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Abstract: After a brief overview of the basic concepts of thesr@vanechanics of the one-electron
problem in 81, expressions will be presented ir2 $hat can serve as the relativistic generalizatioth®
wave-mechanical expressions ti&hrodinger gave for the electric density and current vector. tiStar
from that, the evaluation of th#axwell-Lorentz theory in quantum theory on the basis of the
corresponding principle will be discussed ir8 &nd explained in terms of simple examples i 8The
perturbation of an atom by external forces and @oenpton effect will be discussed in 8 as further
examples of that way of regarding the theory. Finaliyne remarks on five-dimensional wave mechanics
will be imparted in &.

Introduction. — Under the influence of quantum theory, the well-knalifficulties
that obstruct the application of classical theoriesh® description of atomic processes
have led to a revision of our mechanical conception ofyththat drew upon the known
analogy between point mechanics and wave theory shat the basis dflamilton’s
theory. We can thankle Broglie for taking the first step in that direction when he
compared the motion of a particle with the propagationaves in a dispersive medium,
and thus arrived at a geometric interpretation of the tguarconditions for periodic
systems. In that waySchrodinger then succeeded in developing a general wave
mechanics. The many significant results of that thewmoused the hope that with its
help, one could avoid the discontinuities that wemntdated within the postulates of
Bohr’s theory of atomic structure and were characteratithe quantum theory, and in
that way create a true continuum theory in space arel tillowever, such a way of
looking at things will encounter unsolved difficulties age roots lie deep, and in the
present state of science, an adequate description ofpeeaanight only be achieved by
using the correspondence principle thiaohr established. The basis for such an
evaluation of wave theory would also be constructed fitmemconnection between non-
relativistic wave mechanics andeisenberdgs quantum mechanics th&chrodinger
discovered. As is known, upon referring to a mategresentation of the mechanical
guantities usingHeisenbergs procedure, a rational corresponding evaluation of point
mechanics in the sense Bbhr’'s basic postulates was already achieved before the
creation ofSchrodingers theory. The possibility of realizing an even moieec
relationship between wave mechanics and the postulateguafitum theory was
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emphasized byBorn especially, in conjunction with his treatment of thdligion
phenomena that are so important to atomic theory.

The following treatment of radiation processes stiois the field equations of the
Maxwell-Lorentz theory and seeks simply to evaluate wave mechanics ftam
standpoint of Bohr’s correspondence principle. In that way, one will ivar
spontaneously at a description that satisfies the ememts of special relativity. The
representation is naturally connected with the relaiiviggeneralization of the
expressions for the electric density and current vabtiSchrodinger presented. In so
doing, we restrict ourselves to the one-electron prolleimplified by ignoring the
proper rotation of the electron), in which it was polssiup to now to create only a theory
that satisfied the principle of relativity. Even imat problem, the demand that the matrix
theory should be relativistic raised some peculiar groblthat seemed to be based in the
nature of things. However, here one must recall theresting treatment of the
Compton effect thatDirac gave with the help of his symbolic representation ofrima
mechanics.

As the author hopes to show soon, the theory can temded in the sense of the
general theory of relativity. In that way, one wgkt a representation of the quantum-
mechanical equations of motion using the correspondenceappeiicat is an immediate
expression for the conservation of energy and impwbke&h defines just the necessary
condition for the coupling of wave mechanics wHmstein's field equations. In
connection with that, in the last paragraphs of thislar some remarks will be made that
will go more deeply into five-dimensional wave mechanigsconnection with a
representation of general relativity th&hluza had previously attempted. That form of
wave theory starts from the aspiration to arriva atay of describing things that, despite
the unfamiliar path of introducing a new dimension, woudrespond to the classical
theory more closely than the current representatiamguse correspondence principle
that seems to be inevitable in a space-time descriptiphenomena.

The following paper can thank Prd&f. Bohr for its existence almost entirely and the
friendly and animated interest that he has shown inatltbor’'s work for some years
now. Not only has he provided me with the invaluable adggnbf belonging to his
circle of colleagues, but he has also actively couteith to this work in with his advice
and criticism, which made the relationship between wawehargcs and the postulates of
guantum theory much clearer to me, in particular. BsoiBohr hoped to return to that
guestion soon the context of a general discussioreofulestions of quantum theory. At
this point, 1 would also like to acknowledge some detailedutisions about general and
special problems in wave mechanics with PHfA. Lorentz, Prof. P. Ehrenfest and
other Dutch physicists that were made possible by a kinitaiion for me to go to
Leiden by theH. A. Lorentz foundation.

8 1. Foundations of wave mechanics. We consider the motion of an electron in an
electromagnetic field according to the mechanics ofsffexial theory of relativity. Let
the charge of the electron be-let its rest mass lyg and let its position be defined with
respect rectangular coordinat&sy(, z), and let the timet) be measured by a clock at rest
in that coordinate system. We describe the electromiagredtl by the four-potential(

and the scalar potenti®| and we impose the usual condition upon it:
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diva+ 1Y -o (1)
c ot

in whichc denotes the speed of light.
The followingHamilton-Jacobi differential equation for the action functi®@tan be
regarded as the expression for the motion of the electr

1 e Y 1(0S 1 1 _
2—ﬂ{(9fad8+zmj ?(E gvj }+E,ué—0. 2)

Certain “ray equations” belong to this equation,icihcorresponds to the differential
equation for the wave surface in optics accordmé¢iamilton’s theory, and those ray
equations represent precisely the relativistic agnoa of motion of the electron. Those
equations can be written in canonical form as edlo

ax_ oH dy_ oH dz oH dt_ 9H
dr  op' dr o9p’ o op & ap 3)
%:—G_H %:—a_H de:—a_H d_ﬂ:—a_H
dr ox’  dr oy o z d t'
with
1 £ ? £ ? £ 1 2|, 1
H=—— +=A |+ p+=A, |+ p,+=A,| —=(p-—eV) +=ul. (4
Zﬂ{(px - j (py - yj (pz - j z(peV) p+suc. @
If follows from (4) and (3) that:
dx ¢ dy ¢ dz ¢ , dt
= _—_Ql , = ———Q,l , , — ———91 , = C —+£V 5
P =H B R R T A o R E HC (5)

As a result, we can writd as:

2 2 2 2
H= E (%j +(ﬂj +(£Zj —i(_dij +1-,UC2,
2 |\dr dr dr ¢l 2
such that relation that follows from (2):
H=0

will be fulfiled when we setdr equal to the proper time that is associated whin t

electron thus:
dr:\/dtz—dxudﬁdi. (6)

c
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The quantitiegyx, py, p. are then precisely the momenta that enter intphiase integral:
[(p, dx+ g dyr p dy,

which is important in quantum theory, whilepris a measure of the energy of the
electron (viz., its rest energyc?).

We will now get the usual quantum theory of peidosiystems when look for the

2nmi

stationary states of those solutions of equatignfd®2 which e " S, in which h denotes
Planck's constant, is a single-valued function of theig@s in space in the case of a
static force field. Followind.. de Broglie (*), we perceive an interference relation in the
last condition, which is equivalent to the usuadigfum conditions, of the kind that arises
in the determination of eigen-oscillations and byiak the quantum numbers will take on
the meaning of node numbers and the quantum conditvill be organically coupled
with the laws of motion. Furthermore, we connde known problems in the usual
guantum theory of periodic systems that refer teiad®ns from ordinary mechanics,
according to Schrodinger (%), with the fact that the aforementioned method for
calculation the eigen-oscillations will only leaal iesults that are approximately correct
in optics, as well, when the curvature of the lighy is close to one wavelength (viz.,
high quantum numbers), and in the general case ustnbe replaced with the
consideration of the second-order linear equatidDorrespondingly, we replace the
second-degree, first-order equation (2) with tHiewang second-order linear equation:

h? h ¢
-——Og+2—=
a4 ¢ 271 ¢

[@t gradg )r%—q{ﬁc%g— z-v? % =0, )

0
ot c?

