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The stress functions of the Cosser at continuum

By S. KESSEL

Translated by D. H. Delphenich

The equilibrium conditions of the Cosserat continuunsatisfied identically by a complete stress
function representation of the stresses. For a latieally compatible stress state in an isotropic
elastic continuum, the stress functions can be expreasderthis of potential functions and solutions of
the Helmholtz equations.

Introduction

One can mathematically formulate an elastostatblpm in classical linear elasticity
theory as either a boundary-value problem for the disptent vector field or a
boundary-value problem for the stress function tensdd. fién both cases, the solutions
of the field equations can be expressed with the helpedfin Ansatze regarding
potential functions; the Ansatz for the displacemettaer field was found by NEUBER
[1] and PAPKOWICH ], while SCHAEFER 8] found the stress function Ansatz.

Analogously, the elastostatic problem for the lineatragncally-elastic COSSERAT
continuum can be formulated as either a boundary-vailablem for the displacement
and rotation vector fields or as a boundary-value prolfiterthe two tensor fields of the
stress functions. NEUBER{Y] has shown that one can convert the solutions ofithe s
coupled differential equations for the kinematic fieldscbytain Ansatze on the solutions
of potential equations and Helmholtz equations. In theeptgsaper, the corresponding
Ansatze for the stress functions will be derived and coasptr the NEUBER Anséatze.

Preface

We compute in Cartesian coordinates and employ themation convention that
Greek indices are to be summed over from 1 to 3. Itlwilassumed that all scalar,
vector, and tensor fields are defined in a simply-cot@ukecbut possibly multiply-
bounded, regio with an outer surfaceG and that they are continuously-differentiable
as many times as is required.

The equations of kinematics and statics of COSSERATimmum can be written
quite simply with the use certain well-defined diffeiahbperators. Certain relations
between these differential operators characterize ah@logies that exist with the
differential operators of vector analysis; theiremmretation in the calculus of alternating
differential forms was recognized by SCHAEFER [
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We combine the tensor fieldsvk and 0;\Wk — exs Vo), Which are defined by the two
vector fieldsV; andW, and define them as the result of applying a differenpakator —
“Grad” — to the vector field¥ andW:

(1) Grad{ V} = {aiv"
W aiWk ~ €y Vs

Similarly, we define a “Div”’ operator that acts on tvemsor fields of rank tw@® andR:

. Q — aaQak
(2) Div {R} = {agRak +6,,,Qus

and a “Rot” operator that likewise acts on two tensads:

Q| _ [€as9.Qm
3 R t =
(3) © {R} {Qgﬂ(aaRﬂk +ekayQﬂy)'

In this, ey is the permutation symbol that is skew-symmetridlimdices.
In additio*n to the operators defined in (1) to (3), we disfine the operators Grad
Div, and Rot

(1), Grad {V} = {aivk
w oW, +e.,V,,

. . o* _Q_ aaQak
2 Div =
(2) R {aaRak_ekﬂﬂQ” '

) Q] _ [€459,Qp
3 Rot =
() R {Qgﬂ(aaRﬂk _ekayQﬂy)'

One may easily check that the following identities texis

(4), (5) Div Grad =A, Div’' Grad =A,
(6), (7) DivRot =0, DivRot =0,
(8), (9) Rot Grad =0, Rot Rot = Grad Div —A,

Kinematics, statics, and the material law of thelinear,
isotropically-elastic Cosserat continuum

We assume: Any “point” of the COSSERAT continuum igmtable and has the
possible motions of a rigid body. We describe the anctional degrees of freedom of
the continuum by a displacement vector fieltk) and — for small rotations — by a
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rotation vector fieldg(x). The deformation state of the COSSERAT continusm i
described by the two deformation tensgrande:

(10) {X} = Grad{q.
£ u

The asymmetric tensgyis the tensor of curvature deformation, the symmefit ofe is
the deformation tensor of classical linear elastittiggory, and the skew-symmetric part
of € measures the difference between the local rigid ootatiat is determined by the
displacement vector field and the absolute rotatiorhef‘points” of continuum. If the
deformation tensor fieldg and € are given in a simply-connected regi@rthen we can
calculate a rotation vector field and a translationaefieéld uniquely from them — up to
a rigid rotation — when the compatibility conditions:

(11) Rot{x } -0
£

are fulfilled inG.

