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Part One. 
 

 In contrast to my previous papers on transformation groups (*), in the present paper, I 
shall adhere to the notations of Lie exclusively, and refer those readers that are less 
familiar with those papers to the survey that Engel gave in his paper in volume 27 of 
Math. Ann (pp. 1, et seq.).  My newly-introduced notations are also in accord with those 
of Lie and Engel, which is partially due to oral discussions with them.  Thus, I denote 
those infinitesimal transformations by which an r-term group is determined symbolically 
by X1 f, …, Xr f (by X1, …, Xr , where no misunderstanding can arise).  An arbitrary 
infinitesimal transformation ∑ ηι Xι f is determined by r coefficients η1, …, ηr , and can 
be denoted by merely (η1, …, ηr) or (η).  Any infinitesimal transformation leads to a 
simply-infinite family of finite transformations, and conversely, any finite transformation 
can be obtained by repeating an infinitesimal one infinitely often.  However, the finite 
transformations will be examined in the following investigations only in regard to the 
question of whether they do or do not commute.  As long as one does not consider 
infinitesimals of higher order, infinitesimal transformations always commute.  However, 
as long as a certain relation exists between two of them, any finite transformation that is 
derived from one of them will commute with any finite transformation that is obtained 
from the other one (Programm 1884, pp. 12).  We therefore need fear no 
misunderstanding when we consider all transformations that emerge from the same 
infinitely-small one by repetition to be identical and refer to that family of finite 
transformations by means of the associated infinitesimal one.  We then speak of a 
transformation ∑ ηι Xι f (perhaps in contrast to Lie). 
 In order for the r systems of differential equations X1f, …, Xr f to lead to a group, one 
must form the r (r – 1) / 2 expressions (Xι Xκ) by a known prescription, and one must then 
have: 

                                                
 (*) “Erweiterung des Raumsbegriffes,” Braunsberg, 1884.  “Zur Theorie der Lie’schen 
Transformationsgruppen,” Braunsberg, 1886. 
 Since the first paper was initially included in the directory of lectures for Winter 1884/85, while the other 
one was included in the directory for Summer 1886, the former shall be cited by Pr. 1884, and the latter by 
Pr. 1886. 
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(Xι Xκ) = c X fικσ σ
σ
∑ . 

 
 Certain relationships must exist between the coefficients cικσ  that one can derive from 
either the integration conditions or an equation that is almost self-explanatory for finite 
groups (*), and which is implied by the Jacobi relations: 
 

[Xι (Xκ Xλ)] + [Xκ (Xλ Xι)] + [Xλ (Xι Xκ)] = 0 
or by: 

ρ
∑ { cκλρ  (Xρ Xι) + cλιρ  (Xρ Xκ) + cικρ  (Xρ Xλ)} = 0. 

 
 Many properties of groups do not depend upon the transformations X1f, …, Xr f 
themselves, but are already derivable from the coefficients cικλ .  Thus, when two groups 
possess the same coefficients cικλ , they will be referred to as equally-composed.  
However, since one can alter the cικλ in such a way that one replaces the X1f, …, Xr f with 
r mutually-independent, homogeneous linear functions, one will have to refer to two r-
term groups as equally-composed when they either possess the same coefficients cικλ  or 
when one can bring about that equality by a suitable choice of the determining 
infinitesimal transformations. 
 As long as the r coefficients cικ1, …, cικr do not all vanish for given values of ι and κ, 

c X fικρ ρ
ρ
∑  will once more represent a transformation.  It is obvious that at most r of the 

r (r – 1) / 2 transformations that are obtained in that way will be mutually-independent; in 
many cases, they can be represented by a smaller number.  I have (Programm 1886, pp. 7 
and 8) denoted the number of the mutually-independent transformations thus-obtained by 
p and proved that these p transformations determine an invariant subgroup that exhibits 
some entirely remarkable properties.  One cannot avoid giving these subgroups a special 
name, and I refer to them as principal subgroups.  Thus, a group for which p = r is its 
own principal subgroup; by contrast, a group with nothing but commuting 
transformations possesses no principal subgroup.  It is known that any two-parameter 
group whose transformations do not commute always has a one-parameter principal 
subgroup; sometimes that subgroup is referred to as its principal element. 
 One will arrive at second number that is characteristic of the group by the following 
consideration: The problem of determining the two-parameter subgroups in which a 
given transformation (η1, …, ηr) exists leads to an equation of degree r: 
 

ω r – ω r−1 ψ1(η) + ω r−2 ψ2(η) − … ± ω ψr−1(η) = 0, 
 

in which the ψλ (η) are homogeneous functions of degree λ in η1, …, ηr , and in which 
the absolute term vanishes.  The question then arises of how many of the functions ψ1, 
…, ψr−1 are mutually-independent, in such a way that all of the other ones could be 
expressed in terms of them.  The number of the mutually-independent ones, which is 
always smaller than r – 1 for r > 2, shall be denoted by l and is called the rank of the 

                                                
 (*) Engel, “Beiträge zur Gruppentheorie,” Leipziger Berichte (1887), pp. 89, et seq.  



Killing – The composition of continuous, finite, transformation groups I. 3 

group.  If l > 1 then not only will the coefficients ψr−1 , …, ψr−l+1 vanish identically, but 
also all sub-determinants of degree r – l + of a certain determinant that is closely 
connected with the equation above.  Thus, for l > 1, an arbitrary finite transformation will 
commute with not only the ones that can be derived from its infinitely-small 
transformation, but with some other families, and the associated infinitely-small 
transformations determine an (l – 1)-term subgroup. 
 The proofs of these theorems, and many other relations in which the number l stands 
for a property of the group, are based, in one case, on a system of formulas that are 
derived from the Jacobi relations by simple operations.  A certain canonical form in 
which most groups can be represented leads to a second proof.  One arrives at that form 
in the following way: One starts from an entirely arbitrary infinitesimal transformation 
(η), poses the equation above for it: 
 

ω r – ω r−1 ψ1(η) + ω r−2 ψ2(η) − … ± ω ψr−1(η) = 0, 
 
and determines its roots.  In general, it has m vanishing roots, so ψr−1 , …, ψr−m+1 vanish 
identically, and one can still determine m – 1 transformations that are independent of 
each other, as well as the transformation (η), and which commute with the given one and 
each other.  One chooses the given transformation to be, say, Xr f, and the ones that are 
found to be Xr−1 f, …, Xr−m+1 f.  Now, the r – m non-vanishing roots ω1, …, ωr−m can 
initially be different from each other.  Thus, one can choose r – m transformations X1, …, 
Xr−m in such a way that: 
 

(Xr X1) = ω1 X1 f,  (Xr X2) = ω2 X2 f, …, (Xr Xr−m) = ωr−m Xr−m f . 
 

However, the following equations will likewise be true now: 
 

(Xr−1 X1) = 1ω′ X1 f,  (Xr−1 X2) = 2ω′ X2 f, …, (Xr−1 Xr−m) = r mω −′ Xr−m f , 

(Xr−2 X1) = 1ω′′ X1 f,  (Xr−2 X2) = 2ω′′ X2 f, …, (Xr−2 Xr−m) = r mω −′′ Xr−m f , 

…………………………………………………………………………………. 
 

 In order to characterize the composition of the group, one must still give the 
expressions (Xι Xκ) for ι, κ = 1, …, m.  However, one deduces that immediately from the 
roots ω; namely, (Xι Xκ) = cικλ Xλ f when ωι + ωκ = ωλ , and: 
 

(Xι Xκ) = (cικ r Xr  + cικ r−1 Xr−1 + … + cικ, r−m+1 Xr−m+1) f 
for 

ωι + ωκ = 0. 
 
Clearly, the same thing will be true for the roots κω′ , κω′′ , …  In that way, we will be led 

to look for certain relations between the roots. 
 One obtains a similar representation for equal roots ω, such that no essential 
difference enters for that case.  The case in which a transformation of the group 
commutes with all other transformations, which was excluded from the present sketch, 
requires special treatment.  Meanwhile, the required alteration can also be obtained easily 
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here.  By contrast, the present representation of the group will become completely 
impossible when all of the functions ψ1, …, ψr−1 vanish identically.  I shall also present a 
certain simple form from which many properties of the group can be easily observed, and 
which can then be considered to be truly canonical.  However, this form does not have 
the distinguishing properties that are special to the form that was described just now, and 
which come from the fact that most Jacobi relations are fulfilled by themselves, and 
among the ones that are not satisfied identically, the independent ones separate from the 
dependent ones immediately.  Those groups belong to a class that Engel considered quite 
recently [Leipziger Berichte (1887), pp. 95, et seq.], namely, the one in which no three-
parameter subgroup with the composition of the general projective group contains the 
simply-extended manifold (conic section groups).  He proved that any such group 
contains an (r − 1)-parameter invariant subgroup that once again contains an (r – 2)-
parameter invariant subgroup in it, etc.  In addition to the groups of rank zero, this class 
that Engel considered also contains the groups for which all of the functions ψ1, …, ψr−1 
can be represented by linear functions η1, …, ηr .  Engel’s theorem follows for the latter 
from § 4 of our paper, and the statement and proof of it was already known to me.  I first 
found the presentation in § 9 for l = 0 after Engel had communicated his theorem to me 
and sketched out the proof; meanwhile, he had still not communicated Lie’s presentation 
of those groups at the time.  On the one hand, I came to my own presentation more easily, 
while on the other, I brought it into great agreement with that of Lie. 
 Only the ratios η1 : η2 : … : ηr are necessary in order to define the infinitely-small 
transformation ∑ ην Xν f, so it is permissible to multiply all ηι with the same non-zero 
number.  Along with Lie and Engel (*), we thus associate all of the infinitesimal 
transformations of the group uniquely and continuously with the points of an (r – 1)-
dimensional projective space and consider η1, …, ηr  to be the homogeneous coordinates 
of the associated point that is the image point of the transformation ∑ ηι Xι f.  When the 
transformations ∑ ηι Xι f and ∑ ιη ′ Xι f do not commute, the operation (∑ ηι Xι , ∑ ιη ′ Xι) 

will again lead to a transformation, and its image point will be referred to as the product 
of the points (η) and (η′ ). 
 For the time being, I shall present only part of my investigations; I think that the 
continuation will follow soon. 
 

§ 1. 
 

A remarkable system of equations between the coefficients cικλ . 
 

 As was mentioned already in the introduction, we start with the equations: 
 
(1)     (Xι Xκ) = c X fικσ σ

σ
∑ , 

 
(2)   { ( ) ( ) ( )}c X X c X X c X Xκλρ ρ ι λιρ ρ κ ικρ ρ λ

ρ
+ +∑  = 0. 

