Excerpted from G. Kirchhoffyorlesungen tUber mathematische Phygiki: Mechanik, Teubner, Leipzig,
1897. Translated by D. H. Delphenich.

L ectur e twenty-eight

(Finite deformations of an infinitely-thin, originalbyylindrical rod. Dilatations of a small part of it.
Simplifications that arise when the cross-sectiomigllpse or its plane is a symmetry plane. Potenpfial
the forces that produce the dilatationdis vivaof the rod. Equilibrium of the rod under the influenée o
thrusts that act upon the ends. Agreement of the prothlatis treated here with the problem of the
rotation of a ponderable body around a fixed point. Thecaoddefine a helix. Equilibrium of a curved
rod that originally defines a helix.)

§1.

We shall now address the equilibrium and the motiobaxfies, some of whose
dimensions are infinitely small; thin rods and plates ¢® regarded in that way
approximately. The bodies that we would now like to aersican sufferfinite
deformations while the dilatations continue to be irdilyitsmall. We can also apply our
theory to such cases when we think of the body as beainded into pieces whose
dimensions all have the same order and then think oédbations that are imposed as
relating tooneof those pieces.

We imagine a body (or part of a body) whose dimerssae all of the same order as
the infinitely-small quantityi and summarize the conditions for its equilibrium.
Equations (9) of the previous lecture belong to that caskthais the equations:

— a><x axy a><z
= + +

X )
H ox dy 0z
oX

,uY:aXX+ y+6XZ, (1)
ox dy 0z

0z = oX, +0Xy +6XZ .
ox dy 0z

Let g be a function ok, y, z, so:

g=0

is the equation of the outer surface of the body,caiscdbositive in its interiorn, in turn,
is the interior normal of an element of that surfaGme will then have:

coshﬁ:coshw:coshz):a—g:a—g:a—g,
ox o0y 0z

and those cosines will hawee samesign as the differential quotients, sm%g IS
n

positive. One will then have:

2 2 2
an—g+x 99, XZ@ = Xn (6_9) +| 99 +(@j ,
ox Yoy 0z ox ay 0z
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dg 99 0 agY (ag) .(dg)’
v, 29,y 29, v _y (_9j+_9 {_gj, @)
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2 2 2
an—g+x 6_g+ XZ% =7, (a_gj + @ +(%j
ox Yoy 0z ox ay 0z

on the outer surface, in which the roots are taken tpolsg¢ive, andX,, Y, Z, shall be
considered to have been given.

In order foru, v, wto be determined completely, we establish that theipoif the
body in its natural state (in whieh v, w are calculated) is chosen in such a way that one
has:

u= O, V= 0, W= 0,
(3)
% = 0’ % = 0’ % =0
0z z X
at the origin of the coordinates (which shall be founddmsif the body), and thus far=
0,y=0,z=0.
We now set:

X =X, y:iy, z=iz. (4)

As a result of the assumptions that were madey’, Z will then be finite in the body,
and:

will be the equation ix', y’, Z that corresponds to the outer surface, suchgthadntains
only finite constants.

One also imagines that the substitutions (4) have baeted out in equations (1),
(2), and (3). If one makes:

! :a_u y':%-{-a_vv
XX Xy’ 4 azr ay’
, _ 0V , _ 0w au
== Z =—+t—,
v T oy ox 97
, _ ow .:ﬂ+ﬂ
Z =97 Y "oy X’

and if one letsX/, Y, ... denote the expressions that one obtains when olazesg,
Xy, ... With X, 'y, ... in the expressions that represéptX,, ... as functions ok, Xy, ...
then one will get:
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ax. X, ax!
+ +

z :'2x ,
o oy oz K
X
02, 02, 07, _os
ox ay o7
Forg =0:

] 1] I\ 2 M\ 2 2
X)’(a_g+x’a_g+ X’Z%:ixn (a_gj + a_g +(%j ,
ox Yoy 07 ox’ oy 07

I ! I 2 I 2 2
Y)(’a_g+Y’a_g+ YZ% =Y, (a_gj + a_g +(%j , (5)
ox Yoy 07 X' d 07

and:
u=0, v=0, w=0,
(7
% - 0’ ﬂ - 0’ ﬂ - 0
74 0z ox

for Xx =0,y"=0,Z = 0. The values of, v, w that (5), (6), and (7) yield can be
represented as the sums of terms, one of which fudfgjisations (6) and (7), but instead
of fulfilling equation (5), it will fulfill the one thaarises from (5) when one replaces the
right-hand side with zero, and the other of which wilfilluequations (5) and (7), but
instead of fulfilling equation (6), it will fulfill the ne that arises from (6) when one
replaces the right-hand side with zero. The forteans have the same orderidg iY,,
iZ,, while the latter have the same ordei’@é 1, i Y 1, 1> Z . They are then infinitely-
small in comparison to the ones that we would get if sgeiiamed that the force§ Y, Z
were not infinitely large in comparison to the thruXts Y,, Z,; i.e., that the relative
displacements that would be induced for a body whosendimes are all finite would
not be infinitely large in comparison to the ones thaty would generate in the body
itself. With those assumptions, for our infinitely-alhbody, one must replace equations
(5) with the ones that arise when one 3€t¥, Z equal to zero, so equations (1) will get
replaced with:
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aX, 0X,  oX,
+ +

