Excerpted from G. Kirchhoffyorlesungen tUber mathematische Phygiki: Mechanik, Teubner, Leipzig,
1897. Translated by D. H. Delphenich.

Twenty-ninth lecture

(Infinitely-small deformations of an infinitely-thin riginally-cylindrical rod. Bending and torsion for the
case in which the rod is isotropic and unstressed. k\&#ane by the forces that produce dilatations for an
isotropic stressed rod. Bending of a stressed rod. £Gaade’s method for determining the elasticity
coefficients of wires. Bending of a horizontally-ssed wire by its weight. Longitudinal and torsional
oscillations of a rod. Transversal oscillationsafeakly-stressed and a strongly-stressed string.)

§1.

We shall now further investigate the equilibrium and owtof a cylindrical,
infinitely-thin rod under the assumption that the disptaents of its parts are infinitely
small, sop, g, andr will be infinitely small. We first focus our attemh upon the case in
which the rod is in equilibrium and no forces act uporpégs. Equations (34) of the
previous lecture are then true. Since the changes thahitie cosinesn, [, ...
experience along the entire length are infinitely smalland )5 can be assumed to be
constant in them, assuming that they themselvesrate, fso the direction of the parts of
the rods do not coincide with the direction of the fofGeup to infinitely-small
differences. For the time being, we shall excludedhat. We can then set:

Ul =A, »l =B,

in which we understand and B to mean constants. By neglecting infinitely-small
guantities of higher order, the aforementioned equatidihbecome:

ia_G :B, ia_G :—A, ia_G = O’ (1)
dsadp dsadq dsor

and these equations, which also might be true foéthge { coordinate system, might be
true regardless of whether a special direction has assumed for th&axis. One will
see that immediately when one ponders the fact teah#anings of the quantitipsq, r

are completely independent of ther, { coordinate system, just like the coefficients that
enter into the functio®. By integrating those equations, one will get expressforp,

g, r in terms of linear functions of that contain arbitrary constants. They can be

determined by the values th%tg, (Z—G %—G - i.e., the rotational momenks,, My, M, —
p oq or

possess at the end of the rod. The, { axes can be oriented (and we would like to do
this) in such a way that the directions of g, z axes deviate from the latter directions
infinitely-little everywhere. a1, 5, )5 then differ from 1 infinitely little, andr, as, G,

[, U, b are infinitely small. It then follows from:

dg; ., 9

da,
- = Q. + ,
p=a, . B, s Y, ds
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da, dﬁ3
= Y ds tA, ds’
da dﬁl dyl
r = 1
+ 5, ds
that:
p:—%’ q:daz, r:%.
ds ds ds

If we consider equations (12) of the preceding lecture aitd y for S then we will get:

d%p _d¥ _dy
e’ e s @)

p=-

One will geté ands as third-degree functions sfind ¢, as a second-degree function
of s by integrating these equationg.and; will then determine the bending, agdwill
determine the torsion of the rod.

We now specialize the case considered further by gherggion that the material of
the rod is isotropic; however, we shall leave its sfeaction indeterminate. We denote
the elastic coefficient that were defined at the eingl ® of the twenty-seventh lecture —
i.e.:

1+30

2K ,
1+ 26

by E, set:
j X2 dx dy= 1 , j y> dx dy= 4> , j x*dx dy=A4, (3)

and employ the fact that tixeandy axes are chosen such that
jxdx dy=0, jydx dy= 0, jxydx dy=0.

An argument that is similar to the one that was madthe beginning of 8 6 of the
previous lecture will exhibiE andG. The quantity that was denoted \wy there must
contain the factor; by the use of that fact, one will find that:

E
== S WA T e p’ +prt +A0), (4)

in which p means a constant that is:
_1+20 Kk +k,
1+3¢ 2

for the case in which the cross-section of the raa a¢gcle, while for any other form for
the cross-sectiom will be equal to that expression, multiplied by a nuosfactor that



Lecture 29. Infinitely-small deformations of infiniyethin rods. 3

can be given easily for an elliptical form by the cktion that was performed in 8§ 3 of
the previous lecture. It further follows from (4) that:

G=—§(K1q2+Kz p*+pr).

