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 In line geometric investigations, one is led to certain differential equations that will be 
formulated in what follows and then integrated in more specific cases.  They essentially 
correspond to the following three problems: 
 1. Find those line complexes whose lines are the tangents to a surface. 
 2. Determine those congruences that belong to a given line complex whose lines are 
principal tangents to their focal surfaces. 
 3. Obtain the enveloping curve of the lines of a congruence. 
 
 In the representation that we adopt in what follows, in which the use of line 
coordinates will be made throughout 1), one recognizes how these three problems can be 
grouped together naturally. 
 Problem 1 is one of the first ones in which line complexes entered into the 
investigation.  It was also already solved by Cayley in his first communication 2), if only 
approximately.  In it, Cayley examined those conditions that a line complex must satisfy 
in order for its lines to intersect a fixed curve.  He found only a first condition, which is, 
however, still not sufficient, and is, moreover, fulfilled when the lines of the complex 
envelop surface 3).  This very condition will be derived in the sequel in a completely 
different way, and it will be shown that, in fact, it characterizes the totality of the tangents 
to a surface.  For complexes of second degree, in particular, for the ones that envelop a 
surface, the corresponding result was found by Plücker (Neue Geometrie, no. 341). 
 Problem 2 was presented by Lie, but in a different form 4).  Namely, it amounts to 
finding those surfaces that contact the cone of a given complex at each of their points.  
He then showed that the edges along which the cone of the complex contacts the desired 
surface are principal tangents to the surface and that this property characterizes the 

                                                
 1) The following may likewise serve to illustrate how one can operate with line coordinates without 
having to revert to their connection with point and plane coordinates. 
 2) Quarterly Journal, v. 3, pp. 227. [(1860), Coll. Papers IV.] 
 3) [A complete system of conditions for the secant complex of a curve was presented by Voss in a note 
in the Gött. Nachr. (1875), pp. 101-123.] 
 4) Cf., the treatise of Lie in Math. Annalen, Bd. 5, and its relevant communication to the Academy in 
Christiania (Berichte, 1870, 71).  In it, the differential equation that the problem defined was referred to 
briefly as “the differential equation of the given line complex.”  − Darboux has also dealt with this 
situation; cf., a relevant remark of Lie in the aforementioned reference.  [The paper of Lie that is referred to 
as “the aforementioned reference” here and later in the text is the treatise that was mentioned in footnote 1) 
of Abh. VIII.] 
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surface in question.  The problem then comes down to that of finding the surfaces to 
which a system of principal tangents belongs to the given complex.  In this form, it is 
obviously identical with problem 2; the form that it will assume in the sequel is better 
adapted to the demands of the present lecture. 
 Finally, problem 3 arises whenever one treats line congruences.  From the general 
theory 5), the lines of a congruence may be summarized in a series of developables in two 
ways.  The problem is: Determine these developables when the congruence is given. 
 Problem 2 shall be solved in what follows in the particular case of line complexes of 
second degree.  Such a solution was given by Lie in another, more geometric, way in the 
aforementioned treatise.  These results naturally agree; it will therefore be interesting to 
pursue how their geometric content corresponds to the analytical ones that are applied 
here.  His result may be summarized in an obvious way in the final analytical formula 
that will be presented. 
 Likewise, by the same method adopted here, problem 3 is disposed of for those line 
congruences of fourth order and class that two line complexes of second degree have in 
common, and actually belong to the singularity surface.  Among these, one finds the 
special type that will likewise be suggested: the general congruences of second order and 
class that belong to a complex of second degree and a complex of first degree 6). 
 From the previously-cited treatise of Lie, one will recognize how these line geometric 
problems are identical to problems that relate to sphere geometry.  Problem 1 then 
corresponds to the demand: Give those equations between the four coordinates of a 
sphere (its center coordinates and its radius), which represent a three-fold infinite system 
of spheres (sphere complex), whose spheres all contact a fixed surface.  Problem 2 then 
corresponds to the problem: If a sphere complex is given, find those surfaces whose 
system of principal spheres belongs to the complex 7).  Finally, problem 3 leads to: If a 
congruence of spheres – i.e., a doubly-infinite family of spheres – is given, arrange them 
into a singly-infinite sequence of spheres, in which each two consecutive ones contact 
each other. 
 In other words, starting with the connection that exists between line geometry and the 
metric point geometry of the space of four dimensions 8), one can present equivalent 
problems for this metric geometry.  The corresponding problems of the metric geometry 
of the space of three dimensions might be stated here; their number, like the number of 
variables, has been diminished by one.  They are the following two: 
 a) Give those developable surfaces that include the infinitely distant imaginary 
circle. 
 b) Determine those curves on a given surface whose tangents continually meet the 
infinitely distant circle (the so-called “curves without length”). 

                                                
 5) Cf., Kummer in Borchardt’s Journal, Bd. 57 (1860). 
 6) Cf., theorem XXXVI of the general enumeration of ray systems of second order by Kummer.  
(Abhandlungen der Berl. Akad. 1866.) 
 7) As he communicated to us, Darboux had also concerned himself with this problem, which Lie 
treated in the aforementioned treatise, along with problem 2), more recently.  He solved it in precisely the 
context in which the solution was given by Lie, and in which it emerges by application of the Lie 
transformation of line geometry into sphere geometry from solution of the line geometric problem that was 
given in the text.  The method that Darboux employed in it was, as far as I can tell, entirely identical with 
the one that will be applied here. 
 8) Cf., the present collection: “Über Liniengeometrie und metrische Geometrie.” 
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 The recent French geometers especially have concerned themselves with the latter 
curves.  Incidentally, the problem of the conformal mapping of two surfaces onto each 
other emerges from the search for these curves.  Namely, one has only to relate the two 
surfaces to each other in such a way that the curves in question on the one surface 
correspond to those of the other.  The developables a) were first examined by Darboux 9) 
in regard to their distinguished metric properties.  As he communicated to me, Darboux 
has also solved problem 2) for the surfaces of fourth degree that contain the imaginary 
circle.  By means of the Lie map (as Lie also remarked), this corresponds to the 
integration of the enveloping curves of a line congruence of second order and class that I 
will given in the following, and which I have already communicated before on occasion 
[Göttinger Nachrichten, 1871, no. 1 (but not included in this collection)].  It may suffice 
to give us a proof of the corresponding metric problem, which naturally relates to not 
only the metric space of three and four dimensions, but also arbitrarily many of them 10).  
I now revert to the line-geometric problems that shall constitute the actual content of this 
communication, and thus begin by commenting on some things about linear complexes 
that will be useful later. 
 

§ 1. 
 

Some remarks about linear complexes. 
 

