“Uber die Integralform der Erhaltungssiatze und die Tleeder raumliche-geschlossen Welt,” Nachr. d.
Kgl. Ges. d. Wiss. zu Gottingen (1918yesammelte mathematischishandlungeny. |, art. XXXIII.

On the integral form of conservation laws
and the theory of the spatially-closed world

By F. Klein
(Presented at the session on 6 December 1818) (

Translated by D. H. Delphenich

In my note on 19 July 1918, | attempted to give an overakthe different forms
that one can give to the differential laws for thesmrvation of impulse and energy in
Einstein's theory of gravitation. My problem today shall be, abaileto address the
integral form of the conservation laws thainstein presented for the form of the
differential laws that he preferred. In connectiothwhat, | will treatEinstein’s theory
of the spatially-closed universe and the variation othat de Sitter found €). The
physical questions will only be touched upon, while the goatoisclarify the
mathematicalissues completely; | feel a certain satisfactioat,tin that way, my old
ideas from 1871-72 are shown to be valid in a decisive #yayThe reader himself might
decide how far things have progressed by a comparison witprésentations of the
other authors.

| shall next recall the following results: The comsgion law, in the form that |
referred to as theorentz form [formula (12) of the previous Not8]( reads:

To be submitted to print at the end of January 1919.
The publications that come under consideration are:
Einstein. 1. “Kosmologische Betractungen zur allgemeinen Réatstheorie,” Sitz. d. Berliner
Akad. on 8 February 1917.
2. “Kritisches zu einer von Herrn de Sitter gegebenrigide Gravitationsgleichungen,
ibidem 7 March 1918.
3. “Der Energiesatz in der allgemeinen Relativititiee’ ibidem 16 May 1918.
de Sitter. In various articles published in Verslag der Amsterdafikademie, 1917, as well as in a
series of review articles in the Monthly Notiadghe Royal Astronomical Society:
“On Einstein’s theory of gravitation and its astomical consequences.”
(In particular, see the concluding Part Ill on Novenit$17.)
() See, in particular:
1. “Uber die sogennante Nicht-Euklidische GeometriegthvVIAnn.4 (1871). [Abh. XVI of
this collection.)
2. The Erlanger Program: “Vergleichende Betrachtungenriéghgre geometrische Forschungen,”
Erlangen, 1872. [Abh. XXVII of this collection.]
(") Translator: Art. XXXII inGes. math. Abh.
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a(z: +12lfj
K
1 =0.
(1) Y
If we write:
@) Lag =
K

then we will get th&instein form of the conservation law:

a(z;wtf;)_o

() ow’

[Formula (44) of the previous notd](
Now, it would correspond tBinstein’s basic assumption if | were to refer to:

the 12[;’ (theim?’, resp.)
K K

briefly as thegravitational components of the energy (qualified by a fortuitous choice of
coordinates the relevant Ansatzrurthermore, | would like to denote the components of

the “total energy” that one gets in that way bridfjythe symboV (3, resp.):

(4) Tf+191f= 77, T7 +1
K K

A=Y,

| would like to mention in advance a peculiarity of following presentation,
namely, that | will always consid@ and2(" (or also and0’) together, since both of
them have their advantages. One will then see rolealy the extent to which the
conservation laws have acquired a subjective momentuimeirntegral forms that are
presented.

For the convenience of the reader, | shall once mpogsent the basic definitions of
the corresponding Latin symbols according to formulas, ((B5) of the previous Note.

One has:
5 0\ g K
1 w

oK, K, 09,
pv 9T a MV gpf + gr )
0g” ogly Jg oW

(5) 207= KJY -

() [This entire section can be abbreviated essenbaltg one carries out the sign changes at this point
in the first publication that are necessary in thesgmé Note and been incorporated already in the
republication of this articleVermeil has directed my attention to the necessity of thage dianges, and
he has also assisted me by doing the calculations #haeaded for many of the following considerations,
for which | am grateful. K.]
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O
(6) = gl -8

©agy

Y7
g -

| have employed the square rq@ in (5), as | did throughout my previous Note, in
connection withHilbert’s original notation. If one would like to empldyinstein’s
notations throughout then one would have to td@g everywhere. That change will
have no effect on the ultimate formulas (1) to (BJowever, it is still preferable if the

underlying quantities of direct observation are to haveaaaponents throughout; from
now on, that shall then be assumed in any case.

I. The integral laws for closed systems in the usual they.
§1.

The vectorial notation for multiple integrals.
First introduction of the 1. (1, resp.)

The usual notation — e.g[.f (x, y) dx dy— is not expedient whenever one is dealing
with the transformation of multiple integrals. Timerementslx, dy are to be thought of
as pointing in different directions, so they will bedpto two different vectors, such that
one would have already gained something if one wfdtéx, y) d’x d”y. The notation
will become even clearer when one chooses the vetdtat§to be not exactly parallel to
the two coordinate axes, but arbitrary, and correspolydieglaces the produd’x d”y
with the area of the parallelogram that is enclosédéden the two vectors. We will then
come to the notation:

@) [ fx y)‘ o ji‘

which | like to call theGrassmann notation, since it corresponds to the sphere of ideas
that was found iGrassmanrs Ausdehnungslehref 1861. The formula is better suited
to the mobility that we expect of the concept of a ipldtintegral.

With an eye towards its specialized evaluation, oneotatously return to the usual
notation from formula (7) at any moment. However, &)to be preferred for all
considerations that relate to transformations. Fanmgde, if we sek=¢ (¢, ),y = ¢
(& n) then it will be immediately clear from (7) why theansformation formula of the
integrals includes th&acobianfunctional determinant. One will then have:

dx dy
d "X dn y !
identically.

Assuming that, we will now consider certain tripléegrals in what follows that can
be written thus:

dx dy
d "X d" y

9. &,

f(X,Y)-‘ v. W
¢ Py

‘=f(¢,¢f)-
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Q]T' q;T'V
1 YA
®) L= A
d'w - d'w
d"w - d"w
or also the other one, which | call:
9) 17,

which can be obtained from the foregoing one when orlacep the3” replaces with
Y. These integrals are extended over any piece of a réyface” that lies in the

four-dimensional world. d, d”, d”” denote three mutually-independent vectors that
extend from the individual points of the hypersurfacengential directions.

