Excerpted from G. Kirchhoffyorlesungen tUber mathematische Phygiki: Mechanik, Teubner, Leipzig,
1897. Translated by D. H. Delphenich.

L ectur e twenty-six

(Friction in an incompressible fluid. Presentation of diféerential equations and boundary conditions.
Flow of the fluid through a long, cylindrical tube. Introductiof the assumptions that the fluid adheres to
a solid body with which it is in contact and that tledoeities are infinitely small. Uniform rotation af

ball in the fluid around a diameter or an ellipsoid of tiotaaround its symmetry axis in the case in which
the fluid is externally unbounded or bounded by a concentrierigah surface (confocal ellipsoid, resp.).
Calculation of the rotational moment of the force timaist act upon the ball or the ellipsoid. Resistance on
a ball that advances uniformly in the fluid. Rotatioosdillations of a ball. Oscillations of a ballwhich

the center goes back and forth along a line.)

81

We would now like to conclude our hydrodynamical invesioget by considering
certain motions of an incompressible fluid that areustiiced byfriction. We have
already presented the differential equations for sudionm®in the eleventh lecture. We
again letu, v, w denote the components of the velocity at the paing, (2) at the timet,

set:
—p- % @ Y,=7,=—k 6v ow
ox’ 62 6y
oy ox 0z
0z 6y 6x

in whichk is a constant of the fluid that is required by thetifsh, p means an unknown
function ofx, y, z t that expresses the components of the acceleraomasdone in the
fifteenth lecture. When one assumes that no forcesi@on the parts of the fluid and
denotes it density by, the differential equations will then be:
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Certain conditions must be fulfilled on the outer swefatthe fluid, and thus, on the
surfaces at which it contacts other bodies, which casoli or fluid. Some of these can
be gathered from § 6 of lecture ten and 8 4 of lectieeeal If we letds denote an
element of the contacting surfaces andnleienote the normal tdsthat is directed into
the interior of the fluid considered then the comptsmef the velocities of the particles
in the direction oih must have equal values on both sidesl®fwhile X,, Y,, Z, must
have equal values for those particles. However, thesditions are not sufficient to
determine the solutions of the differential equationsd2)3); another hypothesis is
necessary in order to extend them. A suitable hypottiestidas proved itself in certain
cases is that, v, w themselves possesses the same values on both sidgssofthe
particles of the two bodies always remain in contaceahey are first in contact. We
cite a more general hypothesis that is established. eWeferu, v, w to the particles of
the fluid in question that lie oas and let refews, vi, wa refer to the particles on the other
side ofds as mentioned, one then has:

(u—=uy) cos aX) + (v—vy) cos qy) + (w—wy) cos (2 =0.

We can refer ta —u;, v—Vvi, W—wW; as the components of thelative velocityof the
particles in question and this equation will then expressdéma that this relative velocity
is perpendicular ta, and thus parallel tds We think of the pressure that is exerted
uponds— namely, the pressure whose components along the cderdikes ar&, , Y,

Z, — as being divided into two components, one of which islieata n, while the other

is parallel tods From the hypothesis that we spoke of, the latterhaile the opposite
direction, like the relative velocity, and is proporabro it. One finds the analytical
expression for this hypothesis by the following argumene Gas:

Xn €OS (1X) + Y, cos fiy) +Z,cos 2 =0

for the component of the pressure that is exerted dgon the direction oh. If one
multiplies this expression by cosxj, cos Qy), cos (2, resp., then one will obtain the
projections of that component along the coordinate axesnel subtracts these products
from X, , Yn, Z, then one will have in these differences, the projestionto the
coordinate axes of the component of the pressure ttetiponds that is parallel tals
From the hypothesis that was expressed, one will tage: h

