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XXXIIl. On the differential laws for the conservation of
impulse and energy in Einstein’s theory of gravitaion.

[Nachrichten der Kgl. Gesellschaft der Wissenschafte@o6ttingen. Mathematisch-
physikalische Klasse. (1918). Presented at the sessib® duly 1918.%]

By F. Klein

Translated by D. H. Delphenich

Upon resuming the investigations that | presented to thentffic Society on 25
January of this yeaf) | have succeeded in deriving the various forms for tfierdntial
laws of the conservation of impulse and energy thaeweesented by various autho?s (
for Einstein’stheory of gravitation from a unified viewpoint, and indsmng, if | am not
mistaken, | have achieved an essentially improved ihgngd their meaning and mutual
relationships. As one will see, in the presentationftiilows, | actually do not need to
make any more calculations, but only to make reasonsigl@f the elementary formulas
of the classical calculus of variations.

For the sake of brevity, | will refer to my previous tHchere, and also use its
notations. As the actual basis for the present ady&icea then say that | am no longer
subjecting the infinitesimal transformation:

(1) ' =p’

that was used there to the restriction that it musistiaon the boundary of the integration
domain in a suitable way (namely, along with its firstl Zecond derivatives with respect
to thew). In that way, the integrals in question will take @uidary components whose
closer examination will produce everything that followsr the specific purpose that we

() The manuscript first took on its final form in midgBember of that year.

() See the final issue of the year’s volumes for 1917 efeNachrichten: “Zu Hilbert’s erster Note
Uber die Grundlagen der Physik.” [Abh. XXXI of this colien.]

() The main papers binsteinto consider are the combined articles of 1916: “Die Giagen der
allgemeinen Relativitatsteorie” (Leipzig) and the comination to the Berlin Academy “Hamiltonsche
Prinzip and allgemeine Relativitatsteorie” (Sitzungslro 26 October 1916), Wilbert, the previously-
cited Note (Gottinger Nachrichten of 20 November 1915}, drentz the four articles that he published on
the basis of his lectures from March to June in 1916&@iMerslag der Amsterdamer Akademie — viz.,
“over Einsteins theorie der zwaartekracht.” In patic, see Art. Il from April (September, resp.) 1916
and Art. IV from October (May, resp.) 1917. Here, | shal&b cite the booRaum-Zeit-MaterigBerlin
1918) byWeylthat appeared recently, to which | shall refer later [ddeyl’'sbook is already into its third
edition; in this article, it will always be the firstlition that is cited.]
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have in mind here, it then suffices to consider only fitet of the two previously-
considered integrals, namely:

(2) = [[[ [K dw.

The consideration of this integral conveniently separatesich a way that | shall first
regardK as any function of onlg*”, g, s 9, and then as an invariant under arbitrary
transformations of the world-parametevgwhich is likewise still not determined more
precisely), and then, in conclusion, as an invariattt eidefinite structure to it.

If I apply, for example, (1) to (2) then a serieslferential relations will arise thag
must satisfy identically. | will now turn to physics by longer restricting myself to the
case of the free, electromagnetic field, as | did presly, but assume that one has an
arbitrary “material” field. If one combinddilbert’s Ansatz with that oEinsteinthen, as
is known, one can write the associated ten field @oustof gravitation in the simple
form ()(%):

3) Kuw—kTuw=0,

in which we understan#,, to mean theLagrangianderivative with respect to thg"
that belongs td1, divided by\/E , while T,, means the energy components of matter.
The transition to the various forms of the consgoralaws is then obtained simply from

the principle that one substitutes any arbitracyT,, for K, in the identities that are
derived from K.

8§ 1.
Infinitesimal transformation of the g*.

In order to give the reader as much help as necessuaiil, first discuss the short
intermediate calculations that determine #g" that corresponds to the infinitesimal
transformation (1) of thev.