 In § 1 of the foregoing reference: “Über Liniengeometrie und metrische Geometrie,” I 
have developed the way that line geometry can be regarded as the geometry of  surface of 
second degree in a space of five dimensions 11).  It is represented, if one understands x1, 
x2, …, x6 to mean the homogeneous coordinates of the space of five dimensions, by: 
 

Ω(x1, x2, …, x6) = 0. 
A linear complex: 

u1 x1 + u2 x2 + …+ u6 x6 = 0 
 
is, in this way of looking at things, like the planes of the space in question.  From this, 
one concludes that a linear complex has an invariant, namely, the expression that 
expresses the fact that when it is zero the plane ux = 0 contacts the surface Ω = 0.  This 
expression arises from the determinant of Ω by bordering it (Ränderung) with the 
coefficients u.  In particular, if Ω has 12), as will be assumed in the sequel for the sake of 
simplicity, the form: 

0 = 2 2 2
1 2 6x x x+ + +⋯  

 
then the invariant takes the form: 

                                                
 9) Annales scientifiques de l’École Normale Supérieure, t. 2, 1865. 
 10) From the combination of the articles that are given in § 2, it is obvious how this metric problem can 
be treated by exactly the same formulas as the line geometric ones that are used here. 
 11) This expression shall be allowed here, since indeed no misunderstanding can arise. 
 12) Cf., “Zur Theorie der Komplexe, etc.,” Math. Annalen, Bd. 2 (1870).  [See Abh. II of this 
collection.] 
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2 2 2
1 2 6u u u+ + +⋯ . 

 
If the invariant vanishes then the linear complex is a so-called special one; i.e., it consists 
of the totality of all lines that meet a fixed line. 
 Now let two linear complexes be given: 
 

u = 0, v = 0. 
 

They have a linear congruence in common that likewise belongs to all complexes: 
 

λ u + µ v = 0. 
 

Among them, one finds two special ones: the so-called directrices.  One determines them 
when one defines the invariant of λ u + µ v.  Let Auu be the invariant of u, Avv, that of v, 
and to finally Auu = Avv is the expression that comes about when one bounds (rändert) the 
determinant of Ω on the one side by the coefficients of u and on the other side, by those 
of v.  I have occasionally called the expression Auv the simultaneous invariant of the two 
complexes.  (Its vanishing is the condition for the two complexes to be in involutory 
position.)  By this notation, the invariant of λ u + µ v becomes: 
 

λ2 Auu + 2 λµ Auv + µ2 Avv . 
 

When set to zero, it yields a quadratic equation for λ / µ, and it is the one that determines 
the two directrices.  The quadratic equation that is then obtained, when regarded as a 
quadratic binary form in the variables λ, µ, has an invariant: 
 

Auu Avv − 2
uvA . 

 
This does not change (up to a factor) when one uses any two other complexes of the 
group λ u + µ v, in place of u, v.  It is then a combination of the two complexes u, v, and 
therefore an invariant of the congruence that is determined by it. 
 The vanishing of this invariant says that the quadratic equation for the determination 
of the directrices of the congruence has two equal roots so the directrices of the 
congruence coincide (cf., Plücker’s Neue Geometrie, no. 68).  The congruence shall then 
be called a special linear complex. 
 A further particularization enters in when not only Auu Avv − 2

uvA = 0, but also Auu , Avv, 

Auv vanish individually.  u and v are then both special complexes (straight lines) that 
intersect each other.  The congruence decomposes into two of them: A congruence of 
first order and null class that consists of the lines that go through the same intersection 
point, and a congruence of first class and null order that consists of the lines that run in 
the common plane.  Such a linear congruence will be referred to in what follows as a 
decomposed one.  A decomposed congruence has infinitely many directrices: The lines of 
the pencil that u and v belong to and that are represented by: 
 

λ u + µ v = 0. 
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 We now consider the three linear complexes: 
 

u = 0, v = 0, w = 0. 
 

They have a ruled family in common – i.e., a generator of a surface of second degree (a 
one-sheeted hyperboloid).  The other generators of the hyperboloids are the directrices of 
the congruence of any two complexes in the group: 
 

λ u + µ v + ν w = 0. 
 
One obtains all of the second generators when one chooses all of the values for λ, µ, ν for 
which the invariant of λ u + µ v vanishes, for which one then has: 
 

0 = λ2 Auu + 2 λ µ Auv + µ2 Avv + 2 ν λ Auw + 2 µν Avw + ν2 Aww . 
 

If we interpret the λ, µ, ν as coordinates in the plane, this equation represents a conic 
section.  It has an invariant under linear transformations that one can subject the λ, µ, ν 
to, namely, the determinant: 

uu uv uw

vu vv vw

wu wv ww

A A A

A A A

A A A

 . 

 
 We will refer to it as the invariant of the ruled surface that is common to the three 
complexes. 
 The vanishing of the invariant says: Firstly, that the conic section that is represented 
by the equation in λ, µ, ν decomposes.  The second system of generators also 
decomposes then.  The associated hyperboloid degenerates into two planes and two 
points that lie on their intersection in this case (cf., Plücker’s Neue Geometrie, no. 144) 
13).  The one generator of it consists of the lines that go through the first point in the first 
plane, or through the second point in the second plane; the other generator consists of the 
lines that go through the first point in the second plane or the second point in the first 
plane.  The three complexes thus have two united pencils of rays in common.  We will 
refer to such a decomposed ruled family as a special ruled family, in analogy with the 
foregoing. 
 A further particularization is that not only the invariant of the ruled family, but all of 
the sub-determinants, vanish identically.  The ruled family then degenerates into two 
pencils of rays that cover it (cf., Plücker’s Neue Geometrie, no. 146).  The congruences of 
any two complexes of the family λ u + µ v + ν w are then special, since their invariants 
are linear combinations of the vanishing sub-determinants. 

                                                
 13) Therefore, while an F2, considered as a point structure, yields the cone as its first particularization 
and, when considered as a plane structure, it yields the conic section, here, a plane-pair that is combined 
with a point-pair that lies in it enters in.  It is interesting that one must consistently take all three 
particularizations into account for the general enumeration that relates to systems of surfaces of second 
degree.  Cf., the paper of Schubert: “Zur Theorie der Characteristiken” (Borchardt’s Journal, Bd. 71, 1870).  
The particularization of the F2 that we spoke of here was referred to as the “limited planar section” there. 
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 In the last case, it would be further conceivable that the second sub-determinants – 
i.e., Auu, Auv , etc. – themselves all vanish.  u, v, w are then three special complexes whose 
axes mutually intersect, so either they have a point in common or lie in the same plane.  
Thus, a double infinity of lines then satisfy the three equations u = 0, v = 0, w = 0, 
namely, the ones that go through the common point (lie in the common plane, resp.).  The 
equation of condition Ω = 0 is then fulfilled identically by means of u = 0, v = 0, w = 0; 
the third equation – viz., w = 0 – then serves only to define one component of the 
decomposed congruence u = 0; v = 0, w = 0.  This is then an essentially different case 
from the foregoing that will not come under consideration in what follows. 
 Finally, four complexes: 

u = 0, v = 0, w = 0, t = 0 
 
can come under consideration.  They have two lines in common, and for this pair of lines, 
one obtains the invariant: 

uu uv uw ut

vu vv vw vt

wu wv ww wt

tu tv tw tt

A A A A

A A A A

A A A A

A A A A

 . 

 
If it vanishes then the two lines coincide 14).  If the first sub-determinants vanish then the 
two coinciding lines intersect [and thus the linear complexes have the entire pencil that is 
given by these two generators in common].  What the vanishing of the second and third 
sub-determinants means will remain unmentioned here. 
 