Xn — [Xn cos X) + Y, cos Qy) + Z, cos (2] cos fiX) = A (ur —u),
Yn — [Xn cos 0X) + Y, cos Qy) + Z, cos Q2] cos qy) = A (vi —V), (4)
Z, — [Xn cos 0X) + Y, cos Qy) +Z, cos (2] cos (i = A (wp —w),
in which A means a constant that depends upon the nature of tharilliithe bodies that
it contacts.
If one assumes that is infinitely large then equations (4) will lead tcetbpecial

hypothesis that was mentioned before by whick u;, v = vi, w = wi. The other
boundary condition is that = 0. Equations (4) will give:
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Xn:Yn:Zy=cos (X) : cos Qy) : cos (2
for it, as one sees when one divides it by eo& €os Qy), cos (2 and subtracts any two
of them from each other. The pressure whose comporeeak, , Y,, Z, is then a

perpendicular one. That must be the case when the thatl is contacted is a fluid in
which one can neglect friction.

§2.

We would now like to look for particular solutions tfe equations that were
presented in the previous 8. We first assume that:

u=0 and v=0;

I.e., that the motion is everywhere parallel to #taxis. The first, second, and fourth of
equations (3) will then become:

@: 0, @: 0, a_\N: 0;
0x oy 0z

i.e.,pis independent of andy, andw is independent of The third of equations (3) will

become:
ow adp 9°w 9°w
—+ -k + =0,
Mot "oz [axz afj

from which, with the remark that was just made, it feilow that:

op _ 0°w  9°w ow_
0z ox- oy ot

in which c is independent of, y, z, and thus a function of the one variable We
specialize the case in question even further by assuimgite motion is stationaryg;
will then be a constant, and:

2 2
dp _ K 6w+aw . 5)
x> oy’

According to these equations, a fluid can move in afixed immobile cylindrical tube
that is parallel to the-axis. We now define the boundary conditions that must be
fulfilled on the internal surface of such a tube. &arcase, (1) will imply that:

XX:p, YZ:Zy:_k%N,
y
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ow
Y = , ZX = XZ == k —
y=P X
Z;=p, Xy =Yx =0,
and since one has:
cos 02 =0,
it will follow from equations (7) in lecture eleven that
ow ow
Xn =p cos (X, Yn =p cos qy), Zhn=—-Kk a—cos(nx)+a— cosfy),
X y

and
Xn €OS (1X) + Y, cos Qy) +Z, cos (2 =p.

One must seti; =v; =wy = 0 in equations (4), which we would like to apply as boundar
conditions. The first two of them will then be fllfd immediately, and the third one
will give:

k a—Wcos(nx)+a—W cosqy) = Aw,
0x oy

or, what amounts to the same thing:

ow A
—=W. 6
on k ©)

We now assume that the cross-section of the tubeiixle of radiudk whose center lies
in thez-plane, and that the motion is the same at the s@tande from that axis. If one

sets:
p=X+y

then the second of equations (5) will become:

dw, 1 dw_c
dp* pdp k'

from which it will follow that:

lc ,
w=—— +Alnp+B,
4k'0 P

in which A andB mean arbitrary constants. The first of theseghmast vanish, since
cannot become infinite fg@ = 0. The second one is implied by (6); i.e., iy tondition
that one must have:

dW: i

dp~ k
for p=R. It will then follow that:
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B=- LR—L RZ,
21 &
SO
W:—i(R2+2—k R—pzj.
4K 2

One finds the constantfrom the first of equations (5) when the valugpa$ known for
two values of. If p=po for z=0, ando = p, for z= A then:

c= pll_ﬂ)_

If one letsQ denote the volume of the fluid that flows througlcross-section in the
direction of thez-axis in a unit time then:

R
Q= 277'[0 wpdp,
SO

e E
Q=m 8K (R +4/] jo (7)

This result is very close to valid for the casavimich a gravitating fluid flows through a
very long, thin, horizontal tube from a voluminowessel into the atmosphere. One can
choose the cross-sections 0 andz = | to be at distances from the two ends of the tube
that are large in comparison to its diameter, malkin comparison td, and sep, equal
to the pressure that is present in the tube wheffidfd is at rest, ang is the pressure of
the atmosphere.