Equations (1) will then give:

Let s equal 0 and for the two ends of the rod, respectively;lldte positive in that.A
andB can then be defined to be the sums of the componemg tlex andy axes of the
thrusts that are exerted externally on the end ofdtewiths equal to 0. In place &&
and B, we would prefer to introduce the corresponding composents of the thrusts
that act externally upon the other end. If we call tkéandY’ then:

A=-X’ B=-Y"
and then
dg _ dr

One integrates these equations and determines the imeg@nstants from the
rotational moment of the thrust that acts externallynughe end witts equal tol relative
to thex, y, z axes that correspond to that end. If one calls ttesgional moment

M{, M, then, as a result of equations (33) of the previous leatagewill have:
Exkp=M,, Exig=M,, Epr=M,
for sequal tdl. It will then follow that for other values sf
Exop=M-Y'(I-9, Exiq=M +X"(I-59), Epr=M,.

With the help of equations (2), one will get:

s, s , AN s , A
cne-Zlx(i-2om] ene-Z[e(i-Hom].  eounm

for a suitable choice of thg 7, { coordinate system.

A method for determining the elastic coefficienfrom measurements of the bending
of a rod is based upon the first two of these equatiolisone knows the elastic
coefficient then the third equation will serve as amseaf calculating the consta@tthat
enters into the expression fprfrom measurements of the torsion. Poisson asseraéd th
G equals 1 / 2 for all of the bodies that we considee.heOne can neither prove nor
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contradict this assertion with any certainty, since cexe assume with certainty that no
body is homogeneous and isotropic.

§2.

In the previous §, we excluded the case in which the airexcof the parts of the rod
agreed with the direction of the force (which was deddiyl” in the previous lecture) up
to infinitely-small deviations. We would now like to ot our attention to that case. We
shall employ the principle of virtual displacements iand start from equation (4). We
must sep, g, r equal to their values in (2). In order to constructx@ression forg, we
make:

{=s+w

in which wthen means an infinitely-small quantity. From the mgéin of o that was
given in equation (11) of the previous lecture, one wdhthave:

Z_EZ %2 d_a)2
(1+0) _(dsj { dsj +(1+ dsj ’

and when we leave undetermined the relations betweeartlegs of magnitude, from
which, & n, {will be infinitely small, it will follow from this th&

a:d_u[(ﬁ):(%ﬂ. ©
ds 2|\ ds ds

The expression for the work that is done by thedathat produces a displacement for
which ¢, n, a ¢, are shifted by¢, dn, dw oy, resp., and thus, the expression for:

5](1 Fds

(in which 0 and are assumed to be the values tifat correspond to the ends of the rod)
is, as a result of equation (4):

[ dedteE . o by . dp dop (dda) dE A o ddnj
-E | ds + +p——"+ A0 +— +——71].
Jo {Kl d¢ d¢ a8 & P ds de ds ds ds ds ds

It can be brought into the following form by palttiategration:

! d*& d dé
-E .[0 dS|:KlE -A Fs(a_dsj} 55
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g [weaa] L e ) ]
dESHAIC et

0

' dg_,d( oy
_E.[O dS|:K2E_AF U—dsj:|5/7
d*

| |
_ d dop a7 _ o9
EK{dsz ds} +EKK2 a7 dla”l

0

(6)
+EA Ildsd—aéw
o ds
|
~EA[odw)|,
L dy
+E ds ol
'0.[0 ds? v
|
-Ep [i—wéw} .
S 0
. . - . dé .dn
We would now like to impose the restriction on theiatayns o¢, on, JE, JE,

ow Y that they must vanish farequal to 0, and construct an expression for the work
that is done by the thrusts that act externally upormtigeof the rod for whick is equal
tol. With the help of the expression (24) and equationsga8d)(19) of the fifth lecture,

as well as equations (12) in the previous one, we findhigwork is:

=X’5§+Y’5/7+Z’5a)—M;5%+M’y5dFi+M'Z5¢/ , (7)

in which the variations are taken feequal tol, the symbols<’, Y, M, M{, M} have

the same meaning as in the previous 8§, Ahtheans the sum of the components of the
thrusts that relates to that symbol alongzasis.

