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 Poisson, in his treatise on mechanics, developed a theory of the finite changes of form 
that an infinitely-thin, originally straight or curved, elastic rod would experience as a 
result of forces that acted, in part, on its interior, and in part, at its ends.  De Saint-Venant 
then proved that the assumptions that Poisson started with were partially incorrect, and 
for the first time rigorously investigated the torsion and bending of an infinitely-thin rod 
of arbitrary cross-section while starting with the basic equations of the theory of 
elasticity.  However, de Saint-Venant treated only the case for which the rod was 
originally cylindrical, the changes in form were infinitely small, and the axis of the rod 
was an axis of elasticity.  In the present treatise, I will examine the changes of form of an 
infinitely-thin rod of everywhere equal cross-section, while starting with the equations of 
the theory of elasticity, but without making those restricting assumptions. 
 In the first paragraph, I will present some considerations regarding the basic 
equations of the theory of elasticity that precede their application to the case of an 
infinitely-thin rod.  In § 2, that application will be made in full generality in the context 
of equilibrium and motion.  In § 3, I will treat the equilibrium of an originally cylindrical 
rod that suffers a finite change of form as a result of forces that act upon the ends.  There, 
we will find that the problem of determining the shape of the rod will lead to the same 
differential equations as the problem of the rotation of a massive body around a fixed 
point.  Finally, in § 4, I will develop an example of the equilibrium of an originally-
curved rod that is under the influence of forces that act upon the ends by examining the 
change of form that a helix that is defined by a wire surface of circular cross-section will 
experience as a result of a force that acts on a point on its axis in the direction of that axis 
when one end of the helix is fixed. 
 
 

§ 1. 
 

 Let x, y, z be the rectangular coordinates of a point of a homogeneous, elastic body in 
its natural state; I will use that term to refer to the state in which no dilatations (or 
contractions) are present anywhere.  The body might suffer a change in form as a result 
of infinitely-small forces that partially act in the interior and partially on the outer 
surface, and which I would like to call external, in order to distinguish them from elastic 
forces.  After that deformation, let x + u, y + v, z + w be the coordinates of the previously-
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considered point that I would like to refer to as the point (x, y, z).  One thinks of a plane 
that is perpendicular to the x-axis as being laid through that point after the change of 
form.  It will divide the body into two pieces: Let the components along the coordinate 
axes of the elastic force per unit area that the part that corresponds to the larger values of 
x exerts upon the other one at the point (x, y, z) be: 
 
 Xx, Yx, Zx, 
and the symbols: 
 Xy, Yy, Zy, 
 Xz, Yz, Zz 
 
shall have analogous meanings.  One will then have: 
 

Yx = Xy , Zy = Yx, Xz = Zx . 
Moreover, I set: 

 xx = 
u

x

∂
∂

, yz = zy = 
w v

y z

∂ ∂+
∂ ∂

, 

 yy = 
v

y

∂
∂

, zx = xz = 
u w

z x

∂ ∂+
∂ ∂

, 

 zz = 
w

z

∂
∂

, xy = yx = 
v u

x y

∂ ∂+
∂ ∂

. 

I let: 
iX, iY, iZ 

 
denote the components of the external force per unit volume that acts upon the point (x, y, 
z) inside of the body after the change of form.  Furthermore, let: 
 

i(X), i(Y), i(Z) 
 

be the components per unit area that is exerted upon the outer surface at the point (x, y, z), 
in which, I understand i to mean an infinitely-small constant and X, Y, Z, (X), (Y), (Z) to 
mean finite quantities.  Finally, I write the equation of the outer surface of the body in its 
natural state as: 

g = 0. 
 

Under the assumption that the nine differential quotients of u, v, w with respect to x, y, z 
are infinitely small, the six quantities Xx, Xy, … will be linear, homogeneous functions of 
the six quantities xx, xy, …, whose coefficients will be the constants of elasticity of the 
body, and for the case of equilibrium, one will have: 
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(1)     

,

,

yx z

yx z

yx z

XX X
iX

x y z

YY Y
iY

x y z

ZZ Z
iZ

x y z

∂ ∂ ∂+ + = − ∂ ∂ ∂
 ∂∂ ∂ + + = − ∂ ∂ ∂
 ∂∂ ∂+ + = −

∂ ∂ ∂

 

 
for every point inside of the body, and: 
 

(2)   

22 2

22 2

22 2

( ) ,

( ) ,

( ) ,

x y z

x y z

x y z

g g g g g g
X X X i X

x y z x y z

g g g g g g
Y Y Y i Y

x y z x y z

g g g g g g
Z Z Z i Z

x y z x y z

  ∂ ∂ ∂ ∂ ∂ ∂    + + = + +     ∂ ∂ ∂ ∂ ∂ ∂    

  ∂ ∂ ∂ ∂ ∂ ∂    + + = + +     ∂ ∂ ∂ ∂ ∂ ∂    


 ∂ ∂ ∂ ∂ ∂ ∂    + + = + +     ∂ ∂ ∂ ∂ ∂ ∂    

 

 
where the positive square roots should be taken for the points inside of the body for 
which g is negative. 
 Six arbitrary constants enter into the general solutions of these differential equations 
for u, v, w.  Namely, the expressions for u, v, w contain the additive terms: 
 

a0 + cy – bz, b0 + za – cx, c0 + bx – ay, 
 
in which a0 , b0 , c0 , a, b, c are arbitrary constants.  It follows from this that the quantities 
u, v, w enter into equations (1) and (2) only to the extent that they imply the values of xx, 
xy, …, and those values will remain unchanged when one adds the given terms to the u, v, 
w.  The six constants a0 , b0 , c0 , a, b, c shall be obtained by requiring that: 
 

(3)    u = 0, v = 0, w = 0, 
v

x

∂
∂

 = 0, 
w

x

∂
∂

 = 0, 
w

y

∂
∂

 = 0 

 
for the point (x = 0, y = 0, z = 0), which might lie inside the body.  Of the nine quantities: 
 

 1, 
v

x

∂
∂

, 
w

x

∂
∂

, 

 
u

y

∂
∂

,   1, 
w

y

∂
∂

, 

 
u

z

∂
∂

, 
v

z

∂
∂

,   1, 
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the three in the top row are the cosines of the angle that a line element that is originally 
parallel to the x-axis defines with that axis after the deformation, and the other ones have 
corresponding meanings, so the last three equations in (3) express the idea that the 
direction of a line element that is originally laid through the point (x = 0, y = 0, z = 0) 
parallel to the x-axis will not change, and a line element that is originally laid through the 
same point and parallel to the y-axis will remain perpendicular to the z-axis. 
 Equations (1), (2), and (3) determine the functions u, v, w uniquely, as we shall verify 
later on [after equation (9)].  The expressions for u, v, w and their differential quotients 
with respect to x, y, z must therefore contain the factor i.  They will then be of order i 
when all dimensions of the body are finite, or if I am to be more precise, when only finite 
constants are present in the function g.  The assumption that the nine differential 
quotients of u, v, w with respect to x, y, z are infinitely-small, which is the only case in 
which equations (1) and (2) will be correct, will be fulfilled in that case.  That assumption 
will not generally be fulfilled if g contains an infinitely-small constant; however, it will 
also be satisfied in the case that I shall now consider. 
 Let all dimensions of the body be infinitely thin, and of the same order.  Rather, to 
speak more definitely, let the equation g = 0 be such that when one sets: 
 