Measurements of the discharge volume have bedorpwd by Poiseuille for an
arrangement of the type described; he found that:

Q:Kpo_nR4
| ’

in which K means a quantity that remains unchanged wbeh or R are changed. A
comparison of this equation with (7) then leadsthe conclusion thal should be
regarded as infinitely large, so one must assuratettie fluid particles that contact the
wall of the tube will adhere to it. The valuestioét were found foK then further allow
the value ok to be calculated for the fluids that were subjgdtethe tests.

§3.

We would like to simplify the further considerat®that we would like to make of
the friction in a fluid by the assumption that théd particles that contact a solid body
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adhere to it and the assumption that the velocitiesndiretely small. The latter will
imply that equations (3) will become:

,U%'*'@ = kAu,

ot o0x

,uﬂ+@:kAv,

ot oy
(8)

If the motion is stationary then they will go to:

@ =k Au, @ =kAv, @ =k Aw,
0x oy 0z

(9)

One solution of these equations is:

M = const., U:M, v:—a—W, w =0, (10)
oy ox

if W satisfies the equation:
AW = const.

’ r:’X2+y2+ZZ’

in whichc means a constant, and get a particular soluti@uodifferential equation in:

We can then set:
W=

=|o

p = const., u:—r—y, V=—X, w=0. (11)

The motion that it represents is easy to visualiZensiderations that first carried out in §
5 of lecture four show that the point for which:

u=-, V= X, w=0, (12)
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in which ¢ means a constant, do not change their relative postiothshus move as if
they belonged to a solid body that rotates around-tas with an angular velocity.
As a result of equations (11), conditions (12) will béiltet for the points of a spherical
surface that is described about the coordinate origin twélarbitrary radius when one
sets:

c

rs3’

[//:

If a solid ball whose outer surface has the equatismr; is found in the fluid and
which rotates around theaxis with the constant angular velociy then equations (11)
will represent a possible motion of the fluid when eats:

c= l/ll r13
in it.

If the fluid is bounded by two concentric spherical stefawhose equations are r;
andr =r,, the first of which is the smaller one and rotatesuad thez-axis with the
constant angular velocitys, while the second one is the larger and remains atthest,
equations (10) will give a possible motion when one sets:

W= =2 (¢ +Y)

=0
Nlo

in them, and determines the constdnedc suitably. With that assumption &M, one
will have:

u:—(r_cs+bjy, v:(r—iﬁbJX, w=0, (13)

and the boundary conditions will be fulfilled when onekesa

4[/1:£+b, 0:%+b;

1 1
cl=-= | =t.
(rls r23j wl

Should the ball of radiug rotate a velocity that remains the same, then atioogl
momentM must act upon it in the sense of the motion thatgisgakto the rotational
moment of the pressure that is exerted upon the flifidls is an element of the outer
surface of the ball, andis the normal tals which coincides with the lengthening of the
radius, then one will have:

it will then follow from this that:

M= [ ds(xY - yX). (14)

However, one has:
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Yn:E(xYX+yYy+ZYz),
r

Xo= 2 (006 +y X%, +2 %),
and from (1) and (13):

:p—6k0%/, Y,=2,= 3<c;(—52,
=p+okc Y,  Zc=X,=-3keZ, (15)
r r
Xz_yz
Z,=p. X == ke,

in which equations, one sets r; everywhere. That will imply:

Yn_1p+3_kcx anép—:g_ijc
r r r r
SO:
M = 3—k°jds(>8+ ),
or, since:

arr
x* ds= ds= | Z2ds=—r*,
] | yas=| 2
one will have:
M = 87kc.

Sincer does not enter into that expression, it will sufieralteration when one sats
1.