The condition for equilibrium is that the sum of tbepressions (6) and (7) must
vanish for any arbitrary values that one might give e variations in them. The
equations that follow from that include the results thete derived in the previous § for
an isotropic rod, but are more general than them ingsfahey also encompass the case
that was excluded there.

One will obtain the same expression for the torgidhat was found there. It follows
further thatois constant, and in fact, it is determined from tipeagion:

EAdo=2Z. (8)



6 Lectures on mathematical physics: v. I. Mechanics

Each of the quantitie§, #, ¢, which determine the bending, are calculated with the help
of this value ofs from the differential equation that is true for themtong with the
boundary conditions that are associated with thenthatfhappens then equation (5) will
tell one whatdw/ dsis, and when one further establishes taanishes witls, one will
know witself.

The differential equation fof is:

d*é d*&
Ex, -Z =0. 9
' ds’ dg ®)
This is given the boundary conditions that:
é=0, de _ 0 (10)
ds
for sequal to 0 and:
EKd_ZQ(:M' EKd_SQ(_Z,E ==X’ (11)
' de? a 'dg’ ds

for sequal tdl.

WhenZ’is not infinitely large in comparison %', the second term on the left-hand
side of the last of these equations will be infiryitemall in comparison to its right-hand
side. The stated equation can then be written:

d%¢
Ex,— =-X.
' dg
. d® dé . L .
Assuming thatE and e have the same order of magnitude, it will likewise follo
S

that Z” will be infinitely small in comparison t&xi;, and it will follow further from this
that equation (9) can be written:
d*é

v =0.

This will yield the same value fafthat was derived in the previous 8.
Considerations that are similar to the ones thatwaeplied tof can also be applied
to 1.

§3.

In order to apply the formulas that were exhibited inpgifevious § to an example, we
address a method for determining the elasticity coefficteat is very convenient for thin
wires and goes back to s'Gravesande. The method is Thes wire is stretched
horizontally between two clamps, a weight hangs fitsrmidpoint, and one observes the
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drop that it experiences by that means. We regard onefidké wire as a rod to which
our formulas refer with the point that carries theghieias the end witk equal to 0; we
assume that thé&axis points vertically upwards. The rod is then founthex{-plane,n
equals 0] is one-half the length of the wiré|s the observed drop ferequal td, andX’

is the magnitude of the hanging weigh¥l, andZ” are not given directly, here. In order

to determine those quantities, one must impose the comslitihat:

E:O
ds

and w=w

for sequal td, when«w’ means the elongation that the half of the rod would épes if
it were stretched between the clamps.
One sets:

or, what, from (8), is the same thing:
h’=Z g, (12)
so equation (9) will then become:

d45 — h2 d_zgt
ds' ds

The integral of that equation that satisfies the dandi (10) that are to be fulfilled fer
equalto O is:

E=A (€ —hs—1) +B (€™ +hs— 1),
in which A andB are arbitrary constants. Conditions (11) give:

Exh’AE +e™ =hM -e" X,
Exh’B( +e™ =hM, +€' X,
while it follows from the fact thadé / dsvanishes fos equal tdl that:
AE -1)+B(-e™+1)=0.
Those three equations then yield:

hM;(ehI/z +e—h|/2) - _ (eh|/2_e—h|/2) Xl,

ErkPAE 2+eM?) = ghi2y;
Exk B (2 +eM?) ehl/zx,’

If one denotes the value éffor s equal td by é”and sets:
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_ = p,
2
to abbreviate, then one will find that:
X'I® 1 leP-g?
"= 1-— . 13
¢'= 4EKp[ pe°+épj (13)

In order to be able to calculate the elasticity dowfft E from this equation, one must
still ascertairp. It follows from (5) and (12) that:

