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Lecture twenty-eight 
 

(Finite deformations of an infinitely-thin, originally-cylindrical rod.  Dilatations of a small part of it.  
Simplifications that arise when the cross-section is an ellipse or its plane is a symmetry plane.  Potential of 
the forces that produce the dilatations.  Vis viva of the rod.  Equilibrium of the rod under the influence of 
thrusts that act upon the ends.  Agreement of the problem that is treated here with the problem of the 
rotation of a ponderable body around a fixed point.  The rod can define a helix.  Equilibrium of a curved 
rod that originally defines a helix.) 
 
 

§ 1. 
 

 We shall now address the equilibrium and the motion of bodies, some of whose 
dimensions are infinitely small; thin rods and plates can be regarded in that way 
approximately.  The bodies that we would now like to consider can suffer finite 
deformations while the dilatations continue to be infinitely small.  We can also apply our 
theory to such cases when we think of the body as being divided into pieces whose 
dimensions all have the same order and then think of the equations that are imposed as 
relating to one of those pieces. 
 We imagine a body (or part of a body) whose dimensions are all of the same order as 
the infinitely-small quantity i and summarize the conditions for its equilibrium.  
Equations (9) of the previous lecture belong to that case, and thus the equations: 
 

 µ X = yx z
XX X

x y z

∂∂ ∂+ +
∂ ∂ ∂

, 

µ Y  = yx z
XX X

x y z

∂∂ ∂+ +
∂ ∂ ∂

,    (1) 

 µ Z = yx z
XX X

x y z

∂∂ ∂+ +
∂ ∂ ∂

. 

Let g be a function of x, y, z, so: 
g = 0 

 
is the equation of the outer surface of the body, and g is positive in its interior; n, in turn, 
is the interior normal of an element of that surface.  One will then have: 
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and those cosines will have the same sign as the differential quotients, since 
g

n

∂
∂

 is 

positive.  One will then have: 
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g g g
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 ∂ ∂ ∂   + +    ∂ ∂ ∂    
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x y z
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∂ ∂ ∂

     = Yn 
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 ∂ ∂ ∂   + +    ∂ ∂ ∂    
,   (2) 

 

 x y z

g g g
X X X

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 = Zn 
22 2

g g g

x y z

 ∂ ∂ ∂   + +    ∂ ∂ ∂    
 

 
on the outer surface, in which the roots are taken to be positive, and Xn, Yn, Zn shall be 
considered to have been given. 
 In order for u, v, w to be determined completely, we establish that the position of the 
body in its natural state (in which u, v, w are calculated) is chosen in such a way that one 
has: 
 u = 0, v = 0, w = 0, 

(3) 

 
u

z

∂
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 = 0, 
v

z

∂
∂

 = 0, 
v

x

∂
∂

 = 0 

 
at the origin of the coordinates (which shall be found inside of the body), and thus for x = 
0, y = 0, z = 0. 
 We now set: 

x = ix′,  y = iy′,   z = iz′.    (4) 
 
As a result of the assumptions that were made, x′, y′, z′ will then be finite in the body, 
and: 

g′ = 0 
 
will be the equation in x′, y′, z′ that corresponds to the outer surface, such that g′ contains 
only finite constants. 
 One also imagines that the substitutions (4) have been carried out in equations (1), 
(2), and (3).  If one makes: 
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∂
′∂
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u w

z y
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y

∂
′∂
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w u

x z

∂ ∂+
′ ′∂ ∂

, 

 zz′  = 
w

z

∂
′∂
, yx′  = 

u v

y x

∂ ∂+
′ ′∂ ∂

, 

 
and if one lets xX ′ , yY′ , … denote the expressions that one obtains when one replaces xx, 

xy, … with xx′ , yy′ , … in the expressions that represent Xx, Xy, … as functions of xx, xy, … 

then one will get: 
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 yx z
XX X

x y z

′∂′ ′∂ ∂+ +
′ ′ ′∂ ∂ ∂

 = i2 X µ, 

 

yx z
YY Y

x y z

′∂′ ′∂ ∂+ +
′ ′ ′∂ ∂ ∂

  = i2 Y µ,     (5) 

 

 yx z
ZZ Z

x y z

′∂′ ′∂ ∂+ +
′ ′ ′∂ ∂ ∂

 = i2 X µ . 

For g′ = 0: 
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 = i Xn 
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x y z
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  = i Yn 
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′ ′ ′ ∂ ∂ ∂   + +    ′ ′ ′∂ ∂ ∂    
,   (5) 
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, 

 
and: 
 u = 0, v = 0, w = 0, 

(7) 

 
u

z

∂
′∂
 = 0, 

v

z

∂
′∂
 = 0, 

v

x

∂
′∂
 = 0 

 
for x′ = 0, y′ = 0, z′ = 0.  The values of u, v, w that (5), (6), and (7) yield can be 
represented as the sums of terms, one of which fulfills equations (6) and (7), but instead 
of fulfilling equation (5), it will fulfill the one that arises from (5) when one replaces the 
right-hand side with zero, and the other of which will fulfill equations (5) and (7), but 
instead of fulfilling equation (6), it will fulfill the one that arises from (6) when one 
replaces the right-hand side with zero.  The former terms have the same order as iXn, iYn, 
iZn, while the latter have the same order as i2 X µ, i2 Y µ, i2 Z µ .  They are then infinitely-
small in comparison to the ones that we would get if we assumed that the forces X, Y, Z, 
were not infinitely large in comparison to the thrusts Xn, Yn, Zn; i.e., that the relative 
displacements that would be induced for a body whose dimensions are all finite would 
not be infinitely large in comparison to the ones that they would generate in the body 
itself.  With those assumptions, for our infinitely-small body, one must replace equations 
(5) with the ones that arise when one sets X, Y, Z equal to zero, so equations (1) will get 
replaced with: 
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 yx z
XX X

x y z

∂∂ ∂+ +
∂ ∂ ∂

 = 0, 

yx z
XX X

x y z

∂∂ ∂+ +
∂ ∂ ∂

 = 0,    (8) 

 yx z
XX X

x y z

∂∂ ∂+ +
∂ ∂ ∂

 = 0. 

