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 If a system of n wires 1, 2, 3, … is given that are connected to each other in some way, and if 

an arbitrary electromotive force exists in each of them then if one wishes to determine the 

intensities of the currents that flow through the wires I1, I2, I3, …, one will find the necessary 

number of equations by employing the following two theorems (1): 

 

 I. – If the wires k1, k2, … define a closed figure and wk denotes the resistance of the wire k, 

while Ek denotes the electromotive force that exists in it (positively-directed in the same sense as 

Ik), then in the event that Ik1, Ik2, … are all regarded as positive in one direction, one will have: 

 

wk1 Ik1 + wk2 Ik2 + … = Ek1 + Ek2 + … 

 

 II. – If the wires 1, 2, … come together at a point and 1, 2, … are all considered to be 

positive at that point then: 

1 + 2 + … = 0 . 

 

 I would now like to show that the solutions of the equations that one obtains by applying those 

theorems for I1, I2, I3, …, while assuming that the given system of wires cannot be separated into 

several other complete ones, can be given in general in the following way: 

 Let m be the number of crossing points that are present (i.e., the points at which two or more 

wires come together), and let  = n − m + 1.  

 

 The common denominator of all quantities I will then be the sum of those 

combinations of w1, w2, …, wn into  elements wk1, wk2, …, wk that have the 

property that no closed figure will remain after one removes the wires k1, k2, …, k 

and 

 

 
 (1) Bd. 64, pp. 513, these Annalen.  
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 The numerator of I is the sum of those combinations of w1, w2, …, wn into  – 

1 elements wk1, wk2, …, wk that have the property that one closed figure will remain 

after removing k1, k2, …, k, and  will appear in it. Each combination will be 

multiplied by the sum of the electromotive forces that are found in the associated 

closed figure. The electromotive forces are then regarded as positive when they are 

in the same direction as the one that makes I positive. 

 

 For the sake of ease of understanding, I would like to devote an individual section to the proof 

that I give to that theorem. 

 

1. 

 

 Let  be the smallest number that gives how many wires one must remove in order to destroy 

all closed figures.  will also be the number of mutually-independent equations that one can derive 

by applying Theorem I then. 

 One can, in fact, exhibit  equations that are mutually-independent, and each one of them that 

follows from Theorem I can be derived in the following way: 

 Let 1, 2, …,  – 1,  be  wires such that no closed figure remains after they are removed. One 

closed figure will then remain after removing  – 1 of them. One then applies Theorem I to the 

closed figures that remain when one removes: 

 

   2, 3, …,  

  1,  3, …,  

  …………………… 

  1, 2, 3, …,  − 1, 

in sequence. 

 One of the  equations that are constructed in that way can be a consequence of the other ones, 

since each of them contains one unknown that is not generally present in all of the others; the first 

one includes I1, the second one, I2, etc. However, one can also construct another equation from 

those equations that can be derived with the help of Theorem I, because it must be possible to 

construct an equation that follows from a closed figure that is composed of several others from the 

equations that follow from the latter (by addition or subtraction), and as we would like to show, 

each closed figure can be composed of those  figures. The totality of closed figures (namely, the 

given system, which we would like to denote by S) can be decomposed into ones that include the 

wire  and ones that are included in the system S, which will arise from S when the wire  is 

removed. If we assume that all figures that belong to the second class can be composed of the first 

 – 1 of those  figures then we will see that each figure in the system S can be composed of those 

 figures, because an arbitrary figure that includes  can be composed of one particular one that 

includes  and ones that do not include  . However, the assumption that was made about the 

system S can be once more reduced to a similar one in regard to S, if S is the system that arises 

from S when one removes  and  – 1, namely, to the assumption that all of the closed figures that 

are included in S are composed of the first  – 2 of those  figures. Upon continuing that 
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argument, we will finally come to the system S(−1). Since it includes only one closed figure, the 

validity of the assumption that we must make in regard to it in order to recognize the truth of our 

assertion is obvious. 

 

2. 

 

 Since Theorems I and II must produce the number of equations that are necessary for one to 

determine I1, I2, …, In , from what we have proved, they must be the following ones: 

 

 1 1 1

1 1 1 2 2 2 n n nw I w I w I  + + +   = 1 1 1

1 1 2 2 2 2E E E  + + + , 

 

 2 2 2

1 1 1 2 2 2 n n nw I w I w I  + + +  = 2 2 2

1 1 2 2 2 2E E E  + + + , 

 ……………………………………………………………………. 

