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 In my note on 19 July 1918, I attempted to give an overview of the different forms 
that one can give to the differential laws for the conservation of impulse and energy in 
Einstein’s theory of gravitation.  My problem today shall be, above all, to address the 
integral form of the conservation laws that Einstein presented for the form of the 
differential laws that he preferred.  In connection with that, I will treat Einstein’s theory 
of the spatially-closed universe and the variation on it that de Sitter found (2).  The 
physical questions will only be touched upon, while the goal is to clarify the 
mathematical issues completely; I feel a certain satisfaction that, in that way, my old 
ideas from 1871-72 are shown to be valid in a decisive way (3).  The reader himself might 
decide how far things have progressed by a comparison with the presentations of the 
other authors. 
 I shall next recall the following results: The conservation law, in the form that I 
referred to as the Lorentz form [formula (12) of the previous Note (†)], reads: 
 

                                                
 (1) To be submitted to print at the end of January 1919.  
 (2) The publications that come under consideration are: 
 Einstein. 1. “Kosmologische Betractungen zur allgemeinen Relativitätstheorie,” Sitz. d. Berliner  
  Akad.  on 8 February 1917. 
 2. “Kritisches zu einer von Herrn de Sitter gegeben Lösing de Gravitationsgleichungen,  
  ibidem, 7 March 1918. 
 3. “Der Energiesatz in der allgemeinen Relativitätstheorie,” ibidem, 16 May 1918. 
 de Sitter. In various articles published in Verslag der Amsterdamer Akademie, 1917, as well as in a  
   series of review articles in the Monthly Notices of the Royal Astronomical Society:  
   “On Einstein’s theory of gravitation and its astronomical consequences.”   
   (In particular, see the concluding Part III on November 1917.) 
 (3) See, in particular: 
  1. “Über die sogennante Nicht-Euklidische Geometrie,”  Math. Ann. 4 (1871).  [Abh. XVI of  
   this collection.) 
  2. The Erlanger Program: “Vergleichende Betrachtungen über neuere geometrische Forschungen,”  
   Erlangen, 1872. [Abh. XXVII of this collection.] 
 (†) Translator: Art. XXXII in Ges. math. Abh.  
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then we will get the Einstein form of the conservation law: 
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[Formula (44) of the previous note (4)] 
 Now, it would correspond to Einstein’s basic assumption if I were to refer to: 
 

the  
1 σ

τκ
A  (the 

1 σ
τκ
∗
A , resp.) 

 
briefly as the gravitational components of the energy (qualified by a fortuitous choice of 
coordinates the relevant Ansatz).  Furthermore, I would like to denote the components of 
the “total energy” that one gets in that way briefly by the symbol V (V, resp.): 

 

(4)    
1σ σ

τ τκ
+T A = σ

τV ,  
1σ σ

τ τκ
∗+T A = σ

τ
∗
V . 

 
 I would like to mention in advance a peculiarity of my following presentation, 
namely, that I will always consider A and A* (or also V and V*) together, since both of 

them have their advantages.  One will then see more clearly the extent to which the 
conservation laws have acquired a subjective momentum in the integral forms that are 
presented. 
 For the convenience of the reader, I shall once more present the basic definitions of 
the corresponding Latin symbols according to formulas (16), (55) of the previous Note.  
One has: 

(5)   2U σ
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 (4) [This entire section can be abbreviated essentially once one carries out the sign changes at this point 
in the first publication that are necessary in the present Note and been incorporated already in the 
republication of this article.  Vermeil has directed my attention to the necessity of those sign changes, and 
he has also assisted me by doing the calculations that are needed for many of the following considerations, 
for which I am grateful. K.] 



Klein – On the integral form of conservation laws and the theory of the spatially-closed world. 3 

(6)   2Uτ
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 I have employed the square root g  in (5), as I did throughout my previous Note, in 

connection with Hilbert ’s original notation.  If one would like to employ Einstein’s 

notations throughout then one would have to take g−  everywhere.  That change will 

have no effect on the ultimate formulas (1) to (3).  However, it is still preferable if the 
underlying quantities of direct observation are to have real components throughout; from 
now on, that shall then be assumed in any case. 
 
 

I. The integral laws for closed systems in the usual theory. 
 

§ 1. 
 

The vectorial notation for multiple integrals. 
First introduction of the Iτ ( Iτ

∗ , resp.). 
 

 The usual notation – e.g., ∫∫ f (x, y) dx dy – is not expedient whenever one is dealing 
with the transformation of multiple integrals.  The increments dx, dy are to be thought of 
as pointing in different directions, so they will belong to two different vectors, such that 
one would have already gained something if one wrote ∫∫ f (x, y) d′ x d″ y.  The notation 
will become even clearer when one chooses the vectors d′, d″ to be not exactly parallel to 
the two coordinate axes, but arbitrary, and correspondingly replaces the product d′ x d″ y 
with the area of the parallelogram that is enclosed between the two vectors.  We will then 
come to the notation: 

(7)     ( , )
d x d y

f x y
d x d y

′ ′
′′ ′′∫∫ , 

 
which I like to call the Grassmann notation, since it corresponds to the sphere of ideas 
that was found in Grassmann’s Ausdehnungslehre of 1861.  The formula is better suited 
to the mobility that we expect of the concept of a multiple integral. 
 With an eye towards its specialized evaluation, one can obviously return to the usual 
notation from formula (7) at any moment.  However, (7) is to be preferred for all 
considerations that relate to transformations.  For example, if we set x = ϕ (ξ, η), y = ψ 
(ξ, η) then it will be immediately clear from (7) why the transformation formula of the 
integrals includes the Jacobian functional determinant.  One will then have: 
 

f (x, y) · 
d x d y

d x d y

′ ′
′′ ′′

 = f (ϕ, ψ) ·
d x d y

d x d y
ξ η

ξ η

ϕ ϕ
ψ ψ

′ ′
⋅

′′ ′′
, 

identically. 
 Assuming that, we will now consider certain triple integrals in what follows that can 
be written thus: 
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(8)     Iτ = 
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, 

or also the other one, which I call: 
(9)      Iτ

∗ , 

 
which can be obtained from the foregoing one when one replaces the σ

τV  replaces with 
σ

τ
∗
V .  These integrals are extended over any piece of a “hypersurface” that lies in the 

four-dimensional world.  d′, d″, d″′ denote three mutually-independent vectors that 
extend from the individual points of the hypersurface in tangential directions. 
 One can conclude from the outset from the differential laws (1), (3) that the σ

τV  

( σ
τ
∗
V , resp.) satisfy [while assuming the usual continuity (single-valuedness, resp.) of the 

V] that this Iτ ( Iτ
∗ , resp.) will be zero when one assume that their domain of integration is 

closed in such a way that it bounds a well-defined subset of the universe.  In fact, Iτ will 
then be converted in a known way into the fourfold-extended integral over the bounded 
subset of the universe: 

(10)    Iτ = 

I IV

I

I

I

dw dw

d wV

w d w

d w

σ
τ
σ

′  ⋅∂
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′′′ ⋅

∫∫∫ ∫

⋯
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⋯

⋯

, 

 
and similarly for the Iτ

∗ , for which the integrands themselves will now vanish with no 

further assumptions, due to the conservation laws. 
 However, our particular interest in the subject of how the Iτ , Iτ

∗  will behave under 

affine transformations of the w, so when one subjects the w to linear transformations with 
constant coefficients: 
(II)     wρ = 1

Ia wρ + … + 4
IVa wρ  + cρ. 

