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 Upon resuming the investigations that I presented to the Scientific Society on 25 
January of this year (2), I have succeeded in deriving the various forms for the differential 
laws of the conservation of impulse and energy that were presented by various authors (3) 
for Einstein’s theory of gravitation from a unified viewpoint, and in so doing, if I am not 
mistaken, I have achieved an essentially improved insight into their meaning and mutual 
relationships.  As one will see, in the presentation that follows, I actually do not need to 
make any more calculations, but only to make reasonable use of the elementary formulas 
of the classical calculus of variations. 
 For the sake of brevity, I will refer to my previous Note here, and also use its 
notations.  As the actual basis for the present advance, I can then say that I am no longer 
subjecting the infinitesimal transformation: 
 
(1)      δwτ = pτ 
 
that was used there to the restriction that it must vanish on the boundary of the integration 
domain in a suitable way (namely, along with its first and second derivatives with respect 
to the w).  In that way, the integrals in question will take on boundary components whose 
closer examination will produce everything that follows.  For the specific purpose that we 

                                                
 (1) The manuscript first took on its final form in mid-September of that year.  
 (2)  See the final issue of the year’s volumes for 1917 of these Nachrichten: “Zu Hilbert’s erster Note 
über die Grundlagen der Physik.”  [Abh. XXXI of this collection.] 
 (3)  The main papers by Einstein to consider are the combined articles of 1916: “Die Grundlagen der 
allgemeinen Relativitätsteorie” (Leipzig) and the communication to the Berlin Academy “Hamiltonsche 
Prinzip and allgemeine Relativitätsteorie” (Sitzungsbericht of 26 October 1916), by Hilbert, the previously-
cited Note (Göttinger Nachrichten of 20 November 1915), by Lorentz, the four articles that he published on 
the basis of his lectures from March to June in 1916 at the Verslag der Amsterdamer Akademie – viz., 
“over Einsteins theorie der zwaartekracht.”  In particular, see Art. III from April (September, resp.) 1916 
and Art. IV from October (May, resp.) 1917.  Here, I should also cite the book Raum-Zeit-Materie (Berlin 
1918) by Weyl that appeared recently, to which I shall refer later on.  [Weyl’s book is already into its third 
edition; in this article, it will always be the first edition that is cited.] 
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have in mind here, it then suffices to consider only the first of the two previously-
considered integrals, namely: 

(2)      I1 = K dω∫∫∫ ∫ . 

 
The consideration of this integral conveniently separates in such a way that I shall first 
regard K as any function of only gµν, gµν

ρ , gµν
ρσ , and then as an invariant under arbitrary 

transformations of the world-parameters w (which is likewise still not determined more 
precisely), and then, in conclusion, as an invariant with a definite structure to it. 
 If I apply, for example, (1) to (2) then a series of differential relations will arise that K 
must satisfy identically.  I will now turn to physics by no longer restricting myself to the 
case of the free, electromagnetic field, as I did previously, but assume that one has an 
arbitrary “material” field.  If one combines Hilbert’s Ansatz with that of Einstein then, as 
is known, one can write the associated ten field equations of gravitation in the simple 
form (4)(5): 
(3)      Kµν – κ Tµν = 0, 
 
in which we understand Kµν to mean the Lagrangian derivative with respect to the gµν 

that belongs to I1, divided by g , while Tµν  means the energy components of matter.  

The transition to the various forms of the conservation laws is then obtained simply from 
the principle that one substitutes any arbitrary κ Tµν for Kµν  in the identities that are 
derived from K. 
 
 

§ 1. 
 

Infinitesimal transformation of the gµν. 
 

 In order to give the reader as much help as necessary, I will first discuss the short 
intermediate calculations that determine the δgµν that corresponds to the infinitesimal 
transformation (1) of the w. 
 Instead of (1), I next write: 

wµ  = wµ + pµ 

                                                
 (4) See, e.g., Herglotz in the Sächsischen Berichten 1916, pp. 402, formula (16).  For the sake of 
precision, I then remark that the constant κ (which I called – α in my previous Note in connection with 
Hilbert) will have the value that I employed there, namely: 
 

κ = 1.87⋅⋅⋅⋅ 10−27 cm g−1, 
 
only when the basic ds2 agrees in dimensions and signs with the dτ2 of the special theory of relativity: 
 

dτ2 = dt2  −
2 2 2

2

dx dy dz

c
+ +

 ~ s2. 

 (5) [Here and in what follows, the signs of Tµν , Tµν , T
σ

τ , σ
τT , tσ

τ , σ
τt  were inverted during reprinting in 

order to come into agreement with the usual notations in physics.  For example, T44 will then be positive. 
K.] 
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(in which the “auxiliary vector” p and its differential quotients pρ , pρ′ are to be computed, 
moreover, in such a way that one can neglect all terms of order higher than linear).  We 
will then have: 

dwµ  = dwµ + p dwµ τ
τ∑ . 