 

 
1 1 1 2 2 2 n n nw I w I w I    + + +  = 

1 1 2 2 2 2E E E    + + + , 

 

 1 1 1

1 1 2 2 n nI I I    + + ++ + +  = 0 , 

 

 2 2 2

1 1 2 2 n nI I I    + + ++ + +  = 0 , 

 …………………………………….. 

 

 
1 1 2 2

n n n

n nI I I  + + +  = 0 , 

 

in which some of the quantities  are + 1, some of them are – 1, some of them are 0, and  has the 

same meaning as before. 

 It emerges from this that the common denominator of the quantities I (i.e., the determinant of 

those equations) is a homogeneous function of degree  in w1, w2, …, wn, which include each 

individual w only linearly and includes only numbers besides the w’s. We can also express that 

result in the following way: The common denominator of the I’s is the sum of the combinations of 

the w1, w2, …, wn into those  elements with each combination multiplied by a numerical 

coefficient. One likewise sees that the numerator of I is the sum of the combinations of w1, w2, …, 

wn into those  – 1 elements with each combination multiplied by a linear homogeneous function 

of the quantities E1, E2, …, En whose coefficients are numbers. 

 

 

3. 

 

 In order to determine the numerical coefficients of the denominator and numerator of the 

quantities I, we remark that it makes no difference whether we make the resistance w =  or cut 

through or remove the wire  . Thus, under the substitution w = , the expressions for the I’s must 

go to the solutions of those equations that we will obtain by applying Theorems I and II to the 
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system of wires that arise from the given one when we remove the wire  . I itself must vanish 

for w = . 

 We would like to divide the numerator and the denominator of the I’s by w1  w2  w−1 and 

then set w = , w = , …, w− =  ; I will go to (I) in that way. If we then denote the function 

of the E’s that is multiplied by  

w1  w2  w−1 

 

in the numerator of I by 
1 2 1, , ,A





   −
 and denote the coefficients of w1  w2  w−1 in the 

denominator by a1 , a2 , …, a−1 then we will have: 

 

(I) = 1 2 1, , ,

1,2, , 1, 1,2, , 1, 1 1 1,2, , 1,n n

A

a w a w a w





  

      

−

− − + + − +  + + 
 . 

 

As a result of the remark that was made: 

(I) = 0 

when  is included in 1, 2, …,  – 1, and: 

(I) = I
  

 

when  is not included in 1, 2, …,  – 1, where I
  denotes the intensity of the current that will 

flow through the wire  when the wires 1, 2, …,  – 1 are removed. 

 We imagine that we have exhibited the equations for the determination of I
 , 

1I+
 , …, nI   that 

are produced by applying Theorems I and II to the remaining system of wires. Theorem I will then 

imply  mutually-independent equations. The common denominator of the quantities I will then 

be a function of degree  in the w , w+1 , …, wn , and their numerator will be a function of degree 

 – 1 relative to the same arguments. Due to the definition of ,  will either be equal to one or 

greater than one. If   > 1 then in order for the equation (I) = I
  to be true, either the numerator 

and denominator of I
  would need to have a common factor of degree   – 1 relative to w , w+1, 

…, wn , or one would need to have (I) = 0 and I
  = 0, or finally (I) would need to assume the 

form 0 / 0 . If one of the quantities (I) is represented in the form 0 / 0 then all of them must have 

that form, since they have a common denominator, and none of them can be . Should that case 

not occur, then the denominator and numerator of each I would need to have have a common 

factor of degree   – 1, and indeed those factors must be the same for all of the quantities I. 

However, that is impossible, as one can show in the following way: 

 We assume that there is a factor of the indicated kind that includes the quantity w .  must 

then be a wire that lies in a closed figure, since otherwise w could not enter into the equations for 

I , In , … at all. Since the numerator and the denominator of the quantities I are linear with respect 

to each w, we will obtain expressions for them by taking away those factors that are free of w . If 
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we substitute them in one of the equations that includes w I 
  then it will become an identity. By 

partially differentiating with respect to w, we will get: 

 

I
  = 0 . 

 

However, is might always be possible for that equation to not be true. Should that be the case then 

it would also need to remain correct when one sets arbitrarily many of the quantities w to , i.e., 

when one removes arbitrarily many of the wires. However, if one removes enough wires that only 

one closed figure remains that includes  then it would be impossible for I
  to vanish for arbitrary 

values of the quantities E. 

 We then see that when  > 1, (I), (I+1), …, (In) must be represented in the form 0 / 0, or since 

we have found that (I1) = 0, (I2) = 0, …, (I−1) = 0, when more than one closed figure remains after 

removing the wires 1, 2, …,  − 1, the product: 

 

w1  w2  w−1 

 

can enter into either a numerator or a denominator of the quantities I1, I2, …, In . 

 

 

4. 