:O,
ox o0y 0z
oX
6XX+ y+6XZ:o, (8)
ox o0y 0z
6XX+0Xy+6XZZ(l
ox o0y 0z

The consideration that one carries out likewise shoatutlv, w have the same order as
iXn, 1Yn, iZ,; the differential quotients af, v, w with respect to<, y’, Z have that same
order, so the differential quotients ofv, w with respect ta, y, z will have the same
order asX,, Yn, Zn.

These results are also true for the case of madiash ,equations (8) appear in place of

. . . d°u  90°v
equations (3)j from the previous lecture, assuming that the acceiem%t—z, e

2
%t\;v do not exceed the limits that we have assumed fofoteesX, Y, Z. It will then

follow from this that in order to go from equilibriuta motion, we would have to replace
2 2 2
X, Y, zwithx - 24 y-90V 7 OW,
ot ot ot

§2.

We would now like to assume that the body that veedaaling with is an infinitely-
thin, cylindrical rod in its natural state. In thattetaone imagines that there is a right-
angled system of axes in the rod. One axis shoulébkne in which the center of mass
of the cross-section lies, while the other two shallparallel to the principal axes of a
cross-section that goes through the center of mssK. itOne chooses a poiRtin the
first axis, calls the distance from it to the beginniighe rods, and turns one’s attention
to three line elements that are drawn frBnn the directions of the three axes. They
might be called 3, 1, 2, respectively, and 3 shall be tigetbat has the direction of the
length of the cylinder. When the state of the rod chanthose three line elements will
not generally remain perpendicular to each other, bitelahgles that deviate from right
angles by quantities that have the order of the diatatthat have come about. The
points of the rod in the neighborhood®&hall be referred to a right-angled coordinate
system whose origin B, whosez-axis has the direction of the line-element 3, and whos
zx-plane goes through the line elements 3 and 1.x ket, y + v, z+ w be the coordinates
of a point of the rod after the change, andk]at, z be the coordinates of that point when
the rod is in its natural state, and in that positioe, will find that the line elements 1, 2,
3 fall upon thex, y, z axes, resp. With those assumptions, equations (3) Dfeitture
and equations (11) of the previous lecture will be true, whiobhld emerge from the

() In the previous editions, (1) was incorrectly printed)a(2) was printed &9, and (3), as).
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remark that was made for them. An equation betweandy will exist for the outer
surface of the rod; it is:

,[xdxdyzo, ,[ydxdyzo, ,[xydxdy:O, (9)

when the integrations are extended over the cros®seckinally, every material point
of the rod is characterized by certain values, gf s + z

Furthermore, le€, 1, ¢ be the coordinates of the poltafter the deformation of the
rod relative to an arbitrarily-chosen coordinate systiea might have the property that
thex, y, zaxes can be made parallel to ey, axes by a rotation. Let:

a, B K
ao, ﬁZa Yo
as, &1 B

be the cosines of the angles that §hg, {axes make with thg, y, z axes, such that the
indices 1, 2, 3 refer to they, z axes, resp. These nine quantities, as wefl gs ¢, are
functions of the one variabkein the case of equilibrium and functionséndt in the
case of motion.
With those notations:
St (X+tu+tm(y+v)+as(z+w)
n+px+u)+B(y+v) +L5(z+w) (10)
Frpu(x+u) +)ply+v) +)5(z+w

will be the coordinates, relative to then, {axes, of the point whose coordinates»ate

u, y +v, z+ wrelative to thex, y, zaxes. The expressions (10) must be functiorsstd,
since the values of + X, X, andy determine a material point of the rod. The partial
differential quotients of these expressions with retspez ands must then be equal to
each other. One will then have:

ou ov ( awj ou ov, ow
o —+a,—+a,| 1+ =a—+a,—+ta,—
0z ‘0z 0z 0s 0s 0s
dé  da, a, da,
+ 2+ —L(x+u)+ +\V\+ .
3 ds (x+u) OIS(y v OIS( z+ VW,
ou ow
:81_+:82_+:83(1+6_Zj ﬁlaS :826_5+:83
+—+—d’81(x+u)+ '82(y+v)+ '33(z+vy

ds

ya +y6+y( awj ya” ya—v+ya—w
Yoz "faz TP\ oz Yos "?8s "*os
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d{  dy dy, dy,
+ 2+ (x+u)+—22(y+ V)V +—22( 7+ V.
ds ds( ) ds(y Y ds( W