 
Now, by definition, the gµν are cogredient to the products dwµ dwν.  One will then get: 
 

( )g wµν  = gµν (w) + ( ) ( )g w p g w pµτ ν ντ µ
τ τ+∑ ∑ . 

However: 
( )g wµν  = ( ) ( )g w g w pµν µν τ

τ+ ⋅∑ . 

 
 Now, it was the difference ( )g wµν  − ( )g wµν  that I called δgµν in my previous Note 

and which I will now follow Hilbert’s Note and denote by pµν.  One will then have: 
 
(4)    δgµν = pµν = ( )g p g p g pµν τ µτ ν ντ µ

τ τ τ
τ

− −∑ . 

 
 Furthermore, the differential quotients of the pµν with respect to the w will be denoted by 
pµν

ρ , pµν
ρσ  as in Hilbert. 

 I shall also notate the values that the pµν take on in the case of constant pτ, which will 
be considered especially later on [where I will write 

0
pµν  (

0
pτ , resp.)]: 

 

(5)      
0
pµν  = 

0
g pµν τ

τ
τ
∑ . 

 
In this case, it is then as if the gµν are previously-given fixed functions of the w [a scalar] 
(that do not undergo a substitution that is induced by the respective transformation of the 
w). 
 

§ 2. 
 

Calculation of the δI1 under the sole assumption that K is a function 
of the gµν, gµν

ρ , gµν
ρσ . – A main theorem. 

 
 That means that K does not depend upon the w explicitly.  We will then have for our 
infinitesimal transformation (which affects the dependent variables in the integral I1, as 
well as the independent ones): 
 

(6)   δI1 = − 
g K g K g K

p p p dS
g g g

µν µν µν
ρ ρσµν µν µν

µν ρ ρρ ρσ

 ∂ ∂ ∂
+ +  ∂ ∂ ∂ 

∑ ∑ ∑∫∫∫ ∫  
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    + ( )I II III IV IV I II IIIg K p dw dw dw p dw dw dw+ +∫∫∫ ⋯ ; 

 
dS is written in place of dwI dwII dwIII  dwIV, while the triple integral is extended over the 
boundary of the integration domain of I1 in a well-known vectorial way (6). 
 Here, we will now address the differential quotients pµν

ρ  ( pµν
ρσ , resp.) that appear 

under the four-fold integral using the older Lagrange procedure by partially integrating 
once, (twice, resp.), and then replacing pµν with its value (4) and eliminating the 
differential quotients pν

τ  and pµ
τ  that then arise by a fourth partial integration.  We thus 

find that: 

(7)   δI1 = − 2
g K

g K g p dS
w

σ
µν ττ

µν τ σ
τ µν σ

 ∂
+ ⋅  ∂ 

∑ ∑ ∑∫∫∫ ∫  

    + ( )I II III IV IV I II IIIg dw dw dw dw dw dwε ε+ +∫∫∫ ⋯ , 

 
into which the following abbreviations have been introduced: 
 

 1. Kµν is the Lagrangian derivative that was already used in (3), divided by g : 

 

(8)   Kµν = − :

g K g K

g gg K
g

g w w w

µν µν
ρ ρσ

µν ρ ρ σ
ρ ρ

    ∂ ∂
∂ ∂       ∂ ∂∂    − + ∂ ∂ ∂ ∂ 

 
 

∑ ∑ . 

 
  2. Kσ

τ  are the following linear combinations of the Kµν : 

 
(9)      Kσ

τ  = K gµσ
µτ

µ
∑ . 

 
 3. For σ = 1, 2, 3, 4, εσ are the five-term expressions that I write, from the outset 
(when I especially emphasize the terms that originate with the fourth partial integration): 
 
(10)     εσ = ησ + 2 K pσ τ

τ
τ
∑ . 

 Here, one will then have:  
 

                                                
 (6) [It is an essential difference, and at the same time, an advance over my previous Note, that here, I am 

assuming nothing about the behavior of the pτ, pµν, pµν
ρ , pµν

ρσ  on the boundary of the domain of integration. 

K.] 
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(11)  ησ = K pσ − 1

g K

gK K
p p p

g g wg

µν
ρσµν µν µν

ρµν µν ρ
µν µνσ ρσ

 ∂
∂   ∂∂ ∂  − +

∂ ∂ ∂∑ ∑ . 

 
  From now on, the four-fold integral that appears in the new expression (7) for δI1, 
after dropping the minus sign, shall be called the integral A. 
 Moreover, we will convert the triple integral that appears in (7) into a second four-
fold integral by an elementary divergence map: 
 

(12)    
I IV

I IV

g g
dS

w w

ε ε ∂ ∂
+ +  ∂ ∂ 

∫∫∫ ∫ ⋯ , 

 
which will be called the integral B.  Thus: 
 
(13)     δI1 = − A + B. 
 
 Here, the following important remark suggests itself, that A ≡ B when the pτ are 

chosen to be constant, and thus, equal to 
0
pµν . 