 

 We would now like to seek to determine the factors with which the product w1  w2  w−1 in 

the numerator and in the denominator of the I’s will be multiplied if the condition that only one 

closed figure must remain after removing 1, 2, …,  − 1 is fulfilled. 

 The remaining figure includes the wires 1, 2, …,  . If  does not occur among them then: 

 

I
  = 0 , 

and if  does occur among them: 

I
  = 1 2

1 2

E E E

w w w

  

  

+ + +

+ + +
, 

 

in which E1, E2, … are considered to be positive in the direction that makes I positive. 

 The denominator of that value can differ from the denominator of the quantity (I), i.e., the 

expression: 

a1, 2, …, −1,  w + a1, 2, …, −1, + w+ + … + a1, 2, …, −1, n wn , 

 

only by a numerical factor. Therefore, all of the quantities a1, 2, …, −1,  , a1, 2, …, −1, + , … must 

vanish, except for: 

a1, 2, …, −1,  , a1, 2, …, −1,  , …, a1, 2, …, −1,  , 
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and they must be equal to each other. We conclude from this that the coefficient of the combination 

w1  w2  w in the denominator of the quantities I can be non-zero only when all closed figures 

will be destroyed by removing the lines 1, 2, …,  , and that all combinations that fulfill that 

condition and which include  – 1 common factors w must have the same coefficient. 

 With the help of that, one can prove that any two combinations: 

 

w1  w2  w and w 1  w 2  w  

 

in the denominator of the I’s must have the same coefficients when all closed figures are destroyed 

by removing the wire 1, 2, …,  , along with the wire 1  , 2  , …,
 . 

 In order to be able to follow through on that proof, we preface it with the following remarks: 

 All closed figures might be destroyed by removing the wire 1, 2, …,  . Each of those wires 

must occur in at least one closed figure then. 

 However, at least one of those wires must occur in each closed figure: We then know of the 

wire  that it lies in a closed figure, so it must lie in the same closed figure as at least one of the 

wires 1, 2, …,  . 

 Furthermore, each of the wires 1, 2, …,   must occur in a closed figure in which the other 

 – 1 wires do not occur; e.g.,  will lie in the ones that remain after removing 1, 2, …,  −, 

and which we would like to denote by f . If the wire   also lies in f then all closed figures will 

also be destroyed by removing 1, 2, …,  −,  . One easily sees with the help of those remarks 

that when we select any closed figure f,  – 1 wires can always be found such that f remains as the 

only closed figure after removing those f. Namely, if, say, 1, 2, 3 are present in f from among 

the wires 1, 2, …,  , and if 2   is a wire that occurs in f2 , but not in f, and 3   is a wire that 

occurs in f3 , but not in f then 2  , 3  , 4, …,  will be wires of the desired kind. 

 We would now like to carry out that proof in such a way that we assume that the coefficients 

of two combinations of the desired kind are equal to each other when they have  common factors 

w in common and then prove that the coefficients of two combinations that have only  – 1 

common factors must also be equal to each other. If we have succeeded in doing that then we will 

have exhibited the truth of our assertion. 

 The form of the proof will remain the same no matter which value of  we choose in it. We 

would therefore like to follow it through for only one value of , namely,  = 3. We would then 

like to prove that the two combinations: 

 

w1  w2  w3  w  and w 1  w 2  w 3  w  

 

must have the same coefficients. 

 In the system of wires that arises from the given one when one removes 1 and 2 , none of the 

closed figures can be destroyed by removing less than  – 2 wires. It will be destroyed by removing 

3, 4, …,  , and it will follow from the removal of 3  , 4  , …,   that 3   will lie in the same 

closed figure with at least one of the wires; we shall assume that it is 3 . It will remain as the only 
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one when one removes 4  , 5  , …, 
 . It will then remain as the only one from the original system 

when one removes 1, 2, 4  , 5  , …, 
 . It follows from this that the two combinations: 

 

w1  w2  w3  w 4 w 5  w  

and 

w1  w2  w 3  w 4 w 5  w  

 

which have  – 1 common factors w, must have the same coefficients. However, from our 

assumption, the combinations: 

 

w1  w2  w3  w4  w  and w1  w2  w3  w 4  w  

w1  w2  w 3  w 4  w   and w1  w2  w 3  w 4  w  

 

will also have the same coefficients pair-wise. Therefore, the coefficients of: 

 

w1  w2  w3  w4  w  and w1  w2  w 3  w  

 

will also be equal to each other. 

 In that way, we have proved that the common denominator of the I’s is the sum of those 

combinations of w1, w2, …, wn into  elements w1  w2  w  that have the property that no 

closed figure will remain after removing the wires 1, 2, …,  . That sum is multiplied by a 

numerical coefficient. We can then set the numerical coefficient equal to unity and then determine 

the numerator of the I’s afterwards. 

