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The following is a free reference to J. C. Maxwelfsatises on frames, reciprocal
figures, and diagranfy and indeed, to essentially the last one cited. Wevery much
deviate from the presentation of Maxwell itself, ansules will also be announced that
were not found by him and which, insofar as nothing speci@marked, originate with
F. Klein.

The inducement for the present treatise was the Epmdia reference of Herrn
Henneberg{Uber die graphische Statik der starren Kérpgr Naturally, the Maxwell
papers find only a brief mention in it, while it still se® desirable to deduce the essential
content of them — which are difficult to read — in arthugh fashion and likewise discuss
some ideas that are organically connected with thoseacfvél.

8§ 1.
On the Airy stress surfaces of planar continua

1. When a planar continuum carrigtsessesvith the componentB Q, U (Fig. 1), it
is known that static equilibrium at each place isaot@d from the existence of the two
differential equations:

oP oU _ Y Q
™ +6_y =0,
(1)
U ,0Q_
ox oy
as long as external forces act only on the boundéry
the continuum, but not on the interior. Aify has X
already remarked that these equations say notharg m Fig. 1
than thatP, Q, U can be expressed by the equations: T
0°F 9°F 0°F
(2) P= > Q= > U=-
oy 0x oxay

3 The scientific papers of J. C. Maxwell:
a) V.|, pp.514-525: On reciprocal figures and diagrams et London, Edinburgh, and Dublin
Phil. Mag. v. 27 (4); pp. 250 (1864).
b) V.1, pp.598-604: On the calculation of the equilibrium atiffness of frames. Phil. Mag., v. 27 (4);
pp. 294 (1864).
c) V.II, pp. 102-104: On reciprocal diagrams in space teir relation to Airy’'s function of stress,
Proc. London Math. Soc., v. 2.
d) V.II, pp. 492-497: On Bow's method of drawing diagrams apbical statics, etc. Camb. Phil. Soc.
Proc., v. 2, pp. 407 (1876).
e) V.l pp. 647-659: Diagrams. Encyclopaedia Brittanica.
f) V., pp. 161-207:On reciprocal figures, frames, and diagrams of forc&sans. Royal Soc.
Edinburgh, v. 26, pp. 1 (1872).
% Encyclopadie d. mathematischen Wissenschaften Ipfidt¢d 1903).
%) Airy: On the strains in the interior of beams. Philans. 1863 (appeared 1864), v. 153.
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as the second partial differential quotients of a fiondE(x, y); we will thus call such a
function F(x, y) with this meaning afAiry function” or “stress function.” From now
on, it will be suspected and also shown that thessftagction for a planar stress problem
plays a central role.

In order to orient ourselves to this situation somewhaed, along with Maxwell,
would like to immediately make the connection betwessultant stressealong an arc
segment&b) in our continuum with the stress functions. On tleesegmentls (Fig. 2),
one has stresses with components:

Xds= Pdy- Udx %G_F}
oy

(3) Y ds=- Qdy- Udx - %G—F}
0x

(yX - xY) ds= {JL - %
ox y

and thus, on the arc segmealb)(one has the resultant stress:

gy ), \ 9y ), 0x), \0x),

M, :(xa—F+ ya—F— Fj —(xa—F+ ya—F— Fj :
) 0X oy

(4)

Thus, thesignis chosen in such a way that in the coordinateegsyshosen by us in Fig.
2 theX;, Y;, M, represent the resultant stress that acts on eatlofthe continuum that
lies on thdeft-handside of an advance froanto b on the arc segmerl).

A further aspect of the importance of the stress
function is the fact that its existence is indeparicf
the special physical properties of the continuuntesi
they now reflect back into the natureffand indeed,
in such a way that the physical properties of the
continuum are due to properties of the stress iomct
and conversely.

It is therefore almost self-explanatory that we
illustrate such an important function by the gearoet
Fig. 2. consideration of the surface:

(5 z=F(XY);

the Z-axis is perpendicular to the plane of the contmuuWe naturally call this surface
an “Airy surface” or “stress surface? the fact that it is independent of the coordinate
system is easy to confirm, but will not be menteapressly.
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2. We now first consider homogeneous, elastically-isotropic plat®d there exist
the well-known relations:
ou ov

P=(1+2u)—+A—,
( ”)ax oy

®) Q=21+ (ar2p Y,
0x oy

U:’u 6_u+6_v
dy ox)

between the stress components and the elasticndgions (“strain”), wherd, i are two
constants that are individual to the material af tontinuum. If one eliminates the
deformation magnitudes from these equations byemfitiation and takes into account
(2) then the following condition remains for theess function:

(7) AAF =0,
where, in the usual way, one has:

9> 9°
_
x> oy’

Therefore, if a surfacez F(x, y) is to be an Airy surface for a homogeneous, elakjic
isotropic plate then it must, in any case, satibfydifferential equationAz = 0°).