(4)     x = ix, y = iy, z = iz 

 
in it, where i means an infinitely-small constant, it will go to an equation: 

 
g = 0, 

 
whose left-hand side is a function of x, y, z that contains only finite constants.  The 

quantities X, Y, Z, (X), (Y), (Z) shall be functions of x, y, z, and i, but in such a way that 

they will stay finite for all values of x, y¸ z that are inside the body. 
 One thinks of the substitutions (4) as having been carried out in equations (1), (2), 
and (3).  If one makes: 

 xx = 
u∂

∂x
, yz = 

w v∂ ∂+
∂ ∂y z

, 

 yy = 
v∂

∂y
, zx = 

u w∂ ∂+
∂ ∂z x

, 

 zx = 
w∂

∂z
, xy = 

v u∂ ∂+
∂ ∂x y

, 

 
and lets Xx, Yx, Zx, … denote the expressions that one obtains when one replaces xx , yx , 

zx , … with xx , yx , zx , …, respectively, in the expressions that represent Xx, Yx, Zx, … as 

functions of xx, yx, zx, …, respectively, then one will get: 
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(5)     

2

2

2

,

,

,

yx z

yx z

yx z

i X

i Y

i Z

∂ ∂ ∂+ + = − ∂ ∂ ∂
 ∂∂ ∂ + + = − ∂ ∂ ∂
 ∂∂ ∂+ + = −

∂ ∂ ∂

XX X
i

x y z

YY Y
i

x y z

ZZ Z
i

x y z

 

so for g = 0: 

(6)   

2 22

2 22

2 22

( ) ,

( ) ,

( ) ,

x y z

x y z

x y z

i X

i Y

i Z

    ∂ ∂ ∂ ∂ ∂ ∂  + + = + +     ∂ ∂ ∂ ∂ ∂ ∂     

    ∂ ∂ ∂ ∂ ∂ ∂  + + = + +     ∂ ∂ ∂ ∂ ∂ ∂     


   ∂ ∂ ∂ ∂ ∂ ∂  + + = + +     ∂ ∂ ∂ ∂ ∂ ∂     

g g g g g g
X X X i
x y z x y z

g g g g g g
Y Y Y i
x y z x y z

g g g g g g
Z Z Z i
x y z x y z

 

 
and for x = 0, y = 0, z = 0: 

 

(7)    u = 0, v = 0, w = 0,  
v∂

∂x
 = 0, 

w∂
∂x

 = 0, 
w∂

∂y
 = 0. 

 
If the quantity i does not vanish by carrying out the substitutions (4) in the expressions 

for X, Y, Z, (X), (Y), (Z) then one can set those six quantities equal to the finite boundary 
values that they must approach when i approaches zero as a result of the assumption that 

was made; i.e., one can consider X, Y, Z, (X), (Y), (Z) to be finite and functions of x, y, z 

that are independent of i.  On that basis, the values that u, v, w get from equations (5), (6), 

(7) must have the same order as the products ii.  The differential quotients of u, v, w with 

respect to x, y, z are of the same order, and thus the differential quotients of u, v, w with 

respect to x, y, z are of order i. 
 For that reason, equations (1) and (2) will also be true for the case that is now 
considered; however, they can be simplified essentially.  Namely, if one ponders the fact 
that the right-hand sides of equations (5) are infinitely small with respect to the right-
hand sides of equations (6) then one will see that the quantities X, Y, Z exert only a 
vanishingly small influence on the values of u, v, w that one can therefore neglect, and 
equations (1) can be replaced with the following ones: 
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(8)     

0,

0,

0.

yx z

yx z

yx z

XX X

x y z

YY Y

x y z

ZZ Z

x y z

∂ ∂ ∂+ + = ∂ ∂ ∂
 ∂∂ ∂ + + = ∂ ∂ ∂
 ∂∂ ∂+ + =

∂ ∂ ∂

 

 
 These equations were derived under the assumption that iX, iY, iZ had the same order 
as i(X), i(Y), i(Z).  Obviously, they will also be true in the case for which each of the three 
forces are infinitely small with respect to them, but not in the converse case.  The 
conclusion that should be inferred below from equations (8) will thus also be true only 
under the assumption that the latter case is not present. 
 Equations (1) and (2) can be combined into one equation.  Of the 36 constants that are 
contained in the equations that represent Xx, Yx, … as functions of xx, yx, …, fifteen of 
them must be equal to fifteen of the other ones, such that the expression: 
 

Xx dxx + Yx dyy + Zx dzy + Yz dyz + Zx dzx +  Xy dxy 
 
is the complete differential of a homogeneous function of degree two in the six variables 
xx, yx, zz, yz, zx, xy (

*).  If F is that function then equations (1) and (2) will mean the same 
thing as the one equation: 

(9)     δΩ – δ ∫ F dx dy dz = 0, 
 
in which, the first term on the left-hand side means the moment of the external forces for 
infinitely-small variations of u, v, w, and the second one means the corresponding 
variation of the integral that it enters into over the volume of the body. 
 The aforementioned assertion that equations (1), (2), (3) determine the functions u, v, 
w uniquely can be proved from a certain property of the function F. 
 If that were not the case then there would have to be non-zero values of u, v, w that 
would satisfy equations (1), (2), (3) when the right-hand sides of equations (1) and (2) are 
set equal to zero.  It shall be shown that such values do not exist.  If one multiplies 
equation (1) by u dx dy dz, v dx dy dz, w dx dy dz, and integrates them over the volume of 
the body, divides equations (2) by: 
 

                                                
 (*) The validity of this assertion follows easily from the principles of the mechanical theory of heat.  
Namely, if the expression were not a complete differential then one could get work with the help of the 
elastic body when one let pressure forces act upon its outer surface that one varied in such a way that one 
would take the body back to its original state again.  From those principles, that could not be the case 
without a corresponding loss of heat.  If such a thing took place then the agreement with the 
aforementioned principles would not be produced, since one would convert heat into work with the help of 
the elastic body without it being necessary for the body to have a different temperature.  I believe that this 
argument was already presented by W. Thomson in the Quarterly Mathematical Journal (April, 1855); I 
have not been able to find the cited reference, though. 
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22 2
g g g

x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
, 

 
multiplies that by u dO, v dO, w dO, where dO means an element of the outer surface of 
the body, and integrates that over that outer surface then one will get: 
 

0 = ∫ F dx dy dz 
 
by addition for the case in which X, Y, Z, (X), (Y), (Z) = 0.  The function F is presented 
below [in equation (29)] for a body whose elasticity is the same in all directions.  Here, F 
has the property that it never becomes negative and vanishes only when the six arguments 
xx, xy, … are equal to zero.  Since the differences between the elasticities are typically 
small in bodies that possess different elasticities in different directions, one can assume 
that F will have that property for all bodies that exist in nature.  It will then follow from 
the equation that was derived that the six quantities xx, xy, … must be equal to zero in the 
entire body.  In order to prove that u = 0, v = 0, w = 0 for the entire body from this and 
equations (3), I shall show how one can find u when xx, xy, … are given.  One has: 
 

u = (u)0 + 
u u u

dx dy dz
x y z

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
∫ , 

 
in which (u)0 means the value of u for x = 0, y = 0, z = 0, and the integration is extended 
from an arbitrary point of the path of the point (x = 0, y = 0, z = 0) to the point (x, y, z).  
With a similar notation, one will have: 
 

u

y

∂
∂

 = 
2 2 2

2
0

u u u u
dx dy dz

y x y y y z

  ∂ ∂ ∂ ∂+ + +  ∂ ∂ ∂ ∂ ∂ ∂   
∫ , 

and one will have: 

 
2u

x y

∂
∂ ∂

 = xx

y

∂
∂

, 

 
2

2

u

y

∂
∂

 = yx
yy

y x

∂∂ −
∂ ∂

, 

 
2u

y z

∂
∂ ∂

 = 
1

2
yxz

xzy

x y z

∂ ∂∂− + + ∂ ∂ ∂ 
. 