One multiplies these equations successivelyrhys, ), andas, 5, )b, andas, G, 4,
and then adds them each time. One then sets:

o[ (&
ds ds ds

Since, from the assumptions that were made, one has:

dé dn d¢
2 L 2 =m, B W,
ds ds ds 5 B 5
and it will then follow that:
d d d
X ma+rg, Y=pa+9 X=pa+o, (12)
ds ds ds

and owill be the dilatation that the elemedd has experienced. One further sets:

da, dg, dy,
=a + +
P=d ds A ds &

ds’
da, dg, dy,
=a + + , 13
qldsﬁldsylds (13)
da, dg, dy,
r=a + + .
Z ds P ds V2 ds

If we compare these expressions with equations (19) teagave in the fifth lecture,
which were set equal g, d, r', and recall the interpretation that we gavedor, r’
there, then we will see thptds g ds r dsare the angles around which they, z system
of axes rotates around tlkey, z when its origin runs through the elemelst r dsis
called thetorsion of the part of the rod that corresponds to the eléhgm@ndp, g are the
reciprocal radii of curvature of the projections of tleneentdsonto theyzandxz planes.

With the help of the six relations that exist betwdencosinesy, £, y; and the ones
that result from differentiating them with respecstone will then obtain:

WM gz ew) —r(y +),
0z 0s
%: %+ r(x +u) —p(z+w,
0z O0s
ow _ ow

—=_+py+Vv)—q(x+u) + 0.
3 o5 p(y +Vv) —q(x +u)
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Based upon the remark that was made at the end of theyses;i we assume th%ﬂ,
z

?, Z—W will be infinitely large in comparison to, v, w when we givez only values that
z 0z

have the same order of dimensions as the crossisedtihe rod. We further assume

that % ? Z—W have the same order of magnitudeuas, w. If we employ the fact
z 0z 0z

that u, v, w are infinitely small in comparison tg y, z in addition, then the derived

equations will become:

@z gz —ry

0z ’
%: X —pz

0z

ow
—=py—-gx+ag.
0z

In then follows from this by integration that:

aq_.
U=U+—2"—-1r1yz
o 5 Yy

v:v0+rxz—gzz, (14)
W =W + (Py — gx+ 0) Z,

in whichup, Vo, Wo mean functions of andy, namely, the values thatv, w take on forz
= 0. Those functions are determined by equations (8), (2)3and
The expressions that are found tpw, w yield:

Xy = i V. = —aWO + rx
ax ) z ay )
ov, ow,
=—, =—-1y, 15
Yy dy Z Ix y (15)
ou, . dv,

All of these values are independentzofAs a result, equations (8) simplify into:

%-}-% = 0’
ox oy
oY,
%.}._y =0, (16)

ox oy
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ox ady

=0.

We would like to assume that the original cylindrical ostarface of the rod is not acted
upon by tension, and understand thak the function ofx andy that will define the
equation for the contour of the cross-section whes set equal to zero. When= 0,
equations (2) will then give:

Xa—g+X@-0,

“ox Yoy

Yxa—g+Yya—g =0, a7
0x oy

299,79 _g
ox Yoy

Finally, two of equations (3) will be satisfied identicallyhile the other one will demand
that one must have:

U =0, Vo =0, Wo = 0, %:
0x
for x=0 andy = 0.

We derived equations (17) under the assumption that thenerthat acted upon the
outer surface of the rod were equal to zero. Howewer,will also preserve those
equations when the tensions have any values that do resdegertain limits. They must
have values such that tensions with their order of madmi would provoke only
dilatations that are infinitely small in comparisonthe dilatations that are determined
from (15) for a body whose dimensions all have theesarder. When one neglects the
guantities that define the right-hand sides of equati@@y one will then neglect only
guantities that are infinitely small in comparison te tdividual terms that comprise the
left-hand sides.

If one setsXy, Xy, ... equal to their expressions in termgfx, ... in equations (16)
and (17), and sets the latter quantities equal to the svaéha¢ were given in (15) then
equations (16), (17), and (18) will determine the quantigeso, Wo uniquely as linear
homogeneous functions of q, r, o. In order to prove that assertion, one has to show
that the aforementioned equations can be fulfilled onlygby 0, vo = 0,wp = 0 whenp,

g, r, ovanish, and one will arrive at that by consideratitvas &ire entirely similar to the
ones by which a similar theorem was proved in 8 2 opte&ious lecture. I, Vo, Wo
are expressed in the stated way then equations (15) wil ye %y, ... as linear
homogeneous functions of g, r, g, the component¥y, Xy, ... of the tension will be
such functions, andl will be a second-degree homogeneous function of the gaor
elements.