                                                
 (*) Engel, “Zur Theorie der Zusammensetzung der endlichen continuierlichen Transformations-
Gruppen,” Leipziger Berichte (1886), 83-94.  
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 Our problem will be to draw conclusions about the composition of groups from the 
system of equations between the cικρ  that are represented by these two equations.  A 
certain system of equations that can be obtained easily from the originally-given one by 
mere summations will yield one series of conclusions.  That system of equations is: 
 
(3)   

,

c cαβκ κλλ
κ λ
∑ = 0, 

 
(4)   

, ,

( )c c c c cαβκ µγλ αγκ µβλ κλµ
κ λ µ

+∑ = 0, 

 
(5)   

, , ,

( )c c c c c c c c c cαβκ µγν γδλ αγκ µδν νβλ αδκ µβν νγλ κλµ
κ λ µ ν

+ +∑ = 0, 

 
   ………………………………………………………. 
 
(6)   

1 2 2 3 3 3 4 1 2 3 2 3 4 2 4 1 1

1 2, , , ,

(
s s s

s

c c c c c c c cαβ ι β κ κ β κ κ β κ κ α β ι β κ κ β κ κ β κ κ
ι κ κ κ

+∑
⋯

⋯ ⋯ + … 

… + 
3 1 2 3 2 3 4 1 1 1 2

)
s s

c c c c cα β ι β κ κ β κ κ β κ κ ικ κ−
⋯ = 0. 

 
In equation (6), the summation extends over the s + 1 symbols ι, κ1, κ2, …, κs , which 
take the values 1, …, r ; α, β1, β2, …, βs  are fixed symbols.  There are s products in the 
brackets, each of which is obtained from the following one when one replaces β1, β2, …, 
βs  with β2, β3, …, β1  cyclically. 
 The first of these equations was already stated and proved by Engel (*); the remaining 
ones have not been published up to now. 
 The proof of formula (6) emerges quite clearly from that.  We start with the proofs of 
formulas (4) and (5) and repeat the proof that Engel gave for formula (3). 
 From equation (2), one has: 
 

( )c c c c c cαβκ κλλ βλκ καλ λακ κβλ
κ

+ +∑  = 0. 

 
If we sum over λ then the last two products will drop out, and we will obtain formula (3). 
 In order to establish the relation (4), we start with the two equations: 
 
 

, ,

( )c c c c c c cαβκ κλµ βλκ καµ λακ κβµ γµλ
κ λ µ

+ +∑ = 0, 

 
 

, ,

( )c c c c c c cαγκ κλµ γλκ καµ λακ κγµ βµλ
κ λ µ

+ +∑ = 0, 

 
and add them.  Now, one has: 
 
                                                
 (*) Leipziger Berichte (1886), pp. 89.  
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 c c c c c cβλκ καµ γµλ λακ κγµ βµλ+∑ ∑ = 0, 

 
as one sees immediately when one replaces the summation symbols κ, λ, µ with µ, κ, λ, 
resp., in the second sum.  One likewise has: 
 
 c c c c c cβλκ καµ γµλ λακ κγµ βµλ+∑ ∑ = 0, 

 
in which κ, λ, µ is replaced with µ, κ, λ, resp.,  in the second sum.  With that, one gets 
equations (4). 
 One arrives at equation (5) in the following way: One forms the equation: 
 

, , ,

( )c c c c c c c cαβι ικλ βκι ιαλ και ιβλ γλµ δµκ
ι κ λ µ

+ +∑ = 0 

 
and then defines the two equations that one obtains when one replaces β, γ, δ with γ, δ, β, 
resp., and then with δ, β, γ, resp.  The left-hand sides of each of these equations contain 
three summations (over ι, κ, λ, µ).  The third sum in the first row will be equal and 
opposite to the second sum of the second equation.  Likewise, the third sum in the second 
row will be equal and opposite to the second sum in the third equations and the third sum 
in the third equations will be equal and opposite to the second sum in the first one.  If one 
then adds the three equations then only the first sums will remain, and that will yield 
equation (5). 
 In order to prove (6), one forms the equation: 
 

1 1 2 1 1 2 1 1 2 1 2 3 1 3 4 1

1 2, , , ,

( )
s s

s

c c c c c c c c cαβ ι ικ κ β κ ι ιακ κ α ι ιβ κ β κ κ β κ κ β κ κ
ι κ κ κ

+ +∑
⋯

⋯ = 0. 

 
One will define the same equation when one replaces β1, β2, …, βs with one of the cyclic 
permutations β2, β3, β4, …, β1  ; β3, β4, β5, …, β2 ; …;  βs, β1, β2, …, βs−1 .  Now: 
 

1 1 2 2 2 3 3 3 4 3 3 1
c c c c cβ κ ι ια κ β κ κ β κ κ β κ κ∑ ⋯  

is equal and opposite to: 

1 2 2 2 2 3 4 3 4 1 3 1
c c c c cκ αι ι β κ β κ κ β κ κ β κ κ∑ ⋯ , 

 
as one will see immediately when one replaces the summation symbols i, κ1, κ2, κ3, κ4, 
… κs in the second sum with  κ1, κs, ι, κ2, κ3, κ4, … κs−1 , resp.  Thus, the second sum in 
each equation will be equal and opposite to the third sum in the following equations, and 
the second sum of the sth equation will be equal and opposite to the third sum in the first 
one.  If one then adds the s equations thus-defined then only the first in each of them will 
remain, such that the validity of (6) will be proved. 
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§ 2. 
 

The invariants of a certain linear group that is adjoint to the given group. 
 

 Every group of transformations is closely related to two groups of linear 
transformations.  For κ = 1, …, r, the individual infinitesimal transformations of the one 
group will be represented by the system of equations: 
 

dxι = dt c xρκι ρ
ρ
∑ , 

 
or, with Lie’s symbolic notation, by the r equations: 
 

,

f
c x

xρκι ρ
ι ρ ι

∂
∂∑ . 

 
Lie and Engel (*) referred to this group as the adjoint linear group. 
 A second one is: 

dηι = dt cρ ικρ
ρ

η∑  or 
,

f
cρ ικρ

ι ρ ι

η
η

∂
∂∑ . 

 
It will be referred to as the second adjoint linear group.  Both of them are composed in 
the same way as the given one. 
 I have addressed the invariants of the second adjoint group previously (Programm, 
1886); I will now derive the invariants of the other one. 
 To that end, I pose the equation: 
 

(7)     

11 11 1

12 22 2

1 2

r

r

r r rr

c c c

c c c

c c c

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

η ω η η

η η ω η

η η η ω

−

−

−

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 = 0. 

 
 For the sake of brevity, we set: 
 
(8)     cρ ρκλη∑ = γκλ (η) = γκλ , 

 
and then the foregoing equation can also be written: 
 

                                                
 (*) In a letter.  Confer Engel, Leipziger Berichte (1886), pp. 88.  
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11 21 1

12 22 2

1 2

r

r

r r rr

γ ω γ γ
γ γ ω γ

γ γ γ ω

−
−

−

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

= 0. 

 
 Since cικλ + cκιλ = 0, one also has: 
 

σ σλ
σ

η γ∑ = 
,

cρ σ ρσλ
ρ σ

η η∑ = 0, 

 
and therefore the determinant of the γικ will vanish identically; that is: 
 
(9)      | γικ | = 0. 
 
 If we then develop equation (7) in powers of ω then we will obtain: 
 
(10)  ω r – ψ1 (η) ⋅ ω r−1 + ψ2 (η) ⋅ ω r−2 − ψ3 (η) ⋅ ω r−3 + … ± ω ψr−1 (η) = 0. 
 
 For ν = 1, …, r − 1, each ψν will be a homogeneous function of degree v in the 
quantities η1, …, ηr  when it does not vanish identically. 
 One now has the theorem: 
 
 The coefficients ψ1 (η),ψ2 (η), …, ψr−1 (η) in equation (10) are invariant functions of 
the adjoint linear group, 
 
or in other words: 
 
 The determinant: 
 

11 11 1

12 22 2

1 2

r

r

r r rr

c c c

c c c

c c c

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ ρ ρ
ρ ρ ρ

η ω η η

η η ω η

η η η ω

−

−

−

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 

 
will not change for an arbitrary of ω when one subjects it to any transformation of the 
group that is determined by the r infinitely-small transformations: 
 

Hα f = 
,

f
cρ ραι

ρ ι ι

η
η

∂
∂∑ . 
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 We first prove this theorem for the lowest-indexed functions ψ1, ψ2, ψ3 .  One has ψ1 
= 

,

cι ισρ
ι σ

η∑ .  In order to apply the infinitesimal transformation Hα f, one must replace dηι 

with dt cρ ραι
ρ

η∑ ; One will then have: 

 
dψ1 = − dt

, ,

c cρ ραι ισσ
ι ρ σ

η∑ , 

 
in which, the coefficient of each ηρ will vanish as a result of (3).  Since the function ψ1 
remains unchanged by each infinitesimal transformation of the group, it will also not 
change for any transformation that belongs to the group. 
 The coefficient ψ2 of ω r−2 is: 

( )
S
µλ

(γλλ γµµ − γλµ γµλ), 

 
in which the various combinations (λµ) are to be taken from the set 1, …, r.  In place of 
this, we can set: 
  ψ2 = 1

2
,λ µ
∑ (γλλ γµµ − γλµ γµλ), 

   = 1
2

, , ,γ κ λ µ
∑ ηγ ηκ (cγλλ cκµµ − cκλµ cγµλ). 

 
 Thus, when one applies the infinitesimal transformation Hα f : 
 

dψ2 = − 1
2

, , , ,

dt
β γ κ λ µ
∑ ηβ ηγ cαβκ (cγλλ cκµµ − cκλµ cγµλ). 

 
 Here, the coefficient of – 1

2  dt ⋅⋅⋅⋅ ηβ ηγ  is: 

 

, ,κ λ µ
∑ {( cαβκ cγλλ cκµµ + cαγκ cγλλ cκµµ) − cκλµ (cαβκ cγµλ + cαγκ cβµλ)}. 

 
 Each of the first two sums vanishes because of relation (3), while the remaining part 
vanishes because of (4).  One then has, in fact, dψ2 (η) = 0. 
 In a completely corresponding way, one has: 
 

ψ3 = 1
6

, , , , ,

c c c

c c c

c c c

κλλ κλµ κλν

γ δ κ γµλ γµµ γµν
γ δ κ λ µ ν

δνλ δνµ δνν

η η η∑ , 

 
so, when one applies the same infinitesimal transformation: 
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dψ3 = − 1
6

, , ,
, , ,

c c c

dt c c c c

c c c

κλλ κλµ κλν

γ δ κ αβκ γµλ γµµ γµν
β γ δ
κ λ µ ν δνλ δνµ δνν

η η η∑ . 

 
 Up to the part that vanishes because of the relations (3) and (4), the coefficient of: 
 

1
6 dt β γ δη η η  

is equal to: 

, , ,

( )c c c cκλµ αβκ γµν δνλ
κ λ µ ν

+∑ ⋯ , 

 
in which the additional terms in the bracket are the ones that are obtained from the one 
that is written by permuting βγδ.  Those permutations can be decomposed into two 
sequences of cycles; the sum over each cycle will vanish due to (5); one will then have 
dψ3 = 0. 
 We can proceed in the same way.  We have: 
 

ψs (η) = 

1 1 1 2 1

2 2 1 2 2 2 2 2

2 3

1 2

1

!

s

s

s

s s s s s s s

c c c

c c c

s

c c c

ικ κ ικ κ ικ κ

β κ κ β κ κ β κ κ
ι β β β

β κ κ β κ κ β κ κ

ηη η η∑

⋯

⋯
⋯

⋯ ⋯ ⋯ ⋯

⋯

. 

