G
(∂α Fαi + Si), 

 
L

(1)(F, G) and L(2)(F, G) are tensorial differential expressions in the stress functions Fik 

and Gik . 
 We set: 
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(42)    ϕϕϕϕ = N(1), u = N(2) 
and 
(43)   L

(1)(F, G) = 0,  L
(2)(F, G) = 0. 

 
Equations (43) are 18 coupled partial differential equations of second order for the 18 
stress functions Fik and Gik . 
 When we split them into their symmetric and anti-symmetric parts: 
 
(44)   ( )m

ikL  = ( ) ( )
( )
m m
ik ike α α+L L , m = 1, 2,  

    ( )
( ) ( , )m
ik F GL  = 0, ( ) ( , )m

α F GL  = 0, 

they read: 

(45) (1)
( )ikL  = 3

( ) ( )2
3

1
( 2 )

2 1 3ik ik

c
G G G F T

GL c αα α β αβ α α α αδ
 
−∆ − −∆ + ∂ ∂ + ∂ + ∂ + 

 = 0, 

 

(46) (1)
iL  = ( )

1

1 1 1
( 2 )

2 2 ik i i ie G G e T
G c αβ α γ αβ α α αβ α αδ
  
− − ∂ ∂ − ∂ ∂ + ∂  
 

 

    − ( )
2 2

1 1 2
( )

2 i i i iG F S e F
c c α α αβ α β

 
− ∆ + ∂ + − ∂  

  
 = 0, 

 

(47) (2)
( )ikL  = ( ) ( )

1
( )

2 1ik ikF G F S
G αα α β αβ α α

ν δ
ν

 −∆ − −∆ + ∂ ∂ + ∂ + 
 = 0, 

 

(48) (2)
iL  = ( )

1

1 1 1
( 2 )

2 2 ik i i ie F F e S
G c αβ α γ αβ α α αβ α αδ
  
− − ∂ ∂ − ∂ ∂ + ∂  
 

 

    − ( )2
1

1 1 1
( 2 )

2 i i i i iF G F T e G
c L α α αβ α β

 
− ∆ + ∂ + + + ∂  

  
 = 0, 

 
in which have introduced: 
 
(49)   Fik = F(ik) + eikα Fα ,  Gik = G(ik) + eikα Gα . 
 
 The differential equations for the stress functions may now be decoupled by means of 
certain Ansätze, and turn into potential and POISSON equations, as well as homogeneous 
and inhomogeneous HELMHOTLZ differential equations. 
 We next solve the equation (47) by the Ansatz: 
 
(50)     F(ik) = f(ik) + δik f 
with 
(51)     ∆f(ik) = 0. 
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By substituting this in (47), we obtain the differential equation for f: 
 

(52)    ∆f = − ( )
1

f Sα β αβ α α
ν

ν
∂ ∂ + ∂

−
, 

 
whose solution, from (35) and (51), reads: 
 

(53)    f = 
0

0 ( )( )
2(1 )

f x f x Sα β αβ α α
ν

ν
− ∂ +

−
, 

with: 

(54)     
0

0f∆  = 0. 
Equation (47) is thus fulfilled. 
 We next take the trace of (45): 
 

(55)   ( ) ( )
3

1
2

3
G G F T

c αα α β αβ α α α α∆ + ∂ ∂ + ∂ + ∂  = 0, 

 
substitute in (45), and obtain the differential equation for G(ik): 
 

(56)    ( ) ( )

1

3ik ikG G ααδ ∆ − 
 

 = 0, 

 
which we solve with the Ansatz: 
 
(57), (58)   G(ik) = g(ik) + δik g , ∆g(ik) = 0; 
 
for the moment, the function g is still arbitrary. 
 With (57), it follows from (55) that: 
 

(59)   Fi = − 3
( )

3

1 1 1

2 2 2i i i i

c
g g T A

c α α αβ α βε+ ∂ − ∂ − + ∂ , 

 
with a still-undetermined vector field Ai . 
 One deduces the following differential equation for g by taking the divergence of the 
vector equation (48): 

(60)   3
2
2 3

1

1

c
g g T

l c α α
 

∆ ∆ − + ∂ + 
 = 0, 2

2l  = 2 3

1

1 c
L

c

+
. 