Here, we would like to add a remark that will extend #mplicability of our
considerations essentially. We imagine that the imods natural, cylindrical state, is
acted upon by forces that act upon its interior and ththatsact upon its end surfaces,
which take it to one state in one case and another istanother case. The symbgjs

Xy, ---, P» 0, I, o might refer to the second of those states, whiesymbolsx,, X, ...,

0 (18)
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p, d,r', ¢ might refer to the first one. If the rod goes frtm first state to the second
one then the differences - X, x, = X, ... will determine the dilatations that then come

about in precisely the same way thlatx,, ... themselves determine the dilatations that
come about during the transition from the rod in its cylcadrstate to the one that we
have called the second one. That will also be truenwthe natural state is not the
cylindrical one, but the one that was referred to asfitbt one, so when the rod is bent
and twisted in its natural state in the way that waoldespond to the values gf d', r'.

In that case, then, the tension componé®tsy, ..., and the quantitfwill be the same
functions ofx — X, X, = X, ... that they previously were in terms xf x, ..., and

(sincexc— X, X, = X, ... are the same linear functionspof g, q —d, r—r', o—o’that

Xx, Xy, ... are ofp, g, r, 0) the same functions ¢f — p, g — d, r — r', o— o’ that they
previously were op, q, r, o. That remark has particular importance when the nate
that rod is composed of is isotropic. With its helpe @an then always exhibit the
equations of equilibrium and motion for an infinitely-thod whose cross-section has the
same form everywhere when it is arbitrarily bent andted in its natural state. The
guantity that we have denoted bycan then be set equal to zero.

§3.

Carrying out the determination ad, vo, Wy IS relatively easy when the cross-section
of the rod is an ellipse, which might also give thestants of elasticity. Corresponding

to that assumption, we set:
X2 2
g=1-5-2.
a~ b

Equations (16) and (17) (the latter, not justdor O, but in general) will then be fulfilled
by:

Xy = 0, Y, =0, X, =0,
Y — X
ZX—CF, Zy—_cg,

in which ¢ means an arbitrary constant. Those five equationspmjunction with the
equation:
Z=py—-Qx+o

that entered into (15), along with the help of theti@fs that exist between the six
quantitiesxy, Xy, ..., and the six tension componeis, X, ..., allow one to express,

Yy, Xy, andz, z, as linear functions of andy. When one recalls equations (15), the first
three of them will lead to the determination wf vo, ..., and the last two, to the
determination ofvp . In order for these determinations to be possible narst have:

0%, 0%, _ 9%

ay> 90X oxoy
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and
dy, 0X, _

ox oy

The first of these equations [which follows from coesations that are entirely similar to
the ones by which we derived equations (13) and (14) in theopielgcture] is fulfilled
as a result of the fact that, yy, x, are linear inx andy; the second one determines the
guantityc. The integrations that must be performed in order toutakeu, andvp then
bring three arbitrary constants with them, and the integrahat givesan will introduce
oneof them. Those constants are precisely sufficienefuations (18) to be fulfilled.
One then getsp, Vo, Wo as second-degree functionsxatndy.

A simplification in the determination o, vo, Wy for a cross-section of arbitrary form
will come about when its plane is a symmetry plahethat case, from equations (5) of
the previous lecture, one will have:

X = A Xty + 3z + as Xy,
1Yy =@ Xt Yy + 832+ a Xy,
%Zz:a(’,lxx+aSZYy+aS3Zz+336xyy
3 Xy=ap1 % + 362 Yy + 863 Z + A6 Xy
32y = a2y + aus %,
324 = 42, + a5 Z
in which:
di2 = a1, a13 = ag1,

With hindsight of equations (15), the last of equations (ibaow be:

aw0 62WO 6V\{,_0

ass +2a45 tau—— ayz (19)

0xo0

and the last of equations (17) will become:

W, 0 0 0 0
{am[ ;+rxj+a55( LN ryﬂagx H av;+rxj+a4{— ryﬂagy _0. (o)

W is determined from these two equations and the third cdteous (18). The rest of
equations (16), (17), and (18) serve to determipandv, .One will satisfy them when
one sets:

Xx =0, Yy =0, Xy =0. (20a)

In fact, when one solves those equations«fpyy, X, one will obtain linear expressions in
x andy for those quantities when one seexjual to its value in (15). As a result of that,
it will be possible to determing andvp from the equations:
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0x oy dy 0X

Integrating them will introduce three arbitrary conssably which one can fulfill
equations (18), which one still has to consider.

§4.