 In fact, the original value (6) of δI1 will then vanish identically, since K does not 

contain the w explicitly, when one employs the values of the 
0
pµν  that were given in (5). 

 However, due to the completely arbitrary nature of the choice of integration domain, 
we conclude from the fact that A ≡ B that the integrands of A and B must also agree.  We 
will then have: 

(14)  
0

2
g K

g K g p
w

σ
τµν τ

µν τ σ
τ µν σ

 ∂
+  ∂ 

∑ ∑ ∑  ≡ 0
g

w

σ

σ
σ

ε∂

∂∑  

≡ 0

0
2

g g K
p

w w

σ
σ

ττ
σ σ

σ σ

η∂ ∂
+

∂ ∂∑ ∑ . 

 
This identity shall be called the main theorem, moreover. 
 Naturally, we can drop the terms in Kσ

τ  on both sides.  We would then like to write 

down the 
0

ση  as functions of the 
0
pτ  as follows: 

 

(15)     
0

ση = 2 
0

U pτσ
τ∑ . 

 
(We have inserted the 2 into the right-hand side of this, because later on, it will become 
necessary to divide by 2.)  Therefore (with the use of the usual notation that στδ is equal to 

1 or 0, according to whether σ = τ or σ ≠τ, resp.), one will have: 
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(16)  2U σ
τ  = 

1

g K

gK K
K g g g

g g wg

µν
σσσ µν µν µν

τ τ ρτ τµν µν ρ
µν µνρσ σσ

δ

 ∂
∂   ∂∂ ∂  − − +

∂ ∂ ∂∑ ∑ . 

 
However, the main theorem assumes the following form: 
 

(17)   g K gµν
µν τ

µν
∑  ≡ 2 

g U

w

σ
τ

σ
σ

∂
∂∑ ,  for τ = 1, 2, 3, 4. 

 
The expressions on the left-hand side are then transformed into elementary divergences. 
 
 

§ 3. 
 

Simplified notation for the formulas.  – An extension of the main theorem. 
 

 In the previous paragraph, I chose the notation in such a way that it would seem 
suitable for the later invariant-theoretic evaluations, and corresponded to the older 
custom, moreover.  In the meantime, much can be abbreviated by using Einstein’s 
suggestions: 
 

 1. One can already save some work, when one replaces the product of g  with any 

quantity that is denoted by upper-case Latin symbols with the corresponding German 

notation.  Thus, one replacesg K with K, g Kµν with Kµν , g Kσ
τ  with σ

τK , 

g Uσ
τ  with σ

τU .  (In the sense of this abbreviation, we will write an elementary 

divergence as follows: 

(18)    
I II III IV

I II III IVw w w w

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂
B B B B

 = Div. 

 
From now on, the BI, …, BIV shall depend upon only the gµν, gµν

ρ  in such a way that our 

Div will become a special case of the functions K that we have considered up to now.) 

 
 2. Furthermore, the summation symbols in the summation can be omitted when one 
remarks that one always sums over those indices that appear twice (once above and once 
below). 
 
 3. Finally, on the same grounds, the summation sign itself can also be dropped. 
 
 We shall make use of the abbreviations thus introduced more or less as it seems 
appropriate.  For example, formulas (17) can then be written as: 
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(19)     Kµν gµν
τ ≡ 2 

w

σ
τ
σ

∂
∂
U

. 

 
 In connection with this, I can think of a noteworthy generalization of the formulas 
(17) [(19), resp.]. 
 The Lagrangian derivatives will vanish identically for the divergences (Div) that 

were just introduced in a well-known way: 
 
(20)     Divµν ≡ 0. 

 
If we then replace the Kµν in (19) with the Lagrangian derivatives of a function K* that is 

connected to K by an equation: 

(21)     K
* = K + Div 

 
then the left-hand side of (19) will remain unchanged, while a new function σ

τ
∗
U  will 

appear in place of σ
τU  on the right-hand side.  We will then have: 

 

(22)     Kµν gµν
τ ≡ 2 

w

σ
τ
σ

∗∂
∂
U

. 

 
 Formula (19) is then generalized in a remarkable way.  (Naturally, the σ

τ
∗
U  differ 

from the σ
τU  for a fixed τ by only a term whose elementary divergence 

wσ
∂

∂∑  vanishes 

identically.) 
 
 

§ 4. 
 

Invariant-theoretic viewpoint.  
 