 
One thinks of substituting these values into the equation for ∂u / ∂y .  One can derive an 
expression for ∂u / ∂z that is similar to what one gets for ∂u / ∂y, while ∂u / ∂x has the 
simpler expression xx .  Now, if the six quantities xx , xx , … are equal to zero and 
equations (3) are valid then it will follow from this that ∂u / ∂x, ∂u / ∂y, ∂u / ∂z are equal 
to zero, and then furthermore that u = 0.  One can obviously derive the facts that v and w 
also vanish in that way. 
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 Equation (9) – like equations (1) and (2) – is true only when all of the dimensions of 
the body have the same order.  However, one can also exhibit an equation of a similar 
form for the case in which that condition is not fulfilled.  In that case, one thinks of the 
body as having been divided into parts that each have one dimension of the same order.  
One puts one of those parts into its natural state and then brings into a position that shall 
be characterized immediately: Let x, y, z then be the coordinates of a point of the part 
relative to a rectangular coordinate system whose origin might lie in the part itself.  Let x 
+ u, y + v, z + w be the coordinates of that point relative to the same coordinate system 
when the part is brought back to its changed form and position.  That position of the part 
that is still left undetermined in its natural state shall be chosen in such a way that 
equations (3) are still valid for x = 0, y = 0, z = 0.  Equation (9) is then true for the part 
considered when one considers the elastic force that is exerted on its outer surface by the 
neighboring parts in the construction of δΩ.  If one exhibits equation (9) for all parts into 
which the body is thought to be decomposed and takes the sum then one will get: 
 

(10)    δΩ − ∫ F dx dy dz = 0, 
 
in which δΩ means the moment of the external forces that act, in part on the interior of 
the body and in part on the outer surface, since the moment of the elastic forces that act 
upon the boundary surfaces of the individual components will vanish. 
 Equation (10), which includes equation (9) as a special case, admits a further useful 
generalization.  Namely, it can be made independent of the assumption that x, y, z, u, v, w 
refer to the natural state of the corresponding component of the body.  If the x, y, z, u, v, 
w refer to a state in which arbitrary, but infinitely small, dilatations exist, and if u′, v′, w′ 
are the values that u, v, w assume when one lets the component considered go from its 
natural state to an arbitrary state then equations (1), (2), (3) will be valid when one sets u, 
v, w equal to u – u′, v – v′, w – w′ in them.  The same substitution must then also make 
equations (9) and (10) valid for that case. 
 One can easily go from equation (10), which relates to the equilibrium of elastic 
body, to the case of its motion by a known principle of mechanics: If t is time and T is 
one-half of the vis viva then the equation: 
 

(11)    ∫ dt {δT + δΩ – δΣ ∫ F dx dy dz} = 0 
will be true for the motion. 
 

§ 2. 
 

 Equations (10) and (11) shall now be applied to an infinitely-thin rod of everywhere 
equal cross-section upon whose lateral surface no external forces act. 
 First, one might assume that the rod is cylindrical in its natural state.  In that state, one 
imagines a rectangular system of axes in the rod.  The first axis shall be the line in which 
the center of mass of the cross-section lies, while the other two shall be parallel to the 
principal axes of a cross-section that goes through the center of mass itself.  One chooses 
a point P on the first axis and directs one’s attention to three line elements that are drawn 
from P outward in the directions of the three axes; I call them 0, 1, 2.  Thus, 0 shall be the 
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one that has the direction of the length of the cylinder.  When the rod has suffered a 
change in form, these three line elements will no longer be perpendicular to each other, in 
general, but will define angles that deviate from right angles by quantities that have the 
order of the dilatations that are present.  The position of the points of the rod that are in 
the vicinity of P shall be referred to a rectangular coordinate system whose origin is P, 
whose x-axis has the direction of the line element 0, and whose z-axis is perpendicular to 
the line element 1.  Let the coordinates of a point of the rod relative to that coordinate 
system be: 
 
 x + u, y + v, z + w,  when the rod has its altered form and position, 
 
 x, y, z,   when the rod is in its original state and is in the position for  
     which the line elements 0, 1, 2, fall along the x, y, z axes,  
     respectively. 
 
 If one then establishes that x shall take on only values that have the order of the cross-
sectional dimensions of the rod then the symbols x, y, z, u, v, w will have the same 
meaning that they had in the derivation of equation (10).  Moreover, let ξ, η, ζ be the 
coordinates of a point P after the deformation of the rod relative to another rectangular 
coordinate system that is chosen in space arbitrarily.  I let: 
 
 α0 , β0 , γ0 , 
 α1 , β1 , γ1 , 
 α2 , β2 , γ2 

be the cosines of the angles that the x, y, z axes define with the ξ, η, ζ axes, in such a way 
that the index 0 refers to the x-axis, the index 1, to the y-axis, and the index 2, to the z-
axis, respectively.  It shall be assumed that the two coordinate systems that we speak of 
have the property that the x-axis can be made parallel to the ξ-axis, the y-axis, to the η-
axis, and the z-axis, to the ζ-axis by rotation. 
 The coordinates of the point whose coordinates are x + u, y + v, z + w relative to the x, 
y, z axes can be expressed relative to the ξ, η, ζ axes with the help of the symbols that 
were introduced.  The aforementioned coordinates will have the values: 
 

(12)   
0 1 2

0 1 2

0 1 2

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).

x u y v z w

x u y v z w

x u y v z w

ξ α α α
η β β β
ζ γ γ γ

+ + + + + +
 + + + + + +
 + + + + + +

 

 
If s means the distance from the point P to the origin of the rod in its original state then 
these three quantities must be functions of s + x; i.e., their partial differential quotients 
with respect to x must be equal to their partial differential quotients with respect to s.  If 
one ponders the fact that ξ, η, ζ and the quantities α, β, γ do not include x then it will 
follow from this that: 
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 0 1 21
u v w

x x x
α α α∂ ∂ ∂ + + + ∂ ∂ ∂ 

 = 0 1 2( ) ( ) ( )
d d dd

x u y v z w
ds ds ds ds

α α αξ + + + + + +  

 + 0 1 2

u v w

s s s
α α α∂ ∂ ∂+ +

∂ ∂ ∂
, 

 

 0 1 21
u v w

x x x
β β β∂ ∂ ∂ + + + ∂ ∂ ∂ 

 = 0 1 2( ) ( ) ( )
d d dd

x u y v z w
ds ds ds ds

β β βη + + + + + +  

 + 0 1 2

u v w

s s s
β β β∂ ∂ ∂+ +

∂ ∂ ∂
, 

 

 0 1 21
u v w

x x x
γ γ γ∂ ∂ ∂ + + + ∂ ∂ ∂ 

 = 0 1 2( ) ( ) ( )
d d dd

x u y v z w
ds ds ds ds

γ γ γζ + + + + + +  

 + 0 1 2

u v w

s s s
α α α∂ ∂ ∂+ +

∂ ∂ ∂
. 