 Now, that numerator is very easy to find. Namely, it will follow from the equations: 

 

(I) = 0  and (I) = I
 , 

 

the first of which is true when    – 1 and the second, when  >  – 1, that: 

 

1,2, , 1A

−  = E1 + E2 + … + E 

 

for the case in which  occurs among 1 , 2 , …,  and: 

 

1,2, , 1A

−  = 0 

for the opposite case. 

 The coefficient of the term w1  w2, … w−1 , which we have shown previously can be non-zero 

only when a single closed figure remains after removing 1, 2, …,  – 1, is then zero when  does 

not occur in that figure. If  does occur in it then it will be equal to the sum of the electromotive 

forces that are found in it. It is considered to be positive in the direction that makes I positive. 
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5. 

 

 In order to have proved our theorem as we have expressed it, we must now show that  = n – 

m + 1. That assertion is true only when the given system of wires does not decompose into several 

mutually-independent ones, while the considerations that were made up to now do not require such 

an assumption. 

 As we have seen,  is the number of mutually-independent equations that can be derived with 

the help of Theorem I. The number of mutually-independent equations that Theorem II implies 

must then be n –  . However, it can be shown that under that assumption, that number will be m 

– 1, from which it would then follow that  = n – m + 1. 

 We cannot derive more than m – 1 mutually-independent equations with the help of Theorem 

II, because if we apply it to all m crossing points then each I will occur twice in the equations that 

arise in that way, once with the coefficient + 1 and once with the coefficient – 1. The sum of all 

equations will then give the identity 0 = 0. However, the equations that one obtains by applying 

that theorem to m –1 arbitrary crossing points are mutually-independent, because they have the 

property that when we select arbitrarily many of them arbitrarily one or more of the unknowns will 

occur in them just once. Namely, if we let (, ) denote a wire that connects two of the crossing 

points 1, 2, …, m to each other – say,  and  – then the unknown I(1, ) will occur only once in 

the equations that are derived by considering the points 1, 2, …,  when one of them – say, 1 

– is connected to another other , along with the points that occur among 2, …,  . However, one 

of the points 2, …,  must be connected with a point , along with other ones, when the wires 

that connect the points 1, 2, …,  to each other do not define a closed system. 

 

_____________ 

 

 Allow me to make a few remarks in regard to the theorem that was just proved. 

 If one arranges the terms in the numerator of I according to the quantities E1, E2, …, En then 

the coefficient of E will be the sum of the combinations (some of which are positive and some of 

which are negative) of the w1, w2, …, wn into  – 1 of them that will occur in the denominator of 

the I’s multiplied by w , as well as w . They are, in fact, precisely those combinations w1  w2 

 w − that have the properties that only one closed figure will remain after removing the wires 

1, 2, …, − and that  will occur in it, as well as  . w1  w2  w − is taken to be positive 

when the positive direction of I coincides with the direction of E in the remaining figure and 

negative in the opposite case. 

 It emerges from this that, among other things, when we select two wires from an arbitrary 

system, the current intensity that that is produced in one of them by an electromotive force in the 

second one will be precisely the same as the intensity of the current that is produced in the second 

one by an electromotive force in the first one that is just as large. 

 As one easily sees, the condition that we have found for the occurrence of a combination in the 

denominators of the I’s can also be expressed in the following way: The combinations w1  w2 

 w occur when the equations that produced Theorem I are independent of I1, I2, …, I . It 

can be shown that this condition agrees with the one that no equation exists between I1, I2, …, 
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I or some of those quantities that can be derived from the equations that arise by applying 

Theorem II. That remark frequently makes it easier to exhibit the combinations that are missing 

from the denominator of the I’s. For example, if the wires 1, 2, 3 intersect at one point, 3, 4, 5, at 

a second, and 5, 6, 7, at a third [as in Fig. 4, Tab. V (†)], then all of the combinations that include: 

 

  w1  w2  w3  , w3  w4  w5  , w5  w6  w7 , 

  w1  w2  w4  w5  , w3  w4  w5  w7 , 

  w1  w2  w4  w6  w7 

will be missing. 

 The denominator of the I’s for the combination of wires that is represented in Figure 5, Table 

V is therefore the sum of all combinations of w1, w2, …, w6 into three elements, with the exception 

of the following ones: 

 

w1  w2  w4 , w1  w3  w5 , w2  w3  w6 , w4  w5  w6 . 

 

_____________ 

 

 

 
 (†) Translator: The figures were not available to me at the time of translation. 


