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Part One.

In contrast to my previous papers on transformationggd), in the present paper, |
shall adhere to the notations of Lie exclusively, aeférrthose readers that are less
familiar with those papers to the survey that Engel gaveis paper in volume 27 of
Math. Ann (pp. 1et seq. My newly-introduced notations are also in accorthwhose
of Lie and Engel, which is partially due to oral discussiaits them. Thus, | denote
those infinitesimal transformations by whichraterm group is determined symbolically

by Xi f, ..., X, f (by Xy, ..., X, , where no misunderstanding can arise). An arbitrary
infinitesimal transformatioX. 77, X, f is determined by coefficientss, ..., 7. , and can
be denoted by merely){, ..., ) or (7). Any infinitesimal transformation leads to a

simply-infinite family of finite transformations, armbnversely, any finite transformation
can be obtained by repeating an infinitesimal one infinitdten. However, the finite
transformations will be examined in the following invediigas only in regard to the
qguestion of whether they do or do not commute. As longresdoes not consider
infinitesimals of higher order, infinitesimal transfations always commute. However,
as long as a certain relation exists between twherht any finite transformation that is
derived from one of them will commute with any finitarisformation that is obtained
from the other one (Programm 1884, pp. 12). We therefored niear no
misunderstanding when we consider all transformatibiaé emerge from the same
infinitely-small one by repetition to be identical amnefer to that family of finite
transformations by means of the associated infinitesom&. We then speak of a
transformatiord. 77, X, f (perhaps in contrast to Lie).

In order for the systems of differential equatioisf, ..., X, f to lead to a group, one
must form the (r — 1) / 2 expressionX( X,) by a known prescription, and one must then
have:

() “Erweiterung des Raumsbegriffes,” Braunsberg, 1884. “Zlineorie der Lie'schen
Transformationsgruppen,” Braunsberg, 1886.

Since the first paper was initially included in theedtory of lectures for Winter 1884/85, while the other
one was included in the directory for Summer 1886, thedohall be cited by Pr. 1884, and the latter by
Pr. 1886.
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(x/ XK) = ZCIKLT XU’ f '

Certain relationships must exist between the coeflis®n, that one can derive from
either the integration conditions or an equation thatinost self-explanatory for finite
groups (), and which is implied by the Jacobi relations:

[Xo (X X))] + [Xe (2 X)T + [X3 (X, X9] = 0
or by:
z {CKAp (Xp X/) + Cap (Xp XK) + Cixp (Xp X/])} =0.

Many properties of groups do not depend upon the transformaaXid, ..., X f
themselves, but are already derivable from the codqfte®,,. Thus, when two groups
possess the same coefficiertgz,, they will be referred to agqually-composed
However, since one can alter tg; in such a way that one replaces ¥ig ..., X, f with
r mutually-independent, homogeneous linear functions, oliehawe to refer to two-
term groups asqually-composedhen they either possess the same coefficiepisor
when one can bring about that equality by a suitablecehoif the determining
infinitesimal transformations.

As long as the coefficientsc,q, ..., Cx do not all vanish for given values o&nd«,
ZC,Kp X, f will once more represent a transformation. Ithsious that at most of the

P

r (r — 1) / 2 transformations that are obtained in that wilype mutually-independent; in
many cases, they can be represented by a smaller nuiiere (Programm 1886, pp. 7
and 8) denoted the number of the mutually-independent dramsfions thus-obtained by
p and proved that thegetransformations determine an invariant subgroup that ehibi
some entirely remarkable properties. One cannot avoidggihiese subgroups a special
name, and | refer to them psincipal subgroups. Thus, a group for whicph =r is its
own principal subgroup; by contrast, a group with nothing leeimmuting
transformations possesses no principal subgroup. Itasvkrthat any two-parameter
group whose transformations do not commute always hasegparameter principal
subgroup; sometimes that subgroup is referred to panicpal element

One will arrive at second number that is characteridtthe group by the following
consideration: The problem of determining the two-paramstibdgroups in which a
given transformationsfs, ..., /) exists leads to an equation of degree

" — ™ ya(n) + 0 gol) — .. £ Wiha(7) =0,

in which they, (7)) are homogeneous functions of degdem 71, ..., /- , and in which
the absolute term vanishes. The question then arisesnofriamy of the functiongh,
..., Y- are mutually-independent, in such a way that all ofdtier ones could be
expressed in terms of them. The number of the mutuadigpendent ones, which is
always smaller than — 1 forr > 2, shall be denoted Byand is called theank of the

() Engel, “Beitrage zur Gruppentheorie,” Leipziger Beriti#87), pp. 8%t seq.
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group. Ifl > 1 then not only will the coefficient -1, ..., ¢+ vanish identically, but
also all sub-determinants of degree- | + of a certain determinant that is closely
connected with the equation above. Thus] for, an arbitrary finite transformation will
commute with not only the ones that can be derived frosn infinitely-small
transformation, but with some other families, and #msociated infinitely-small
transformations determine an+1)-term subgroup.

The proofs of these theorems, and many other relatiowsich the numbel stands
for a property of the group, are based, in one case, $ystam of formulas that are
derived from the Jacobi relations by simple operatioAscertain canonical form in
which most groups can be represented leads to a second @pefarrives at that form
in the following way: One starts from an entirely awdniy infinitesimal transformation
(n7), poses the equation above for it:

" — ™ ya(n) + 0 gol) — .. £ Wiha(7) =0,

and determines its roots. In general, it mganishing roots, s@4-1, ..., ¢-m1 vanish
identically, and one can still determime— 1 transformations that are independent of
each other, as well as the transformatigp) &nd which commute with the given one and
each other. One chooses the given transformatioe,tsdy,X; f, and the ones that are
found to beX;1 f, ..., Xi-ma f. NOw, ther — m non-vanishing rootgu, ..., w-m can
initially be different from each other. Thus, on@ choose — mtransformations(s, ...,
X;-m In such a way that:

X X)) = Xa f, X X2) = Xof, cery K Xrm) = @-m Xrm T .

However, the following equations will likewise be truenno

(Xi-1 X1) = o X1 f, K1 X)) = L, Xo f, ..., Ki-1 Xrm) = af_ Ko T,
(X2 X1) = J X1 f, K2 X)) = af) Xof, ..., K2 Xim) = af_ Kem T,

In order to characterize the composition of the grompe must still give the
expressionsX, X, for s, k=1, ...,m. However, one deduces that immediately from the
rootsa namely, K, X) =Cux Xa f whenw + ax = @, and:

(X, XK) = (C/Kr Xr + Cikr-1 Xr—l + ... +CIK, r-m+1 Xr—m+1) f
for

@ + @ =0.

Clearly, the same thing will be true for the roafs, «J;, ... In that way, we will be led

to look for certain relations between the roots.

One obtains a similar representation for equal ramgtssuch that no essential
difference enters for that case. The case in wiictransformation of the group
commutes with all other transformations, which was w@tl from the present sketch,
requires special treatment. Meanwhile, the requiresdlation can also be obtained easily
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here. By contrast, the present representation ofgtbep will become completely
impossible when all of the function, ..., ¢-1 vanish identically. | shall also present a
certain simple form from which many properties of theugr can be easily observed, and
which can then be considered to be truly canonical. é¥ew this form does not have
the distinguishing properties that are special to the tbahwas described just now, and
which come from the fact that most Jacobi relatiores fatfilled by themselves, and
among the ones that are not satisfied identicallyjrttiependent ones separate from the
dependent ones immediately. Those groups belong tosatbltsEngel considered quite
recently [Leipziger Berichte (1887), pp. 94, seq], namely, the one in which no three-
parameter subgroup with the composition of the generalgbnggegroup contains the
simply-extended manifold (conic section groups). He potleat any such group
contains anr(— 1)-parameter invariant subgroup that once again congaing — 2)-
parameter invariant subgroup in it, etc. In additioth® groups of rank zero, this class
that Engel considered also contains the groups for whi@f gle functionsys, ..., (-1
can be represented by linear functigis..., /7. . Engel's theorem follows for the latter
from § 4 of our paper, and the statement and proof of itavaady known to me. | first
found the presentation in 8§ 9 for 0 after Engel had communicated his theorem to me
and sketched out the proof, meanwhile, he had still notreamtated Lie’s presentation
of those groups at the time. On the one hand, | cameg/town presentation more easily,
while on the other, | brought it into great agreement tiét of Lie.

Only the ratios: @ 772 : ... : 1. are necessary in order to define the infinitely-small
transformation). 77, X, f, so it is permissible to multiply alj, with the same non-zero
number. Along with Lie and Engel)( we thus associate all of the infinitesimal
transformations of the group uniquely and continuously withgbints of anr(— 1)-
dimensional projective space and consiggr..., 7 to be the homogeneous coordinates
of the associated point that is the image point otridmesformation>. 77, X, f. When the
transformationg. 77, X, f andX 77, X, f do not commute, the operation ¢, X,, > 77/ X))

will again lead to a transformation, and its image pwititbe referred to as thproduct
of the points §) and ¢7").
For the time being, | shall present only part of my ingasibns; | think that the
continuation will follow soon.
81
A remarkable system of equations between the coefficients c«; .