4p7—a)’l —j( jd

However, one has:

dé_ X1 1 RE I
ds AEk, p° e+ eP

when one introduceg’, as determined by (13), into this, the previous equation will
become:

2 2 51 52
e’ +e p+4——B(é"— e’)

12
4p2 A=wl+ <
A 2

5 (14)
{ep + e’p—i(e"— ép)}
p

The factor ofé’? is always positive, so we assume thats positive. It will then follow

thatp must be infinitely large when one of the quansiti | and &2 is infinitely large in

comparison toq / 2, or when both of them are. That case iszedlapproximately by
the method that was discussed. For it, one has (it3) and (14), that:

X' 1
AEK, p*’

2K1_ 5'2
Sow+
A A 2

f’:

in the first approximation, so:

EA 5’[a}| +5_22j =X’I3

If one would like to consider the terms of nextiegt order then one would have to
employ the equations:

X' 1(, 1 ) K L€
= —l1-=1, Do 1v—
d 4E K, pz( pj 3 2( ZpJ
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the second of which will tell one whptis when one sets tigein its right-hand side equal
to its first approximation.

We make the following remark: The factor@f in equation (14) will be infinite for
no finite value of. It then follows thap must be infinitely small whens | and&’? are
infinitely small in comparison ta; / A. In that case, equation (13) will then give:

X'I®

= 12Ek,

§4.

We would now like to treat an example of equilibriitnma rod on whose parterces
act. We think of a wire as stretched horizontally betwavo clamps and look for the
bending that it suffers when gravity acts upon its parts.

Let theé-axis point vertically upwards, lgtbe gravity, and lets be the density of the
wire. It will then follow from the expression (6)ath

4 2
Kldf_/]adg‘:,u)lg’ d—0=0.
ds dg E ds
If sequald ands=-1 for the ends of the wire then one shall have:

f=0 and E=0
ds

for that value ok. If w means the elongation that one-half of it suffershaydtretching

then one will finally have:
2
o= g+ij‘lds a4 :
[ 270 \ds

These equations can be treated in a manner that islgisimilar to the equations that we
developed in the previous 8. Here, however, we would likestrict ourselves to the
consideration of the limiting case to the cases in whicis infinitely large or infinitely
small in comparison to théo (or A 120, which is the same thing, since we reghas
finite).
If k1 is infinitely large in comparison tdo then the differential equation faf will

become:

d*¢ _ uAg

ds' Ex,
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: d*¢ . o . . d*
assuming that < Is not infinitely large in comparison ted—4. It and the four
S

ds’
boundary conditions will be satisfied by:
_ Mg 2
= 2 (12—
¢ 24E/(1( )

k1 will be infinitely large in comparison tdog when / «J and¢ are infinitely small in
comparison to the dimensions of the cross-secfiidhneowire.
By contrast, if one of the quantitiq@ and{is infinitely large in comparison to the

dimensions of the cross-section, or if both of treme thernk; will be infinitely small in
comparison tolg, and the differential equation fgwill become:

& __ Ky
ds’ Eo’
d* d?
assuming thatd—4 IS not infinitely large in comparison t%?. The integral of this
S

equation that satisfies the condition tgatanishes fos =+ | is:
_ M9 2
= 22 (12 -9).
'3 2EU( )
The condition thatl¢ / dsalso vanishes for the ends of the wire cannotriosed in it.

d*¢

S4

dé/ dsvaries infinitely fast infinitely close to the end® will be infinitely large in

2
comparison tod— there, and the simplified differential equatiorllwot be valid. That

ds’

will yield the equation:

2 2
o= ﬂﬂ_(ﬂ_gj
I 6\Eo

for the determination od:

§5.