27

s
whereg means a function of time and position that comesis toe " , and where:

_0 0,0 10°
x> oy* 07 ot

means thel’Alembert wave operator’.
With the Ansatz:

27

p=e" , (8)

we will get from (7) that:

() L. de Broglie, Ann. de physique (1(® (1925), 22 (1924 thesis).

(®) E. Schrodinger, Ann. Phys. (Leipzigy9 (1926), pp. 361, 489, 73#id. 80 (1926), 437;bid. 81
(1926), 109.

() Like the Hamilton-Jacobi equation (2), that equation will give a class of solutifmmswhich the
energy proves to be negative, and which have no direatiatianship to the motion of the electron.
Naturally, they will be excluded from consideration.
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? S ? h
(grad8+02lj CZ(E—svj + U 6+2—mI:| S=0. (9)

In fact, for h = 0, the Hamilton-Jacobi equation (2) will yield the corresponding
transition from wave optics to geometric optics.

Equation (7), which was presented from various anglgstesents the direct
relativistic generalization dbchrodingers wave equation for the one-electron problem.
For the comparison witBchrodingers results, we shall refer to the fact that his non-
relativistic equation can be obtained from (7) by theatnis

Zﬂﬂczt

p=<¢e " (10)
h o

when we assume thaztﬁa, eV ¢ €U | € can be treated as if they were infinitely

small of first order compared jac® £. It will then follow that:

AE+ 8n2ﬂ{sv —L{—(ngradﬁ—}}f 0, (11)
h? 2m

which agrees with the equation ti&thrédinger gave.
In order to explain equation (7), we now consider thgecof a force-field that is
static in a well-defined coordinate system. We can ske¢g equal to:

¢:cbleriTt, (12)

where® no longer depends upon time, ahdefers to a constant. That will then imply
that:

h? h ¢
AD +2— = (A gradd c +—m2—— T-eVY|d =0. 13
4 271 ¢ R ){,u b )2} (13)

From the foregoing, we see that we will achieve anadtconnection to the usual
guantum conditions for periodic systems when we conglikereigen-oscillations that
belong to that equation to be representatives of tdtary state of the atom. The
replacement of the quantum conditions with the eigenvaloblegm that belongs to
equation (11) will now bring with it the immediate adaegeé that the problem in
guestion generally has well-defined discrete solutions, sti@dt fundamental
complication arises that originated in the usual theofystationary states by the
exceptional role that is played by periodic systemgdimary mechanics.

In the limit of ordinary relativistic mechanics, it wd follow from (8) thathT will go
to the quantityp; , which measures the energy, when taken with the negadgime From
Bohr’s frequency condition, we would expect that the asdedi eigenvalud would
represent the spectral term. However, the frequenayiteamitself is likewise foreign to
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the representation of ordinary quantum theory thatget in the phase integral. Here,
we stand at precisely the starting point Bohr’'s correspondence principle, and as we
will see in the next paragraph, it is, in fact, possia arrive at a logical association of
the quantum-theoretic postulate with the demands ofsickds electrodynamics in
connection with the wave-mechanical interpretation & flequency condition that
Schrodinger discovered, and that would correspond to the spirihefdorrespondence
principle.

When the force fields that enter into (7) vary imd, that equation can still be
employed for the solution of the quantum problem by mesnthe correspondence
principle, in contrast to thelamilton-Jacobi equation (2). That fact is closely linked
with the linearity of that equation, which will imply goerties of its solutions that will
correspond to the transitions between stationary sstatethe associated “virtual”
oscillators. As inHeisenberds theory, that will define a bridge between the thewoiy
periodic systems and dispersion theory in terms o€olneespondence principle, as it was
developed by.adenburg andKramers.

8 2. Wave-mechanical expressions for the electric density amdrrent vector. —
In Lorentz’s theory of electrons, the electromagnetic fielknewn to be determined by
the electric densityo and the (electrostatically-measured) current ve@om the

following way:

dive =4mp,
14
rotﬁ—éa_ezél_ﬂ-ﬁ_ ( )
c ot C

In this, & denotes the electric field vector afdlenotes the magnetic one. The following

relations exist between the quantit@sand $), on the one hand, ald and%|, on the
other, which correspond to the second paMekwell equations:

¢ =- (gradv +Ea—%j, $H = rotA. (15)
c ot

The law of conservation of electricity, namely:
. 0p
divy+—=0, 16
It (16)

follows from (14) in the well-known way.

If we would now like to evaluate equations of fhem (14) with the help of wave
mechanics using the correspondence principle, tldvbe, above all, necessary to form
expressions from the solutions of the wave equatianfulfill the relationship (16).

To that end, along the lines of some arguments ®&ehrodinger recently

communicated, we consider equation (7). Sinee /-1 enters into that equation
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explicitly, the following equation will exist that is eigalent to the latter equation and in
whichi is switched with + :

hZ
T Oy - 2——[@ dw)*——} {,UC +—(ll -Vv? )}w 0, (7a)
in which ¢ denotes a function of position and time that becthraplex conjugate of the

function ¢ in (7), in particular. Just as ti8zhrddinger equation (11) follows from (7),
using the Ansatz:

—,uc t

Y=nen : (10a)

we will get the following equation from (7a):

An + 8y EV + L i(ngrad)+i n =0. (11a)
h? 27| uc ot

Likewise, when we sdét = 0, the Ansatz:

27

w=e " (8a)

will yield the Hamilton-Jacobi equation (2) for the functio® In analogy with (12), in
the case of a static force field, one can ultimasely

w: LIJ e—ZITiTt, (12a)
which will imply the equationt¥:
2 2
_h Aw—zi_f(m grady ,uzcz+'g—2Ql2—i2 hT-eVY|y=0, (13a)
417 27 ¢ C C

which differs from equation (13) only by the sign
We now multiply equation (7) by and equation (7a) by and subtract. After a
simple calculation, in which use is made of the coowlif1), we will get:

div{%(z// gradg -4 grads ¥ iww}
/il C

+3{—i_i(w% 0o )+ 2 vw}

(17)

ot| 2mc?\” ot ot

In fact, we have an equation with the form of tbatuity equation (16) before in (17).
When we multiply the expressions in brackets bg/-24, on grounds that will become
clear later, we would like to set:
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p=- = {—L(w%—f—w}%vw},

Couc?| 2m\” ot T ot
(18)
~o_ £l _
3= Zﬂ{zﬂi (w gradg - ¢ gra@y)+ %ww}.

When we neglect relativity in these expressiondhie help of (10) and (10a), and in
addition, consider the magnetic field to be so wikadt the term ir§j that is proportional
to 21 can be dropped, we will get precisely the expoassifor the electric density and
current vector thabchrodinger gave, namely:

p==€41n,
(19)
&

__&fh B
3= Zﬂ{ o (¢ gradg - ¢ graow)}-

In order to make the expressions (18) more inteiitwe would like to go to the limit
h=0. In order to do that, we substitute the espigns (8) and (8a) fag# and ¢ in (18),

which will yield:
(3o
uc\ ot

J= —£(grad8+£2lj .
7] h

p=
(20)

With the help of the “ray equations” (3), we wouldrther like to express the
differential quotients o§in (20) in terms of the components of the/ dt, dy/ dt, dz/ dt
of the “ray velocity”v, which will yield:

_ &

Ji-v?/c?’

&

Ve

The superficial similarity between these expressiand the corresponding formulas of
the classical theory of electrons might help illoate the fact that on first glance, the
potential that enters into (18) seems rather foréigthose equations. However, it must
be emphasized that the passage to the limit thednisidered here must be regarded as
purely formal and does not answer the deeper questi how one can arrive at the
results of the classical theory of electrons cardusly from the properties of the wave-
mechanical electron model. In that rege8dhrdodinger attempted to find a connection
by comparing a particle with a “wave packet.” Hoe®e it is known that it is not

(21)
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possible to achieve cohesion in the electron in that wageems as if the coupling will
come about here by precisely the correspondence prinaipieh will seem all the more
natural when one seeks to consider the existence gfitttiiele to be a quantum problem
.

