“Uber gewisse in der Liniengeometrie auftretende Diffesggiéichungen,” Math. Anrb (1872), and
Gesammelte Abhandlungen.

IX. On certain differential equationsthat appear in line geometry.

By Felix KLEIN

Translated by D. H. Delphenich

In line geometric investigations, one is led to certiiiferential equations that will be
formulated in what follows and then integrated in mqrectiic cases. They essentially
correspond to the following three problems:

1. Find those line complexes whose lines are the tasmgeiat surface.

2. Determine those congruences that belong to a givendimplex whose lines are
principal tangents to their focal surfaces.

3. Obtain the enveloping curve of the lines of a congrienc

In the representation that we adopt in what follows,which the use of line
coordinates will be made throughdit one recognizes how these three problems can be
grouped together naturally.

Problem 1 is one of the first ones in which line comgde entered into the
investigation. It was also already solved by Cayley infinst communicatior), if only
approximately. In it, Cayley examined those conditioa$ ¢hline complex must satisfy
in order for its lines to intersect a fixed curve. fdend only a first condition, which is,
however, still not sufficient, and is, moreover.fifldd when the lines of the complex
envelop surfacé). This very condition will be derived in the sequelaircompletely
different way, and it will be shown that, in fadtcharacterizes the totality of the tangents
to a surface. For complexes of second degree, in plartidor the ones that envelop a
surface, the corresponding result was found by Pli¢kend Geometrieno. 341).

Problem 2 was presented by Lie, but in a different formNamely, it amounts to
finding those surfaces that contact the cone of angoaamplex at each of their points.
He then showed that the edges along which the cone obthplex contacts the desired
surface are principal tangents to the surface and thatptbjgerty characterizes the

) The following may likewise serve to illustrate howeocan operate with line coordinates without
having to revert to their connection with point and pleo@ dinates.

2 Quarterly Journal, v. 3, pp. 227. [(1860), Coll. Papers IV.]

% [A complete system of conditions for the secant cempf a curve was presented by Voss in a note
in the Gott. Nachr. (1875), pp. 101-123.]

% Cf., the treatise of Lie in Math. Annalen, Bd. 5, @isdrelevant communication to the Academy in
Christiania (Berichte, 1870, 71). In it, the differentigbation that the problem defined was referred to
briefly as “the differential equation of the given licemplex.” — Darboux has also dealt with this
situation; cf., a relevant remark of Lie in the afoestioned reference. [The paper of Lie that is refemwed t
as “the aforementioned reference” here and latdrertext is the treatise that was mentioned in foothote
of Abh. VIII.]
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surface in question. The problem then comes down toothinding the surfaces to
which a system of principal tangents belongs to the gigenplex. In this form, it is
obviously identical with problem 2; the form that it Malssume in the sequel is better
adapted to the demands of the present lecture.

Finally, problem 3 arises whenever one treats lingge@nces. From the general
theory®), the lines of a congruence may be summarized in sss#rigevelopables in two
ways. The problem is: Determine these developables thieezongruence is given.

Problem 2 shall be solved in what follows in the paléicaase of line complexes of
second degree. Such a solution was given by Lie in anatioge geometric, way in the
aforementioned treatise. These results naturallyeagrevill therefore be interesting to
pursue how their geometric content corresponds to thbtaal ones that are applied
here. His result may be summarized in an obvious wakerfihal analytical formula
that will be presented.

Likewise, by the same method adopted here, problendBp®sed of for those line
congruences of fourth order and class that two line toap of second degree have in
common, and actually belong to the singularity surfacenog these, one finds the
special type that will likewise be suggested: the gemenagruences of second order and
class that belong to a complex of second degree and decoaffirst degreé).

From the previously-cited treatise of Lie, one wittagnize how these line geometric
problems are identical to problems that relatespbiere geometry. Problem 1 then
corresponds to the demand: Give those equations betweebuheoordinates of a
sphere (its center coordinates and its radius), whiclkesept a three-fold infinite system
of spheres (sphere complex), whose spheres alacoatfixed surface. Problem 2 then
corresponds to the problem: If a sphere complex is gified those surfaces whose
system of principal spheres belongs to the comflexFinally, problem 3 leads to: If a
congruence of spheres — i.e., a doubly-infinite familggheres — is given, arrange them
into a singly-infinite sequence of spheres, in which eaah consecutive ones contact
each other.

In other words, starting with the connection that exigtween line geometry and the
metric point geometry of the space of four dimensi®)none can present equivalent
problems for this metric geometry. The corresponding prableinthe metric geometry
of the space of three dimensions might be stated teze; number, like the number of
variables, has been diminished by one. They are tlwaviag two:

a) Give those developable surfaces that include theitelfindistant imaginary
circle.

b) Determine those curves on a given surface whoggeiés continually meet the
infinitely distant circle (the so-called “curves withiidength”).

®)  Cf., Kummer in Borchardt's Journal, Bd. 57 (1860).

6 Cf., theorem XXXVI of the general enumeration of reystems of second order by Kummer.
(Abhandlungen der Berl. Akad. 1866.)

"y As he communicated to us, Darboux had also concernmeeeiiwith this problem, which Lie
treated in the aforementioned treatise, along with pmt®2), more recently. He solved it in precisely the
context in which the solution was given by Lie, and in chhit emerges by application of the Lie
transformation of line geometry into sphere geomietiy solution of the line geometric problem that was
given in the text. The method that Darboux employedvag, as far as | can tell, entirely identical with
the one that will be applied here.

8 Cf., the present collection: “Uber Liniengeometried metrische Geometrie.”
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The recent French geometers especially have conteheenselves with the latter
curves. Incidentally, the problem of the conformal mapmh¢wo surfaces onto each
other emerges from the search for these curves. Naomdyhas only to relate the two
surfaces to each other in such a way that the curvemestion on the one surface
correspond to those of the other. The developablesra)fingt examined by Darbou
in regard to their distinguished metric properties. Asdm@mmunicated to me, Darboux
has also solved problem 2) for the surfaces of fourth detipa contain the imaginary
circle. By means of the Lie map (as Lie also renmdykehis corresponds to the
integration of the enveloping curves of a line congruefcecond order and class that |
will given in the following, and which | have alreadynemunicated before on occasion
[Gottinger Nachrichten, 1871, no. 1 (but not included in ¢bigection)]. It may suffice
to give us a proof of the corresponding metric problesmich naturally relates to not
only the metric space of three and four dimensions, Ibatabitrarily many of ther).
| now revert to the line-geometric problems that stafistitute the actual content of this
communication, and thus begin by commenting on some tlaibgst linear complexes
that will be useful later.