The following considerations shall relate to teeillationsof an infinitely-thin rod.
We restrict them to the case in which the osadladiare infinitely small and the rod is
originally straight and isotropic. One easily finthe differential equations of motion
from the expression (6) and equation (27) of thevipus lecture with the help of
Hamilton’s principle. In the latter, one must ob&ethat with our present assumptions,
from (25) of the previous lecture:



Lecture 29. Infinitely-small deformations of infiniethin rods. 11

R = % ,
ot
or, when we again writg for £ :
R= 6_1//;
ot
if we again set:
{=s+tw

and introduce the constants and x> that were defined by (3) then the stated equation
will become:

w41 & (3 &) e

When one set®é, dn, dw dYequal to zero at the limits of the time interval, llw
follow that:

S [Tt
has the expression:

0°¢ o°’n 0°w oy
— 1A jj dsdt[atz B+ O+ G —y(Kl+K2)jj dsdt_z- oy . (15)

We examine some special cases. We first assume¢hthadd remains straight in its
motion; i.e., we set:
=0 and np=0.
Since one has, from (5), that:
ow

o= —,
0s

Hamilton’s principle will yield the differential equans:

0’w _ Ed’w
o’  u oS
and
0w _  Ep oy

o2 p(k,+k,) 057

The first of these determines tlomgitudinal oscillationsof the rod, while the second one
determines théorsional oscillations. Both of them have the same form, which is a form
that we have already had to deal with in lecture twémtye. It represents waves that
propagate with constant velocity, partly in the directdmcreasings, and partly in the
opposite direction. The speed of propagation for thgifodinal waves is:
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=~ |m

while for torsional waves, it is:
/ Ep
MK, +K,)
The longitudinal, as well as the torsional, osdilas can give simple tones; it is easy to
calculate their oscillation numbers and the positidrif@nodesthat correspond to them.
It will suffice to show that for the longitudinal @fations, since the torsional oscillations
differ from then only by a different value of the speddpmpagation. We write the
differential equation for motion as:
i w _ ,0%w

a H
ot? 0’

in which we leta denote the speed of propagation of a longitudinal wavesetnd
w=u sin Zmnt,

in which u should be a function of one varialden is then oscillation number for the
tone. That will then yield the ordinary differenteduation:

du_ _(z_nnjzu .
ds? a ’
the general integral of it is:

. 2rm 2rm
u=Asin—— s+Bcos— s
a a

in whichA andB mean arbitrary constants. Now, there are threesdasdistinguish: The
case in which both ends are fixed, the one in which bats are free, and the one in
which one end is fixed, while the other one is freer &fixed end, one will always have:

w=0, so u=0,
while for a free one, it will emerge from the expresdi6) that:

a_a) = 0’ SO % =0.
ot ds

Let:
s=0 and s=I

for the end of the rod. If both ends as fixed thea will satisfy the conditions that are
true foru when one sets:
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in whichh means a whole number. If both ends are free themwhhave:

u=A sinz—ms,

For each of the types of oscillation, there is a pfmnwhichu is equal to 0, which will
then remain at rest; these are tlogles For them, whek means a whole number, one
will have:

k
s=| —,
h
2k -1
s=| ——,
2h
and
2k
s=|——
2h-1

in the three different cases, respectively.

§ 6.

We now drop the assumption that the rod remaingybtradbut make the assumption

that ¢/ is equal to 0 ang is equal to 0. The cases in whigtequals 0 and equals O will
be treated likewise.
It follows from the expressions (15), (6), and (5), witle help of Hamilton’s

principle, that:
2 4
Iua_f+ Eﬁa_gz_ Ei(a’gj =0,
ot A 0s os\ 0s
2
a ?_Ea_a- =
ot 0s
2
s= %g(%j |
os 2\ 0s

0, (16)

These are associated with certain conditions that beusue for the ends of the rasl (
equals 0 and equall), and which can be read off from the expression (6).
One will get a particular solution of the problem thasyust posed when one sets:
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w=0 and o0=0.

(16) will then yield the partial differential equation tér

0°¢ 9*¢
N— =—-Exn —;
e L st
from (6), one must have:
0°¢ 9°¢
— =0 and — =0,
05 os®

for a free end, while for an end that can neitherldégpnor rotate:

f=0 and ﬁ: .
0s

We assume that the rod gives a simple tone of asail numben and set:
&=usin 2mnt, a7)
in whichu means a function &fthat satisfies the differential equation:

du_

ds' Ex,

(2m)? u.