 
 If we then once more apply the infinitesimal transformation: 
 

dηι = − dt 
1 1

1

cβ α β ι
β

η∑  

 
then, up to terms whose vanishing will follow from eq. (3), (4), (5) and the corresponding 
ones for 4, 5, …, s − 1, the coefficient of: 
 

− 
1! s

dt

s β βη η⋯  

will be equal to: 

1 2 1 2 2 3 3 2 4 1
( )

s s
c c c c cικ κ α β ι β κ κ β κ κ β κ κ +⋯ ⋯ , 

 
in which the additional terms in the bracket are the ones that are obtained from the 
product that was written down by permuting β1 β2 … βs .  Since all permutations 
decompose into a sequence of cycles, the theorem will follow from (6). (*) 

                                                
 (*) Engel, to whom I communicated the present theorem, along with the proof that was given here, at 
the end of July, 1886, has provided another proof, which I will describe here in words: 
 “I set: 
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 Of the functions ψ1, …, ψr−1 that are considered here, the function ψ1 has already 
been considered by Lie for a long time.  Namely, he posed the theorem (*) that when not 
all expressions cαλλ∑  vanish (so when the function ψ1(η) does not vanish identically), 

the group will possess an (r – 1)-parameter invariant subgroup, and it will be represented 
by ψ1 (η) = 0.  It then follows from this that (Pr., 1886, pp. 11) the number p that I 
introduced is less than r.  Engel has provided a very simple proof for the two 
aforementioned theorems (** ).  One can give its proof a form that is closely connected 
with the method that is applied in the following investigations.  Hence, I do not consider 
it to be superfluous to derive another proof from formula (3), upon which Engel also 
based his own, except that I will prove the theorem in the opposite sequence, and first 
show that: 
 
 If ψ1(η) does not vanish identically then the coordinates ζ1, …, ζr of the 
transformations to which one will arrive by the operation: 
                                                                                                                                            

Bκ f = 
1

,

r

jki j
i j

i

f
c y

y

− ∂
∑

∂
, 

1
jki j ki

r

j

c y ε ω
=

∑ −  = uki , 

 
in which εik = 0 for i ≠ k, and εii  = 1.  Then let: 
 

∆ = ∑ ± u11 … urr ; 
it shall be proved that Bk ∆ ≡ 0. 
 I find that: 

  Bs ∆  = 
1

,

r

k i
s ki

i

B u
uκ

− ∂∆
∑

∂
, 

  Bs uki = 
1

,

r

jki
j

sjc c y
ν

ν ν

−
∑ , 

1

( )sj jki ski j i k i jsi

r

j

c c c c c cν ν ν
=

∑ + +  = 0, 

so: 

  Bs uki  = 
1 11 1

r rr r

j j
skj ji jsi kjc c y c c y

ν νν ν ν ν= == =
+∑ ∑∑ ∑ , 

   = 
1 1

( ) ( )
ji ji kj kj

r r

j j
skj jsic u c uε ω ε ω

= =
++ +∑ ∑ ; 

since (cski + cksi) ω vanishes: 

Bs uki = 
1
( )

ji kj

r

j
skj jsic u c u

=
+∑ , 

  Bs ∆  = 
1 1, 1 , 1

r rr r

i kk j i j
ki ki

skj ji jsi kjc u c u
u u= == =

+
∂∆ ∂∆

∑ ∑
∂ ∂

∑ ∑ , 

   = 
, 1 , 1

r r

k j i j
skj jk jsi jic cε ε

= =
∆ + ∆∑ ∑  

   = 
1 1

r r

skk isi
k i

c c
= =

  
∆ +∑ ∑ 
  

≡ 0.” 

 (*) Archiv for Math. og Naturw. X, pp. 88.  
 (** ) Leipziger Berichte, 1886, pp. 89.  
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( ),X Xι ι ι ιη η′∑ ∑  = X fρ ρζ∑  

 
for entirely arbitrary values of η and η′ will satisfy the equation: 
 

ψ1 (ζ) = 0. 
 
 In fact, let X fι ιη∑  and X fι ιη ′∑  be two arbitrary infinitesimal transformations, 

and let: 

( ),X Xι ι ι ιη η′∑ ∑  = X fρ ρζ∑ , 

so 
ζρ = 

,

cι κ ικρ
ι κ

η η′∑ , 

and: 
ψ1 (ζ) = 

,

cρ ρσσ
ρ σ

ζ∑ = 
, , ,

c cι κ ικρ ρσσ
ι κ ρ σ

η η′∑ = 0, 

 
as a result of relation (3). 
 The image point of each infinitesimal transformation to which one will arrive by the 

operation ( ),X Xι ι ι ιη η′∑ ∑  or by multiplying the points η and η′ will always belong to 

the plane ψ1 (η) = 0 then.  Thus, the image point will also belong to that plane when one 
of the given points is assumed to be on it; i.e., that plane represents an invariant 
subgroup.  However, that is the theorem that was first proved by Lie. 
 
 

§ 3. 
 

Derivation of an equation that is characteristic of a group. 
 

 The previous two paragraphs had the goal of making it possible for us to be able to 
properly explain the relevance of the following developments.  For that reason, I have 
also presented equation (7) without mentioning the problem that led to that equation in a 
natural way.  We shall now do that, and it will then be possible for us to deduce some 
further consequences of the theorems that were proved in the previous paragraphs. 
 Any two-parameter group whose transformations do not commute with each other 
contains a one-parameter principal subgroup, and when X1f represents it for the group that 
is determined by X1 f and X2 f then one will have: 
 

(X1 X2) = ω X1 f, 
in which ω is non-zero. 
 We now look for the two-parameter subgroups of the given group (X1, X2, …, Xr) in 
which a given infinitesimal transformation (η1, …, ηr) is included.   Initially, the 
transformations of the desired two-parameter groups should not commute, and (ζ1, …, ζr) 
should represent the one-parameter subgroup.  The problem then arises of looking for all 
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two-parameter subgroups to which the given transformations η1, …, ηr belong, and 
determining r + 1 quantities ζ1, …, ζr, ω such that the following equation is valid: 
 

(11)    ( ),X Xι ι ι ιη ζ∑ ∑  = ω X fι ιζ∑ . 

 
 This equation also yields the two-parameter subgroups with commuting 
transformations, since one would then have ω = 0.  One must start with another equation 
only when the given transformation (η1, …, ηr) represents the principal subgroup for a 
two-parameter subgroup.  However, we will show that this is possible only for 
distinguished positions of the point (η1, …, ηr), so we can omit that case. 
 When we replace the values in equation (11) with the ones in (1), we will obtain an 
equation that decomposes into the following r equations: 
 
(12)     

,

cι κ ικρ
ι κ

η ζ∑ = ω ζρ . 

 
 In order to solve this equation, it is known that one must first calculate ω by means of 
the equation: 

(7)    

11 21 1

12 22 2

1 2

r

r

r r rr

c c c

c c c

c c c

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

η ω η η
η η ω η

η η η ω

−
−

−

∑ ∑ ∑
∑ ∑ ∑

∑ ∑ ∑

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 = 0. 

 
This is the same equation that we presented before, as well as writing it in the form: 
 
(10)   ω r – ω r−1ψ1(η) + ω r−2ψ2(η) − … ± ω ψr−1(η) = 0. 
 
 Each non-zero root ω determines a system of quantities ζ that satisfy eq. (12), and 
therefore also eq. (11).  However, when ω is an α-fold non-zero root, and all sub-
determinants of degree r − α + 1 on the left-hand side of (7) vanish for that value of ω, 
α can determine α systems ζ, ζ′, ζ″, …, ζ (α−1) in such a way that for any arbitrary 
coefficients λ, λ1, λ2, …, λα−1 , the following equation will be true: 
 

( )( )( 1
1 2 1 1,X Xα

ι ι ι ι ι α ιη λζ λ ζ λ ζ λ ζ −
−′ ′+ + + +∑ ∑ ⋯  

= ω ( )( 1
1 2 1 1 X fα

ι ι ι α ι
ι

λζ λ ζ λ ζ λ ζ −
−′ ′+ + + +∑ ⋯ . 

 
 In this case, an α-dimensional plane will go through the image point of the given 
transformation (η1, …, ηr), and every line in that plane that is drawn through that point 
will represent a two-parameter subgroup. 
 Furthermore, if ω is a non-zero multiple root for which at least all sub-determinants 
of degree r – 1 do not vanish then that will yield only a single two-parameter subgroup.  
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However, one can determine α systems ζ, ζ′, …, ζ (α−1) in this case such that for arbitrary 
values of λ, λ1, λ2, …, λα−1 the following equation can be fulfilled: 
 

( )( )( 1
1 2 1 1,X Xα

ι ι ι ι ι α ιη λζ λ ζ λ ζ λ ζ −
−′ ′+ + + +∑ ∑ ⋯  

= ( )( 1
1 2 1 1 X fα

ι ι ι α ι
ι

µζ µ ζ µ ζ µ ζ −
−′ ′+ + + +∑ ⋯ , 

 
as long as the µ, µ1, µ2, …, µα−1 are determined as linear functions of λ, λ1, λ2, …, λα−1 in 
a suitable way. 
 The fact that one of the r roots of eq. (7) always vanishes was stated above already.  
However, a simple vanishing root will lead to no two-parameter subgroups, but only to 
the obvious relation: 

( ),X Xι ι ι ιη η∑ ∑ = 0. 

 
 However, when ω = 0 is an α-fold root of eq. (7), and likewise all sub-determinants 
of degree r − α + 1 vanish, we will arrive at an α-parameter subgroup whose 
transformations can all commute with the given ones.  Finally, as far as the case is 
concerned for which ω = 0 is an α-fold root without all sub-determinants of degree r – α 
+ 1 vanishing, we will initially pass over it, since we will address that case more 
rigorously in § 10.  Here, it shall suffice to remark that in that case, either all functions 
ψ1(η), …, ψr−1(η) vanish for such a value or all sub-determinants of | γικ | of degree r – 1 
are equal to zero. 

 
§ 4. 

 
Classification of groups according to rank. 