81
Some remarks about linear complexes.

In § 1 of the foregoing reference: “Uber Liniengeomairid metrische Geometrie,” |
have developed the way that line geometry can be regardied gsometry of surface of
second degree in a space of five dimensifons|t is represented, if one understamgds
X2, ..., X t0 mean the homogeneous coordinates of the space dlifiasions, by:

Q(xg, X2, ..., Xe) = 0.
A linear complex:
U X FUXo+ ...+UsXs =0

is, in this way of looking at things, like the plandglte space in question. From this,
one concludes thaa linear complex has an invarignhamely, the expression that
expresses the fact that when it is zero the plare0 contacts the surfa¢e = 0. This
expression arises from the determinant(bfby bordering it (Randerung) with the
coefficientsu. In particular, ifQ has'?), as will be assumed in the sequel for the sake of
simplicity, the form:

0:)(12+x22+...+x§

then the invariant takes the form:

%) Annales scientifiques de I'Ecole Normale Supérieure, 1885.

% From the combination of the articles that are wiire§ 2, it is obvious how this metric problem can
be treated by exactly the same formulas as the lineeteic ones that are used here.

) This expression shall be allowed here, since indeedisunderstanding can arise.

13 Cf., “Zur Theorie der Komplexe, etc.,” Math. Annalend.B2 (1870). [See Abh. Il of this
collection.]
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2 2 2
ul+u2+“.+u6'

If the invariant vanishes then the linear complex is-aaledspecialone; i.e., it consists
of the totality of all lines that meet a fixed line.
Now let two linear complexes be given:

u=0, v=0.
They have a linear congruence in common that likewikmge to all complexes:
Au+uv=0.

Among them, one finds two special ones: the so-cdliesttrices. One determines them
when one defines the invariant t1 + ¢v. Let Ay, be the invariant ofi, A, that ofv,
and to finallyA,, = A is the expression that comes about when one bouna$e(tiithe
determinant of2 on the one side by the coefficientsuodnd on the other side, by those
of v. | have occasionally called the expressiginthe simultaneous invariandf the two
complexes. (Its vanishing is the condition for the tweanplexes to be in involutory
position.) By this notation, the invariant.bti + 1/ v becomes:

N Agu+ 2\ A + 1F Ay .

When set to zero, it yields a quadratic equatiomfby, and it is the one that determines
the two directrices. The quadratic equation that is tigained, when regarded as a
guadratic binary form in the variabldsy, has an invariant:

AuuAvv_AJZV-

This does not change (up to a factor) when one uses angthwo complexes of the
groupA u + uv, in place ofu, v. It is then acombinationof the two complexes, v, and
therefore amvariant of the congruence that is determined by it.

The vanishing of this invariant says that the quadratic equédr the determination
of the directrices of the congruence has two equal reotshe directrices of the
congruence coincide (cf., PlickeReue Geometrieno. 68). The congruence shall then
be called aspeciallinear complex.

A further particularization enters in when not oAly, A — A= 0, but alscAuy, Aw,

Ayv vanish individually. u andv are then both special complexes (straight lines) tha
intersect each other. The congruence decomposeswatoftthem: A congruence of
first order and null class that consists of the lined go through the same intersection
point, and a congruence of first class and null orddrdbasists of the lines that run in
the common plane. Such a linear congruence will bernesf to in what follows as a
decomposedne. A decomposed congruence has infinitely many direstriche lines of
the pencil thati andv belong to and that are represented by:

Au+uv=0.
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We now consider the three linear complexes:
u=0, v=0, w=0.
They have a ruled family in common — i.e., a generatar sfrface of second degree (a
one-sheeted hyperboloid). The other generators of thebolp&ls are the directrices of
the congruence of any two complexes in the group:

Au+uv+vw=0.

One obtains all of the second generators when oneseb@dl of the values fot, 1, v for
which the invariant ofl u + i v vanishes, for which one then has:

0=FAu+2AUAN+F Ay +2VA Ag+ 20 A+ VP Ay,
If we interpret thed, u, v as coordinates in the plane, this equation represecsia

section. It has an invariant under linear transformatithat one can subject they, v
to, namely, the determinant:

Av Av Aw
Av Av Aul -
An Aw

We will refer to it as theénvariant of the ruled surface that is common to the three
complexes.

The vanishing of the invariant says: Firstly, that theicgection that is represented
by the equation ind, 4 v decomposes. The second system of generators also
decomposes then. The associated hyperboloid degeneratesvintplanes and two
points that lie on their intersection in this case, (eflicker'sNeue Geometrieno. 144)

3. The one generator of it consists of the lines gathrough the first point in the first
plane, or through the second point in the second plheeyther generator consists of the
lines that go through the first point in the second @lanthe second point in the first
plane. The three complexes thus have two united pesfcisys in common. We will
refer to such a decomposed ruled family apecialruled family, in analogy with the
foregoing.

A further particularization is that not only the inkaaat of the ruled family, but all of
the sub-determinants, vanish identically. The ruled lfathien degenerates into two
pencils of rays that cover it (cf., PlickeNgeue Geometrieno. 146). The congruences of
any two complexes of the famiu + xv + vw are then special, since their invariants
are linear combinations of the vanishing sub-determinants.

13 Therefore, while arfr,, considered as a point structure, yields the cone dissttparticularization
and, when considered as a plane structure, it yieldsatie section, here, a plane-pair that is combined
with a point-pair that lies in it enters in. It is irgsting that one must consistently take all three
particularizations into account for the general enutimrahat relates to systems of surfaces of second
degree. Cf., the paper of Schubert: “Zur Theorie derdeiteristiken” (Borchardt's Journal, Bd. 71, 1870).