Before we go on to a discussion of the applicatidnghe relations (18), we would
like to derive the following auxiliary equation:

b
ajpdu =0 (22)

by multiplying equation (16) with a volume elemelat and integrating over the entire
region in whichp andyJ exist, under the assumption that the electric curremskias on

the boundary surface. Moreover, as is known, (16) espihat the integraj pdu is
also invariant unddrorentz transformation.

§ 3. Evaluation of wave mechanics in the case of a static forceldi using the
correspondence principle— We now turn to the evaluation of the expressions @8) f
guantum theory, and we would first like to considerdage of a static force field and in
so doing, assume that we are dealing with a nondegersgisttam, which will imply no
essential restriction of generality. In that cdbe,general solutions to equations (7) and
(7a) will be linear combinations of the solutions that bgldao the individual eigen-
oscillations, such that from (12) and (12a), we can set:

6= zq)n ¥ Tt , W= zq_,ne—zniTnt , (23)

in which ®, andW¥, denotes a pair of eigenfunctions of the equations (13)18a),(and
in which all T,, are different. With the help of those expressiding,quantitieso and.Jy

will assume the following form:
P= 2.2 Pom:

I=DD T

(24)

where
O = — & [_ h(Tn2+ 1) +£V}¢nwmezni(rn—Tm)t

2

uc
(25)

Jmn= i[i(wmgradm—mgradvm y fow m}ezm'm—w.
C

2yl 2n

() Cf.,0. Klein, Nature118 (1926), 516.
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If we consider the electromagnetic field that belonigsthe expressions (24),
according to the field equations (14), then that will pton& striking similarity with the
external behavior of an atom in a way that corresptmtise postulates ddohr’s theory,
and that will endow the representation of statiorsiages by eigen-oscillations with an
essential meaning. As we see, part of the field in questonsists of static terms that
belong to the individual eigen-oscillation and part otdnsists of purely harmonic
oscillations that belong to the pairs of two differemgen-oscillations. The frequency
that belongs to the pair of numbexsn s then given by:

V=|Ta—Tm|, (26)

such that the entire spectrum will satisfy Bydberg-Ritz combination principle. At the
same timeBohr’s frequency condition is also fulfilled, so as we ha&een, the wave-
mechanical picture will lead to the following relatibatween the enerdy of the atom
and the quantity :

E=-hT (27)

It was exactly that significant agreement betweernrésalts of wave mechanics and
the demands of quantum theory tl&throdinger considered to be the basis for his
program of a purely wave-mechanical theory of atomicgsses, in which the postulates
of quantum theory would no longer appear explicitly, aliothey would already be
required in order to explain the combination principle inttieory of periodic systems
that is based in classical mechanics. In the meantiuaree mechanics has not helped us
get over the fundamental problems that can come abdh igeneration of spectrater
alia, and which find their expressions in the postulates. cBgtrast, the wave-
mechanical expressions fop and J permit a quantitative formulation of the

correspondence between the demands of electrodynandctha description of atomic
processes that is based uf@whr’'s postulates, which is a correspondence that might be
better understood with the help of the classical thebsjextrons, which only seems to
allow one to give an asymptotically-quantitative expasshowever?).

Pursuing the correspondence, we associate the ternthei wave-mechanical
expressions (24) for the density and current vector ifolleeving way:

En<E,

pzzpn’ pn:pnn+ z (pmn+pnn)’

En<En
3=Y30 3= Tt Y Gt 3 )
n m

(28)

in which the summations in the expressionsdpandJ, is extended over all of those
eigen-oscillations for whickn, < E,. We first see that the quantitipandJ will be real

only when each¥, is assumed to be the complex conjugate of the corrdsmp®, (up
to a factor that is common for all and which we naturally set equal to one on the

() SeeN. Bohr, “Uber die Quantentheorie der Linienspektren,” Braunsi\{1923).
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grounds of symmetry). With that assumption, the quast{pen + Gnr) and Gnm + IJmn)
will become individually real. If we now consider theantitiesp, andJ, then we will

see that precisely all of the radiation frequenciesrapresented in them that belong to
spontaneous transitions from that stationary statese/tenergy is equal t, from the
postulates of quantum theory.

We will then attempt to describe the electromagnédtects that originate in an atom

in a stationary state with the help of the quantjaeandy,. To that end, we must first

demand that the total charge that belongs to the demsgyequal to the chargesof the
electron. The fact that it is possible to make suchnaadd is based in the fact that the
total charge is independent of time, from the continedgyation (16), which is fulfilled
for each pair of quantitieg\m andJ.m . Whenn andm are different, it follows simply

from (22) that:
j P.,du=0,

which is a relation that goes to the well-known ogbnality condition for eigenfunctions
when one neglects relativity. In fact, it followsifin (10) and (10a) that:

Jé&nndu=o0. (29)
From (28), we then have:
j,onduz j,onndu,

such that fixing the total charge by (25) will lead to théofeing relation:

- ﬂizj(hT—gV)cpnwn w=1 (30)

which will normalize each eigenfunction in a wedifuthed way. If we neglect relativity
then that will imply that:

Jén,dv =1, (31)

which agrees with the normalization condition tl&thrédinger imposed upon the
eigenfunctions, and is especially significant foe derivation of the connection between
wave mechanics and matrix mechanics. In facteifineglect relativity and normalize all
eigenfunctions in the aforementioned way then thenttiespo.m will be the elements of
a matrix from which the representation of the meatwl quantities of the motion of
electrons will follow in a manner that correspotmlieisenberds theory.

Since we seek to evaluate wave mechanics in danemlbgy to the electromagnetic
field equations, we will assume that the quantitigs and J, correspond to

electromagnetic phenomena, in the send®abir’'s correspondence principle, that give a
guantitative expression for the presence of obskeefkects that are coupled with an atom
in the stationary state in question. In thBinstein’s probability coefficients for

spontaneous transitions are to be ascertainedeimghal way under the assumption of
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conservation of energy. We see that our assumptiout it leads to an association of
p and J with the totality of electromagnetic phenomena thalbihg to an imagined

simultaneous presence of electrons that are boundnwithteraction in the same static
field in such a way that each possible stationary vellrépresented by an electron. It
was by precisely that association that we obtainedrmeaction between the wave-
mechanical description and the quantum-theoretical picttithe way that individual
atoms behave. To the extent that those considesatieal with sums of harmonic
oscillator terms, they are linked with the asymptotic éspntation of the correspondence
principle that is based upon the classical theory eftedns. However, it should be
remarked that it is just in the nature of wave theosy the coupling in the limit where
the relative difference between stationary sta@sishes does not take an especially
simple form, as was mentioned before. Moreovet,itharecisely the quantum-theoretic
aspect of the correspondence tBahr emphasized and which defines the nucleus of our
analysis here.

The evaluation of wave mechanics using the correspondamceiple that was
described allows not only the demands of relativity toshésfied, which are, as
mentioned, the source of the difficulties in matrixaiye but the direct connection with
the field equations also makes it possible to simplify tfteatment of the radiation
problem. That problem was taken up in the context of mateichanics byirac (}), in
particular, and he succeeded in deriving an expressiaindoprobability coefficients of
the transitions that are induced by external radidgtiahcoincided with the calculation of
the probability coefficients for spontaneous transititat was described above when one
appeals to general relation thHahstein gave. In regard to that, it should be pointed out
that in Dirac’s calculation, as inBorn’s collision theory, the wave equation was
employed in a way that is essentially different frolne way that it was used here.
Whereas in our presentation, it is in the nature of thingssthe properties of an electron
are always coupled with normalized eigenfunctions, theeafentioned theory dealt with
arbitrary amplitudes whose changes were consideredaaoi@asure of the probability of
the transition processes that were stimulated bymedtagencies.