 
This is where our vectorial notation proves itself.  We know from the developments of 
the previous Note that the Vσ

τ (V σ
τ
∗ , resp.) behaves like a mixed tensor under the 

transformations (11); the σ
τV ( σ

τ
∗
V , resp.) will increase under them by multiplication by 

g ( g− , resp.).  Hence, it will be clear with no further assumptions that the 

integrands dIτ ( dIτ
∗ , resp.) will transform like “contragredient” vectors.  We shall say that 

they suffer the homogeneous linear substitutions: 
 

dIτ = 1
Ia dIτ + … + 4

IVa dIτ  
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that are derived from (11).  However, the coefficients a in (11) are constant, by 
assumption.  We will then have corresponding substitution formulas for our integral Iτ 
themselves: 
(12)    Iτ = 1

Ia Iτ + … + 4
IVa Iτ  

 
(and naturally a similar expression for the Iτ

∗ ), and with that, the result that was to be 

derived has already been achieved. 
 However, the conceptual advance that is linked with this formula (12) can be 
expressed as follows: The dIτ , dIτ

∗ , like all vectors in the general theory of 

transformations, are intrinsically coupled with a certain world-point w as the starting 
point, so they are bound vectors (or, if we would like to be still more precise: four-
vectors).  Now, this coupling to a special point will lead back to the transformation 
formulas for the Iτ , Iτ

∗  completely.  Better yet, one can refer to the Iτ , Iτ
∗  as free 

contragredient four-vectors; i.e., as four-vectors that have only a direction and an 

intensity (= g I Iµν
µ ν∑ ), but no particular position in the four-dimensional world. 

 Naturally, this concept of free four-vectors is entirely rooted in the fact that we based 
it upon the group (11) of affine transformations of the w.  In physics (mechanics, resp.), 
things are precisely as I described in my Erlanger Programm for geometry: Namely, that 
one can first speak of the differentiation of distinct types when one knows the 
transformation group in which one measures the basic concepts.  For decades, I have 
already been saying that the physicists should consciously try to adopt the basic notion in 
that, which clarity alone would suggest (5).  In particular, in 1910, I expressly remarked 
in my talk on the geometric foundations of the Lorentz group (6) that one should never 
speak casually of the “theory of relativity,” but only of the theory of invariants that relate 
to a group. – There are as many kinds of relativity theories as there are groups (7). 
 The concept that one formulates in that way is in complete contradiction to the 
opinions that are often propagated currently in connection with Einstein’s general 
explanations, but not to Einstein’s own far-reaching detailed developments, upon which I 
place great value.  Moreover, as I have commented in the present Note, Einstein’s papers 
show that in the individual cases, he appealed to precisely the very same freedom in 
forming ideas that I recommended in my Erlanger Programm, and without systematically 
fixing the train of thought. 
 
 
 
 
                                                
 (5) Cf., inter alia, my treatise “Zur Schraubentheorie von Sir Robert Ball” in vol. 47 of this Zeit. f. Mat. 
u. Phys. (1902) [reprinted in vol. 62 (1906) of Math. Ann. with some extensions.]  [Cf., Abh. XXIX of this 
collection.] (As in this article, no relatively new physical concepts are introduced in it, but only the 
concepts that many people discuss in more thorough treatments of the individual problems that relate to a 
clear mathematical principle.] 
 (6) Jahresbericht der Deutschen Mathematiker-Vereinigung, 19 (1910), published in the Phys. Zeit. 12th 
yearly issue, 1911. [Cf., Abh. XXX in this collection.]  
 (7)  Also confer Noether’s notice on “Invariante Variationsprobleme” in the yearly issue of 1918 of the 
Göttinger Nachrichten (esp., its concluding remarks). 
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§ 2. 
 

The integrals Iτ , Iτ
∗  for closed systems. 
 

 In the article that was cited in (3), Einstein understood “closed” system to mean one 
that “swims,” so to speak, in a Minkowski  space; i.e., a system whose individual parts 
run through a world-tube, outside of which a ds2 of vanishing Riemannian curvature 
reigns.  One can write that ds2 with constant coefficients [without being required to put it 
into the typical form dt2 – c−2 (dx2 + dy2 + dz2), moreover]: Einstein then spoke of 
Galilean coordinates.  As such, the w2 outside of the world-tube must be chosen once and 
for all, while it can vary arbitrarily insider of it, assuming that there is a continuous 
transition.  Nothing in particular can be said correspondingly about the σ

τV , σ
τ
∗
V  inside 

of the tube, but outside of it, they must be zero in any event.  Not only will all σ
τT  vanish 

there then, but also, as a glance at the defining formulas (5), (6) will show, all σ
τU ( σ

τ
∗
U , 

resp.), due to the constancy of the gµν . 
 We imagine that the interior of the world-tube is naturally filled with a continuous 
family of world-lines, all of which have been given a positive sense, that correspond to 
the points of the system.  Any world-line will have tangent vectors with the same sense 
and whose components might be dwI, …, dwIV. 
 The question now arises of which three-dimensional manifolds (hypersurfaces) one 
might refer to as “cross-sections” Q of the world-tube.  In order to be able to express that 
more conveniently, in what follows, we will focus exclusively on those cross-sections 
that are cut by each world-line at only one point.  Three mutually-independent vectors d′, 
d″, d″′  might then be chosen in such a way that the determinant: 
 

I IV

I

I

I

dw dw

d w

d w

d w

′ ⋅
′′ ⋅
′′′ ⋅

⋯

⋯

…

⋯

 

 
keeps a fixed sign.  When we link that with the example: 
 
 d = 0, 0, 0, dt, 
  d′ = dx, 0, 0, 0, 
 d″ = 0, dy, 0, 0, 
 d″′ = 0, 0, dz, 0, 
 
we choose that sign to be negative, for the sake of convenience. 
 Assuming that, we define the four integrals: 
 

Iτ ( Iτ
∗ , resp.) 

 
of the previous paragraph for the cross-section. 
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 In close connection with Einstein’s development, we will then assert that those 
integrals are independent of the choice of cross-section, as well as the choice of 
coordinates that we might introduce inside the tube.  From the standpoint of the affine 
transformations of the w that encompass the entire universe, the Iτ ( Iτ

∗ , resp.) likewise 

define a free contragredient vector.  The new theorems that Einstein posed say that these 
vectors depend upon only the material system as such, but not upon the peculiarities of 
the analytical representation. 
 In order to prove the new theorems, it will suffice in any event to place two cross-
sections Q and Q , one after the other, such that they bound a unified piece of the world-

tube (so they do not intersect each other).  The general case in which Q and Q  cross each 
other can be dealt with easily when one adds a third cross-section (Q) that meets either Q 
or Q , and one first combines Q with (Q) and then (Q) with Q . 
 Furthermore, that will divide the proof (always in connection with Einstein) into two 
parts: 
 
 a) We first imagine that the coordinate system of w inside and outside of the world-
tube has been chosen by any sort of prescription.  We then imagine that the piece of the 
tube that is found between Q and Q  is externally complemented continuously in such a 
way that it seems to be bounded by a unitary hypersurface that runs through the interior 
of the tube at Q and Q .  From the previous paragraph, the integrals Iτ , Iτ

∗ , when they are 

extended appropriately over that closed hypersurface, will all be zero.  However, that part 
of our hypersurface that overhang the world-tube will contribute nothing at all to those 
integrals, since the integrands στV , σ

τ
∗
V  will themselves vanish on it.  What will remain 

are the contributions from the two cross-sections Q and Q , but when we calculate them 
according to the aforementioned sign convention, the integrals over the closed 
hypersurface will have opposite signs.  Since their sum will be zero, the aforementioned 
contributions will be equal to each other. Q. E. D. 
 