The deformation tensog can be associated with a force stress tewsand the
curvature tensory, with a moment-stress tens@r under the principle of virtual
displacements and the LAGRANGE liberation princi@g [For a surface elemenf
with the external unit normal vectarthat is loaded with a forge dF and a momenin
dF, one has:

(12) nlo =p, ntyu =m.

The differential equilibrium conditions for a volumé&ment of the continuum that is
loaded with the volume forcé and the volume momeivt read:

of7] [}

The material law for the linear isotropically-eladtiedy is [7]:

_ZGK Cljglk+(_1 Cljfk. Léikgaa:|’
2 4 4 - 2
(14)

Hig —ZGI—Z{( j ( __Zj)(ki+c35ik)(aa:|;

_ 1 G

ik _EK j ( c j/’lkl 1+ 3 5|k:uaa:|’
(15)

fo1f(1,1), (11

ik ZG|:(2 Clj ik (2 j aa:|
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includes six material constants: the shear mod@luthe transverse contraction number
v, a material constant with the dimension of a length, and the three-dimeradio

material constants;, C,, Cs .
HEM
el [Mg 0 Jlu)

For brevity, we write:
in which M ;, and M al are isotropic tensors of rank four.

ol _| 0 My \x
(19) LJ _L\_A(z) 0 MJ
)

The basic elastic equations and the solution Ansatz of Neuber

For the determination of the displacement andtimtavector field in a body, for
which the kinematic degrees of freedom are restticin the outer surfa@ or that
outer surfacedG is loaded withforce and moment stresses, we have the basiccelasti
equations:

|0 My, P\ _
a7 DIV{M(Z) 0 }Grad{u} =0,

with consideration to the corresponding boundarndd@mns to be solved. More
specifically, these equations read:

(1+%jAu +(ﬁ—%} grad diw €, rop = O,
(18)

(1+%jA¢+(1—C—22+ zgj grad div %(—; rou—¢j= (

it will be solved by an Ansatz4] that corresponds to the NEUBER-PAPKOWICH
Ansatz of classical elasticity theory:

u= —grad{cp0 + 4(1_V)r [ +1? divw} +O+yY
(19)

¢ :%rot(dH 2;q¢j+ grady ,
(20), (21) AD=0, AP=0,

_1, - 2 _,2(2+¢)(2+c,)
(22) (A |fj¢' 0, K L—&:l ,
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(23) a-Lly=0  1z=ppMS
2 2
I C

The stress function solution

The integration of the elastostatic problem witlke telp of stress functions comes
from an Ansatz for the stresses that the equilbraonditions satisfy identically.

THEOREM: Any equilibrium system of force and moment stresses may be
represented in the form:

(24) {a} = Rotﬁ} crad| 3|,

y7; & 1T
in which [8]:

JF 's]_ [X
(25), (26) Div {6_ =0, A_T_ = {Y}
Proof: Let

Hl__1.1fo o] __[X
(27), (28) {K} = 4ﬂj@rﬂ}dv, DleJ {Y}
Then, from (27), one has:
29 Al =19
o )l
and with (9): i
(30) Rot Rot’ H}+ Grad Di{H} = {a}
LK K] Lu

We now set:

. DF_ e ‘H}
(31) Div =-Div Rot =0,

S | K
with: i
(34) A{S} = ADiv{H}—Div {AH = Div{a} =- {X}
T K AK | u Y

With that, we have shown that we can find a repted¢®n of the form (24) for any
equilibrium stress state.

For the following, we assume that the volume fofcand the volume elemehit are
zero. The vector$ andT in the stress function Ansatz (24) will then benhanic
vectors:

(35) AS =0, AT =0.
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We consider the auxiliary condition (25), in which theess function tensors of first
order§ and® are expressed in terms of stress function tens@sooind ordeF andG:

51 .[F
- HETH!