 
The consideration that one carries out likewise shows that u, v, w have the same order as 
iXn, iYn, iZn ; the differential quotients of u, v, w with respect to x′, y′, z′ have that same 
order, so the differential quotients of u, v, w with respect to x, y, z will have the same 
order as Xn, Yn, Zn . 
 These results are also true for the case of motion, and equations (8) appear in place of 

equations (3) (1) from the previous lecture, assuming that the accelerations 
2
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 do not exceed the limits that we have assumed for the forces X, Y, Z.  It will then 

follow from this that in order to go from equilibrium to motion, we would have to replace 

X, Y, Z with X −
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∂
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§ 2. 
 

 We would now like to assume that the body that we are dealing with is an infinitely-
thin, cylindrical rod in its natural state.  In that state, one imagines that there is a right-
angled system of axes in the rod.  One axis should be the line in which the center of mass 
of the cross-section lies, while the other two shall be parallel to the principal axes of a 
cross-section that goes through the center of mass itself.  One chooses a point P in the 
first axis, calls the distance from it to the beginning of the rod s, and turns one’s attention 
to three line elements that are drawn from P in the directions of the three axes.  They 
might be called 3, 1, 2, respectively, and 3 shall be the one that has the direction of the 
length of the cylinder.  When the state of the rod changes, those three line elements will 
not generally remain perpendicular to each other, but define angles that deviate from right 
angles by quantities that have the order of the dilatations that have come about.  The 
points of the rod in the neighborhood of P shall be referred to a right-angled coordinate 
system whose origin is P, whose z-axis has the direction of the line-element 3, and whose 
zx-plane goes through the line elements 3 and 1.  Let x + u, y + v, z + w be the coordinates 
of a point of the rod after the change, and let x, y, z be the coordinates of that point when 
the rod is in its natural state, and in that position, one will find that the line elements 1, 2, 
3 fall upon the x, y, z axes, resp.  With those assumptions, equations (3) of this lecture 
and equations (11) of the previous lecture will be true, which would emerge from the 

                                                
 (1) In the previous editions, (1) was incorrectly printed as 1), (2) was printed as 2), and (3), as 3). 
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remark that was made for them.  An equation between x and y will exist for the outer 
surface of the rod; it is: 
 

∫ x dx dy = 0,  ∫ y dx dy = 0,  ∫ xy dx dy = 0,   (9) 
 
when the integrations are extended over the cross-section.  Finally, every material point 
of the rod is characterized by certain values of x, y, s + z. 
 Furthermore, let ξ, η, ζ be the coordinates of the point P after the deformation of the 
rod relative to an arbitrarily-chosen coordinate system that might have the property that 
the x, y, z axes can be made parallel to the ξ, η, ζ axes by a rotation.  Let: 
 
 α1, β1, γ1 
 α2, β2, γ2 
 α3, β3, γ3 
 
be the cosines of the angles that the ξ, η, ζ axes make with the x, y, z axes, such that the 
indices 1, 2, 3 refer to the x, y, z axes, resp.  These nine quantities, as well as ξ, η, ζ, are 
functions of the one variable s in the case of equilibrium and functions of s and t in the 
case of motion. 
 With those notations: 
 ξ + α1 (x + u) + α2 (y + v) + α3 (z + w) 

η + β1 (x + u) + β2 (y + v)  + β3 (z + w)    (10) 
 ζ + γ1 (x + u)  + γ2 (y + v)  + γ3 (z + w) 
 
will be the coordinates, relative to the ξ, η, ζ axes, of the point whose coordinates are x + 
u, y + v, z + w relative to the x, y, z axes.  The expressions (10) must be functions of s + z, 
since the values of s + x¸ x, and y determine a material point of the rod.  The partial 
differential quotients of these expressions with respect to z and s must then be equal to 
each other.  One will then have: 
 

 1 2 3 1
u v w

z z z
α α α∂ ∂ ∂ + + + ∂ ∂ ∂ 

 = 1 2 3

u v w

s s s
α α α∂ ∂ ∂+ +

∂ ∂ ∂
  

 + 31 2( ) ( ) ( )
dd dd

x u y v z w
ds ds ds ds

αα αξ + + + + + + , 

 

 1 2 3 1
u v w

z z z
β β β∂ ∂ ∂ + + + ∂ ∂ ∂ 

 = 1 2 3

u v w

s s s
β β β∂ ∂ ∂+ +
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 + 31 2( ) ( ) ( )
dd dd

x u y v z w
ds ds ds ds

ββ βη + + + + + + , 

 

 1 2 3 1
u v w

z z z
γ γ γ∂ ∂ ∂ + + + ∂ ∂ ∂ 

 = 1 2 3

u v w

s s s
γ γ γ∂ ∂ ∂+ +

∂ ∂ ∂
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 + 31 2( ) ( ) ( )
dd dd

x u y v z w
ds ds ds ds

γγ γζ + + + + + + . 

 
One multiplies these equations successively by α1, β1, γ1, and α2, β2, γ2, and α3, β3, γ3, 
and then adds them each time.  One then sets: 
 

σ = 
2 2 2

d d d

ds ds ds

ξ η ζ     + +     
     

 − 1.    (11) 

 
Since, from the assumptions that were made, one has: 
 

d

ds

ξ
: 

d

ds

η
: 

d

ds

ζ
 = α3, β3, γ3 , 

and it will then follow that: 
 

d

ds

ξ
= α3 (1 + σ), 

d

ds

η
= β3 (1 + σ), 

d

ds

ζ
= γ3 (1 + σ),  (12) 

 
and σ will be the dilatation that the element ds has experienced.  One further sets: 
 

 p = 2 2 2
3 3 3

d d d

ds ds ds

α β γα β γ+ + , 

q = 3 3 3
1 1 1

d d d

ds ds ds

α β γα β γ+ + ,          (13) 

 r = 1 1 1
2 2 2

d d d

ds ds ds

α β γα β γ+ + . 