 In the spirit of the general theory of relativity, we will now assume that K is invariant 
under the group of all transformations of the w (which we must naturally think of as 
having been “extended” by adding the corresponding conversions of the gµν). 
 When dω is an invariant to begin with, the same thing will be true of the integral I1 . 
 Kµν seems to be a contragradient tensor; the complex of 16 quantities Kσ

τ  is a mixed 

tensor. 
 We would further like to introduce some notations (when we think of the auxiliary 
vector p as always being transformed in the same way as the dw) (7). 
 When we now write A as: 
                                                
 (7) [One will see the fact that εσ and ησ are cogredient vectors most simply when one compares their 
expressions [formulas (10) and (11)] with formulas (8), (9), and (14) in Hilbert’s first communication on 
the foundations of physics (loc. cit.). K.] 
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(23)  A = 
22

g K
g K g

v p
g

σ
µν τ

µν τ
τ

 ∂
+ 

∂ ⋅
 
 
 

∑ ∑
∑∫∫∫ ∫ dω, 

 
 
the system of quantities that is multiplied by pτ will appear to be a contragedient vector. 
(In the sense of my previous Note, it is the “vectorial divergence” of the tensor Kµν). 
 We get a corresponding invariant from B: 
 

(24)     
1 g

wg

σ

σ

ε∂
∂∑ ; 

 
we will refer to it as the “scalar divergence” (again,  in the sense of my previous Note) of 
the vector εεεε (that is constructed with the help of the vector p). 
 The two components of (24), viz.: 
 

(25)   
1 g

wg

σ

σ

η∂
∂∑  and 

( )1 g K

wg

σ τ
τ

σ

ε∂

∂∑ , 

 
are no less invariants in their own right. 
 However, how do things work for the U σ

τ , which were derived under the assumption 

of constant pτ (= 
0
pτ )? 

 Constant pτ no longer remain constant under arbitrary transformations of the w, but 
only under the “affine” transformations: 
 

wρ  = 1 4
I IVa w a w cρ ρ ρ⋅ + + ⋅ +⋯ . 

 
One naturally thinks of the gµν are being transformed correspondingly (thus, linearly, 
with coefficient coefficients).  It always happens that the individual gµν are functions of 
the wρ. 
 We can then say that: 
 
 U σ

τ  is a mixed tensor of the affine group, thus-extended. 

 
 This does not alter the fact that from our equations (14), (17), and the notation (23), 
the expression: 

(26)     
( )( )2 g U K

wg

σ σ
τ τ

σ

∂ +

∂∑ , 
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which is independent of the pτ, will be a contragredient vector of the general group. 
 This is a very remarkable state of affairs, and it will be fundamental to what we shall 
do later. 
 If one then takes any K*, instead of K, from (21), and adds the assumption that the B

I, 

…, BIV that appear in (18) should be equal to the components of a vector WI, …, WIV 

(multiplied by g ) of the affine group: 

 

(27)     B
σ = g Wσ 

 
then the same state of affairs as in (26) will be true for the general expressions: 
 

(28)    
( )( )2 g U K

wg

σ σ
τ τ

σ

•∂ +

∂∑ . 

 
 

§ 5. 
 

Identities that our K satisfies, as an invariant of the general group. 
 

 We shall now pursue the thought: Since K is an invariant of our general group, it will 
follow that for arbitrary values of the pτ : 
 

(29)    δI1 = K dδ ω∫∫∫ ∫ = 0. 

 
(Conversely, when the relation (29) is true for arbitrary pτ, I1, and therefore K, will be an 
invariant of the general group.  All finite transformations of the wτ will then be composed 
of infinitesimal δwτ = pτ.) 
 We then obtain a large number of differential relations that the invariant K (which is 
not at all specialized) must satisfy identically from the formulas of §§ 2, 3. 
 
 1. As in my previous Note, with no loss of generality, we take the pτ to be such that 
the vector εσ, and therefore the associated boundary integral, drops out, as such.  
Obviously, this is associated with the fact that pτ, pµν, and pµν

ρ  vanish along the 

boundary; i.e., the annulment of pτ, pµν, and pµν
ρ .  Thus, according to (13), one will then 

get A = 0; i.e., with for an arbitrary domain of integration and an arbitrary assumption on 
the pτ in the interior of the domain.  According to (23), we conclude that the vectorial 
divergence of the tensor Kµν must be zero identically.  In a formula: 
 

(30)  
22

g K
g K g

v p
g

σ
µν τ

µν τ
τ

∂
+

∂ ⋅
∑ ∑

 ≡ 0         (for τ = 1, 2, 3, 4). 
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 These are the identities (12) of my previous Note that I shall now call the A identities.  
One must be clear: Since one is dealing with a vector, the left-hand side of (30), when 
exhibited for an arbitrary coordinate system, will be equal to well-known linear 
combinations of its original values.  The vanishing of the transformed expressions will 
then say nothing else but the vanishing of the original expression. 
 
 2. As a result of the identities (30), the integral A will drop away for arbitrary pτ.  
According to (13), (29), the integral B will also always vanish.  We again argue that the 
domain of integration and the vector pτ can be chosen entirely arbitrarily.  It will then 
follow that the integrand of B – i.e., the scalar divergence of the vector εεεε – must be 
identically zero. 