One can conclude from the outset from the differefdias (1), (3) that thel’
(7, resp.) satisfy [while assuming the usual continuityyle-valuedness, resp.) of the
0] thatthis I, (17, resp.) will be zero when one assume that their domain of integriati

closed in such a way that it bounds a well-defined subset of the universsect, |, will
then be converted in a known way into the fourfold-extdndeegral over the bounded
subset of the universe:

daw - dw
ovZ\ldw .- 0O

10) 1
dw ... O

and similarly for thel”, for which the integrands themselves will now vanish with
further assumptions, due to the conservation laws.
However, our particular interest in the subject ofvithel,, |7 will behave under

affinetransformations of the, so when one subjects theto linear transformations with
constant coefficients:
(I W= alw+ ... +alw +c’

This is where our vectorial notation proves itself. Wew from the developments of
the previous Note that th®?(V'”, resp.) behaves like a mixed tensor under the

transformations (11); th&’ (07, resp.) will increase under them by multiplication by
\/E(«/—g, resp.). Hence, it will be clear with no furthessamptions that the

integrandgdl, (d1”, resp.) will transform like “contragredient” vectorg/e shall say that
they suffer thdhomogeneoubnear substitutions:

di,=adlL+..+a"dl,



Klein — On the integral form of conservation laws #meltheory of the spatially-closed world. 5

that are derived from (11). However, the coefficieatsn (11) are constant, by
assumption. We will then have corresponding substiiuiiomulas for our integrdl;
themselves:

(12) lr=al+.. +a'l,

(and naturally a similar expression for the), and with that, the result that was to be

derived has already been achieved.
However, the conceptual advance that is linked with thisnula (12) can be

expressed as follows: Thel,, dI”, like all vectors in the general theory of

transformations, are intrinsically coupled with a dertaorld-point w as the starting
point, so they ardound vectors (or, if we would like to be still more precideur-
vectors). Now, this coupling to a special point willdeback to the transformation

formulas for thel,, 1 completely. Better yet, one can refer to the, Il as free
contragredient four-vectorsj.e., as four-vectors that have only a direction amd

intensity (=,/ Zg“”lﬂlv ), but no particular position in the four-dimensionakido

Naturally, this concept of free four-vectors is entin@gted in the fact that we based
it upon the group (11) of affine transformations of the In physics (mechanics, resp.),
things are precisely as | described in my Erlanger Progriamgeometry: Namely, that
one can first speak of the differentiation of distingpes when one knows the
transformation group in which one measures the basicept®és For decades, | have
already been saying that the physicists should conscitysly adopt the basic notion in
that, which clarity alone would sugges}. (In particular, in 1910, | expressly remarked
in my talk on the geometric foundations of the Lorentzugr{) that one should never
speak casually of the “theory of relativity,” but onlftbe theory of invariants that relate
to a group. — There are as many kinds of relativity ihsars there are group$. (

The concept that one formulates in that way is immglete contradiction to the
opinions that are often propagated currently in conneohgh Einstein’s general
explanations, but not t&instein’s own far-reaching detailed developments, upon which |
place great value. Moreover, as | have commenteceiprisent Note;instein’s papers
show that in the individual cases, he appealed to predbkel very same freedom in
forming ideas that | recommended in my Erlanger Prograamchwithout systematically
fixing the train of thought.

() Cf.,inter alia, my treatise “Zur Schraubentheorie von Sir Robert’Ballol. 47 of this Zeit. f. Mat.
u. Phys. (1902) [reprinted in va@2 (1906) of Math. Ann. with some extensions.] [Cf., Abh. XX4f this
collection.] (As in this article, no relatively nephysical concepts are introduced in it, but only the
concepts that many people discuss in more thoroughrieess of the individual problems that relate to a
clear mathematical principle.]

() Jahresbericht der Deutschen Mathematiker-Vereiniglé(},910), published in the Phys. Zeit™2
yearly issue, 1911. [Cf., Abh. XXX in this collection.]

() Also conferNoethers notice on “Invariante Variationsprobleme” in theayly issue of 1918 of the
Gottinger Nachrichten (esp., its concluding remarks).
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§ 2.

The integralsl,, | for closed systems.

In the article that was cited if)( Einstein understood “closed” system to mean one
that “swims,” so to speak, inMinkowski space; i.e., a system whose individual parts
run through a world-tubegutside of whicha d* of vanishingRiemannian curvature
reigns. One can write the§® with constant coefficients [without being requiredbtd it
into the typical formdf® — ¢ (dx¥ + dy? + dZ), moreover]:Einstein then spoke of
Galileancoordinates. As such, thé outside of the world-tube must be chosen once and
for all, while it can vary arbitrarily insider of it, sisming that there is a continuous

transition. Nothing in particular can be said correspagigiabout thel3?, U7 inside
of the tube, but outside of it, they must be zero ineargnt. Not only will all¥” vanish

there then, but also, as a glance at the defining fasn(@)), (6) will show, alltf? (47,

resp.), due to the constancy of the .

We imagine that the interior of the world-tube is nallyrfilled with a continuous
family of world-lines, all of which have been giverpasitive sense, that correspond to
the points of the system. Any world-line will have tangvectors with the same sense
and whose components mightd, ..., dw".

The question now arises of which three-dimensional foldsi (hypersurfaces) one
might refer to as “cross-section® of the world-tube. In order to be able to express that
more conveniently, in what follows, we will focus excltedy on those cross-sections
that are cut by each world-line at omgepoint. Three mutually-independent vectdrs
d”, d”” might then be chosen in such a way that the detarrti

daw .- dw’
dw ... 0
dw ... O
dw ... 0

keeps a fixed sign. When we link that with the example:

d 0, 0, O, dt
d” =dx 0, 0, O,
d” =0, dy, 0, O,
d”=0, 0, dz O,

we choose that sign to be negative, for the sakemfenience.
Assuming that, we define the four integrals:

I (17, resp.)

of the previous paragraph for the cross-section.
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In close connection witlEinstein's development, we will then assert thhbse
integrals are independent of the choice of cross-section, as welheashoice of
coordinates that we might introduce inside the tulbgom the standpoint of the affine
transformations of thev that encompass the entire universe|th¢l”, resp.) likewise
define a free contragredient vector. The new theotbhai&instein posed say thdahese
vectors depend upon only the material system as such, but not upon the piesutiir
the analytical representation.

In order to prove the new theorems, it will sufficeany event to place two cross-

sectionsQ and Q, one after the other, such that they bound a unifiecepé the world-

tube (so they do not intersect each other). The gerasalic whictQ and Q cross each
other can be dealt with easily when one adds a third-sext®n Q) that meets eithe®
or Q, and one first combine3 with (Q) and then®) with Q.