 b) We now come to see that the Iτ , Iτ

∗  that pertain to the individual cross-sections 

will actually remain unchanged under all changes of the w ρ that vanish outside of the 
world-tube.  We shall do that in such a way that we first think of two kinds of coordinate 
systems w and w  as being given inside the tube that both merge into the same external 
(Galilean) coordinate system in a continuous manner.  We shall make use of the first one 
in order to calculate the integrals Iτ , ( Iτ

∗ , resp.) over the cross-section Q, and the other 

one in order to calculate the integrals over Q , which might yield the values Iτ  ( Iτ
∗ , 

resp.).  We need to show that Iτ  = Iτ ( Iτ
∗  = Iτ

∗ , resp.), and that verification will be 

achieved when we succeed in introducing a third coordinate determination w  that 
connects with the w closely enough along Q and similarly connects with the w  closely 
enough along Q , while they yield the Galilean coordinates that reign along the surface 
of the tube and outside of it, as before.  In that statement, “closely enough” means that the 
calculation of the Vσ

τ (V σ
τ
∗ , resp.) from the w  over the cross-section Q will yield the 
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same result as when one uses the w, and correspondingly, it will yield the same result 
over Q  as when one employs the w .  Due to the presence of the differential quotients of 

the gµν in formulas (5), (6) for the definition of the Vσ
τ ,V σ

τ
∗ , resp., it will suffice in that 

regard (from an estimate that Vermeil made) that the w  should coincide with the w along 
Q, along with their first three differential quotients, and similarly for w  along Q .  Now 
one can obviously satisfy all such conditions that one imposes upon the coordinate 
determination w  by the following example: One introduces the equations that the cross-
section Q (Q , resp.) satisfies in the w  and the w.  Let ( )f w = 0 be the first of those 

equations, while ( )f w  is the second one.  I will then write simply: 
 

(13)    w  = 
4 4

4 4

[ ( )] [ ( )]

[ ( )] [ ( )]

f w w f w w

f w w f w

⋅ + ⋅
⋅ +

, 

 
and will have then, in fact, fulfilled all conditions.  Our second verification is then 
achieved, and with it, the proofs of the new theorems are accomplished. 
 
 

§ 3. 
 

Ultimate definition of free impulse-energy vectors for the closed system. 
 

 The Iτ , ( Iτ
∗ , resp.) define the natural foundation for the impulse-energy vectors that 

are ascribed to the closed system.  However, in order to completely establish the latter, it 
will still be necessary to focus upon the dimensions of the types of quantities that are 
coupled to each other.  On page 569 of my previous Note, it was agreed that ds2 would 
have the dimension s2.  We would correspondingly like to assume that the wρ  that are 
employed will all have the dimensions s+1.  The gµν, gµν , and g are dimensionless, while 
K, U σ

τ , σ
τU , U σ

τ
∗ , σ

τ
∗
U  will coincide with the dimension s−2.  Since the gravitational 

constant κ possesses the dimension g−1 cm+1, /σ
τ κU , /σ

τ κ∗
U  will take on the dimension 

g+1 cm−1 s−2; i.e., the dimension of a “specific” (viz., referred to the volume unit) energy.  
That says that they will combine with the σ

τT  additively in the σ
τV , σ

τ
∗
V . 

 Now, these σ
τV , σ

τ
∗
V  will be multiplied by three-rowed determinants under the 

integral signs Iτ , Iτ
∗ , and from our convention on the dimension of w, those determinants 

will themselves have a dimension of s+3.  Obviously, I must add a factor of c3 (c = speed 
of light) to the Iτ , Iτ

∗  if I am to arrive at the dimension of an actual energy.  Consistent 

with that, the ultimate quadruple quantities: 
 
(14)    Jτ = c3 Iτ ,  Jτ

∗ = c3 Iτ
∗  
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shall be referred to as the free impulse-energy vectors of the closed system in question.  
Numerical factors that might still be dubious shall not be further introduced; this sign 
convention shall also be fixed. 
 I can glimpse the proof of the validity of this Ansatz in the fact that Einstein’s own 
definition of the impulse-energy vector is included in the definition of our Jτ

∗ .  In order 

to see that, we will once more drop the factor c3 from our definition of the Jτ
∗  (namely, 

since Einstein based his own definition upon units of measurement that would make c = 
1, which is merely a superficial detail for the comparison in question).  However – and 
this is a true specialization – we must then choose the cross-section Q such that it can be 
represented by the equation wIV = 0 by the freedom of coordinate choice that we are 
allowed.  In order to see the significance of this restriction, one argues that the Galilean 
coordinates outside of the world-tube are established up to an affine transformation.  The 
new condition also emerges from the fact that the cross-section Q must be chosen such 
that it will go through the surface of the world-tube of our system in a structure that will 
be represented by a linear equation when it is viewed from the outside in Galilean 
coordinates that are initially assumed to be arbitrary. 
 If we would, in fact, like to assume that wIV vanishes along the cross-section then 

IVd w′ ,  d″ wIV, d″′ wIV will vanish eo ipso.  Our integral Iτ
∗  will then reduce (when we set 

c = 1) to: 

4

I III

I III

I III

d w d w

d w d w

d w d w
τ
∗

′ ′
′′ ′′
′′′ ′′′

∫∫∫
⋯

⋯

⋯

B , 

 
so when we revert to the usual notations, it will reduce to: 
 

(15)    Jτ
∗  = 4 I II IIIdw dw dwτ

∗
∫∫∫B , 

 
which is precisely Einstein’s formula, up to the choice of symbols. 
 This formula is indeed undoubtedly simpler than the one that I used as a basis, at least 
superficially.  However, the vector character of the Jτ

∗  , which Einstein asserted, but did 

not prove rigorously, is harder to see in it.  In a lengthy correspondence with Einstein, I 
did not, in fact, originally want to succeed in establishing that vector character until I 
took up the Grassmann notation for the integral that I started with above.  However, that 
also gave me the generalization of the concept of cross-section that I chose. 
 The essential difference between my representation and Einstein’s is that I gave the 
vector Jτ the same status as the vector Jτ

∗  by putting the Lorentzian /σ
τ κU under the 

integral sign, instead of Einstein’s σ
τt  = /σ

τ κ∗
U .  We will see directly that the Jτ and the 

Jτ
∗  are generally different in an example.  I would even be able to assign infinitely-many 

different impulse-energy vectors to the closed system then if I were to, e.g., replace σ
τt  

with the aggregate ( )/σ σ σ
τ τ τλ κ+ −t U t , in which we understand λ to mean any numerical 
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constant.  Above all, I would be allowed to replace σ
τt  with any σ

τU  that differs from σ
τt  

by only a term of the required dimension that defines a mixed tensor under affine 
transformations, and which vanishes identically outside of the world-tube, but has a 
vanishing divergence inside of it.  Which of these infinitely-many vectors is to be 
preferred will remain undecided as long as I demand only the validity of the integral 
theorem.  A decision can be made only when one introduces new grounds for preferring 
precisely one of the infinitude of forms for the differentials that determine it. 
 
 

II. Einstein’s spatially-closed universe (cylinder universe). 
 

§ 4. 
 

Closed space of constant positive curvature. 
 