As was mentioned already in the introduction, we stélt the equations:

(1) O(/ XK) = ZCIKLT XU’ f !

(2) z{ck/lp( Xp X/) + (’;I/p( Xp >§() + g(p( >$ X)} = 0

() Engel, “Zur Theorie der Zusammensetzung der endlichamtinuierlichen Transformations-
Gruppen,” Leipziger Berichte (1886), 83-94.
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Our problem will be to draw conclusions about the caosttijmm of groups from the
system of equations between ttyg, that are represented by these two equations. A
certain system of equations that can be obtainedydasih the originally-given one by
mere summations will yield one series of conclusiofisat system of equations is:

(3) zcaﬂk CKM = O’
KA
(4) z (Caﬂ;( pr/i + QYW 91[3/1) 9/1;1 = O’
KA U
(5) 2 (ConCun Gon + G G Gor * G G §1) §u =0,
KA UV
(6) z (C” ’CﬂzK2K3Cﬂ3K3’(4”. %SKSK].-*- gﬂi %!‘!394‘ K4 glfs’( 1+

e ¥ Cﬂﬂ3/Cﬂ1K2K3Cﬂ2K3K4“. %s—leKl) (;Kf( 2: 0.
In equation (6), the summation extends overshel symbols/, ki, Kz, ..., ks, Which
take the values 1, ..t,; a, B, B, ..., B are fixed symbols. There asgroducts in the
brackets, each of which is obtained from the foilmwone when one replacgs 5, ...,
Ls with 5, B, ..., / cyclically.

The first of these equations was already statddpanved by Engel’); the remaining
ones have not been published up to now.

The proof of formula (6) emerges quite clearlynfrthat. We start with the proofs of
formulas (4) and (5) and repeat the proof that Eggee for formula (3).

From equation (2), one has:

Z(Caﬂk Cor T G Gan T G Qﬂa) =0.
K

If we sum overd then the last two products will drop out, and wik ebtain formula (3).
In order to establish the relation (4), we stathuthe two equations:

z (Ca/]KCK/ip + C/JAK c;m,u + (;m( 9,8;1) 91/] = 01

KA

z (CHVKCK/LU + C‘E//ik c;m,u + (;m( (;Mu) 9;1,1 = 01

KA

and add them. Now, one has:

() Leipziger Berichte (1886), pp. 89.
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ZC/MKCKLT#CW/‘ +z G (;yp c/\im =0,

as one sees immediately when one replaces the sionmsgmbolsk, A, ¢ with 4, k, A,
resp., in the second sum. One likewise has:

ZC/MKCKLT#CW/‘ +z G (;yp c/\im =0,

in which «;, A, i is replaced withy, «, A, resp., in the second sum. With that, one gets
equations (4).
One arrives at equation (5) in the following way: Omaris the equation:

z (Caﬂ/ G + Cﬂ/« o + G (;ﬁ/}) %ﬂ 81/( =0

1K AU

and then defines the two equations that one obtanmes one replaces ), owith y; S, S,
resp., and then witB, S, y; resp. The left-hand sides of each of these @amsatontain
three summations (over «, A, f). The third sum in the first row will be equaldan
opposite to the second sum of the second equatitewise, the third sum in the second
row will be equal and opposite to the second sutherthird equations and the third sum
in the third equations will be equal and oppositéhe second sum in the first one. If one
then adds the three equations then only the fustsswill remain, and that will yield
equation (5).

In order to prove (6), one forms the equation:

z (C”ﬂﬂc“(l’(z + CﬂlKll q"K2+ 91”’ 971’(2) gf(i(sgi( & 4”. gsKsK 1: 0.

1,K1,Kp 0 K

One will define the same equation when one repl&ces,, ..., 5 with one of the cyclic

permutationg, Bs, La, - B B Ba By o B2 - Bs B By <., P11 . Now:

zCﬂKl’q”chﬂszKs%é(é(A“. 9;!(1( 1
is equal and opposite to:
ZCKlmclﬂsz CﬂszKs%Mé(A“. 9;!( £’

as one will see immediately when one replaces whangation symbols, «i, A2, A3, Ka,

... Ks In the second sum witlxy, s, 1, K2, Ka, Ka, ... Ks-1, resp. Thus, the second sum in
each equation will be equal and opposite to thel thum in the following equations, and
the second sum of tl# equation will be equal and opposite to the thirthsn the first
one. If one then adds tkeequations thus-defined then only the first in eatcthem will
remain, such that the validity of (6) will be prave
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82
Theinvariants of a certain linear group that isadjoint to the given group.

Every group of transformations is closely related teo tgroups of linear
transformations. Fok = 1, ...,r, the individual infinitesimal transformations of the one
group will be represented by the system of equations:

dx, = dtz ot %o

or, with Lie’s symbolic notation, by theequations:

sz/pa

Lie and Engel( referred to this group as taejoint linear group.
A second one is:

of
,7/ = dt znpcu(p or znpcu(pa_
P 5P ,7/

It will be referred to as theecond adjoint linear group Both of them are composed in
the same way as the given one.

| have addressed the invariants of the second adjoint gn@awously (Programm,
1886); | will now derive the invariants of the other one.

To that end, | pose the equation:

ancpll_w ancpll znpcprl
P P P
ZOpCplZ ZOpCpZZ_w znpcprZ
(7) P) P) P) =0.
;Opcplr Zp:OpCer ;Opcprr W

For the sake of brevity, we set:

(8) znpcp/d = Vi (,7) = Vir,

and then the foregoing equation can also be written:

() Inaletter. Confer Engel, Leipziger Berichte (1886),88.
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i@ YV A 71
IZ0 Voom@ - Vs

Vir Va R

Sincec,, + Cx = 0, one also has:
zngyg/] = znp”gcpml = O’
g p.0

and therefore the determinant of ghewill vanish identically; that is:

9) Vi | = 0.
If we then develop equation (7) in powersagthen we will obtain:
(10) W' = () '™ + ¢ (1) '™ = ¢ (1) "™ + . £ W1 (1) = 0.
Forv=1, ...,r — 1, eachy, will be a homogeneous function of degreén the
quantitiesr, ..., 7 when it does not vanish identically.

One now has the theorem:

The coefficientga (17),¢» (), ..., %-1 (1) in equation(10) are invariant functions of
the adjoint linear group,

or in other words:

The determinant:

ancpll_w ancpll znpcprl
o 0 o

ZOpCplZ ZOpCpZZ_w znpcprZ
o o o

ancplr ZOpCer 2’7;:% -w
P P P
will not change for an arbitrary otv when one subjects it to any transformation of the

group that is determined by the r infinitely-sntadinsformations:

of
Hof=>»n,.c,,—.
a ;pp 6/7

/
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We first prove this theorem for the lowest-indexexdctions ¢, ¢, 5. One hagh
= 2/7, C., - In order to apply the infinitesimal transformatidp f, one must replacdy,

with dt >"77,¢,,, ; One will then have:
P)

dl/’l =—dt z ,7pcme/UU J

X,

in which, the coefficient of each, will vanish as a result of (3). Since the functign
remains unchanged by each infinitesimal transformatioth® group, it will also not
change for any transformation that belongs to the group.

The coefficientys of ' is:

(3) (Ar Vi = Yo Yir),

in which the various combinationd) are to be taken from the set 1, r..,In place of
this, we can set:

Y =32 (Vaa Y= You W),

Au

:% z 1y N« (CV/M Crupt — Crau CW/]).
VKA

Thus, when one applies the infinitesimal transfornmetig f :

dyp = - 3dt z 1 My Capr (Caa Cuur = Crau Cypn)-
By.KAu

Here, the coefficient of 3 dt Oz 7, is:

z {(Capc Cyar Cuuu + Cay Cyar Cup) = Ciap (Cap Cypur + Caywe Cun)}-
KA

Each of the first two sums vanishes because of gelg8), while the remaining part
vanishes because of (4). One then has, indaet(;) = 0.
In a completely corresponding way, one has:

CKM CK/Lu Q(/h/
=% > N1\ Cu G|

V.0.K Ay
CJM Cdv,u C5VV

so, when one applies the same infinitesimal transdtiom:
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CKM CK/1 1 C;(A v

dis ==3dt X D750 Copc| Su G G |-
V.0,
g/}‘/ WMV Cdv) Cdv,u C5VV

Up to the part that vanishes because of the relat®)rem@ (4), the coefficient of:

satn,n15

is equal to:

z CK/l,u(Ca KCMIV (%v/i +) !

KA UV

in which the additional terms in the bracket am ¢mes that are obtained from the one
that is written by permuting8yd. Those permutations can be decomposed into two
sequences of cycles; the sum over each cycle atillsh due to (5); one will then have
dys =0.