We shall now go into somewhat deeper detail and contheeexternal behavior of
an atom that should be expected from the argument aldémethat, we first turn to the
static field that belongs to single stationary state.The quantitiespo andJ that come

under consideration in it will then be independent of timegh that we can solve the
field equation (14) by the usual method with the following egpions:

V:J.'Odu,
I

L (32)
== 22

¢! o

in whichrpg denotes the distance from the source pQib the reference poilR. We
would now like to assume that the force field in which gtectron moves is essentially
centrally-symmetric, which would correspond to an actumma Furthermore,

() P. A. M. Dirac, Proc. Roy. Soc. (A)12(1926), 661.
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corresponding to the usual experimental conditions, wednid to place the reference
point so far from the atom that the expressions (3R)tHe potentials will take on
appreciable magnitudes only within a distance from the c@aiat of the atom that is
very small in comparison with the distance the reference point.

Now letn be a unit vector that gives the direction from theteeaf the atom to the

reference point, and let be the radius vector from the center to the sourcet.poin
Consistent with what was just said, we would likedplaice the quantity 1rpq with the

approximate valuel+(n—2t), which would then yield:
rr

= [paw+2 [wpw,
r r
33)

_1 1 N
Ql—aj'pdu+?j(nt)‘jdu.

The meaning of the first of those formulas is broughtght immediately. The first
term gives the potential of the total charge of theted®, which was just set equal t&—
and as we saw, that corresponds to the normalizatitmeoéigenfunctions. The second
term gives the potential of the electric moment ef ¢tharge distribution. The vector of

the electric momerD in this is given by the following expression:
D= j tpodu. (34)

We can give the expression firthe following form by a simple calculation:

Ql:{ nsj.[fjt]du} (35)

That expression represents the vector potential ohgnat whose magnetic moment is
given by the vector:

_| 1 s
B = {% [13 t]du} (36)
In fact, the expression for the field vector that failog from (35):

$H =rotA

can be transformed into the expression below by a kmalen

(n(B)
rz -’

$H=-grad
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We shall now go on to the consideration of the razhdield that is associated with a
transition procesdy way of (25). Here, we can set:

e217i|/t }
0 ’
; (37)
. ez vt ,

in which g andJo are independent of time, amddenotes the frequency that belongs to

the transition process. As in the classical thednadiation, we solve the field equations
(14) by retarded potentials, in which consider only the gidtie field that is proportional
to 1 /r. That will then imply that:

(R Q)
"
SRR

Zi-l/(nt)

V: EeZJﬂv(t—r/C)'[pO e Cc d]’

r
(38)
2 (ne)

9 = (;I-re2mv(t r/c)J’JO ec .

2niv

. . . . . eI CO N
Since we would like to consider only dipole raaiaf we can replace °© with

one in2l and with 1 +2m v

(n v) inV. From the continuity equation, which now reads:

div Jo + 2711 v o = 0,
we see that:
j,oodu =0
and
jﬁodu = 277ivjt,00du,
which then implies that:

2(7:7Ir|/ eznw(t r/C).[(nt)pO ,

2mv (39)
;21 217|v(t -r/c) N

- [0, w.

If we now calculate the field vecto® and $) that describe the radiation field directly
then (38) will simply yield that:

¢ == 9 _nv),
2"_ (40)
H == ny]

cr
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when we consider only the terms that are proportianal/r. If we then set:

Do = jtpo du
then (39) will imply that:
2
- 47722V g2 T )

¢ [0y~ (nD,)n],

cr

22 (41)
§= 4 ZV T [ D .

cr

A spherical electromagnetic wave is described by form(#as in a well-known way.
One sees immediately in them that the electric farcenagnitude as well as direction, is
determined by the components of the electric mometieiplane that is perpendicular to
n, and that the magnetic field is perpendicularniojust like &, and has the same
magnitude ag.

In that, we should recall that the radiation fielldtt corresponds to the transition
process — m, whereE, > E,,,, will be described by the real quantités- &, § + $, in
which & is complex conjugate t6 and §) is complex conjugate t§, when the quantity

(En — Ey) / his substituted for and the amplitude of:
Dnm = '[rlonmdu (42)

is substituted fo®y . Just as the quanti®,, means the static electric moment of the
atom in the state, from (34), we will refer td®,nm + ®mn as the electric moment that
belongs to the transition.

8 4. lllustrative examples from the theory of atomic struture. — In this paragraph,
we would like to clarify the arguments that were madéhe previous paragraphs with
some simple examples. We first turn to the simplk most important case in which the
electron moves in a pure centrally-symmetric fieldnc8ithe absolute direction in space
plays no role in that system, we are dealing with a degenease here in which only
two quantum numbers andk are necessary to characterize the stationary stéfe.
introduce a polar coordinate systen®, a, in whichr is the length of the radius vectgr

J means the angle that makes with a fixed axis, and is the angle between the
projection oft onto the plane that is perpendicular to that axisaafixed line that lies in

that plane. As is known, we can then set an eigetitm® of the equation (13) equal
to:

D =X(r) Y (3, a), (43)

in which Y (4, a) denotes a spherical function — i.e., an eigenfunctiathe following
equation:
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ANY+AY=0, (44)

whereA” represents the two-dimensional Laplace operator tfesr® the outer surface
of the unit ball. The eigenvalues of that equation are krtovthe be the quantitiégk +
1), wherek means a whole number, and the associated solutiotimeae combinations
of expressions like: _

Y m= €M Px m (COS), (45)

in whichm is a positive or negative whole number whose absohlteevis equal to at
mostk, andPx m» means the following polynomial:

Pn(9 = 1-F - R (3. (46)
where
_ 1 d< o
Py (s)-m@(sz 1) (47)

means d.egendre polynomial.
In order to investigate the light radiation th&ldmgs to that system, we form the
component of the amplitud®, in the direction of the polar axis, which reads:

jrcosﬂpodu.

From (43), that integral will split into two fac®rone of which represents an integral
over justr and the other of which defines an integral tha&xended over exclusively the
anglesd anda . The first integral is non-zero, in general, @hdnges from one central
system to another. The second integral, whiclommon to all central systems, is non-
zero only under special conditions, and expredsessvell-known selection rule for the
changes in the numbég which largely implies the characteristic pictwe ordinary
series spectra.

In fact, from (25) and (43), we can writg as:

L=FO)Y (I a) Y (I a),

in which F(r) means a function ofthat is of no interest here, whi¥¢ andY” should be
two spherical functions that belong to differdevalues. From (45), the integral that
depends upon the angles, which belongs to a welietktransition that is characterized
by the number&”andk”, can always be a linear combination of a numbentefyrals of
the type:

2 +1
[em™ ™ daf sR (3 Ru( ¥ ¢,
0 -1

in which we have introduced the variable:
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S = cosY,

in place ofJ. In order for that integral to be non-vanishing, as se®s, one must first
havem’equal tom’, such that we only need to examine the following integral

[SRu(9 R} d.

Now, the polynomiaPy m fulfills the following relation:

k-m+1 k+ m
S =—PR,, ., +t—PF_ .. 48
Rﬂ m 2k+1 k+1,m 2k+ 1 k-1,m ( )
We then get:
+1 +1 +1
_ k'-m+1 K+ m
:[ls I:)k’.m R(’.m ds= m '[ k".m I:)IOrl.mds-*_ K + ll[l FI){.m I:)k—l. m d.
Since the quantitieBy , satisfy the orthogonality condition:
+1
[RuPnds=0  for  KzK, (49)
-1
we see that the component®4 that we consider will be non-zero only when:
k'—k”=%1. (50)

Since the axis refers to a direction that is completebitrary with respect to the central
field, that result must be true for each componem®®f From (41), we will then get a

finite intensity of the dipole radiation only when thelation (50) is fulfilled, which
coincides with exactly the selection rule for the aasyl quantum numbek that Bohr
derived from the correspondence principle.