Equations (10) can also be adapted to the case in whadiutti is bounded by two
confocal ellipsoids of rotation whose rotational adéfines thez-axis, where the outer
one is at rest and the inner one rotates around-&lxés with constant angular velocity
(1. We write the equation for the inner ellipsoid:

xX*+y* 7
2+

& d

=1, (16)

and letQ denote the potential of the mass 1 that fills up theedamainded space with an
equal density, relative to the external poirt \, 2. In the case where the fluid is
regarded as externally unbounded, which is the case thshalleconsider next, one can
satisfy the boundary conditions by setting:

W=cQ,
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and determine the constamtin a suitable way. As a result of equation (3) ofdex
eighteen, one has, in fact:

X+y 7

1- 2 T2
:§I“d)| a+tA ¢ +4
4% (@A) G HA

in which o means the positive root of the equation:

2 2
X+y z

= ]_;

d+0 G+o

equations (10) will then give:
u=-yy, V=YX, w=0,

when one makes:

3 (e dA

Y=—c .
2 (& + )% ¢ +4

Thus, the points of the fluid that lie on an ellipsdidttis confocal to the ellipsoid (16)
and is determined by a value afmove as if they adhered to a solid body that rotates
around thez-axis with the angular velocity; the value ot is then determined from the
equation:

3

lﬂl:EC.[

@ dA
JCEP RSV

(17)

Equation (14) is also true here for the rotational manvenhat must act upon the
ellipsoid in order to make it rotate uniformly. Its cddtion will be eased by the
following remark, which is connected with the definitidvat was given in lecture eleven
of the pressure forces in equations (1) and (2). If we applyast of these equations to
an arbitrary part of the fluid then we will obsenteatt the motion is stationary, the
velocity is infinitely small, and forces do not act ugbat part of the fluid, then we will
obtain:

jds(xYn—y X)) =0,

in which ds means an element of the outer surface of the chosmenandn means the
normal todsthat is directed to the interior. Now, let thattgsr bounded by the ellipsoid
and an infinitely-large, concentrated spherical surfdoe;remark that was made above
will then show thaM is equal to the integral:

[ dstx Yo —y %)
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when it is taken over the infinite spherical surface] mis understood to be the normal
that coincides with the extension of the radius. Hamweequations (15) are also true
here at infinity; one therefore also has:

M = 8rrkg, (18)

in whichc must be determined by (17), though.
If the fluid is externally bounded by the ellipsoid-ast:

2 2
X+2y +é:1’
& G

which is confocal to the ellipsoid (16) such that:
al-af =ci-¢,
then one must set:

w:cn—g(x2+y2),

and determine the constabtandc in such a way that:

3 ¢ dA
=—cC + Db,
wl 2 .[0 (812+A)2\/C12+A
3 (= dA
0 =—c + Db,
2% (8 + )7/ G+

from which, it follows that:
3 &

$1:—CI d +b.
250 @+ A

If one computes the rotational momeavtthat must act upon the inner ellipsoid in order
to obtain uniform motion with the help of equation (14@rtithe constanb will not
appear, and one will find that it is expressed in terfrthe constant in precisely the
same way as when the fluid is bounded externally. efbe, equation (18) will also be
true here, when the value ofn (19) is assumed to be true.

(19)

§4.

It follows from equations (9) that:
Ap=0.

If one has chosep according to this condition and determined a functidhat satisfies
the equation:
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1
AV= —p,
kp

then one will fulfill equations (9) when one sets:

~ov ., oV _ oV ,
=—+Uu, VvV=—+V, W= —+Ww
ox oy 0z

and chooses’, v/, w’, such that:

Au’'=0, Av’'=0, Aw’ =0,
and:
ou ov ow _ 1

4 ==

ox 0dy 0z k
One can then make:

ol
1p:2c—r, u’=0, v'=0, w=- 2
k 0z r
and since one has:
AL:E’
2
one will have:
1
0 or
V=az+b-—-L+c—,
z 0z
and
XZ XZ
ke
v=- 32t (20)

in whicha, b, ¢ mean arbitrary constants. They can be determimsdch a way that for
a value of that might be calle®, one will have:

u=0, v=0, w=0.
The equations:
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serve this purpose, from which, it will follow that:

4"’ 4

b

Equations (20) then represent the motion of a flbat flows to infinity everywhere with
velocity a in the direction of thez-axis, and in which, a ball that is described & th
coordinate origin with radiuR is at rest.