The particularization of thE, that we spoke of here was referred to as the “limitadayl section” there.
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In the last case, it would be further conceivable thatsecond sub-determinants —
i.e.,Auw, Auw , etc. —themselves all vanish, v, w are then three special complexes whose
axes mutually intersect, so either they have a paigbimmon or lie in the same plane.
Thus, a double infinity of lines then satisfy the thregationsu = 0,v = 0, w = 0,
namely, the ones that go through the common poinin(tike common plane, resp.). The
equation of conditio®2 = 0 is then fulfilled identically by means of= 0,v=0,w = 0;
the third equation — vizw = 0 — then serves only to define one component of the
decomposed congruenae= 0;v = 0,w = 0. This is then an essentially different case
from the foregoing that will not come under considerain what follows.

Finally, four complexes:

u=0,v=0, w=0,t=0

can come under consideration. They have two linesimmmon, and for this pair of lines,
one obtains the invariant:

Av Av Aw Au
Av A Aw A
A Aw A '
A A A A

If it vanishes then the two lines coincitf¢. If the first sub-determinants vanish then the
two coinciding lines intersect [and thus the linear caxps$ have the entire pencil that is
given by these two generators in common]. What #reshing of the second and third

sub-determinants means will remain unmentioned here.

1% If one letst = 0 mean a special complex, whéevanishes, then the vanishing of the invariant in the
text says that the linecontacts the hyperboloid of the three complexesO,v = 0,w = 0. HoweverA,,
Aw, Aw, are obviously nothing but the equations of the complaxesw in which only the coordinates of

the linest are involved. However, if one briefly repladgs, A, Aw by U, v, wthen the resulting equation:

Au Av Aw
Au Av Aw
A Aw A

u \% w O

0=

represents thequation of the hyperboloid of the complex u, yv,aw | stated without proof in Math.
Annalen, Bd. 2 (1870) [see Abh. Il of this collection]. drsimilar way, one finds the product of the
equations of the two directrices of the congruancee

Au Aw
0=]Au Aw

u v 0
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§2.
Formation of the differential equations.
Now, let an arbitrary complex be given:
y=0.
We consider one of its lineg)( In the vicinity of this line the complex can be ety

as a linear one; i.e., the neighboring lines are datedrby a tangent linear complex, up
to quantities of higher order (cf., Plickefdgue Geometrieno. 297, et seq.). Itis:

0g a¢ 09 | _
(aj%*’(aj yz'*’"'*’[ﬁj Y6 = 0,

where the differential quotients in parentheses eetatthe constant values ®f This
linear tangential complex is not determined uniquely by this there is single infinitude
of them with the same status. Namely, since thengreenplex:

$=0
will not change when one ad€sto its equation with an arbitrary factor:
Ap+uQ =0,
so any linear complex that is included in the equation:

Z[/‘%W%)yﬁo

0X,

is a linear tangential complé®). Therefore:

0Q
_= . = 0
ox Ya

a

is the equation of the special complexes whose lih@gersect the line.

The simple infinitude of linear tangential complexes haspeciallinear congruence
in common. In fact, as we will always do from now ame, take the simplified form for
Q:

Q= X12+X22+"'+X§a

% Among the linear tangential complexes there are tdisenguished ones that have stationary

contact. Cf., the previous treatise.
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so the family of linear tangential complexes will be:

Z[Ag%+ﬂxaj ya: 0

a

The invariant of the individual complex is then equal t
¢\
AL,
z(axaj

sincerf, vanishes, on account ©f = 0, just asz

99
o0x

a

X, vanishes on account ¢f=

0, and when set to zero, it yields the double rbet 0. The two directrices of the
congruence then coincide, and indeed, in the givenine (

Now, among the lines of the complex, there areparticular, ones for which the
tangent linear complexes decompose into common speEagruences. The condition

for this is, from the foregoing:
2
0x,

Then, all of the simple infinite of tangential comyde are special — i.e., straight lines —
and these lines define a pencil. By means of this peheigiven lines will be associated
with a point that lies on them and a plane that goesugh them. All of the lines of the
complex that are infinitely close to the given oreand intersect it must either meet it at
the associated point or run in the associated planee aBsociated point is, for that
reason, the common contact point for the limg é&nd the complex curves that are
contained in the planes that go through it; likewise,absociated planes of all cones that
emanate from the points of the ling ill contact the linesx).

Complex linesX) of this type are callesingular lines of the compldxy Plicker (no.
305, 306, ofNeue Geometrje The associated point is called the associategular
point, and the associated plane is called the asso@atgdlar plane.

If Q has, as we assumed above, the simplified f@mﬁ = 0 then the singular lines
of the complex:

¢=0
will be singled out by the equation:

SR

0x,

If @ is of degreem then this equation is of degreen2f 1); the singular lines then define
a congruence of order and clazs (m— 1).

I will, incidentally, connect this with the definitiasf a very important surface for the
theory of complexes. Each of the two-fold infinitiysongular lines is associated with a
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singular point and a singular plane. There is, thesuréace of singular points and a
surface of singular planeslhese two surfaces are now identical and define a subset of
the focal surface that is enveloped by congruence of the singular*finesin the
following, | will refer to this surface as ttsngularity surfaceof the complex, as | have
already done occasionally.

One can now give complexes of a special type — they bdllcalled special
complexes in what follows — for which:

O

0x,

vanishes identically, on account @xzz 0, ¢ = 0, whose lines are all singular lines

then. | assert that these complexes, whose limeelep a surface, and thuthe
complexes that consist of the totality of tangeéata surface, are characterized by the

differential equatiort’):
2

0x,

It is now obvious that this condition is fulfilledrfall complexes whose lines envelop
a surface. Each line of such a complex has the cfesraf a singularity. The complex
curves — e.g., the ones that lie in the planes thahrgoigh them (the intersection curves
of these planes with the enveloping surface) — contadirté at a fixed point, etc.