We can proceed in the same way. We have:

Cu(l/(l C/K1K2 e QK{S
1 Conany  Cporors, 7 Grwm,
W (17) = ;Zmﬂﬂﬂs e | P T .
CﬂsKsKl CﬂsKsKZ o CﬂsK & s

If we then once more apply the infinitesimal tfanshation:

drg, == dt 3 115Gy,
A

then, up to terms whose vanishing will follow fram. (3), (4), (5) and the corresponding
ones for 4, 5, ...s— 1, the coefficient of:

~a'la s,
will be equal to:
C’Kle(C”ﬂll CﬂszKs%aKszt“. %sKsK1+“.)’
in which the additional terms in the bracket are tmes that are obtained from the

product that was written down by permutify £ ... 5 . Since all permutations
decompose into a sequence of cycles, the theorérollaw from (6). ()

() Engel, to whom | communicated the present theoreongalith the proof that was given here, at
the end of July, 1886, has provided another proof, whiahl tescribe here in words:
“I set:
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Of the functionsyx, ..., ¢-1 that are considered here, the func*t'zﬂp has already
been considered by Lie for a long time. Namely, hegdbke theorem) that when not

all expressionsZcM , vanish (so when the functiagn(77) does not vanish identically),

the group will possess an-{ 1)-parameter invariant subgroup, and it will be repredente
by ¢n (n7) = 0. It then follows from this that (Pr., 1886, pp. 11¢ humberp that |
introduced is less than. Engel has provided a very simple proof for the two
aforementioned theorems){ One can give its proof a form that is closely coteg
with the method that is applied in the following inveatigns. Hence, | do not consider
it to be superfluous to derive another proof from form{@a upon which Engel also
based his own, except that | will prove the theorem endpposite sequence, and first
show that:

If ¢n(n) does not vanish identically then the coordinatgs ..., { of the
transformations to which one will arrive by the operation:

1-r of r
Bif = 2y, oy 2 Cy Y mE W = Ui,
(]

i =1

in which g, =0 fori # k, andg = 1. Then let:

A=Y +Up; ... Uy ;
it shall be proved thd, A = 0.
| find that:
-1 gA
BsA = X ——B.Uy,
ki auKi

1-r
Bs U = Z Cii Gsj W »
V.

Z (Cl/sj Cjk\+ CSki QV\ + QV\ (]:SI) = 0’
j=1

SO:
r r

,
Bs Uy =_chka Gi¥% *. 2
j=1 v=l j v=1

Zl stiz Cni Y

r
- 1C3|<J'(uii t§ @)+ .Zl sti(% t& @) ;
i=

since g + Cksj) wVvanishes:
,
Bs uq = _Zl (Cskj uji + sti Lth) !
i=

r r oA
Zilcjsik; Y u
ki

r v oA
A = ) [P
Bs k%ilcskjé u; 0 +

ki

1)

r r

=0 Y Cyfp A X gy
k,j=1 i,j=1

= A{i Cskk+i Cisi} =07
k=1 i=1

() Archiv for Math. og Naturw. X, pp. 88.
(") Leipziger Berichte, 1886, pp. 89.
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(XX, 2mX) = 28X,

for entirely arbitrary values ofy and 77 will satisfy the equation:

¢ () =0.
In fact, let Zn,x,f and Zn,'x,f be two arbitrary infinitesimal transformations,
and let:
(XnX.2m%) = 24,X, t,
So
Z,D = 2,7/ ,7/’( C/Kp )
and:

wl (Z) = ZZP CPUU = z ,7/ ,7/’( C/KPCPUU = 01
0,0

1,K,0,0

as a result of relation (3).
The image point of each infinitesimal transformatiorwhich one will arrive by the

operation(Zn,X,,ZU,'X,) or by multiplying the pointg ands will always belong to

the planeys (n7) = 0 then. Thus, the image point will also belonghat plane when one
of the given points is assumed to be on it; i.e., fhlahe represents an invariant
subgroup. However, that is the theorem that was ficstgo by Lie.

8 3.
Derivation of an equation that ischaracteristic of a group.

The previous two paragraphs had the goal of making it ldes®ir us to be able to
properly explain the relevance of the following develepts. For that reason, | have
also presented equation (7) without mentioning the problatmléd to that equation in a
natural way. We shall now do that, and it will thenpassible for us to deduce some
further consequences of the theorems that were provbd previous paragraphs.

Any two-parameter group whose transformations do not commiteeach other
contains a one-parameter principal subgroup, and ifarepresents it for the group that
is determined by; f andX, f then one will have:

(Xl Xz) = a)le,
in which wis non-zero.

We now look for the two-parameter subgroups of the giveomXi, Xz, ..., X;) In
which a given infinitesimal transformatiom( ..., /) is included. Initially, the
transformations of the desired two-parameter groups simotildommute, and(j, ..., &)
should represent the one-parameter subgroup. The proidenarises of looking for all
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two-parameter subgroups to which the given transformatipns.., 7. belong, and
determiningr + 1 quantities(s, ..., ¢, wsuch that the following equation is valid:

(11) (X2 0X)=wY X 1.

This equation also vyields the two-parameter sulgggo with commuting
transformations, since one would then hayve 0. One must start with another equation
only when the given transformatiory.( ..., 7r) represents the principal subgroup for a
two-parameter subgroup. However, we will show thiais is possible only for
distinguished positions of the poing( ..., 7%), SO we can omit that case.

When we replace the values in equation (11) withdnes in (1), we will obtain an
equation that decomposes into the followirgguations:

(12) 2,7/ ZK C/Kp = pr .

In order to solve this equation, it is known thae must first calculatexby means of
the equation:

znpcpll_w zanle znpcprl
7) ancpﬂ zanpZZ_w zﬂpcprZ - 0.

znpcplr zaner 2’7;»% -w

This is the same equation that we presented befenegll as writing it in the form:

(10) W' =0T ya(n) + WP (n) — ... £ wiha() = 0.

Each non-zero rood determines a system of quantitiéshat satisfy eq. (12), and
therefore also eq. (11). However, whenis an a-fold non-zero root, and all sub-
determinants of degrae— a + 1 on the left-hand side of (7) vanish for thatue of
acan determinex systemsd, &, ¢ ..., %Y in such a way that for any arbitrary
coefficientsA, A1, A, ..., 441, the following equation will be true:

(Xn%, (A + AL+ A8 4+ A7) X,)
= WY (A AL AL e+ A L) X, T

In this case, am-dimensional plane will go through the image paitthe given
transformation £, ..., /), and every line in that plane that is drawn tigtothat point
will represent a two-parameter subgroup.

Furthermore, ifwis a non-zero multiple root for which at least aalb-determinants
of degreer — 1 do not vanish then that will yield only a dea¢wo-parameter subgroup.
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However, one can determimesystems?, ', ..., ¢““™ in this case such that for arbitrary
values of1, Ay, Ay, ..., 441 the following equation can be fulfilled:

(2% 216, 4A¢+ A4+ 2,4 ) X )
= (ug, + 18]+ 18+ + L) X, £

as long as thg, (4, (b, ..., Us-1 are determined as linear functionsiofly, Az, ..., Ag-1in
a suitable way.

The fact that one of theroots of eq. (7) always vanishes was stated above glread
However, a simple vanishing root will lead to no two-part@amsubgroups, but only to

the obvious relation:
(Xa.x,.>mx%)=0.

However, whenw= 0 is ana-fold root of eq. (7), and likewise all sub-detenamts
of degreer — a + 1 vanish, we will arrive at amr-parameter subgroup whose
transformations can all commute with the given onésnally, as far as the case is
concerned for whiclaw= 0 is ana-fold root without all sub-determinants of degree a
+ 1 vanishing, we will initially pass over it, smowe will address that case more
rigorously in 8 10. Here, it shall suffice to ratkahat in that case, either all functions

W(n), ..., W-1(n) vanish for such a value or all sub-determinafis)n | of degree — 1
are equal to zero.

84.
Classification of groups according to rank.

If one again writes equation (7) in the form (10):

W' — ") + W TP(n) = .t wiha(n) = 0

then the smallest number of functions in terms loicWv all functionsys, ¢, ..., -1 can
be expressed shall be denotedlpbynd groups shall be classified according to their
associated value of Forl =0, all functiong, ¢, ..., -1 vanish identically; fof = 1,
all functionsy, can be represented rationally in terms of a sifigletion of77 as long as
they do not vanish identically. Moreover, for arpitraryl, | functionsPs, ..., P, can be
chosen such that all functiogs, ¢, ..., ¢4-1 can be expressed rationally in termdgf
..., P. I refer to this numbdras therank of the group.

If one again sets:

Vi = znpcp/« '
P

to abbreviate, then, from the developments of theowsd paragraph, the following
equation will be true for any functiag(#):
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Y,

13 “yk=0
49 295, "
when one takeg=1, ...,r — 1.