(31)     
1 n

n

g

wg

ε∂
∂∑  ≡ 0, 

or, what amounts to the same thing: 
 

(31′)    
( )21 g K p

wg

σ σ τ
τ

σ

η∂ +
∂
∑

∑  ≡ 0. 

 
 Due to the arbitrariness in pτ, very many individual equations are contained in this 
one formula (31) or (31′).  One considers the terms that arise from K pσ τ

τ∑  by 

differentiation, and argues that ησ is constructed from terms that contain the pµν ( pµν
ρ , 

respectively) linearly, while the pµν itself are linear in the p and their differential 
quotients with respect to the w.  However, the ησ in (31) [(31′), resp.] will be 
differentiated with respect to the wσ once more.  We conclude that the left-hand side of 
(31) and (31′) are homogeneous, linear in the pτ and their second and third differential 
quotients with respect to w.  Since these can all be taken to be independent of each other, 
we will have: 

4 5 4 5 6
4 1 4

1 2 1 2 3

⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ 
 = 140 

 
equations, in all; I will call them the B identities. 
 This suggests that these 140 equations can be classified, at least, schematically.  I will 
not contradict the notation that was introduced above in (15) when I write: 
 

(32)   ησ = 2 ( ), ,U p U p U pσ τ σ σ τ σ σ σ τ
τ τ σ τ σ σ

′ ′ ′′
′ ′ ′′+ +∑ ∑ ∑  

 
(All indices that appear twice are summed over.  Indices that are not separated by a 
comma can be permuted, but not the ones that are.  Thus, there are 16 (1 + 4 + 10) = 240 

U quantities.)  When I drop the preceding factor of 2 / g  and again write U for g U , 

equation (31′) will now be decomposed as follows: 
 
 1. 4 equations that correspond to terms in pτ: 
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(33)    , ,
( )

σσ
τ σ τ σ

+∑ U K  ≡ 0. 

 
 2. 16 equations that corresponding to the terms in pτ

σ : 

 
(34)    ,

,
σ σ σ σ
τ τ τ σ

σ

′
′

′
+ +∑U K U ≡ 0. 

 
 3. 40 equations that correspond to the terms in pτ

σ σ′ ′′ : 

 
(35)    , , ,

,
σ σ σ σ σ σ σ
τ τ τ σ

σ

′ ′′ ′′ ′ ′ ′′+ +∑U U U ≡ 0. 

 
 4. 80 equations that belong to the terms in pτ

σσ σ′ ′′  : 

 
(36)    , ,σσ σ σ σ σ σ σσ

τ τ τ
′ ′′ ′ ′′ ′′ ′+ +U U U ≡ 0. 

 
I have not examined the dependencies that might exist between these 140 B equations. 
 Moreover, we can now immediately reach the following conclusions: 
 
 a) The A identities [= (30)] and the B identities [= (33), (34), (35), (36)] collectively 
yield the sufficient conditions for a function K of gµν, gµν

ρ , gµν
ρσ  to be an invariant of our 

general group. 
 
 b) However, due to the main theorem of § 2, the left-hand sides of (33), when 

multiplied by 2 / g , are directly identical to the left-hand side of (30). 

 
 c) Therefore, only the B are the sufficient conditions for the invariance of K. 
 
 d) However, that is not true for only the A.  Equations A will also exist then when 
one replaces K with K* = K + Div, and more generally, when K is a function such that it 
always gets increased by a divergence for arbitrary transformations of the w. 
 
 e) Therefore, the B identities are not generally derivable from the A identities. 
 
 However, with hindsight of the physical conclusions to be developed, the A belong in 
the first row for us.  Therefore, from the foregoing, one might once more imagine that 
there are three forms that they can assume: 
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(37)  

2
: 0,

( )2
: 0,

( )2
: 0,

A identities K g
wg

A identities
wg

A identities
wg

σ
µντ

µν τσ

σ σ
τ τ

β σ

σ σ
τ τ

γ σ

∗

 ∂ + ≡ ∂
 ∂ + ≡ ∂
 ∂ + ≡

∂

∑ ∑

∑

∑

K

K U

K U

 for τ = 1, 2, 3, 4. 

 
In this, as would seem preferable, moreover, I have always emphasized only the terms 
that contain the σ

τK , and have once more added numerical factors such that the same four 

vector components will always be the left-hand side. 
 
 

§ 6. 
 

Transition to the conservation laws. 
 

 What I had to say just now in pursuit of the systematic train of thought regarding the 
special type of construction of the invariant K, as it is based in the modern theory of 
gravitation, is so closely linked with Einstein’s own relevant investigations that I prefer to 
move it to the following paragraphs, and what follows here will be the principal transition 
to the differential laws of conservation of impulse and energy and an oversight into the 
different forms in which these laws appear in the literature.  The ten gravitational 
equations for the material field that we will deal with in each case will be especially 
simple in our notation, as I already pointed out in the introduction under (3).  Here, I will 
likewise replace the Latin symbols with German ones and then have: 
 
(38)     Kµν – κ Tµν = 0. 