Instead of (1), | next write:

W =w +

(") See, e.g.Herglotz in the Sachsischen Berichten 1916, pp. 402, formula (16). tHe sake of
precision, | then remark that the constanfwhich | called —a in my previous Note in connection with
Hilbert) will have the value that | employed there, namely:

k=1.8T10% cm g%,

only when the basids’ agrees in dimensions and signs withdireof the special theory of relativity:
2
a7 =af -STYHE g
() [Here and in what follows, the signs®f,, T, T, T7, t7, t7 were inverted during reprinting in

order to come into agreement with the usual notatiomghysics. For exampld@,, will then be positive.
K.]
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(in which the “auxiliary vectorp and its differential quotients,, p, are to be computed,
moreover, in such a way that one can neglect atidesf order higher than linear). We
will then have:

dw’ =dw'+ ) pfdw .
Now, by definition, they”" are cogredient to the produchs’ dw’. One will then get:

gv(W) =g’ W+ D g W+ g (Wi
However:

g (W =g” W+ g’ (Wop .

Now, it was the differencg”’ (W) — §*(W) that | calleddy”” in my previous Note
and which | will now follow Hilbert's Note and derdyy . One will then have:

(4) H=p=3(g" P -9l -d ).

Furthermore, the differential quotients of (i€ with respect to thev will be denoted by
Py, P, as inHilbert.
| shall also notate the values that fffétake on in the case of constaitwhich will
be considered especially later on [where | willtemp™ (p*, resp.)]:
0 0

(5) p = > g p

In this case, it is then as if tik€" are previously-given fixed functions of thefa scalar]
(that do not undergo a substitution that is induogdhe respective transformation of the
W).

§ 2.

Calculation of the d1 under the sole assumption thakK is a function
of the g™, g5*, g4 . —A main theorem.

That means th& does not depend upon theexplicitly. We will then have for our
infinitesimal transformation (which affects the daegent variables in the integia) as
well as the independent ones):

I e R k ak e

g™ > 09, p
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+[[[VoK(p dw dW di +--+ B dw dw dw);

dSis written in place oflw dw' dw'" dw", while the triple integral is extended over the
boundary of the integration domainlgfin a well-known vectorial way?).

Here, we will now address the differential quotsem.” (p,,, resp.) that appear

under the four-fold integral using the older Lagyarprocedure by partially integrating
once, (twice, resp.), and then replacip§ with its value (4) and eliminating the
differential quotientsp; and p/ that then arise by a fourth partial integratiofte thus

find that:
o a=fiff 3 {ﬁ 5K, zz"’f%} g s
+[[[Vo(e'dw ot W +-+& div dv dw),
into which the following abbreviations have beetnaduced:
1. K, is theLagrangianderivative that was already used in (3), divided\@ :

"
0 0g,’
(8) K,uv:_ g K_z J +z

g’ L oW ~" W oW

2. K7 are the following linear combinations of tKg, :
(9) K = 2 K.9".
U

3. Foro=1, 2, 3, 4£° are the five-term expressions that | write, frdm putset
(when | especially emphasize the terms that origimath the fourth partial integration):

(10) E=n"+2YKIp.

Here, one will then have:

() [Itis an essential difference, and at the same tan advance over my previous Note, that here, | am
H i P (N v i i i
assuming nothing about the behavior of phe"”, P, , p,, on the boundary of the domain of integration.
K.]
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a(aﬁKj
K 5 OK 09,5 o

Togy T Zogn " Jg o ow

(11) n°=Kp’-

From now on, the four-fold integral that appears | tlew expression (7) fadl4,
after dropping the minus sign, shall be catleel integral A

Moreover, we will convert the triple integral thgipears in (7) into aecondfour-
fold integral by an elementary divergence map:

(12) Hﬂ{%“ 06V9Wf jds’

which will be calledthe integral B Thus:
(13) d,=—-A+B.

Here, the following important remark suggests fistdat A= B when the pare
chosen to be constant, and thus, equabf6.
0

In fact, the original value (6) odl; will then vanish identicallysince K does not
contain the w explicitiywhen one employs the values of th€" that were given in (5).
0

However, due to the completely arbitrary nature ofdheice of integration domain,

we conclude from the fact that= B that the integrands @& andB must also agree. We
will then have:

o N
a4 Z{f IR j b =25
04 agn o
\/_0 +226\/EKT pT

T LT ow LT aw B

This identity shall be called the main theorem, @ower.
Naturally, we can drop the terms i’ on both sides. We would then like to write

down then’ as functions of the" as follows:
0 0

(15) /Z”:ZZU;’ 0pr.

(We have inserted the 2 into the right-hand sideéhisf because later on, it will become
necessary to divide by 2.) Therefore (with the afstne usual notation that’ is equal to

1 or 0, according to whether= ror o#7, resp.), one will have:
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However, the main theorem assumes the following form:
0y gu;’
(17) ZJ_ 9K, g~ =2 J_ , forr=1,2, 3, 4.