Let us take another simple example of the case ofialtyasymmetric system. Here,
we would first like to calculate the magnetic momehthe system in a stationary state
when we neglect relativity as an example of an apptio of formula (35). We
introduce cylindrical coordinates a, @, in which z denotes the projection efonto the
axis,a is its projection onto the plane that is perpendictdahe axis, andr is the angle
between that projection and a fixed line in that plavée can set the eigenfunctions of
equation (13) to be: _

®=€"G(z a) (51)

in this case, in whiclm means a positive or negative whole number, @&ra function
of zanda. When we ignore the terms that depend ufspwe will get:
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J=- ii_(w grad® —® grad¥) (52)
2u 27

for the current vector, in whicW is complex conjugate t®, and in which, from (26),
one will have:

jcwduzl (53)

when one ignores relativity.
On symmetry grounds, it is clear that the magneta@ment will point in thez-
direction, such that we need to calculate onlyzliemponent of the vectot [j], which

is obviously equal ta J, , whereJ, is the component qf in the direction that points to
an increase im. \We now get:

a:(a: - ii(q)aﬁ—cpa_wj
2u 2 oa oa
from (52), and then:
ade=- L mow
2mu
from (51), and finally:
%B,=- m-E (54)
4ruc

from (35) and (53). According to whetharis positive or negative in (51) [which would
correspond to the positive or negative directionobdtion around the-axis, respectively,
according to (8)], we will then get a magnetic maingnat points in the direction of the
negative or positive-axis, resp., which would correspond to the negatiarge of the
electron, and its magnitude would be rafold multiple of theBohr magneton. We
would like to return to that question soon in canimn with the action of a weak
perturbing magnetic field on the atom.

If we now consider the radiation properties ofttagbm then we will see from (51)
that thez-component of the electric moment that belongs ti@msition (n’, m") includes
a factor of the form:

2T .
je‘ (M=ma ey
0

that is non-zero only whem’=m". Hence, it is only in that case that the lighve42)
will contain a component whose direction of polatian coincides with the direction of
the zaxis. Likewise, the components ®f that are perpendicular to tlzeaxis will

contain a factor of the form:

2
'[ e| (m'-m'+1)a da |
0

such that the corresponding part of the radiatidheypear only when:
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m—nf =+1.

We then come to the well-known selection or po&tian rules for the quantum number.

As a special axially-symmetric system, we considerkatron that moves in an
axially-symmetric electrostatic field, over which a wekmogeneous magnetic field
that is directed along the axis of the system is soypersed. We can then set:

=3[9 ).

In the aforementioned cylindrical coordinate system, dperator Y grad) is simply
equal to$| 9 | then Since the electrostatic potentfak independent af as well as

a, by mtroducmg a new variable:
AGI
2ucC

a'=a- (55)

and neglecting quantities of second order §m |, we can reduce the relativistic wave

equation (11) to the corresponding equation with magnetic field. In fact, that
transformation, Which corresponds precisely Lirmor ’'s theorem, will replace the

el9Hlo
oa 6
from A by replacinga with a”. Equation (11) then assumes the form:

g4 8TH[ o N 0,
Ae+ h? [gv |6tjg

operator—— > with the operatora% while A goes to the operatdy that arises

in which the magnetic field vanishes. Now, fron@)1(12), and (51), the solutions to
those equations can be written in the form:

—Et +ima'

{=0(zae" :

in which E represents the energy (rest energy of the electroh of the atom with no
magnetic field. From (55), one will then have:

—Z—M[E+M] t+ima’

£=6(z,ae " (56)

Therefore, the energy will change lfyﬂ as a result of the magnetic field, which will
TiC

lead to a normakeeman effect in conjunction with the selection rule forthat was
derived above.
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In the special axially-symmetric system that arisemnfthe perturbation of a
centrally-symmetric system by a weak constant magfieta; the eigenfunctions will be
given by (43) and (45) in the first approximation, whereakis lies in the direction of
the magnetic field. In that case, the maximum valum @fill then be given byk. We
can therefore say (if we ignore relativity) that themberk determined the number of
magnetons of the magnetic moment of a central systhose direction is arbitrary due
to degeneracy.

8 5. Perturbation of an atom by external forces— The action of a weak perturbing
force field on an atom in a stationary state wiliveeas a further case of the application
of the evaluation of wave mechanics by the corresporedpnnociple. For the sake of
simplicity, we would like to ignore the influence dlativity in it and assume that the
force field is purely electrostatic in the unperturbesdest If we denote the potential that
belongs to that field by, then, from (11), we will have the following equation foe
determination of the stationary states of the unpertuabem:

8 u( h o j
A&+ -———+¢&V, |£=0, 57
e ( 2mot  ° ¢ (7)
with the eigen-solutions:
_2n
é=u,e n (58)

in whichu, is independent of time, and in which we have mtied the energy value of
the stationary state in place of the term thatfeneéd in the usual way (viz., rest energy =
0). In this, we would like to assume that the uty®ed system is nondegenerate; i.e.,
each eigenvalue belongsjtst oneeigenfunction (up to a constant factor of modulne o
that defines the phase).

We would like to denote the perturbing force fibldo V and g2, in whichois a
constant parameter that can be treated as a foet-anfinitesimal. We now seek a

solution to equation (11) with the ford + o f, , which would give us the following
perturbation equation for the functién:

8772;1( h o j 8 h ¢
Mg+ ——| ——+¢&V, | T =— eV -———( grad : 59
n h2 2m at 0 n h2 2771 ﬂC( g ) 5n ( )

In order to solve that equation, followirgchrodinger, we develop the functiofy , as
well as the quantities on the right-hand side ef ¢lquation, in terms of functiordg of
the unperturbed atoms. We then set:

=Y fée VG =XVed o -@oadd)=TAL, (60)

with
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Vos= [VEN, AU and  Ags=- % [ grade, y,dv, (61)

in which the quantities,s , Vis, and Ans are functions of time, but not the position
coordinates, ands is the complex conjugate @t . If we introduce those expressions
into (59) then when one starts with (57) and identifiesdoefficients o€ on both sides,
that will yield the equation:

h df £
T ey . 62
271 dt ycA”S (62)

We would now like to apply these general perturbatioraggpus to the case in which
the perturbing field is statiand therefore in which all of the considerations 8fove

27 (g -Et

to be true. Since the quantitiég andA,s include time only in the factog " , we
can solve equations (62) by the following expressions:
Ass ,
27
fro=— ——HC  (s#n), =7 gv+ . 63
ns En _ ES ( ) nn h ( Am ( )

We then get:

nn 7Am
21 £ oS He
5n+0-fn_|:1+0- h (‘SV +ﬂ Amj :|§(n U; E,1_ES gsa

and since the expression is correct only to tist éirder of magnitude, we can also write
this as:

2—ﬂia[‘svnn+i EV + Am
u

htoh=e s T P Es : (64)

Since, from (58) and (61), the expression in brexkeludes time in the common factor
2n
eTE"t, that solution can be considered to be an eigehfumof the perturbed atom in
which only a single frequency appears, in a seifdereover, one easily shows thiat+
of, also fulfills the orthogonality condition.
If we now consider the expression (64) somewhatenastosely then we will see that
the energy of the state that is denoteah s increased by:

== U[SV +— Amj (65)

From (61), we can write this as:
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yﬁ:—aeng‘n du+aii_j(2lgrad5 Y du,
n n IUCZITI n n

or, from (19) and (66):
=0V, d-L[(A3,)d. (66)
c

This formula for the change in energy of the etary state has a simple meaning
that corresponds completely Bwhr’s theory of the perturbation of a periodic systém
As one can see, the first term means the potemegy of the density distribution that is

symbolized bygn, relative to the perturbing electrostatic field,il@ithe second term is
equal to the interaction energy of the magnetitd figf the atom with the perturbing
magnetic field, taken with the negative sign. tdey to make the last point emerge more
clearly, we convert the second term of (66) in sackay that we replace the quantities

Jnn With 4i rot $Hn, on the grounds of (14), in which, denotes the magnetic field
Vg

vector that belongs ... We then get:

o
-— | (A rot$H )du,
L@ ots,)
which is equal to:
o
- — | (rotA du,
L[ (ot29,)
or equal to:
1
-— dou,
-] 99,

in which $ denotes the field vector that belongsat@(. However, the magnetic energy
of our system is:

Litsenra - Aot Lionwe Lise

in which the middle term represents precisely titeraction energy, so the assertion is
then proved.