 
Naturally, I can also write the 16 equations: 
 
(39)     σ σ

τ τκ−K T  = 0 

 
in place of these.  All that we have to do now is to replace the values of Kµν  (

σ
τK , resp.) 

that follow from this in the identities that are posed for the invariant K.  Things are so 
simple that I can summarize and explain the results in a table. 
 I begin with the identities Aα to Aγ (37): 
 

 1. It follows from the Aα , after dividing by 2 / gκ , that: 

 

(40)    
1

2
g

w

σ
µντ

µν τσ
∂ +
∂∑ ∑
T

T  = 0. 
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These are the conservation laws for the energy components of the material field in the 
form that is found everywhere in the literature. 
 
 2. Naturally, I can also write (and this is true, to a certain extent): 
  

(41)    
1

2
g

w

σ
µντ

µν τσ κ
∂ +
∂∑ ∑
T

K  = 0. 

 
 3. If I refer to the Aβ then this will be completely equivalent to: 
 

(42)    

1

w

σ σ
τ τ

σ
κ

 ∂ + 
 

∂∑
T U

 = 0. 

 
 This is the essence of the conservation laws that Lorentz presented in Part III of his 
series of articles that was cited in the introduction; cf., ibid., pp. 482, formula (79).  [The 
direct identification is somewhat long-winded, insofar as Lorentz did not initially 
associate the δI1 with the δgµν, but with the δgµν

 .  However, one cannot doubt the 
agreement, since he started with the same infinitesimal transformation δwτ = pτ (with 
constant pτ) in order to achieve his goal that led us to the Aβ identities (8)]. 
 
 4. Finally, according to the Aγ , the same relations can also be written: 
 

(43)    

1

w

σ σ
τ τ

σ
κ

∗ ∂ + 
 

∂∑
T U

 = 0. 

 
One has to specialize the K* (formula (21)), and in connection with that, the στ

∗
U , only as 

would be expedient in order to obtain the well-known Einstein formulas: 
 

(44)    
( )

w

σ σ
τ τ

σ

∂ +
∂∑
T t

 = 0. 

 
The details will be revealed in the following paragraphs.  In any event, one already 
understands here that the left-hand sides of the Einstein relations, when multiplied by 

g , likewise represent vector components, like the left-hand sided of (41), (42), which 

agree with them precisely.  I bring this up only because this state of affairs does not seem 
to be clearly understood, in all respects. 
 We now return to the original summary (31), (31′) of the B identities: 
 

                                                
 (8) [In fact, Vermeil later verified the identity of both kinds of results by direct calculation. K.] 
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( )21 1 g K pg

w wg g

σ σ τσ
τ

σ σ

ηε ∂ +∂
 =

∂ ∂  

∑
∑ ∑  ≡ 0. 

 
If we replace the Kσ

τ with the values Tσ
τκ that follow from the gravitational equations of 

the field then a new vector will enter in place of the vector εσ, which might be called eσ: 
 
(45)     eσ = ησ + 2κ T pσ τ

τ∑ . 

 
I maintain that this new vector is precisely the one that Hilbert referred to in his Note – 
while restricting to the electromagnetic case – as the energy vector (such that 
conservation laws for Hilbert are summarized in the one equation: 
 

(46)     
1 g

wg

σ

σ

ε∂
∂∑ = 0. ) 

 
 In order to prove this, I remark that: 
 
 a) As far as the part in (45) that originates from the “matter,” and thus, the term 
2κ T pσ τ

τ∑ , is concerned, it will agree with the given one with no further assumptions 

when I, leaning upon Hilbert, set κ equal to 1, after an associated conversion of the 
notation that Hilbert made in formula (19) of his Note, and in the theorems that were 
connected with it. 
 
 b) As far as the “gravitational part” of the ησ is concerned, some time ago, 
Freedericks already calculated the next non-obvious term for me, which Hilbert (loc. cit.) 
gave in formulas (8), (9), and (14), and thus came to precisely the expression that I 
introduced in (11) as ησ (9). 
 Now, formula (46) initially appears to be quite different from formulas (42), (43), 

even when I remove the factor 2 / gκ .  However, the proper relationship will become 

entirely clear when I separate (46) into 4 + 16 + 40 + 80 equations according the schema 
(33) to (36). 
 The first four equations will read: 
(47)     , ,( )σ σ

τ σ τ σκ+∑ U T  = 0, 

and thus agree with equations (42). 
 The following 16 equations will read: 
 
(48)     ,

,
σ σ σ σ
τ τ τ σ

σ
κ ′

′
′

+ +∑U T U  = 0. 

 

                                                
 (9) [Obviously, Hilbert has chosen his initially very complicated-appearing representation of εσ in order 
to allow the vector character of that quantity to emerge from the outset. K.] 
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This is only a special notation for the field equations (39), so, from (34), ,
,

σ σ σ
τ τ σ

σ

′
′

′
+∑U U  is 

identical to − σ
τK . 