In order to show the converse of the theorem, wdanglemma. Namely, lek) be
a line of the complex. Then, since:

2

0x,

(0@ 1 0x) is also a straight line. Moreover, since:
$=0 and thus 2xa§—¢ =0,
XH

it will intersect the lineX). For that reasonx(+ A 0¢ / 0x) is a pencil of straight lines:
viz., the pencil that was already discussed beforbeogpecial linear tangential complex
that belongs to the singular ling.( In the present case, this entire pencil of lineehgs
to the compley = 0.

The proof, which | hope to give more rigorously on aeotbhccasion, may be
obtained as follows: If, as we assumed:

%) It was this theorem that Pasch gave in his Hatiitachrift (“Zur Theorie der Komplexe, etc.,”
Giessen, 1870). In Plucker, one finds the correspondingetimefar complexes of second degree proved
by a more circuitous route (no. 318-320).

) [This theorem was also given for the first timetie treatise of Pasch that was cited above.]
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g\
> <2 =0,
0x,

then, by means af = 0, Y x = 0, one can, as one can show,'8et

a

o\ )
z(a%j =Mg +N>Y x.

One now defines:

¢[xg+/l%j
_ op pg  A° 0’p PP ¢
_¢(Xa)+AZ@%%+ﬁDZG46>%E§)SE§>§+m

The terms im° andA* vanish with no further restrictions wher= 0, fo, = 0. Forthe
other terms, one can prove it by a recurrence processhich one makes use of the

2
: , 0¢
iven representation fop | — | .
g p Z[ GXJ
The lines of the complex may then be arranged intdolly infinite pencil:
X+ A %
0x

The common intersection point of the lines of the paache associated singular point
for all of them, and the plane of the pencil is timgglar plane that is associated with all
of them. The three-fold infinitude of lines of the quex then correspond to only a two-
fold infinitude of singular points and a two-fold infinitude afgular planes. There is
then (as for general complexes) a surface of singulettgpand a surface of singular
planes. Now, it is easy to see that (as with gereraiplexes) these two surfaces are
identical and the lines of the complexes are the tdaagenthese surfaces. In fact, any
line of the complex must now contact the curve ofdbmplex in an arbitrary plane that
goes through it, as a singular line, at the associatguilampoints. The curve of the
complex that is contained in a plane is then the setgion curve of the plane with the
surface of singular points. The surface of singular pauitshen be enveloped by the
lines of the complex. In fact, the lines of the cdarghus envelop a surface: the surface
of singular points. One proves the same thing for thiasairof singular planes. The
surface of singular points and the surface of singular ptamethen identicaf).

'8 [The allowability of the Ansatz for algebraic comyss is obtained the argument that was developed
in the note: “Uber einen lineiengeometrischen Satat(®échr., 1872, Math. Ann., Bd. 22, and Abh. X of
this collection).]

% One can, as one might do for the moment here, défmeingularity surface of a complex as those

special complexes that circumscribe the complex, andotted $urface of a congruence as those special
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We now consider the congruence that is common to bngplexes:
¢=0, ¢=0.

A line of it has the coordinates In the vicinity of it, one can replace the two céexes
with a linear tangential complex to it:

Z[g%ﬂxajyaﬂ,

a

(24 -
Z{ax +)Ixaj y,= 0.

a

One can replace the given congruence in the vicinifx)aby the linear congruence that
is common to any two of these complex@ere is then a two-fold infinitude of linear
congruences that contact a given congruence in one of its(kpes

These linear congruences all have a ruled family mngon:

¢ 3 oy _ _
2o Ym0 25 =0 2y, =0

a

However, this divides into two pencils, since its ingati

j%TZ%ﬂ-¢

0x, 0%, 0%,

9 oy (ow)
Zaxfgz Z(%j v

¢ 7 > X

complexes that the congruence belong to. [The intr@imection between singularity surfaces and the
other structure that is present here with the corratipgrdifferential equations will perhaps become more
obvious when | mention the original concept that | wagsdduoly this line of reasoning. One starts with the

line coordinates that satisfy the identixf/ + xg + )(32 + xj+ pg= 0, sety = 1, and then eliminatgsfrom
the equation of the complex. Then, e.g., the partirdntial equation of the special complex will

become:
2 2 2 2
aj + aﬁ + aj + aj =0.
0% 0% 0X%3 0%

One sees the analogy with the developables that rencribed by the spherical circle in ordin&y.

The “pencil” of complexes corresponds to the generatotiseodevelopables (and thus the characteristics
of the partial differential equation), the union of thaifons of consecutive pencils of the intersection of
successive generators (the union of the positionsnsfemnitive characteristic strips). K.]
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vanishes, by means ¢f= 0, ¢ = 0, Zx§ = 0. The directrices of the two-fold infinitude

of tangent congruences then consist of two pencils tha the lie X) in common. Any
two lines that are taken from the two pencils are thies of a tangent congruence. In
these two pencils, one recognizes the tangent péhcibf the focal surface to the
congruence in whose contact points with the lings(?)

Among the lines of a congruence there will, in particub® ones for which the two
pencils — i.e., the two contact points with the fosalface — coincide. The line of the
congruence, which was previously a double tangent to thd facéace, generally
becomes a tangent with four-point contact. These bf#ise congruence are represented
by the condition that for them the sub-determinantshefforegoing invariants vanish,
which can, by means of the simplified form for thedatbe reduced to one condition:

s ol )

This equation, together with:
$=0, =0, fo,:o,

represents a line surface of the congruence that hagpdintr contact with the focal
surface. Ifg is of degreem and ¢ is of degreen then this surface will be of degree
dmnm+n—2).

Those lines of a congruenp®, n] that have four-point contact with the focal surface
generally define a line surface of degree:

dmn(m+n-2).

There will now be certain congruences — which shall ded:gpecialcongruences —
for which the present equation:

00 ) s (0u) (00 9w _
2(e) el5t) {zar gy -
is fulfilled identically, by means of:

$=0, =0, ) x2=0.