 

 These equations shall be multiplied, first, by α0, β0, γ0, then by α1, β1, γ1, and then 
finally by α2, β2, γ2, and then added.  If one sets: 

(13)   

2 2 2

0 0 0

1,

from which, it will follow that :

(1 ), (1 ), (1 ),

d d d

ds ds ds

d d d

ds ds ds

ξ η ζε

ξ η ζα ε β ε γ ε

       = + + −     
      



 = + = + = +



 

and one further sets: 

 p = 2 2 2
1 1 1

d d d

ds ds ds

α β γα β γ+ + , 

 q = 0 0 0
2 2 2

d d d

ds ds ds

α β γα β γ+ + , 

 r = 1 1 1
0 0 0

d d d

ds ds ds

α β γα β γ+ +  

then one will find, in the manner that was described, and upon recalling the known 
relations between the quantities α, β, γ: 

 
u

x

∂
∂

 = 
u

s

∂
∂

+ r (y + v) – q (z + w) + ε, 

 
v

x

∂
∂

 = 
v

s

∂
∂

+ p (z + w) – r (x + u), 



Kirchhoff – On the equilibrium and the motion of an infinite-thin rod. 11 

 
w

x

∂
∂

 = 
w

s

∂
∂

+ q (x + u) – p (y + v) . 

 
It will then emerge from the considerations that were presented in § 1 that u, v, w are 
infinitely small compared to ∂u / ∂x, ∂v / ∂x, ∂w / ∂x.  Assuming that ∂u / ∂s, ∂v / ∂s, ∂w / 
∂s are not infinitely large in comparison to u, v, w, the differential quotients with respect 
to s will then be infinitely small in comparison to x.  If one neglects infinitely smaller 
quantities of higher order then one will have: 

 
u

x

∂
∂

 = ry – qz + ε, 

 
v

x

∂
∂

 = pz – rx, 

 
w

x

∂
∂

 = qx – py. 

 
By integration, one will find from this that: 
 

(14) 

0

2
0

2
0

( )

,
2

,
2

u u ry qz x

r
v v pzx x

q
w w x pxy

ε

 = + − +

 = + −

 = + −

 

 
in which u0, v0, w0 refer to quantities that are independent of x. 
 If one constructs the values of xx, yx, … with the help of these expressions for u, v, w 
then that will yield: 

(15) 

0 0

0 0

0 0

, ,

, ,

, .

x z

y x

z y

v w
x ry qz y

z y

v u
y z py

y z

w u
z x pz

z y

ε ∂ ∂= − + = + ∂ ∂
 ∂ ∂

= = − ∂ ∂
 ∂ ∂= = + ∂ ∂

 

 
All of these values are independent of x.  As a result, equations (8), which can substitute 
for equations (1), will assume the following form: 
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(16)    

0,

0,

0.

y z

y z

y z

X X

y z

Y Y

y z

Z Z

y z

∂ ∂+ = ∂ ∂
 ∂ ∂ + = ∂ ∂
 ∂ ∂+ =

∂ ∂

 

 
If one understands g = 0 to be the equation of the contour of the cross-section of the rod, 
considers that g is independent of x and that (X), (Y), (Z) = 0 for the lateral surface of the 
rod then for g = 0, equations (2) will give: 
 

(17)    

0,

0,

0.

y z

y z

y z

g g
X X

y z

g g
Y Y

y z

g g
Z Z

y z

 ∂ ∂+ = ∂ ∂
 ∂ ∂+ = ∂ ∂
 ∂ ∂+ = ∂ ∂

 

 
Finally, equations (3) say that for y = 0, z = 0: 
 

(18)  u0 = 0,  v0 = 0,  w0 = 0,  0w

y

∂
∂

= 0. 

 
 If one substitutes the expressions for Xy, Xz, … in terms of xx, yx in equations (16) and 
(17) then equations (16), (17), (18) will determine the quantities u0, v0, w0 uniquely, and 
indeed, as linear, homogeneous functions of p, q, r, ε.  The fact that u0, v0, w0 are 
determined follows from the fact that when one sets p = 0, q = 0, r = 0, ε = 0, equations 
(16), (17), (18) cannot be fulfilled except when u0 = 0, v0 = 0, w0 = 0.  The validity of that 
assertion is deduced from considerations that are similar to the ones that were presented 
above on pp. 6.  If one substitutes the values of u0, v0, w0 that (16), (17), (18) yield into 
equations (14) then one will also find u, v, w as linear, homogeneous functions of p, q, r, 
ε; their coefficients will be independent of s.  Therefore, if dp / ds, dq / ds, dr / ds, dε / ds 
are not infinitely large in comparison to p, q, r, s, respectively, then equations (13) will 
fulfill the assumption that was made about ∂u / ∂s, ∂v / ∂s, ∂w / ∂s.  If one substitutes the 
values of u0, v0, w0 in equations (15) then that will also yield xx, xy, … as linear, 
homogeneous functions of p, q, r, ε, and if one introduces them into the expression for F 
then one will obtain a homogeneous function of degree two of the same four quantities 
for F.  That function will be independent of x, since xx, xy, … are independent of x.  If one 
sets: 

∫ F dy dz = f, 
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in which the integration is extended over the cross-section of the rod, then f will be a 
homogeneous function of degree two in p, q, r, ε whose coefficients depend upon only 
the constants of the cross-section and the elasticity of the rod.  By introducing that 
quantity f, equations (10) and (11) will become: 
 

(19)     δΩ – δ ∫ f ds = 0 
and 

(20)    ∫ dt { δT + δΩ – δ ∫ f ds } = 0. 
 
 From the considerations that were discussed, the determination of the coefficients of 
the function f demands the solution of three simultaneous partial differential equations, in 
general.  That determination will be lightened substantially when one assumes that the 
axis of the cylindrical rod is parallel to an elastic axis.  In that case, the expressions for 
Xx, Xy, … in terms of xx, xy, … will be the following ones (*): 
 
 Xx = A00 xx + A01 yy + A02 zz + A03 yx , 
 Yy = A10 xx + A11 yy + A12 zz + A13 yx , 
 Zz = A20 xx + A21 yy + A22 zz + A23 yx , 
 Yz = A30 xx + A31 yy + A32 zz + A33 yx , 
 Zx = A44 zx + A45 xy , 
 Xy = A54 zx + A55 xy , 
in which: 

A01 = A10 , A01 = A10 , … 
 

If one recalls equations (15) then the first of equations (16) will become: 
 

(21)    
2 2 2

0 0 0
44 44 552 22

u u u
A A A

z y z y

∂ ∂ ∂+ +
∂ ∂ ∂ ∂

 = 0, 

and the first of equations (17): 
 

(22) 0 0 0 0
44 45 54 55

u u u ug g
A py A pz A py A pz

z y z z y y

      ∂ ∂ ∂ ∂∂ ∂   − + + + − + +         ∂ ∂ ∂ ∂ ∂ ∂         
 = 0. 

 
u0 can be determined from these two equations and the first of equations (18).  The 
remaining equations (16), (17), (18) serve to determine v0 and w0 .  As Saint-Venant first 
remarked in his investigations into the torsion of prisms, one will satisfy them when one 
sets: 
(23)     Yy = 0, Zz = 0, Yz = 0. 
 
If fact, if one solves these equations for yy, zz, yz then when one sets xx equal to its value 
in (15), one will obtain linear expressions for y and z for these three quantities, and thus 
expressions that fulfill the equation: 

                                                
 (*) Berl. Ber., “über die Fortschritte der Physik in den Jahren 1850 and 1851,” pp. 245.  
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2 2

2 2

y z
y z

z y

∂ ∂+
∂ ∂

 = 
2

zy

y z

∂
∂ ∂

, 

in which the condition for that to be true is that the two quantities u0, w0 can be 
determined from the three equations: 

yy = 0v

y

∂
∂

, zz = 0w

z

∂
∂

, yz = 0 0w v

y z

∂ ∂+
∂ ∂

. 