 The still-remaining 40 + 80 equations, however, agree with the identities (35), (36) 
with no further analysis; they have nothing at all to do with the material field that we are 
considering here. 
 Basically, Hilbert’s claim (46) then reduces to the conservation laws (42); all that 
come about are known equations, anyway.  The statement has the advantage that it not 
only asserts something that is simple in an invariant theoretic way in itself, but also that 
the quantities eσ that appear in it can be briefly characterized by saying: It is a cogredient 
vector that contains the auxiliary vector pτ, but depends upon the Tµν , the Kµν , and their 
differential quotients, moreover. 
 As one sees, what was said explicitly in the foregoing paragraph on the different 
forms of the conservations laws extends what was expressed in numbers 6 to 8 of my 
previous Note in only an indeterminate way. 
 
 

§ 7. 
 

Details of Einstein’s formulation of the energy theorems. 
 

 I now have to add how one must specialize the quantity that I denoted by K* in order 
to come to Einstein’s final formula: 

(44)     
( )

w

σ σ
τ τ

σ

∂ +
∂∑
T t

 = 0, 

 
and also say a few things about the simplification that is thus achieved. 
 I would thus do best to refer to Einstein’s aforementioned presentation in the 
Sitzungsberichten der Berliner Akademie on October 1916.  In it, Einstein started from 
the fact that the invariant K (which he called G) contains the second differential quotient 
of the gµν only linearly, and multiplied by functions of the gµν themselves.  One can then 

eliminate the stated differential quotients from the integral I1 = K dω∫∫∫ ∫  by partial 

integration, so: 
(49)     K = G* + Div, 
 
in which G* is a function of only the first differential quotients.  In particular, Einstein 
gave G* the value (10): 

(50)    G* = { }gµν σ ρ ρ σ
µρ νσ µν ρσ

µνρσ
Γ Γ − Γ Γ∑ , 

 

                                                
 (10) [Here and in what follows, the signs of G* and G* were altered during reprinting, corresponding to 
the situation that was considered sufficiently in the first printing that, in agreement with Einstein, one takes 
the sign of ds2 in the manner that was described in footnote (4) on page 569 of that treatise; Einstein’s G 
will then be identical with Hilbert’s K. K.] 
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in which, we understand − ρ
µνΓ  to mean the so-called symbol of the second kind (11): 

 

(51)    − ρ
µνΓ  = 

2

g ggg

w w w

ρτ
µτ µνντ
ν µ τ

τ

∂ ∂ ∂+ − ∂ ∂ ∂ 
∑ . 

 
This G* is obviously invariant under affine transformations of the w. 
 Einstein’s remaining final formulas will now follow with no further analysis from our 
earlier Ansätzen when we set: 
(52)    K* = G*, so K

* = G*. 

 
In order to understand things completely, we must only set: 
 

κ = 1 
afterwards. 
 One must actually deal with only two points: 
 
 a) From (21), we have: 
(53)     Kµν ≡ µν

∗
G . 

 
However, since G* contains only first-order differential quotients of the gµν, µν

∗
G can be 

formally represented more simply than Kµν : 

(54)    µν
∗
G  = 

g

g w

µν
ρ

µν ρ

∗

∗

 ∂∂   ∂∂  −
∂ ∂∑

G

G
. 

 
As such, for Einstein, the µν

∗
G , in fact, appear in place of the Kµν  in the field equations 

(formula (17) of his article).  One must say that a special property of the Kµν  will be 

made visibly prominent upon introducing the µν
∗
G , namely, that they include no 

differential quotients of the gµν of order higher than two,. 
 
 b) Moreover, from (16), (22), we have only the following simple formulas for the 

σ
τ
∗
U : 

(55)    σ
τ
∗
U  = 

1

2
g

g
σ µν
τ τµν

σ

δ
∗

∗ ∂− ∂ 
∑
G

G . 

 
These σ

τ
∗
U  are actually shorter than then the general σ

τU , but the result of the divergence 

map: 

                                                
 (11) Cf., the details of the intermediate calculations on pp. 110, 191 of Weyl’s book. 
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w

σ
τ
σ

∗∂
∂∑
U

 

 
is once more the same.  Thus, the reduction of the formulas also only makes the 
simplification more clearly intuitive, which the final result that comes under 
consideration for us will possess anyway as a result of the way that K was constructed. 
 
 The σ

τ
∗
U  that are defined by (55), when divided by κ, are now, with no further 

analysis, Einstein’s στt : 

(56)     
1 σ

τκ
∗
U  = σ

τt . 

 
In fact, Einstein gave precisely the same value for his σ

τt  that is found in the right-hand 

side of (55) in formula (20) of his treatise – on the basis of an entirely different set of 
calculations – when he took κ = 1. 