If uo, Vo, Wo have been found then one will be dealing with the detextmins ofp, g,
r, s as functions of in the equilibrium case and as functionssandt in the case of
motion. To that end, one can appeal to the principalrafal displacement in the first
case and Hamilton’s principle in the second. In botlkesais is requisite that one must
have an expression for the potential of the forcephaduces the dilatations. fltlenotes
the same second-degree homogeneous functiep ®f ... as before then that potential
will be:

:dexdyds

in which the integration ovex andy is extended over the cross-section, while the
integration oveis extends along the length of the rod. One sgts, ... equal to their
values in (15) here. Since those values are linearpgeneous functions @ q, r, o, f

will be a second-degree homogeneous functigm qfr, o; the coefficients depend upon
only x andy. If one now makes:

F=/fdxady (1)

then F will be a second-degree homogeneous functiorp,od, r, o with constant
coefficients, and that potential will be:

:JFds

If U’ denotes the work that is done by the force that adtisel interior and the tensions
that act upon the outer surface and the end surfadés obd for certain variations @f
g, r, g, andT denotes theis vivathen the condition for equilibrium will be:

U’ +6) Fds=0, (22)

and for motion, one will have the equation:
jdt(U'+5T+5j Fds) = 0. (23)

In order to define the value df we must differentiate the expressions (10) with
respect ta, multiply the sum of the squares of the differentialtegrds by one-half the

element of mass of the rod, and integrate overntthat, we neglectg—ttj, % %_vtv
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being infinitely small in comparison to terms that apedditively-linked, and set= 0,
which is allowed, since the expressions (10) are funcbdsst z, and we consides to
be variable. The differential quotients of those exqoes are then:

o0& 9% oa; N aaz’
at ot ot
x5,
at ot ot
YNNI/
ot ot ot

As a result of equations (9), the sum of the squarésesé expressions, when multiplied
by dx dyand integrated over the cross-section of the rod bwill

(5] (5] o
(e W
{@%f @%J MI

One now sets:

0B . 61/3
-pP =
th: at 2 ot
da, 0B, 61/3
a, , 25
Q= ot th ot at (25)
R=a, 9a, | +5% 0B, , 61/1

ot ot at '

From the equations that one can define using the model ofi@mpi420) in the fifth
lecture, one will get:
2 2 2
% + % + % = Q2 + RZ,
ot ot ot

(aaz jz +(6,[>’2j2 +(6y2j2 =P’ +R.
ot ot ot

oa; 95, 9y,

One now ponders the fact that as a result of equatidt)s prafiaeralin cannot be
infinitely large in comparison t(%%( %’Z %{ assuming that the differential quotients

of those quantities with respect sare infinitely large in comparison to them. It will
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9 o
ot ot
while the corresponding statement in regardRteannot be asserted. Finally, if one
imagines that of the three integrals that enter thto expression (24), the last two are
infinitely small in comparison to the first one, theme will see that this expression is:

- K%T{%’t]y{%—ﬂjjdmw R (%+ §) dxd.

If one makes:

then follows thatP and Q cannot be infinitely large in comparison %é

j dxdy = A, j O + y?) dxdy = «, (26)

and once more denotes the densitytifien one will have:
o0&\ (onY (d¢Y
T=2{ds —j +(_’7j +(_j +kR. (27)
2 ot ot ot

§5.

We would now like to examine the equilibrium ofdsomore closely under the
assumption that no forces act upon its parts, hngsts act upon only its end surfaces.
However, instead of making use of the principlevigiual displacements, we would like
to immediately appeal to the definition of tenstbat was given by equations (1) and (2)
of the eleventh lecture. We apply it to the pdrthe rod that is between two arbitrary
cross-sections. If we |&, B, I' denote the sums of the components of the tensiog a
the & n, ¢ axes, resp., that will be exerted in the elemdrthe cross-section that is
determined by an arbitrary value lby the part of the rod in whicls has a smaller value
upon the one in whicls possesses a greater value, andMet Mg M, denote the
rotational moments of that tension relative to shene axes, resp., then as a result of the
assumption that equilibrium exists and no forcesipon the interior of the rod:

A = const., B =const., [ =const,,
M. = const., Mg = const., M,= const.

If s= 0 for one end of the rod asd- | for the other one, andis positive, ther, B, I,
Mg Mg M, will be equal to the component sums and rotatiomaients of the tensions
that act upon the element of the cross-sedio® from the outside: A, — B, =T, = Mg,

- Mg, — M, have the same interpretations for the other end.

We would now like to introduce the rotational montgeof the same tensions from
whichMg, Mg, M, originate relative to the, y, zaxes that correspond to the chosen value
of sand denote them by, My, M,, resp. We likewise choose tifexis such tha# = 0,

B = 0, andl' is negative or equal to O (which is always pos3iblAs a result of the
relations in 8§ 4 of the fifth lecture, one will théave:
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Mg=a1My+ > My + as M, + T = const.
Mg =My + B My + LM, — T = const. (28)
M, =) My + p My + )5 M, = const.

One differentiates these equations with respest taultiplies then by, 51, Y or as, £,

yo or as, 5, )5, resp., and adds them. Recalling the relations thst keetween these
nine cosines, along with equations (12) and (13), will theldyi

d(';/;x :rMy_q Mz+Jér,

dM

s L =pM;—rM; +url, (29)
dMm

dsZ =q Mc—p My.