 
 If one again writes equation (7) in the form (10): 
 

ω r – ω r−1ψ1(η) + ω r−2ψ2(η) − … ± ω ψr−1(η) = 0 
 
then the smallest number of functions in terms of which all functions ψ1, ψ2, …, ψr−1 can 
be expressed shall be denoted by l, and groups shall be classified according to their 
associated value of l.  For l = 0, all functions ψ1, ψ2, …, ψr−1 vanish identically; for l = 1, 
all functions ψν can be represented rationally in terms of a single function of η as long as 
they do not vanish identically.  Moreover, for any arbitrary l, l functions P1, …, Pl can be 
chosen such that all functions ψ1, ψ2, …, ψr−1 can be expressed rationally in terms of P1, 
…, Pl .  I refer to this number l as the rank of the group. 
 If one again sets: 

γικ = cρ ρκι
ρ

η∑ , 

 
to abbreviate, then, from the developments of the second paragraph, the following 
equation will be true for any function ψν(η): 
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(13)     ν

ι ι

ψ
η

∂
∂∑ γικ = 0 

when one takes ν = 1, …, r – 1. 
 Since the functions ψν(η) can be expressed in terms of the l functions P1, …, Pl , the 
following equation must be true for every value of κ: 
 

γκ1 
1

Pα

η
∂
∂

+ γκ1 
2

Pα

η
∂
∂

+  … + γ κr 
r

Pα

η
∂
∂

= 0, 

 
in which one must set α = 1, …, l.  However, the P1, …, Pl  are mutually-independent 
here, and one therefore has the theorem: 
 
 If all of the the functions ψ1, ψ2, …, ψr−1 can be represented by l mutually-
independent functions then all sub-determinants of | γικ | of degree r – l + 1 will vanish 
identically.  Naturally, ψr−1 , …, ψr−l+1 will likewise be zero identically. 
 
 If we couple this theorem with a remark about the vanishing of ω that was made in 
the previous paragraph then we will come to the following result: 
 
 If the rank of a group is greater than one then every transformation will belong to an 
(l − 1)-dimensional manifold whose transformations all commute with the given ones. 
 
 Here, I shall recall the sense in which the word “commute” is to be taken with the 
convention that was made in the introduction.  If we then start with an arbitrary finite 
transformation for l > 1 then it will not only commute with all of the transformations that 
are derived from the same infinitesimal transformations as the given transformation, but 
also with those transformations for which the associated infinitely-small transformations 
define a certain (l – 1)-fold extended manifold. 
 Conversely, we conclude: 
 
 If a (k – 1)-dimensional plane goes through any point of the image space that is 
defined by only the given commuting transformations, but no k-dimensional plane of that 
kind, then ψr−1 , …, ψr−k+1 will vanish in a natural way; likewise, all of the functions ψ1, 
ψ2, …, ψr−k can be represented rationally in terms of at most k functions, or else one has 
l ≤ k. 
 
 In particular, this implies the theorem: 
 
 If there is a finite transformation in a group that commutes with only the 
transformations that emerge from the same infinitesimal transformation (as it does) then 
all r – 1 functions ψ1, ψ2, …, ψr−1 can be represented rationally in terms of a single 
function. 
 
 Lie’s theorem that the group has an (r – 1)-parameter invariant subgroup when the 
function ψ1(η) does not vanish identically can now be generalized in the following way: 
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 If one chooses the l functions P1, …, Pl in terms of which all ψ1, …, ψr−1 can be 
represented rationally in the simplest way, and if one of them – say, P1(η) – is a linear 
function then P1(η) = 0 will represent an invariant subgroup. 
 
 The proof is precisely the same as the one that was given for Lie’s theorem at the 
conclusion of § 2.  If we set: 

P1(η) = pι ιη∑  

then, from (13), one will have: 
c pαβν ν

ν
∑ = 0 

for every combination α, β. 
 If we then form: 

( ),X Xι ι ι ιη η ′∑ ∑  = X fρ ρζ∑  

then we will have: 
ζρ = 

,

cι κ ικρ
ι κ

η η′∑ , 

so 
P1(ζ) = p ρ

ρ ζ∑ = 
, ,

c pι κ ικρ ρ
ι κ ρ

η η′∑ , 

 
such that the coefficient of each product ι κη η′  will vanish, and the image point of each 

infinitesimal transformation that is obtained from the operation: 
 

( ),X Xι ι ι ιη η ′∑ ∑  

will lie on the plane P1(η) = 0. 
 As a special case of the foregoing theorem, I mention: 
 
 If one of the functions ψ1(η), …, ψr−1 (η) is a power of a linear function then its 
vanishing will represent an invariant subgroup. 
 
 However, one can still extend that theorem: 
 
 If i of the l functions P1, …, Pl in terms of which the functions ψ1, …, ψr−1 can be 
expressed – say, P1, …, Pi − are linear then the principal subgroup will have at most r – i 
parameters, and is either contained in each group that is represented by the equations: 
 

P1(η) = P2(η) = …= Pi (η) = 0 
 
or identical with it.  For these principal subgroups, the functions ψ ν can be represented 
in terms of the functions Pi+1, …, Pi . 
 
 The theorem requires no proof.  I point out only that when all of the functions P1, …, 
Pl are linear, the principal subgroups will have at most r – 1 parameters, and its rank will 
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be equal to zero, in such a way that all two-parameter subgroups of the latter will contain 
commuting transformations. 
 The foregoing theorems are also quite closely linked to the following ones: 
 
 If a group is not its own principal subgroup then rank of the latter will be less than 
that of the given group. 
 
 If a group possesses an (r – 1)-parameter invariant subgroup then the rank of the 
latter will be one less than that of the given group. 
 
 In this, we have assumed only that we do not already have l = 0 for the given group 
itself.  In particular, it follows that: 
 
 If each transformation of an r-parameter group does not commute with any other one, 
and at the same time, either ψ1(η) does not vanish identically or one of the functions 
ψ2(η), …, ψr−1(η) is a power of a linear function then it will have an (r – 1)-parameter 
subgroup for which one has l = 0. 
 
 

§ 5. 
 

The principal transformations of the two-parameter subgroups that are contained 
in a group. 

 
 If the infinitesimal transformation X fι ιη ′∑ is the one-parameter principal subgroup 

and X fι ιη∑  is an arbitrary transformation of a two-parameter subgroup then one must 

have equations (12) for non-vanishing ω, which we now give in the form: 
 
(12a)    

,

cι κ ικρ
ι κ

η η′∑ = − ι ιρ
ι

η γ ′∑ = ρωη ′ , 

 
if γιρ(η′ ) is written briefly as ιργ ′ . 

 If any of the functions ψ1, …, ψr−1 is once more denoted briefly by ψν , and ψν(η′ ) is 
written briefly as νψ ′  then, from (13), one will have: 

 

ν
ιρ

ρ ρ

ψ γ
η

′∂ ′
′∂∑  = 0. 

 
 If we then multiply both sides of eq. (12a) by /ν ρψ η′ ′∂ ∂  and sum over r then the left-

hand side will vanish, and we will have: 
 
(14)   ψ1 (η′ ) = 0, ψ2(η′ ) = 0, …, ψr−1(η′ ) = 0 
 
for non-vanishing values of ω. 
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 That implies the following theorem: 
 
 The coefficients 1η ′ , …, rη ′  of any transformation X fι ιη ′∑  that is the principal 

transformation of any one of the two-parameter subgroups that belong to the group 
satisfy equations (14), and equation (7) has only vanishing roots for them. 
 
 This theorem also admits the following statement: 
 
 Any point that the principal transformation of a two-parameter subgroup that is 
contained in the group maps lies on the structure that is defined by the vanishing of the 
function ψ1, …, ψr−1 .  The totality of these points then defines a manifold that is at least 
(r – l – 1)-fold extended. 
 
 It by no means follows from the foregoing developments that any transformation for 
which the equations: 

ψ1 (η) = ψ2 (η) = … = ψr−1 (η) = 0 
 
are fulfilled is the principal transformation of a two-parameter subgroup; in fact, in many 
groups, the coordinates of the transformations that were referred to will satisfy even more 
equations, and their totality will then define a manifold of dimension less than r – l – 1. 
 As a corollary to the foregoing theorem, the following might be mentioned: 
 
 If a transformation that is the principal element of a two-parameter subgroup belongs 
to even more two-parameter subgroups then either their transformations will commute 
with each other or the given transformation will also be the principal element for the 
other subgroups. 
 
 This theorem can then lead us to the proof of the assertion that was made at the 
conclusion of § 3; however, we will encounter the theorem in the context of another 
consideration, and it will then link up with the further consequences immediately. 
 With a slight change in notations, the same development that led from formula (12a) 
to (14) will imply the following theorem: 
 
 All of the two-parameter subgroups whose transformation do not commute with each 
other maps as tangents to an (r − l – 1)-dimensional structure, and it will be determined 
by the vanishing of all the functions ψ1, ψ1, …, ψr−2 . 
 
 However, I emphasize that even in the case where all points of the stated structure 
define principal transformations of two-parameter subgroups, not all of the tangents 
correspond to two-parameter subgroups.  With the exception of the conic section group 
(cf., infra, the end of § 8), no further groups can exist in which all tangents to the 
structure: 

ψ1 = … = ψr−1 = 0 
 
define two-parameter subgroups. 
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§ 6. 
 

Examples of the present developments. 
  

 As an example of the results that the foregoing paragraphs yielded, and to prepare for 
the investigations that will be carried out in the second part, we would like to consider 
two well-known classes of simple groups somewhat more closely.  With Lie, we refer to 
a group as simple when it possesses no invariant subgroups. 
 We next examine the group that produces the most general projective reassignment of 
an l-dimensional space.  By a suitable choice of the coordinates x1, …, xl , one will arrive 
at the most general infinitely-small reassignment of the point (xκ) to (xκ + δxκ), provided 
that the completely-arbitrary, infinitely-small quantities α0κ, ακ0, ακλ (κ, λ = 1, …, l) 
satisfy the equation: 

xκ + δxκ = 
0

01

x x

x

κ κλ λ κ
λ

λ λ
λ

α α

α

+ +

+

∑

∑
. 

Thus: 
δxκ = ακ0 + 0x x xκλ λ λ κ λ

λ λ
α α−∑ ∑ . 

 
 When one uses those transformations for which all αρσ vanish, except for one, as a 
basis and sets the non-vanishing one equal to δt, one will obtain l (l + 2) infinitesimal 
transformations Xκ0 , X 0κ , Xικ , which can be represented in the following way: 
 

(a)    Xκ0 = 
f

xκ

∂
∂

, X 0κ = − 
f

x x
xκ ν

ν ν

∂
∂∑ , Xικ = 

f

xκ

∂
∂

xκ . 

 
 When either ι = µ or κ = λ, one will have (Xικ Xλµ) = 0.  By contrast, one has, 
moreover: 
 (Xικ Xλµ) = − Xιλ + ειλ Xκκ , 
(b) (Xκ0 X0λ) = − Xκλ + εκλ Xµµ , 
 (X0κ Xκλ) = − X0λ , (Xικ Xκ0) =  − Xι 0 , 
 
in which εκλ = 1 or 0 according to whether κ and λ are equal or unequal, resp. 
 In order to show that this group is simple, we start with an arbitrary infinitesimal 
transformation ∑ ηρσ Xρσ f .  If not all ηρ1 vanish here then we couple them to all X1v for v 

= 0, 1, …, l by way of ( )1,X Xρσ ρσ νη∑ ; one will then get at least some of them by the 

transformations: 
 

X10 , …, Xl0 , 2 X11 + X22 + … + Xll ,  X12 , …, X1l . 
 