If one introduces a constgnby the equation:

A 2_|[ P *
E_/(l(zm) _(Ij (18)

then its general integral will be:
epsll_i_e—psll eodl_épsﬂ

u:Acos,ICI)—S +BsinF|)—S+C > +D > ,

in which A, B, C, D mean arbitrary constants. The four boundary ¢am determine
three of them, and give a transcendental equatiomp fwhose roots will tell one the
values than can have, when one recalls (18).
Let the end whers (*) equals O be free; the two conditions that havbetdulfilled
will then give:
C=A D=B
here, so:

() In the previous editiorl,appeared in place ef
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s/ | 5 py | Jl_ sl
u= A[cos?—ﬂéj%} B[ sin%ﬁ%}. (19

If the end withs equal td is also free then the equations:
p v P — ab
Ae+e —cosp|+B ¢ e—sinp =0,
2 2
p_aP AP
Ae € +sinp |+ B eo+e—cosp =0
2 2
must be true. They determine the raioB and give the equation:

p s P 2 __p2
[e +Ze —cospj +(e0 2e j +sifp=0

for p; i.e., the equation:

e’ +eP
cosp — =1

Its roots are the values nthat correspond to the intersection points ofdineres whose
equations are:
2

= COSX and = )
y y eX + e—X

A discussion of these equations would show thagual to O is a root, and in fact, a
multiple one, and that the next-higher root woudddmmewhat greater thamrB82, the
following one would be somewhat smaller tham /52, etc., and that the roots would
approach an odd multiple af/ 2 as their order numbers increageequal to 0 would
correspond to an infinite period of oscillation,teere would be no tone; for the deepest
tone of the rod — viz., ilsasic tone- one will have, approximatelp,= 377/ 2; i.e., 4.712.
One will get a more precise approximation when caleulateg from the equation:

COSP = —F——+
p 2 4 g 31/2

which implies thap is equal to 4.730. One can find all roots ofél@ation in question
with arbitrary precision by a similar process.
Thenodesare determined by the equation:

u=0;
if one sets:

S
Z =x
I
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then that will be:

eP-eP &+ &P _(eP+er - LI
5 =Ssinp 5 + COSpX| = 5 —COoSsp 5 + SInpx

From Strehlke’s calculation)( the values of for the first tones are:

Tonel Tone?2 Tone3
0.2242 0.1321 0.0944
0.7758 0.5000 0.3585
0.8679 0.6415
0.9056

If the s equal tol is fixed, while thes equal to 0 end is free then equation (19) will
still be true, but one will have:

p P — ab
A(e +Ze +cospj+ B[eo Ze +sinpj =0,

p_aP AP
A(e 2e —sinpj+ B[é;e +cospj =0

for the determination oA : B andp, which will imply that:

e’ +eP
cosp — =-1.

The smallest positive root of this equation is sehe larger tharvz/ 2 (precisely,
1.875), the following one somewhat smaller thar/ 2, the next one, somewhat larger
than 57/ 2, etc.

When one again setd | equal tox, one will have:

ep_e_p+sin €+ ép+cos X| = ep+e_p+cos € ép+ sinpx
2 P 2 P 2 P 2 P

for the nodes.
We would still like to consider the case in whialhereas the equal to 0 end is free,
thes equal td end maintains a certain periodic motion. Let:

() Dove’s Repertorium der Physik Ill, 110.
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{=asin2mnt, 9 = [Bsin 2Tn t (20)

0s

for s equal tol, in which a, 5, andn are given constants. One also satisfies the partial
differential equation that is true faf and the boundary conditions ferequal to O by
equations (17) and (19), when one calculatéesm (18); the conditions that are imposed
for sequal td give:

p v P — ab
a = A[e +26 +cospj+ B[eo 2e +sinpj,

| eP-e? . e+ e’
— =A -sinp |+ B + cosp|,
pm ( 2 | pj [ 2 pj

which are two equations that determiandB completely, in general. Only when the
determinant of the coefficients AfandB vanishes — i.e., whgmandn correspond to the
tones that the rod can give with one free end and xee bne — willA and B be
undetermined, in the event that the ratio 5 has a certain value that is infinite for other
values of that ratio.