We now derive the relationship that exists between traiooal momentdly, My, M,
and the functiorF in the previous 8. To that end, we consider the incréaseat f
experiences when the state of the rod in the neighbdrladoa cross-section that
corresponds to a constant values@hanges in such a way thatq, r, gincrease by,
aQ, &, oo. One will then have:

J:Xxd(x'l'Yy@y+ZZ®+Yz@Z+Zx®+Xyd(y,

sinceXy, Yy, ... are the partial differential quotientsfafith respect to, yy, ... With the
help of equations (15), one will then obtain:

d=X 5%+Y5%+ Z(yo p- ¥ g-do)
X

+Y, aW‘)+x5r+2(5a——y5rj+x au" 9%
oy 0 6y X

One multiplies these equations ¢hy dyand integrates them over the cross-section of the
rod. From (21), the left-hand side of it is thdf; one transforms the right-hand side
with the help of the equation:

ou, oV, v 0%, 0%
0= J.dxdy{xp' +\g§ +y5 g&ax+ )@'[ay axj}

which one obtains by partial integrations, whil&ing into account equations (17), in

which cos (X) and cosity) can be Written‘;—g and 3—3 when one multiplies equations
X

(16) bydx dydup, dx dydvy, dx dyony , adds them, and integrates over the cross-sectio
If one sets:
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Z = [dxdyz,

My= [dxdyyZz,
My:—jdx dy x Z,

M, = [ dx dy(x Y-y X),

in whichZ denotes the component of the fofcalong thez-axis, andVy , My , M, have
the meanings that they had in equations (28), then onebtdin:

dF=Myp+Myq+M;a +Z J,
from which, it will follow that:

a—F: % a—F:My, a—F:MZ, a—F:Z. (30)
ap 0q or do

2F is a homogeneous function of degree tw@,af, r, o whose coefficients depend upon
the constants of elasticity and the constants o€tbss-section of the rod; one then has:

oF

35 =) =~Acw0 +Aop+Anq+Anq,

oF

a_p: My =Aw0 +A11p +A2q+Azq, (31)
oF

a—q =My =Ax0 +Aup+Ang+Axq,

oF

m =M; =Az0 +A:p+Asq+Asaq,

in which Ago, Ao1 = Awo, A11, ... are the aforementioned coefficients. They doatiot
have the same order of magnitude. Sioas a pure number, by, g, r are reciprocal
lengths, theA’s that contain the index 0 must have a dimensionighabe less than the
ones in which the index O does not appear, and one greatefdha The lengths that
enter into the quantitied, however, have the same order of dimensions as tss-cr
section of the rod, and are thus infinitely sma&¥s, Aoz, Aoz must then be infinitely small
in comparison td\qo, and infinitely large in comparison to the otl#és. On that basis,
the terms in (31) that are endowed witltannot be neglected, even whers infinitely
small, butp, g, r should be regard as being finite. It follows from tinst of equations
(31) that:

o=— Ay P+ A(JZZ:' Ast—yT _ (32)

0
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If one substitutes this value farin the expressions that were given fidg, My , Mz in
(31) and assumes thiatis not infinitely large in comparison tdy , My , M, then it will
follow from the relationships between tlAés that were cited above that the terms that
then appear that are independent lofcannot be neglected as infinitely-small in
comparison toMy, My, M, . One will then get these rotational moments asafine
homogeneous functions pfq, r. They can then be represented as follows:G.be the
function ofp, g, r thatF goes to when one expresses terms ofp, g, r with the help of

equationg—F = 0. One will then have:
o

_9G ,, _0G G

MX—_, - MZ:_' 33
o = 3q (33)

In fact, whenois expressed in terms pfq, r usingg—F =0:
o

since, whenG is derived fromF in such a way that one setsequal to an arbitrary

function ofp, g, r, one will have:
0G _ oF + oF oo

9p p 9o dp’

and the corresponding differential quotientgyandr will behave similarly. Equations
(29) will then be:
ddG_ G 3G,
dsop dp or ’
ddG_ 0G_ 3G _
dsadq P or ap
ddG_ 9G_ 3G
dsar | op  0q

M, (34)

These equations, in whic® means a second-degree homogeneous functiqgm afr
with constant coefficients, have the same form as e&msaf17) of lecture seven, which
relates to the rotation of a ponderable rigid body araufidled point. They will agree
with them completely when one sets t, G = T, and —I' equal to the product of the
weight of the body with the distance from its certémass to the fixed point. The
meanings of the nine cosinesS, y; and the quantitieg, g, r will then be the same here
and there. Since the line that is drawn from the fixedtpbrough the center of mass
was chosen to be theaxis there, there will always be a ponderable, rigidybthat
rotates around a fixed point that corresponds to the rodcim 8 way that the line that
goes through the fixed point and the center of mass willyd be parallel to the tangent
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to the rod when one assumes thatt. When the rotational problem is solved, one will
have to define the equations:

é=[a,ds, n=[pBds, ¢=]yds, (34a)

if one is to discern the form of the rod.