 
If we compare these expressions with equations (19) that we gave in the fifth lecture, 
which were set equal to p′, q′, r′, and recall the interpretation that we gave for p′, q′, r′ 
there, then we will see that p ds, q ds, r ds are the angles around which the x, y, z system 
of axes rotates around the x, y, z when its origin runs through the element ds.  r ds is 
called the torsion of the part of the rod that corresponds to the element ds, and p, q are the 
reciprocal radii of curvature of the projections of the element ds onto the yz and xz planes. 
 With the help of the six relations that exist between the cosines α, β, γ, and the ones 
that result from differentiating them with respect to s, one will then obtain: 
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z

∂
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u

s

∂
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+ q(z + w) – r(y + v), 
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z

∂
∂
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∂
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∂
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w
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∂
∂

+ p(y + v) – q(x + u) + σ . 
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Based upon the remark that was made at the end of the previous §, we assume that 
u

z

∂
∂

, 

v

z

∂
∂

, 
w

z

∂
∂

 will be infinitely large in comparison to u, v, w when we give z only values that 

have the same order of dimensions as the cross-section of the rod.  We further assume 

that 
u

z

∂
∂

, 
v

z

∂
∂

, 
w

z

∂
∂

 have the same order of magnitude as u, v, w.  If we employ the fact 

that u, v, w are infinitely small in comparison to x, y, z, in addition, then the derived 
equations will become: 

 
u

z

∂
∂

= qz  – ry, 

 
v

z

∂
∂

= rx – pz, 

 
w

z

∂
∂

= py – qx + σ . 

 
In then follows from this by integration that: 
 

 u = u0 + 2

2

q
z − ryz, 

v = v0 + rxz − 2

2

p
z ,          (14) 

 w = w0 + (py – qx + σ) z, 
 
in which u0, v0, w0 mean functions of x and y, namely, the values that u, v, w take on for z 
= 0.  Those functions are determined by equations (8), (2), and (3). 
 The expressions that are found for u, v, w yield: 
 

 xx = 0u

x

∂
∂

, yz = 0w

y

∂
∂

+ rx, 

yy = 0v

y

∂
∂

, zx = 0w

x

∂
∂

− ry,  (15) 

 zz = py – qx + σ, xy = 0 0u v

y x

∂ ∂+
∂ ∂

. 

 
All of these values are independent of z.  As a result, equations (8) simplify into: 
 

 yx
XX

x y

∂∂ +
∂ ∂

 = 0, 

yx
YY

x y

∂∂ +
∂ ∂

 = 0,    (16) 
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 yx
ZZ

x y

∂∂ +
∂ ∂

 = 0. 

 
We would like to assume that the original cylindrical outer surface of the rod is not acted 
upon by tension, and understand that g is the function of x and y that will define the 
equation for the contour of the cross-section when it is set equal to zero.  When g = 0, 
equations (2) will then give: 

 x y

g g
X X

x y

∂ ∂+
∂ ∂

 = 0, 

x y

g g
Y Y

x y

∂ ∂+
∂ ∂

 = 0,   (17) 

 x y

g g
Z Z

x y

∂ ∂+
∂ ∂

 = 0. 

 
Finally, two of equations (3) will be satisfied identically, while the other one will demand 
that one must have: 

u0 = 0,  v0 = 0,  w0 = 0,  0v

x

∂
∂

= 0   (18) 

for x = 0 and y = 0. 
 We derived equations (17) under the assumption that the tensions that acted upon the 
outer surface of the rod were equal to zero.  However, we will also preserve those 
equations when the tensions have any values that do not exceed certain limits.  They must 
have values such that tensions with their order of magnitude would provoke only 
dilatations that are infinitely small in comparison to the dilatations that are determined 
from (15) for a body whose dimensions all have the same order.  When one neglects the 
quantities that define the right-hand sides of equations (17), one will then neglect only 
quantities that are infinitely small in comparison to the individual terms that comprise the 
left-hand sides. 
 If one sets Xx, Xy, … equal to their expressions in terms of xx, xy, … in equations (16) 
and (17), and sets the latter quantities equal to the values that were given in (15) then 
equations (16), (17), and (18) will determine the quantities u0, v0, w0 uniquely as linear 
homogeneous functions of p, q, r, σ.  In order to prove that assertion, one has to show 
that the aforementioned equations can be fulfilled only by u0 = 0, v0 = 0, w0 = 0 when p, 
q, r, σ vanish, and one will arrive at that by considerations that are entirely similar to the 
ones by which a similar theorem was proved in § 2 of the previous lecture.  If u0, v0, w0 
are expressed in the stated way then equations (15) will yield xx, xy, … as linear 
homogeneous functions of p, q, r, σ; the components Xx, Xy, … of the tension will be 
such functions, and f will be a second-degree homogeneous function of the same four 
elements. 
 Here, we would like to add a remark that will extend the applicability of our 
considerations essentially.  We imagine that the rod, in its natural, cylindrical state, is 
acted upon by forces that act upon its interior and thrusts that act upon its end surfaces, 
which take it to one state in one case and another state in another case.  The symbols xx, 
xy, …, p, q, r, σ might refer to the second of those states, while the symbols xx′ , yx′ , …, 
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p′, q′, r′, σ′ might refer to the first one.  If the rod goes from the first state to the second 
one then the differences xx − xx′ , xy − yx′ , … will determine the dilatations that then come 

about in precisely the same way that xx, xy, … themselves determine the dilatations that 
come about during the transition from the rod in its cylindrical state to the one that we 
have called the second one.  That will also be true when the natural state is not the 
cylindrical one, but the one that was referred to as the first one, so when the rod is bent 
and twisted in its natural state in the way that would correspond to the values of p′, q′, r′.  
In that case, then, the tension components Xx, Xy, …, and the quantity f will be the same 
functions of xx − xx′ , xy − yx′ , … that they previously were in terms of xx, xy, …, and 

(since xx − xx′ , xy − yx′ , … are the same linear functions of p – p′, q – q′, r – r′, σ – σ′ that 

xx, xy, … are of p, q, r, σ) the same functions of p – p′, q – q′, r – r′, σ – σ′ that they 
previously were of p, q, r, σ.  That remark has particular importance when the material 
that rod is composed of is isotropic.  With its help, one can then always exhibit the 
equations of equilibrium and motion for an infinitely-thin rod whose cross-section has the 
same form everywhere when it is arbitrarily bent and twisted in its natural state.  The 
quantity that we have denoted by σ′ can then be set equal to zero. 
 