These have the peculiarity that all of their linestect the focal surface in coincident
points. They are the congruences whose lines are galrteingents to the focal surface

29 In the ordinary representation, one distinguishesities bf the two pencils that are perpendicular to
(x) and refers to them as tif@cal linesof the infinitely thin bundle of rays that run in thiginity of (x).
Any other line pair that is taken from the two penmlequivalent in the projective sense.
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21y 'in contrast to the general congruences whose linedaarele tangents to the focal

surface.
With this, probler(2) is then also formulatetf). If a line complexg = 0 is given
then one seeks those congruenges0, ¢ = 0 such that for the lines of the congruence:

2 2 2
0¢ oy ¢ ﬂ -
— — | - ) — =0
z(axaj DZL,,XJ [zc’m 0%,
In particular, if¢ = 0 is a special complex — i.e., a surface — then tjuat®n reduced to:

09 oY _
To

Finally one might be given three complexes:

$=0, =0, x=0.

2 Cf., Kummer, “Allgemeine Theorie der Strahlensystgr§e8 (Borchardt’s Journal, Bd. 57).

) Lie already endowed this problem with a similar formNamely, he found that under a
transformation that arises from introducing the linegsh&f complex as space elements, the differential
equation in question goes to an equation of second delgrearticular, he gave the equation:

pl:%ﬂx+q?9 \l1+p +q R/ (%‘1) -1

(Bericht der Akademie zu Christiana, 1870, December). & would like to apply point coordinates
instead of line coordinates then one would be led to @apdifferential equation that is, on first glance,
very different. If one has, by the use of thecoordinates, the equation of the complex:

#(pw) =0

then, when one confers fixed valuextthe equation:

P% V=YX =0

represents the cone of the complex that emanates lfreoint §). Problem (2) now consists of finding
those surfaceg(x) = O that will contact the cone of the complex in questibeach of their points. If one
then expresses the condition that the plane:

oy oy az// az//
A [Vl Dy2 Dy Dy 0
contacts the cone:

U% Y=Y %) =0

then one has the differential equation of the probléng is of degreen then the differential quotiengy /
ox will generally be of degrem (m— 1).
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They have a common line surface. betlfe a line on it. It has the following tangential
complex relative t@, ¢, x-

0X,,

Z(%HXH Y, =0,
Z[ﬂﬂlxg Y, =0,

0X,,

Z(a—)”vxa y,=0.

0X,,

Any three complexes from these three families haweramon hyperboloid that contacts
the rectilinear surface that is common to the threermgcomplexes atx]. There is a
three-fold infinitude of such contacting hyperboloidall have two coinciding lines in

common, namely,xj and the neighboring generators, which are the commes of the
four complexes:

995 - Wy - Ny = -
Zax,), Y. =0, zaxa Y. =0, Zax Y. =0, 2% Y =0

a

The invariant of the line-pairs that are common te¢hsomplexes:

09 3¢ Iy <« ¢ Px
Z[GTJ zaxaig&, ZMES)& ¢
oy 0¢ 6402 oy ox
Sodt Yor) TiEer v

. 0X, X, X, 0%
oy 09 oy Py Al
Zaxa nga za&, ES);, z(mgj X

¢ 7 X > %

then vanishes.

For particular lines of the line surface all of thé-sleterminants of this invariant will
also vanish. They are the so-calsdgulargenerators of the line surface that intersect it
consecutively. For their determination, one obtains:
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09 <« 09 P <09 Ax
Z[gj Zaxazgx, zax,mg&
e sftef g
radt vy v(x)

When ¢, ¢, x are of degreen, n, p, resp., this equation is of degreen2t n + p — 3).
One then obtains the theoreffhe line surface that is common to three complexes of
degree m, n, p, resp., has:

Amngm+n+p-23)

singular generators, in gener&).

There is now &pecialline surface whose lines are all singular generatoses. ~they
intersect consecutively: These are teelopables. They are characterized by the fact
that for them, by means @f= 0, ¢= 0, y = 0, the present equation is fulfilled identically.
Thus if ¢ and ¢ are given and one regarg@sas unknown thethis equation represents
the differential equation for the developables of the congrueneeO, ¢ = 0, y = 0,
which was problem (3). It will be linear, in particularheng =0, ¢=0, y=0is a
special congruence.

We will determine the enveloping curves of the congrueht&o complexes that are
associated with the same singularity surface in a stwiedifferent way, namely, we
express the lines of the congruence by two parameterhangtesent the condition for
two neighboring lines of the congruence to intersect.thtb end, the condition may be
given here under which the two neighboring lingsand & + dx) intersect, at all. In
order for two linesX) and §) to intersect, one must have:

Zxaya =0.

However, ify, = X, + dX, then this equation is satisfied identically, becausg thas line
coordinates, are linked with the equatidny? = 0, which, sinced x: = 0, leads to

> x,dx, = 0. If we now sey, = X, + dxs + d*4 then we have, sinc®_ y2 = 0:

D x,dx,=0, D (2%, d%x, + d)= 0.
On the other hand, the condition for the intersedvecomes:

D x,d?x, =0

%) The same number was derived in a somewhat different byay iiroth: “Zur Theorie der

windschiefen Flachen” (Borchardt’s Journal, Bd. 67, 1867).
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and by means of the last equation this reduces to:
S d¢ =0.

This is the condition for the intersection of two consecutive timaswill be applied
in what follows™).

§3.

Elliptical coordinates for the deter mination of straight lines %).

Deter mination of various enveloping cur ves.

I will now introduce, in place of the homogeneous lwerdinatesq, ..., Xs that we
have been using up to now, and which are coupled by the equitiondition:

> x¢=0,

four mutually independent, inhomogeneous coordindiesl,, A3, A4 . They will be
defined in the following way:

In an earlier paper [Math. Ann., Bd. 2 (see Abh Ilta$ tcollection)], | showed that
the complexes of second degree with a common singusaniface can be represented by
a parameterin the following way:

2 2 2

0 :L+L+...+L,
k-1 k-4 k, -/

wherexy, X2, ..., X are coordinates of the type that was just consideredhelgeneral
case in which this canonical form applies, the common Engusurface is a Kummer
surface of fourth degree with 16 nodes.