Since the functiong/(7) can be expressed in terms of tHanctionsPy, ..., P, the

following equation must be true for every valuexof

y 6Pa+y 6P0,+ ‘y aPa_O

K1 K1 KT — Y,

on, 017, or,

in which one must setr = 1, ...,I. However, thePy, ..., P are mutually-independent

here, and one therefore has the theorem:

If all of the the functionsya, ¢, ..., -1 can be represented by | mutually-
independent functions then all sub-determinantgyaf | of degree r — k 1 will vanish
identically. Naturally, (-1, ..., ¢-+1 Will likewise be zero identically.

If we couple this theorem with a remark about the Vamgs of wthat was made in
the previous paragraph then we will come to the followirsglte

If the rank of a group is greater than one thenrgwsmnsformation will belong to an
(I - 1)-dimensional manifold whose transformations all cartsnwith the given ones.

Here, | shall recall the sense in which the word “conathig to be taken with the
convention that was made in the introduction. If then start with an arbitrary finite
transformation fot > 1 then it will not only commute with all of theatrsformations that
are derived from the same infinitesimal transformretias the given transformation, but
also with those transformations for which the asgedi infinitely-small transformations
define a certainl  1)-fold extended manifold.

Conversely, we conclude:

If a (k — 1)dimensional plane goes through any point of thegenapace that is
defined by only the given commuting transformatitus no k-dimensional plane of that
kind, theng-1, ..., h—+1 Will vanish in a natural way; likewise, all of tHanctionsx,
i, ..., Y can be represented rationally in terms of at nkotnctions, or else one has
| <k

In particular, this implies the theorem:

If there is a finite transformation in a group thaommutes with only the
transformations that emerge from the same infimtaktransformation (as it does) then
all r — 1 functions, ¢, ..., -1 can be represented rationally in terms of a single
function.

Lie’'s theorem that the group has an—(1)-parameter invariant subgroup when the
function ¢4(77) does not vanish identically can now be generalizederfollowing way:
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If one chooses the | functiong, P.., P, in terms of which allg, ..., ¢4-1 can be
represented rationally in the simplest way, and if one of them —Pg@ag), —is a linear
function then R77) = Owill represent an invariant subgroup.

The proof is precisely the same as the one that wa® dor Lie’s theorem at the
conclusion of § 2. If we set:

Pu(n) =2, p7,
then, from (13), one will have:

D Cupy B, =0

for every combinatiomr, B.
If we then form:
(XnX.2mX) =3 4,X,1

Z,D = 2,7/ ,7/’( C/Kp )

then we will have:

SO

Pl(Z) = przp: 2’7,’7;’(C/Kpppa

1,K,0

such that the coefficient of each prodycty, will vanish, and the image point of each
infinitesimal transformation that is obtained froine operation:

(>nx.>nX)
will lie on the planeP,(7) = 0.
As a special case of the foregoing theorem, | imant

If one of the functiong(7), ..., ¢-1 () is a power of a linear function then its
vanishing will represent an invariant subgroup.

However, one can still extend that theorem:
If i of the | functions B ..., P, in terms of which the functiong, ..., ¢-1 can be

expressed — sayaP..., P —are linear then the principal subgroup will haveraost r — i
parameters, and is either contained in each grdgt s represented by the equations:

Pi(77) =Pa(n) = ..=Pi (1) =0

or identical with it. For these principal subgrosipthe functiong/” can be represented
in terms of the functions.k, ..., P;.

The theorem requires no proof. | point out ohigttwhen all of the functior,, ...,
P, are linear, the principal subgroups will have atstn — 1 parameters, and its rank will
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be equal to zero, in such a way that all two-parametagrsups of the latter will contain
commuting transformations.
The foregoing theorems are also quite closely linketeddllowing ones:

If a group is not its own principal subgroup then rank of the latter ellless than
that of the given group.

If a group possesses &n— 1)parameter invariant subgroup then the rank of the
latter will be one less than that of the given group.

In this, we have assumed only that we do not already lha for the given group
itself. In particular, it follows that:

If each transformation of an r-parameter group does not commute with amooihe
and at the same time, eithgr(/7) does not vanish identically or one of the functions
y(n), ..., W-1(n) is a power of a linear function then it will have @n— 1)parameter
subgroup for which one has= 0.

§5.

The principal transformations of the two-parameter subgroupsthat are contained
in agroup.
If the infinitesimal transformatiorin,’ X, f is the one-parameter principal subgroup

and Zn, X, f is an arbitrary transformation of a two-parameter sulggthen one must
have equations (12) for non-vanishiagwhich we now give in the form:

(12a) >0 Cp == DNV = i,

if yin7") is written briefly ag/, .

If any of the functiong, ..., ¢-1 is once more denoted briefly lpyy,, andw (") is
written briefly asy/, then, from (13), one will have:

2 6‘/’./ }/,p =0.

7 017,

If we then multiply both sides of eq. (12a) 8y, /977, and sum over then the left-
hand side will vanish, and we will have:

(14) (n’)=0, ¢u(n’)=0, ... ha(7)=0

for non-vanishing values ab
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That implies the following theorem:

The coefficientsy;, ..., 1, of any transformationZn,’ X, f that is the principal

transformation of any one of the two-parameter subgroups that belong to the group
satisfy equation§l4),and equatior{7) has only vanishing roots for them.

This theorem also admits the following statement:

Any point that the principal transformation of a two-parameter subgroup that is
contained in the group maps lies on the structure that is defined by ttshivanof the
functionyx, ..., ¢-1 . The totality of these points then defines a manifold that is at least
(r =1 = 1)fold extended.

It by no means follows from the foregoing developmehés &ny transformation for
which the equations:

=) =...=tha(n=0

are fulfilled is the principal transformation of a tysarameter subgroup; in fact, in many
groups, the coordinates of the transformations that vedeered to will satisfy even more
equations, and their totality will then define a manifoldiohension less than—1 — 1.

As a corollary to the foregoing theorem, the followmmgyht be mentioned:

If a transformation that is the principal element of a two-parameterrsuipgbelongs
to even more two-parameter subgroups then either their transformatiinsommute
with each other or the given transformation will also be the principaieht for the
other subgroups.

This theorem can then lead us to the proof of the tamsdéhat was made at the
conclusion of § 3; however, we will encounter theotleen in the context of another
consideration, and it will then link up with the furthemsequences immediately.

With a slight change in notations, the same developthanh led from formula (12a)
to (14) will imply the following theorem:

All of the two-parameter subgroups whose transformation do not comnthteagh
other maps as tangents to én— | — 1)-dimensional structure, and it will be determined
by the vanishing of all the functiogs, ¢, ..., ¢4 .

However, | emphasize that even in the case wherngoaits of the stated structure
define principal transformations of two-parameter subgroups,afi of the tangents
correspond to two-parameter subgroups. With the exceptitimeafonic section group
(cf., infra, the end of 8§ 8), no further groups can exist in which albgénts to the
structure:

= ... :z,l/r_l:O

define two-parameter subgroups.
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§ 6.
Examples of the present developments.

As an example of the results that the foregoing papdgr yielded, and to prepare for
the investigations that will be carried out in the secpart, we would like to consider
two well-known classes of simple groups somewhat miosely. With Lie, we refer to
a group asimplewhen it possesses no invariant subgroups.

We next examine the group that produces the most genejadttpre reassignment of
anl-dimensional space. By a suitable choice of the coaesing ..., X, one will arrive
at the most general infinitely-small reassignmenthefpoint &) to (X« + «), provided
that the completely-arbitrary, infinitely-small qudi@s aox, ax, ax (K, A =1, ..., 1)
satisfy the equation:

XK +zak/1 XA +aK0
A

Xe + Ky =
1+Zamxﬂ
A

Thus:
Ky = o + ZO’MXA —ZO’OAX(XA -
P P

When one uses those transformations for whiclmgllvanish, except for one, as a
basis and sets the non-vanishing one equat,tone will obtainl (I + 2) infinitesimal
transformationo, Xo«, Xx, Which can be represented in the following way:

of of
a X :_, XK:_ X _,X/K:_XK.
@ * wIT LA ox

K

When eithers = p or k = A, one will have X« Xs,) = 0. By contrast, one has,
moreover:
(XIK XA,u) == X//l + &) XKK y
(b) (XKO XOA) == XK/\ + &) X,u,u y
(XOK XKA) =-Xo, (XIK XKO) = -Xo,

in which &, = 1 or 0 according to whetherandA are equal or unequal, resp.
In order to show that this group is simple, wertstath an arbitrary infinitesimal
transformatior®. 7,0 Xpo f . 1f not all7,1 vanish here then we couple them toxall for v

=0,1, ...| by way of(anUng, le); one will then get at least some of them by the
transformations:

X0, ., Xo, 2Xpu+ X+ ... + X, X12, ..., Xq.
Any of thesel (I + 2) basic infinitesimal transformations will nesarily lead to others,

and repeating the operation for these will lea@ltanfinitesimal transformations. The
group will then have no invariant subgroups.
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We would like to cite some properties of this group, argl give the functions that
remain unchanged under all transformations:

of
H/‘/ff = z C/K,A,u,panpa W J

1,K.p,0

which then belongs to this transformation group, accgrthnrsomething that Lie said. It
can be represented in the following way when one intreglao undetermined quantity

—ZAy e, 710 1720 ] o

o Z+’711 721 71

() D(29 = o2 12 ZHM, 0 1,
M 4 14 Z+IZI

In this determinant, the coefficient Bf* is equal to — 1, that of is equal to 0, and
the coefficients of the powers BF, 272, ..., z, 2 will be the desired functions.