Let Z be the force that must be exerted on the ball endinection of thez-axis in
order to keep its position; one then has:

z:jds;:deS(xzx+yzy+zzz), (21)

in whichds means an element of the ball that is describedrarthe coordinate origin of
radiusr, and one sets=R. However, an arbitrarily larger value can be em®rr than
this one. It then emerges from the third of equreti(1) in lecture eleven that:

j dsz, =0,

in whichds means an arbitrary part of the fluid. There isadmantage to choosingto

be infinitely large in equation (21). Namely, acen neglect the terms that are endowed
with the factorb in the calculation oZ,, Z,, Z, from equations (1) with the help of (20)
here. For an infinitely-large one finds that:

X7 yZ z

ZX:—6kC—5, Zy:—6kCF, ZZ:_6kCF,
r

and therefore that:
Z=- 6kcri4j. Z°ds
=-8mkc or =-67kRa (22)

From a remark that we have already made many tithes equations that were
developed here will also be valid in the case wlibeecoordinate system to which they
refer advances in some direction with a velocitgttremains the same, rather than
remaining at rest. If we let it advance in thesdiion of thez-axis with a velocity of -a
then the fluid will be at rest at infinity, and thall of radiusR will move in it in the
direction of thez-axis with velocity -a. Equation (22) will then tell us thresistancethat
this ball then suffers.
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§5.

We would now like to make two applications of equatit@)s which are true for non-
stationary motions, that refer to the oscillatioatta ball can experience in an externally-
unbounded fluid under the influence of certain forces.

The aforementioned equations will be satisfied whensetse

p = const.

and chooses, v, win such a way that one has:

Ea_u =Au, E% = Ay, Ea_VV =Aw,
k ot k ot k ot

u, ov 0w _

ox dy 0z

ow ow _
u= PN - TS W= 01
oy 0x
andW is determined by the equation:
KW _ Aw, (23)
k ot

We now assume thad is a function of the two variabldsandr, wherer once more
means the quantity x* + y*+ z* ; we will then have:

10w _ 10w

: ——X, w=0.

ror y ror

These equations represent a motion for which the pthatslie at a distance offrom
the coordinate origin move as if they were attacheaidolid body that rotates around the
z-axis with angular velocity when one sets:

1w

Y= o (24)

We can then assume that one finds a ball in the Widndse outer surface 1s= R, and
which rotates around tteaxis with an angular velocity that is equal to the vahat one
obtains for the expression that giwgsvhenr = R.

If M is the rotational moment of the pressure that balimagine exerts upon the
fluid then equation (14) will also be true here, andlautation that is entirely similar to
the ones that we connected with this equation will:give
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8ﬂk“ 9 (1Mj forr =R

3 or\r o

Now, let# be the angle through which the ball rotates frorerain position in the time
such that:
(jj—f— 7] for r=R (25)

Furthermore, letM’ be the rotational moment of the forces that actnugee ball, in
addition to the pressures that are exerted upofitite and letK its moment of inertia;
one will then have:

d*9

K
dt?

=M’ -M.

WhenM'is given, these equations define a boundary ciondibr the functiorV, which
has been defined only by the partial different@gi@ion (23), up to now. Having set it,

let:
=9,

in which a should be an arbitrarily-given constant; When dffierentiates this condition
with respect td, one will then get:

2 2 3
a oW 8m 40 (10°W +L<6_V\£: 0 forr =R, (26)
r o 3 o\raada)r ad
Equation (23), which can be written as:
HO(W) _ 9%(rw)
k ot or?
has the particular solution:
£y
W= c.of’z‘%eﬁJI , 27)

whereC andf mean arbitrary constants. The second of thenbeatetermined in such a
way that equation (26) will be satisfied; for thiatwill be necessary fof to be a root of
the equation:

(\/; Rﬁj(a +K,3)+— \/7/3’ (3—— \/7F?6’+ R%Bj . (28)

Whenk = 0, its roots will be:
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0 +4/a_211\/—_1
7y = K \/5 .