When one sets theequal to the coordinates of a straight line, one canaansider
the present equation as an equationfforit is of fourth degree, since the powBrthat
appears by multiplication has the vanishing fagor®. The four roots of the equation
shall be calledi;, A, 43, A4 ; these are the ones that will be employed as cooedirait
the line from now on.These four coordinates then give the value of the paramdtar
those four complexes of the system that are associated with tie djuestion.

As one sees this coordinate determination is analogotletgeneral Jacobi method
for elliptical coordinates. In the Jacobi method, bas only one equation, and indeed an
inhomogeneous one, of the foffix

%y Lie employed the following condition for the intersentiaf two consecutive lines (or the contact of
two consecutive spheres):

@ +dy? +dZ + (dH)?= 0.
Cf., a note in the Goéttinger Nachrichten, 1871, no. Not [included in the present collection,
because it included the developments of the text.]

% For Jacobi, the parametgiis given another sign, which does not, however, seermtaiyeous.

2 5)
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n+l X2 nz-f»]_ )
=0 x, =0
’ Ny .
a=1 ka - A a=1

This generaf’) type of elliptical coordinates was first mentioned by tpax ) and
were developed by him in a recent treaff§e He referred to them as the first derivation
of the ordinary elliptical coordinates, insofar aswes led to the first derivation by a
single application of a process by which he could dexiveew orthogonal system from
any orthogonal system. When applied to the systemoofocal surfaces of second
degree, this process yields the Darboux-Moutard orthogeystem of the surface of
fourth degree that includes the imaginary circle, andnne coordinates refer to this
system. (Cf., on this, the aforementioned treaisg,as well.)

We will next express the previous coordinatgdy the new oned, . To that end,
f(1) might refer to the expression:

f(1) = (ke = A) (k2= A) ... (ke = A).
One then has, as is well-known, the relations:

1 kK Ko Ko K Ko
2 o) 2 o) 2 f'(k )‘O’z f'(k,) 0.2 t'(k,) 2 f'(ka)‘O

a a a a

As a result, theyxare given by the following equation:

(k, =A) (K, =A)(K, —A)(k =4,
f'(k,) '

2
pxa_

In fact, one convinces oneself that, as a resul@equations that exist betwegk) and
nothing more, these values of satisfy the equatio x>= 0, as well as the four

complex equations that correspond to the valies,, A3, A4 of A.

2y One can refer to these coordinates arere general since they yield the ordinary elliptical
coordinates when twr, coincide. This would correspond to a degeneracy of thenkamsurface into a
surface with double lines; i.e., into a surface of a Pluckmplex.

%) Comptes rendus, t. 69, 1869, 2. “Sur une nouvelle sdeisystémes orthogonaux algébriques.”

%) Comptes rendus, t. 73, 1871, 2. “Des courbes tranéems surface et dont la sphére osculatrice est

tangente en chaque point a la surface.”
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We might remark incidentally how the main elementstlee given system of
complexes will be represented by the paramétand the Kummer surface that is linked
with it *9).

If one sets two of thd parameters — sayz andA, — equal to each other then one has
a tangent to the Kummer surface. If one consideendA, to be constant, whild; = A4
runs through all values then one obtains the pencill thradents that contact the surface
at a point. A; and A, then characterize the contact point; one can regard #gm
coordinates of the points on the surfde The two pencils that are composed of the
tangents at two pointsl{, A2) and (4;,A,) are then, corresponding g = A4, uniquely-

and therefore, projectively related to each other.

If one sets the three parameters equal to each dteerane obtains the principal
tangents of the surface.

If one takes the four parameters to be pair-wise eqaal dhe has the lines that fill
up the 16 double planes of the surface and the ones thatggh the 16 double points.

Finally, the assumption that all of the parameteesemual to each other yields the
tangents of the contacting conic sections that lishéen16 double planes, as well as the
generators of the cone that contacts the 16 nodes.

One obtains the lines that belong to a certain comple¢he system when one sets
one of the parameters — say,— equal to thel in question. If one takes two parameters
— say,A; and A, — to be constant then one gets the lines of the congeudhrat are
common to the two complexas= A3 andA = A4. Thus, if one likewise hais = Asthen
one gets thaeingular linesof the complexed = A3 = A,. Therefore, the tangents in any
pencil of tangents to the Kummer surface that arecagso with the compleX = A3 =
A4 as singular lines will be determined through the valdes & A4. If A3 = A4 =k, then
the singular lines areouble tangentto the Kummer surface, namely, the ones that
belong to the linear (fundamental) compiex= 0 that is found among the complexes of
the system. — If three parameters are constant —-Asayls , A4 — then one obtains the
generators of the line surfaces that are common tthtee complexed = A,, A = A3, 1
=A4. Thus, ifA; = A3 = Asthen on gets the singular lines of the complexA; = A3 = A4
that osculate the Kummer surface. When the commbare &t A, = A3 = A4 is equal to
ks, they are then lines with four-point contact. Indesten one endows with the
values 1, ..., 6, one obtains all of the lines of the Kumsueface that have four-point
contact, except for the ones that are tangent to dhe& section of contact in the 16
double planed?. — Finally, the assumption that all parameters arsstant yields the 32
straight lines that are common to the compleXes A1, 4 = A2, A = A3, 4 = A4
Therefore, ifA; = A, = A3 = A4 then one has the 32 distinguished singular lines of the
complexA = A1 = A, = A3 = A4 that are tangents to the conic section of contathen
double planes (generators of the contact cone in the dpaoiples, resp.).

We would now like to substitute the new coordinatgsl,, As, A4 in the equation:

%) For the proof, see the paper: “Zur Theorie der Kompx,” Math. Annalen, Bd. 2 (1870). [See
Abh. II of this collection.]