                                                
 14) If one lets t = 0 mean a special complex, where Att vanishes, then the vanishing of the invariant in the 
text says that the line t contacts the hyperboloid of the three complexes u = 0, v = 0, w = 0.  However, Atu , 
Atv , Atw , are obviously nothing but the equations of the complexes u, v, w in which only the coordinates of 
the lines t are involved.  However, if one briefly replaces Atu , Atv , Atw by u, v, w then the resulting equation: 
 

0 =

0

uu uv uw

vu vv vw

wu wv ww

A A A u

A A A v

A A A w

u v w

 

 
represents the equation of the hyperboloid of the complex u, v, w, as I stated without proof in Math. 
Annalen, Bd. 2 (1870) [see Abh. II of this collection].  In a similar way, one finds the product of the 
equations of the two directrices of the congruence u, v: 
 

0 = 
0

uu uv

vu vv

A A u

A A v

u v

. 
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§ 2. 
 

Formation of the differential equations. 
 
 Now, let an arbitrary complex be given: 
 

γ = 0. 
 
We consider one of its lines (x).  In the vicinity of this line the complex can be regarded 
as a linear one; i.e., the neighboring lines are determined by a tangent linear complex, up 
to quantities of higher order (cf., Plücker’s, Neue Geometrie, no. 297, et seq.).  It is: 
 

1 2 6
1 2 6

y y y
x x x

ϕ ϕ ϕ    ∂ ∂ ∂+ + +     ∂ ∂ ∂     
⋯  = 0, 

 
where the differential quotients in parentheses relate to the constant values of x.  This 
linear tangential complex is not determined uniquely by this, but there is single infinitude 
of them with the same status.  Namely, since the given complex: 
 

ϕ = 0 
 
will not change when one adds Ω to its equation with an arbitrary factor: 
 

λϕ + µ Ω = 0, 
 

so any linear complex that is included in the equation: 
 

x xα α

ϕ ϕλ µ
 ∂ ∂+ ∂ ∂ 

∑ · yα = 0 

 
is a linear tangential complex 15).  Therefore: 
 

xα

∂Ω
∂

 · yα = 0 

 
is the equation of the special complexes whose lines all intersect the line x. 
 The simple infinitude of linear tangential complexes have a special linear congruence 
in common.  In fact, as we will always do from now on, we take the simplified form for 
Ω: 

Ω = 2 2 2
1 2 6x x x+ + +⋯ , 

 

                                                
 15) Among the linear tangential complexes there are three distinguished ones that have stationary 
contact.  Cf., the previous treatise. 
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so the family of linear tangential complexes will be: 
 

x
x α

α

ϕλ µ
 ∂ + ∂ 

∑  yα = 0. 

 
The invariant of the individual complex is then equal to: 
 

2

2

xα

ϕλ
 ∂
 ∂ 

∑ , 

 

since 2xα∑  vanishes, on account of Ω = 0, just as x
x α

α

ϕ∂ ⋅
∂∑ vanishes on account of ϕ = 

0, and when set to zero, it yields the double root λ = 0.  The two directrices of the 
congruence then coincide, and indeed, in the given line (x). 
 Now, among the lines of the complex, there are, in particular, ones for which the 
tangent linear complexes decompose into common special congruences.  The condition 
for this is, from the foregoing: 

2

xα

ϕ ∂
 ∂ 

∑ = 0. 

 
Then, all of the simple infinite of tangential complexes are special – i.e., straight lines – 
and these lines define a pencil.  By means of this pencil, the given lines will be associated 
with a point that lies on them and a plane that goes through them.  All of the lines of the 
complex that are infinitely close to the given one (x) and intersect it must either meet it at 
the associated point or run in the associated plane.  The associated point is, for that 
reason, the common contact point for the line (x), and the complex curves that are 
contained in the planes that go through it; likewise, the associated planes of all cones that 
emanate from the points of the line (x) will contact the lines (x). 
 Complex lines (x) of this type are called singular lines of the complex by Plücker (no. 
305, 306, of Neue Geometrie).  The associated point is called the associated singular 
point, and the associated plane is called the associated singular plane. 
 If Ω has, as we assumed above, the simplified form 2xα∑ = 0 then the singular lines 

of the complex: 
ϕ = 0 

will be singled out by the equation: 
2

xα

ϕ ∂
 ∂ 

∑ = 0. 

 
If ϕ is of degree m then this equation is of degree 2(m − 1); the singular lines then define 
a congruence of order and class 2m (m – 1). 
 I will, incidentally, connect this with the definition of a very important surface for the 
theory of complexes.  Each of the two-fold infinity of singular lines is associated with a 
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singular point and a singular plane.  There is, then, a surface of singular points and a 
surface of singular planes.  These two surfaces are now identical and define a subset of 
the focal surface that is enveloped by congruence of the singular lines 16).  In the 
following, I will refer to this surface as the singularity surface of the complex, as I have 
already done occasionally. 
 One can now give complexes of a special type – they will be called special 
complexes in what follows – for which: 
 

2

xα

ϕ ∂
 ∂ 

∑ = 0, 

 
vanishes identically, on account of 2x∑ = 0, ϕ = 0, whose lines are all singular lines 

then.  I assert that these complexes, whose lines envelop a surface, and thus, the 
complexes that consist of the totality of tangents to a surface, are characterized by the 
differential equation 17): 

2

xα

ϕ ∂
 ∂ 

∑ = 0. 

 
 It is now obvious that this condition is fulfilled for all complexes whose lines envelop 
a surface.  Each line of such a complex has the character of a singularity.  The complex 
curves – e.g., the ones that lie in the planes that go through them (the intersection curves 
of these planes with the enveloping surface) – contact the line at a fixed point, etc. 
 In order to show the converse of the theorem, we employ a lemma.  Namely, let (x) be 
a line of the complex.  Then, since: 

2

xα

ϕ ∂
 ∂ 

∑ = 0, 

 
(∂ϕ / ∂x) is also a straight line.  Moreover, since: 
 

ϕ = 0  and thus x
xα

α

ϕ∂
∂∑  = 0, 

 
it will intersect the line (x).  For that reason, (x + λ ∂ϕ / ∂x) is a pencil of straight lines: 
viz., the pencil that was already discussed before of the special linear tangential complex 
that belongs to the singular line (x).  In the present case, this entire pencil of lines belongs 
to the complex ϕ = 0. 
 The proof, which I hope to give more rigorously on another occasion, may be 
obtained as follows: If, as we assumed: 

                                                
 16) It was this theorem that Pasch gave in his Habilitationschrift (“Zur Theorie der Komplexe, etc.,” 
Giessen, 1870).  In Plücker, one finds the corresponding theorem for complexes of second degree proved 
by a more circuitous route (no. 318-320). 
 17) [This theorem was also given for the first time in the treatise of Pasch that was cited above.] 
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2

xα

ϕ ∂
 ∂ 

∑ = 0, 

 
then, by means of ϕ = 0, 2xα∑ = 0, one can, as one can show, set 18): 

 
2

xα

ϕ ∂
 ∂ 

∑ = M ϕ  + N 2xα∑ . 

One now defines: 

x
xα

α

ϕϕ λ
 ∂+ ∂ 

 

= ϕ(xα) + 
2 2

1 2x x x x x xα α α β α β

ϕ ϕ λ ϕ ϕ ϕλ ∂ ∂ ∂ ∂ ∂⋅ + ⋅ ⋅ ⋅
∂ ∂ ⋅ ∂ ∂ ∂ ∂∑ ∑ + … 

 
The terms in λ0 and λ1 vanish with no further restrictions when ϕ = 0, 2xα∑  = 0.  For the 

other terms, one can prove it by a recurrence process, in which one makes use of the 

given representation for 
2

xα

ϕ ∂
 ∂ 

∑ . 