 

§ 3. 
 

 Carrying out the determination of u0, v0, w0 is relatively easy when the cross-section 
of the rod is an ellipse, which might also give the constants of elasticity.  Corresponding 
to that assumption, we set: 

g = 1 − 
2 2

2 2

x y

a b
− . 

 
Equations (16) and (17) (the latter, not just for g = 0, but in general) will then be fulfilled 
by: 

Xx = 0,  Yy = 0,  Xy = 0, 

Zx = c
2

y

b
, Zy = − c

2

x

a
, 

 
in which c means an arbitrary constant.  Those five equations, in conjunction with the 
equation: 

zz = py – qx + σ 
 
that entered into (15), along with the help of the relations that exist between the six 
quantities xx, xy, …, and the six tension components Xx , Xy, …, allow one to express xx, 
yy, xy, and zx, zy as linear functions of x and y.  When one recalls equations (15), the first 
three of them will lead to the determination of u0, v0, …, and the last two, to the 
determination of w0 .  In order for these determinations to be possible, one must have: 
 

22

2 2

yx
yx

y x

∂∂ +
∂ ∂

 = 
2

yx

x y

∂
∂ ∂
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and 

z zy x

x y

∂ ∂−
∂ ∂

 = 2r. 

 
The first of these equations [which follows from considerations that are entirely similar to 
the ones by which we derived equations (13) and (14) in the previous lecture] is fulfilled 
as a result of the fact that xx, yy, xy are linear in x and y; the second one determines the 
quantity c.  The integrations that must be performed in order to calculate u0 and v0 then 
bring three arbitrary constants with them, and the integration that gives w0 will introduce 
one of them.  Those constants are precisely sufficient for equations (18) to be fulfilled.  
One then gets u0, v0, w0 as second-degree functions of x and y. 
 A simplification in the determination of u0, v0, w0 for a cross-section of arbitrary form 
will come about when its plane is a symmetry plane.  In that case, from equations (5) of 
the previous lecture, one will have: 
 
 1

2 Xx = a11 xx + a12 yy + a13 zz + a16 xy , 

  1
2 Yy = a21 xx + a22 yy + a23 zz + a26 xy , 

 1
2 Zz = a31 xx + a32 yy + a33 zz + a36 xy , 

 1
2 Xy = a61 xx + a62 yy + a63 zz + a66 xy , 

 1
2 Zy = a44 zy + a45 zx , 

 1
2 Zx = a54 zy + a55 zx , 

in which: 
a12 = a21 , a13 = a31 , … 

 
With hindsight of equations (15), the last of equations (16) will now be: 
 

2 2 2
0 0 0

55 45 442 22
w w w

a a a
x x y y

∂ ∂ ∂+ +
∂ ∂ ∂ ∂

 = 0,    (19) 

 
and the last of equations (17) will become: 
 

0 0 0 0
54 55 44 45

w w w wg g
a rx a ry a rx a ry

y x x y x y

      ∂ ∂ ∂ ∂∂ ∂   + + − + + + −         ∂ ∂ ∂ ∂ ∂ ∂         
 = 0. (20) 

 
w0 is determined from these two equations and the third of equations (18).  The rest of 
equations (16), (17), and (18) serve to determine u0 and v0 .One will satisfy them when 
one sets: 

Xx = 0,  Yy = 0,  Xy = 0.    (20a) 
 
In fact, when one solves those equations for xx, yy, xy, one will obtain linear expressions in 
x and y for those quantities when one sets z equal to its value in (15).  As a result of that, 
it will be possible to determine u0 and v0 from the equations: 



Lecture 28 – Finite deformations of thin rods. 11 

xx = 0u

x

∂
∂

, yy = 0v

y

∂
∂

, xy = 0 0u v

y x

∂ ∂+
∂ ∂

. 

 
Integrating them will introduce three arbitrary constants by which one can fulfill 
equations (18), which one still has to consider. 
 
 

§ 4. 
 

 If u0, v0, w0 have been found then one will be dealing with the determinations of p, q, 
r, s as functions of s in the equilibrium case and as functions of s and t in the case of 
motion.  To that end, one can appeal to the principal of virtual displacement in the first 
case and Hamilton’s principle in the second.  In both cases, it is requisite that one must 
have an expression for the potential of the force that produces the dilatations.  If f denotes 
the same second-degree homogeneous function of xx, xy, … as before then that potential 
will be: 

= ∫ f dx dy ds, 
 

in which the integration over x and y is extended over the cross-section, while the 
integration over s extends along the length of the rod.  One sets xx, xy, … equal to their 
values in (15) here.  Since those values are linear, homogeneous functions of p, q¸ r, σ, f 
will be a second-degree homogeneous function of p, q, r, σ ; the coefficients depend upon 
only x and y.  If one now makes: 

F = ∫ f dx dy     (21) 

then F will be a second-degree homogeneous function of p, q, r, σ with constant 
coefficients, and that potential will be: 

= ∫ F ds. 
 