 In Einstein’s note in February 1917, he first suggested only the possibility of a 
spherical space that he immediately cut out of a four-dimensional manifold (= ξ, η, ζ, ω) 
whose arc length element is given by the equation: 
 
(16)    dσ 2 = dξ 2 + dη2 + dζ 2 + dω 2 
 
by way of the “sphere equation” (8): 
 
(17)    ξ 2 + η2 + ζ 2 + ω 2 = R2 . 
 
For those who are familiar with geometric literature, it is probably self-evident that I refer 
to Einstein’s investigations into non-Euclidian geometry at the same time as my own 
older work from 1871, according to which, along with the spherical space form, there 
was another closed space form of constant positive curvature, namely, elliptic space (as it 
was called in connection with my other considerations at the time).  One obtains it from 
the spherical space when one simply combines any two diametrically-opposite points on 
the sphere with contacting linear space by central projection.  We might accordingly set: 
 

(18)    x = R
ξ
ω

, y = R
η
ω

, z = R
ζ
ω

. 

Inversely, one then has: 
 

(19)  ξ = 
2 2 2 2

Rx

x y z R+ + +
,    η = …,    ζ = …,    ω = 

2

2 2 2 2

R

x y z R+ + +
. 

 
 The elliptic space is simpler than the spherical one in that one represents its geodetic 
lines roughly as straight lines [which always intersect at only one point when they meet 

                                                
 (8) From now on, “space” shall consistently mean a three-dimensional domain (that is contained in the 
four-dimensional “world”). 
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at all (9)].  The length of such a geodetic line is Rπ, the total volume of space is R3 π2 
(instead of 2Rπ and 2 R3 π2, resp., in the spherical case). 
 Naturally, the difference between the two space forms does not emerge merely by 
being given the arc-length element (10).  I can use the value of dσ2 that is given by (16) 
and (17) for elliptic space, as well as its value: 
 

(20)  dσ 2 = 
2

2 2 2 2 2( )

R

x y z R+ + +
{ R2 (dx2 + dy2 + dz2) + (y dz – z dy) 2  

+ (z dx – x dz) 2 + (x dy – y dx) 2} 
 
that is calculated in terms of x, y, z in spherical space, or also the value that can be 
expressed in polar coordinates in both cases by: 
 
(21)   dσ 2 = R2 (dϑ 2 + sin2 ϑ · dϕ 2 + sin2 ϑ sin2 ϕ · dϕ 2). 
 
 

§ 5. 
 

Einstein’s “cylinder world” and its group.  
 

 Furthermore, as in the previous paragraphs (and also without specifying the 
coordinate system), dσ 2 shall briefly mean the square of the arc-length element of a 
closed space of constant curvature 1 / R2, which might be assumed to be spherical or 
elliptical now.  The ascent to Einstein’s spatially-closed world will then be accomplished 
simply by setting: 

(22)     ds2 = dt2 −
2

2

d

c

σ
, 

  

                                                
 (9) For that reason, elliptic space emerges when one starts with the basic concepts of projective 
geometry, which I did in 1871.  It will then be placed directly alongside hyperbolic space (the space of 
Bolyai and Lobachevski) and parabolic space (viz., Euclidian space), and it is a fundamental 
misunderstanding when one refers to formulas (18) as a “map” of spherical space to “Euclidian” space, as 
many authors still do.  The totality of all systems of values of three variables x, y, z will first become 
“Euclidian” when we add the differential form dx2 + dy2 + dz2, or in terms of group theory, when we 
replace the totality of projective transformations of the x, y, z (whose invariant theory is projective 
geometry) with the subgroup of those transformation that leave the stated differential form unchanged. I 
shall speak of all these things in the present article, although they are sufficiently well-known elsewhere, 
since this article is also intended for physicists, and these ideas still seem to have been disseminated only 
slightly in physics circles, which is backlash from the one-sided Helmholtz tradition that goes back to 
1868. 
 (10) In fact, the “connectivity” that the associated space form exhibits in the large is still not determined 
when one is given the dσ 2.  That fact is often still not observed in the contemporary literature.  I have 
treated the relevant behavior for spaces of constant curvature thoroughly in a treatise from 1890 [Math. 
Ann., v. 37 (see Article XXI of this collection)].  For textbooks on that subject, the text of Killing  
(Einführung in die Grundlagen der Geometrie, Part I, 1893), in particular, goes into that.  I would also like 
to cite the recent publications of Hadamard and Weyl. 
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and letting t vary from – ∞ to + ∞ (exclusively of the limits).  If we then formally 
calculate the curvature scalar for the space t = const. then we will get – c2 / R2.  That 
negative sign naturally corresponds to just the fact that the ds for the aforementioned 
space that was introduced in (22) was pure imaginary.  No contradiction exists then with 
the previous paragraphs, in which we referred to space briefly as one of constant positive 
curvature. 
 Our main problem is to find what the largest continuous group of coordinate 
transformations that takes the ds2 in (22) to itself would be. 
 It is clear from the outset that, at the very least, a G7 of such transformation exists.  
There is already a continuous G6 that takes dσ2 to itself.  In order to link that with (16), it 
is the totality of orthogonal transformations of the ξ, η, ζ, ω that have determinant + 1.  
One must then include the G1 that corresponds to a lengthening of t by an arbitrary 
constant.  The G7 that is obtained in that way is certainly transitive; i.e., one take any 
world-point to any other one by means of it – for example, to the point t = 0, ϑ = 0 [in 
order to make use of the polar coordinate system that was introduced in (21)]; one might 
briefly call that point O.  A continuous G3 of spatial rotations around O is still possible. 
 We now assert that there is also no continuous group of coordinate transformations 
that takes ds2 to itself that is larger than our G7 .  To that end, it will suffice to show that 
for a fixed O, only the aforementioned G3 of rotations will exist.  In order to prove that, 
we introduce “Riemannian normal coordinates” that emanate from O.  We can 
accomplish that, for example, when we regard t as variable and introduce: 
 

(23) y1 = 
R

c
ϑ · cos ϕ, y2 = 

R

c
ϑ · sin ϕ cos ψ, y3 = 

R

c
ϑ · sin ϕ sin ψ, 

 
in place of the polar coordinates ϑ, ϕ, ψ.  If we write y4 for t, for the sake of consistency, 
then we will get ds2 in the form: 
 