 The lines of the complex may then be arranged into the doubly infinite pencil: 
 

x + λ 
x

ϕ∂
∂

. 

 
The common intersection point of the lines of the pencil is the associated singular point 
for all of them, and the plane of the pencil is the singular plane that is associated with all 
of them.  The three-fold infinitude of lines of the complex then correspond to only a two-
fold infinitude of singular points and a two-fold infinitude of singular planes.  There is 
then (as for general complexes) a surface of singular points and a surface of singular 
planes.  Now, it is easy to see that (as with general complexes) these two surfaces are 
identical and the lines of the complexes are the tangents to these surfaces.  In fact, any 
line of the complex must now contact the curve of the complex in an arbitrary plane that 
goes through it, as a singular line, at the associated singular points.  The curve of the 
complex that is contained in a plane is then the intersection curve of the plane with the 
surface of singular points.  The surface of singular points will then be enveloped by the 
lines of the complex.  In fact, the lines of the complex thus envelop a surface: the surface 
of singular points.  One proves the same thing for the surface of singular planes.  The 
surface of singular points and the surface of singular planes are then identical 19). 

                                                
 18) [The allowability of the Ansatz for algebraic complexes is obtained the argument that was developed 
in the note: “Über einen lineiengeometrischen Satz (Gött. Nachr., 1872, Math. Ann., Bd. 22, and Abh. X of 
this collection).] 
 19) One can, as one might do for the moment here, define the singularity surface of a complex as those 
special complexes that circumscribe the complex, and the focal surface of a congruence as those special 
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 We now consider the congruence that is common to two complexes: 
 

ϕ = 0, ψ = 0. 
 

A line of it has the coordinates x.  In the vicinity of it, one can replace the two complexes 
with a linear tangential complex to it: 
 

x y
x α α

α

ϕ λ
 ∂ + ∂ 

∑ = 0, 

x y
x α α

α

ψ λ
 ∂ + ∂ 

∑ = 0. 

 
One can replace the given congruence in the vicinity of (x) by the linear congruence that 
is common to any two of these complexes.  There is then a two-fold infinitude of linear 
congruences that contact a given congruence in one of its lines (x). 
 These linear congruences all have a ruled family in common: 
 

y
x α

α

ϕ∂ ⋅
∂∑ = 0, y

x α
α

ψ∂ ⋅
∂∑ = 0, x yα α∑ = 0. 

 
However, this divides into two pencils, since its invariant: 
 

2

2

2

x x x

x x x

x

α α α

α α α

α

ϕ ϕ ψ ϕ

ϕ ψ ψ ψ

ϕ ψ

 ∂ ∂ ∂⋅ ∂ ∂ ∂ 

 ∂ ∂ ∂⋅  ∂ ∂ ∂ 

∑ ∑

∑ ∑

∑

 

                                                                                                                                            
complexes that the congruence belong to.  [The intrinsic connection between singularity surfaces and the 
other structure that is present here with the corresponding differential equations will perhaps become more 
obvious when I mention the original concept that I was led to by this line of reasoning.  One starts with the 

line coordinates that satisfy the identity 2 2 2 2

1 2 3 4
x x x x+ + + + pq = 0, sets q = 1, and then eliminates p from 

the equation of the complex.  Then, e.g., the partial differential equation of the special complex will 
become: 

22 2 2

1 2 3 4x x x x

      ∂Φ ∂Φ ∂Φ ∂Φ+ + +            ∂ ∂ ∂ ∂      
= 0. 

 
One sees the analogy with the developables that are circumscribed by the spherical circle in ordinary R3 .  
The “pencil” of complexes corresponds to the generators of the developables (and thus the characteristics 
of the partial differential equation), the union of the positions of consecutive pencils of the intersection of 
successive generators (the union of the positions of consecutive characteristic strips).  K.] 
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vanishes, by means of ϕ = 0, ψ = 0, 2xα∑ = 0.  The directrices of the two-fold infinitude 

of tangent congruences then consist of two pencils that have the lie (x) in common.  Any 
two lines that are taken from the two pencils are directrices of a tangent congruence.  In 
these two pencils, one recognizes the tangent pencil 20) of the focal surface to the 
congruence in whose contact points with the lines (x). (?) 
 Among the lines of a congruence there will, in particular, be ones for which the two 
pencils – i.e., the two contact points with the focal surface – coincide.  The line of the 
congruence, which was previously a double tangent to the focal surface, generally 
becomes a tangent with four-point contact.  These lines of the congruence are represented 
by the condition that for them the sub-determinants of the foregoing invariants vanish, 
which can, by means of the simplified form for the latter, be reduced to one condition: 
 

2 2 2

x x x xα α α α

ϕ ψ ϕ ψ     ∂ ∂ ∂ ∂⋅ − ⋅     ∂ ∂ ∂ ∂     
∑ ∑ ∑ = 0. 

 
This equation, together with: 

ϕ = 0, ψ = 0, 2xα∑ = 0, 

 
represents a line surface of the congruence that has four-point contact with the focal 
surface.  If ϕ is of degree m and ψ is of degree n then this surface will be of degree 
4mn(m + n – 2). 
 Those lines of a congruence [m, n] that have four-point contact with the focal surface 
generally define a line surface of degree: 
 

4m n (m + n – 2). 
 

 There will now be certain congruences – which shall be called special congruences – 
for which the present equation: 
 

2 2 2

x x x xα α α α

ϕ ψ ϕ ψ     ∂ ∂ ∂ ∂⋅ − ⋅     ∂ ∂ ∂ ∂     
∑ ∑ ∑ = 0 

 
is fulfilled identically, by means of: 
 

ϕ = 0, ψ = 0, 2xα∑ = 0. 

 
These have the peculiarity that all of their lines contact the focal surface in coincident 
points.  They are the congruences whose lines are principal tangents to the focal surface 

                                                
 20) In the ordinary representation, one distinguishes the lines of the two pencils that are perpendicular to 
(x) and refers to them as the focal lines of the infinitely thin bundle of rays that run in the vicinity of (x).  
Any other line pair that is taken from the two pencils is equivalent in the projective sense. 
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21), in contrast to the general congruences whose lines are double tangents to the focal 
surface. 
 With this, problem (2) is then also formulated 22).  If a line complex ϕ = 0 is given 
then one seeks those congruences ϕ = 0, ψ = 0 such that for the lines of the congruence: 
 

2 2 2

x x x xα α α α

ϕ ψ ϕ ψ     ∂ ∂ ∂ ∂⋅ − ⋅     ∂ ∂ ∂ ∂     
∑ ∑ ∑ = 0. 

 
In particular, if ϕ = 0 is a special complex – i.e., a surface – then this equation reduced to: 
 

x xα α

ϕ ψ∂ ∂⋅
∂ ∂∑  = 0. 

 
 Finally one might be given three complexes: 
 

ϕ = 0, ψ = 0, χ = 0. 
 