The integration of these equations will introduce three arbitrary constants, and the last 
three of equations (18) can be satisfied by a suitable choice of them. 
 The value of T in equation (20) shall now be developed.  To that end, one must 
differentiate the expression (12) with respect to t and take the sum of the squares of the 
differential quotients.  One has: 
 

u = a0 p + a1 q + a2 r + a3 ε, 
 
in which a0 , a1 , a2 , a3 are independent of t, and in which, if the dimensions of the cross-
section of the rod are denoted by infinitely-small first-order quantities then a3 will be of 
order one, while a0, a1, a2 are of order two; similar expressions will be true for v and w.  
One sees that the orders of the coefficients a are given correctly most easily from 
equations (14).  It follows from the expression for u that: 
 

du

dt
 = 0 1 2 3

dp dq dr d
a a a a

dt dt dt dt

ε+ + + ; 

 
similarly equations will be true for dv / dt and dw / dt.  One can conclude from the value 
of ε that is given in (13) that dε / dt will not be infinitely large in comparison to the 
quantities dξ / dt, dη / dt, dζ / dt if one assumes that the differential quotients of these 
quantities with respect to s are not themselves infinitely large in comparison to the latter 
quantities.  It follows from the values of p, q, r, by a similar assumption, that none of the 
quantities dp / dt, dq / dt, dr / dt are infinitely large in comparison to the nine quantities: 
 

0d

dt

α
, 0 

d

dt

β
, 0 

d

dt

γ
, 1 

d

dt

α
, 1 

d

dt

β
, 1 

d

dt

γ
, 2 

d

dt

α
, 2 

d

dt

β
, 2 

d

dt

γ
. 

 
That will yield the fact that by neglecting infinitely-small quantities of higher degree, one 
can next write the differential quotients of the expressions (12) as: 
 

 0 1 2d d dd
x y z

dt dt dt dt

α α αξ + + + , 

 

 0 1 2d d dd
x y z

dt dt dt dt

β β βη + + + , 
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 0 1 2d d dd
x y z

dt dt dt dt

γ γ γψ + + + . 

 
It now follows further from equations (13) then none of the quantities dα0 / dt, dβ0 / dt, 
dγ0 / dt will be infinitely large in comparison to the three quantities dξ / dt, dη / dt, dζ / 
dt.  On that basis, the terms in the expressions that were just given that were endowed 
with x can be neglected.  By comparison, the terms that contained y and z cannot be 
omitted, in general, since their coefficients can be infinitely large in comparison to dξ / 
dt, dη / dt, dζ / dt. 
 If one defines the sum of the squares of the given expressions in light of that, 
multiplies that by dy dz, and integrates over the cross-section of the rod then since, from 
the assumptions that were made at the start of this paragraph, one has: 
 

∫ y dy dz = 0, ∫ y dy dz = 0, ∫ y dy dz = 0, 
one will get: 

 
2 2 2

d d d
dy dz

dt dt dt

ξ η ζ      + +      
       

∫  

 + 
2 2 2

21 1 1d d d
y dy dz

dt dt dt

α β γ      + +      
       

∫  

 + 
2 2 2

22 2 2d d d
z dy dz

dt dt dt

α β γ      + +      
       

∫ . 

One now sets: 

 2 2 2
1 1 1

d d d

dt dt dt

α β γα β γ+ +  = P, 

 0 0 0
2 2 2

d d d

dt dt dt

α β γα β γ+ +  = Q, 

 0 0 0
1 1 1

d d d

dt dt dt

α β γα β γ+ +  = − R; 

one then has: 

 
2 2 2

1 1 1d d d

dt dt dt

α β γ     + +     
     

= P2 + R2, 

 
2 2 2

2 2 2d d d

dt dt dt

α β γ     + +     
     

= P2 + Q2. 

 
If one substitutes these values in the last expression and considers that of the quantities 
P,Q, R, only the first one can be infinitely large in comparison to dξ / dt, dη / dt, dζ / dt, 
then when one sets, to abbreviate: 
 

∫ dy dz = λ, ∫ (y2 + z2) dy dz = µ, 
it will become: 
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2 2 2
d d d

dt dt dt

ξ η ζλ
      + +      
       

 + µ P2. 

 
If one multiplies this expression by 1

2 ρ ds (when one understands ρ to mean the density 

of the rod) and integrates over the length of the rod then one will get the value of T that is 
to be substituted in equation (20).  If no external forces act upon the rod then that 
equation will become: 

(24)   0 = 
2 2 2

21
2

d d d
dt ds P f

dt dt dt

ξ η ζδ ρ λ µ
         + + + −                   

∫∫ . 

 
 Equations (19), (20), and (24) were derived under the assumption that the rod was 
cylindrical in its natural state.  However, they are also true with a certain modification 
when the rod is not cylindrical in its natural state and is curved arbitrarily, as long as the 
cross-section is still the same everywhere.  Under that assumption, the rod can be made 
cylindrical by suitable forces that inside of it.  Hence, its parts will suffer infinitely-small 
dilatations.  If one refers the quantities x, y, z and u, v, w to the state in which the rod is 
then found, instead of to its natural state, and lets u′, v′, w′ denote the values that u, v, w 
assume when one lets the rod go from its natural state into an arbitrary position then 
equations (10) and (11) will be correct when one sets u – u′, v – v′, w – w′ in F in place of 
u, v, w.  Equations (19), (20), and (24) will then also be true when one sets p − p′, q − q′, 
r − r′, ε − ε′ in f in place of p, q, r, ε, in which p′, q′, r′, ε′ mean the values that p, q, r, ε 
assume when one lets the rod go from its natural state to an arbitrary position.  In fact, in 
that case, u – u′, v – v′, w – w′ will be the same linear functions of p − p′, q − q′, r − r′, 
ε − ε′ as the previous ones u, v, w were of p, q, r, ε.  In order to see the truth of that 
assertion, one must only ponder the facts that equations (14) are also true here, and that 
those equations can be derived in the same was as the one that will arise from (14) when 
one applies a prime to the symbols u, v, w, u0, v0, w0, p, q, r (so that 0u′ , 0v′ , 0w′  mean the 

values of u′, v′, w′ for x = 0), and equations (16), (17), (18) will be correct when one 
replaces u, v, w with u – u′, v – v′, w – w′ in them. 
 
 

§ 3. 
 

 Equation (19) shall now be developed further under the assumption that no other 
external forces act upon the rod than ones that have their point of application at its ends. 
 Only four desired functions of s enter into the expression for f, namely, p, q, r, ε.  
However, they are defined by the differential quotients of ξ, η, ζ, α0, β0, γ0, α1, β1, γ1, α2, 
β2, γ2 , between which, certain condition equations exist.  For the moment, I would like to 
denote the sixteen stated unknown functions of s by y1, y2, …, and the condition 
equations that exist between them by ϕ1 = 0, ϕ2 = 0, …  If one sets: 
 

U = f + λ1ϕ1 + λ2ϕ2 + …, 
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in which λ1, λ2, … mean new unknown functions of s, then the equation (19) will be 
equivalent to the following one: 
(25)     0 = δΩ – δ ∫ U ds . 
 
Since, by assumption, δΩ should depend upon only variations of the ends of the rod, one 
must then have: 

(26)     
U

y

∂
∂

= 
d U

dyds
ds

∂

∂
 

for every y. 
 I shall now combine the condition equations ϕ1 = 0, ϕ2 = 0, … and add the notations 
for the factors λ1, λ2, … that I would like to introduce. 
 