(24)  ds2 = 
2

2 2 2 2 2
4 1 2 3 2

1,2,3

( ) ( )
3 i i

c
dy dy dy dy y dy y dy

R κ κ− − − + −∑  

+ terms of higher order in the y1 , y2 , y3 , 
 
which shows that we are, in fact, dealing with normal coordinates.  Now, as far as the 
transformations of ds2 to itself are concerned, since O is fixed, according to the general 
theory of normal coordinates, we will only have ask what the largest continuous group of 
homogeneous linear substitutions of the y would be that would convert this ds2 into itself.  
The two terms of ds2 that were written down must then each go to itself in its own right, 
for the sake of dimensions.  It will then be clear that y4 must remain unchanged, while y1, 
y2, y3 can be subject to at most the continuous group of ternary orthogonal substitutions of 
determinant 1.  However, with that, we have already reached our goal. 
 From the theorem that was proved in that way, it will perhaps be permissible to refer 
to Einstein’s spatially-closed world briefly as the cylinder world, since it possesses the 
symmetry of a cylinder of rotation, so-to-speak: viz., arbitrary displacements along the t-
axis and arbitrary rotations around O for a fixed t.  Naturally, the analogy is not complete, 
since one can just as well rotate around any other point (than O).  I would also not like to 
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introduce a permanent term, but only have a brief, ad hoc, expression that might exhibit 
the contrast with de Sitter’s hypothesis B that will be treated in the next section. 
 Furthermore, we might say that in the present case, once we have agreed upon the 
unit of time and the starting point for the time direction, the concept of time will no 
longer contain any arbitrariness (11), or if one would prefer, that inside of the four-
dimensional world, the triply-extended spaces t = const. are manifolds, sui generis. 
Hence, they are a remarkable approximation to the way of describing things in classical 
mechanics. 
 That should be obvious from the outset when one ponders the physical argument by 
which Einstein introduced the cylinder world.  Namely, in order to comprehend the 
totality of mass distributions and events in world from a higher standpoint, Einstein 
initially fabricated a mean state in which the totality of masses in the space that is 
assumed to be closed is incoherent and uniformly distributed, and inside of that space, it 
is at rest while t runs from – ∞ to + ∞.  The actual mass distribution and events shall be 
regarded as deviations from that mean state.  Time (or more precisely the time difference 
between two world-points when measured in the agreed-upon unit) is then something 
absolute eo ipso when measured in that mean state, while space is intrinsically 
homogeneous (12).  However, this concept finds its precise mathematical expression in 
the invariant theory of our G7 . 
 It is particularly interesting to see how our G7 can be extended to the Lorentz group 
G10 , so one will come to picture of the “special” theory of relativity when one takes the 
curvature scalar of our space to vanish; i.e., one sets R = ∞.  Our ds2 (22) will then, in 
fact, reduce to only its first term (13): 2 2 2 2

4 1 2 3dy dy dy dy− − − , and will then remain 

unchanged by all homogeneous linear substitutions of the dy1, dy2, dy3, dy4 that transform 
this individual quadratic form into itself.  In that way, y4 = t ceases to be a variable that 
stands alone, and will combine with the y1, y2, y3 under allowable substitutions, since that 
is precisely the essence of the special theory of relativity. 
 
 

§ 6. 
 

The field equations of the cylinder world. 
 

 We must still confirm that the assumption of matter at rest filling up all of space 
uniformly – say, with a constant density ρ – is, in fact, compatible with the Einstein field 
equations that are posed for our ds2.  Naturally, we mean by that the field equations “with 
the λ term,” which I spoke of already in my previous Note [formula (57)]: 
 
(25)    Kµν – λ gµν – κ Tµν = 0. 
 

                                                
 (11) This was also noted in de Sitter, loc. cit.  
 (12) Einstein, e.g., accepted the fact that space can then be assumed to be spherical or elliptical as one 
desires with no further assumptions.  Moreover, de Sitter also always treated those two assumptions 
together, and similarly Weyl’s new book (Raum, Zeit, Materie). 
 (13) Not only does the second term drop out, but so do all higher terms.  
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 Since the distribution of matter in space should be everywhere uniform, it will suffice 
to verify that compatibility at the point O.  Since we are dealing with a relation between 
tensor components, we can also base our verification upon the ds2 (24) that is written in 
normal coordinates from the outset. 
 However, when one starts from that point, one will find, without any detailed 
calculation, [cf., the note of Vermeil in the Göttinger Nachrichten of 26 October 1917, 
“Notiz über das mittlere Krümmungsmass einer n-fach ausgedehnten Riemannian 
Mannigfaltigkeit”): 

(26)   K11 = K22 = K33 = −
2

2

c

R
, K44 =

2

2

3c

R
, 

 
while all other Kµν will vanish. 
 Now, when one bases the calculation upon normal coordinates, one will have: 
 
(27)    all Tµν = 0, up to T44 = c2 ρ 
 
at the point O.  The field equations (25) will then yield: 
 

−
2

2

c

R
+ λ = 0, 

2

2

3c

R
− λ – k c2 ρ = 0 ; 

i.e.: 

(28)    λ = 
2

2

c

R
, ρ = 

2

2

Rκ
, 

 
which agrees with the result that Einstein himself gave (as long as one sets c2 = 1). 
 In regard to that, we remark that we calculate the following constant value for K 
itself: 

(29)     K = 
2

2

6c

R
. 

 
 Naturally, in order to apply this to the universe, given our current knowledge of 
stellar astronomy, it still remains for us to estimate the corresponding value of R with any 
likelihood.  De Sitter did that in his oft-cited article.  I would like to quote his result so 
that one can see that Einstein’s cosmological consideration, whose mathematical content 
is all that we shall deal with here, is not left hanging, physically speaking.  From de 
Sitter, one must take: 

R = 1012 to 1013 radii of Earth’s orbit. 
 
The density ρ is so slight that only, perhaps, 10−26 grams of mass are found in a cubic 
centimeter; i.e., one will find the mass of one hydrogen molecule in about 100 cubic 
centimeters.  However, constant λ will be incidentally 10−30 s−2. 
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§ 7. 
 

The integral laws for the cylinder world. 
 

 If one takes the field equations with the λ term then one must replace U σ
τ  and tσ

τ = 

/U σ
τ κ∗  with: 

 

(30)    U σ
τ = U σ σ

τ τλ δ+ , t σ
τ = tσ σ

τ τ
λ δ
κ

+ , 

 
resp., as I did in § 7 of my previous Note in connection with Einstein’s analysis, in order 
for the conservation law to remain true.  We will correspondingly take the integral Iτ  

( Iτ
∗ , resp.), instead of Iτ ( Iτ

∗ , resp.), and we will be certain from the outset that this 

integral will vanish when it is taken over a closed hypersurface that bounds a piece of the 
cylinder world. 
 Furthermore, the concept of cross-section, which we employ for the “world-tube” that 
is considered in that case, must be adapted.  As such, we would like for that to refer to an 
otherwise-arbitrary closed hypersurface that cuts every world-line – i.e., every parallel to 
the t-axis – exactly once.  The simplest example is given by the “space” t = constant. 
 As before, we will then have the double theorem: 
 
 1. When the integral Iτ  ( Iτ

∗ , resp.) is taken over an arbitrary cross-section, it will 

have a value that is independent of that choice. 
 
 2. That value does not depend upon which coordinates one employs for evaluating 
that integral of the cross-section, either. 
 
 The only thing that will change is the fact that it will no longer be true that set of 
integrals Iτ  ( Iτ

∗ , resp.) can be referred to as a (free) four-vector.  The reason for that 

breakdown has its roots in group theory, according to the nature of our G7 . 
 4I  ( 4I ∗ , resp.) stands alone innately.  We might refer to its value, when multiplied by 

c3, as the total energy of the cylinder world. 
 However, we do not need to worry very much about the classification of the 
quantities 1I , 2I , 3I  ( 1I

∗ , 2I ∗ , 3I
∗ , resp.), since one can convince oneself in various ways 

that they are all zero. 
 First of all, (as Einstein also showed relative to Iτ

∗ ) that results on the grounds of 

symmetry.  When we fix the normal coordinates y of the ∞6 continuous transformations 
that take the space y4 = 0 to itself, naturally, only ∞3 of them represent homogeneous 
linear substitutions of the y1 , y2 , y3 that produce rotations of space about O.  However, 
for our purposes, it will also suffice for us to consider the subgroup that they define.  
Relative to it, the 1U σ , 2U σ , 3U σ  (and likewise, the 1U σ∗ , 2U σ∗ , 3U σ∗ ) will behave like the 

components of a three-dimensional tensor, so the 1I , 2I , 3I  ( 1I
∗ , 2I ∗ , 3I