 
Up to a potential function, which can be assumed, along with δik g in g(ik), g must satisfy 
the differential equation: 

(61)    ∆g − 
2
2

1
g

l
= − 3

31

c
T

c α α∂
+

. 
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Due to (35), the solution reads: 
 

(62), (63)   g = 
0

2 3

1

c
g L T

c α α+ ∂ , 
0

2
2

1
g

l

 
∆ − 
 

 = 0. 

 
We substitute all of the results that we have obtained up to now in (48) and obtain the 
equation: 
 
(64) eiαβ ∂α Gβ = 

= eiαβ ∂α
2 21 1

1 1

2 21 1
2

2 2 2 2

c c
A L A e T L h e T

c cβ β βλµ λ µ β βλµ λ µ
 + −   − ∆ + ∂ + − ∂    

    
. 

 
in which: 

(65)   hi = ∂α f(αi) + 
1

2
 eiαβ ∂α ∂γ g(γβ) + Si + 

1

2
 eiαβ ∂α Tβ 

is a potential vector. 
 From (64), it follows that: 
 

(66) Gi = 2Ai − 2 21 1

1 1

2 21 1

2 2 2 2i i i i

c c
L A e T L h e T

c cαβ α β αβ α β
+ −   ∆ + ∂ + − ∂   

   
 +  ∂i ρ 

 
with a still-undetermined scalar function ρ. 
 Finally, it follows from equation (46) for the determination of Ai and ρ: 
 
(67) 

∆(Ai − 2
1l ∆Ai) + hi + 2 22 1 2

1 1
2 1 2

2 (2 ) (2 )

2 (2 ) (2 )i

c c c
f A l A l A

c c cα α α α α αρ
 − − −∂ ∆ − − ∂ − ∆∂ + ∂ + + + 

 = 0, 

 
and we set: 
(68)     Ai = Bi + Ci + Di, 
 

(69)   
2
1

1
iB

l

 
∆ − 
 

 = 0, 2
1l  = 2 1 2

1

(2 )(2 )

8

c c
L

c

+ +
, 

 
(70), (71)   ∆Ci = 0, ∆Di = hi , 
 

(72)   ∆ρ = f + ∂α A α + 2 22 1 2
1 1

2 1 2

2 (2 )(2 )

2 (2 )(2 )

c c c
l A l h

c c cα α α α
− − −∆∂ − ∂
+ − +

, 

 
in which not only ρ, but also ∂i ∆ρ, will be required for the computation of u, ϕϕϕϕ, σσσσ, and µµµµ.  
 The compatible stress functions read thus: 
 



S. KESSEL – The stress functions of the COSSERAT continuum                      10 

F(ik) = f(ik) + δik f, G(ik) = g(ik) + δik g, 
 

    Fi = − 3
( )

3

1 1 1

2 2 2i i i i

c
g g T e A

c α α αβ α β
+ ∂ − ∂ − + ∂ , 

    Gi = 2Ai −
2

2 21 1

1 1 1

2 2

2 2i i i i

c c L
L A L h e T

c c c αβ α β ρ+ −∆ + − ∂ + ∂ , 

with: 

   ∆Si = 0, ∆Ti = 0, 
0

f∆ = 0, ∆Ci = 0, ∆Di = hi , 

   ∆f(ik) = 0, ∆g(ik) = 0, 
2
1

1
iB

l

 
∆ − 
 

 = 0, 
0

2
2

1
g

l

 
∆ − 
 

 = 0, 

 
and the abbreviations: 
 

f = 
0

( )( )
2(1 )

f x f x Sα β αβ α α
ν

ν
− ∂ +

−
,  g = 

0
2 3

1

c
g L T

c α α+ ∂ , 

Ai = Bi + Ci + Di, hi = ( ) ( )

1 1

2 2i i i if e g S e Tα α αβ α γ γβ αβ α β∂ + ∂ ∂ + + ∂ . 