1 As shall be shown, the curvés= p, A, = gare the principal tangent curves to the Kummer sarfa

3 Cf., the paper of Lie and myself: “Uber die Hauptangdateren der Kummerschen Flache.”
Monasberichte der Berliner Akademie, 1870, Decembere fB&. VI of this collection.]
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S dx =0,
which expresses the fact that two consecutive linessgte One finds:

0 = dA2 E(Al_AZ)(Al_AS)(Al_AA)
' f(A)
+dA2 d/]z —A)(A,=1,)1A,-4)
’ f(4,)
+dA2 d/]s —A,)A;=A)(A;=1)
’ f(4)
+dA2 d/h -A)A,-1)A,- 1)
) f(A) '

This differential equation will now be integratedhwno further assumptions.

It especially arises for the congruences of any t@mplexes of the given system.
Namely, if one setds; and A, equal to constants thehls, dA, will be equal to zero, the
factor (A1 — A2) will drop away, andone will obtain the differential equation of the
enveloping curve of the congruence in the form:

d/]l\/(/]l_/lg)(/]l_/h) =+ d/lz\/(/]z_/]s)(/]z_/h) .
f(A) f(4,)

If one setsd; = A4 in this equation then one h#se enveloping curves of those double
tangents to the Kummer surface that belong to the complex0x As is known, these
double tangents define a general congruence ohdemaler and second class; Problem 3
is then solved for these congruences.

If one setsl = Ay, A3 = A4 in the present differential equation then it vl satisfied
identically. The congruencd = A;, A3 = A4 is then one in which all lines intersect all of
their neighbors. In fact, as we already remarkieel equationgd; = A,, A3 = Asrepresent
the lines that either lie in a double plane of khenmer surface or go through a double
point. Their totality defines a congruence of ordad class 16 that generally has the
required property.

Finally, letA; = A3 = A4 . The present differential equation will then be:

dA; =0, then A; =const.

These are the principal tangent curves of the Kummer surfdoesords: The principal

tangent curves of the Kummer surface will, in aage; be defined by the points of the
surface at which the second principal tangent lgsldo a certain complex of the system
as a singular line. They are then the curves déi6 that were considered in no. 18 of
the earlier paper: “Zur Theorie, etc.” (Math. Arewal Bd. 2 [see Abh. Il of this

collection]). The fact that the principal tangesurves of the Kummer surface are
algebraic curves of first order was first discokeby Lie when he was studying his map
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from line geometry to sphere geometry that takes prin¢graent curves to curvature
curves. Thus, | remarked that there is an identitywéen the principal tangent curves
and the curve systems that | had previously examined aadrdeéd in connection with
the singularities themselvéd). | then found the analytical prod?) that is presented
here, and finally realized® that it subsumed the entire process of determining the
principal tangent curves by means of the associated crnypider a general, line-
geometric theorem that corresponded to Dupin’s theoremetfic geometry. The latter
is thoroughly presented in the previous paper, in which l$® shown how it
encompasses the determination of the principal tangenesofithe Kummer surface. —
Let it be remarked that the six principal tangent cutdes k, are the curves of four-
point contact with the Kummer surface.

§4.
Determination of theintegral surfacesfor the general complex of second degree.

The introduction of new variablel, A», A3, A4 into the differential equation:

S de=0

0= appdATAAAIAA)
()

yields:

The partial differential equation that charactesit@e special complexes:

S

will then be converted, by known methods, into:

opY F(A) og f(4,) .
oA, (/] —A)A=A)A=A) \04,) (A,-A)A -A)A 7~A)

Now, it is, however, knowr’) that a differential equation like the present adenits
a complete solution (with three arbitrary constantish no further assumptions, namely:

N R R I SN A T J& -2, -b)
$=[dA +[d4, Vo[,
JT) JIL) JT)

w

Monatsberichte der Berl. Akademie, 1870, Decembere Fbh. VI of this collection.]
Gottinger Nachrichten, 1871, no. 1. [Not included in thikection.]

Gottinger Nachrichten, 1871, no. 3. [See Abh. VII of tiakection.]

Cf., Jacobi’sVorlesungen Uber Dynamik

w

w

w
NSNS N
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\/(/]4 -a)(4,—-b) +C
JEA,)

+[da,

If we leta, b, C take on the sequence of all possible values thvens the equation:
¢=0

represents a three-fold infinitude of special camps — viz., a three-fold infinitude of
surfaces. Any complex that is included in the gehsolution — i.e., any complex whose
lines envelop a surface — will then, as the envetpstructure, include a two-fold
infinitude of these surfaces.

| now assert thathe surfacep = 0 with the constants a, b, C is the common integral
of the two complexes = a and A = b *); i.e., that the one system of principal tangent
curves of the surface belongs to the complex a, while the other one belongs to the
complex A= b, or, what amounts to the same thing, that theasarthas a special
congruence in common with the compléx a, as well as the complek= b.

In order to prove this, one only has to show timat differential equation of the
special congruences:

EHEREOE

0x, 0Xx, 0Xx, 0%,

Sufficiency comes about when one takes one ofuHaces that were found here in place

2
of ¢ and perhapsi —a) or (A4 —b), in place of. Z(%j vanishes, however, since

a

@ is a special complex. All that remains is:

Zaxa% 0

or, upon introduction of thé coordinates:

0w, )
6/11 6/11 (/]1_/]2)(/]1_/]3)(/]1_/]4)

3"y The fact that two complexes of the system have alsitinfinitude of common integral surfaces
defines the starting point for the corresponding argurokLie.
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However, gf : 6;[/ : gjla vanish, since eitheg = A, —a or ¢ = A4 — b depends only

1 a 2 3

uponA,. On the other handa¢ = V@, -a)d, )

04, JEA)
aorA,=b. The differential equation of the special congues will thus be sufficiently
resolved, in general.

The value of the constatin the equation fop does not come into consideration at
all then, so it remains arbitrary. We then hawe ttheoremAny two complexes = a, A
= b of the family that is associated with the Kumisaface have a simple infinitude of
common integral surfaces.

If one letsb vary, in addition taC, then one obtains a two-fold infinitude of intelgra
surfaces of the complek= a, and therefore a complete solution of the padiéérential
equation that is linked with the complex. The gahsolution encompasses all surfaces
that are the enveloping structure to a simple inftde of surfaces from the doubly
infinite family thus determined. With that, problen®) is disposed of for the general
complex of second degree.