Since the transformations are essentially of theedgpe, it will suffice to show that
the functionD(2) is not changed by one of them — sdy, f . However, as long asis
not equal to 1, for this transformation, one must ey, with dt Ch 4, and whernois
not equal to 2, one must replagg,, with — dt 07,,. However, one must make both
changes fodsn;,that one gets under the assumptions that 1 ando = 2. Thus, the
change irD(2) that is provoked by the transformatibla, f, as long as it is divided o,
will consist of the sum:

—ZA e, Mo M 7 10
oy Ntz =1y - 1
o2 12 M, 1
o 4 =y o ZEI,

—ZHNy et 7 % o
o2 12 17 2 1

+ o2 My, ZHy - 2 |

o 4 P e ZEN,

the first term of which will be obtained by replacing thed column ofD(2) with — 71,
..., o, and the second by replacing the second row wgth..., 7. . However, one
will see directly that this sum vanishes.
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The functions that remain unchanged undet the 2) infinitesimal transformations:

of
z 17 06C 0 ap i W

P01 K 1K

can be represented in an entirely similar way. Wherset&p1 + 722+ ... + 1 = G 1t
will be given for arbitraryg by the determinant:

g
- m_ oy Moo - Mg
g
(d) E(Z): o z+1),, m N - 7,
. -
10 11 I [+1

=-Z2 4+ P+ P, X+ L 4P 2+ P

It will not be necessary to carry out the proof. lise, it might be permissible to
state the following theorems without proof.
If the system o1, o2, ..., i) satisfies none of theequations:

Pl:O, P2:01 veny P|:0

then the transformatiorinpgxpgf will belong to preciselyt (I + 1) two-parameter

subgroups with no commuting elements. The principal elsmehall of the two-
parameter subgroups that are obtained in that way wihe@fimanifold that is only (2
1)-extended. It will be represented analytically by vhaishing of all determinants of
degree two in the determinaBi(z) for z = 0. That manifold also belongs to &ll
structureP; =P, = ... =P, = 0.

If a point is a principal point of a two-parameter subgroand the latter does not
belong to the structur®, = ... =P, = 0, then the point will also be a principal point dor
(I? = 1)-parameter family of two-parameter subgroups, arof glem will define anl¢ +
1)-parameter subgroup.

The group belongs to the general projective groups of rar¥k 1.,1 — 1. The
general projective groups of rahk 1 all belong to the structuRe = 0; those of rank —

2 lie on the structur®, = P-; =, etc. Finally, the conic section groups (viz., theegeh
projective groups for = 1) belong to the structuR =P, = ... =P, =0.

As one easily sees, and as will be emphasized in TReot especially, for every
general projective group of rahk, one can define a composite group of the samelrank
whose number of parameters will amouni 16+ 2+ 1. At the same time, fdr <|,
each such group will be contained as a subgroup of trengiroup, and indeed the
groups of rank — 1 in question will fill up the structuf® = 0, while those of rank— 2
will fill up the structureP, = P_; = 0, etc. A planar manifold of dimension<1)( + 2)
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will then go through every point & = 0. The intersection of thestructures? = 0,P,;
=0, ...,P1 = 0 will likewise be (- A)(I — A +3)-dimensional.

An (I — 1)-dimensional planar structure whose points are mappeohubyally-
commuting transformations goes through each point of tlagenspace. Conic section

groups that are subgroups of the given group go through eatle Ie@—;t—l) points of

such a plane.

A second class of simple groups will be determined byetlmositinuous projective
transformations that translate a proper structure of &waein a space of more than three
dimensions into itself, in which, a “proper” structumecontrast to a conic structure, will
be understood to mean one whose determinant does nab.vartiat group is defined in
the same way as the group of an € 1)-dimensional space when all variables are
changed by entire, linear transformations and remaihanmged under a proper form of
degree two. If one establishes the relationship:

e X2+ . o+ x2 =1

between then + 1 variablesq, ..., Xn then the group shall be based upon%h(e—m r2+1)

inf. transformations:

(e,) X/Kf:X/ i_xl(i
0X, 0X,
It follows from this that:
(f) (X/K X//l) = XK/] , (X/K XA,u) =0

wheny, k, A, ¢ are all unequal. The groups that are defined in that wiapevsimple for
m> 3, as Lie proved in the tenth volume of his Archivopn412.

The adjoint linear groups that were presented at thariag of § 2 will be identical
for those groups. The invariants are implied by thevahg determinant, in which one
takesn,« + N, = 0:

z s /71m+1

) To 2 Toms| = v py 7T 4Py

,7m+1,1 ,7m+1,2 e Z

. + : . .
Therefore| will be equal tomT:L or g according to whethan is odd or even. Imis

even then thel2 roots of the characteristic equation (7) will beu,, + w + . For
evenm, they will be associated with al(4 3)-fold extended manifold that is determined
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by the vanishing of all expressiong{x) and byP; = Z/],i (). That (4 - 3)-extended
structure has a [4- 5)-dimensional double structure that is given by the ezpsti

D Ml =0
P

for arbitrary values of andx. That double structure will imply the principal pointsttha
belong to the roots @ = .

For evenm, the given group will contain those subgroups that arfeetk in
corresponding ways fort =1, ...,m— 1. If one seta" = m—- 1 then the corresponding
subgroups will have the same rank m/ 2 and will fill up the same manifold as the
given group such that every transformation of the gigesup will belong to such a
subgroup. The correspondingly-defined subgroups of tanrkl whose number of
parameters amounts tb« 1)(2 — 1) or { — 1)(@ — 3) belong to a (2 + | — 2)-fold
extended manifold, etc. The only points that lie in @ny 1)-dimensional plane of the
image space that goes through an arbitrary point and mapsthing but mutually-
commuting transformations are the ones for which theesponding infinitesimal
transformation belongs to a conic section group. Gepeog@ctive groups whose rahk
is less tha also belong to the given group.

These results change very little for an add Every general transformation belongs
to 2 (I — 1) two-parameter subgroups with no commuting elementsthandprincipal
points fill up a (4 — 7)-dimensional manifold for which all equationgAx) = 0 and

2/7,p/7,p = 0 must be true. In order for a transformatEm,KX,Kf to belong to am-
P

parameter subgroup for whigh=r, the coefficients;,, must satisfy certain conditions,
but this is not the place to go into them in detail.

87.
The characteristic equation has nothing but unequal roots.
We shall make an assumption that might, on firstaglaiseem purely general, but

which has an entirely specialized character due tadhditions that exist between tbe
such as would follow from the developments in § 4. Ngnwee assume that equation

(7) has no two of its roots equal for a certain systénaatuessm, ..., 7 . As was
remarked already, one root will be equal to zero; therodhe..., w-1 shall then be
different from each other and from zero. A singlsteg of coefficients,"’, ...,

belongs to each roaty, and ther — 1 infinitesimal transformationd_ ¢,*’X, f that are

thus determined will be independent of each other and ofgiven transformation
meif. We can then employ those infinitesimal transformations for the

() Should all (KAL) = 17,4 ap+ M M + N Nia Vanish, then, as is known, it would be necessary and
sufficient that all expressions (42) should vanish for;, # 0, which would yield (- 1)(2 — 1) equations.
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determination of the group. In order to obtain direttly form that that is most suitable
for further investigation, we denote the given transfation byX;_; f, and the other ones
by X, ..., Xi—2, such that the following equations will be true:

(15) K1 Xa) = @ Xif, .., K- Xi—2) = a2 Xi-2f, (Xe-1 X)) = @ X .
When we form the Jacobi relation fo+ 1,k |, it will follow that:

(16) @+ @ - @) cou =0,

in which the equation fov=r — 1 is also contained:

(16a) i+ @) Ciar-1=0.

This equation allows us to recognize that when wellhdéf relations do not exist
between the rootayx, ..., w— , aw of equation (7), the— 1 infinitesimal transformations
Xaf, ..., X2 f, X, f will determine a group in which two arbitrary transformasio
commute with each other.