Furthermore, that will divide the proof (always in neantion withEinstein) into two
parts:

a) We first imagine that the coordinate systerwarhside and outside of the world-
tube has been chosen by any sort of prescription. Weirtteggine that the piece of the

tube that is found betweep and Q is externally complemented continuously in such a
way that it seems to be bounded by a unitary hypersutiiateuns through the interior
of the tube aQ and Q. From the previous paragraph, the integrald ”, when they are
extended appropriately over that closed hypersurfacealvbe zero. However, that part
of our hypersurface that overhang the world-tube willtgoate nothing at all to those
integrals, since the integran@s?, U will themselves vanish on it. What will remain

are the contributions from the two cross-secti®nand Q, but when we calculate them

according to the aforementioned sign convention, thegrate over the closed
hypersurface will have opposite signs. Since their sulhbes zero, the aforementioned
contributions will be equal to each other. Q. E. D.

b) We now come to see that the 1, that pertain to the individual cross-sections

will actually remain unchanged under all changes ofviHethat vanish outside of the
world-tube. We shall do that in such a way that wa&t finink of two kinds of coordinate
systemsw and w as being given inside the tube that both merge intoahe £xternal

(Galilean) coordinate system in a continuous manner. We sh&ki mse of the first one

in order to calculate the integrdls (1., resp.) over the cross-secti@p and the other
one in order to calculate the integrals oW@r which might yield the values, (17,

resp.). We need to show thiat=1_(I” = 1", resp.), and that verification will be

achieved when we succeed in introducing a third coordinate detgioni W that
connects with thev closely enough alon® and similarly connects with th& closely
enough alongQ, while they yield theGalilean coordinates that reign along the surface
of the tube and outside of it, as before. In thatieshent, “closely enough” means that the
calculation of theV.? (V7 resp.) from thew over the cross-sectio@ will yield the
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same result as when one useswhend correspondingly, it will yield the same result
over Q as when one employs the. Due to the presence of the differential quotients of
the g, in formulas (5), (6) for the definition of thé” V™, resp., it will suffice in that
regard (from an estimate th@ermeil made) that thav should coincide with thes along

Q, along with their first three differential quotientd similarly forw along Q. Now
one can obviously satisfy all such conditions that anposes upon the coordinate
determinationw by the following example: One introduces trguationsthat the cross-
sectionQ (Q, resp.) satisfies in they and thew. Let f(W)= 0 be the first of those

equations, whilef (w) is the second one. | will then write simply:

(13) = = LE(wI* Dw+{ f(@)*Cw
[f(wW)]* O+ (W] °

and will have then, in fact, fulfilled all conditie. Our second verification is then
achieved, and with it, the proofs of the new theware accomplished.

§ 3.

Ultimate definition of free impulse-energy vectors for tle closed system.

Thel,, (17, resp.) define the natural foundation for the itaptenergy vectors that

are ascribed to the closed system. However, iardmcompletely establish the latter, it
will still be necessary to focus upon the dimensionh the types of quantities that are
coupled to each other. On page 569 of my previdate, it was agreed thas’ would

have the dimensiorf.s We would correspondingly like to assume that e that are
employed will all have the dimensions-.s Theg"”, Ouv, andg are dimensionless, while
K, U7, 47, U, 4 will coincide with the dimensions Since the gravitational
constantk possesses the dimension gm'™, U7/« , 4/ k will take on the dimension
g™ cm® s? i.e., the dimension of a “specific” (viz., refedt to the volume unit) energy.
That says that they will combine with th& additively in theB’, 07 .

Now, theseG’, U will be multiplied by three-rowed determinants andhe

integral signd,, 1, and from our convention on the dimensiompthose determinants
will themselves have a dimension ét.s Obviously, | must add a factor of (c = speed
of light) to thel,, I if | am to arrive at the dimension of an actuagrgry. Consistent
with that, the ultimate quadruple quantities:

(14) J:=¢c1, Ji=c?|”
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shall be referred to as the free impulse-energy vectors of tisectlsystem in question.
Numerical factors that might still be dubious shall hetfurther introduced; this sign
convention shall also be fixed.

I can glimpse the proof of the validity of this Ansaizhe fact thaEinstein's own

definition of the impulse-energy vector is included ia trefinition of ourJ”. In order

to see that, we will once more drop the faatbfrom our definition of thed” (namely,

sinceEinstein based his own definition upon units of measurement thatldwoakec =
1, which is merely a superficial detail for the comparigo question). However — and
this is a true specialization — we must then choosertbgs-sectio such that it can be
represented by the equatimh’ = 0 by the freedom of coordinate choice that we are
allowed. In order to see the significance of this i@&n, one argues that tl@&alilean
coordinates outside of the world-tube are established up &dfiae transformation. The
new condition also emerges from the fact that tlesszsectiorQ must be chosen such
that it will go through the surface of the world-tubeoof system in a structure that will
be represented by lmear equation when it is viewed from the outsideGalilean
coordinates that are initially assumed to be arbitrary.

If we would, in fact, like to assume thet’ vanishes along the cross-section then

d'w", d”w", d”w" will vanisheo ipso. Our integrall © will then reduce (when we set
c=1)to:

dw .. dw'
[[[B dw o dw |,
d"w - d'w

so when we revert to the usual notations, it will redoce
(15) J7 = m%?‘dw dw dw |

which is preciselEinstein’s formula, up to the choice of symbols.
This formula is indeed undoubtedly simpler than thetbatl used as a basis, at least

superficially. However, the vector character of the, whichEinstein asserted, but did

not prove rigorously, is harder to see in it. In aytég correspondence witkinstein, |
did not, in fact, originally want to succeed in estabtighthat vector character until |
took up theGrassmannnotation for the integral that | started with aboowever, that
also gave me the generalization of the concept ofesestion that | chose.

The essential difference between my representatiorEinstein’s is that | gave the

vector J; the same status as the vectr by putting theLorentzian 47/« under the
integral sign, instead dinstein’s t7 = 47 /. We will see directly that the and the
J” are generally different in an exampléwould even be able to assign infinitely-many
different impulse-energy vectors to the closed systesn if | were to, e.g., replac&

with the aggregate? + A (u‘; /K—t‘j) , in which we understandito mean any numerical
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constant. Above all, | would be allowed to repla€ewith any 17 that differs fromt?

by only a term of the required dimension that defines a mieedor under affine
transformations, and which vanishes identically outsidehef world-tube, but has a
vanishing divergence inside of it. Which of these infinilgny vectors is to be
preferred will remain undecided as long as | demand onlwahdity of the integral

theorem. A decision can be made only when one introdesesgyrounds for preferring
precisely one of the infinitude of forms for the diffatials that determine it.