The stress function Ansatz (24) then reads:

(37) 7| - Rot Rot {1 + Grad {S}
G T

w ] - fon[ ] [3] o[ ]

{Uik =0,0,F, +0,S —AF,,

iva’® ak

Hi :aia G +aieka/]|:a/] +aiTk +ekaﬂsa _AGik'

a “ak

(38)

Since the bodys is simply connected, we can exclude the existence of peifEsses;
the stress functions must then be determined in such ahatyhe equilibrium stress
state (38) is compatible, so, from (11), it must satiséycondition:

o ool

This means that:

w0 e e Rl elelf el l]

On the left-hand side of this equation, after aeseof conversions, one may split off a
“gradient”:

()] (1)
(40) Gra{:::(z)} + {f:(z)((i’gi} = Grac{ﬁ:|
Thus, one has:
1 1
(41) N® = saz 0aGa+ i+ T), N®) = 5 @aFa +S),

£Y(F, G) and £@(F, G) are tensorial differential expressions in thesgrfunctiond

andGik .
We set:
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(42) ¢ =N, u=N®
and
(43) £Y(F, G) =0, £9(F, G)=0.

Equations (43) are 18 coupled partial differential equationseobnd order for the 18
stress functionkix andG .
When we split them into their symmetric and antingyetric parts:

(44) L0 = £ et m=12
£ (F,G) =0, £"(F,G) =0,
they read:
_ 1 G _
(45) 2((1&) = E _AG(ik) _ﬁ 5|k (_AGHH +aaaﬂG(a/J) + ZaaFa +aaTa )} =0,

1 1 1
(46) £:(il) = z|:_ E _Ej 5ik (Qaﬂaaa yG(aﬂ) - 2aiaorGor + QaﬂaaTa )

1 1 2
- | Z-=|AG +—=(0,F, +S)-€,0,F; | =0,
(2 Czj i C2( a’ (ai) S) Qaﬂ a ﬂ:|

1 vV
(47) 2((?&) = E[_AF(ik) _md.k (-AG,, +aaaﬂF(aﬂ) +aaSa):l =0,

1 1 1
(48) £:(iZ) = 2_|:_(E _Ej 5ik (Qaﬂaaayl:(aﬂ) - 2aiaor Fa + Qaﬂaasa )

1 1 1
- (E_EJAE +F(6,,G(m) +2F +T, +qﬂﬂaaGﬂ)} =0,

in which have introduced:
(49) Fik = Fgk + €ka Fa, Gik = Gk + ke Ga -

The differential equations for the stress functiomy now be decoupled by means of
certain Ansatze, and turn into potential and POIS®&Quations, as well as homogeneous
and inhomogeneous HELMHOTLZ differential equations.

We next solve the equation (47) by the Ansatz:

(50) Fi = fag + At
with
(51) Af(ik) =0.
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By substituting this in (47), we obtain the differengglation forf:
Vv
(52) Af = - E(aaaﬁ fop +0,S,),

whose solution, from (35) and (51), reads:

0 Vv
(53) f= fo_mo(aaﬂ Fapy ¥ %),
with:
0
(54) Af, =0.

Equation (47) is thus fulfilled.
We next take the trace of (45):

1

(55) —NG, ,+00,G,_,+20 F +0 T =0,
305 a” p a’ a a’'a

(aa)

(aB)

substitute in (45), and obtain the differential @gpn forG:
(56) A(G(ik) 35 G‘””)j 0,

which we solve with the Ansatz:
(57), (58) Giw =dik + &9, Agiy=0;

for the moment, the functiogis still arbitrary.
With (57), it follows from (55) that:

1l+c,
2¢,

1 1
(59) Fi=- 0,9 _Eaag(m) T+ gmﬂa Aﬂ

with a still-undetermined vector fiel .
One deduces the following differential equationddy taking the divergence of the

vector equation (48):
% aTj o, =M%

(60) {Ag—lzg+1+C3 c

Up to a potential function, which can be assuméshgawith dx g in gw, g must satisfy
the differential equation:

(61) Ag- S g=-—2-9,T,.
2 1+c,
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Due to (35), the solution reads:

(62), (63) g= g+ L%@L,Ta, (A—ij& - 0.

|2

We substitute all of the results that we have obthing to now in (48) and obtain the
equation:

(64) aaﬁaa Gﬁ:

2+ 1 2- 1
= aaﬁa{zAﬂ - LZZ—C?[AA[, +EewaATﬂj + sz(hﬂ ——ZeWa)Tﬂﬂ .