 
 Condition equations Factors 
 

 
d

ds

ξ
 − α0 (1 + ε) = 0, A, 

 
d

ds

η
 − β0 (1 + ε) = 0, B, 

 
d

ds

ζ
 − γ0 (1 + ε) = 0, C, 

 

 2 2 2
1 1 1

d d d
p

ds ds ds

α β γα β γ+ + −  = 0, M0 , 

 0 0 0
2 2 2

d d d
q

ds ds ds

α β γα β γ+ + −  = 0, M1 , 

 1 1 1
0 0 0

d d d
r

ds ds ds

α β γα β γ+ + −  = 0, M2 , 

 
 2 2 2

0 0 0 1α β γ+ + −  = 0, 1
2 λ00 , 

 2 2 2
1 1 1 1α β γ+ + −  = 0, 1

2 λ11 , 

 2 2 2
2 2 2 1α β γ+ + −  = 0, 1

2 λ22 , 

 
 α1α2 + β1β2 + γ1γ2 = 0, λ12 , 
 α2α0 + β2β0 + γ2γ0 = 0, λ20 , 
 α0α1 + β0β1 + γ0γ1 = 0, λ01 . 
 
If one sets y equal to p, q, r, ε, ξ, η¸ ζ, α0, β0, γ0 , α1, β1, γ1 , α2, β2, γ2  in turn in equation 
(26) then one will get: 
  

 
f

p

∂
∂

= M0 , 
f

q

∂
∂

= M1 , 
f

r

∂
∂

= M2 , 
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f

ε
∂
∂

 = A α0 + B β0 + C γ0 , 

 

 
dA

ds
 = 0, 

dB

ds
 = 0, 

dC

ds
 = 0, 

 

 2 1( )d M

ds

α
 = M2 2d

ds

α
 + λ00 α0 + λ01 α1 + λ02 α2 – A (1 + ε), 

 2 1( )d M

ds

β
 = M2 2d

ds

β
 + λ00 β0 + λ01 β1 + λ02 β2 – B (1 + ε), 

 2 1( )d M

ds

γ
 = M2 2d

ds

γ
 + λ00 γ0 + λ01 γ1 + λ02 γ2 – C (1 + ε), 

 

 0 2( )d M

ds

α
 = M0 2d

ds

α
 + λ10 α0 + λ11 α1 + λ12 α2 , 

 0 2( )d M

ds

β
 = M0 2d

ds

β
 + λ10 β0 + λ11 β1 + λ12 β2 , 

 0 2( )d M

ds

γ
 = M0 2d

ds

γ
 + λ10 γ0 + λ11 γ1 + λ12 γ2 , 

 1 0( )d M

ds

α
 = M1 0d

ds

α
 + λ20 α0 + λ21 α1 + λ22 α2 , 

 1 0( )d M

ds

β
 = M1 0d

ds

β
 + λ20 β0 + λ21 β1 + λ22 β2 , 

 1 0( )d M

ds

γ
 = M1 2d

ds

γ
 + λ20 γ0 + λ21 γ1 + λ22 γ2 , 

 
in which: 

λ21 = λ12 ,    λ02 = λ20 ,    λ10 = λ01 . 
 
If one takes three equations from the last three groups of these equations, multiplies them 
by α0, β0, γ0 , then α0, β0, γ0 , and then α0, β0, γ0 , and adds them then one will find the 
following: 
 − M1 q = λ00 + M2 r – (1 + ε) (Aα0 + Bβ0 + Cγ0), 
    M1 p = λ01            – (1 + ε) (Aα1 + Bβ1 + Cγ1), 

 1dM

ds
 = λ02 − M2 p – (1 + ε) (Aα2 + Bβ2 + Cγ2), 

 2dM

ds
 = λ10 − M0 q, 

 − M2 r = λ11 + M2 p, 
    M2 q = λ12 , 
    M0 r = λ20 , 

 0dM

ds
 = λ21 − M1 r, 
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 − M0 p = λ22 + M1 q. 
 
Now, since λ21 = λ12 , λ02 = λ20 , λ10 = λ01, when one employs the fact that e is infinitely 
small that will yield: 

(27)   

0
2 1

1
0 2 2 2 2

2
1 0 1 1 1

,

( ),

.

dM
M q M r

ds
dM

M r M p A B C
ds

dM
M p M q A B C

ds

α β γ

α β γ

 = −

 = − − + +

 = − + + +


 

 
The quantities M0, M1, M2, A, B, C that enter into these equations have a simple meaning 
that I would like to derive. 
 The beginning of the rod shall be assumed to be fixed, and equation (25) will apply to 
the part of the rod from the beginning up to a cross-section that is determined by a certain 
value of s.  One can then understand δΩ to mean the moment of the elastic forces that are 
exerted upon that cross-section by the other parts of the rod that correspond to larger 
values of s.  Equation (25) will then become: 
 

0 = δΩ − 
U

y
dy

ds

δ∂

∂
∑ , 

or, when developed: 
 δΩ = A δξ + B δη + C δζ 
  + M0 (α1 δα2 + β1 δβ2 + γ1 δγ2) 
  + M1 (α2 δα0 + β2 δβ0 + γ2 δγ0) 
  + M2 (α0 δα1 + β0 δβ1 + γ0 δγ1) . 
 
It follows from this that A, B, C are the sums of the components along the ξ, η, ζ-axes, 
respectively, of the elastic forces that are exerted upon the cross-section that is 
determined by the assumed value of s by those ports of the rods that correspond to larger 
values of s, and the M0, M1, M2 are the rotational moments of those forces relative to the 
x, y, z-axes.  The sense in which that rotational moment is regarded as positive can be 
given as follows: 
 If one establishes the sequence of axes that makes the y-axis follow the x-axis, and 
then the z-axis follow the y-axis, and finally, the x-axis follow the z-axis then the 
rotational moment relative to one of the axes will be positive when (assuming that axis is 
the first one) the points of the third axis make it rotate towards the direction of the second 
one. 
 It might be remarked that the equations that express the idea that A, B, C are 
independent of s and equations (27) can be derived from this interpretation for A, B, C, 
M0, M1, M2 when one applies the six equilibrium conditions for a rigid body to a piece of 
the rod that is bounded by two arbitrary cross-sections.  Namely, if one sets: 
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 Mξ = M0 α0 + M1 α1 + M2 α2 , 
 Mη = M0 β0 + M1 β1  + M2 β2 , 
 Mζ = M0 γ0  + M1 γ1  + M2 γ2 , 
 
then these conditions will give: 
 

A = const., B = const.,  C = const., 
 

 Mξ + (Bζ – Cη) = const., 
 Mη + (Cξ – Aζ) = const., 
 Mζ + (Aη – Bξ) = const. 
 
If one differentiates the last three equations, multiplies them first by α0, β0, γ0, then by α1, 
β1, γ1, and finally, by α2, β2, γ2, and adds them each time then one will get equations (27). 
 One now must set: 
 

 M0 = 
f

p

∂
∂

= a00 (p – p′) + a01 (q – q′) + a02 (r – r′) + a03 (ε – ε′), 

 M1 = 
f

q

∂
∂

= a10 (p – p′) + a11 (q – q′) + a12 (r – r′) + a13 (ε – ε′), 

 M2 = 
f

r

∂
∂

= a20 (p – p′) + a21 (q – q′) + a22 (r – r′) + a23 (ε – ε′) 

 
in those equations; if one sets: 

Aα0 + Bβ0 + Cγ0 = S, 
to abbreviate, then one will get: 
 

S = 
f

ε
∂
∂

 = a30 (p – p′) + a31 (q – q′) + a32 (r – r′) + a33 (ε – ε′) . 