The expressions on the left-hand side are then tnanefl into elementary divergences.

8§ 3.
Simplified notation for the formulas. — An extension of tle main theorem.

In the previous paragraph, | chose the notation in suaray that it would seem
suitable for the later invariant-theoretic evaluatjoasd corresponded to the older
custom, moreover. In the meantime, much can be alabeeviby usingEinstein’s
suggestions:

1. One can already save some work, when one replee@soduct ot\/E with any
guantity that is denoted by upper-case Latin symbols withctineesponding German
notation. Thus, one replacé@K with &, \/EK,,V with R,y , \/EK;’ with R7,

\/Eu;’ with 47. (In the sense of this abbreviation, we will write @elementary
divergenceas follows:
oB' 8" 8" oY

(18) w Tow Taw Tow T PW

From now on, th&s', ..., 8" shall depend upon only tig&", g in such a way that our
Div will become a special case of the functigthat we have considered up to now.)

2. Furthermore, the summation symbols in the summationbe omitted when one
remarks that one always sums over those indicesfipsar twice (once above and once
below).

3. Finally, on the same grounds, the summation sighi @¢an also be dropped.

We shall make use of the abbreviations thus introduced proless as it seems
appropriate. For example, formulas (17) can then ligewras:
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oue

19 R gl=2 :

In connection with this, | can think of a noteworthy gaheation of the formulas
(17) [(19), resp.].

The Lagrangian derivatives will vanish identically for the divergencé3iq) that
were just introduced in a well-known way:

(20) Div,, = 0.

If we then replace th&,, in (19) with theLagrangianderivatives of a functio®’ that is
connected te® by an equation:
(21) R =R +Div

then the left-hand side of (19) will remain unchanged, whitewa function 77 will
appear in place ofl] on the right-hand side. We will then have:

o4

22 K g'=2 :

Formula (19) is then generalized in a remarkable wagNaturally, the 47 differ

from the 47 for a fixed 7 by only a term whose elementary diverge@eaav vanishes

identically.)

§ 4.
Invariant-theoretic viewpoint.

In the spirit of the general theory of relativitye will now assume thaf is invariant
under the group of all transformations of the(which we must naturally think of as
having been “extended” by adding the corresponding conversfaheg").

Whendwis an invariant to begin with, the same thing willthee of the integral, .

K.w seems to be a contragradient tensor; the compl&& quantitiesK is a mixed
tensor.

We would further like to introduce some notations (whenthink of the auxiliary
vectorp as always being transformed in the same way agvth€).

When we now writé\ as:

() [One will see the fact tha and/;” are cogredient vectors most simply when one comphsis t
expressions [formulas (10) and (11)] with formulas (8), &8y (14) inHilbert’s first communication on
the foundations of physic€. cit). K.]
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the system of quantities that is multiplied fywill appear to be a contragedient vector.
(In the sense of my previous Note, it is the “vectatiaérgence” of the tensdf,,).
We get a corresponding invariant fr@n

(24)

1 0Jg&”
\/Ezaw”’

we will refer to it as the “scalar divergence” (again the sense of my previous Note) of
the vectore (that is constructed with the help of the vegpr
The two components of (24), viz.:

Jor (fK” )

x |

(25)

1 26
are no less invariants in their own right.
However, how do things work for th&”, which were derived under the assumption

of constant p(= p)?
0

Constantp’ no longer remain constant under arbitrary tramsédions of thew, but
only under the “affine” transformations:

W=a’W +--+g O + .
One naturally thinks of thg”" are being transformed correspondingly (thus, liyea
with coefficient coefficients). It always happethst the individuab®” are functions of
thew”.
We can then say that:

U’ is a mixed tensor of the affine group, thus-exteind

This does not alter the fact that from our equmti@l4), (17), and the notation (23),

the expression:
o(J oy +K? ))

oI

(26)
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which is independent of th&, will be a contragredient vector of theneralgroup.
This is a very remarkable state of affairs, and it beéllfundamental to what we shall
do later.

If one then takes an§ , instead ofz, from (21), and adds the assumption thatBhe
., B" that appear in (18) should be equal to the componentsveétar W, ..., W"

(multiplied by\/E) of the affine group:

(27) B7=.[gW

then the same state of affairs as in (26) will be fou¢he general expressions:

(f(u +K° )).