If U′ denotes the work that is done by the force that acts in the interior and the tensions 
that act upon the outer surface and the end surfaces of the rod for certain variations of p, 
q, r, σ, and T denotes the vis viva then the condition for equilibrium will be: 
 

U′  + δ ∫ F ds = 0,    (22) 
 
and for motion, one will have the equation: 
 

( )dt U T F dsδ δ′ + +∫ ∫  = 0.    (23) 

 
 In order to define the value of T, we must differentiate the expressions (10) with 
respect to t, multiply the sum of the squares of the differential quotients by one-half the 

element of mass of the rod, and integrate over it.  In that, we neglect 
u

t

∂
∂

, 
v

t

∂
∂

, 
w

t

∂
∂

 as 



12 Lectures on mathematical physics. v. I Mechanics 

being infinitely small in comparison to terms that appear additively-linked, and set z = 0, 
which is allowed, since the expressions (10) are functions of s + z, and we consider s to 
be variable.  The differential quotients of those expressions are then: 
 

 1 2x y
t t t

α αξ ∂ ∂∂ + +
∂ ∂ ∂

, 

 1 2x y
t t t

β βη ∂ ∂∂ + +
∂ ∂ ∂

, 

 1 2x y
t t t

γ γζ ∂ ∂∂ + +
∂ ∂ ∂

. 

 
As a result of equations (9), the sum of the squares of these expressions, when multiplied 
by dx dy and integrated over the cross-section of the rod, will be: 
 

 
2 2 2

dx dy
t t t

ξ η ζ ∂ ∂ ∂     + +      ∂ ∂ ∂       
∫  

+ 
2 2 2

21 1 1 x dx dy
t t t

α β γ ∂ ∂ ∂     + +      ∂ ∂ ∂       
∫     (24) 

 +
2 2 2

22 2 2 y dxdy
t t t

α β γ ∂ ∂ ∂     + +      ∂ ∂ ∂       
∫ . 

One now sets: 

 − P = 3 3 3
2 2 2t t t

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

 

Q = 3 3 3
1 1 1t t t

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

,     (25) 

 R = 1 1 1
2 2 2t t t

α β γα β γ∂ ∂ ∂+ +
∂ ∂ ∂

. 

 
From the equations that one can define using the model of equations (20) in the fifth 
lecture, one will get: 

 
2 2 2

1 1 1

t t t

α β γ∂ ∂ ∂     + +     ∂ ∂ ∂     
 = Q2 + R2, 

 
2 2 2

2 2 2

t t t

α β γ∂ ∂ ∂     + +     ∂ ∂ ∂     
 = P2 + R2. 

 

One now ponders the fact that as a result of equations (12), 3

t

α∂
∂

, 3

t

β∂
∂

, 3

t

γ∂
∂

 cannot be 

infinitely large in comparison to 
t

ξ∂
∂

, 
t

η∂
∂

, 
t

ζ∂
∂

, assuming that the differential quotients 

of those quantities with respect to s are infinitely large in comparison to them.  It will 
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then follows that P and Q cannot be infinitely large in comparison to 
t

ξ∂
∂

, 
t

η∂
∂

, 
t

ζ∂
∂

, 

while the corresponding statement in regard to R cannot be asserted.  Finally, if one 
imagines that of the three integrals that enter into the expression (24), the last two are 
infinitely small in comparison to the first one, then one will see that this expression is: 
 

= 
2 2 2

2 2 2( )dx dy R x y dx dy
t t t

ξ η ζ ∂ ∂ ∂     + + + +      ∂ ∂ ∂       
∫ ∫ . 

If one makes: 

dx dy∫  = λ, 2 2( )x y dx dy+∫  = κ,   (26) 

 
and once more denotes the density by µ then one will have: 
 

T = 
2 2 2

2

2
ds R

t t t

µ ξ η ζλ κ
  ∂ ∂ ∂      + + +       ∂ ∂ ∂         

∫ .   (27) 

 
 

§ 5. 
 

 We would now like to examine the equilibrium of rods more closely under the 
assumption that no forces act upon its parts, and thrusts act upon only its end surfaces.  
However, instead of making use of the principle of virtual displacements, we would like 
to immediately appeal to the definition of tension that was given by equations (1) and (2) 
of the eleventh lecture.  We apply it to the part of the rod that is between two arbitrary 
cross-sections.  If we let Α, Β, Γ denote the sums of the components of the tension along 
the ξ, η, ζ axes, resp., that will be exerted in the element of the cross-section that is 
determined by an arbitrary value of s by the part of the rod in which s has a smaller value 
upon the one in which s possesses a greater value, and let Mα, Mβ, Mγ denote the 
rotational moments of that tension relative to the same axes, resp., then as a result of the 
assumption that equilibrium exists and no forces act upon the interior of the rod: 
 
   Α = const.,    Β = const.,    Γ = const., 
 Mα = const.,  Mβ = const.,  Mγ = const. 
 
If s = 0 for one end of the rod and s = l for the other one, and l is positive, then Α, Β, Γ, 
Mα, Mβ, Mγ  will be equal to the component sums and rotational moments of the tensions 
that act upon the element of the cross-section s = 0 from the outside; − Α, − Β, − Γ, − Mα, 
− Mβ, − Mγ  have the same interpretations for the other end. 
 We would now like to introduce the rotational moments of the same tensions from 
which Mα, Mβ, Mγ originate relative to the x, y, z axes that correspond to the chosen value 
of s and denote them by Mx, My, Mz, resp.  We likewise choose the ζ-axis such that Α = 0, 
Β = 0, and Γ is negative or equal to 0 (which is always possible).  As a result of the 
relations in § 4 of the fifth lecture, one will then have: 
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 Mα = α1 Mx + α2 My + α3 Mz + η Γ = const. 
 Mβ  = β1 Mx + β2 My + β3 Mz  − ξ Γ = const.   (28) 

 Mγ  = γ1 Mx + γ2 My + γ3 Mz  = const. 
 
One differentiates these equations with respect to s, multiplies then by α1, β1, γ1 or α2, β2, 
γ2 or α3, β3, γ3 , resp., and adds them.  Recalling the relations that exist between these 
nine cosines, along with equations (12) and (13), will then yield: 
 

 xdM

ds
 = r My – q Mz + γ2 Γ, 

ydM

ds
 = p Mz – r Mz  + γ1 Γ,      (29) 

 zdM

ds
 = q Mx – p My . 