In the special case where the perturbing fiekoisiogeneous, we can bring (66) into
an especially simple form. If we choose the zeyovpof the potential to be the center of
atom then we can then set the electrostatic palentf equal to:

oV=—(¢r),

() N. Bohr, loc. cit, pp. 123.
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in which & denotes the electric field vector of the perturbingdfiekhile the vector
potential will assume the following form by way of trer@sponding convention:

oA=-1[9Ht].
We then get:

p==€fxp, o= [[A 43, d,

or, from (34) and (36):
h=- (QE Qn) - (55 an), (67)

in which®, and®B, refer to the electric and magnetic moment vectaas belong to the

staten . That expression shows that the atom in a statjostate also behaves like a
dipole of momen®, (a magnet of momenB,, resp.) in terms of energy. For the case

considered above of an axially-symmetric atom, whemtagnetic field is assumed to be
parallel to the axis, formula (67) will lead to the usugression for the energy under the
normalZeemaneffect.

In order to now find the influence of the perturbing fofiedd on the radiation that
the atom emits, we form the electric moment thatsisociated with a pair of stationary
states:

Onw + 00y =— €Jt(§(n' +Ufn')(/7ﬁ' +Ugﬁ') du,

which is definitive of the radiation, from (41)t then follows from (64) that the moment
that is provoked by the perturbation is:

[‘E‘Vn’s-i_gC Aﬂsj@sh [‘9\_/#‘1 s+£'_0"hgi) n
O-Dn’n” == UZ /j +

68
E, -E E.- E ©9

In order to explain the latter formula, we consitter case in which the perturbing field is
homogeneous and purely electrostatic. From (61 ,tben has:

O &Vhns = (€ Dy, Ans=0,
such that we will get:

¢ .)D ED )P
Ubn’n”:_ Z ( E’nj)ESsﬂ +( Eﬁsi)Eshs . (69)

That equation gives immediate information of tharge in intensity of the radiation that
belongs to a well-defined transition process. &ample, it gives an expression for the
appearance of new combination lines in the semestsa under the influence of an
electric field thatBohr inferred from the asymptotic form of the correspemce

principle. As one sees immediately, the frequenthat appear in (69) will then be sums
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and differences of the frequencies of the spectral lihas belong to the unperturbed
atom. Finally, that formula will yield the static eldc moment that is induced by the

electric force fom”equal ton".

We now turn to the question of how to evaluate wavehaeics on the basis of the
correspondence principle in the case difrae-varying perturbing field As an example,
we will consider the important case of the scatteahdijght by an atom more closely
here. For a monochromatic light wave, we canltsetstalar potential equal to zero, such
that the electric vector of the light wave will gwen by:

-_ga

~ cot’ (70)

in which®2l must be chosen in such a way that its temporal meanhesns each point.

The expression fo& obviously has order of magnitude| 2 | / A then, whereA means

the wavelength of light. Now, that might be verygkrin comparison to atomic
dimensions, as in ordinary experiments. Since thdrgdeld strength is equal to the
magnetic field strengthy |2l | will have order of magnitude df| $) | , and as a result of

the aforementioned assumption, we can neglect thatizar of 2 with position in space
and simply introduce its value at the center of thenainto equation (62). If we then set:

Q,[ — ¢ e2]th + Ee—ZHin
in which¢ and ¢ denote two complex conjugate vectors, then we wilehav
27mv
C

¢=-0 (Ce?™ —¢ g2™), (72)

After a simple calculation, we will get:

o 2m,
ﬁp‘“s: %J.(Ql:’ns)dU: %J(Qez”i” +cermyy en o @,

in which J,.denotes the amplitude gfs. With some conversions, this will imply that:

E - o o P ey
n Es'[t(qzlenvt +¢e2nwt)3nse h
ch

£ .
—A =- 27 (7]
ﬂCAqs

or

i Ahs: - 27 % [(@ fi)ns)e_zrli WnsVt + (@ 53 ns) e_m ns VX ] ; (73)
HC
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in which we have denoted the quantities € E) / h by v,s. From (62), our perturbation
equations will now read:
_h dhy, _

If we exclude the case of resonance and assumevtlmtdifferent from all of the
frequenciesns then we can set:

277] ¢e—2ni Vns—V)t ¢ e 271 VstV X
fns = Vv @ns ) (75)
ns
hc Vs~V VstV
and as a result:
277] ¢e—2ni Vps—V )t ¢ e—2nl VstV X
fn = — Vis @nséT
hc 5 Vs~V VotV 26
B 277| @e—zm Wns— V)t ¢ e —271 VstV X ( )
g,=-——— @ns/]S
hc 5 Vs~V VstV

In order to evaluate the result of the perturbatidoutation so as to ascertain the
external effects of the atom, similarly to what ave in 83, we would now like to exhibit
the electric densities that are associated with aaedihed stationary state of the atom.
If we denote that density for the stateby o, + o P, , in which g, means the
corresponding density in the absence of the perturbingtiadighen we will come to the
following expression for the quantiBs by an argument that is similar to the one B1:8

E.<E,xhv
P.= P, + Z (P_+P.) (77)
In this:
anzfn gm+/7mfn, (78)

and in the summation, one includes only those tamrtise quantitie$nm, + Pmn for which
the conditionEy, < E, + hv (Em < En — hv, resp.) is fulfiled. The expression fé¥, ,
which satisfies the requirement that the total ghashould be equal tos{whené, and

N, are normalized eigenfunction of the unperturbestesy), represents the analogue of
part of the Fourier development of the motion @f &tectron that is perturbed by the light
wave. In fact, we see from (78) that the té&mrepresents a harmonic oscillation whose
frequency coincides with the frequency of the iraidlight and thus corresponds to a
coherent scattered ray of the kind that one assimwsler to explain ordinary dispersion
phenomena. As one sees, the remaining terrRs iapresent harmonic oscillation terms
whose frequencies are sums or differences of sgdotquencies with the frequency of
the incident light. Those terms correspond toitlceherent scattered radiation that was
proposed bySmekal on the grounds oEinstein’s light quantum hypothesis and by
Kramers and Heisenberg on the basis oBohr’s correspondence principle. From
guantum theory, radiation with frequencigs + v andv,y, — v that appeaP,, can only

be coupled with transitions from one of the twdistary states that are denoted by the
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symbolsn andm to the other one that is induced by the light radiatibnthat way, the
guestion of whether the transition starts from tlaest or the staten will be dictated by
the sign of the quantityym +v[ = (En—En+hv) /hl or vam— V[ = (En — En—hv) / h],
resp., and indeed the state that is denotatviyl be the initial state when the quantity in
guestion is positive and conversely. In fact, as wes maasoned in the presentation of
the expression fo, , that arrangement will correspond to the argumentShaekal (%)
developed on the basis of the light quantum hypothesis.