∗ , resp.) will 
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behave like the components of a three-vector that is based at O.  However, as we know, 
the cylinder world is spatially-isotropic around O.  The aforementioned three-vector must 
then remain unchanged under an arbitrary spatial relation about O, and that can happen 
only when all of its components vanish. 
 Secondly, we might go down the path of direct calculation.  We choose the cross-
section over which our integral is extended to be any manifold y4 = const.  Inside of it, 
one might think of introducing any coordinates wI, wII, wIII .  According to the explanation 
in § 3, one can then write the integrals Iτ  ( Iτ

∗ , resp.) as: 

 

(31)   Iτ  = 4 41 I II IIIT U g dw dw dwτ τκ
 + − ⋅ 
 

∫∫∫  

or 

(31*)   Iτ
∗  = ( )4 4 I II IIIT t g dw dw dwτ τ+ − ⋅∫∫∫ , 

 
resp.  Now, direct calculation will imply that the Tσ

τ , 4Uτ , 4tτ  will all vanish for τ = 1, 2, 

3. 
 We have obtained the expression for the total energy of the cylinder world in these 
formulas: 

(32)   4J = 3 4 4
4 4

1 I II IIIc T U g dw dw dw
κ

 + − ⋅ 
 

∫∫∫  

or 

(32*)   Jτ
∗  = ( )3 4 4 I II IIIc T t g dw dw dwτ τ+ − ⋅∫∫∫ , 

 
resp.  The energy content is then represented as the sum of two summands in either of the 
two cases.  We might refer to the summand that corresponds to 4

4T  as the mass energy 

and the other as gravitational energy. 
 One can now calculate the mass energy with no further assumptions.  Namely, 44T  

will equal c2ρ, no matter how we might choose wI, wII, wIII , and c3 g−  dwI dwII dwIII  

will be nothing but the volume element dV of our space y4 = const.  The mass energy will 
then be simply c2ρ V, in which we understand V to mean the total volume of space, so it 
will be 2π 2R3 or π 2R3, according to whether we would like to assume the spherical 
hypothesis or the elliptic one. 
 However, in Einstein’s case, he found that the gravitational energy was zero, and 
thus, when one starts with formula (32*) and employs spatial polar coordinates.  In that 
case, one will have dV = sin2 ϑ sin ϕ · dϑ dϕ dψ, 4

4t  will be (when I assemble Einstein’s 

terms) cos 2ϑ / sin2 ϑ, and the result of the integration will be zero, since ∫ cos 2ϑ ·    dϑ is 
taken from 0 to π.  That result is certainly very remarkable.  Since it must be independent 
of the choice of wI, wII, wIII , one asks whether one might introduce more preferable 
coordinates in place of the polar coordinates, which bring with them a lengthy 
mechanical calculation (which Einstein only suggested).  I would like to propose that one 
should operate exclusively with the supernumerary coordinates ξ, η, ζ, ω of § 4 (between 
which, the dependency ξ 2 + η 2 + ζ 2 + ω2 = R2 will then exist).  Naturally, one must 
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therefore generalize the basic formulas of tensor analysis to the case of dependent 
coordinates, but that would mean all Ansätze in the literature.  I suspect that after one has 
carried out that conversion, not only will the integral of the gravitational energy over all 
spatial volume elements vanish, but also the differentials that correspond to the individual 
volume elements, which might bring about a better insight into the simplicity of 
Einstein’s results. 
 So much for 4

4t .  The new idea that I now have to develop is that we will get an 

entirely different result (and with no complicated calculations) when we choose 4
4 /U κ  

instead of 4
4t , and therefore choose 4J ∗  in place of 4J .  As we know, 4

4U = 4
4U + λ.  If we 

once more go back to the formula for 44U  that was quoted in (5) above then that will 

show that in the case of the cylinder world, all terms except for the first one will drop out 
for an arbitrary choice of  wI, wII, wIII .  4

4U  will be simply = K / 2, so: 

 

(33)     4
4U  = 1

2 K + λ = 
2

2

4c

R
. 

 
It will then have a constant, but non-vanishing, value.  As a result, if we base that value 
upon the U σ

τ  then the gravitational energy of the cylinder world will not be roughly zero, 

but twice as large as the mass energy. 
 The state of affairs that is established in that way is obviously meaningful enough in 
the case of the cylinder world.  It gives an example in which the energy components 

/U σ
τ κ  will generally give different results than the tσ

τ , even for the integral forms of the 
conservation laws.  That is what I called the interplay of a subjective moment in the 
establishment of energy balance in the introduction, and whose importance for closed 
systems I explained in more detail at the end of § 3.  The result is in no way wonderful in 
itself, but it still contradicts the impression that one gets from a first reading of Einstein’s 
note that the tσ

τ  have some exclusive legal title to the claim of leading to simple integral 
theorems. 
 
 

III. On de Sitter’s hypothesis B. 
 

 In his oft-cited publications – in particular, in Note 3 of the Monthly Notices – de 
Sitter modified the assumption of a cylinder world, which he referred to as Hypothesis A, 
inter alia, in such a way that he posed a world of constant curvature instead of the 
cylinder world (which preserving the characteristic sign for ds2).  That was the hypothesis 
that he called B (14).  I pose the problem of cogently describing the behavior that comes 

                                                
 (14) de Sitter remarked that this assumption (which the mathematicians recommend, due to its 
symmetry) was first proposed by Ehrenfest.  In my talk in early 1917 (a small number of exemplars of 
whose write-up have been distributed), in which I referred to Einstein’s “Kosmologische Betrachtungen” 
that had just appeared at the time (although the formulas were not precisely comparable), I myself made the 
same Ansatz arbitrarily, and then later when I wrote about the physical consequences, I wondered whether 
the result might naturally agree with the one that Einstein gave for his cylinder world. 
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about in that way by means of the simplest-possible formulas.  Moreover, one will 
already find the essence of my arguments in the Protokollen über die Sitzungen der 
Göttinger Mathematischen Gesellschaft in the Summer of 1918, which were published in 
the October 1918 volume of the Jahresberichts der Deutschen Mathematiker-
Vereinigung (oblique pages pp. 42-44).  Cf., also an article by the Amsterdamer 
Akademie (published on 29 Sept. 1918). 
 
 

§ 8. 
 

The geometric foundations of the universe of constant curvature. 
 

 We are justified in assuming that the world is a manifold of constant curvature in a 
simple way when we write down the usual equation for a sphere in five variables with 
one sign changed, and measure things in a Euclidian way on this “pseudo-sphere” (15).  
As a result, in order to comply with the previous conventions in regard to dimension, we 
will, however, call R / c the radius, not R.  For the sake of consistency, we shall likewise 
invert the usual sign of ds2.  I shall then write the equation of the pseudo-sphere as: 
 

(34)    ξ 2 + η 2 + ζ 2 − υ 2 + ω 2 = 
2

2

R

c
 

and the associated ds2 as: 
(35)    − ds2 = dξ 2 + dη 2 + dζ 2 − dυ 2 + dω 2. 
 
 Due to the minus sign that the ds2 is affected with, the pseudo-spherical world (ξ, η, 
ζ, υ, ω) that is given by that will have the constant (Riemannian) curvature scalar – c2 / 
R2.  Moreover, it will go to itself under a continuous G10 of “pseudo-orthogonal” 
substitutions – i.e., linear homogeneous substitutions of the ξ, η, ζ, υ, ω – but not, as one 
can easily verify, under a more extensive group. 
 Along with it, we will then likewise define a pseudo-elliptical world when we write: 
 

(36)   x = 
R

c

ξ
ω

⋅ , y =
R

c

η
ω

⋅ , z =
R

c

ζ
ω

⋅ , u =
R

c

υ
ω

⋅ , 

 
while preserving the ds2 that was given in (35), which inverts to: 
 

(37)  ξ = 
2 2 2 2 2 2/

Rx

c x y z u R c+ + − +
, η = …,  ζ = …,  υ = …, 

 

ω = 
2

2 2 2 2 2 2/

R

c x y z u R c+ + − +
. 