 
We now derive the relationship that exists between the rotational moments Mx, My , Mz 

and the function F in the previous §.  To that end, we consider the increase δf that f 
experiences when the state of the rod in the neighborhood of a cross-section that 
corresponds to a constant value of s changes in such a way that p, q, r, σ increase by δp, 
δq, δr, δσ.  One will then have: 
 

δf = Xx δxx + Yy δyy + Zz δzz + Yz δyz + Zx δzx + Xy δxy , 
 
since Xx, Yy, … are the partial differential quotients of f with respect to xx, yy, …  With the 
help of equations (15), one will then obtain: 
 

 δf = 0 0 ( )x y z

u v
X Y Z y p x q

x y
δ δ δ δ δσ∂ ∂+ + − +

∂ ∂
 

 + 0 0 0 0
z x y

w w u v
Y x r Z y r X

y x y x
δ δ δ δ δ   ∂ ∂ ∂ ∂ + + − + +    ∂ ∂ ∂ ∂    

. 

 
One multiplies these equations by dx dy and integrates them over the cross-section of the 
rod.  From (21), the left-hand side of it is then δF; one transforms the right-hand side 
with the help of the equation: 
 

 0 = 0 0 0 0 0 0
x y z x y

u v w w u v
dx dy X Y Y Z X

x y y x y x
δ δ δ δ δ

  ∂ ∂ ∂ ∂ ∂ ∂+ + + + +  ∂ ∂ ∂ ∂ ∂ ∂  
∫ , 

 
which one obtains by partial integrations, while taking into account equations (17), in 

which cos (nx) and cos (ny) can be written 
g

x

∂
∂

 and 
g

y

∂
∂

, when one multiplies equations 

(16) by dx dy δu0, dx dy δv0, dx dy δw0 ,  adds them, and integrates over the cross-section.  
If one sets: 
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 Z = dx∫  dy Zz , 

 Mx = dx∫  dy y Zz , 

 My = − dx∫  dy x Zz , 

 Mz = dx∫  dy (x Yz – y Xz), 

 
in which Z denotes the component of the force Γ along the z-axis, and Mx , My , Mz have 
the meanings that they had in equations (28), then one will obtain: 
 

dF = Mx δp + My δq + Mz δr + Z δs, 
 
from which, it will follow that: 
 

F

p

∂
∂

= Mx , 
F

q

∂
∂

= My , 
F

r

∂
∂

= Mz , 
F

σ
∂
∂

= Z .  (30) 

 
2F is a homogeneous function of degree two of p, q, r¸ σ whose coefficients depend upon 
the constants of elasticity and the constants of the cross-section of the rod; one then has: 
 

 
F

σ
∂
∂

 = γ3 Γ = A00σ + A01 p + A02 q + A02 q , 

F

p

∂
∂

= Mx   = A10σ  + A11 p + A12 q + A13 q ,        (31) 

 
F

q

∂
∂

 = My = A20σ + A21 p + A22 q + A23 q , 

 
F

r

∂
∂

 = Mz = A30σ + A31 p + A32 q + A33 q , 

 
in which A00 , A01 = A10 , A11 , … are the aforementioned coefficients.  They do not all 
have the same order of magnitude.  Since σ is a pure number, but p, q¸ r are reciprocal 
lengths, the A’s that contain the index 0 must have a dimension that is one less than the 
ones in which the index 0 does not appear, and one greater than A00 .  The lengths that 
enter into the quantities A, however, have the same order of dimensions as the cross-
section of the rod, and are thus infinitely small.  A01, A02, A03 must then be infinitely small 
in comparison to A00, and infinitely large in comparison to the other A’s.  On that basis, 
the terms in (31) that are endowed with σ cannot be neglected, even when σ is infinitely 
small, but p, q, r should be regard as being finite.  It follows from the first of equations 
(31) that: 

σ = − 01 02 03 3

00

A p A q A r

A

γ+ + − Γ
.     (32) 
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If one substitutes this value for σ in the expressions that were given for Mx , My , Mz in 
(31) and assumes that Γ is not infinitely large in comparison to Mx , My , Mz  then it will 
follow from the relationships between the A’s that were cited above that the terms that 
then appear that are independent of Γ cannot be neglected as infinitely-small in 
comparison to Mx, My, Mz .  One will then get these rotational moments as linear 
homogeneous functions of p, q, r.  They can then be represented as follows: Let G be the 
function of p, q, r that F goes to when one expresses σ in terms of p, q, r with the help of 

equation 
F

σ
∂
∂

 = 0.  One will then have: 

Mx = 
G

p

∂
∂

, My = 
G

q

∂
∂

,  Mz = 
G

r

∂
∂

.   (33) 

 

In fact, when σ is expressed in terms of p, q, r using 
F

σ
∂
∂

 = 0: 

 
F

p

∂
∂

 = 
G

p

∂
∂

, 

 
since, when G is derived from F in such a way that one sets σ equal to an arbitrary 
function of p, q, r, one will have: 

 
G

p

∂
∂

= 
F F

p p

σ
σ

∂ ∂ ∂+
∂ ∂ ∂

, 

 
and the corresponding differential quotients of q and r will behave similarly.  Equations 
(29) will then be: 

 
d G

ds p

∂
∂

= r 
G

p

∂
∂

− q
G

r

∂
∂

+ Γγ2 , 

d G

ds q

∂
∂

 = p
G

r

∂
∂

− r
G

p

∂
∂

 − Γγ1 ,    (34) 

 
d G

ds r

∂
∂

= q
G

p

∂
∂

− p
G

q

∂
∂

. 

 
These equations, in which G means a second-degree homogeneous function of p, q, r 
with constant coefficients, have the same form as equations (17) of lecture seven, which 
relates to the rotation of a ponderable rigid body around a fixed point.  They will agree 
with them completely when one sets s = t, G = T, and – Γ equal to the product of the 
weight of the body with the distance from its center of mass to the fixed point.  The 
meanings of the nine cosines α, β, γ, and the quantities p, q, r will then be the same here 
and there.  Since the line that is drawn from the fixed point through the center of mass 
was chosen to be the z-axis there, there will always be a ponderable, rigid body that 
rotates around a fixed point that corresponds to the rod in such a way that the line that 
goes through the fixed point and the center of mass will always be parallel to the tangent 
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to the rod when one assumes that s = t.  When the rotational problem is solved, one will 
have to define the equations: 
 

ξ = 3 dsα∫ , η = 3 dsβ∫ , ζ = 3 dsγ∫ ,   (34a) 

 
if one is to discern the form of the rod. 
 