We now add a further assumption to the one that we mboee, namely, that of

ther r—1)/2 transformation{cmp X, f are independent of each other,psar. In
P

that case, due to (16a), at least one root must be equabppubite to another.
Therefore, letw—, + @ = 0, and let;, -, -1 be non-zero, such one can set:

(X2 %) = X f.

Now, apply the Jacobi relation to the numbers — 2, x, where x is one of the
numbers 2, ...t — 3, and obtain:

(17) Xt = {00 (X, X) =6, (X, X )}

P

Since the left-hand side of this equation cannaiskg it will follow from this equation,
in conjunction with (16), that whegy is a root, eithety + @ or w — w will be a new
root, or that one can obtain a new root fragby either adding or subtractiryg .

With no loss of generality, we can sat= 2. If ax is an arbitrary root then at least
one of the two quantitieg)x + 2 anda — 2 will be contained among the roots. We start
from an arbitrary rooty, and look for all of the roots that one will arrigé by repeated
addition and subtraction of 2. Let the number lnént bem, and for the sake of
simplicity, they might be denoted lay, ..., ay. Since they differ only by multiples of
2, one can order them according to the magnitutideo real parts and set:

@=w-2, 3=w-4, @=w-6,..,th=w-(Mm-1)2.

Equation (17) then yields the result:
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W= C_1L;0

W= C 5,L3,7GoCi_ 25
(173) W= C ,3.L437CG3Ls 53

Wy ="CrnmiCrtr2m

which implies, by addition, that:
wt+rwt+tawt ... +an=0,

such thatw = m— 1. Ifmis an odd number here then the middle root must be egual t
zero. However, whem is an even number, the middle roots must be equallto Our
assumption that all roots should be unequal would theryithptm=r — 3, and it would

be an even number. At the same time, one would get:

w=r-4, w=r—=o6, Ww=r—8, ....3=—-r+ 4.

One concludes directly from (17) that (X—>-y) = 0 forv=1, ...,r — 3, and it will
then follow easily thatX, Xg) = 0 whena and S are any two of the numbers 1, r.5 3.
The further coefficients,y can be simplified by multiplying the; f, ..., X3 f by
suitable constants. In that way, one will find from (1ffet:

(Xe Xg) =(r —a—3)Xpsa f for a=1,..r-4,
(Xr Xr—3) = 0, 0(r—2 Xa) - (a— 1)XQ_1f .

In that way, one will arrive at the result that #sumptions that were made determine
the composition of the group completely, as long a&sgiven, and that this must be an
odd number. In order to be able to express this resagt oonveniently, one considers
that equal roots of equation (7) will lead to either jusingle two-parameter subgroup or
to a family of them. One then expresses the rastitta following way now:

In an r-parameter group that is its own principal subgroup, a given one-parameter
subgroup should adhere to precisely i two-parameter subgroups, and none with no
commuting transformations shall occur among them. r must then be an odd ndinéer.
group contains one (and indeed only one) invariant subgroup that is defined I3y r
parameters. All transformations that belong to that subgroup will commiiee
composition of the group is determined completely by the assumptions thahaae. If
one denotes the given one-parameter subgroup by fXthen one can choose the
remaining X, Xz, ..., X;—2 such that:

X2 X)) =Xeaf, Kir X)) = 2Xc 1, (X1 Xr—2) = = 2Xof
(X1 Xo) = (f — 2@ + 1)) Xaf,

X Xo) =C-a+3)Xeif, (Ko Xa) == (@—1)Xaea 1,
XaXg =0 for a pB=1,..,r-3.
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If we define a group for an even r by the same prescription therf Xnd X2/ > f
will determine a two-parameter group with commuting transformationsweider, in
that case, one will haved 1, and all functionsy, (#7) will vanish for an odd v and will

define powers off>,— 77 172, Up to a constant factor, for even v.

A group that is constructed in that way will exist faotvariables and arbitrary It
was listed in the penultimate place by Lie in his ematien () under B), and has the
form:

q, X0, ....X"*q,p, 2p+ (r = 4) yg, Xp + (r — 4)xyq
with his notation.

§8.
The characteristic equation has equal non-vanishing roots.

The determination of groups that was given in the previouagpgphs is based
essentially upon the assumption that all roots of equéfibmwere unequal. We would
now like to examine whether the simplicity of the tesloes not also remain true for
multiple roots.

Let Xf (with no subscript) denote an arbitrary transformatidre exhibit equation (7)
for it and determine its roots. If that equation has etp@, and ifaw, is one of them
then w, shall be counted as d ¢ 1)-fold root if and only if one can determidet 1
infinitesimal transformationsX, , X, , ...,X, that are independent of each other, as

well asXf, and for which, one will have the equations:

a

(XX,) =an X, ,
(XX,) =an X, te,, X

10o © dg’

(18) XX,,) =an X, te, , X, +¢€, ., X

00 " ag’

XX, )= X, +e, , X, +..te X +t¢€,X

ayayq * a3 ot ayap “ag?

and that system cannot be decomposed into several systdnes smaller numbet and
the same composition. The arbitrariness in the chafic¥, , ..., X, can be employed
to make all coefficient®, , vanish fork>/+ 1. One can then use the following form
as a basis:

(XX,) = X, ,

(XXg) = X, +€,4 X0

(18a) KX,,) =an X, +e, , X, ,

1

() Math. Ann. XVI, pp. 524.
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XX, )=an X, +e, , X

20 " 0y’

in which none of the coefficients can vanish. When we tige infinitesimal
transformationXf as a basis, we would like to say that the infinitesitrensformations

Xg s - X4, DElONGtO the rootsuy,, resp.

Now, letw,, ap, &), ... be the roots of the characteristic equation, andaeh root
lead to a sequence of transformatidiga single such transformation, resp.). It was by
no means assumed that and ay are unequal in this.

We now form the Jacobi relation & X, , X, , and it will follow that:

> Copp (G + @) Xof — (X X)] = 0.

P

We develop this equation completely in thdGghat belong to an arbitrary road,.
We then obtain the equation:

(19) (Cbb+ Cbb) (C”oﬂoyoxyo + C”oﬂoylxyl-i_“.-i_ 9’05014/ >§/v)
= Caoﬂoyowyxyo + Caoﬂoyl(wy Xyl+ G )$V)+ ot Cao o1, (wyxyv + vt )gv-l)'
If one does not havey+ ai = @, in this then one must hawg, , = 0 in order for
X, f to have the same coefficients on both sides; now, muast havec, , = 0 in
order for X, f to have the same coefficients on both sides. énsdéme way, one

recognizes that all of the coefficients , , , ..., C C will be equal if one does

a0 Bovi’ “aBoo
not haveay+ ap = a,. However, when that condition is fulfilled, onenceompare the
coefficients of X, f,, X, , X, on both sides and obtain:

C”oﬂoyv q/vyv—l = 0’ Caoﬂoyv—lqlv—lyv—Z = 0’ e C”oﬂoqu/lyo = 0’

from which, it will follow that:

C”oﬂoyv = C”oﬂoyv—lz = C”oﬂoylz 0
or
(20) (x”o Xﬂo) = Zcﬂ’oﬂoyo Xyo f (Cbb+ Cbb: Cbl/),

in which the summation refers to the first transfaiora X, - that belongs to one of the
rootsay+ ap= .

The Jacobi relationx, X, , X, lead to an equation that differs from equation (19)
only by the fact that one adds:

eﬂlﬂo C”oﬂoyo Xl/o
to the right-hand side.
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As before, it follows from this that only those doménts:

C”oﬂoyo’ o C”oﬂlyv

for which ay+ ap = @, can be non-zero, and with that condition, one kalfe:
(203) (x”o Xﬂl) = Z(C”oﬂlyl XV1+ C”oﬂﬂ/o Xl/o) (Cbb+ Cbb: Cbl/)

One can proceed in the same way. With the conditioh o = ), (X, X;) can

be expressed in terms of, , X X, , and correspondingly(X, X,) can be

n' ot |7
expressed in terms of only thoyeyp for which p goes up to at most+ «.

One can derive the equations:

(x”o Xa'l) = Zc%ﬂlyo Xyo f ! (x”o X”z) = Z(Cﬂ’o”zyo Xyo + 97’0”21/1 Xl/l) f’
Car = w)
in an entirely corresponding way.
These theorems suffice to find all groups that satifytwo conditions:

a) p=r.
b) Not every transformation of the group shall comnwitk another one.

When we start with the transformati®n, f, equation (7) shall have only one simple
vanishing root. We set:

(xr—l xr—Z) = - 2X-f, (Xr—l xr) = 2Xf, (Xr—z xr) =X f,

and assume in this that_; f enters into an expression for one of thkeXx), in whichX,
and X, belong to the roots 2 as thefirst transformations. The justification for this
assumption will be proved in the conclusion. Meanwhilés not excluded that even
more transformations belong to the roots + 2 and — Zyereis it assumed thxi_; f does
not enter into any other expressiots X.). We group theX,ffor A =1, ...,r = 3
according to the associated roots, a, ...