 

                                                
 (15) The prefix “pseudo” shall always refer to the appearance of an altered sign.  
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We can use these ξ, η, ζ, υ, ω to homogenize the equations (which we shall do many 
times) in the treatment of the pseudo-elliptical world.  We remark that as long as we 
restrict ourselves to real values of the original coordinates ξ, …, ω, which is obvious: 
 

(38)  x2 + y2 + z2 − u2 +
2

2

R

c
= 

2 2 2 2 2 2

2 2

( )R

c

ξ η ζ υ ω
ω

+ + − +
= 

2

4 2

R

c ω
 

 
will always be positive. 
 For the sake of brevity, we will speak of only this pseudo-elliptical world (and thus 
drop the pseudo-spherical one), and I must already beg the reader to allow me to appeal 
to only projective notions, which are the only ones that will be justified for the 
relationships that come under consideration.  In that regard, I will present a series of 
statements that should be obvious to the trained geometer: 
 
 1. In the pseudo-elliptical world, one deals with a projective metric, whose 
fundamental structure is given by: 
 

(39)    x2 + y2 + z2 − u2 + 
2

2

R

c
= 0, 

 
which can henceforth be referred to briefly as a (two-sheeted) hyperboloid, by analogy.  
From the sign convention in (38), we will find ourselves between the sheets of that 
hyperboloid (i.e., in the part of the world that runs along the real tangent cones to the 
hyperboloid), which agrees with the indefinite character of our ds2.  When written in 
homogeneous coordinates ξ, …, the equation of the hyperboloid will read: 
 
(40)    ξ 2 + η2 + ζ 2 − υ2 + ω2 = 0, 
 
so the hyperboloid will be the intersection of the asymptotic cone of our pseudo-sphere 
with our domain of x, y, z, u. 
 
 2. The continuous family of pseudo-orthogonal substitutions of the ξ, η, … yields 
the largest continuous group of collineations of the x, y, z, u that take our hyperboloid to 
itself. 
 
 3. New structures that are represented by a single linear equation in the x, y, z, u (the 
corresponding homogeneous equation in the ξ, η, …, resp.) are called simply spaces. 
 
 4. Spaces that cut the fundamental hyperboloid only in imaginary points (such as, 
e.g., u = 0) will exhibit simply elliptic metrics, and will thus have finite extent.  One can 
then refer to our world as “spatially closed” and put it directly alongside Einstein’s 
cylinder world. 
 
 5. Along with those spaces, one will also find spaces that contact the hyperboloid at 
a point as limiting cases; e.g., the spaces: 
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(41)  u =
R

c
± , or, what amounts to the same thing,  υ ω∓  = 0. 

 
Such spaces might be briefly called “tangential spaces.” 
 
 6. Any two tangential spaces bound a connected subset of the world from the 
projective standpoint, into whose interior the hyperboloid does not penetrate, and that one 
prefers to call a double wedge, from its form in the projective context.  That double 
wedge protrudes on two sides into the still-two-dimensional domain that is common to 
the two tangential spaces and that one can therefore appropriately call the double edge (of 
the wedge). 
 
 7. One can glimpse this state of affairs most simply when one considers the two 
tangential spaces of no. 5 (which one can take to be any pair of tangential spaces in ∞4 
ways by means of the G10 of our collineations).  The double wedge will then subsume the 
points for which: 

(42)   − 
R

c
< u < + 

R

c
, i.e., − 1 < 

υ
ω

 < + 1. 

 
The edge will be defined by those points for which u is undetermined, so for the υ and ω 
that vanish simultaneously (so x, y, z will become infinite). 
 
 8. According to the theory of projective metrics, any such double wedge will give 
one the right to introduce a real pseudo-angle for any two elliptical spaces that are 
contained within its edge. 
 
 9. For the sake of clarity, I will relate this to the example (41), (42).  Two associated 
(viz., their entire extent is contained in the double wedge) elliptic spaces will then be 
given by equations: 

(43)   u = u1,    u = u2, 1 2

1 2

, , resp.
υ υυ υ

ω ω ω ω
 

= = 
 

 

 
(in which u1 and u2 lie between ± R / c and υ1 / ω1, υ2 / ω2  lie between ± 1).  They define 
two mutually-inverse double ratios with the sides of the double wedge – i.e., the two 
tangential spaces (42) – of which, we would like to pick, say: 
 

(44)   Dv = 1 2

1 2

/ /

/ /

u R c u R c

u R c u R c

+ −⋅
− +

= 1 1 2 2

1 1 2 2

υ ω υ ω
υ ω υ ω

+ −⋅
− +

. 

 
One will then define the logarithm of this double ratio, multiplied by any real constant A, 
to be the pseudo-angle between the two elliptic spaces (43). 
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 10. In regard to de Sitter’s analysis, we would like to take A = R / 2c and set u2 = 0, 
moreover; i.e., to make the pseudo-angle begin from u = 0.  If we now drop the index on 
u1, υ1, ω1 then we will get the defining formula for the pseudo-angle: 
 

(45)    ϕ = 
/

log
2 /

R R c u

c R c u

+
−

= log
2

R

c

ω υ
ω υ

+
−

, 

 
and see clearly how it increases from – ∞ to + ∞ when u goes from – R / c to R / c; i.e., it 
ranges over the entire double wedge. 
 
 11. Naturally, ϕ will be completely undetermined for the points of the edge itself, 
where ω and υ will vanish simultaneously.  For the general analytical picture, one will 
have no other singularity to deal with than the one in the polar angle ϕ at the origin of an 
ordinary planar (polar) coordinate system.  However, the two absolute directions that are 
the basis for the angle determination (in the sense of projective theory), which are 
imaginary in the usual case, will be real from (45) (16). 
 
 

§ 9. 
 

Introduction of matter and time.  
 

 We now imagine that our ds2 (35) is expressed in terms of four independent, 
temporarily-arbitrary, parameters w (which we can take to be our x, y, z, u): 
 
(46)    ds2 = g dw dwµ ν

µν∑ . 

 
Since we know that this ds2 has constant Riemann scalar curvature, we can write down 
the associated Kµν directly using the analysis of Herglotz (17): 
 

(47)    Kµν = 
2

2

3c

R
· gµν . 