Any of these l (l + 2) basic infinitesimal transformations will necessarily lead to others, 
and repeating the operation for these will lead to all infinitesimal transformations.  The 
group will then have no invariant subgroups. 
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 We would like to cite some properties of this group, and first give the functions that 
remain unchanged under all transformations: 
 

Hλµ f = , ,
, , ,

f
cικ λµ ρσ ρσ

ι κ ρ σ ικ

η
η
∂

∂∑ , 

 
which then belongs to this transformation group, according to something that Lie said.  It 
can be represented in the following way when one introduces an undetermined quantity z: 
 

(c)   D(z) = 

11 10 20 0

01 11 21 1

02 12 22 2

0 1 2

ll l

l

l

l l l ll

z

z

z

z

η η η η η
η η η η
η η η η

η η η η

− + + +
+

+

+

⋯ ⋯

⋯

⋯

⋮ ⋮ ⋮ ⋯ ⋮

⋯

. 

 
 In this determinant, the coefficient of zl+1 is equal to – 1, that of zl is equal to 0, and 
the coefficients of the powers of zl−1, zl−2, …, z, z0 will be the desired functions. 
 Since the transformations are essentially of the same type, it will suffice to show that 
the function D(z) is not changed by one of them – say, H12 f .  However, as long as ρ is 
not equal to 1, for this transformation, one must replace dηρ2 with dt ⋅⋅⋅⋅ h ρ1, and when σ is 
not equal to 2, one must replace dη1σ with − dt ⋅⋅⋅⋅ η2σ .  However, one must make both 
changes for dη12 that one gets under the assumptions that ρ = 1 and σ = 2.  Thus, the 
change in D(z) that is provoked by the transformation H12 f, as long as it is divided by dt, 
will consist of the sum: 
 

 

11 10 10 10

01 11 11 1

02 12 12 2

0 1 1

ll

l

l

l l l ll

z

z

z

η η η η η
η η η η
η η η η

η η η η

− + + + −
+ −

−

− +

⋯ ⋯

⋯

⋯

⋮ ⋮ ⋮ ⋯ ⋮

⋯

 

 

 + 

11 10 20 0

02 12 22 2

02 12 22 2

0 1 2

ll l

l

l

l l l ll

z

z

z

η η η η η
η η η η
η η η η

η η η η

− + + +

+

+

⋯ ⋯

⋯

⋯

⋮ ⋮ ⋮ ⋯ ⋮

⋯

, 

 
the first term of which will be obtained by replacing the third column of D(z) with – η10, 
…, −ηl0 , and the second by replacing the second row with η02, …, ηl2 .  However, one 
will see directly that this sum vanishes. 
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 The functions that remain unchanged under the l (l + 2) infinitesimal transformations: 
 

, ,
, , ,

f
cρσ ρσ αβ ικ

ρ σ ι κ ικ

η
η
∂

∂∑  

 
can be represented in an entirely similar way.  When one sets η11 + η22 + … + ηll = σ, it 
will be given for arbitrary z by the determinant: 
 

(d)   E(z) = 

01 02 0

10 11 12 1

0 1

1

1

1

l

l

l l ll

z
l

z
l

z
l

σ η η η

ση η η η

ση η η

− +
+

+ −
+

+ −
+

⋯

⋯

⋮ ⋮ ⋮ ⋯ ⋮

⋯ ⋯

 

 
= − zl+1 + zl−1 P1 + P2 ⋅⋅⋅⋅ zl−1 + … + Pl−1 ⋅⋅⋅⋅ z + Pl . 

  
 It will not be necessary to carry out the proof.  Likewise, it might be permissible to 
state the following theorems without proof. 
 If the system (η01, η02, …, ηll) satisfies none of the l equations: 
 

P1 = 0,  P2 = 0,  …, Pl = 0 
 
then the transformation X fρσ ρση∑  will belong to precisely l (l + 1) two-parameter 

subgroups with no commuting elements.  The principal elements of all of the two-
parameter subgroups that are obtained in that way will define a manifold that is only (2l – 
1)-extended.  It will be represented analytically by the vanishing of all determinants of 
degree two in the determinant E(z) for z = 0.  That manifold also belongs to all l 
structures P1 = P2 = … = Pl = 0. 
 If a point is a principal point of a two-parameter subgroup, and the latter does not 
belong to the structure P1 = … = Pl = 0, then the point will also be a principal point for an 
(l2 – 1)-parameter family of two-parameter subgroups, and all of them will define an (l2 + 
1)-parameter subgroup. 
 The group belongs to the general projective groups of rank 1, 2, …, l – 1.  The 
general projective groups of rank l – 1 all belong to the structure Pl = 0; those of rank l – 
2 lie on the structure Pl = Pl−1 =, etc.  Finally, the conic section groups (viz., the general 
projective groups for l = 1) belong to the structure Pl = Pl−1 = … = P2 = 0. 
 As one easily sees, and as will be emphasized in Part Two especially, for every 
general projective group of rank l′ , one can define a composite group of the same rank l′ 
whose number of parameters will amount to l′ 2 + 2l′ + 1.  At the same time, for l′ < l, 
each such group will be contained as a subgroup of the given group, and indeed the 
groups of rank l – 1 in question will fill up the structure Pl = 0, while those of rank l – 2 
will fill up the structure Pl = Pl−1 = 0, etc.  A planar manifold of dimension (l − 1)(l + 2) 
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will then go through every point of Pl = 0.  The intersection of the λ structures Pl = 0, Pl−1 
= 0, …, Pl−λ+1 = 0 will likewise be (l – λ)(l – λ +3)-dimensional. 
 An (l – 1)-dimensional planar structure whose points are mapped by mutually-
commuting transformations goes through each point of the image space.  Conic section 

groups that are subgroups of the given group go through each of the 
( 1)

2

l l +
 points of 

such a plane. 
 A second class of simple groups will be determined by those continuous projective 
transformations that translate a proper structure of order two in a space of more than three 
dimensions into itself, in which, a “proper” structure, in contrast to a conic structure, will 
be understood to mean one whose determinant does not vanish.  That group is defined in 
the same way as the group of an (m + 1)-dimensional space when all variables are 
changed by entire, linear transformations and remain unchanged under a proper form of 
degree two.  If one establishes the relationship: 
 
(e)      2

1x + … + 2
1mx + = 1 

 

between the m + 1 variables x1, …, xm+1 then the group shall be based upon the 
( 1)

2

m m+
 

inf. transformations: 

(e′ )     Xικ f = xι 
f

xκ

∂
∂

– xκ 
f

xι

∂
∂

. 

It follows from this that: 
(f)     (Xικ Xιλ) = Xκλ , (Xικ Xλµ) = 0 
 
when ι, κ, λ, µ are all unequal.  The groups that are defined in that way will be simple for 
m > 3, as Lie proved in the tenth volume of his Archiv on pp. 412. 
 The adjoint linear groups that were presented at the beginning of § 2 will be identical 
for those groups.  The invariants are implied by the following determinant, in which one 
takes ηικ + ηκι = 0: 
 

(g)   

12 1, 1

21 2, 1

1,1 1,2

m

m

m m

z

z

z

η η
η η

η η

+

+

+ +

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

 = zm+1 + P1 z
m−1 + P3 z

m−2 + … 

 

Therefore, l will be equal to 
1

2

m+
or 

2

m
 according to whether m is odd or even.  If m is 

even then the 2l2 roots of the characteristic equation (7) will be ± ωκ , ± ωκ ± ωλ .  For 
even m, they will be associated with a (4l – 3)-fold extended manifold that is determined 
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by the vanishing of all expressions (ικλµ) and by P1 = 2
ικη∑  (*).  That (4l − 3)-extended 

structure has a (4l – 5)-dimensional double structure that is given by the equations: 
 

ιρ κρ
ρ

η η∑  = 0 

 
for arbitrary values of ι and κ.  That double structure will imply the principal points that 
belong to the roots ± ωι ± ωκ . 
 For even m, the given group will contain those subgroups that are defined in 
corresponding ways for m′ = 1, …, m – 1.  If one sets m′ = m – 1 then the corresponding 
subgroups will have the same rank l = m / 2 and will fill up the same manifold as the 
given group such that every transformation of the given group will belong to such a 
subgroup.  The correspondingly-defined subgroups of rank l – 1 whose number of 
parameters amounts to (l – 1)(2l – 1) or (l – 1)(2l – 3) belong to a (2l2 + l – 2)-fold 
extended manifold, etc.  The only points that lie in any (l – 1)-dimensional plane of the 
image space that goes through an arbitrary point and maps by nothing but mutually-
commuting transformations are the ones for which the corresponding infinitesimal 
transformation belongs to a conic section group.  General projective groups whose rank l′ 
is less than l also belong to the given group. 
 These results change very little for an odd m.  Every general transformation belongs 
to 2l (l – 1) two-parameter subgroups with no commuting elements, and their principal 
points fill up a (4l – 7)-dimensional manifold for which all equations (ικλµ) = 0 and 

ιρ ιρ
ρ

η η∑ = 0 must be true.  In order for a transformation X fικ ικη∑  to belong to an r-

parameter subgroup for which p = r, the coefficients ηικ must satisfy certain conditions, 
but this is not the place to go into them in detail. 
 
 

§ 7. 
 

The characteristic equation has nothing but unequal roots. 
 

 We shall make an assumption that might, on first glance, seem purely general, but 
which has an entirely specialized character due to the conditions that exist between the c, 
such as would follow from the developments in § 4.  Namely, we assume that equation 
(7) has no two of its roots equal for a certain system of values η1, …, ηr .  As was 
remarked already, one root will be equal to zero; the other ω1, …, ωr−1 shall then be 
different from each other and from zero.  A single system of coefficients ( )

1
νζ , …, ( )

r
νζ  

belongs to each root ων , and the r – 1 infinitesimal transformations ( ) X fν
ι ι

ι
ζ∑  that are 

thus determined will be independent of each other and of the given transformation 

i iX fη∑ .  We can then employ those r infinitesimal transformations for the 

                                                
 (*) Should all (ικλµ) = ηιλ ηλµ + ηιλ ηµκ + ηιµ ηκλ vanish, then, as is known, it would be necessary and 
sufficient that all expressions (12λµ) should vanish for η12 ≠ 0, which would yield (l − 1)(2l – 1) equations. 
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determination of the group.  In order to obtain directly the form that that is most suitable 
for further investigation, we denote the given transformation by Xr−1 f, and the other ones 
by X1, …, Xr−2, such that the following equations will be true: 
 
(15)  (Xr−1 X1) = ω1 X1 f, …, (Xr−1 Xr−2) = ωr−2 Xr−2 f, (Xr−1 Xr) = ωr Xr f. 
 
When we form the Jacobi relation for r – 1, k, l, it will follow that: 
 
(16)     (ωκ + ωλ − ωµ) cκλµ = 0, 
 
in which the equation for ν = r – 1 is also contained: 
 
(16a)     (ωκ + ωλ) cκλ r−1 = 0. 
 