§ 6.

The problem of the rotation of a ponderable body arourftkeal point is not
generally soluble as it was posed in the seventh lectGnee case in which it can be
solved is the one in which gravity does not act upon it. Heat case would correspond
to the one in whichi” = 0; i.e., the one in which the sum of the componaltteg any
direction of the thrust that is exerted upon the efgna¢ one end of the rod vanishes.
Another case in which the rotational problem can be doilvg¢he one in which gravity
does act, but the body is a rotating body and the fixaat a point of the rotational
axis. Here, that case corresponds to the one in whithirc relations exist between the
constants of elasticity of the rod and the constahiis cross-section. As we would now
like to show, those relations exist when the matefidhe rod is isotropic and its cross-
section is a circle.

From 8§ 1 of the previous lecture, for an isotropic bodg, witl have:

f=-K{X+y+ Z+iyird 204 §ro0 %+ y+ 2}

It will then follow from equations (20a) that:

X =Yy == mzz, Xy = 0.
Equations (19) and (20) will then become:
2 2
%9 2, (35)
X oy
and forg = 0, one will have:
(%—ryja—g+ a—\%+rx %:O. (36)
0x ox \ dy oy

The cross-section of the rod shall be a circle. thida have to set:
g =X +y? - const.

For that value o§, it will then follow from (35), (36), and (18) tha
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Wo = 0.
Equations (15) will then give:
Z, =py — QX+ G, Yz =X, Xz ==Yy,
One will then have:
1+39
f=-K|=—=(py-qx+o)*+1 (X +
L+28(py gx+0)" +3 r'( yz)]

and from (21), when one employs the symbgls that are defined by (26):

F:_K[1+3€£(p2+q2)+£r2+1+$A0_2}.
1+20 2 2 W+ D

With that, one will finally obtain the functio@ that is defined in (33) as:

G=-K

KI1+30, >, 2

2[1_*_26’(p +q)+r] (87

With that, the statement that was made above igepkanamely, that for an isotropic rod

of circular cross-sectiorg; is the same function gf, g, r as thevis vivais for a rotating

body that rotates around a point on its symmetig, and that will then show that the

general solution of equations (34) can be foundafood of the stated kind in the same

way that was given in § 4 of the seventh lecturehe corresponding rotational problem.
We would like to restrict ourselves to actuallynstiucting the solution for a special

case. We set:

1+30

1+26°

A1 =—-Kk Az =— KKk, (38)

and introduce the angle® ¢, f that were defined by equations (8) in the fiftbtlee,
whereby the symbdltakes on a different meaning than the one thaisee up to now in
our present investigations. Equations (34) wiirtlbecome:

A]_l% =rg (All—A'gg) + [ sinf cosd,

An% =rp (As1—A1) — T cosf sind, (39)

dr_
ds
To these, we add the equations:

dg
— =psinf—-qcosf,
ds
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sin & % = p cosf + g sinf, (40)
ar = cosﬁﬁ—r,
ds ds

which are obtained from equations (21), (13), and (15) of ¢lvergh lecture, while
recalling equations (8) of the fifth one, when one writ@sstead ot. We will then see
that equations (39) and (40) can be satisfied by the assumtpéit:

J = const.

The solution that that one obtains under this assumjgtiust the one that we would like
to construct. It corresponds tiwe motion of a ponderable rotating body about a point on
the symmetry axis in such a way that the axis descalveght cone about a vertical line.

If &is constant then the first of equations (40) will beeom

0 =p sinf —q cosf,
so that we can write:

p=4 p°+q° cosf, q=+ p>+q sinf, (41)

in which the sign ofy/ p>+ ¢° remains unchanged. Thus, when one multiplies tke fir
two of equations (39) by andq, resp., and adds them, that will give:

p® + gf = const.,
whereas it will always follow from the third one that
r = const.

When one understands thatandfy are two arbitrary constants, the last two of equations
(40) will further yield:

bogo=YPTA f—fO:L—M—r}s. (42)

sind tan?

We still have to fulfill one of the first two ofgeations (39). If one replacpsandq
in it with their values in (41) then that will convehietequation into an equation between
constants, namely, the equation:

2 2

p°+q CAgr 4T sing

and ,[p2+q2.