 
We will then satisfy Einstein’s field equations with the λ term: 
 
(48)    Kµν − λ gµν  – κ Tµν = 0 
when we set: 

(49)    λ = 
2

2

3c

R
 and all  Tµν = 0; 

 

                                                
 (16) The reader who wishes to go further into the matters in nos. 8-11 might confer my older 
presentations in vol. 4 of Math. Ann. [see Abd. XVI in this collection] (in which the relationships and 
arguments that come under consideration are described in full rigor). 
 (17) Sächsiche Berichte of 1916, pp. 202.  
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i.e., we assume that there is no matter at all.  Later on, we will also see that we will be 
necessarily led to that assumption when we start from the assumption of a world that is 
uniformly filled with incoherent matter “at rest” for a suitable introduction of a time t.  In 
fact, de Sitter also came to that result, except that he expressed it somewhat differently, 
as one might see in the cited place. 
 Naturally, we do not at all diverge from Einstein’s original intention with this 
formula (49), which start from the idea that one was provided with a mean structure of 
the world in which one had a uniform distribution of matter in space.  However, we also 
find ourselves contradicting another basic law of Einstein, at least formally, according to 
which, equations (48) should give no solutions besides zero unless one assumes that there 
is matter (cf., Einstein’s note on March 1918 that was cited above).  That basic law of 
Einstein undoubtedly grew out of physical arguments originally, but it has an 
intrinsically mathematical nature, so it will be contradicted by the very existence of our 
ds2 (46) (which Einstein himself occasionally brought to my attention in 
correspondence).  Generally, one can remark that the gµν of this ds2 (one performs the 
calculations for, say, x, y, z, u) will become infinite along the fundamental hyperboloid, 
which can be regarded as equivalent to the absence of matter at the non-singular points of 
the world. 
 We shall now address the introduction of a suitable “time” t (which we can choose to 
be wIV).  According to Einstein’s way of looking at things, the starting point for that must 
be the idea that the world that we seek shall be capable of being regarded as a static 
system; i.e., that ds2 shall remain unchanged when one increases wIV = t by an arbitrary 
constant, while leaving wI, wII, wIII  fixed.  Hence, it shall be included in the one-
parameter group: 
(50)   Iw = wI, IIw = wII, IIIw = wIII , IVw = wIV + C 
 
in the ten-parameter group that takes our ds2 to itself.  Some geometric conclusions will 
suffice to see that such a one-parameter group must mean the same thing as an advancing 
rotation of our pseudo-elliptical world around a fixed, two-dimensional axis, so (with a 
suitable choice of time unit) t must coincide with the pseudo-angle of a double wedge, as 
it was defined in (45), up to an additive constant.  When we understand υ = 0, ω = 0 to 
mean, as it previously did, any two tangential spaces to the fundamental hyperboloid and 
assign no value to the additive constant, we will then have to take: 
 

(51)     t = log
2

R

c

ω υ
ω υ

+
−

. 

 
Now, there are ∞6 such pairs of tangential spaces.  We will then have ∞6 ways of 
introducing t according to (51), in contrast to the cylinder world, in which t is established 
completely up to an additive constant, and also in contrast to the special theory of 
relativity (viz., the Lorentz group), in which t contains three arbitrary parameters (always 
while fixing the time unit and the starting point). 
 We shall next confirm that we will come to precisely the ds2 that de Sitter based his 
Hypothesis B upon with (51).  Namely, with the use of spatial polar coordinates, de 
Sitter (as long as I likewise employ the symbols that I used before and also take ds2 to 
have the sign that was suggested previously) wrote: 
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(52)  − ds2 = 
2

2

R

c
(dϑ 2 + sin2 ϑ · dϕ2 + sin2 ϑ  sin2 ϕ · dψ 2) – cos2 ϑ · dt2, 

 
and that ds2 will arise from the one that was placed at the forefront in (35): 
 

− ds2 = dξ 2 + dη 2 + dζ 2 − dυ 2 + dω 2, 
when I set simply: 

(53)   

sin cos , sin sin cos ,

sin sin sin , cos sinh ,

cos cosh .

R R

c c
R R ct

c c R
R ct

c R

ξ ϑ ϕ η ϑ ϕ ψ

ζ ϑ ϕ ψ υ ϑ

ω ϑ

 = =

 = =

 =


 

 
In this, sinh and cosh mean hyperbolic functions in the usual way.  One will then have: 
 

(54)     tanh 
ct

R
= 

υ
ω

, 

 
which does, in fact, agree with formula (51). 
 I will call the part of our pseudo-elliptical world that behaves according to (53) when 
one lets ϑ, ϕ, ψ vary within the usual limits, but t varies from – ∞ to + ∞, a de Sitter 
world.  According to (54), υ / ω will then vary only between the values – 1 and + 1.  
Obviously, that de Sitter world is nothing but the double wedge of the previous 
paragraph.  Its two “sides” (viz., υ – ω = 0 and υ + ω = 0) seem to be the infinitely-
distant future and infinitely-distant past, resp.  However, its edges (which consist of 
nothing but ordinary points in the general conception of the pseudo-elliptical world) seem 
to be somewhat singular, namely, the loci of world-points for which t assumes the value 
0/0. 
 I have touched upon this behavior already in the aforementioned place in the 
Jahresberichts der Deutschen Mathematiker-Vereinigung (talk presented to the Göttinger 
Mathematischen Gesellschaft on 11 June 1918).  In order to allow the paradoxical 
relationships that are present in the physical picture emerge clearly as such, I said at the 
time: “Two astronomers that both live in a de Sitter world and are equipped with 
different de Sitter clocks could operate in very interesting ways depending upon the real 
or imaginary character of any world-events.” That means that the double wedge that 
would be cut from the pseudo-elliptical world by distinct pairs of tangential spaces to the 
fundamental hyperboloid would always have only pieces in common that have other 
pieces above them. 
 Moreover, whoever so desires can easily orient themselves more deeply in the details 
of the de Sitter world.  That world reaches only the two points ξ = 0, η = 0, ζ = 0, υ ω∓  
= 0 on the fundamental hyperboloid.  All world-lines are conic sections that contact the 
hyperboloid at those two points (whose plane then contains the one-dimensional axis ξ = 
0, η = 0, ζ = 0).  There is only one continuous G4 that transforms the de Sitter world into 
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itself that corresponds to the substitution t  = t + C, combined with the continuous G3 of 
unimodular orthogonal substitutions of ξ, η, ζ.  In that way, ξ 2 + η 2 + ζ 2 will be 
invariant, so the group of the de Sitter world is no longer transitive.  The “axis” ξ = 0, η 
= 0, ζ = 0, and the “edge” υ = 0, ω = 0 are invariant structures. 
 In conclusion, we convince ourselves that the density ρ of the incoherent matter at 
rest that fills up the de Sitter world uniformly should, in fact, necessarily be set to zero.  
Namely, we stay with our “static” coordinates.  We then have: 
 

λ gµν = 
2

2

3c

R
gµν 

 
for all other combinations of indices µ, ν, and: 
 

λ g44 = 
2

2

3c

R
g44 + κ c2 ρ 

 
for only µ = 4, ν = 4, from which, it will follow uniquely that: 
 

λ = 
2

2

3c

R
, ρ = 0, 

 
as we have assumed already in formula (49). 
 All of these results are in complete agreement with the ones that de Sitter gave.  
However, they contradict the objection that Einstein had raised against de Sitter in his 
article on March 1918, and which Weyl supported by thorough calculations in his book 
(18), as well as more recently in a special review in the Physikalischen Zeitschrift (19).  
Both authors found that matter must be present along the edge of the double wedge (for 
the sake of brevity, I shall continue to use my terminology).  I have not checked the 
validity of Weyl’s calculations, but I would rather adopt the concept that Einstein 
expressed to me that the difference between the two results must be based upon the 
difference between the coordinates that were employed.  What I referred to as the 
individual points of the edge when one uses the ξ, η, ζ, υ, ω will become a simply-
extended region when one employs the ϑ, ϕ, ψ, t (due to the still-undetermined value of 
t).  It should not be difficult to succeed in clarifying this completely. 
 However, my concluding verdict about what de Sitter said is that mathematically 
everything is in order (in any event, except for that one still-not-completely-clarified 
point [which I would gladly like to see explained in a general way]), but one will be led 
to physical consequences that contradict our usual way of thinking and in any event the 
very reason that led Einstein to introduce the spatially-closed world. 
 

________ 
 

                                                
 (18) Raum, Zeit, Materie, pp. 225.  
 (19) 1919, no. II (on 15 January 1919).  
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