 This equation allows us to recognize that when well-defined relations do not exist 
between the roots ωκ , …, ωr−2 , ωr of equation (7), the r – 1 infinitesimal transformations 
X1f, …, Xr−2 f, Xr f will determine a group in which two arbitrary transformations 
commute with each other. 
 We now add a further assumption to the one that we made above, namely, that r of 
the r (r – 1) / 2 transformations c X fκλρ ρ

ρ
∑  are independent of each other, so p = r.  In 

that case, due to (16a), at least one root must be equal and opposite to another.  
Therefore, let ωr−2 + ωr = 0, and let cr, r−2, r−1 be non-zero, such one can set: 
 

(Xr−2 Xr) = Xr−1 f. 
 
 Now, apply the Jacobi relation to the numbers r, r – 2, κ, where κ is one of the 
numbers 2, …, r − 3, and obtain: 
 

(17)   ωκ Xκ f = { }2, 2( ) ( )r r r rc X X c X Xκρ ρ κρ ρ
ρ

− −−∑ . 

 
Since the left-hand side of this equation cannot vanish, it will follow from this equation, 
in conjunction with (16), that when ωκ is a root, either ωκ + ωr  or ωκ − ωr  will be a new 
root, or that one can obtain a new root from ωκ by either adding or subtracting ωr . 
 With no loss of generality, we can set ωr = 2.  If ωκ is an arbitrary root then at least 
one of the two quantities ωκ + 2 and ωκ − 2 will be contained among the roots.  We start 
from an arbitrary root ωκ and look for all of the roots that one will arrive at by repeated 
addition and subtraction of 2.  Let the number of them be m, and for the sake of 
simplicity, they might be denoted by ω1, …, ωm .  Since they differ only by multiples of 
2, one can order them according to the magnitudes of their real parts and set: 
 

ω2 = ω1 − 2, ω3 = ω1 − 4, ω4 = ω1 − 6, …, ωm = ω1 − (m – 1) 2. 
 

 Equation (17) then yields the result: 
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(17a)    

1 2,1,2 2 1

2 2,2,3 3 2 21 1, 2,2

3 2,3,4 4 3 32 2, 2,3

1 1, 2, ,

,

,

,

....................................

r r

r r r r

r r r r

m rmm m r m

c c

c c c c

c c c c

c c

ω
ω
ω

ω

−

− −

− −

− − −

=
 = − = −



= −

 

 
which implies, by addition, that: 
 

ω1 + ω2 + ω3 + … + ωm = 0, 
 
such that ω1 = m – 1.  If m is an odd number here then the middle root must be equal to 
zero.  However, when m is an even number, the middle roots must be equal to ± 1.  Our 
assumption that all roots should be unequal would then imply that m = r – 3, and it would 
be an even number.  At the same time, one would get: 
 

ω1 = r – 4, ω2 = r – 6, ω3 = r – 8, …, ωr−3 = − r + 4. 
 

 One concludes directly from (17) that (Xr Xr−2−v) = 0 for v = 1, …, r – 3, and it will 
then follow easily that (Xα Xβ) = 0 when α and β are any two of the numbers 1, …, r – 3.  
The further coefficients cικλ can be simplified by multiplying the X1 f, …, Xr−3 f by 
suitable constants.  In that way, one will find from (17a) that: 
 

(Xr Xβ) = (r – α – 3) Xα+1 f  for α = 1, …, r – 4, 
(Xr Xr−3) = 0, (Xr−2 Xα) – (α – 1) Xα−1 f . 

 
In that way, one will arrive at the result that the assumptions that were made determine 
the composition of the group completely, as long as r is given, and that this must be an 
odd number.  In order to be able to express this result most conveniently, one considers 
that equal roots of equation (7) will lead to either just a single two-parameter subgroup or 
to a family of them.  One then expresses the result in the following way now: 
 
 In an r-parameter group that is its own principal subgroup, a given one-parameter 
subgroup should adhere to precisely r − 1 two-parameter subgroups, and none with no 
commuting transformations shall occur among them.  r must then be an odd number.  The 
group contains one (and indeed only one) invariant subgroup that is defined by r – 3 
parameters.  All transformations that belong to that subgroup will commute.  The 
composition of the group is determined completely by the assumptions that were made.  If 
one denotes the given one-parameter subgroup by Xr−1 f then one can choose the 
remaining X1, X2, …, Xr−2 such that: 
 
  (Xr−2 Xr)  = Xr−1 f , (Xr−1 Xr) = 2 Xr f , (Xr−1 Xr−2) = − 2Xr−2 f , 
 (Xr−1 Xα) = (r – 2(α + 1)) Xα f, 
 (Xr Xα)    = (r – α + 3) Xα+1 f, (Xr−2 Xα) = − (α – 1) Xα−1 f, 
 (Xα Xβ)   = 0 for α, β = 1, …, r – 3. 
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 If we define a group for an even r by the same prescription then Xr−1 f and X(r−2) / 2 f 
will determine a two-parameter group with commuting transformations.  However, in 
that case, one will have l = 1, and all functions ψν (η) will vanish for an odd v and will 
define powers of 2 1rη − – ηr ηr−2, up to a constant factor, for even v. 

 
 A group that is constructed in that way will exist for two variables and arbitrary r.  It 
was listed in the penultimate place by Lie in his enumeration (*) under B), and has the 
form: 

q, xq, …, xr−4 q, p, 2xp + (r − 4) yq, x2p + (r – 4) xyq, 
with his notation. 
 
 

§ 8. 
 

The characteristic equation has equal non-vanishing roots. 
 

 The determination of groups that was given in the previous paragraphs is based 
essentially upon the assumption that all roots of equation (7) were unequal.  We would 
now like to examine whether the simplicity of the result does not also remain true for 
multiple roots. 
 Let Xf (with no subscript) denote an arbitrary transformation.  We exhibit equation (7) 
for it and determine its roots.  If that equation has equal roots, and if ωα is one of them 
then ωα shall be counted as a (λ + 1)-fold root if and only if one can determine λ + 1 
infinitesimal transformations 

0
Xα , 

1
Xα , …, X

λα  that are independent of each other, as 

well as Xf, and for which, one will have the equations: 
 
 (X

0
Xα ) = ωα 

0
Xα , 

 (X
1

Xα ) = ωα 
1

Xα +
1 0 0

e Xα α α , 

(18) (X
2

Xα ) = ωα 
2

Xα +
2 1 1

e Xα α α + 
2 0 0

e Xα α α , 

 ……………………………………….., 
 (X X

λα ) = ωα X
λα +

1 1
e X

λ λ λα α α− −
+ …+ 

1 1
e X

λα α α + 
0 0

e X
λα α α , 

 
and that system cannot be decomposed into several systems with a smaller number λ and 
the same composition.  The arbitrariness in the choice of 

0
Xα , …, X

κα can be employed 

to make all coefficients 
0

e
κα α  vanish for κ > ι + 1.  One can then use the following form 

as a basis: 
 (X

0
Xα ) = ωα 

0
Xα , 

 (X
1

Xα ) = ωα 
1

Xα +
1 0 0

e Xα α α , 

(18a) (X
2

Xα ) = ωα 
2

Xα +
2 1 1

e Xα α α , 

 ……………………………., 

                                                
 (*) Math. Ann. XVI, pp. 524.  
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 (X X
λα ) = ωα X

λα +
1 1

e X
λ λ λα α α− −

, 

 
in which none of the coefficients can vanish.  When we use the infinitesimal 
transformation Xf as a basis, we would like to say that the infinitesimal transformations 

0
Xα , …, X

λα belong to the roots ωα , resp. 

 Now, let ωα , ωβ , ωγ , … be the roots of the characteristic equation, and let each root 
lead to a sequence of transformations Xα (a single such transformation, resp.).  It was by 
no means assumed that ωα  and ωβ  are unequal in this. 
 We now form the Jacobi relation for X, 

0
Xα , 

0
Xβ , and it will follow that: 

 

0 0
cα β ρ

ρ
∑ [(ωα + ωβ) Xρ f – (X Xρ)] = 0. 

 
 We develop this equation completely in those Xρ that belong to an arbitrary root ωγ .  
We then obtain the equation: 
 
(19)  (ωα + ωβ) 

0 0 0 0 0 0 1 1 0 0
( )c X c X c X

ν να β γ γ α β γ γ α β γ γ+ + +⋯  

  = 
0 0 0 0 0 0 1 1 1 0

( )c X c X e X
να β γ γ γ α β γ γ γ γ γ γω ω+ + + … + 

0 0 1 1
( )c X e X

ν ν ν ν να β γ γ γ γ γ γω
− −

+ . 

 
 If one does not have ωα + ωβ = ωγ in this then one must have 

0 0
c

να β γ = 0 in order for  

X f
νγ  to have the same coefficients on both sides; now, one must have 

0 0 1
c

να β γ −
= 0 in 

order for 
1

X f
νγ −

 to have the same coefficients on both sides.  In the same way, one 

recognizes that all of the coefficients 
0 0

c
να β γ , …, 

0 0 1
cα β γ , 

0 0 0
cα β γ  will be equal if one does 

not have ωα + ωβ = ωγ .  However, when that condition is fulfilled, one can compare the 
coefficients of 

1
X f

νγ −
, , 

1
Xγ , 

0
Xγ on both sides and obtain: 

 

0 0 1
c e

ν ν να β γ γ γ −
= 0, 

0 0 1 1 2
c e

ν ν να β γ γ γ− − −
= 0, …, 

0 0 1 1 0
c eα β γ γ γ = 0, 

 
from which, it will follow that: 
 

0 0
c

να β γ = 
0 0 1

c
να β γ −

= … = 
0 0 1

cα β γ = 0 

or 
(20)   

0 0
( )X Xα β  = 

0 0 0 0
c X fα β γ γ∑   (ωα + ωβ = ωγ ), 

 
in which the summation refers to the first transformation 

0
Xγ  that belongs to one of the 

roots ωα + ωβ = ωγ . 
 The Jacobi relations X, 

0
Xα , 

1
Xβ  lead to an equation that differs from equation (19) 

only by the fact that one adds: 

1 0 0 0 0 0
e c Xβ β α β γ γ  

to the right-hand side. 



Killing – The composition of continuous, finite, transformation groups I. 28 

 As before, it follows from this that only those coefficients: 
 

0 0 0
cα β γ , …, 

0 1
c

να β γ  

 
for which ωα + ωβ = ωγ  can be non-zero, and with that condition, one will have: 
 
(20a)  

0 1
( )X Xα β  = 

0 1 1 1 0 1 0 0
( )c X c Xα β γ γ α β γ γ+∑  (ωα + ωβ = ωγ ). 

 
 One can proceed in the same way.  With the condition ωα + ωβ = ωγ , 

0 1
( )X Xα β  can 

be expressed in terms of 
0

Xγ , 
1

Xγ , …, X
ιγ , and correspondingly, ( )X X

ι κα β  can be 

expressed in terms of only those X
ργ  for which ρ goes up to at most ι + κ. 