 
Equation (72) is true for ρ. 
 
 

Comparison of the stress function solution with the Neuber solution 
 

 We substitute the compatible stress functions into the equations (42) and obtain: 
 

(73)  ui = 
2
1

1 1 1

2 2 4(1 ) 2
i

i i

h
B x h B

G Gl G G Gα α α α
η

ν
 

+ − ∂ + + ∂ − 
, 

 

(74)  ϕi = 
0

1
2 2

3 1 1

21 1

2 2 2i i

h c
g e B

GL c G c l G
β

αβ α β
 +∂ + ∂ + 
 

, 

with: 

(75)  η = − 
0

( )

1
( )

2 4(1 )
f x h C D x e g Tα α α α α α α αβγ β λ λγ γ

ν
ν

− + ∂ + ∂ − ∂ ∂ +
−

, 

 
and one has ∆η = 0. 
 A comparison with the NEUBER Ansatz: 
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(19′)   

2
0 1

1

1

1
,

4(1 )

21

2

i i i i

i i i

u x l

c
e

c

α α α α

αβ α β β

ψ ψ
ν

ϕ χ ψ

  
= Φ + − ∂ Φ + Φ + ∂  − 


 + = ∂ + ∂ Φ + 
 

 

yields: 

(76)  ϕ0 = 
2G

η
, χ = − 

0

2
3

1

2
g

GL c
, Φi = ih

G
, ψi = 

2
1

1

2 iB
Gl

. 

 
With that, we have shown that the particular solution to the equation (40) that was 
constructed in the previous section is complete if the completeness of the NEUBER 
Ansatz (19) is known. 
 

Example 
 

 We determine the stress state that belongs to the special Ansatz: 
 

(77)  
0

g = 
0

( )g z , 
0

f = 0,  Si = Ti = Ci = Bi = 0; f(ik) = g(ik) = 0. 
 

Since 
0

( )g z  must be a solution to the differential equation: 
 

(78)     
0 0

2
2

1
g g

l
′′−  = 0, 

one must have: 

(79)     
0

( )g z  = 2 2/ /z l z lAe Be−+ , 
 
with the two integration constants A and B.  From (38), it then follows that: 
 

(80)   

2 2

2 2

/ /1
2

3 3

/ /1
2

3
3

3

0 1 0

( ) 1 0 0 ,
2

0 0 0

1 0 0

( ) 0 1 0 .
(1 )

1
0 0

z l z l

z l z l

c
Ae Be

L l c

c
Ae Be

c L
c

c

σ

µ

−

−

  
  = − −  
   

  
  
  
 = − +  
 +  +  
   

 

 
We thus solve the boundary-value problem for an infinitely extended lamina of thickness 
2d (Figure 1): 
    z = d:  n = ez ,  n ⋅ σσσσ = 0, n ⋅ µµµµ = m ez ; 
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    z = − d: n = − ez , n ⋅ σσσσ = 0, n ⋅ µµµµ = − m ez ; 
and obtain: 
 

  σ = − 
2

0 1 0
sinh

1 0 0
2 cosh

0 0 0

m

l

ζ
δ

 
 − 
  

, 

 

  µ = 3

3
3

3

1 0 0
cosh

0 1 0
1 cosh

1
0 0

mc

c
c

c

ζ
δ

 
 
 
 

+  + 
  

, ζ = 
2

z

l
,  δ = 

2

d

l
,  − d ≤ ζ ≤ d. 

 
We see from Figure 2 that the stresses in a lamina whose thickness is large compared to 
the “material constant” l2: (δ ≫  1) drop off very quickly away from outer surface. 
 
 I would like to warmly thank Herrn Professor Dr. H. SCHAEFER for his support 
during the production of this paper and Herrn Professor Dr. W. GÜNTHER for many 
stimulating discussions. 
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