                                                
 21) Cf., Kummer, “Allgemeine Theorie der Strahlensysteme,” § 8 (Borchardt’s Journal, Bd. 57). 
 22) Lie already endowed this problem with a similar form.  Namely, he found that under a 
transformation that arises from introducing the lines of the complex as space elements, the differential 
equation in question goes to an equation of second degree.  In particular, he gave the equation: 
 

H H H
q

x y z
p

∂ ∂ ∂
+ −

∂ ∂ ∂
⋅ =

22 2
2 21 1

H H H
p q

x y z

 ∂ ∂ ∂   + + ⋅ + + −    ∂ ∂ ∂    
 

 
(Bericht der Akademie zu Christiana, 1870, December).  If one would like to apply point coordinates 
instead of line coordinates then one would be led to a partial differential equation that is, on first glance, 
very different.  If one has, by the use of the pik coordinates, the equation of the complex: 
 

ϕ(pik) = 0 
 
then, when one confers fixed values to x, the equation: 
 

ϕ(xi yk – yi xk) = 0 
 

represents the cone of the complex that emanates from the point (x).  Problem (2) now consists of finding 
those surfaces y(x) = 0 that will contact the cone of the complex in question at each of their points.  If one 
then expresses the condition that the plane: 
 

1 2 3 41 2 3 4
y y y y

x x x x

ψ ψ ψ ψ∂ ∂ ∂ ∂
⋅ + ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂
= 0 

contacts the cone: 
ψ(xi yk – yi xk) = 0 

 
then one has the differential equation of the problem.  If ϕ is of degree m then the differential quotients ∂y / 
∂x will generally be of degree m (m – 1). 
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They have a common line surface.  Let (x) be a line on it.  It has the following tangential 
complex relative to ϕ, ψ, χ: 

x y
x α α

α

ϕ λ
 ∂ + ∂ 

∑ = 0, 

x y
x α α

α

λ µ
 ∂ + ∂ 

∑ = 0, 

x y
x α α

α

χ ν
 ∂ + ∂ 

∑ = 0. 

 
Any three complexes from these three families have a common hyperboloid that contacts 
the rectilinear surface that is common to the three given complexes at (x).  There is a 
three-fold infinitude of such contacting hyperboloids.  All have two coinciding lines in 
common, namely, (x) and the neighboring generators, which are the common lines of the 
four complexes: 
 

y
x α

α

ϕ∂ ⋅
∂∑ = 0, y

x α
α

ψ∂ ⋅
∂∑ = 0, y

x α
α

χ∂ ⋅
∂∑ = 0, x yα α∑ = 0. 

 
 The invariant of the line-pairs that are common to these complexes: 
 

2

2

2

2

x x x x x

x x x x x

x x x x x

x

α α α α α

α α α α α

α α α α α

α

ϕ ϕ ψ ϕ χ ϕ

ψ ϕ ψ ψ χ ψ

χ ϕ χ ψ χ χ

ϕ ψ χ

 ∂ ∂ ∂ ∂ ∂⋅ ⋅ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂⋅ ⋅ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂⋅ ⋅  ∂ ∂ ∂ ∂ ∂ 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑

 

 
then vanishes. 
 For particular lines of the line surface all of the sub-determinants of this invariant will 
also vanish.  They are the so-called singular generators of the line surface that intersect it 
consecutively.  For their determination, one obtains: 
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0 = 

2

2

2

x x x x x

x x x x x

x x x x x

α α α α α

α α α α α

α α α α α

ϕ ϕ ψ ϕ χ

ψ ϕ ψ ψ χ

χ ϕ χ ψ χ

 ∂ ∂ ∂ ∂ ∂⋅ ⋅ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂⋅ ⋅ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂⋅ ⋅  ∂ ∂ ∂ ∂ ∂ 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

. 

 
When ϕ, ψ, χ are of degree m, n, p, resp., this equation is of degree 2(m + n + p – 3).  
One then obtains the theorem: The line surface that is common to three complexes of 
degree m, n, p, resp., has: 

4m n p(m + n + p – 3) 
 

singular generators, in general 23). 
 There is now a special line surface whose lines are all singular generators – i.e., they 
intersect consecutively: These are the developables.  They are characterized by the fact 
that for them, by means of ϕ = 0, ψ = 0, χ = 0, the present equation is fulfilled identically.  
Thus if ϕ and ψ are given and one regards χ as unknown then this equation represents 
the differential equation for the developables of the congruence ϕ = 0, ψ = 0, χ = 0, 
which was problem (3).  It will be linear, in particular, when ϕ = 0, ψ = 0, χ = 0 is a 
special congruence. 
 We will determine the enveloping curves of the congruence of two complexes that are 
associated with the same singularity surface in a somewhat different way, namely, we 
express the lines of the congruence by two parameters and then present the condition for 
two neighboring lines of the congruence to intersect.  To that end, the condition may be 
given here under which the two neighboring lines (x) and (x + dx) intersect, at all.  In 
order for two lines (x) and (y) to intersect, one must have: 
 

x yα α∑ = 0. 

 
However, if yα = xα + dxα then this equation is satisfied identically, because the yα, as line 
coordinates, are linked with the equation 2yα∑  = 0, which, since 2xα∑ = 0, leads to 

x dxα α∑ = 0.  If we now set yα = xα + dxα + d2xα then we have, since 2yα∑ = 0: 

 
x dxα α∑ = 0,  2 2(2 )x d x dxα α α+∑ = 0. 

 
On the other hand, the condition for the intersection becomes: 
 

2x d xα α∑ = 0 

                                                
 23) The same number was derived in a somewhat different way by Lüroth: “Zur Theorie der 
windschiefen Flächen” (Borchardt’s Journal, Bd. 67, 1867). 
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and by means of the last equation this reduces to: 
 

2dxα∑  = 0. 

 
 This is the condition for the intersection of two consecutive lines that will be applied 
in what follows 24). 
 

§ 3. 
 

Elliptical coordinates for the determination of straight lines 25). 
Determination of various enveloping curves. 

 
 I will now introduce, in place of the homogeneous line coordinates x1, …, x6 that we 
have been using up to now, and which are coupled by the equation of condition: 
 

2xα∑ = 0, 

 
four mutually independent, inhomogeneous coordinates λ1, λ2, λ3, λ4 .  They will be 
defined in the following way: 
 In an earlier paper [Math. Ann., Bd. 2 (see Abh II of this collection)], I showed that 
the complexes of second degree with a common singularity surface can be represented by 
a parameter t in the following way: 
 

0 = 
22 2
61 2

1 2 6

xx x

k k kλ λ λ
+ + +

− − −
⋯ , 

 
where x1, x2, …, x6 are coordinates of the type that was just considered.  In the general 
case in which this canonical form applies, the common singularity surface is a Kummer 
surface of fourth degree with 16 nodes. 
 When one sets the x equal to the coordinates of a straight line, one can now consider 
the present equation as an equation for λ.  It is of fourth degree, since the power λ5 that 
appears by multiplication has the vanishing factor ∑ x2.  The four roots of the equation 
shall be called λ1, λ2, λ3, λ4 ; these are the ones that will be employed as coordinates of 
the line from now on.  These four coordinates then give the value of the parameter λ for 
those four complexes of the system that are associated with the line in question. 
 As one sees this coordinate determination is analogous to the general Jacobi method 
for elliptical coordinates.  In the Jacobi method, one has only one equation, and indeed an 
inhomogeneous one, of the form 26): 

                                                
 24) Lie employed the following condition for the intersection of two consecutive lines (or the contact of 
two consecutive spheres): 

dx2 + dy2 + dz2 + (i dH) 2 = 0. 
 25) Cf., a note in the Göttinger Nachrichten, 1871, no. 1.  [Not included in the present collection, 
because it included the developments of the text.] 
 26) For Jacobi, the parameter λ is given another sign, which does not, however, seem advantageous. 
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2

1

n x

k
α

α α λ= −∑  = 1, 

 
while two homogeneous equations are given here: 
 

21

1

n x

k
α

α α λ

+

= −∑ = 0,  
1

2

1

n

xα
α

+

=
∑ = 0. 