(28)

J—Z

8§ 5.
Identities that our K satisfies, as an invariant of the general group.

We shall now pursue the thougBince K is an invariant of our general group, it will
follow that for arbitrary values of the'p

(29) d,= 5[] [Kdw=0.

(Conversely, when the relation (29) is true for arbjtgr |1, and thereford, will be an
invariant of the general group. All finite transformatoof thew’ will then be composed
of infinitesimal ow’ = p".)

We then obtain a large number of differential reladi that the invariar (which is
not at all specialized) must satisfy identically frdm formulas of 8§ 2, 3.

1. Asin my previous Note, with no loss of generalitg, take thep’ to be such that
the vector &, and therefore the associated boundary integral, dropsasusuch.
Obviously, this is associated with the fact tipat p**, and p,” vanish along the

boundary; i.e., the annulment pf p*, and p,”. Thus, according to (13), one will then

getA = 0; i.e., with for an arbitrary domain of integratiand an arbitrary assumption on
the p’ in the interior of the domain. According to (23), wanclude thathe vectorial
divergence of the tensor,Kmust be zero identicallyin a formula:

Jo5K, o +2y WK
N

(30) (p" =0 (forr=1, 2, 3, 4).
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These are the identities (12) of my previous Noteltgaall now calthe A identities
One must be clear: Since one is dealing with a vedter]éft-hand side of (30), when
exhibited for an arbitrary coordinate system, will be eqgtealwell-known linear
combinations of its original values. The vanishing of tilamsformed expressions will
then say nothing else but the vanishing of the origixaidession.

2. As a result of the identities (30), the integkalvill drop away forarbitrary p’.
According to (13), (29), the integrBlwill also always vanish. We again argue that the
domain of integration and the vectpt can be chosen entirely arbitrarily. It will then
follow that the integrand oB — i.e., the scalar divergence of the vedor must be
identically zero.

1 za g&
Jg = ow

or, what amounts to the same thing:

(31)

01

1 zaﬁ(ﬂ”ﬂz K? p')
9 oW

(31) =0.

Due to the arbitrariness iof, very many individual equations are containedhiis t
one formula (31) or (3L One considers the terms that arise fromK?/p’ by

differentiation, and argues thaf is constructed from terms that contain & ( p**,

respectively) linearly, while the’ itself are linear in thep and their differential
quotients with respect to the. However, thes’ in (31) [(31), resp.] will be
differentiated with respect to thw’ once more. We conclude that the left-hand side of
(31) and (31 are homogeneous, linear in theand their second and third differential
guotients with respect t@. Since these can all be taken to be independesatah other,

we will have:

4(1+ 4+£5+ 45[6} =140
12 1P,

equations, in all; I will call them thi identities
This suggests that these 140 equations can lsfidds at least, schematically. | will
not contradict the notation that was introducedvabio (15) when | write:

(32) n°=2(3u7p +3 U7 g+ U7 i, )

(All indices that appear twice are summed overdickes that are not separated by a
comma can be permuted, but not the ones thatTdres, there are 16 (1 + 4 + 10) = 240

U quantities.) When | drop the preceding factoQaS(/E and again writél for \/EU :
equation (31 will now be decomposed as follows:

1. 4 equations that correspond to termg’in



Klein. — On the differential laws for the conservatidrinapulse and energy. 11

(33) > (U, +/ ) =0.
2. 16 equations that corresponding to the terms,in

(34) UT+RI+D U =0.

3. 40 equations that correspond to the termglin:

(35) UTT +UTT+D YT =0,
4. 80 equations that belong to the termgjp,. :
(36) UZTT + 4777+ 47 = Q.

| have not examined the dependencies that might exist between thesedLglid@hs.
Moreover, we can now immediately reach the follmywconclusions:

a) TheA identities [= (30)] and thB identities [= (33), (34), (35), (36)] collectively
yield thesufficientconditions for a functioik of g, g, , 9,, to be an invariant of our

general group.

b) However, due to the main theorem of § 2, the lefdhsides of (33), when
multiplied by 2/./ g , are directly identical to the left-hand side of (30).