The relationi(, r — 2, ap) yields:

(21) D, X, = 0G50 (X, X) =6 g (X, X))

If c
C can be non-zero only whem= )y andw, = a + 2. Therefore, ifw, is any root

r.ao.p
then at least one of the two quantitgs+ 2 or w, — 2 must be a root. As in the previous
paragraphs, one can determine the roots when ones fthe foregoing equation for all
X_that belong to the roots that are obtained from @ithem by repeated addition and

o

2.4, 015 10 NOt vanish then one must hawe f and ay = @y — 2, and likewise,
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subtraction of 2 as thigrst transformation. Since the root zero is excluded ftioem,
only the distinct groups:

-2m-1,-2m+1,..-1,+1, ..., 2n—-1,2n+1
are possible.
It follows from this that no further transformatiobslong to the roots 2, which can
also be seen in many other ways.
One now forms the Jacobi relation forr — 2, ay, where X, f is the last

transformation that belongs to the r@gt. One then obtains:

Wy = Z(Cr—z,aﬂpcpraﬂ - qgﬂp (‘;;r —Zm) :
P

Here, one observes that, can enter into the expression f&&¢£ X, ) only when
ap — 2 =ay and into the expression faX( X, ) only whena, +2 = a, . Thereforep

can be equal to ong, or oney; in the foregoing equation. That implies that sagne
number of transformationsX, , X, , ...,X, belong to all of the same sequence of

3

associated rootsy .
That implies the theorem:

In order to obtain all of the roots that can appédar the transformation groups that
satisfy the requirements that were posed, along thi¢ rootst+ 2 and— 2, one chooses
two numbersl and m in such a way thafm + 1)(A + 1) < r — 3,defines the roots 1, +
3,4 ..., (2m + 1), and lets each of thesam + 2 numbers be a + 1fold root. One
then chooses two new numbgrand m such tha2(m + 1)(A’+ 1)< r -3 -2+ 1)

+ 1) and lets each of the numbetdl, + 3, +, ..., + (2m + 1)be aA’+ 1fold root. One
proceeds in that way until all+ 3numbers are exhausted.

Meanwhile, that will imply the theorem:

If r is an even number then any transformation ofrgparameter group that is its
own principal subgroup must belong to a two-paramegroup with commuting
transformations.

or

For an even r > 2, an r-parameter group in which not every transforioat
commutes with one of the other ones will necegsasl an(r — 1)parameter invariant
subgroup.

As in the previous paragraphs, one also easily keee that for, k=1, 2, ...,r — 3,
one must necessarily havg, K,) = 0. It is likewise immediately clear that for 1, ...,
r—3, K- X,) and ¥ X,) can be represented in terms of the first3 transformationX
, .., Xr—3. It will not be necessary to write down all oktboefficients. | remark only
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that all these functiong, (17) can be expressed rationally in termsf — 77 77— , and
that all sub-determinants of degmee 1 of |y« | will vanish for:

M -2 = 17 -
That implies the theorem:

If an r-parameter group satisfies the two conditions that pand that no line that
represents commuting transformations goes through every point of the speage then
r must be an odd number. The group hagrar 3)term invariant subgroup, and the
transformations of that subgroup all commute with each other. If the aept§ of a

transformationz n X f satisfy the conditiom; 77—, = >, then it will commute with
other transformations.

The fact that the invariant subgroup can be decomposeds@veral groups here,
each of which is an invariant subgroup, is not excluded bw#ision of the theorem.

| have previously (Programm 1884) presented the theoretmatiyagroup whose
order is larger than three contains commuting transfoons without publishing its
proof. Engel then gave a proof of it [Leipziger Berici886), pp. 91], and thus
determined — 3 to be the number of dimensions of that structurese/ipoints belong to
a two-parameter subgroup of commuting transformationsie,Hee recognize that this
number isr — 2 forp =r, and that only the groups that are given in this andotiegoing
paragraphs will satisfy that condition. Moreover, saes easily that fgr<r, a straight
line of commuting transformations will go through eithaclke point of the r(— 2)-
dimensional image space or through each point of arilj-dimensional plane. Namely,
should such a line not go through each point then onemawst = 1. Hence, ally, (/)
must be expressible in terms of a functiB(r)), and since the group possesses an
invariant subgroup?(#77) = 0 must represent it, so it must be a line; howdwvel) for the
subgroup. It will then follow that:

If the order r of a group is larger than three then a straight line that ntaps
mutually-commuting transformations will go through either every point ofrthe 1)-
dimensional image space or through every point ofran2)-dimensional second-order
cone or through every point of &n— 2)-dimensional plane.

As | have remarked before, there are only three grompshich no commuting
transformations occur, namely, a one-parameter ongpgarameter one, and a three-
parameter one. The last one, for which all two-parangibgroups map to tangents to a
conic section, was referred to as tomic section groupy Lie and Engel.

An assumption that must be justified was made in @éhegbing. Namely, we have
assumed that the two transformatiofisand’X,, for which the transformatioX;-1 enters
into the expression foxg X,) are, in both cases, the first transformations biedong to
the roots in question. Since equation (7) has only one vagisbot, all(X, X, ) for

which ay + ap = 0 must be expressed in termsXpf; f, as long as they do not vanish.
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Up to now, we have assumed tifat, X; )=y OX-1; we now assume thgiX, X,) =

0.
It then follows from the Jacobi relationy(f o) that:

Cﬂoalvf‘lw” Xr‘l + C”oa’lyo( Xl/o Xﬂo) = 0’

and sinceawy, + ap = 0, wherew, = 2ay, that (X, X, ) does not includ&—, f, and thus
that one also haéX, X;)= 0; the same thing will be true f¢X, X, ), etc. Therefore,
if one assumes th¢iX, X, )= 0 then one can never hat¥, X, )= X1 f.

With that, the theorems that were presented are griovall of their respects.

Addendum: The requirement that not every arbitrary transfoimmashould commute
with one of the others subsumes the two conditions flat of all, the number of
parameters must lmd and that secondly, evesy+ 1 must be associated with even
number 2n + 2 of A + 1-fold roots. However, neither condition is necessarthe
slightest when one ignores that requirement. Wel stwal construct groups by the
following prescription:

For any arbitrary r, one initially chooses transformations X1, X;—2 such that:
(K1 Xp) = 2 X1, (Xr-1 Xr—2) == 2 X;2f, (Xr—2 X;) = X1 f.
One then chooses two numberand s such tha#s< r — 3,forms the roots:
+(s—-1),£(s-3),£(s-5), ...,

and lets each of these s numbers hefald root of the characteristic equation for_X.
One then chooses two new numbegtand $ such thato”s <r — 3—- sgand lets each of
the $ numberst (s— 1),+ (s— 3), ...be ao*fold root. One then proceeds in that way
until all r — 3numbers have been exhausted. One assigns each obtfmldaoots with
otransformations according to equatiofis8), and then each of the-fold roots witho”
transformations, etc.

As for the groups that were considered before, onesals® immediately here that for
, k=1, 2, ..r—3, one will necessarily hav,(Xs) = 0, and thatX,—> X)) and & X))
can be represented in terms of the first3 transformations. The entire character of the
groups then remains essentially unchanged; an arbitrargfaranation will commute
with another one only whanis even or one of the numbexs, ... is odd. However, all
of the theorems that were derived in the last paragraphalso be true for the groups
that are defined by the general prescription. Namelyl andp = r for the groups that
are defined in that way. The question of whether th#éhe only group for which= 1
andp = r will be first answered in a later part of our paper.
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§0.
Some properties of the groups of rank zero.

The results of the two foregoing paragraphs allow usrte down in explicit form
all groups that satisfy the conditions that were gitlegre as soon as the number of
parameters is chosen. The method that was applied thleieh will also prove to be
important under other assumptions, cannot be used for groupskozero. However, it
is not possible for me to give theorems that allow tmrepresent such groups explicitly.
Nonetheless, since | will need a theorem from therghef those groups in what follows,
please permit me to summarize here the most impattantems that are true foe 0,
along with their proofs.

If follows immediately from the concluding remark in38that whengx, ..., ¢4
vanish identically, any arbitrary transformation of theugr will commute with at least
one second transformation of it. Therefore, attlease straight line that maps to
transformations that commute with each other will lygmuigh every point of the image
space. Hence, all sub-determinants of degredl of |y, | will also vanish identically.
For many of these groups, all sub-determinants of loweredegyill also vanish
identically, and then every transformation will commwth a multiply-extended
manifold of transformations. One can see the saing thithout referring to the prior
theorems when one establishes a certain form fogrbeps and considers that each of
the two-parameter subgroups that belongs to the groupcenllain only commuting
elements.