 
 This general 27) type of elliptical coordinates was first mentioned by Darboux 28) and 
were developed by him in a recent treatise 29).  He referred to them as the first derivation 
of the ordinary elliptical coordinates, insofar as he was led to the first derivation by a 
single application of a process by which he could derive a new orthogonal system from 
any orthogonal system.  When applied to the system of confocal surfaces of second 
degree, this process yields the Darboux-Moutard orthogonal system of the surface of 
fourth degree that includes the imaginary circle, and the new coordinates refer to this 
system.  (Cf., on this, the aforementioned treatise, § 2, as well.) 
 We will next express the previous coordinates xα by the new ones λα .  To that end, 
f(λ) might refer to the expression: 
 

f(λ) = (k1 – λ)(k2 – λ) … (k6 – λ). 
 
One then has, as is well-known, the relations: 
 

1

( )f kα′∑ = 0,  
( )

k

f k
α

α′∑ = 0,  
2

( )

k

f k
α

α′∑ = 0, 
3

( )

k

f k
α

α′∑  = 0, 
4

( )

k

f k
α

α′∑
3

( )

k

f k
α

α′∑ = 0. 

 
 As a result, the xa are given by the following equation: 
 

2xαρ  = 1 2 3 4( )( )( )( )

( )

k k k k

f k
α α α α

α

λ λ λ λ− − − −
′

. 

 
In fact, one convinces oneself that, as a result of the equations that exist between f′(k) and 
nothing more, these values of 2xα  satisfy the equation ∑ 2xα = 0, as well as the four 

complex equations that correspond to the values λ1, λ2, λ3, λ4 of λ. 

                                                
 27) One can refer to these coordinates are more general, since they yield the ordinary elliptical 
coordinates when two xa coincide.  This would correspond to a degeneracy of the Kummer surface into a 
surface with double lines; i.e., into a surface of a Plücker complex. 
 28) Comptes rendus, t. 69, 1869, 2.  “Sur une nouvelle séries de systèmes orthogonaux algébriques.” 
 29) Comptes rendus, t. 73, 1871, 2.  “Des courbes tracées sur une surface et dont la sphère osculatrice est 
tangente en chaque point à la surface.” 
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 We might remark incidentally how the main elements of the given system of 
complexes will be represented by the parameter λ and the Kummer surface that is linked 
with it 30). 
 If one sets two of the λ parameters – say, λ3 and λ4 – equal to each other then one has 
a tangent to the Kummer surface.  If one considers λ1 and λ2 to be constant, while λ3 = λ4  
runs through all values then one obtains the pencil of all tangents that contact the surface 
at a point.  λ1 and λ2 then characterize the contact point; one can regard them as 
coordinates of the points on the surface 31).  The two pencils that are composed of the 
tangents at two points (λ1, λ2) and 1 2( , )λ λ′ ′  are then, corresponding to λ3 = λ4 , uniquely − 

and therefore, projectively − related to each other. 
 If one sets the three parameters equal to each other then one obtains the principal 
tangents of the surface. 
 If one takes the four parameters to be pair-wise equal then one has the lines that fill 
up the 16 double planes of the surface and the ones that go through the 16 double points. 
 Finally, the assumption that all of the parameters are equal to each other yields the 
tangents of the contacting conic sections that lie in the 16 double planes, as well as the 
generators of the cone that contacts the 16 nodes. 
 One obtains the lines that belong to a certain complex of the system when one sets 
one of the parameters – say, λ4 – equal to the λ in question.  If one takes two parameters 
– say, λ3 and λ4 − to be constant then one gets the lines of the congruence that are 
common to the two complexes λ = λ3 and λ = λ4 .  Thus, if one likewise has λ3 = λ4 then 
one gets the singular lines of the complexes λ = λ3 = λ4 .  Therefore, the tangents in any 
pencil of tangents to the Kummer surface that are associated with the complex λ = λ3 = 
λ4 as singular lines will be determined through the values of λ3 = λ4 .  If λ3 = λ4 = kα then 
the singular lines are double tangents to the Kummer surface, namely, the ones that 
belong to the linear (fundamental) complex xα = 0 that is found among the complexes of 
the system. – If three parameters are constant – say, λ2 , λ3 , λ4 − then one obtains the 
generators of the line surfaces that are common to the three complexes λ = λ2 , λ = λ3 , λ 
= λ4 .  Thus, if λ2 = λ3 = λ4 then on gets the singular lines of the complex λ = λ2 = λ3 = λ4 

that osculate the Kummer surface.  When the common value of λ2 = λ3 = λ4 is equal to 
kα, they are then lines with four-point contact.  Indeed, when one endows α with the 
values 1, …, 6, one obtains all of the lines of the Kummer surface that have four-point 
contact, except for the ones that are tangent to the conic section of contact in the 16 
double planes 32). – Finally, the assumption that all parameters are constant yields the 32 
straight lines that are common to the complexes λ = λ1 , λ = λ2 , λ = λ3, λ = λ4.  
Therefore, if λ1 = λ2 = λ3 = λ4 then one has the 32 distinguished singular lines of the 
complex λ = λ1 = λ2 = λ3 = λ4 that are tangents to the conic section of contact in the 
double planes (generators of the contact cone in the double points, resp.). 
 We would now like to substitute the new coordinates λ1, λ2, λ3, λ4 in the equation: 
 
                                                
 30) For the proof, see the paper: “Zur Theorie der Komplex, etc.,” Math. Annalen, Bd. 2 (1870). [See 
Abh. II of this collection.] 
 31) As shall be shown, the curves λ1 = ρ, λ2 = σ are the principal tangent curves to the Kummer surface. 
 32) Cf., the paper of Lie and myself: “Über die Hauptangentenkurven der Kummerschen Fläche.” 
Monasberichte der Berliner Akademie, 1870, December.  [See Abh. VI of this collection.] 
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2dxα∑ = 0, 

 
which expresses the fact that two consecutive lines intersect.  One finds: 
 

0 = 2 1 2 1 3 1 4
1

1

( )( )( )

( )
d

f

λ λ λ λ λ λλ
λ

− − −⋅  

2 2 3 2 4 2 1
2

2

( )( )( )

( )
d

f

λ λ λ λ λ λλ
λ

− − −+ ⋅  

2 3 2 3 1 3 4
3

3

( )( )( )

( )
d

f

λ λ λ λ λ λλ
λ

− − −+ ⋅  

2 4 1 4 2 4 3
4

4

( )( )( )

( )
d

f

λ λ λ λ λ λλ
λ

− − −+ ⋅ . 