 One can derive the equations: 
 

0 1
( )X Xα α  = 

0 1 0 0
c X fα β γ γ∑ ,  

0 2
( )X Xα α  = 

0 2 0 0 0 2 1 1
( )c X c X fα α γ γ α α γ γ+∑ , 

(2ωα = ωγ) 
in an entirely corresponding way. 
 These theorems suffice to find all groups that satisfy the two conditions: 
 
 a) p = r. 
 b) Not every transformation of the group shall commute with another one. 
 
 When we start with the transformation Xr−1 f, equation (7) shall have only one simple 
vanishing root.  We set: 
 

(Xr−1 Xr−2) = − 2 Xr−2 f,  (Xr−1 Xr) = 2 Xr f, (Xr−2 Xr) = Xr−1 f, 
 

and assume in this that Xr−1 f enters into an expression for one of the (Xι Xκ), in which Xι   
and Xκ belong to the roots ± 2 as the first transformations.  The justification for this 
assumption will be proved in the conclusion.  Meanwhile, it is not excluded that even 
more transformations belong to the roots + 2 and – 2; neither is it assumed that Xr−1 f does 
not enter into any other expressions (Xι Xκ).  We group the Xλ f for λ = 1, …, r − 3 
according to the associated roots ωα , ωβ , ... 
 The relation (r, r − 2, α0) yields: 
 
(21)   

0
X fα αω = 

0 02, , , , 2[ ( ) ( )]r r r rc X X c X Xα ρ ρ α ρ ρ
ρ

− −−∑ . 

 
 If 

02, ,rc α ρ− is to not vanish then one must have ρ = β0 and ωβ  = ωα – 2, and likewise, 

0, ,rc α ρ  can be non-zero only when ρ = γ0 and ωγ  = ωα + 2.  Therefore, if ωα is any root 

then at least one of the two quantities ωα + 2 or ωα − 2 must be a root.  As in the previous 
paragraphs, one can determine the roots when one forms the foregoing equation for all 

0
Xα  that belong to the roots that are obtained from one of them by repeated addition and 
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subtraction of 2 as the first transformation.   Since the root zero is excluded from them, 
only the distinct groups: 
 

− 2m – 1, − 2m + 1, …, − 1, + 1, …, 2m – 1, 2m + 1 
are possible. 
 It follows from this that no further transformations belong to the roots ± 2, which can 
also be seen in many other ways. 
 One now forms the Jacobi relation for r, r − 2, αλ, where X f

λα  is the last 

transformation that belongs to the root ωα .  One then obtains: 
 

ωα = 2, , 2,( )r r r rc c c c
λ λ λ λα ρ ρ α α ρ ρ α

ρ
− −−∑ . 

 
 Here, one observes that X

λα  can enter into the expression for (Xr−2 X
λβ ) only when 

ωβ  − 2 = ωα  and into the expression for (Xr X
λγ ) only when ωγ  + 2 = ωα  .  Therefore, ρ 

can be equal to one βλ or one γλ in the foregoing equation.  That implies that the same 
number of transformations 

0
Xα , 

1
Xα , …, X

λα belong to all of the same sequence of 

associated roots ωκ . 
 That implies the theorem: 
 
 In order to obtain all of the roots that can appear for the transformation groups that 
satisfy the requirements that were posed, along with the roots + 2 and – 2, one chooses 
two numbers λ and m in such a way that 2(m + 1)(λ + 1) ≤  r – 3, defines the roots ± 1, ± 
3, ±, …, ± (2m + 1), and lets each of these 2m + 2 numbers be a λ + 1-fold root.  One 
then chooses two new numbers λ′ and m′ such that 2(m′ + 1)(λ′ + 1) ≤  r – 3 – 2(m + 1)(λ 
+ 1) and lets each of the numbers ± 1, ± 3, ±, …, ± (2m′ + 1) be a λ′ + 1-fold root.  One 
proceeds in that way until all r − 3 numbers are exhausted. 
 
 Meanwhile, that will imply the theorem: 
 
 If r is an even number then any transformation of an r-parameter group that is its 
own principal subgroup must belong to a two-parameter group with commuting 
transformations. 
 
or 
 
 For an even r  > 2, an r-parameter group in which not every transformation 
commutes with one of the other ones will necessarily be an (r – 1)-parameter invariant 
subgroup. 
 
 As in the previous paragraphs, one also easily sees here that for ι, κ = 1, 2, …, r − 3, 
one must necessarily have (Xι Xκ) = 0.  It is likewise immediately clear that for ι = 1, …, 
r – 3, (Xr−2 Xι) and (Xr Xι) can be represented in terms of the first r – 3 transformations X1 

, …, Xr−3 .  It will not be necessary to write down all of the coefficients.  I remark only 
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that all these functions ψν (η) can be expressed rationally in terms of 2
1rη −  – ηr ηr−2 , and 

that all sub-determinants of degree r – 1 of | γικ | will vanish for: 
 

ηr ηr−2 = 2
1rη − . 

That implies the theorem: 
 
 If an r-parameter group satisfies the two conditions that p = r and that no line that 
represents commuting transformations goes through every point of the image space then 
r must be an odd number.  The group has an (r – 3)-term invariant subgroup, and the 
transformations of that subgroup all commute with each other.  If the coefficients of a 
transformation X fι ιη∑  satisfy the condition ηr ηr−2 = 2

1rη −  then it will commute with 

other transformations. 
 
 The fact that the invariant subgroup can be decomposed into several groups here, 
each of which is an invariant subgroup, is not excluded by this version of the theorem. 
 I have previously (Programm 1884) presented the theorem that any group whose 
order is larger than three contains commuting transformations without publishing its 
proof.  Engel then gave a proof of it [Leipziger Berichte (1886), pp. 91], and thus 
determined r – 3 to be the number of dimensions of that structure whose points belong to 
a two-parameter subgroup of commuting transformations.  Here, we recognize that this 
number is r – 2 for p = r, and that only the groups that are given in this and the foregoing 
paragraphs will satisfy that condition.  Moreover, one sees easily that for p < r, a straight 
line of commuting transformations will go through either each point of the (r – 2)-
dimensional image space or through each point of an (r – 1)-dimensional plane.  Namely, 
should such a line not go through each point then one must have l = 1.  Hence, all ψν (η) 
must be expressible in terms of a function P(η), and since the group possesses an 
invariant subgroup, P(η) = 0 must represent it, so it must be a line; however, l = 0 for the 
subgroup.  It will then follow that: 
 
 If the order r of a group is larger than three then a straight line that maps to 
mutually-commuting transformations will go through either every point of the (r – 1)-
dimensional image space or through every point of an (r − 2)-dimensional second-order 
cone or through every point of an (r – 2)-dimensional plane. 
 
 As I have remarked before, there are only three groups in which no commuting 
transformations occur, namely, a one-parameter one, a two-parameter one, and a three-
parameter one.  The last one, for which all two-parameter subgroups map to tangents to a 
conic section, was referred to as the conic section group by Lie and Engel. 
 An assumption that must be justified was made in the foregoing.  Namely, we have 
assumed that the two transformations Xλ and Xµ for which the transformation Xr−1 enters 
into the expression for (Xλ Xµ) are, in both cases, the first transformations that belong to 
the roots in question.  Since equation (7) has only one vanishing root, all ( )

i
X X

κα β  for 

which ωα + ωβ = 0 must be expressed in terms of Xr−1 f, as long as they do not vanish.  
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Up to now, we have assumed that 
0 0

( )X Xα β = χ ⋅⋅⋅⋅ Xr−1 ; we now assume that 
0 0

( )X Xα β  = 

0. 
 It then follows from the Jacobi relation (α0 β0 α1) that: 
 

0 1 0 1 0 0 0, 1 1 ( )r rc X c X Xβ α α α α γ γ βω− − + = 0, 

 
and since ωα + ωβ = 0, where ωγ = 2ωα , that 

0 0
( )X Xγ β  does not include Xr−1 f, and thus 

that one also has 
0 1

( )X Xα β = 0; the same thing will be true for 
1 0

( )X Xα β , etc.  Therefore, 

if one assumes that 
0 0

( )X Xα β = 0 then one can never have ( )X X
ι κα β = Xr−1 f. 

 With that, the theorems that were presented are proved in all of their respects. 
 
 Addendum: The requirement that not every arbitrary transformation should commute 
with one of the others subsumes the two conditions that, first of all, the number r of 
parameters must be odd, and that secondly, every λ + 1 must be associated with an even 
number 2m + 2 of λ + 1-fold roots.  However, neither condition is necessary in the 
slightest when one ignores that requirement.  We shall now construct groups by the 
following prescription: 
 
 For any arbitrary r, one initially chooses transformations Xr , Xr−1 , Xr−2 such that: 
 

(Xr−1  Xr) = 2 Xr f, (Xr−1  Xr−2) = − 2 Xr−2 f, (Xr−2  Xr) = Xr−1 f. 
 
One then chooses two numbers σ and s such that σs ≤ r – 3, forms the roots: 
 

± (s – 1), ± (s – 3), ± (s – 5), …, 
 
and lets each of these s numbers be a σ-fold root of the characteristic equation for Xr−1 f.  
One then chooses two new numbers σ′ and s′ such that σ′ s′ ≤ r – 3 − sσ and lets each of 
the s′ numbers ± (s – 1), ± (s – 3), … be a σ′-fold root.  One then proceeds in that way 
until all r – 3 numbers have been exhausted.  One assigns each of those σ-fold roots with 
σ transformations according to equations (18), and then each of the σ′-fold roots with σ′ 
transformations, etc. 
 
 As for the groups that were considered before, one also sees immediately here that for 
ι, κ = 1, 2, …, r – 3, one will necessarily have (Xι Xκ) = 0, and that (Xr−2 Xι) and (Xr Xι) 
can be represented in terms of the first r – 3 transformations.  The entire character of the 
groups then remains essentially unchanged; an arbitrary transformation will commute 
with another one only when r is even or one of the numbers s, s′, … is odd.  However, all 
of the theorems that were derived in the last paragraphs will also be true for the groups 
that are defined by the general prescription.  Namely, l = 1 and p = r for the groups that 
are defined in that way.  The question of whether that is the only group for which l = 1 
and p = r will be first answered in a later part of our paper. 
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§ 9. 
 

Some properties of the groups of rank zero. 
 