One arrives at that form in the following way: One@abesXf and X;if to be two
completely general (infinitesimal) transformations.(Xo X;) will then yield a
transformation that is independent of both of them, wahath will be denoted by, f.
Likewise, Xo X2) might not be representable in terms<gf X; Xz, and will be denoted by
X3f. One proceeds in that way such that one will have:

(XO Xl) :Xzf, O(o Xz) :X3f, (Xo )('3) :X4f, ceny Q(o Xm—l) :me .

However, let the transformatioXy, f be the first one to which one arrives for whief (
Xm) can be represented in terms¥pf Xy, ..., Xm. Then let:

(Xoxm):iq,x,,f.

However, if theey, €y, ..., &y do not all vanish here, and one takeso be a non-
vanishing root of the equation:

e tewtresdd+ ... tend

then one can determine coefficiepgsps, ..., pm such that one has:

(XO,Z p,X,): wY pX,,
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so the group will contain a two-parameter subgroup with nmnoating elements.
Thereforegy, €y, ..., &n must all vanish, and sinc&(X,;) must be expressible in terms of
Xo, X1, ..., Xm at the very latest fom =r — 1, one will see that any transformation will
commute with one of the others.

However, if one arrives at the equatiofy K.,) = 0 along the path that was described
for m <r — 1 then one can assume thais the largest number that is possible in that
regard. One then again chooses a transformaipii that is completely arbitrary, but
independent oXo, Xy, ..., Xm, forms Ko Xn+1), and if the expression for it is independent
of Xo, X1, ..., Xm, Xm+1then one will set:

(KXo Xmi1) = Xme2;
one defines:

m+m

(Xo Xmr2) = Xmeaf, ...y Ko Xener=1) = Xeemr F, (Ko Xenemr) = z e X, f,

v=0

from which the case off = 1 is excluded. We next seek to find a two-parameter
subgroup oo, Xy, ..., Xmny . Due to the equation:

" =em1t+ Wema + ... + " Gnenr,

it will always have a principal element if the coaHiats en:1, €2, ..., €mmy dO NOt
vanish. However, if all or some of the coefficienise;, ..., én are non-zero then one
will observe that from our assumption, tinefold repetition of the operatiorXg Y1) = Y-,

... must lead toXp Ym) = 0. If we apply this tXn1then we will see that? can be equal
to at mostm, and that fom? = m, one must necessarily hav& (Xom) = 0. On the other
hand, performing that operation fot < m will show immediately that one needs only to
replaceXm+1 with a linear function oXm.1, Xi, ..., Xn1 in order for the coefficients,

.., &n to vanish, and thereforg, as well.

One can proceed in the same way. If one again forms:

m+ni+ i

(Xo Xmmr+1) = Xmmrez, vy Ko Xinemrenr) = g X f

v=0

then one must have” < nT, and since at the very most @rfold repetition of the given
operation applied t&mnm+1 Will lead to Ko X) = 0, one can again assume th&s X
memi+m) = 0.

That implies the proposition:

One can choose r mutually-independent infinitesitraalsformations ¥, Xi, ... Xi—1
in any group of rank zero such that one has thegguos:

(A) (Xo X]_) =a; X f, (X()Xz) = 8.2>('3f, ceny Q(o Xr) =a X+1 f, ceny (Xo Xr-]_) =0,
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in which all coefficientsa ..., a— are equal tol or 0. If one already haa, = Ofor a
general choice of f and X f for m<r — 1then at least one vanishing coefficient must
appear in the @1, ..., axm ; if aneny IS the first one then at least one of the coefficients
amem+1, --., am2m WIll @lso vanish; etc.

The Jacobi relation for (&p, m + m'), (O,m, m+nt + m"), ..., as well as for (Og,

m), (0, a, mtn), ..., wherea means a symbol that is different fram m + m, ...,
yields:

@ (Xo (Xm Xmeni)) =0, ...

(b) Xo Xa Xm)) = Kara Xm), (Ko (Xa Xmw1)) = Kawa Xenem), -

It follows immediately fromd), in conjunction withlf), fora=m—-1,m+m — 1,
..., that Xm Xmn+m) and the corresponding expression can be expressednsa ¢éiX, ,
Xty X+, ... HOWeVer, when the equations) @re also valid, if one considers that
Xm+1, Xmemi+1, ... €an still be chosen in such a way tkat,y can be added to an arbitrary
linear function ofX,, and Xmwny , and if one further considers the character of the two
parameter subgroups that are even possible then it Wolhfohat:

(Xm Xmsmi) = 0, K Xoent+nr) = 0, ...

That consideration will also now show that one &iss:

(X1 Xm) = K1z X)) = ... = 0.

Assuming that, one will find in that way that:

(Xor1 X)) = Kger Xewrt) = ... = 0.

It will then follow immediately from equation®) that X, Xm), (Xa Xmeny) Can contain at
most X , Xmem, ..., and the argument that was thus sketched out eaililt us thatX{,
Xm), Xag Xmem), ... Will also vanish. Therefore, all transformatidhat can be exhibited
in the given way as commuting witky will commute with all transformations of the
group. We then see:

Any group of rank zero has a subgroup whose transformations commute with all
transformations of the group. If all sub-determinants of rank r — k ideéberminanty;|
vanish then any manifold of transformations that commute with an arbitrdrigen one
will be a(k — 1)-dimensional manifold of ones that commute with all of them.

Lie called a subgroup of the given typealiatinguished subgroupAnn. Bd. 25, pp.
77, note). We will always find distinguished subgroups he tmanner that was
considered here then.

Similarly, he gave a simple method for finding that sabgr
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If a andf are different frorm, m+ m', ... then the Jacobi relation for (6, £) will
yield the equation:

(© Ko (Xa Xg) = Xars Xg) + (Xa Xpr1).

When we employ this equation, for the sake of conveniene restrict ourselves to
groups for which only all of the sub-determinants of degreel of |y, | vanish, and
thus, for which one mustset=a; = ... =a,>=1in A). Whenoneset§=a+1,5=
a + 3, ..., in sequence, and further considers the equationX,-1) = 0, one will see
immediately that th&of andXsf do not occur in the expression fo4,(Xs).

If not all sub-determinants of degree-r2 in the characteristic determinant vanish
identically for | = 0 then the transformations X ..., X,_if that are determined by the
prescription above will define the principal subgroup.

Similarly, (€) immediately implies thatX-z X;—2), and in generalX, X;—2), can be
expressed in terms of only Xf. Had we proved in general that{1 Xs1) and Ka Xg1)
could be expressed in terms of oMy, Xgeo, ..., X for a < S, then equationsc) would
show that onlyXs Xg1, ..., Xr could occur in Xs Xp), although the coefficient oz
would again have to vanish in order for only two-parametegrsuips with commuting
elements to occur in the group. The changes that wouttedessary for that when the
form (A) is assumed in full generality do not need to be giveve then arrive at the
following theorem that Engel first presented and provettua somewhat more general
assumption:

Any r-parameter group Gfor which | = 0 has an(r — 1)parameter invariant
subgroup G, which will also have air — 2)parameter subgroup & that is invariant
with respect to & as well as @, ; it, in turn, will have an(r — 3)-parameter one that is
invariant under G2, G-1, G, etc.

Since any invariantr (— 1)-parameter subgroup of the principal subgroup closes on
itself, it will then follow that:

If I = 0,and only the sub-determinants of degreelof | y. | vanish identically then
the group will have a simply-infinite family @f — 1)parameter invariants subgroups;
any transformation that does not belong to the principal subgroup will belong {fo-an
1)-parameter invariant subgroup.

We now infer some further consequences of equatnat{ien we leta, [ be the
smallest pair of values in turn. It was proved alreqdy fora = 1, any K, Xg) could be
represented in terms of thoXef for which/> a + f— 1. Assume that this was proved
for a, fand a, B+ 1; from €), that will then imply the same property fo1 Xp).
Therefore, the property will be true in full generalitfurally, only foray = ...,a2=1
in (A)]. Hence, a well-definedr (- 3)-dimensional plané&;_; lies in the { — 1)-
dimensional image space, and it exhibits the principajrewip; a well-definedr(— 4)-
dimensional plan&;_4 lies in it, etc. The product of an arbitrary point led image space
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with a point ofE,—, will lead to a point irE,_,-1, and the product of a point -, with a
point in E._,will lead to a point inE,_,-, and will vanish when that index become
negative. In particular, one has:

If one constructs a#l-parameter group from the k transformations X Xi—x+1, ...,
X;-1, and a completely general transformation then it will be an invariant subgroup that
has the group that is defined by the transformationg.X ..., Xi-1 as its principal
subgroup.

Now, in addition to equation#\], one can also assume the following equations:

(Xl Xz) = Xo+ ... +0r-1 X1,
(XoXa) = Xa+ ... + -1 X1,
(X3X1) :%XG +...+M_1xr_1,...,

and derive all Xo Xp from this with the help ofd). However, forr > 6, further
conditions must be added, and therefore it has not fiegsible for me to represent those
groups explicitly, up to now.

Braunsberg, beginning of November 1887.