c) Therefore, only thB are the sufficient conditions for the invarianceof

d) However, that is not true for only tlhe EquationsA will also exist then when
one replace& with K =K + Div, and more generally, whedis a function such that it
always gets increased by a divergence for arbitrargfmemations of thev.

e) Therefore, th8 identities are not generally derivable from fh&lentities.
However, with hindsight of the physical conclusions eéadbveloped, thA belong in

the first row for us. Therefore, from the foregoiomge might once more imagine that
there are three forms that they can assume:
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Aidentities 2 Zaﬁg z K, ¢ =0,

79

(37) A identiies =Y 2R M) g qorr=123.4
Jg ow’
S 2 «O(RI+UP)
identities =0,
A X ow

In this, as would seem preferable, moreover, | revweys emphasized only the terms
that contain theR? , and have once more added numerical factors fathte same four
vector components will always be the left-hand side

8 6.
Transition to the conservation laws.

What | had to say just now in pursuit of the sys#c train of thought regarding the
special type of construction of the invaridfit as it is based in the modern theory of
gravitation, is so closely linked witkinstein’sown relevant investigations that | prefer to
move it to the following paragraphs, and what fatohere will be the principal transition
to the differential laws of conservation of impuksed energy and an oversight into the
different forms in which these laws appear in thterdture. The ten gravitational
equations for the material field that we will desith in each case will be especially
simple in our notation, as | already pointed outhia introduction under (3). Here, | will
likewise replace the Latin symbols with German ozied then have:

(38) Ruw—KZuw=0.

Naturally, | can also write the 16 equations:

(39) R -k%7 =0

in place of theseAll that we have to do now is to replace the valuesof (R;, resp.)
that follow from this in the identities that are posed for the ilavarK. Things are so
simple that | can summarize and explain the resultstable.

| begin with the identitied, to A, (37):

1. It follows from theA, , after dividing by2« /,/ g , that:

0%’
(40) zaw” 22 g’ =0.
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These are the conservation laws for the energy coemis of the material field in the
form that is found everywhere in the literature.

2. Naturally, | can also write (and this is true, teegan extent):

0T’ 1
41 L+—>» R g =0.
(1 z ow 2« wr

3. If I refer to theAz then this will be completely equivalent to:

a(z;f +1Llfj
K
(42) > v = 0.

This is the essence of the conservation lawsltbegntzpresented in Part Il of his
series of articles that was cited in the introdugtict.,ibid., pp. 482, formula (79). [The
direct identification is somewhat long-winded, ifesoas Lorentz did not initially
associate thel, with the &**, but with thedy,,. However, one cannot doubt the
agreement, since he started with the same infimtdstransformationdw’ = p’ (with
constanp’) in order to achieve his goal that led us toAhéentities Bl.

4. Finally, according to tha,, the same relations can also be written:

1

6(2‘%11?’)
(43) Y s =0,

One has to specialize the (formula (21)), and in connection with that, thé”, only as
would be expedient in order to obtain the well-knd#nsteinformulas:

(44) z% -0

The details will be revealed in the following pamgghs. In any event, one already
understands here that the left-hand sides offihsteinrelations, when multiplied by
\/E, likewise represent vector components, like tiienand sided of (41), (42), which
agree with them precisely. | bring this up onlgdse this state of affairs does not seem
to be clearly understood, in all respects.

We now return to the original summary (31),"{3if theB identities:

() [In fact, Vermeillater verified the identity of both kinds of results bgedt calculation. K.]



Klein. — On the differential laws for the conservatidrinapulse and energy. 14

aJa(n7+2> Kep
fz 6\/\/" fz A ow’ )

=0.

If we replace theK; with the values«T/ that follow from the gravitational equations of
the field then a new vector will enter in place lué vectors’, which might be called”:

(45) e7=n"+2) TP

| maintain thatthis new vector is precisely the one that Hilbert referreththis Note —
while restricting to the electromagnetic case — as the energyorvésuch that
conservation laws fddilbert are summarized in the one equation:

(46)

1 za gé& -0.)
Jo & o
In order to prove this, | remark that:

a) As far as the part in (45) that originates frdma “matter,” and thus, the term
ZKZT,” p’, is concerned, it will agree with the given onehano further assumptions

when |, leaning uporilbert, set x equal to 1, after an associated conversion of the
notation thatHilbert made in formula (19) of his Note, and in the tlesos that were
connected with it.

b) As far as the “gravitational part” of thg” is concerned, some time ago,
Freedericksalready calculated the next non-obvious term fer whichHilbert (loc. cit.)
gave in formulas (8), (9), and (14), and thus camerecisely the expression that |

introduced in (11) ag’ ().
Now, formula (46) initially appears to be quitdfelient from formulas (42), (43),

even when | remove the factdk/\/E. However, the proper relationship will become

entirely clear when | separate (46) into 4 + 160++430 equations according the schema
(33) to (36).
The first four equations will read:
(47) DU, +KT) =
and thus agree with equations (42).
The following 16 equations will read:

(48) UT+KTT+Y U7 =0.