Il. Einstein’s spatially-closed universe (cylinder univers).
§4.
Closed space of constant positive curvature.

In Einstein’s note in February 1917, he first suggested only the posgibifita
sphericalspace that he immediately cut out of a four-dimensioralifold (=¢, 7, {, @
whose arc length element is given by the equation:

(16) do?=d&? +dr? +d¢? + dw?
by way of the “sphere equatiorf){
(17) EX+ P+ P+ WP =R,

For those who are familiar with geometric literatutres probably self-evident that | refer
to Einstein’s investigations into non-Euclidian geometry at thens time as my own
older work from 1871, according to which, along with the sphéspace form, there
was another closed space form of constant positive ttueyanamelyeglliptic space (as it

was called in connection with my other consideratiorthatime). One obtains it from
the spherical space when one simply combines any twoetlizally-opposite points on
the sphere with contacting linear space by central grojecWe might accordingly set:

(18) x=RS, y=rRZ, z=Rr<.
Inversely, one then has:

&= RX n= (= w= R
\/X2+y2+22+R2’ . . \/X2+y2+22+R2.

(19)

The elliptic space is simpler than the spherical iarthat one represents its geodetic
lines roughly astraightlines [which always intersect at ornbye point when they meet

() From now on, “space” shall consistently mean a tdieensional domain (that is contained in the
four-dimensional “world”).
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at all ®)]. The length of such a geodetic lineRs; the total volume of space i€ 77
(instead of Rrrand 2R® 77, resp., in the spherical case).

Naturally, the difference between the two space fodmss not emerge merely by
being given the arc-length elemef)( | can use the value oi that is given by (16)
and (17) for elliptic space, as well as its value:

(20) daZ:(XZ+yzf;+ Rz)z{Rz(dx2+dy2+dzz)+(ydz—zd)/2

+(zdx—x dZ + (x dy — y d¥x?

that is calculated in terms of y, z in spherical space, or also the value that can be
expressed in polar coordinates in both cases by:

(21) do? =R (d9?% + sirf 3 - dg? + sirf Isirf ¢ - dg?).

8§ 5.
Einstein’s “cylinder world” and its group.

Furthermore, as in the previous paragraphs (asd alithout specifying the
coordinate system)do? shall briefly mean the square of the arc-lenggmeint of a
closed space of constant curvature B/ which might be assumed to be spherical or
elliptical now. The ascent tBinstein’s spatially-closed world will then be accomplished
simply by setting:

2
(22) a2 =de-97

C2

() For that reason, elliptic space emerges when orés stith the basic concepts of projective
geometry, which I did in 1871. It will then be placed disealongside hyperbolic space (the space of
Bolyai and Lobachevsk) and parabolic space (viz., Euclidian space), andsitai fundamental
misunderstanding when one refers to formulas (18) asap™of spherical space to “Euclidian” space, as
many authors still do. The totality of all systemsvafues of three variables y, z will first become
“Euclidian” when we add the differential forahé + dy? + dZ, or in terms of group theory, when we
replace the totality of projective transformations loé &, y, z (whose invariant theory is projective
geometry) with the subgroup of those transformation ldsate the stated differential form unchanged. |
shall speak of all these things in the present artaitepugh they are sufficiently well-known elsewhere,
since this article is also intended for physicists] #rese ideas still seem to have been disseminated only
slightly in physics circles, which is backlash frahe one-sidedHelmholtz tradition that goes back to
1868.

(% In fact, the “connectivity” that the associated@p#orm exhibits in the large is still not determined
when one is given thdo? That fact is often still not observed in the conterappliterature. | have
treated the relevant behavior for spaces of constamatcme thoroughly in a treatise from 1890 [Math.
Ann., v. 37 (see Article XXI of this collection)]. Fdextbooks on that subject, the text Kiling
(Einfihrung in die Grundlagen der Geometiiart I, 1893), in particular, goes into that. | woukbdike
to cite the recent publications ldadamard andWeyl.
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and lettingt vary from —oo to + o (exclusively of the limits). If we then formally
calculate the curvature scalar for the spaeeconst. then we will get € / R%. That
negative sign naturally corresponds to just the fadt ttheds for the aforementioned
space that was introduced in (22) was pure imaginary. Nwazhction exists then with
the previous paragraphs, in which we referred to spaciytmgone of constant positive
curvature.

Our main problem is to find what the largest continuous grougoordinate
transformations that takes ti¢ in (22) to itself would be.

It is clear from the outset that, at the very tea$s; of such transformation exists.
There is already a continuoGg that takesld® to itself. In order to link that with (16), it
is the totality of orthogonal transformations of they, ¢, wthat have determinant + 1.
One must then include th@; that corresponds to a lengtheningtaby an arbitrary
constant. Thés; that is obtained in that way is certainly transitive;, one take any
world-point to any other one by means of it — for examaethe point = 0, # = 0 [in
order to make use of the polar coordinate system taatimtroduced in (21)]; one might
briefly call that pointO. A continuouss; of spatial rotations arourd is still possible.

We now assert thdhere is also no continuous group of coordinate transformations
that takes dsto itself that is larger than our & To that end, it will suffice to show that
for a fixedO, only the aforementione@; of rotations will exist. In order to prove that,
we introduce “Riemannian normal coordinates” that emariagen O. We can
accomplish that, for example, when we redaad variable and introduce:

(23) ylz—lzﬁ-cow, y2:—579-sin¢cos¢/, ygzzRﬁ-sin¢sin¢/,

in place of the polar coordinatés ¢, (. If we writey, for t, for the sake of consistency,
then we will getds’ in the form:

(24) d = (A - dyf - of - )+ > (v dy- y oY

+ terms of higher order in the, y-, vy,

which shows that we are, in fact, dealing with normairdmates. Now, as far as the
transformations ofls’ to itself are concerned, sinis fixed, according to the general
theory of normal coordinates, we will only have ask titha largest continuous group of
homogeneous lineaubstitutions of thg would be that would convert thi’ into itself.
The two terms ol that were written down must then each go to itselfsirown right,
for the sake of dimensions. It will then be cleat thanust remain unchanged, whilg

Y2, Y3 can be subject to at most the continuous group of tearttogonal substitutions of
determinant 1. However, with that, we have alreadghied our goal.