We assume thadt is small enough that, as in this case, two of the tdsrare complex
with negative real parts, and s8tequal to one of those two roots in (27); the velocity
will then be zero at infinity.W will then be complex, but the real part of the expoess
for W that is presented in (27) will also satisfy equati®® @nd (26). We choose that
real part folW. If we then set:

B=-a+bJ-1,

calculate from W with the help of (24) and (25), I€& denote a new, real, arbitrary
constant, and choose the time origin, then wefimil that:

9=C & lgin 2abt

This equation determines the oscillation that tak éxperiences. If one lefsrefer to
the period of a simple oscillation and letgefer to thelogarithmic decremenof the
oscillation — i.e., the natural logarithm of theioaof two successive oscillation arcs —
then one will get:

_ K
2ab’

b2_a2
o= -a)T=
® ) 2ab

T

It is easy to finda andb when one assumes thats infinitely small and considers only
the terms of lowest order in the ones that areignited by the value &f To that end,
one denotes the value thatakes on fok = 0 by /% , sets:

B=h+¢
writes equation (28) as:
F(B =0,
and makes:
drF(5)
F (B = ;
B a5

one then has to calculatdrom the equation:

F(B) + £F'(4) = 0.

One then gets:

F(&):%TRSW,B;‘, F'(B) = - 4RK 4,

SO
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e=2Tn r_

3

If one then denotes the period of oscillation for bladl for the case in which the fluid
exerts no effect upon it bl — i.e., one sets:

then one will get:

and
_ 2T, _
T=T,|1+¢ - | 0= &y 2T, .

The particular solution of equations (23) and (2@t we are now discussing assumes
a certain initial state of the fluid. We woulddiko look for other particular solutions of
those equations that refer to other initial stat®se solution of equation (23) is:

W= eﬁzt%(Ceﬁ\/E +C éﬂﬁ)

in whichC, C’, andf mean arbitrary complex constants. It will satigfg condition (26)
when the equation:

o:cM Rﬁj(mm w5 (3__ [Erme o }} o
ol [Eeng)le e o) S [Eskea Ko ] 31

exists between those constants. This equationrdieies the ratiocC : C’ when S is
assumed to be arbitrary. The expressiorvitihat one gets in this way is complex; its
real part also satisfies equations (23) and (26ne chooses that real part 1df then
the velocity will be infinite at infinity, in genat. An exception to this can exist and the
velocity can vanish at infinity only when eithereonf the two constant€ andC’ are
equal to zero or the constahits purely imaginary. The first case is the ora the have
considered up to now, and to which equation (2#®rse the second one leads to new
solutions that we would like to study.
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§ 6.

17

The following considerations will lead us to the datibns of a ball that is found in a

fluid with friction, and whose center lies on a ghdiline and moves along it.
A particular solution to equations (8) is:

_0°P _ 0°P _0°P
u= , V= , w= ,
0x0z dyoz 0z°
p=-u oP
0zat’
when:
AP = 0;

a second one is:
oW oW W oW

ox0z’ ~ oyoz’ Y
p=0,
when
ow
KAW =y —.
"

The aforementioned equations will also be fulfilled by:

L2 O(P+wW) L= O(P+w) Lo P(PEW) 9%(P+W)
oxoz oyoz ox* oy
_ 0°P
P="H 0zot’
when:
AP =0, kAvvzyaa—VtV. (29)

We now assume th& andW are functions of only the two variableandt; we will then
get:

u:X_Zi(EMj
rorlr o ’
L)
ror\r a ’
(30)

_ x2+yzi(;a(P+vv)j_ga(P+ W)
roo\r & roa ’
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_— z 0P
roro
We further assume that one has:
i(&a(P_J’W)j -0 (31)
or\r or

forr =R One will then have:

_26(P+W)

u=0, v=0, w=
r or

(32)

and the equations that were developed represesgsabte motion in the case in which a
ball is found in the fluid whose outer surface s R, and which moves in the direction
of thez-axis with a velocity that is equal to the value of

_20(P+W)
r or

for r=R

Let Z be the sum of the-components of the pressure that the ball exerts upe
fluid; equation (21) will then be true —i.e.:

Z:IdTS(xZ(+yZy+zZZ).