() [Obviously,Hilbert has chosen his initially very complicated-appearingesgmtation o’ in order
to allow the vector character of that quantity to emémga the outset. K.]
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This is only a special notation for the field equations (88) from (34),U7 +> U7 is

identical to—R? .

The still-remaining 40 + 80 equations, however, agree \ghidentities (35), (36)
with no further analysis; they have nothing at alleowith the material field that we are
considering here.

Basically, Hilbert's claim (46) then reduces to the conservation laws (4R}hat
come about are known equations, anyway. The staterasrthl advantage that it not
only asserts something that is simple in an invariantréteovay in itself, but also that
the quantitie®’ that appear in it can be briefly characterized by saying:a cogredient
vector that contains the auxiliary vectof, put depends upon the,T, the K,,, and their
differential quotients, moreover.

As one sees, what was said explicitly in the foregggaragraph on the different
forms of the conservations laws extends what was sgpdein number§ to 8 of my
previous Note in only an indeterminate way.

87.
Details of Einstein’s formulation of the energy theorems.

| now have to add how one must specialize the quathtityl denoted bk in order
to come tcEinstein’sfinal formula:
(T +t7)
44 ——— 1 =0,
(44) > S

and also say a few things about the simplificationithttius achieved.

| would thus do best to refer tRinstein’s aforementioned presentation in the
Sitzungsberichten der Berliner Akademie on October 1916., Einsteinstarted from
the fact that the invariad€ (which he calleds) contains the second differential quotient
of theg”” only linearly, and multiplied by functions of tig¢” themselves. One can then

eliminate the stated differential quotients from thesgnéll, = H“Kda) by partial

integration, so:
(49) K =G + Div,

in which G is a function of only the first differential quotient$n particular,Einstein
gaveG’ the value 9):

(50) G =Y gv{rore,-raorol,

Hp~ vo Hw po
Hvpo

(*% [Here and in what follows, the signs @f and®” were altered during reprinting, corresponding to
the situation that was considered sufficiently in th& printing that, in agreement wittinstein one takes
the sign ofds’ in the manner that was described in footndtel page 569 of that treatigeinstein’s G
will then be identical witlHilbert’s K. K.]
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in which, we understand™?, to mean the so-called symbol of the second Kityd (

ng ag . ag agv
51 -re, = oy T2 S
1) w Z 2 (aw’ oW ow

This G is obviously invariant under affine transformations of the w.
Einstein’sremaining final formulas will now follow with no furéln analysis from our

earlier Ansatzen when we set:

(52) K =G, so R =6.

In order to understand things completely, we must only set
k=1
afterwards.

One must actually deal with only two points:

a) From (21), we have:
(53) Ruw=6,.

However, since®” contains only first-order differential quotients of f&, Qifw can be
formally represented more simply th&p, :

iaﬁmj
06" 09’
(54) &), = 20" -> 5 Wj .

As such, forEinstein the &"

v

(formula (17) of his article). One must say that a spgmioperty of thegk,, will be

in fact, appear in place of tk®,, in the field equations

O
v

differential quotients of thg”" of order higher than two,.

made visibly prominent upon introducing th®& namely, that they include no

b) Moreover, from (16), (22), we have only the follogvisimple formulas for the
U

T

O
(59 w7 = %[655:’ —Zaigf”j-

Thesed:” are actually shorter than then the genet@l but the result of the divergence
map:

() Cf., the details of the intermediate calculationgp. 110, 191 ofVeyl’sbook.
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oy
zaw”

is once more the same. Thus, the reduction of thewuias also only makes the
simplification more clearly intuitive, which the finatesult that comes under
consideration for us will possess anyway as a restitteofvay thak was constructed.