If we would like to compare the total expression for deasity with the imagined
system in which each stationary state is representeah l®yectron then we would collide
with a certain complication that originates in the fdwt the different quantitieBn,
cancel each other in the summation ovenallThat complication, which, on first glance,
obstructs a single-valued definition of the quantifigs since quantities enter into each
Pnn that refer to all possible states, is physicallynsaned with the fact we should not
expect any actual dispersion from a system of the tygewh have in mind. The total
absorption will then vanish, since, accordindg=tnstein, transitions between a given pair
of stationary states that is induced by the radiatidnhappen at the same rate. Here, we
are obviously dealing with a case that is analogousstal¢lyenerate one. In fact, we can
regard the equality of the frequencieséfand 77, as a kind of degeneracy, and in that
way the problem can be surmounted that we do not sebthbiration frequencyi, of
& with 7, equal to zero from the outset, which would make theowartermsPy,
separate from each other.

From the foregoing, we will now get information aboug presence of atoms in the
staten by the radiation that is stimulated by incident ligltew we consider the quantity:

Oon = ajtpn du, (79)

which amounts to the change in the electric momethettate in question that is due to
the radiation. From (77), we can write the quarttigs:

E <E,xhv
0n=0m+ Y, (Ot Om), (80)
in which:
Dnm:jtamdu :z(fnsgsm+gms® nli (81)

or, from (77):

_2s )|, @On)Dan_ (€D ) nef o

ns ms

hc 5 Ve~V VstV
(82)
oy (@z)ns)z)sm_v (€D s)D ns 27 U0

ns ms

VotV V™V

() A. Smekal Naturell (1923), 873.
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As one easily shows, the tetm,, which is responsible for the dispersion, is identioal

the formula for the corresponding part of the scattexiectric moment of a radiating
atom that Kramers (*) derived on the basis of an ingenious application & th
correspondence principle to the result of a classimedhanical perturbation calculation,
which was a formula that also remained true in mateximanics. The derivation above
is formally close to the wave-mechanical derivatidrattSchrodinger (°) gave.
Meanwhile, the deep-rooted difference between the mossicéd picture that
Schrédinger presented and the viewpoint that is assumed here ombasie of the
correspondence principle will become clearer when evesider those terms in (82) that

belong to incoherent scattered radiation. In factett@ession foro 0, coincides with

the complete formula thatramers and Heisenberg (°) gave for the scattered electric
moment of an atom, such that the objections 8aitrddinger raised against the reality
of the incoherent scattered radiation will drop oatrfrour presentation.

Along those lines, let it be remarked that just amitda (82) yields the induced static
electric moment of the atom in the limit= 0 whenn = m, it will also go over to the
expression (72) for the new combination of lines thaxsited by an external electric
field in that limit whem # m, which is a fact thaauli (*) has already employed in order
to calculate the intensity of such combination linefoke the construction of a rational
guantum mechanics.

8 6. Interaction of radiation with free electrons. — The examples that were
considered in the foregoing paragraphs are characterizee ligctithat the force field in
which the electron moves has a significant influencen tHe language of wave
mechanics, that says that the wave function can hatieeably values only at a distance
from a certain spatial point (e.g., the atomic nucléba) is small compared to the light
wavelengths that come under consideration. In cortwastich a “bound” electron, we
shall now consider an example in the form of @empton effect, in which one is
dealing with a “free” electron. Here, we will get atpre that corresponds to the
experimental conditions when we assume that thereleds available in a force-free
region whose dimensions are large in comparison tovdnee length of light, and in
which the influence of the magnitude and form of the regiothe light that the electron
emits is therefore vanishingly small. The wave equai®) assumes the simple form
here:

K 2 4 _
4]72|:|¢ + 1P ¢=0. (83)

When the volume of the region is equaldowe can solve this and the corresponding
equation forg/that follows from (7a) by the following pair of wa functions:

) H. A. Kramers, Naturel13(1924), 673,114 (1924), 310.
) E. Schrédinger, Ann. Phys. (Leipzig31 (1926), 109.
() H. A. Kramers andW. Heisenberg Zeit. Phys31 (1925), 681.
) W. Pauli, Det. Kgl. Danske Videnskabernes Selskab. Math.fys. M€H925), 3.
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1 ZT”i[— Et+ (M) 1 —ZT”i[— Et+ (M)]

¢:ﬁe ) lﬂ:ﬁe ) (84)

in whicht means the radius vector from a fixed point thatifiethe region and the point
considered. Those expressions, in wHichepresents the value of the energy, 8nd

represents the impulse vector in a well-defined statheo&lectron, correspond to itie
Broglie waves for a free electron. On the grounds of (83)relaionship:

M>—E?/P+u’c?=0 (85)

exists betweertE and 91, which coincides with the relationship between energy and
impulse of a free electron in ordinary relativisticainanics.

A plane, monochromatic light wave now falls on ébectron, which we would like to
describe by the following Ansatz for the potentials:

— 21y _(nt)

ot = ol ea ) pg el C], oV=0, (86)

in which g again denotes a small constant parameter, whifeeans the unit vector that
defines the direction of radiation.

In order to consider the effect of the light wavetba electron, we would like to
content ourselves with the first approximatiorvin If we denote the solution to equation
(7) that belongs to a well-defined state §py+ o f then we will get the following
perturbation equation fdr:

2 1% _(nr) —  —2n1v _(nt)
_n O¢ +/12C2¢:—2L_£ Ce. ! C]+¢e2 ) gradg . (87)
4Arr 27 ¢

From (84), we can solve that equation with théfeing expression:

) M _ZTM{_(E—W)H[M—nh?Vjt} _ Z—:i{—(a h/)t+[9ﬁ+ nh—th}
fo \/ZhV[E/ C_(mn)] {Qte +Ce . (88)

If we denote the corresponding solution of (7a)/by o g then we can writg as:

g _ \/j_h [E/ fgztm )] {@ezéﬂ{(Eh/)H[aﬁnTjt} +¢ e—z—:i{—(a h/)t+[9ﬁ+nh'éjt}}. (88a)
v n - n



Klein — Electrodynamics and wave mechanics from thedpoint of the correspondence principle. 29

In order to find the scattered radiation, we can noaceed in a manner that is
similar to what one does for light scattered by an aowh exhibit a general expression
for the density that belongs to a well-defined inigtdte of the system. However, we
would not like to go into the quantitative side of theensity question heré)( but only
examine the dependency of the frequency on the directionbservation, which
corresponds formally to the selection rule for the apgece of spectral lines. We can
then be content to consider an expression for density(¢batesponding to one of the
guantitiespnm) emerges from the general expression when we introdugell-defined
solutiong + of of the wave equation (7) that is given by (84) and (8®)dne ofg and a
solutiony + o g that belong to another state and is given by (84) and (i8®égce ofy .
We thus consider the following expression:

- £ J_h |99 ,ov oyt 0¥, 9P _ 409
- 2;102{ 2771{[// o +U(¢' a a9 m (69)

It is good to point out that this expression represeviiditansition probabilities, each
of which starts from the state in question. In fdwo, two frequenciek — E'+ hv andE’
— E+ hventer into them, and from quantum theory, the foreoeresponds to a transition
from the state with enerdy, while the latter corresponds to a transition from skate
with energyE”. When choose the first state to be the initialestae would only like to
bring terms with the frequendy— E’+ hv into consideration.