The integral surfaces that are found, which araraon to the complexets=a andA
= b, have a remarkable relationship with the envelpgimes of the congruenceé=a, A
= b that was determined in the previous paragraphs.

[In fact, the equation of the individual integsurfaces when we také; to be a
constant equal ta and A, = b reduces to the differential equation of the afastioned
enveloping curve. The relation that then existsvben the integral surface and the focal
surface of the congruende = a, A4 = b remains to be developed more rigorod&)y]

From the meaning of the singularity surface ok, moreover, that the integral
surface must contact it everywhere it meets thgusamity surface. The cone of the
complexa or b that emanates from a point of the singularityacefthen degenerates to a
point-pair whose intersection — the associatedusamgline — contacts the singularity
surface. The integral surface can contact therdrgée cone nowhere else, except where
it contacts the singular line. The integral suefaben contacts the two associated
singular lines of the complexes and b at each of its points in which it meets the
singularity surface; i.e., it contacts the singtyesurface itself.

We obtain the singular lines of the complexethat belong with the points of the
contact curve when we sdt = A, = a in the equation for the integral surface. What

remains is:
I «/()l a)()l b) I \/()l (4,-b c=0
Jf( JEA,) '

This equation, together withy = A4, = a, determines the singular lines in question. @n th
other hand, since, from the previous paragraphsand A, can be regarded as the

, which vanishes when one sdts=

%) [The more precise details on this, which were origyndiscussed in Math. Ann., Bd. 5, no longer
apply here, due to the objection that was raised by As YfoMath. Ann., Bd. 9, pp. 134-135. This state of

affairs warrant further investigation. K]
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coordinates of a point on the singularity surface, weesam use it as the equation of the
contact curve. We then have the theorem:

The integral surface contacts the singularity surface along a curve ségmese
equation is the aforementioned one.

The singularity surface then corresponds teirmyular solutionof the differential
equation that is linked with the complex, in that setisd it will contact all of the
integral surfaces of the complex along a curve.

Finally, we might make the following remark: If we git=a in the equation for an
integral surface of the complexthen one comes to the representation of the assdcia
special congruence that relates to the comglex

[arJAAED | () J—A0D ¢y D o
Vi) % V)

Now, the integrals that arise here are hyperetlipties that correspond po= 3. This
indicates an inverse problem to the aforementiewdation. To that end, we write it in

the form:
J’d/] \/(Al_a)(Al_b) + =
A

and link it with two similarly constructed equatgrwhose integrals are obtained from
the foregoing by differentiation with respect te tharametera, b:

2, -b

A —aQ[f(A)

[dA, At L
A, -ba/T(A)

These equations then serve to expressithé,, A3, and furthermore, the, ..., Xs of the
lines of the complex, in terms of tlhev, w, and since, is connected with thé by an
equation of the symmetric form:

JdA + .=V

=W

2 _ (K, =A)(Kk, =A)(K, —A)(k —1,)
pxa - '
f (%)
they essentially express tkeas hyperelliptic functions of the v, w.
The coordinates x of the lines of a line complex of second degree #uen
represented by six-fold periodic hyperelliptic ftions of three parameters u, v, w, on the
basis of a second complex.



IX. Differential equations of line geometry. 24

It was already stressed repeatedly that the orthdgyséem that is defined for
surfaces of fourth order with imaginary double circlegesponds to the system of line
complexes of second degree with a common singularitgseirfOne disregards how one
has a theorem for these surfaces, and similarlyHeset complexes, that says thia
coordinates of the points of a surface of orthogonal system may be répcess four-
fold periodic hyperelliptic functions of two parameter®arboux gave this theorem
without proof in the Comptes rendus (t. 68, 1869, 1: “Mémaireuse classe de courbes
et de surfaces”); he especially emphasized that it nfigtitapplications to the general
surfaces of third order, since three of the surfacabebrthogonal system are general
surfaces of third degree. A similar theorem is obvipurle for the corresponding
structure in arbitrarily many dimensions.

One will then be led to a second inverse problem betphmtion for the enveloping
curve of the singular lines:

'[d/]l(/]l_ a) '[ 2(/] C=0,

JTA) ﬂ/f()l

since for them, as well, the number of summed integtaincides with the of the
hyperelliptic functions that appear. To that end, we set

'[d/]l(/]l_a) '[ 2(/] —

ul
NAEON) Vi)
and add a similar equation:

'[ d/]l(/]l _ b) '[ 2(/]
N JE)

These define two families of curves that run in the dargy surface that is common to
all of the complexes: the enveloping curves of the $andines of the complexes = a
andA =b. When we replaca andv with linear combinations of those parameters, we
can takea and b to be equal to two of the six quantitigg, in particular. The
aforementioned equations then define two families of epuslocurves that the six
double tangent systems of the surface possBs&dative to two such systems of curves,
the coordinates of the points of the Kummer surface are then reprdsnfeur-fold
periodic hyperelliptic functions.

For special line complexes of second degree, the hyipéiefunctions that appear in
the aforementioned inverse problem naturally simplifyr iRstance, if the, are pair-
wise equal then they will be logarithms. The complethén converted into the known
complex whose lines intersect a fixed tetrahedron wahstant double ratios. The
singularity surface is degenerate in this tetrahedrdn. fact, the common integral
surfaces of two complexes that belong to the statedhexron are represented by an
equation in the logarithms of the coordinates, namely, byearl equation in them.
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These are the same surfaces that Lie and myself pedril) in the form of W
surfaces”, and whose analogues in the plane we recamt$ydered in a common treatise
in these Annalef?).

Gottingen, in November 1871.

%9 Comptes rendus. 1870, 1. “Sur une certaine classeudesesoet de surfaces.” [See Abh. XXV of
this collection.] The conception of theésurfaces as the common integral surfaces of twoeotdmplexes
associated with the stated tetrahedron is due to Lie.

% “Uber diejenigen ebenen Kurven, etc.” Math. Ann., Bd.187). [See Abh. XXVI of this
collection.]