From the theorem that was proved in that way, it parhaps be permissible to refer
to Einstein’s spatially-closed world briefly as theylinder world since it possesses the
symmetry of a cylinder of rotation, so-to-speak: vizhiteary displacements along the
axis and arbitrary rotations arou@dfor a fixedt. Naturally, the analogy is not complete,
since one can just as well rotate around any other fibemO). | would also not like to
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introduce a permanent term, but only have a badfho¢ expression that might exhibit
the contrast witlile Sitters hypothesi®B that will be treated in the next section.

Furthermore, we might say that in the present casee we have agreed upon the
unit of time and the starting point for the time direct the concept of time will no
longer contain any arbitrarines§'), or if one would prefer, that inside of the four-
dimensional world,the triply-extended spaces=t const. are manifolds, sui generis.
Hence, they are a remarkable approximation to the walesdribing things in classical
mechanics.

That should be obvious from the outset when one pondeghilsgcal argument by
which Einstein introduced the cylinder world. Namely, in order to comprehtre
totality of mass distributions and events in world franhigher standpointzinstein
initially fabricated a mean state in which the toyalitf masses in the space that is
assumed to be closedirecoherentanduniformly distributed and inside of that space, it
is at restwhile t runs from —o to + . The actual mass distribution and events shall be
regarded as deviations from that mean state. Time (o precisely the time difference
between two world-points when measured in the agreed-uponisirilten something
absolute eo ipso when measured in that mean state, while space insiuaily
homogeneous'}). However, this concept finds its precise mathemaggpression in
the invariant theory of ou®; .

It is particularly interesting to see how dif can be extended to th@rentz group
Gi0, SO one will come tpicture of the “special” theory of relativityvhen one takes the
curvature scalar of our space to vanish; i.e., oneRsetso. Ourds’ (22) will then, in
fact, reduce to only its first term®: dy? - dy’— dy— dy, and will then remain

unchanged by all homogeneous linear substitutions afythely,, dys, dy, that transform
this individual quadratic form into itself.In that way, y =t ceases to be a variable that
stands alone, and will combine with they, ys under allowable substitutions, since that
is precisely the essence of the special theory of relativity.

§ 6.
The field equations of the cylinder world.
We must still confirm that the assumption of matterest filling up all of space
uniformly — say, with a constant densgy- is, in fact, compatible with tHeinstein field
equations that are posed for @ist. Naturally, we mean by that the field equations “with

the A term,” which | spoke of already in my previous Note [fatan(57)]:

() This was also noted ite Sitter, loc. cit.

(*3 Einstein, e.g., accepted the fact that space can then be absarbe spherical or elliptical as one
desires with no further assumptions. Moreowds, Sitter also always treated those two assumptions
together, and similarlWeyl’'s new book Raum, Zeit, Materie

(* Not only does the second term drop out, but so dogtiniterms.
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Since the distribution of matter in space should beyaxegre uniform, it will suffice
to verify that compatibility at the poif@d. Since we are dealing with a relation between
tensor components, we can also base our verificagiom theds” (24) that is written in
normal coordinates from the outset.

However, when one starts from that point, one wiildf without any detailed
calculation, [cf., the note dfermeil in the Gadttinger Nachrichten of 26 October 1917,
“Notiz Uber das mittlere Krimmungsmass einefach ausgedehnteRiemannian
Mannigfaltigkeit”):

2 2
(26) K11 =Ko =Kaz = —% : Kaa :% :

while all otherK,, will vanish.
Now, when one bases the calculation upon norn@idneates, one will have:

(27) allT,,=0, uptoTs=c®p

at the pointO. The field equations (25) will then yield:

c? 3c? ,
—E'FA:O, ?—/]—kczpzo,
le.:
c? 2
28 A= —, = ,
( ) R2 p KR2

which agrees with the result tHainstein himself gave (as long as one s&ts 1).
In regard to that, we remark that we calculate fdllowing constant value foK
itself:

6c?

Naturally, in order to apply this to the univerggyen our current knowledge of
stellar astronomy, it still remains for us to estimmthe corresponding valueR®ivith any
likelihood. De Sitter did that in his oft-cited article. | would like tquote his result so
that one can see thainstein's cosmological consideration, whose mathematioatent
is all that we shall deal with here, is not lefinbang, physically speaking. Frode
Sitter, one must take:

R = 10" to 10 radii of Earth’s orbit.

The densityp is so slight that only, perhaps, 10grams of mass are found in a cubic
centimeter; i.e., one will find the mass of one reggen molecule in about 100 cubic
centimeters. However, constahwill be incidentally 10°° s
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§7.

The integral laws for the cylinder world.

If one takes the field equations with theaerm then one must replaté” andt’ =
U™ /k with:

(30) ge=us+asr, to=tr+lsr
K

resp., as | did in 8 7 of my previous Note in connectiah #instein’s analysis, in order

for the conservation law to remain true. We willrespondingly take the integral|

(1.7, resp.), instead off, (17, resp.), and we will be certain from the outset tig

integral will vanish when it is taken over a closed hypeas@rthat bounds a piece of the
cylinder world.

Furthermore, the concept afoss-sectionwhich we employ for the “world-tube” that
is considered in that case, must be adapted. As secowld like for that to refer to an
otherwise-arbitrary closed hypersurface that cuts everjdwine — i.e., every parallel to
thet-axis — exactly once. The simplest example is givethbyspace’t = constant.

As before, we will then have the double theorem:

1. When the integral, (1", resp.) is taken over an arbitrary cross-sectionilit w

have a value that is independent of that choice.

2. That value does not depend upon which coordinates oneyanipl evaluating
that integral of the cross-section, either.

The only thing that will change is the fact that itlwib longer be true that set of
integrals I, (1", resp.) can be referred to as a (free) four-vectiie reason for that
breakdown has its roots in group theory, according todhere of ouG; .

1, (1,7, resp.) stands alone innately. We might refer toatae; when multiplied by
c3, as thetotal energy of the cylinder world.

However, we do not need to worry very much about thssiieation of the
quantitiesl,, 1,, 1, (1, 1,, 17, resp.), since one can convince oneself in various ways
thatthey are all zero.

First of all, (asEinstein also showed relative td) that results on the grounds of
symmetry. When we fix the normal coordinayesf the «° continuous transformations
that take the spacg = 0 to itself, naturally, onlyo® of them represent homogeneous

linear substitutions of the , y», y3 that produce rotations of space ab@ut However,
for our purposes, it will also suffice for us to comsidhe subgroup that they define.
Relative to it, theJ?, UJ, U (and likewise, theJ”, U”, U.”) will behave like the

components of a three-dimensional tensor, solthel,, 1, (1,° 1, 1., resp.) will
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behave like the components of a three-vector that sdbaO. However, as we know,
the cylinder world is spatially-isotropic arou@d The aforementioned three-vector must
then remain unchanged under an arbitrary spatial relatioutO, and that can happen
only when all of its components vanish.