 If we correspondingly substitute the σ
τt  for the 

1 σ
τκ
∗
U  in (43) then we will obtain 

equations (44).  Q. E. D. 
___________ 

 
 

 I wish to add a small supplement to these developments.  It is well-known that 
Einstein, in his “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie” (12), 
made a suggestion that one should modify the fundamental field equations of gravitation 
in such a way that – in our notation – one would write: 
 
(57)    Kµν – λ gµν – κ Tµν = 0, 
 
instead of (3), in which we understand λ to mean a constant.  Since: 
 

     :
g

g
gµν

∂
∂

 = − 1
2  gµν , 

we can also write (57) as: 
 
(58)   Kµν – κ Tµν = 0, or also  K Tσ σ

τ τκ− = 0, 

where: 
(59)     K  = K + 2λ. 
 
 All of the assumptions that we used in paragraphs 2 to 5 as the basis for the 
construction of the identities for K are now true for this K .  For example, we can then 

                                                
 (12) Sitzungsberichte der Berliner Akademie of 8 February 1917.  
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write down the identities (37) forK , in which we only have to replace the U σ
τ  with the 

U σ
τ , which, according to (16), one will have: 

 
(60)     U σ

τ  = U σ σ
τ τλδ+ . 

 
As before, we thus also come to the same conservation laws, perhaps corresponding to 
formula (42): 

(61)     

1

w

σ σ
τ τ

σ
κ

 ∂ + 
 

∂∑
T U

 = 0, 

 
in which we might now alter the στU  by setting: 

 
(62)     K ∗  = K  + Div, 

 
in place of K .  In particular, we would like to take K ∗  to be: 
 

(63)   G∗  = G* + 2λ,  i.e., ∗
G  = G* + 2λ g , 

 
according to our most recent developments.  If we then write: 
 

(64)    σ
τt  = 

1

2
g

g
σ µν
τ τµν

σ

δ
κ

∗
∗ ∂− ∂ 

∑
G

G , 

 
while we include (55), (56), then we will now have: 
 

(65)     
( )

w

σ σ
τ τ

σ

∂ +
∂∑
T t

 = 0. 

 
This corresponds to the statement that Einstein made in his most recent publication (13). 
 

_______ 
 
 
 
 
 
 
 
 

                                                
 (13) Sitzungsberichte der Berliner Akademie on May 1918, pp. 456.  



Klein. – On the differential laws for the conservation of impulse and energy. 19 

§ 8. 
 

Concluding remarks. 
 

 The relationships that have been given so far in the developments in the papers that I 
cited of Einstein, Hilbert, Lorentz, and Weyl are individually much narrower in scope 
than what would emerge from a mere comparison of the final results.  Many formulas 
that occurred to me in my subsequent research are also found there, but not in the unified 
train of thought that I adhered to.  It is very interesting to pursue that in detail.  My 
developments are, in fact, closest to those of Lorentz, who nonetheless restricted himself 
to infinitesimal transformations δwτ = pτ for which pτ was independent of w.  Einstein 
considered those pτ that corresponded to affine transformation of the w, and Weyl (as I 
myself did in my previous Note) considered pτ that were arbitrary, moreover, but 
vanished on the boundary of the domain of integration in a suitable way (14). 
 
 I must also not fail to thank Nöther once more for her helpful participation in my 
recent papers, as she worked out the mathematical ideas that I employed while adapting 
to the physical way of posing the integral I1 in general, and those ideas will, in turn, be 
presented in a Note that will be published in the next of these Nachrichten (15). 
 

________ 
 

                                                
 (14) As I published in an essay “Zur Gravitationstheorie” (Bd. 54 of the Annalen der Physik) that was 
inserted before my Note, but was first published by him. 
 (15) [I presented Nöther’s main theorems to the Gesellschaft der Wissenschaften on 26 July.  The Note 
itself appeared later on in the Göttinger Nachrichten 1918, pp. 235-257, under the title “Invariante 
Variationsprobleme.” –  
 The foregoing “main theorem” that was presented in § 2 is a special case of the following, far-reaching 
theorem of Nöther, which was proved in the cited place: 
 
 “If an integral I is invariant under a Gρ (i.e., a continuous group with ρ essential parameters) then there 
will be ρ linearly-independent combinations of the Lagrangian expressions that become divergences.” 
 
 However, as far as the assertion of Hilbert that was contained in XXXI (see pps. 561 and 565 of the 
previous article) is concerned, in particular, according to Nöther, its exact formulation will give the 
following: 
 
 “If an integral I admits the displacement group then the energy relations will become improper if and 
only if I is invariant under an infinite group that contains the displacement group as a subgroup.” 
 
 Moreover, the theorem of Hilbert (XXXI, resp.) that four relations exist between the field equations of 
the theory of relativity also gets generalized by Nöther.  His theorem then reads: 
 
 “If the integral I is invariant under a group with ρ arbitrary functions in which these functions appear up 
to their derivatives of order σ then there will exist ρ identity relations between the Lagrangian expressions 
and their derivatives up to order σ.” 
 
K.] 