If one ponders the fact that from (1):

ow 0w 0w —k( ou v awj
ox ~dy 0z 0z "0z 0z)

xZX+yZy+zZZ:zp—k(x—+y—+z— X—+Yy—+272—

so one will have:

szds: j y’ds= j zzds:%Tr“,

morever, and employs equation (31) then one vl from (30) that:

2 2
z=57: %raz(—la(PﬂN))—yQ forr=R
3 or“\{r or aa

Now, let {'be the displacement of the ball from a certaintmsat the time, such that:

sz forr =R, (33)

dt



8 6. Pendulum oscillations of a ball. 19

let m be the mass of the ball, and Ztbe the force that acts on the ball in the directibn o
the z-axis, if one ignores the pressures that the fluidtexgon it; one will then have:

d?¢
dt?

_02(,

m =Z'-Z

Set:

in which @ means an arbitrarily-given constant; correspondingjt@ton (26), one will
then get:

2% 0(P+W) _ 471 a ok 2(_16(P+W)j_ 0’ P
x’ H

r or 3 & a aa
3
+2_mw: for r=R (34)
r oo

One satisfies the equations f@andW that were presented in (29) by setting:

Hy
p= Beﬁz‘%, W= Ceﬂzf%eﬂﬁ, (35)

in whichB, C, andb are arbitrary constants. Conditions (31) and (4@ two equations
for those constants that are linear and homogeneddisindC, and from which one can
compute the rati® : C, as well agz. With the help of the differential equations (28)e
easily finds from (31) that far=R:

IP+W) _ g‘i BAW
or
(16(P+W)j ﬁzlaw
or*lr o ror
and then, from (34):
0=(@?+mpYyw-22r2p2 (Qka(;N—,u,[a’ er
or, since one has:
ol
for every value of, one will have:
0:az+m,[>’4+%TR,BZ(/JRZ,BZ—&/KUR,[H9(). (36)

If one sets:
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and then letan' denote the mass of the fluid that is displaced byhbiié then this
equation will go to:

O=a’+ (m+%j ,84

for k = 0. It then follows from this that whek is sufficiently small (as we have
assumed), its four roots will lie in the vicinity the values:

We choosgZto be one of the two roots whose real part is tegjethe velocity will then
become zero at infinity. Therefore, the expressifom P andW that were presented in
(35) be complex. The real parts of these exprassmll satisfy equations (29), (31), and
(34), and we will now think tha® andW have been set equal to these real parts. If we
further make:

p=-a+b+/-1,

calculate { from P and W with the help of (32) and (33), |&@ denote a new, real,
arbitrary constant, and fix a time origin then wé get:

7= Ce*tsin 2abt,
from which, the equations:

s 2 2
T=—, o=0b -a)T
2ab ® )

will again follow for the period of oscillatiom and the logarithmic decremeat If one
assumes that is infinitely small then one will find from thisna equation (36) by a
calculation that is similar to the one that wadgrened in the previous § that:

T=To (1+£/ﬂj, 0= &y 2mT,,
T

in which:




8 6. Pendulum oscillations of a ball. 21

It is not difficult to give other particular solutions equations (29), (31), and (34)
than the ones that were discussed, and which wouldspamd to other initial states of
the fluid. Theyhave an especial interest because they allow onglte jvery closely the
influence that air exerts upon the oscillations of adpgmm that consists of a ball and a
thin rod. In regard to that, we refer to a treatis€tokes (Transactions of the Cambridge

Philosophical Society, vol. IX, part 2, pp. 8) and one wilBMeyer (Borchardt’s Journal,
Bd. 73).