 

§ 6. 
 

 The problem of the rotation of a ponderable body around a fixed point is not 
generally soluble as it was posed in the seventh lecture.  One case in which it can be 
solved is the one in which gravity does not act upon it.  Here, that case would correspond 
to the one in which Γ = 0; i.e., the one in which the sum of the components along any 
direction of the thrust that is exerted upon the element at one end of the rod vanishes.  
Another case in which the rotational problem can be solved is the one in which gravity 
does act, but the body is a rotating body and the fixed point is a point of the rotational 
axis.  Here, that case corresponds to the one in which certain relations exist between the 
constants of elasticity of the rod and the constants of its cross-section.  As we would now 
like to show, those relations exist when the material of the rod is isotropic and its cross-
section is a circle. 
 From § 1 of the previous lecture, for an isotropic body, one will have: 
 

f = − K { }2 2 2 2 2 2 21 1 1
2 2 2 ( )x y z z x y x y zx y z y z x x y zθ+ + + + + + + + . 

 
It will then follow from equations (20a) that: 
 

xx = yy = − 
1 2

θ
θ+

zz , xy = 0. 

 
Equations (19) and (20) will then become: 
 

2 2
0 0

2 2

w w

x y

∂ ∂+
∂ ∂

 = 0,     (35) 

and for g = 0, one will have: 
 

0 0w wg g
ry rx

x x y y

 ∂ ∂∂ ∂ − + +  ∂ ∂ ∂ ∂   
= 0.    (36) 

 
The cross-section of the rod shall be a circle.  We then have to set: 
 

g = x2 + y2 – const. 
 
For that value of g, it will then follow from (35), (36), and (18) that: 
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w0 = 0. 
Equations (15) will then give: 
 

zz = py – qx + σ, yz = rx,  xz = − ry. 
One will then have: 

f = − K 2 2 2 21
2

1 3
( ) ( )

1 2
py qx r x y

θ σ
θ

+ − + + + + 
, 

 
and from (21), when one employs the symbols κ, λ that are defined by (26): 
 

F = − K 2 2 2 21 3 1 3
( )

1 2 2 2 1 2
p q r

θ κ κ θ λσ
θ θ

+ + + + + + + 
. 

 
With that, one will finally obtain the function G that is defined in (33) as: 
 

G = − K 2 2 21 3
( )

2 1 2
p q r

κ θ
θ

+ + + + 
.    (37) 

 
With that, the statement that was made above is proved, namely, that for an isotropic rod 
of circular cross-section, G is the same function of p, q, r as the vis viva is for a rotating 
body that rotates around a point on its symmetry axis, and that will then show that the 
general solution of equations (34) can be found for a rod of the stated kind in the same 
way that was given in § 4 of the seventh lecture for the corresponding rotational problem. 
 We would like to restrict ourselves to actually constructing the solution for a special 
case.  We set: 

A11 = − Kκ 
1 3

1 2

θ
θ

+
+

, A23 = − Kκ,    (38) 

 
and introduce the angles ϑ, ϕ, f that were defined by equations (8) in the fifth lecture, 
whereby the symbol f takes on a different meaning than the one that we used up to now in 
our present investigations.  Equations (34) will then become: 
 

 A11
dp

ds
 = rq (A11 – A33) + Γ sin f cos ϑ, 

A11
dq

ds
 = rp (A31 – A11) − Γ cos f sin ϑ,   (39) 

 
dr

ds
 = 0. 

 
To these, we add the equations: 
 

 
d

ds

ϑ
 = p sin f – q cos f, 
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sin ϑ 
d

ds

ϕ
 = p cos f + q sin f,          (40) 

 
df

ds
 = cos ϑ d

ds

ϕ
– r, 

 
which are obtained from equations (21), (13), and (15) of the seventh lecture, while 
recalling equations (8) of the fifth one, when one writes s instead of t.  We will then see 
that equations (39) and (40) can be satisfied by the assumption that: 
 

ϑ = const. 
 

The solution that that one obtains under this assumption is just the one that we would like 
to construct.  It corresponds to the motion of a ponderable rotating body about a point on 
the symmetry axis in such a way that the axis describes a right cone about a vertical line.  
If ϑ is constant then the first of equations (40) will become: 
 

0 = p sin f – q cos f, 
so that we can write: 

p = 2 2p q+  cos f, q = 2 2p q+ sin f,   (41) 

 

in which the sign of 2 2p q+  remains unchanged.  Thus, when one multiplies the first 

two of equations (39) by p and q, resp., and adds them, that will give: 
 

p2 + q2 = const., 
 
whereas it will always follow from the third one that: 
 

r = const. 
 

When one understands that ϕ0 and f0 are two arbitrary constants, the last two of equations 
(40) will further yield: 
 

ϕ – ϕ0 = 
2 2

sin

p q

ϑ
+

s,  f – f0 = 
2 2

tan

p q
r

ϑ

 +
 −
 
 

s.  (42) 

 
 We still have to fulfill one of the first two of equations (39).  If one replaces p and q 
in it with their values in (41) then that will convert the equation into an equation between 
constants, namely, the equation: 
 

0 = A11 
2 2

tan

p q

ϑ
+

– A33 r + Γ 
2 2

sin

p q

ϑ
+

.   (43) 
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In order to find the form that the rod will have when the equations that were posed are 
valid, one must still develop equations (34a).  If one sets: 
 

α3 = cos ϕ sin ϑ, β3 = sin ϕ sin ϑ, γ3 = cos ϑ 
 

in them, according to equations of the fifth lecture, makes: 
 

ds = 
2 2

sin

p q

ϑ
+

 dϕ 

 
in the calculation of ξ and η from (42), and has the origin of the ξ, η, ζ at one’s disposal 
in a certain way then one will obtain: 
 