 
This differential equation will now be integrated with no further assumptions. 
 It especially arises for the congruences of any two complexes of the given system.  
Namely, if one sets λ3 and λ4 equal to constants then dλ3, dλ4 will be equal to zero, the 
factor (λ1 – λ2) will drop away, and one will obtain the differential equation of the 
enveloping curve of the congruence in the form: 
 

1 3 1 4
1

1

( )( )

( )
d

f

λ λ λ λλ
λ

− −
= ± 2 3 2 4

2
2

( )( )

( )
d

f

λ λ λ λλ
λ

− −
. 

 
If one sets λ3 = λ4 in this equation then one has the enveloping curves of those double 
tangents to the Kummer surface that belong to the complex xα = 0.  As is known, these 
double tangents define a general congruence of second order and second class; Problem 3 
is then solved for these congruences. 
 If one sets λ = λ2, λ3 = λ4 in the present differential equation then it will be satisfied 
identically.  The congruence λ1 = λ2, λ3 = λ4 is then one in which all lines intersect all of 
their neighbors.  In fact, as we already remarked, the equations λ1 = λ2, λ3 = λ4 represent 
the lines that either lie in a double plane of the Kummer surface or go through a double 
point.  Their totality defines a congruence of order and class 16 that generally has the 
required property. 
 Finally, let λ2 = λ3 = λ4 .  The present differential equation will then be: 
 

dλ1 = 0, then λ1 = const. 
 

These are the principal tangent curves of the Kummer surfaces.  In words: The principal 
tangent curves of the Kummer surface will, in any case, be defined by the points of the 
surface at which the second principal tangent belongs to a certain complex of the system 
as a singular line.  They are then the curves of order 16 that were considered in no. 18 of 
the earlier paper: “Zur Theorie, etc.” (Math. Annalen, Bd. 2 [see Abh. II of this 
collection]).  The fact that the principal tangent curves of the Kummer surface are 
algebraic curves of first order was first discovered by Lie when he was studying his map 
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from line geometry to sphere geometry that takes principal tangent curves to curvature 
curves.  Thus, I remarked that there is an identity between the principal tangent curves 
and the curve systems that I had previously examined and determined in connection with 
the singularities themselves 33).  I then found the analytical proof 34) that is presented 
here, and finally realized 35) that it subsumed the entire process of determining the 
principal tangent curves by means of the associated complex under a general, line-
geometric theorem that corresponded to Dupin’s theorem of metric geometry.  The latter 
is thoroughly presented in the previous paper, in which it is also shown how it 
encompasses the determination of the principal tangent curves of the Kummer surface. – 
Let it be remarked that the six principal tangent curves λ1 = ka are the curves of four-
point contact with the Kummer surface. 
  

§ 4. 
 

Determination of the integral surfaces for the general complex of second degree. 
 

 The introduction of new variables λ1, λ2, λ3, λ4 into the differential equation: 
 

2dxα∑ = 0 

yields: 

0 = 2 1 2 1 3 1 4
1

1

( )( )( )

( )
d

f

λ λ λ λ λ λλ
λ

− − −⋅  + … 

 
The partial differential equation that characterizes the special complexes: 
 

2

xα

ϕ ∂
 ∂ 

∑ = 0 

 
will then be converted, by known methods, into: 
 

0 = 
2 2

1 2

1 1 2 1 3 1 4 2 2 3 2 4 2 1

( ) ( )

( )( )( ) ( )( )( )

f fλ λϕ ϕ
λ λ λ λ λ λ λ λ λ λ λ λ λ λ

   ∂ ∂⋅ + ⋅   ∂ − − − ∂ − − −   
 + … 

 
 Now, it is, however, known 36) that a differential equation like the present one admits 
a complete solution (with three arbitrary constants) with no further assumptions, namely: 
 

ϕ = 3 31 1 2 2
1 2 3

1 2 3

( )( )( )( ) ( )( )

( ) ( ) ( )

a ba b a b
d d d

f f f

λ λλ λ λ λ
λ λ λ

λ λ λ
− −− − − −

+ +∫ ∫ ∫  

                                                
 33) Monatsberichte der Berl. Akademie, 1870, December. [See Abh. VI of this collection.] 
 34) Göttinger Nachrichten, 1871, no. 1. [Not included in this collection.] 
 35) Göttinger Nachrichten, 1871, no. 3. [See Abh. VII of this collection.] 
 36) Cf., Jacobi’s Vorlesungen über Dynamik. 
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+ 4 4
4

4

( )( )

( )

a b
d

f

λ λ
λ

λ
− −

∫ + C. 

 
 If we let a, b, C take on the sequence of all possible values then for us the equation: 
 

ϕ = 0 
 
represents a three-fold infinitude of special complexes – viz., a three-fold infinitude of 
surfaces.  Any complex that is included in the general solution – i.e., any complex whose 
lines envelop a surface – will then, as the enveloping structure, include a two-fold 
infinitude of these surfaces. 
 I now assert that the surface ϕ = 0 with the constants a, b, C is the common integral 
of the two complexes λ = a and λ = b 37); i.e., that the one system of principal tangent 
curves of the surface belongs to the complex λ = a, while the other one belongs to the 
complex λ = b, or, what amounts to the same thing, that the surface has a special 
congruence in common with the complex λ = a, as well as the complex λ = b. 
 In order to prove this, one only has to show that the differential equation of the 
special congruences: 
 

2 2 2

x x x xα α α α

ϕ ψ ϕ ψ     ∂ ∂ ∂ ∂⋅ − ⋅     ∂ ∂ ∂ ∂     
∑ ∑ ∑ = 0. 

 
Sufficiency comes about when one takes one of the surfaces that were found here in place 

of ϕ and perhaps (λ4 – a) or (λ4 – b), in place of ψ.  
2

xα

ϕ ∂
 ∂ 

∑ vanishes, however, since 

ϕ is a special complex.  All that remains is: 
 

x xα α

ϕ ψ∂ ∂⋅
∂ ∂∑ = 0, 

 
or, upon introduction of the λ coordinates: 
 

0 = 1

1 1 1 2 1 3 1 4

( )

( )( )( )

f λϕ ψ
λ λ λ λ λ λ λ λ

∂ ∂⋅ ⋅
∂ ∂ − − −

+ … 

 

                                                
 37) The fact that two complexes of the system have a simple infinitude of common integral surfaces 
defines the starting point for the corresponding argument of Lie. 
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However, 
1

ψ
λ

∂
∂

, 
2

ψ
λ

∂
∂

, 
3

ψ
λ

∂
∂

 vanish, since either ψ = λ4 – a or ψ = λ4 – b depends only 

upon λ4.  On the other hand, 
4

ϕ
λ

∂
∂

= 4 4

4

( )( )