In an entirely similar way, one can treat the dasghich one has the equations:

&=a’cos 21n t, % =[’cos Ztnt

for s equal tol, instead of equations (20). If one sdtequal to the sum of the
expressions that are true 6 both cases then one will know that in the dasavhich
s equald the motion of the rod is:

f=asin2tnt+ a’cos 2rtn t,
%:ﬁsin 2Zrnt+ fB’cos Zint

§7.

We would now like to look for particular solutions of thguations (16) for whiclw
and o do not vanish, and which relate to the transversallatgans ofstrings One calls
a stretched rod a&tring when its lateral dimensions are also sufficientlyaknmn
comparison to the displacement of its parts. Thfag / A enters into the second term
of the first of equations (16); that factor has the opmfethe cross-section. We will
assume that the cross-section is small enough in cesopdo the displacements that are
present that the stated term is infinitely small irmparison to the third term in that
equation. Equations (16) will then become:
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HO¢ 000§ 0%
Eodt? 0sds 0’
,uaa) do
= — 21
Eot2  ds’ (21)
2
Uza_wg(%j
os 2\ 0s
We add the conditions that:
for s=0, £{=0, w=0,
for s=1, =0, w=uw,

in which w’ means a given constant; that expresses the ideadtaehds of the string
are fixed. The value aby determines th&ensionthat is given for it.

2
We would now like to look for those motions for Whl%? Is infinitely small

9° . o . .
compared toa?. With that assumption, it will follow from the &t two of equations

2
(21) thata— Is infinitely small compared tea——5+a 5. However, ifa—aﬁ IS
s ds ds 0% ds ds
do 0°& L t%g
infinitely small compared tea— then aa > must be infinitely large compared S
S S S
and even more infinitely large compared%g¥. Thus, the first of equations (21) will
S 0s
become:
pox _ 9%
———=0—. 22
E ot 05 (22)

2
It follows from this that%— Is infinitely small compared twg—, from which, it will
S S

follow that %—U iIs even more infinitely small compared 20so ois independent o$.
S

From the third of equations (21), one will then have:

i) -

Ea_zf{ﬂ ij(ﬁjrf. (23)
Eor |1 2l%s) [as

and thus, from (22):
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That equation simplifies essentially when the tensiorthie string is large enough,

2
namely, whenwis large enough compared fdhat the second term in the factor%sﬁj

can be neglected in comparison to the first. Befoeegey into a consideration of that
case more closely, we would like to derive certain @aldr solutions of equation (23)
that will be true no matter how small the tensionhige.

We set:

.. ms
g‘:usml— T

in whichm means a whole number, ands a function ot that is to be determined. The

conditions thaté has to fulfill for s equal to 0 and equall will be satisfied by that.
Equation (23) will also be fulfilled when one determindsom the differential equation:

d_zzu =- (m—ﬂj —Eu{ﬂ+(ﬂj uz] (24)
dt I ) u |1 (2

u=acos anh (t—1t) (modk),

Its general integral is:

in whicha andty are two arbitrary constants, whheandk are two constants that depend
uponain a certain way. With that assumption tpione will, in fact, get:

2 2
% :—hzu(l—zf(2+26’:2 uzj,

and that equation will become identical with (24)em one sets:

ox2=_ Mma
mPrra’ +4ld
2
w=MTE orau
4* u
88.