 
Here, the quantities a depend upon the constants of the cross-section and the elasticity of 
the rod, and the relations a01 = a10, a02 = a20, … exist between them.  The quantities a are 
not all of the same order.  Since ε – ε′ is a number and p – p′, q – q′, r – r′ are reciprocal 
lengths, the quantities a that have the index 3 once must have one dimension less than the 
quantities a for which the index the index 3 does not occur, and one dimension more than 
a33 .  However, the lengths that enter into the expressions for the quantities a are of order 
the dimensions of the cross-section of the rod, and thus, infinitely small.  Hence, a03, a13, 
a23 must be infinitely small compared to a33 and infinitely large compared to the other 
quantities a.  On that basis, the terms in the equations that were just given that are 
endowed with ε – ε′ will not be neglected when p – p′, q – q′, r – r′ are finite.  It follows 
from the last of these equations: 
 

ε – ε′ = − 30 31 32

33

a p a q a r S

a

+ + −
; 
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one thinks of these values as being substituted in the expressions for M0, M0, M2.  Due to 
the relationships between the quantities a that were just given, the terms in them that 
contain S will then be infinitely small compared to M0, M0, M2, in the event that S is not 
infinitely large compared to M0, M0, M2 .  If that case were excluded then one would 
have: 

(28) 
0 00 01 02

1 10 01 02

2 20 21 22

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ),

M b p p b q q b r r

M b p p b q q b r r

M b p p b q q b r r

′ ′ ′= − + − + −
 ′ ′ ′= − + − + −
 ′ ′ ′= − + − + −

 

 
in which the quantities b can be expressed in a simple way in terms of the quantities a, 
and where b01 = b10, b12 = b21, b20 = b02 . 
 The condition under which these equations are true − namely, the condition that S is 
not infinitely large compared to M0, M1, M2 – will be fulfilled when the axis of the rod is 
finitely curved for the equilibrium figure considered, regardless of whether that axis is or 
is not curved in the natural state.  In fact, it follows from equations (27) that the 
expressions Aα1 + Bβ1 + Cγ1 and Aα2 + Bβ2 + Cγ2 are of the same order as M0, M1, M2 .  
The same expressions must then be infinitely small compared to S when S is infinitely 
large compared to M0, M1, M2 .  However, if that were the case then the ratios A : B : C 
would deviate infinitely little from the ratios α0 : β0 : γ0 ; i.e., the direction of the tangent 
to the axis of the rod must deviate infinitely little everywhere from the direction of the 
resultant of the constant forces A, B, C.  
 It shall be assumed that the rod is cylindrical in its natural state – i.e., that p′ = 0, q′ = 
0, r′ = 0.   If one substitutes the values that M0, M1, M2 take on as a result of equations 
(28) into equations (27) then one will arrive at differential equations that are identical 
with the ones that the investigation of the rotation of a massive body about a fixed point 
will lead to when one gives the following meanings to the symbols that are used here in 
the context of rotating bodies: 
 The ξ, η, ζ axes are the axes of a coordinate system that is fixed in space.  The x, y, z 
axes are the axes of a coordinate system that is fixed in the body at time s.  The origin of 
the latter is the point of rotation, and its x-axis goes through the center of mass.  A, B, C 
are the negative components of the weight of the body along the ξ, η, ζ axes, when it is 
multiplied by the x-coordinate of the center of mass.  Finally, if m is the mass of a spatial 
element of the body that has the coordinates x, y, z then one will have: 
 

 b00 = ∑ m (y2 + z2), b12 = − ∑ m y z, 

 b11 = ∑ m (z2 + x2), b20 = − ∑ m z x, 

 b22 = ∑ m (x2 + y2), b01 = − ∑ m x y. 
 
If the corresponding problem of the rotation has been solved then the determination of the 
forms of elastic rods will require that one perform three quadratures.  Namely, one 
obtains the running coordinates of a point on the axis of the rod from the equations: 
 

ξ = ∫ α0 ds, η = ∫ β0 ds, ζ = ∫ γ0 ds . 
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§ 4. 
 

 Finally, I would like to apply the theory that was developed to a simple case in which 
the rod is not straight in its natural state.  Let the rod be a wire with a circular cross-
section and equal elasticities in all directions whose axis defines a helix in the natural 
state. 
 For a body whose elasticity is the same in all directions, one has the equations (*): 
 
 Xx = 2K {(1 + θ) xx + θ yy + θ zz}, 
 Yy = 2K {θ xx + (1 + θ) yy + θ zz}, 
 Zz = 2K {θ xx + θ yy + (1 + θ) zz}, 
 

Yz = K yz , Zx = K zx , Xy = K xy . 
 

For the case in which x, y, z, u, v, w are referred to the natural state of the body, it will 
then follow that: 
 
(29)  F = K 2 2 2 2 2 2 21 1 1

2 2 2{ ( )x y z x x y x y zx y z y z x x y zθ+ + + + + + + + . 

 
Equations (23) give: 

yy = zz = − 
1 2

θ
θ+

xx ,  yz = 0. 

 
Equations (21) and (22) become: 

2 2
0 0

2 2

u u

y z

∂ ∂+
∂ ∂

 = 0 

and for g = 0: 

0 0u ug g
py pz

z z y y

 ∂ ∂∂ ∂ − + +  ∂ ∂ ∂ ∂   
 = 0. 

 
Since the cross-section of the wire is supposed to be a circle, one must have g = y2 + z2 – 
const.  It then follows from these two equations, in conjunction with the first of equations 
(18), that u0 = 0.  Equations (15) then give: 
 

xx = ry – qz + ε, zx = − py, xy = pz. 
One will then have: 

F = K 2 2 2 21
2

1 3
( ) ( )

1 2
ry qz p y z

θ ε
θ

+ − + + + + 
. 

                                                
 (*) In these equations, the quantities K and θ have the same meaning as they did in my treatise “über das 
Gleichgewicht und die Bewegung einer elastische Scheibe,” this journal, Band 40.  I take this occasion to 
remark that the theory of equilibrium and motion of an infinitely-thin, elastic plate can be developed more 
rigorously than it was there in a manner that is similar to the one that have pursued in this treatise for a rod, 
and that the case in which the plate has different elasticities in different directions can be treated in that 
way.   
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If one now defines: 

f = ∫ F dy dz, 
and then employs the fact that: 
 

∫ y dy dz = 0, ∫ z dy dz = 0, ∫ yz dy dz = 0, 
and sets: 

∫ dy dz = λ, ∫ y2 dy dz = ∫ z2 dy dz = 
2

µ
, 

 
according to the notation that was used above, then one will find: 
 

f = K 2 2 2 21 3 1 3
( )

2 1 2 2 1 2
p q r

µ θ µ θ λε
θ θ

+ + + + + + + 
. 

 
Therefore, all of the quantities a00, a01, … that have unequal indices are equal to zero, and 
one will have: 

a00 = Kµ, a11 = a22 = 
1 3

1 2

θ
θ

+
+

Kµ,  a33 = 2 
1 3

1 2

θ
θ

+
+

Kλ . 

 
Of the quantities b00, b01, … that are introduced by means of (28), the ones that have 
unequal indices are likewise equal to zero, and one will have: 
 

b00 = Kµ,  b11 = b22 = 
1 3

1 2

θ
θ

+
+

Kµ . 

For the sake of brevity, we shall set: 
 

b00 = L, b11 = b22 = N. 
 