0= All (43)
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In order to find the form that the rod will have wher #quations that were posed are
valid, one must still develop equations (34a). If one sets

a3 = cosg sin g, [z =sing sindg, J5 = cos
in them, according to equations of the fifth lecture, rmake

ds= sing dg

in the calculation o and# from (42), and has the origin of tifes, { at one’s disposal
in a certain way then one will obtain:

sin® 9 sin® 9

———5sing, =— ———C0S9Q,
NESRES i NESRES ¢

With that, the rod will define &elix whose axis is thé-axis. The radius of the cylinder
that lies along it is:

¢= {=scos?. (44)

in2
= ﬁ, (45)
NP+
and the height of a screw step is:
_ 2msind cos?l (46)

As far as the thrust is concerned that must betecxexternally upon the ersd= 0 of the
rod in order for it to be in equilibrium in the calated form for arbitrary values of the

constantssd, / p°>+q°, andr, the forcel must be determined by (43). In order to
complete the analogy between the problem of eqiuh of an elastic rod and the
problem of the rotation of a ponderable body, ffexis must be chosen in such a way
thatl™ is negative when it does not vanish. However, toadition drops out when we
(as we would like to do) renounce the completenésise analogy and allow to take on
positive and negative values. It still remaingsoertain the rotational momeims, Mg,
M, . One then finds from (33), (37), and (38) that:

Mx=Aup, My=Au10, M;=Aasr,

with which, (41) can be written:

’ 2+ 2 [ 2+ 2
MX:A“_MM’ My:AllMJé,
sing sing



Lecture 28 — Finite deformations of thin rods. 21

/ 2 4 o / 24 2
MZ:AllM%.ppmr_AnM_

sind sind

If one substitutes these values in equations (28) therwdihind, when one takes into
account the relations that exist between the nine cosiner, ..., along with equations
(43) and (44), that:

Mg =0, Mg =0, My=Au1 +/ P°+ 0 sing+ Agar coss.

A special case that belongs here might also be mextioH the relation:

’ 2 2
tan& = p—+q (47)

sing

exists between the constaris\/ p°+ ¢, r then, as would follow from (42F,will be

equal to a constant — namely,, From (41)p andq, like r, will also be constant. One
can then assign arbitrary constant values to the tuastitiesp, g, r, as long as one has

suitable values of p?+ ¢, fo, r available. The case in whigh g, r are constant is

always subsumed then by the one that was treated albovbat case, the rod will also
define a helix. The radius of the cylinder upon which & Wall be:

PP+

and the height of a screw step will be:

_2m
p2+q2+r2’

as would follow from the expressions (45) and (4&en one ponders the fact that (47)

imply that:
r NP+ (48)
/p2+q2+r2’ /p2+q2+r2’

in which one must determine the sign of the rdqjlz +0 + r? in a suitable way.

cosd = sing=

§7.

We shall now treat an example of equilibrium inigwtropic rod that isurvedin its
natural state. From the summary that was madeeatrd of § 2, in order to go from the
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case of an originallystraight isotropic rod to one that is originaligurved we must
replacep, g, r withp — g, g — d, r — r' in the expression for the functiénin whichp', q',
r' denote the values that tpeq, r take one when the rod goes to its natural state from
one in which it isstraight If one carries out the same substitutionFaandG then the
conclusion that related to the functibim 88 4 and 5 will also be valid, and equations
(34) will preserve their validity.

If the cross-section of the rod is a circle thea fllowing equations will appear in
place of equations (39):

Alld(p—_m =Aur (q-d)-Assq(r—r) +TI sinfsind,

ds
A1l —d(qd_s d) = Az3 p (I’ — r') -Anr (p — p) — T cosf sin 79, (49)
A 0 pap-p)-p@-a).

In that way, equations (40) will be unchanged.

In generalp’, d', r' will be functions ofs that are required by the original form of the
rod. We would like to assume that they are constant;from the remark that was made
at the end of the previous §, that the rod will origindle a helix. We would like to
show that equations (49) and (40) can then be satisfiedebgsgumption that, g, r are
also constant; i.e., by the assumption that the rodirema helix. With that assumption,
the last of equations (49) will give:

and with consideration given to that, the other two reitluce to the one:

U

0=Aur (1_%j —Asz(r—r)+ ]

f pz + qz +r2 '
when one employs the fact that, from (41) and (48) vahéave:

sinfsinzB:; cosf sing = P

/p2+q2+r2’ /p2+q2+r2'
However, equations (40) will fulfilled when one sets:

r
/p2+q2+r2’
$=gotsypHa+r’,

cosd =
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tanf =

- |la

which are equations that were derived in the previous 8§ unel@sdumption tha# andf
are constant.
That further implies that:

[ 2 2 [ 2 2
—p—+qsin¢, n:——p 4 Cos g, é= '

- pz + q2+ r2
and when one employs the fact that:

My =Aa1 (p - P), My =Aa (9 - d), Mz =Agz (r—r),
one will get:

Me=0,  Mp=0,  M=A, P DT [1__|dj+,o§—r(r_r')
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