As one sees, the expressions (89) are composed ofdethesform:

a eZITi [wt+ (s t)],

in which a and w are constants, angd denotes a constant vector. When we form the

corresponding expressions for the potentials, we would lkeassume that the
dimensions of the region in which the electron exa&ts small in comparison to the
distancea between the fixed point and the reference point. K&8)) the potentials have
the following form:

a

; wn'
g2riwr /c)'[ ez;n (“T]r @
r

in which the unit vecton' points in the direction of observation. Obviousty; §ivens

and « that integral will yield appreciable contributions to theld only for those
directions for which the exponent that contaities very close to zero, so:

n=—-—s. (90)
w

() SeeP. A. M. Dirac, Proc. Roy. Soc. (AB (1926), 405, in which a thorough treatment of that
guestion is given that is based in matrix theory. &$oBreit, Phys. Rev27 (1926), 362, in which the
intensity problem is treated on the grounds of theespwndence principle in conjunction with the clasdsica
theory of electrons.
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Sincen’ means a unit vector, that condition can be fulfibedly when:
cCs?=df. (91)
From (89), we will first address those terms that mglto the unperturbed electron,

and in which:

E-E m -’
w= — s=—-""—"",
h h

From (91), one then have:
M -MY=E-E),
here, and on the grounds (85), that condition will belledf only when:
M =9, E=E

which then express precisely the idea that a freeretecannot radiate. For the radiation

terms, we get:
w= E-E + v, 5:—1(9ﬁ—9ﬁ'+nmj,
C

h

and when we denote the frequenogf the scattered light by’ it will then follow that:

men o+ ™ EsyzE+hy (92)
C C

are exactly the well-known conditions tl@dmpton andDebyegave for the relationship
between the frequencies and directions of the pyinaamd secondary light under the
Compton effect.

As one sees, the presentation of @ampton effect that was sketched out in the
foregoing pages has a great formal similarity @ ttieory of lattice reflection, in which
the combination of twale Broglie waves will lead to a charge distribution on thitida
that will selectively reflect incident light. Witkhat presentation, we arrived at an
interpretation in terms of the correspondence [placof the aforementioned peculiar
coupling of the directions of the incident and sma&td light and the electron that is
liberated by the photoelectric effect by meangwofstein’s light quantum hypothesis,
which was verified experimentally bgeiger and Bothe and Compton, and which is
based upon assumptions that are similar to theigdea of the ordinary spectrum that is
emitted by an atom that uses the correspondenceigd.

8 7. Five-dimensional wave mechanics: In two articles that appeared recently, the
author {) attempted to connect the formalism of quantumompewith the five-

() O. Klein, Zeit. Phys37 (1926), 895; Natur&18(1926), 516.
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dimensional generalization @&instein’s theory of relativity thaKaluza had proposed,
and recentlyFock (%) has also attempted to express similar endeavors.e $emarks

about that five-dimensional wave mechanics shall follmave in connection with the
guestions that were touched upon in the present treatden dhat way, we will show
how it is possible to shed some light upon the appeaxtee different wave functions
¢ and ¢ in the treatment of wave mechanics from that stantlpasing the

correspondence principle.

In order to define the basis for five-dimensional wawznanics, we shall start from
the fact that thedamilton-Jacobi differential equation (2) for the relativistic motiaf
electrons has the form of the characteristic equatioa five-dimensional wave equation
(®. In fact, it will emerge from the following homogenss quadratic equation:

2 2 2 2 > 4 2
a_Q—lea_Q + a_Q—Ql a_Q + a_Q—lea_Q —i a_Q-}-CVa_Q +'U(2: a_Q
ox 9%, ay Yax 0z 9% él ot 9% g 0¥

= O, (93)

in whichxy means the coordinate of the fifth dimension, l&yAmsatz:
£
Q:—Ex0+8(x,y, zt). (94)

The simplest wave equation that belongs to theacharistic equation (93) reads:

2 2 2 2,
Ou -2 magc;adu EPARUL I P ERYE ALY (95)
X, cotax, ¢ ¢ 0%

From the known properties of characteristics, wevkrirom the outset that the wave
equation (95) will be replaced by precisely tiamilton-Jacobi equation (93) in the
limit of geometrical optics.

The coefficients of the wave equation (95) areepehdent of the quantity . For
that reason, we can summarize the general soltditrat equation as particular solutions
with the form:

¢e—ia,xo +¢/éa,x0,

in which ¢ and ¢ do not includes, , andwdenotes an arbitrary constant. If we now try
to evaluate equation (95) for quantum theory tlemfthe arguments in Band (94), we
would expect that the solutions that come undesidenation in the quantum problem
could be represented approximately by:

() V. Fock, Zeit. Phys39 (1926), 226.
(®) For the meaning of a characteristic equation, see Jeldadamard, Lecons sur la propagation des
ondes et les équations de I'hydrodynamjdearis, 1903.
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U=e " (96)

in the vicinity of the “geometrical optics” limit, in lch Q is a solution of (93). From
(94), the solutions in question are harmoniginvith periodsh c/ €in this case. Since
that property, in this form, has nothing to do with linat, we will be led to generally
assume that:
w= E, (97)
hc
and thus to set:

2nie 27 €

U=ge hc'+genc’ (98)

in order to get the most general solution of (95) thatesoomder consideration. If we
introduce that expression into (95) then that equatidrspiit into two equations, one for
@ that agrees with (7), and one fgrthat agrees with (7a). The fact that only those
solutions of these equations should be considered in thisctirespond to a positive
energy means that in the five-dimensional representafithe motion of electrons, only
those waves should come under consideration that hawellalefined direction of
propagation relative to the fifth dimension.

The periodicity inx, that is expressed in (98), by whidtanck's constant is
introduced into the wave equation (95), admits a simpleng&ac interpretation by way
of the assumption that the five-dimensional spaceosed in the direction 0§ , which
makes the solution (98) correspond to the ground statdatiscilinX, . That is closely
related to the problem of relating the non-appearanesfiih coordinate in our ordinary
physical equations to this picture, and of considering thosatieqs to be mean values
over the fifth coordinate of more general equations thelude the fifth coordinate.
Correspondingly, we must first take the mean valuer dhe fifth dimension in the
formation of expressions that have degree twd ffsuch as the electric density) that we
have to put in the right-hand side of the ordinary fietphations in the corresponding
representation of behavior of an electron. As we ddilde to show in the simplest
example of the functiot 2, in that way, we will come to exactly those expi@ss in
which the two functiong and ¢ enter bilinearly, as they do in (18). Namely, from (98),
one has:

_4nme 47 €

UZ=gle "< +2pp+yler <,
such that taking the mean ovgrwill, in fact, yield:

U2=24 . (99)

We can see how the “observable” physical quantitiaisehter into the usual physical
description contain exactly the products of the conjugateewawctions, and the
characteristic duality of quantum phenomena then findexgnession in that fact. The
assumption of such a closedness in the fifth dimensiohtis&h not only imply the
possibility of introducingPlanck's constant into the theory in a way that is natyrall
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connected with the world-view of the theory of reldsivibut it will also lead us
immediately to the four-dimensional corresponding regméation of the one-electron
problem on the basis of wave mechanics.

Copenhagen Univers. Institut for teoretisk Fysik, 4 Dec. 1926.

Added in correction.

After the present article was submitte@ordon’s thorough treatment of the
Compton effect based uposchrdodingers theory [Zeit. Phys40 (1926), 117] was
brought to my attention, and in it, he also arrivedhat relativistic expressions for the
electric density and current vector that were developegldn In conjunction with it,
Schrodinger then gave a simple geometric interpretation of theewrmechanical theory
of the Compton effect in a treatise that just appeared [Ann. Physpdig) 82 (1927),
257], and which was very close to the arguments that pressent here in 8, without
relating it to the general questions of quantum theomyeler. The latter is also true for
Schrodingers simultaneously-appearing treatise [Ann. Phys. (Leip&@)1927), 265]
on the wave-mechanical energy-impulse principle, in wigabstions were addressed
that were similar to the work of the author that wasounced in the introduction.

I would also like to take this opportunity to point o fact thaEpstein [Proc. Nat.
Acad. 12 (1926), 634] has treated the norrdgleman effect in a way that is similar to
what was done above in4g and thatFermi [Nature, 18 Dec. 1926] has published a
calculation of the magnetic moment of a centrally-syetric atom that is found in a
magnetic field that is close to the calculation§