Secondly, we might go down the path of direct caleah. We choose the cross-
section over which our integral is extended to be any foldny, = const. Inside of it,
one might think of introducing any coordinatgsw', w". According to the explanation

in § 3, one can then write the integrdls (1.7, resp.) as:

(31) o= (7 e 2os =gt o o
or

(31) 0= j j j (T +T*)/ - g oW dw oW,

resp. Now, direct calculation will imply that tAe, U*, T* will all vanish forz =1, 2,

3.
We have obtained the expression for tibkal energy of the cylinder worloh these
formulas:

(32) 3= o[ T 0: =g o aw
or
(32) 37 = Cf[[(T4+ 1)V - glowr dw dW

resp. The energy content is then representeceasith of two summands in either of the
two cases. We might refer to the summand thatspaonds tdT,’ as themass energy
and the other agravitational energy.

One can now calculate the mass energy with ndidurassumptions. Namely,’

will equal o, no matter how we might choosg w', w", andc®/-g dw dw' dw"

will be nothing but the volume elemedliv of our space. = const. The mass energy will
then be simply?@ V, in which we understand to mean the total volume of space, so it
will be 277°R® or m°R®, according to whether we would like to assume shherical
hypothesis or the elliptic one.

However, inEinstein’s case, he found that the gravitational energy wasy and
thus, when one starts with formula (B2nd employs spatial polar coordinates. In that

case, one will haveV = sirf 9sin¢ - dJ d¢ dy, t,* will be (when | assemblEinstein’s

terms) cos 2/ sirf I, and the result of the integration will be zeriacs| cos 29 - ddis
taken from O taz That result is certainly very remarkable. Sigaust be independent
of the choice ofw/, W', w", one asks whether one might introduce more preffera
coordinates in place of the polar coordinates, twhiwring with them a lengthy
mechanical calculation (whidiinstein only suggested). | would like to propose that one
should operate exclusively with the supernumeranrdinatest, 7, ¢, wof 8§ 4 (between
which, the dependenc§? + n2 + ¢? + «f = R? will then exist). Naturally, one must
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therefore generalize the basic formulas of tensorysisato the case of dependent
coordinates, but that would mean all Ansétze in the lilegat! suspect that after one has
carried out that conversion, not only will the integrthe gravitational energy over all
spatial volume elements vanish, but also the diffeksnthat correspond to the individual
volume elements, which might bring about a better msigto the simplicity of
Einstein’'s results.

So much fort,*. The new idea that | now have to develop is thatwill get an
entirely different resulfand with no complicated calculationshen we choos&; / k
instead oft,*, and therefore choosd,’ in place ofJ,. As we knowU;=U;+ A. If we

once more go back to the formula fo that was quoted in (5) above then that will
show that in the case of the cylinder world, all terxxept for the first one will drop out
for an arbitrary choice oV, w', w". U} will be simply =K / 2, so:

2
(33) g4 =1k +1=2

RZ
It will then have a constant, but non-vanishing, value. aAesult, if we base that value
upon theU; thenthe gravitational energy of the cylinder world wilbt be roughly zero,
but twice as large as the mass energy.

The state of affairs that is established in thay v obviously meaningful enough in
the case of the cylinder world. It gives an examipl which the energy components
U/ /k will generally give different results than thg, even for thentegral formsof the
conservation laws. That is what | called the plkey of a subjective moment in the
establishment of energy balance in the introductaomd whose importance for closed
systems | explained in more detail at the end &f §he result is in no way wonderful in
itself, but it still contradicts the impression tluae gets from a first reading Binstein's

note that the? have some exclusive legal title to the claim aflieg to simple integral
theorems.

[ll. On de Sitter's hypothesisB.

In his oft-cited publications — in particular, kote 3 of the Monthly Notices de
Sitter modified the assumption of a cylinder world, whighreferred to as Hypothegis
inter alia, in such a way that he posed a worldcohstant curvaturanstead of the
cylinder world (which preserving the characteristign fords’). That was the hypothesis
that he calle® (*%. | pose the problem of cogently describing te@avior that comes

(Y de Sitter remarked that this assumption (which the mathematiccaeemmend, due to its
symmetry) was first proposed Bhrenfest In my talk in early 1917 (a small number of exempldrs o
whose write-up have been distributed), in which | referoelinstein’'s “Kosmologische Betrachtungen”
that had just appeared at the time (although the formuliesnee precisely comparable), | myself made the
same Ansatz arbitrarily, and then later when | wedieut the physical consequences, | wondered whether
the result might naturally agree with the one thattein gave for his cylinder world.
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about in that way by means of the simplest-possiblendtas. Moreover, one will
already find the essence of my arguments in Rhatokollen Uber die Sitzungen der
Gottinger Mathematischen Gesellschafthe Summer of 1918, which were published in
the October 1918 volume of thdahresberichts der Deutschen Mathematiker-
Vereinigung (obligue pages pp. 42-44). Cf., also an article by the Amstenda
Akademie (published on 29 Sept. 1918).

§ 8.
The geometric foundations of the universe of constant curvater

We are justified in assuming that the world is a madhifafl constant curvature in a
simple way when we write down the usual equation feplaere in five variablewith
one sign changedand measure things in a Euclidian way on this “pseudo-spféye
As a result, in order to comply with the previous caotis in regard to dimension, we
will, however, callR/ c the radius, noR. For the sake of consistency, we shall likewise
invert the usual sign @fs’. | shall then write the equation of the pseudo-sphere a

2

(34) 52+/72+Zz—uz+w2=%

and the associatel¥’ as:

(35) —d$¥=dé?+dn?+d¢?-dv? +dw?