We now turn to a discussion of the case that wantioned before, in which the
2

o L 0°¢ . .
tension in the string is large enough that thediact o in the second term of equation
S

(23) can be neglected in comparison to the first ofihe stated equation will then be:
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ve_EWOE

o> u |l 0s®’

That must be combined with the conditions thaanishes fos equal to 0 and equal to
[

We have already had to treat that same differeetjaation several times, and the last
time was in the investigation of the longitudinal anditsr®scillations of an elastic rod.
Among the cases that were considered there, oneiatithe one that fulfills the same
boundary conditions as the ones here. The partisalations that are true for this case
are also valid here, and what was said there about trebj@osimple tones and the
corresponding nodes is also true here. We would nowtdikeummarize the particular
solutions that we referred to for the transversallg#asing string, in general. In order to
shorten the formulas somewhat, we then introduce omitength and time such that
will equal 77 and the period of a simple oscillation will Befor the basic tone. A
particular solution will then be:

&= sinmtsinms
and another one will be:
&= cosmtsinms

in whichm means any positive whole number. Another solutionthh be:

&= > (Am sinmt + B, cosmt) sinms

in which An, B, are arbitrary constants, and the sum is taken ol/en itbm 1 tooco. If
one sets:

ﬁ:U,

:U,
¢ ot

for t equal to O, in whichd andU " mean functions o$ that are given arbitrarily fos
equal to 0 up te equal torz then that will require that one must have:

U :Z Bm sinms
(25)

U':Z m A, sinms

for that interval. Assuming that the functiodsandU’ can be represented in that way,
the values that must be given to the constAptandB,, can be found easily with the help
of the theorem that whan andm' are two different whole numbers:

joﬂsinmssin msd =0,

and whermm is an arbitrary whole number, one will have:
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. T
j simkmsds= =
0 2

One will prove that theorem easily when one emptbgsfact that:

2 sinmssinm's =cos(h—m)s—cos+m)s,
2 sinms= 1 — cos fhs

With its help, one will find from (25) that:

B = EI”U sinms ds,
Vi 0

mA, = EJ.ﬂu’sinmsds.
T 0

Dirichlet () was the first to prove rigorously thdtandU’ can always be represented
in the way that we imagine when he showed thatirtheite series (viz., a so-called
Fourier series):

Z Cmn Sinms

in which the coefficients are determined from theation:
2¢n .
Cn= —I f(s)sinmsds,
T 0

in whichf(s) means an arbitrary, everywhere single-valuedtefirontinuous function of
s, converges td(s) for all values of between 0 andr.

We mention another form for a solution of the peoab of string oscillations that is
being treated. We preserve the units of lengthtene that we just used — i.e., we again
set the length of the string and the period ohgp# oscillation of the basic tone equal to
71— then the differential equation for the displaeat€ will become:

¢ _ 0%
o>  os”
and its general integral will be:

{=gt+9+y(t-9,

in which ¢ and ¢y mean two arbitrary functions of the relevant argotse It follows
from the condition thaf always vanishes farequal to O that:

0=¢ (1) +w(,

() Dove’s Repertorium der Physik I, 152; Crelle’s JourBal, 4, pp. 157.
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SO

=g+ +y(t-9,

and it follows from that condition thdtis always equal to 0 fa&requal torrthat:
pt+n=¢(t—7n
¢ (x+21)=p(X);

or

i.e., ¢ is a periodic function of period72 ¢, and therefore, will be determined
completely wheng(x) is known for the interval frond = — rto £ = + 7. Knowing the
initial state of the string will lead to that. Onoere, let:

0¢
=U, —=U]
¢ ot
for t equal 0, in whichd andU " mean functions od that are given fos equal to O up ts
equal torz One must then have:
U =¢0O-2¢(>9,
U'=¢"(9-¢"(-9

for that interval, in whichg’ means the differential quotient of the functignwith
respect to the argument. If one multiplies the &gtation byds and integrates it then
one will obtain:

[urds=g@©+4(9,

in which the lower limit of the integral is an arbityaconstant, and then furthermore:

@ () is determined (up to an additive constant) by these equdtiotise interval frons

= —-mtos =+ 7z and will then be determined in general (up to an additivesteat).
However, its value has no influence on the valué,afince the latter is equal to the
difference of two values af .