( )

a b

f

λ λ
λ

− −
, which vanishes when one sets λ4 = 

a or λ4 = b.  The differential equation of the special congruences will thus be sufficiently 
resolved, in general. 
 The value of the constant C in the equation for ϕ does not come into consideration at 
all then, so it remains arbitrary.  We then have the theorem: Any two complexes λ = a, λ 
= b of the family that is associated with the Kummer surface have a simple infinitude of 
common integral surfaces. 
 If one lets b vary, in addition to C, then one obtains a two-fold infinitude of integral 
surfaces of the complex λ = a, and therefore a complete solution of the partial differential 
equation that is linked with the complex.  The general solution encompasses all surfaces 
that are the enveloping structure to a simple infinitude of surfaces from the doubly 
infinite family thus determined. – With that, problem 2) is disposed of for the general 
complex of second degree. 
 The integral surfaces that are found, which are common to the complexes λ = a and λ 
= b, have a remarkable relationship with the enveloping lines of the congruence λ = a, λ 
= b that was determined in the previous paragraphs. 
 [In fact, the equation of the individual integral surfaces when we take λ3 to be a 
constant equal to a and λ4 = b reduces to the differential equation of the aforementioned 
enveloping curve.  The relation that then exists between the integral surface and the focal 
surface of the congruence λ3 = a, λ4 = b remains to be developed more rigorously 38).] 
 From the meaning of the singularity surface it follows, moreover, that the integral 
surface must contact it everywhere it meets the singularity surface.  The cone of the 
complex a or b that emanates from a point of the singularity surface then degenerates to a 
point-pair whose intersection – the associated singular line – contacts the singularity 
surface.  The integral surface can contact the degenerate cone nowhere else, except where 
it contacts the singular line.  The integral surface then contacts the two associated 
singular lines of the complexes a and b at each of its points in which it meets the 
singularity surface; i.e., it contacts the singularity surface itself. 
 We obtain the singular lines of the complexes a that belong with the points of the 
contact curve when we set λ3 = λ4 = a in the equation for the integral surface.  What 
remains is: 

1 1 2 2
1 2

1 2

( )( ) ( )( )

( ) ( )

a b a b
d d

f f

λ λ λ λ
λ λ

λ λ
− − − −

+∫ ∫  + C = 0. 

 
This equation, together with λ3 = λ4 = a, determines the singular lines in question.  On the 
other hand, since, from the previous paragraphs, λ1 and λ2 can be regarded as the 

                                                
 38) [The more precise details on this, which were originally discussed in Math. Ann., Bd. 5, no longer 
apply here, due to the objection that was raised by A. Voss in Math. Ann., Bd. 9, pp. 134-135.  This state of 
affairs warrant further investigation. K] 
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coordinates of a point on the singularity surface, we can even use it as the equation of the 
contact curve.  We then have the theorem: 
 
 The integral surface contacts the singularity surface along a curve segment whose 
equation is the aforementioned one. 
 
 The singularity surface then corresponds to a singular solution of the differential 
equation that is linked with the complex, in that sense that it will contact all of the 
integral surfaces of the complex along a curve. 
 Finally, we might make the following remark: If we set λ4 = a in the equation for an 
integral surface of the complex a then one comes to the representation of the associated 
special congruence that relates to the complex a: 
 

3 31 1 2 2
1 2 3

1 2 3

( )( )( )( ) ( )( )

( ) ( ) ( )

a ba b a b
d d d

f f f

λ λλ λ λ λ
λ λ λ

λ λ λ
− −− − − −

+ +∫ ∫ ∫  + C = 0. 

 
Now, the integrals that arise here are hyperelliptic ones that correspond to p = 3.  This 
indicates an inverse problem to the aforementioned equation.  To that end, we write it in 
the form: 

1 1
1

1

( )( )

( )

a b
d

f

λ λ
λ

λ
− −

∫  + … = u 

 
and link it with two similarly constructed equations, whose integrals are obtained from 
the foregoing by differentiation with respect to the parameters a, b: 
 

1
1

1 1( )

b
d

a f

λ
λ

λ λ

−

− ⋅
∫  + … = v 

 

1
1

1 1( )

a
d

b f

λ
λ

λ λ

−

− ⋅
∫ + … = w. 

 
These equations then serve to express the λ1, λ2, λ3, and furthermore, the x1, …, x6 of the 
lines of the complex, in terms of the u, v, w, and since xα is connected with the λ by an 
equation of the symmetric form: 
 

2xαρ  = 1 2 3 4( )( )( )( )

( )

k k k k

f x
α α α α

α

λ λ λ λ− − − −
, 

 
they essentially express the xα as hyperelliptic functions of the u, v, w. 
 The coordinates xα of the lines of a line complex of second degree are then 
represented by six-fold periodic hyperelliptic functions of three parameters u, v, w, on the 
basis of a second complex. 
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 It was already stressed repeatedly that the orthogonal system that is defined for 
surfaces of fourth order with imaginary double circles corresponds to the system of line 
complexes of second degree with a common singularity surface.  One disregards how one 
has a theorem for these surfaces, and similarly for these complexes, that says that the 
coordinates of the points of a surface of orthogonal system may be represented as four-
fold periodic hyperelliptic functions of two parameters.  Darboux gave this theorem 
without proof in the Comptes rendus (t. 68, 1869, 1: “Mémoire sur une classe de courbes 
et de surfaces”); he especially emphasized that it might find applications to the general 
surfaces of third order, since three of the surfaces of the orthogonal system are general 
surfaces of third degree.  A similar theorem is obviously true for the corresponding 
structure in arbitrarily many dimensions. 
 One will then be led to a second inverse problem by the equation for the enveloping 
curve of the singular lines: 
 

1 1 2 2

1 2

( ) ( )

( ) ( )

d a d a

f f

λ λ λ λ
λ λ
− −+∫ ∫  + C = 0, 

 
since for them, as well, the number of summed integrals coincides with the p of the 
hyperelliptic functions that appear.  To that end, we set: 
 

1 1 2 2

1 2

( ) ( )

( ) ( )

d a d a

f f

λ λ λ λ
λ λ
− −+∫ ∫  = u, 

and add a similar equation: 

1 1 2 2

1 2

( ) ( )

( ) ( )

d b d b

f f

λ λ λ λ
λ λ
− −+∫ ∫  = v. 

 
These define two families of curves that run in the singularity surface that is common to 
all of the complexes: the enveloping curves of the singular lines of the complexes λ = a 
and λ = b.  When we replace u and v with linear combinations of those parameters, we 
can take a and b to be equal to two of the six quantities kα , in particular.  The 
aforementioned equations then define two families of enveloping curves that the six 
double tangent systems of the surface possess.  Relative to two such systems of curves, 
the coordinates of the points of the Kummer surface are then represented by four-fold 
periodic hyperelliptic functions. 
 For special line complexes of second degree, the hyperelliptic functions that appear in 
the aforementioned inverse problem naturally simplify.  For instance, if the kα are pair-
wise equal then they will be logarithms.  The complex is then converted into the known 
complex whose lines intersect a fixed tetrahedron with constant double ratios.  The 
singularity surface is degenerate in this tetrahedron.  In fact, the common integral 
surfaces of two complexes that belong to the stated tetrahedron are represented by an 
equation in the logarithms of the coordinates, namely, by a linear equation in them.  



IX. Differential equations of line geometry.                                                 25 

These are the same surfaces that Lie and myself examined 39) in the form of “W 
surfaces”, and whose analogues in the plane we recently considered in a common treatise 
in these Annalen 40). 
 
 Göttingen, in November 1871. 
 

 
 

 
 

                                                
 39) Comptes rendus.  1870, 1.  “Sur une certaine classe de courbes et de surfaces.”  [See Abh. XXV of 
this collection.]  The conception of the W surfaces as the common integral surfaces of two of the complexes 
associated with the stated tetrahedron is due to Lie. 
 40) “Über diejenigen ebenen Kurven, etc.” Math. Ann., Bd. 4 (1871).  [See Abh. XXVI of this 
collection.] 