Due to the minus sign that the is affected with, th@seudo-spherical worl@s, 7,
¢, U, &) that is given by that will have the constaRtgmannian) curvature scalar € /
Moreover, it will go to itself under a continuo@, of “pseudo-orthogonal”
substitutions — i.e., linear homogeneous substitutionsedf, t77, ¢, v, w— but not, as one
can easily verify, under a more extensive group.
Along with it, we will then likewise define pseudo-elliptical worldvhen we write:

(36) :Ei, y:Eﬁ, :EE{r, :E#,
C w C w C w

C w
while preserving thes’ that was given in (35), which inverts to:

Rx

37 = :
(57) ¢ c\/x2+y?+zz—uz+R2/é

n=.., J{=..., U= ...,

RZ
w= .
cf X+ y+Z- P+ R/ @

(**) The prefix “pseudo” shall always refer to the appearafies altered sign.
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We can use thesgé 7, {, v, wto homogenize the equations (which we shall do many
times) in the treatment of the pseudo-elliptical worMl/e remark that as long as we
restrict ourselves to real values of the original com#isé, ..., &) which is obvious:

RZ RZ (52+/72+ZZ—U2+0)2) RZ
38 XY +Z -0 +—=— =
(38) y ¢t c? N c*wf

will always be positive.

For the sake of brevity, we will speak of onlystipseudo-elliptical world (and thus
drop the pseudo-spherical one), and | must alréedythe reader to allow me to appeal
to only projective notions, which are the only ones that will be ified for the
relationships that come under consideration. ht tkegard, | will present a series of
statements that should be obvious to the trainedhgeer:

1. In the pseudo-elliptical world, one deals wihprojective metric whose
fundamental structure is given by:

2

(39) x2+y2+22—u2+%:0,

which can henceforth be referred to briefly asveo{sheeted) hyperboloid, by analogy.
From the sign convention in (38), we will find oekges betweenthe sheets of that
hyperboloid (i.e., in the part of the world thahsualong the real tangent cones to the
hyperboloid), which agrees with the indefinite awer of ourdS. When written in
homogeneous coordinatés..., the equation of the hyperboloid will read:

(40) 2+ P+ *- VP +df =0,

so the hyperboloid will be the intersection of gmymptotic conef our pseudo-sphere
with our domain ok, y, z, u.

2. The continuous family of pseudo-orthogonal stildgons of theé, 7, ... yields
the largest continuous group of collineations @&thy, z, u that take our hyperboloid to
itself.

3. New structures that are represented by a slimglar equation in thg, y, z, u (the
corresponding homogeneous equation in&hg ..., resp.) are called simpdpaces

4. Spaces that cut the fundamental hyperboloig onimaginary points (such as,
e.g.,u = 0) will exhibit simply elliptic metrics, and withus have finite extent. One can
then refer to our world as “spatially closed” andtt it directly alongsideEinstein’s
cylinder world.

5. Along with those spaces, one will also findcgsathat contact the hyperboloid at
a point as limiting cases; e.g., the spaces:
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(41) u=+—, or, what amounts to the same thingy¥ w = 0.

Such spaces might be briefly called “tangential spaces.”

6. Any two tangential spaces bound a connected subset oidHé from the
projective standpoint, into whose interior the hyperigdbdtmes not penetrate, and that one
prefers to call adouble wedgefrom its form in the projective context. That double
wedge protrudes on two sides into the still-two-dimensidoanain that is common to
the two tangential spaces and that one can thergiprepriately call thelouble edgd€of
the wedge).

7. One can glimpse this state of affairs most sinvpfien one considers the two
tangential spaces of no. 5 (which one can take to be anpfp@mngential spaces i*
ways by means of th8;o of our collineations). The double wedge will then sulestine
points for which:

(42) SRou< R e, c1<l <t
C C w

The edge will be defined by those points for whicls undetermined, so for theand w
that vanish simultaneously (gpy, z will become infinite).

8. According to the theory of projective metrics, augh double wedge will give
one the right to introduce a repseudo-anglefor any two elliptical spaces that are
contained within its edge.

9. For the sake of clarity, | will relate this to tlveample (41), (42). Two associated
(viz., their entire extent is contained in the double weddiptic spaces will then be
given by equations:

(43) U=u, U=uUy, (£=ﬂ,£=ﬁ,respJ
w o w

(in whichu; andu; lie between iR/ candui / a, v/ a3 lie between + 1). They define
two mutually-inverse double ratios with tkeedesof the double wedge — i.e., the two
tangential spaces (42) — of which, we would like to pick, say:

(44) pv=U*rRICU-R € b+ p,-a,
u-RIlcu+R ¢ v-w V,+tw,

One will then define the logarithm of this doulkd¢is, multiplied by any real constant A,
to be the pseudo-angle between the two ellipticessd3).
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10. In regard tale Sitters analysis, we would like to take= R/ 2c and seu, = 0,
moreover; i.e., to make the pseudo-angle begin frien®. If we now drop the index on
Ui, U1, @ thenwe will get the defining formula for the pseudo-angle:

(45) @ = Blog—R/ Ccr u_ Blog wru

2c Rlc-u 2¢ “w-u'

and see clearly how it increases fron® +0 + whenu goes from-R/ctoR/c; i.e., it
ranges over the entire double wedge.

11. Naturally,¢ will be completely undetermined for the points of thiges itself,
where w and v will vanish simultaneously. For the general anatjgicture, one will
have no other singularity to deal with than the onehépolar angle at the origin of an
ordinary planar (polar) coordinate system. However two absolute directions that are
the basis for the angle determination (in the senserojective theory), which are
imaginary in the usual case, will be real from (48).(

8 9.
Introduction of matter and time.

We now imagine that ouds’ (35) is expressed in terms of four independent,
temporarily-arbitrary, parametens(which we can take to be oxury, z, u):

(46) ds=>"g,, dw'dw .

Since we know that thid$® has constanRiemann scalar curvature, we can write down
the associatel,, directly using the analysis éferglotz (*):

We will then satisfyEinstein’s field equations with thd term:

(48) K/jv - A g/ju - KT/[V = 0
when we set:
3C2
(49) A= ? and all Tyv =0;

(*®) The reader who wishes to go further into the mattersida. 8-11 might confer my older
presentations in vol. 4 of Math. Ann. [see Abd. XVI in thalection] (in which the relationships and
arguments that come under consideration are describatil iigor).

(*") Séachsiche Berichte of 1916, pp. 202.
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i.e., we assume that there is no matter at dlater on, we will also see that we will be
necessarily led to that assumption when we start ftmrassumption of a world that is
uniformly filled with incoherent matter “at rest” forsaitable introduction of a time In
fact, de Sitter also came to that result, except that he expresseséwhat differently,
as one might see in the cited place.