ξ = 
2

2 2

sin

p q

ϑ
+

sin ϕ,  η = − 
2

2 2

sin

p q

ϑ
+

cos ϕ,  ζ = s cos ϑ.  (44) 

 
With that, the rod will define a helix whose axis is the ζ-axis.  The radius of the cylinder 
that lies along it is: 

= 
2

2 2

sin

p q

ϑ
+

,      (45) 

and the height of a screw step is: 

= 
2 2

2 sin cos

p q

π ϑ ϑ
+

.     (46) 

 
As far as the thrust is concerned that must be exerted externally upon the end s = 0 of the 
rod in order for it to be in equilibrium in the calculated form for arbitrary values of the 

constants ϑ, 2 2p q+ , and r, the force Γ must be determined by (43).  In order to 

complete the analogy between the problem of equilibrium of an elastic rod and the 
problem of the rotation of a ponderable body, the ζ-axis must be chosen in such a way 
that Γ is negative when it does not vanish.  However, that condition drops out when we 
(as we would like to do) renounce the completeness of the analogy and allow Γ to take on 
positive and negative values.  It still remains to ascertain the rotational moments Mα , Mβ , 
Mγ .  One then finds from (33), (37), and (38) that: 
 

Mx = A11 p, My = A11 q, Mz = A33 r, 
 
with which, (41) can be written: 
 

 Mx = A11

2 2

sin

p q

ϑ
+ γ1 ,  My = A11

2 2

sin

p q

ϑ
+ γ2 , 
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 Mz = A11

2 2

sin

p q

ϑ
+ γ3 + A33 r − A11

2 2

sin

p q

ϑ
+

. 

 
If one substitutes these values in equations (28) then one will find, when one takes into 
account the relations that exist between the nine cosines α1, α2, …, along with equations 
(43) and (44), that: 
 

 Mα = 0, Mβ = 0, Mγ = A11 
2 2p q+  sin ϑ + A33 r cos ϑ . 

 
A special case that belongs here might also be mentioned.  If the relation: 
 

tan ϑ = 
2 2

sin

p q

ϑ
+

     (47) 

 

exists between the constants ϑ, 2 2p q+ , r then, as would follow from (42), f will be 

equal to a constant – namely, f0 .  From (41), p and q, like r, will also be constant.  One 
can then assign arbitrary constant values to the three quantities p, q, r, as long as one has 

suitable values of 2 2p q+ , f0, r available.  The case in which p, q, r are constant is 

always subsumed then by the one that was treated above.  In that case, the rod will also 
define a helix. The radius of the cylinder upon which it lies will be: 
 

= 
2 2

2 2 2

p q

p q r

+
+ +

, 

 
and the height of a screw step will be: 
 

= 2 2 2

2 r

p q r

π
+ +

, 

 
as would follow from the expressions (45) and (46) when one ponders the fact that (47) 
imply that: 

cos ϑ = 
2 2 2

r

p q r+ +
, sin ϑ = 

2 2

2 2 2

p q

p q r

+

+ +
,   (48) 

 

in which one must determine the sign of the root 2 2 2p q r+ +  in a suitable way. 
 
 

§ 7. 
 

 We shall now treat an example of equilibrium in an isotropic rod that is curved in its 
natural state.  From the summary that was made at the end of § 2, in order to go from the 
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case of an originally straight isotropic rod to one that is originally curved, we must 
replace p, q, r with p – p′, q – q′, r – r′ in the expression for the function f, in which p′, q′, 
r′ denote the values that the p, q, r take one when the rod goes to its natural state from 
one in which it is straight.  If one carries out the same substitution for F and G then the 
conclusion that related to the function f in §§ 4 and 5 will also be valid, and equations 
(34) will preserve their validity. 
 If the cross-section of the rod is a circle then the following equations will appear in 
place of equations (39): 
 

 A11 
( )d p p

ds

′−
 = A11 r (q – q′) − A33 q (r – r′) + Γ sin f sin ϑ, 

A11 
( )d q q

ds

′−
 = A33 p (r – r′) − A11 r (p – p′) − Γ cos f sin ϑ,   (49) 

 A33 
( )d r r

ds

′−
 = A11 [q (p – p′) − p (q – q′)] . 

 
In that way, equations (40) will be unchanged. 
 In general, p′, q′, r′ will be functions of s that are required by the original form of the 
rod.  We would like to assume that they are constant; i.e., from the remark that was made 
at the end of the previous §, that the rod will originally be a helix.  We would like to 
show that equations (49) and (40) can then be satisfied by the assumption that p, q, r are 
also constant; i.e., by the assumption that the rod remains a helix.  With that assumption, 
the last of equations (49) will give: 

p

p

′
 = 

q

q

′
, 

 
and with consideration given to that, the other two will reduce to the one: 
 

0 = A11 r 1
p

p

′ 
− 

 
 – A33 (r – r′) + 

2 2 2p q r

Γ
+ +

, 

 
when one employs the fact that, from (41) and (48), one will have: 
 

sin f sin ϑ = 
2 2 2

r

p q r+ +
,  cos f sin ϑ = 

2 2 2

p

p q r+ +
. 

 
However, equations (40) will fulfilled when one sets: 
 

 cos ϑ = 
2 2 2

r

p q r+ +
, 

 ϕ = ϕ0 + s 2 2 2p q r+ + , 
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 tan f = 
q

p
, 

 
which are equations that were derived in the previous § under the assumption that ϑ and f 
are constant. 
 That further implies that: 
 

ξ = 
2 2

2 2 2

p q

p q r

+
+ +

sin ϕ,  η = −
2 2

2 2 2

p q

p q r

+
+ +

cos ϕ, ξ = 
2 2 2

r

p q r+ +
s, 

 
and when one employs the fact that: 
 

Mx = A11 (p – p′), My = A11 (q – q′), Mz = A33 (r – r′), 
one will get: 
 

Mα = 0, Mβ = 0, Mγ = 
2 2

11 332 2 2 2 2 2

( )
1

p q p r r r
A A

pp q r p q r

′ ′ + −− + 
+ + + + 

. 

 
__________ 

 