 The results of the two foregoing paragraphs allow us to write down in explicit form 
all groups that satisfy the conditions that were given there as soon as the number of 
parameters is chosen.  The method that was applied there, which will also prove to be 
important under other assumptions, cannot be used for groups of rank zero.  However, it 
is not possible for me to give theorems that allow one to represent such groups explicitly.  
Nonetheless, since I will need a theorem from the theory of those groups in what follows, 
please permit me to summarize here the most important theorems that are true for l = 0, 
along with their proofs. 
 If follows immediately from the concluding remark in § 3 that when ψ1, …, ψr−1 
vanish identically, any arbitrary transformation of the group will commute with at least 
one second transformation of it.  Therefore, at least one straight line that maps to 
transformations that commute with each other will go through every point of the image 
space.  Hence, all sub-determinants of degree r – 1 of | γικ | will also vanish identically.  
For many of these groups, all sub-determinants of lower degree will also vanish 
identically, and then every transformation will commute with a multiply-extended 
manifold of transformations.  One can see the same thing without referring to the prior 
theorems when one establishes a certain form for the groups and considers that each of 
the two-parameter subgroups that belongs to the group will contain only commuting 
elements. 
 One arrives at that form in the following way: One chooses X0f and X1f to be two 
completely general (infinitesimal) transformations.  (X0 X1) will then yield a 
transformation that is independent of both of them, and which will be denoted by X2 f.  
Likewise, (X0 X2) might not be representable in terms of X0 , X1 X2, and will be denoted by 
X3 f .  One proceeds in that way such that one will have: 
 

(X0 X1) = X2 f,    (X0 X2) = X3 f,    (X0 X3) = X4 f,    …,    (X0 Xm−1) = Xm f . 
 

However, let the transformation Xm f be the first one to which one arrives for which (X0 
Xm) can be represented in terms of X0, X1, …, Xm .  Then let: 
 

(X0 Xm) = 
0

m

e X fν ν
ν =
∑ . 

 
 However, if the e0, e1, …, em do not all vanish here, and one takes ω to be a non-
vanishing root of the equation: 
 

ωm = e1 + e2 ω + e3 ω2 + … + em ωm−1, 
 
then one can determine coefficients p0, p1, …, pm  such that one has: 
 

( )0,X p Xι ι∑ = ω p Xι ι∑ , 
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so the group will contain a two-parameter subgroup with no commuting elements.  
Therefore, e0, e1, …, em must all vanish, and since (X0 Xm) must be expressible in terms of 
X0, X1, …, Xm at the very latest for m = r – 1, one will see that any transformation will 
commute with one of the others. 
 However, if one arrives at the equation (X0 Xm) = 0 along the path that was described 
for m < r – 1 then one can assume that m is the largest number that is possible in that 
regard.  One then again chooses a transformation Xm+1f that is completely arbitrary, but 
independent of X0, X1, …, Xm, forms (X0 Xm+1), and if the expression for it is independent 
of X0, X1, …, Xm , Xm+1 then one will set: 
 

(X0 Xm+1) = Xm+2 ; 
one defines: 
 

(X0 Xm+2) = Xm+3 f, …, (X0 Xm+m′−1) = Xm+m′ f, (X0 Xm+m′) = 
0

m m

e X fν ν
ν

′+

=
∑ , 

 
from which the case of m′ = 1 is excluded.  We next seek to find a two-parameter 
subgroup of X0, X1, …, Xm+m′ .  Due to the equation: 
 

ωm′ = em+1 + ω em+2 + … + ωm′ em+m′ , 
 
it will always have a principal element if the coefficients em+1, em+2, …, em+m′ do not 
vanish.  However, if all or some of the coefficients e0, e1, …, em are non-zero then one 
will observe that from our assumption, the m-fold repetition of the operation (X0 Y1) = Y2, 
… must lead to (X0 Ym) = 0.  If we apply this to Xm+1 then we will see that m′ can be equal 
to at most m, and that for m′ = m, one must necessarily have (X0 X2m) = 0.  On the other 
hand, performing that operation for m′ < m will show immediately that one needs only to 
replace Xm+1 with a linear function of Xm+1, X1, …, Xm−1 in order for the coefficients e1, 
…, em to vanish, and therefore e0, as well. 
 One can proceed in the same way.  If one again forms: 
 

(X0 Xm+m′+1) = Xm+m′+2 , …, (X0 Xm+m′+m″) = 
0

m m m

e X fν ν
ν

′ ′′+ +

=
∑  

then one must have m″ ≤ m′, and since at the very most an m-fold repetition of the given 
operation applied to Xm+m′+1 will lead to (X0 Xρ) = 0, one can again assume that (X0 X 

m+m′+m″) = 0. 
 That implies the proposition: 
 
 One can choose r mutually-independent infinitesimal transformations X0 , X1 , … Xr−1 

in any group of rank zero such that one has the equations: 
 
(A)  (X0 X1) = a1 X2 f,    (X0 X2) = a2 X3 f,    …,    (X0 Xr) = ar Xr+1 f, …, (X0 Xr-1) = 0, 
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in which all coefficients a1, …, ar−2 are equal to 1 or 0.  If one already has am = 0 for a 
general choice of X0 f and X1 f for m < r – 1 then at least one vanishing coefficient must 
appear in the am+1, …, a2m ; if am+m′ is the first one then at least one of the coefficients  
am+m′+1 , …, am+2m′ will also vanish; etc. 
 
 The Jacobi relation for (0, m, m + m′), (0, m, m + m′ + m″), …, as well as for (0, α, 
m), (0, α, m+m′), …, where α means a symbol that is different from m, m + m′, …, 
yields: 
 
 (a)  (X0 (Xm Xm+m′)) = 0, … 
 (b)  (X0 (Xα Xm)) = (Xα+1 Xm), (X0 (Xα Xm+1)) = (Xα+1 Xm+m′), … 
 
 It follows immediately from (a), in conjunction with (b), for a = m – 1, m + m′ – 1, 
…, that (Xm Xm+m′) and the corresponding expression can be expressed in terms of Xm , 
Xm+m′, Xm+m′+m″, …  However, when the equations (A) are also valid, if one considers that 
Xm+1 , Xm+m′+1 , … can still be chosen in such a way that Xm+m′ can be added to an arbitrary 
linear function of Xm and Xm+m′ , and if one further considers the character of the two-
parameter subgroups that are even possible then it will follow that: 
 

(Xm Xm+m′) = 0,  (Xm Xm+m′+m″) = 0, … 
 
 That consideration will also now show that one also has: 
 

(Xm−1 Xm) = (Xm−1 Xm+m′) = … = 0. 
 
Assuming that, one will find in that way that: 
 

(Xα+1 Xm) = (Xα+1 Xm+m′) = … = 0. 
 
It will then follow immediately from equations (b) that (Xα Xm), (Xα Xm+m′) can contain at 
most Xm , Xm+m′, …, and the argument that was thus sketched out will teach us that (Xα 
Xm), (Xα Xm+m′), … will also vanish.  Therefore, all transformations that can be exhibited 
in the given way as commuting with X0 will commute with all transformations of the 
group.  We then see: 
 
 Any group of rank zero has a subgroup whose transformations commute with all 
transformations of the group.  If all sub-determinants of rank r – k in the determinant |γικ| 
vanish then any manifold of transformations that commute with an arbitrarily-chosen one 
will be a (k – 1)-dimensional manifold of ones that commute with all of them. 
 
 Lie called a subgroup of the given type a distinguished subgroup (Ann. Bd. 25, pp. 
77, note).  We will always find distinguished subgroups in the manner that was 
considered here then. 
 Similarly, he gave a simple method for finding that subgroup. 
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 If α and β are different from m, m + m′, … then the Jacobi relation for (0, α, β) will 
yield the equation: 
(c)     (X0 (Xα Xβ)) = (Xα+1 Xβ) + (Xα Xβ+1). 
 
 When we employ this equation, for the sake of convenience, we restrict ourselves to 
groups for which only all of the sub-determinants of degree r – 1 of | γικ | vanish, and 
thus, for which one must set a1 = a2 = … = ar−2 = 1 in (A).  When one sets β = α + 1, β = 
α + 3, …, in sequence, and further considers the equation (Xr−2 Xr−1) = 0, one will see 
immediately that the X0f and X1f do not occur in the expression for (Xα Xβ). 
 
 If not all sub-determinants of degree r – 2 in the characteristic determinant vanish 
identically for l = 0 then the transformations X2f, …, Xr−1f that are determined by the 
prescription above will define the principal subgroup. 
 
 Similarly, (c) immediately implies that (Xr−3 Xr−2), and in general (Xα Xr−2), can be 
expressed in terms of only Xr−1f.  Had we proved in general that (Xα+1 Xβ+1) and (Xα Xβ+1) 
could be expressed in terms of only Xβ+1, Xβ+2, …, Xr for α < β, then equations (c) would 
show that only Xβ, Xβ+1, …, Xr could occur in (Xα Xβ), although the coefficient of Xβ 
would again have to vanish in order for only two-parameter subgroups with commuting 
elements to occur in the group.  The changes that would be necessary for that when the 
form (A) is assumed in full generality do not need to be given.  We then arrive at the 
following theorem that Engel first presented and proved under a somewhat more general 
assumption: 
 
 Any r-parameter group Gr for which l = 0 has an (r – 1)-parameter invariant 
subgroup Gr−1, which will also have an (r – 2)-parameter subgroup Gr−2 that is invariant 
with respect to Gr , as well as Gr−1 ; it, in turn, will have an (r − 3)-parameter one that is 
invariant under Gr−2 , Gr−1 , Gr , etc. 
 
 Since any invariant (r − 1)-parameter subgroup of the principal subgroup closes on 
itself, it will then follow that: 
 
 If l  = 0, and only the sub-determinants of degree r – 1 of | γικ | vanish identically then 
the group will have a simply-infinite family of (r – 1)-parameter invariants subgroups; 
any transformation that does not belong to the principal subgroup will belong to an (r – 
1)-parameter invariant subgroup. 
 
 We now infer some further consequences of equations (c) when we let α, β be the 
smallest pair of values in turn.  It was proved already that for α = 1, any (Xα Xβ) could be 
represented in terms of those Xι f for which ι ≥ α + β – 1.  Assume that this was proved 
for α, β and α, β + 1; from (c), that will then imply the same property for (Xα+1 Xβ).  
Therefore, the property will be true in full generality [naturally, only for a1 = …, ar−2 = 1 
in (A)].  Hence, a well-defined (r – 3)-dimensional plane Er−3 lies in the (r – 1)-
dimensional image space, and it exhibits the principal subgroup; a well-defined (r – 4)-
dimensional plane Er−4 lies in it, etc.  The product of an arbitrary point of the image space 
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with a point of Er−α will lead to a point in Er−α−1, and the product of a point in Er−α with a 
point in Er−λ will lead to a point in Er−κ−λ , and will vanish when that index become 
negative.  In particular, one has: 
 
 If one constructs a k+1-parameter group from the k transformations Xr−κ , Xr−κ+1 , …, 
Xr−1, and a completely general transformation then it will be an invariant subgroup that 
has the group that is defined by the transformations Xr−κ+1 , …, Xr−1 as its principal 
subgroup. 
 
 Now, in addition to equations (A), one can also assume the following equations: 
 
 (X1 X2) = α2 X2 + … + αr−1 Xr−1 , 
 (X2 X3) = β4 X4 + … + βr−1 Xr−1 , 
 (X3 X1) = γ6 X6  + … + γr−1 Xr−1 , …, 
 
and derive all (Xα Xβ) from this with the help of (c).  However, for r > 6, further 
conditions must be added, and therefore it has not been possible for me to represent those 
groups explicitly, up to now. 
 
 Braunsberg, beginning of November 1887. 
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