The 47 that are defined by55), when divided byk, are now, with no further
analysis, Einstein’g; :

(56) lyw =
K

In fact, Einsteingave precisely the same value for Kisthat is found in the right-hand

side of (55) in formula (20) of his treatise — on theida$ an entirely different set of
calculations — when he togk= 1.

If we correspondingly substitute th¢ for the iu? in (43) then we will obtain
K

equations (44). Q. E. D.

I wish to add a small supplement to these developmettss well-known that
Einstein in his “Kosmologische Betrachtungen zur allgemeinertRétitstheorie” 1),
made a suggestion that one should modify the fundameegithlefjuations of gravitation
in such a way that — in our notation — one would write:

(57) K/IV _A g/jv - KT/[V = 0,

instead of (3), in which we understahdo mean a constant. Since:

0
) \/E = =3 O,

g
we can also write (57) as:
(58) K, —&kTuw=0, or also K?-«T?=0,
where:
(59) K =K + 2.

All of the assumptions that we used in paragraght 5 as the basis for the
construction of the identities for K are now tre this K. For example, we can then

(*3 Sitzungsberichte der Berliner Akademie of 8 February 1917.
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write down the identities (37) fé¢, in which we only have to replace th& with the
U, which, according to (16), one will have:

(60) U7 =U° +15°.

As before, we thus also come to the same conserviatizs) perhaps corresponding to

formula (42):
0 (Tj’ L1 ﬁfj
K
(61) Z oF =0,

in which we might now alter th&l? by setting:

(62) K" = K +Div,

in place ofK . In particular, we would like to taki" to be:

(63) G"=G +2), e, & =¢"+21g,
according to our most recent developments. If we whée:

— 1(= o®"
64 7= —| &7 - wol
(64) ; ZK[ - Zaggvgrj

while we include (55), (56), then we will now have:

(65) 3 % - 0.

This corresponds to the statement fhisisteinmade in his most recent publicatidf) (

(** Sitzungsberichte der Berliner Akademie on May 1918, pp. 456.
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§ 8.
Concluding remarks.

The relationships that have been given so far in thel@@wents in the papers that |
cited of Einstein Hilbert, Lorentz and Weyl are individually much narrower in scope
than what would emerge from a mere comparison of tha fesults. Many formulas
that occurred to me in my subsequent research ardoaisd there, but not in the unified
train of thought that | adhered to. It is very intaregtto pursue that in detail. My
developments are, in fact, closest to thoseaséntz who nonetheless restricted himself
to infinitesimal transformationgw’ = p’ for which p* was independent of. Einstein
considered thosp’ that corresponded to affine transformation of wheand Weyl (as |
myself did in my previous Note) considerg@d that were arbitrary, moreover, but
vanished on the boundary of the domain of integratiorsinitable way ).

I must also not fail to thankiéther once more for her helpful participation in my
recent papers, as she worked out the mathematical tickgalsemployed while adapting
to the physical way of posing the integrain general, and those ideas will, in turn, be
presented in a Note that will be published in the nextege NachrichtertY).

(*Y As | published in an essay “Zur Gravitationstheoriedl.(B4 of the Annalen der Physik) that was
inserted before my Note, but was first published by. him

() [I presentedNéther's main theorems to the Gesellschaft der Wissenschaefte26 July. The Note
itself appeared later on in the Géttinger Nachrichten 1918, 235-257, under the title “Invariante
Variationsprobleme.” —

The foregoing “main theorem” that was presented in § 2 special case of the following, far-reaching
theorem oNOther which was proved in the cited place:

“If an integrall is invariant under &, (i.e., a continuous group with essential parameters) then there
will be plinearly-independent combinations of thaegrangianexpressions that become divergences.”

However, as far as the assertionHibert that was contained in XXXI (see pps. 561 and 565 of the
previous article) is concerned, in particular, accordindNéther, its exact formulation will give the
following:

“If an integrall admits the displacement group then the energy relatidhbagome improper if and
only if | is invariant under an infinite group that containsdtsplacement group as a subgroup.”

Moreover, the theorem dfilbert (XXXI, resp.) that four relations exist between thadiequations of
the theory of relativity also gets generalized\dther His theorem then reads:

“If the integrall is invariant under a group wiiharbitrary functions in which these functions appear up
to their derivatives of orderthen there will exisp identity relations between thegrangianexpressions
and their derivatives up to order’

K]