I shall let ξ′, η′, ζ′, 0α ′ , 0β ′ , 0γ ′ , 1α ′ , 1β ′ , 1γ ′ , 2α ′ , 2β ′ , 2γ ′  denote the values that ξ, η, ζ, α0, 

β0, γ0, α1, β1, γ1, α2, β2, γ2 assume when the line is brought from its natural state into a 
certain position.  That position can be chosen such that: 
 
 ξ′ = s ⋅⋅⋅⋅ cos ϑ′, 

 η′ =   
1

n′
sin ϑ′ ⋅⋅⋅⋅ sin n′s, 

 ζ′ = − 1

n′
sin ϑ′ ⋅⋅⋅⋅ cos n′s, 

 
in which ϑ′ and n′ are constants.  In this, ϑ′ means the angle that a tangent to the helix 

defines with its axis, and 
sin

n

ϑ′
′

 is the radius of the cylinder surface on which the helix 

lies.  These values of ξ, η, ζ yield the following values of 0α ′ , 0β ′ , 0γ ′ : 
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 0α ′  = cos ϑ′, 
 0β ′  = sin ϑ′ ⋅⋅⋅⋅ sin n′s, 
 0γ ′  = sin ϑ′ ⋅⋅⋅⋅ cos n′s. 
 
If the cross-section of the wire were not a circle then its natural form would also 
determine the values of 1α ′ , 1β ′ , 1γ ′ , 2α ′ , 2β ′ , 2γ ′ , up to a sign.  However, since the cross-

section is assumed to be circular, one of these quantities will remain arbitrary and can be 
assumed to be equal to an arbitrary function of s; I set: 
 

1α ′  = sin ϑ′ ⋅⋅⋅⋅ cos l′ s, 
 
in which I understand l′ to mean an arbitrary constant (*).  When one arbitrarily assigns 
the sign of 2α ′ , which remains undetermined, the relations between the quantities α′, β′, 
γ′ will yield: 
 1β ′  = − cos ϑ′ ⋅⋅⋅⋅ cos n′ s ⋅⋅⋅⋅ cos l′ s – sin n′ s ⋅⋅⋅⋅ sin l′ s , 
 1γ ′  = − cos ϑ′ ⋅⋅⋅⋅ sin n′ s ⋅⋅⋅⋅  cos l′ s + cos n′ s ⋅⋅⋅⋅ sin l′ s , 
 2α ′  =    sin ϑ′ ⋅⋅⋅⋅  sin l′ s, 
 2β ′  = − cos ϑ′ ⋅⋅⋅⋅ cos n′ s ⋅⋅⋅⋅ sin l′ s + sin n′ s ⋅⋅⋅⋅ cos l′ s , 
 2γ ′  = − cos ϑ′ ⋅⋅⋅⋅ sin n′ s ⋅⋅⋅⋅ sin l′ s – cos n′ s ⋅⋅⋅⋅ cos l′ s . 
 
One further finds from this that: 
 p′ = l′ − n′ cos ϑ′, 
 q′ =    − n′ sin ϑ′ ⋅⋅⋅⋅ cos l′ s, 
 r′ =    − n′ sin ϑ′ ⋅⋅⋅⋅ sin l′ s . 
 
One now sets ξ, η, ζ, α0, β0, γ0, α1, β1, γ1, α2, β2, γ2 equal to the expressions that arise 
from the expressions for ξ, η, ζ, … when one replaces the constants ϑ′, n′, l′ in them with 
the new constants ϑ, n, l.  All of the differential equations of the problem, with the 
exception of equations (27), will then be satisfied, which might also be the values of ϑ, n, 
l.  Due to the fact that one established suitable relations between the constants ϑ, n, l, ϑ′, 
n′, l′, A, B, C, one can also fulfill them.  In fact, when one applies equations (28) and the 
values of the quantities b that were developed above, equations (27) will become: 
 

 L 
( )d p p

ds

′−
 = N (rq′ – qr′), 

 N 
( )d q q

ds

′−
 = L (p – p′) r – N (r – r′) p – (A α2 + B β2 + C γ2), 

 N 
( )d r r

ds

′−
 = N (q – q′) p – L (p – p′) q + A α1 + B β1 + C γ1 . 

                                                
 (*) The calculation can be shortened somewhat by setting l′ = 0; still, I prefer to leave that constant 
undetermined. 
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These will be satisfied when one sets: 
 

l = l′, 

A = 
sin

n

ϑ
{ L (n cos ϑ − n cos ϑ) sin ϑ – N (n sin ϑ – n sin ϑ) cos ϑ }, 

B = 0, C = 0. 
 
The last two of these equations express one of the conditions under which the expressions 
that are assumed for ξ, η, ζ, … will be valid.  They say that the force that acts upon the 
end of the wire must have the same direction as the axis of the helix.  Another condition 
gets appended to that one that refers to the rotational moment that is exerted upon the end 
of the wire.  Equations (28) give: 
 
 M0 = − L (n cos ϑ − n′ cos ϑ′ ), 
 M1 = − N (n sin ϑ − n′ sin ϑ′ ) cos l′ s, 
 M2 = − N (n sin ϑ − n′ sin ϑ′ ) sin l′ s. 
 
In these equations, one might understand (?) to mean the value that relates to the end of 
the wire.  If one forms: 
 
 Mξ = M0 α0 + M1 α1 + M2 α2 , 
 Mη = M0 β0 + M1 β1  + M2 β2 , 
 Mζ = M0 γ0  + M1 γ1  + M2 γ2 
 
then Mξ , Mη , Mζ will be the rotational moments that act externally upon the end of the 
wire relative to the three axes that are laid parallel to the end of the axes of the ξ, η, ζ, …  
One finds: 
 
  Mξ = −{ L (n cos ϑ – n′ cos ϑ′ ) cos ϑ + N (n sin ϑ – n′ sin ϑ′ ) sin ϑ }, 
  Mη = −{ L (n cos ϑ – n′ cos ϑ′ ) sin ϑ − N (n sin ϑ – n′ sin ϑ′ ) cos ϑ }cos ns, 
  Mζ = −{ L (n cos ϑ – n′ cos ϑ′ ) sin ϑ − N (n sin ϑ – n′ sin ϑ′ ) cos ϑ }sin ns. 
 
The last two of these equations can be written: 
 

Mη = A ζ, Mζ = − A η, 
 

where η and ζ and refer to the end of the wire.  It follows from this that Mη and Mζ are 
equal to precisely the rotational moments that the force A would produce if it had its point 
of application at a point in the axis of the helix that was fixed on the end of the wire. 
 Thus, the expressions that were assumed for ξ, η, ζ, …  will be valid when the 
deformation of the line is produced by a force A that acts upon a point of the axis of the 
helix that is fixed on the end of the wire and in the direction of that axis, and a rotational 
moment Mξ around that axis.  If A and Mξ are given then the equations for A and Mξ will 
determine the two unknown constants n and ϑ that enter into the expressions for ξ, η, ζ .  
If they are found then one will have the expression for the elongation of the helix: 
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s (cos ϑ – cos ϑ′ ), 
and the expression: 

s (n – n′) 
 
for the rotation of its end around its axis, in which s again refers to the end. 
 One must set M = 0 in order to arrive at the case that was referred to in the 
introduction as subject of this paragraph.  J. Thomson (*) has already treated that case; 
however, the considerations that he applied to it are not rigorous, and the result to which 
he arrived is not precise. 
 
 Heidelberg, 1858. 
 
 
 
 
 
 
 
 

                                                
 (*) Mech. Mag., L, pp.  160 and 207. 