Naturally, we do not at all diverge frolEinstein’s original intention with this
formula (49), which start from the idea that one wayigexd with a mean structure of
the world in which one had a uniform distribution of reatih space. However, we also
find ourselves contradicting another basic laviEmistein, at least formally, according to
which, equations (48) should give no solutions besideswdess one assumes that there
is matter (cf. Einstein’s note on March 1918 that was cited above). That Bagsicf
Einstein undoubtedly grew out of physical arguments originally, Huthas an
intrinsically mathematical nature, so it will be coxtiched by the very existence of our
d¢ (46) (which Einstein himself occasionally brought to my attention in
correspondence). Generally, one can remark thagthef this ds’ (one performs the
calculations for, say, vy, z, u) will become infinite along the fundamental hyperbdJoi
which can be regarded as equivalent to the absence t&rraathe non-singular points of
the world.

We shall now address the introduction of a suitabfa€tit (which we can choose to
bew"). According toEinstein’s way of looking at things, the starting point fortthaust
be the idea that the world that we seek shall be capaldbeind regarded as static
system; i.e., thatl$’ shall remain unchanged when one increagés: t by an arbitrary
constant, while leaving/, w', w" fixed. Hence, it shall be included in the one-
parameter group:

(50) W = V\}, W' = V\/I, " = V\}”, @ =w+cC

in the ten-parameter group that takes dsirto itself. Some geometric conclusions will
suffice to see that such a one-parameter group musttimegame thing as an advancing
rotation of our pseudo-elliptical world around a fixed, twmelnsional axis, so (with a
suitable choice of time unitymust coincide with the pseudo-angle of a doulddgs, as

it was defined ir(45), up to an additive constantWhen we understand = 0, w= 0 to
mean, as it previously did, any two tangential spacéisedundamental hyperboloid and
assign no value to the additive constant, we will tteve to take:

(51) t= Rjog¥*ty
2c w-v

Now, there arex® such pairs of tangential spacesVe will then havex® ways of
introducing t according t@51), in contrast to the cylinder world, in whitis established
completely up to an additive constant, and also in csinti@ the special theory of
relativity (viz., the Lorentz group), in whidhcontains three arbitrary parameters (always
while fixing the time unit and the starting point).

We shall next confirm that we will come to preciséigds’ thatde Sitter based his
HypothesisB upon with (51). Namely, with the use of spatial polar doates,de
Sitter (as long as | likewise employ the symbols that | ussfdre and also takes to
have the sign that was suggested previously) wrote:
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(52) —-ds = 5—5(d792+ sirf - dg + sirf 9 sirf ¢ - d?) — cod 2 - df,

and thatds’ will arise from the one that was placed at thefforg in (35):

—d$¥=dé?+dn?+d¢?-dv?+dw?
when | set simply:

Ezstinﬂ cosp , ’7:? sif sig cag
(53) 7 =Rsingsing siy , v="co® sink
c C R
wz—Rcosﬁ cosh(it )
c R

In this, sinh and cosh mean hyperbolic functions in to@lusay. One will then have:

(54) tanhc—t: v
R w
which does, in fact, agree with formula (51).

I will call the part of our pseudo-elliptical world tHa¢haves according to (53) when
one letsd, ¢, ¢ vary within the usual limits, butvaries from —o to + o, ade Sitter
world. According to (54)p / wwill then vary only between the values — 1 and + 1.
Obviously, thatde Sitter world is nothing but thedouble wedgeof the previous
paragraph. Its two “sides” (vizy — w= 0 andv + w= 0) seem to be the infinitely-
distant future and infinitely-distant past, resp. Hosrevts edges (which consist of
nothing but ordinary points in the general conceptiomeftseudo-elliptical world) seem
to be somewhat singular, namely, the loci of world-mofot whicht assumes the value
0/0.

| have touched upon this behavior already in the aforBom=d place in the
Jahresberichts der Deutschen Mathematiker-Veremggtalk presented to the Gottinger
Mathematischen Gesellschaft on 11 June 1918). In ordellow the paradoxical
relationships that are present in the physical pictorerge clearly as such, | said at the
time: “Two astronomers that both live inde Sitter world and are equipped with
differentde Sitter clocks could operate in very interesting ways depending tiporeal
or imaginary character of any world-events.” That metnas the double wedge that
would be cut from the pseudo-elliptical world by distinckrpaf tangential spaces to the
fundamental hyperboloid would always have only piecesommon that have other
pieces above them.

Moreover, whoever so desires can easily orient sebdras more deeply in the details
of thede Sitter world. That world reaches only the two poiéts 0,7=0,{=0,vFw
= 0 on the fundamental hyperboloid. All world-lines aomic sections that contact the
hyperboloid at those two points (whose plane then amthe one-dimensional axfs=
0,7=0,{=0). There is only one continuoGs that transforms thee Sitter world into
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itself that corresponds to the substitutibn=t + C, combined with the continuo@s of
unimodular orthogonal substitutions éf 77, . In that way,&? + % + 2 will be
invariant, so the group of tlte Sitter world is no longer transitive. The “axig’= 0, 77
=0,{=0, and the “edgel = 0, w= 0 are invariant structures.

In conclusion, we convince ourselves that the density the incoherent matter at
rest that fills up thele Sitter world uniformly should, in fact, necessarily be setdooz
Namely, we stay with our “static” coordinates. Wertthave:

2

A= " O
for all other combinations of indices v, and:
3C2
/1944:?944"'/((32,0

for only =4, v =4, from which, it will follow uniquely that:

2

as we have assumed already in formula (49).

All of these results are in complete agreemenh whie ones thatle Sitter gave.
However, they contradict the objection tlkahstein had raised againste Sitter in his
article on March 1918, and whiaNeyl supported by thorough calculations in his book
(*®), as well as more recently in a special revievihia Physikalischen Zeitschriff%).
Both authors found that matter must be presentgaibe edge of the double wedge (for
the sake of brevity, | shall continue to use mymiaology). | have not checked the
validity of Weyl's calculations, but | would rather adopt the cgtcthat Einstein
expressed to me that the difference between therésolts must be based upon the
difference between the coordinates that were eregloy What | referred to as the
individual points of the edge when one uses éhe, ¢, v, w will become a simply-
extended region when one employs thep, ¢, t (due to the still-undetermined value of
t). It should not be difficult to succeed in clgnifg this completely.

However, my concluding verdict about wiae Sitter said is that mathematically
everything is in order (in any event, except foattlone still-not-completely-clarified
point [which | would gladly like to see explaineda general way]), but one will be led
to physical consequences that contradict our usaglof thinking and in any event the
very reason that ledinstein to introduce the spatially-closed world.

(*® Raum, Zeit, Materigpp. 225.
(*% 1919, no. Il (on 15 January 1919).
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