in which:
1 1
(65) hi =04 fi) + > €05020,00p + S + > €ap0a Tp

is a potential vector.
From (64), it follows that:

(66) G =2A- LZ?—QQ[AA +%eaﬂ6Jj 412 Z&lcl[h =l j+ 0

with a still-undetermined scalar functign
Finally, it follows from equation (46) for the @emination ofA; ando:

(67)

o _ _2 C, 2 (2-¢) (2- C)z _
AA IAA.)+h+6{Ap f-9,A, 1200, A, + (2+C1)(2+C)1aa } 0,
and we set:

(68) A =B +C +D,
(69) (A ﬁjB 0. 1z=12@ra)2re)
| 8¢,
(70), (71) AG; = 0, AD; =h
_ 2-6C, 5 (2-¢)(2=¢,) 2
(72) Ap=f+0,An+ +C2|1A50A, (2 cl)(2+cz)la”h”

in which not onlyp, but alsad; Ap, will be required for the computation of @, o, andu.
The compatible stress functions read thus:
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Fa = fay + A f, G = k) + A 0,

Fi== 00,050,005 oA
G =2A —LZ%AA+L2 2ap L aaﬁ T,+00,
with:
AS =0, AT, =0, A(fJZO, AC =0, AD; =hy,

1 1)\0
Af(ik) =0, Ag(ik) =0, A—I—Zj B = 0, [A—I_ng =0,
and the abbreviations:
- f—— Y (xa.f . +xS) g=g+12Sa T
2(1—1/) a” £ (af) aase c ala>

1
Ai = Bi + Ci + Di’ hi = aa (m) qgﬂ yg(;ﬁ) + S +EQaﬂaaTﬂ
Equation (72) is true fop.

Comparison of the stress function solution with the Neuber solution

We substitute the compatible stress functionstimoequations (42) and obtain:

(73) U = ﬂ-*-iza _ai L+—1Xaha aaBa )
G 2GI; 2G 41-v )G &
(74) b=—1 o g+ N, 2+q g
| ZGng q”f’ G 2cll G 7)
with:
——t-1xn v
(75) n=- _Exa yog +aaCa +aaDa _4(1—_1/) g aﬂya (6/1 g(/iy) )

and one haAn = 0.
A comparison with the NEUBER Ansatz:

10
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1
=P+ -0 | D.+——x D +1%09 ,
(19) ul i [/Il |( 0 4(1_V)Xa a 1 awaj
1 2+c
¢i :ai)('*'_% aa[cb + 7/ j
o ap B G B
yields:
_n _ 1 7 _h _ 1
76 =, =-_———g, =1, (=—=5B.
(76) h=%p X 2GL7C, © G %= oaz

With that, we have shown that the particular solutto the equation (40) that was
constructed in the previous section is completéhée completeness of the NEUBER
Ansatz (19) is known.

Example

We determine the stress state that belongs tspdeial Ansatz:
0 0 0
(77) g=9(2), f=0, S=Ti=Ci=Bi=0; fu =0 =0.

0
Since g(z) must be a solution to the differential equation:

0" 1 0
(78) g —I—zg =0,
2
one must have:
0
(79) g(2) = Ae”2 +Be ™"z,

with the two integration constamsandB. From (38), it then follows that:

010
U:ﬁ(Aez”Z—Be’Z"Z) -10 0],
373 000
80
(80) 10 O
_ G 211 =
=——31 _(Ae"2+Be“2)[01 O
U (1+C3)L2( ) )
005
L G

We thus solve the boundary-value problem for amitefly extended lamina of thickness
2d (Figure 1):
z=d: n=e, n o= 0, nu=me;;
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z=-d n=-e, n o= 0, nu=-me;
and obtain:

010
-10 0},
00O

m sinh{
21, cosho

10 0
- MG Coshe g4

_1+c3 cosho
00 1+c,
G

J\l
1
| N
(¥}
T
|
o
IA
J\l
A
o

N
N

We see from Figure 2 that the stresses in a lamina whadmess is large compared to
the “material constant’s: (0> 1) drop off very quickly away from outer surface.

| would like to warmly thank Herrn Professor Dr. H.F&EFER for his support
during the production of this paper and Herrn Professor DrGWNTHER for many
stimulating discussions.
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