Secondly, we consider a specééctrostatic stress state the ether, in which we
specialize the functiort¥ that appears in the formula on page 147 of Maxwell’
“Electricity” ®) in such a way that it depends upon onlgndy, but notz. We then have
the stress state:

-J)-3)]
2| ox oy
_1j(0wY _(awY
© Q_Z_(ayj (axj_’
U:a_wﬁ,
ox ay

in an ether plane, whek is a function that satisfies the conditia = 0. SinceP + Q
= 0, it follows immediately upon consideration gfuation (2):If a surface z= F(x, y) is
the stress surface that goes with the electrostdtiess state in equatio8) then it must

®)  This result seems to have been first found by HerhMicJ. H. Michell,On the direct calculation
of stress in an elastic solidfc. Proc. London Math. Soc., v. 31 (1900).
6 J. C. Maxwell, A treatise of electricity and matis@. v. 1, 2° ed., Oxford 1881.
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likewise satisfy the differential equatidz = 0. (IncidentallyF andY¥ are connected by

theformuIaF——”a—an—q;d xdy.)

Finally, we would like to investigate what sort ofests distribution exists in a planar
continuum when the associated stress surface is a pieadevelopable surfagavhich
we assume, for the sake of simplicity, is single-vdlaed singularity-free. = F(x,y)
is its equation and we let th€Y-plane go through one of its generators tBgdx and
0z/dy are naturally constant along this generator. Thezefalong theX-axis, as the
projection of the generator onto tk&-plane, one has:

2 2 2
P:a—f = function ofx, Q:a—fzo, U= 0’2
oy 0x oxay

=0.

Thus, if @Z0x)' and @z/0y)' are the values of the first differential quotients &
infinitely close generator then from equations (4) oibains, on an infinitely narrow
generating stribetween two generators, the constant resultantal@tness:

2
(9) pdy=2Zdy = (azj ("—ZJ
oy ay) \oy
A developable surface, as a stress surface, thus
corresponds to a stress distribution in the fornaof
sort of “sequence of strips,” namely, the strips in
the XY-plane of the continuum that come about as
projections from the surfaceAlong each strip there
reigns a certain normal stress that generally varie
from strip to strip, while no stress at all is cead
X over from one strip to anotheMWe can think of the
stress system of this sequence of strips as best
Fig. 3 realized mechanically by neighboring threads — i.e.,
a sequence of threadswhen we replace each strip
with a middle thread, which we stress in such a wayithatress is equal to the stress on
the strip when it is replaced (Fig. 3).

3. Of particular interest now is the consideratioraaontinuum that is composed of
a sequence of strips or a corresponding sequence of thasad® homogeneous,
elastically-isotropic plate, since that is closesttihe problem that appears in the
applications of the theory of elasticity of finding thesses in such a plate under the
influence of an equilibrium system of external fort¢kat act on the boundary of the
plate.

We think of the boundary of the platewhich we assume to mply-connectedn
order to avoid complications — as being given in such ythat the coordinates of its
points are given by two functions of a parametehat runs from O tdl, and in a
completely analogous way, we give the external forces
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X dt Y dt M dt = (yX—xY) dt

that act on an elemedt by means of three equations:

X = ¢(0), Y=Y, M = x(1),

where, for the sake of simplicity, the functiops ¢, ¥ may be chosen such that the
sequence of strips (11) covers the part of the planédeut$ the plate only once. Since
the system of forces is an equilibrium system, orsethea equations:

T T T
(10) jo pdt=0, jo Wdt=0, jo ydt=0.
If we now extend our elastic plate to one that isrekte over the entire plane by setting:

(12) — Yt X+ @(t) k= x(t) =0

outside of the sequence of strips (threads, resp.) themilvbe led to essentially the
solution of the aforementioned problem of elasticityfioding a stress surface for the
continuum thus composed for which along any pigce of the plate boundary the
resultant strip-stress has the components:

j;¢dt, j;w dt, j;)(dt.

Next, we construct those parts of the desired stredace that exist over the
sequence of strips. There is an associated developafaeesthhat admits the parametric
representation:

(12) z=d(x, Yy, t) =A() x+B(t) y + C(1), P =A{)x+B({t)y+C() =0,

where the prime symbol means differentiation with respe the parameter amdl B, C
are three unknown functions; they may be determinadedately. For an arbitrary
advance on the surface, one has:

dz=A dx+ B dy+ @' dt =A dx+ B dy,

hence, one has:
%:A, %: B.
0x oy

Due to the boundary conditions, if we recall equationsh@n we must have:

aZ tl_ 4 az tl_ ty
[&} =- jtowdt and {a—yl = L,¢dt'

to
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Thus, it follows that:
t t
A——me+a B_L¢m+u

wherea andb are integration constants. Since, from equation (1) noust have:

A:B:C=-¢:¢ :-x
one then has, analogously:

c:—ﬁxdt+q

wherec is a new integration constant.he desired developable surface is then given by
the equations:

t t t
z:—J'Oz// dth+jo¢ dﬂ]x—jo)( dix by ¢
~YX+¢ly-x=0.

(13)

The developable part of the desired stress sunateen uniquely established, up to the
addition of an arbitrary plane, which naturally musfluence the stresses on the
sequence of strips. Outside of that, it is clos@etom (10), the three integrals from O to
T in (13) vanish.)

With the developable part, we now proceed to liseveay something about the still-
missing piece of the desired stress surface, nambé one with coordinates and
tangential planes along the space curve that thelajgable surface has in common with
the vertical cylinder above the boundary of thetela They must then equal the
corresponding quantities for the developable serfacthe event that we would like to
exclude the singularity here that appeardiaite stresses in the boundary of the plate
itself, hence, an element without breadth. Ifehére stress
surface possesses a notch somewhere on the spaearcu b
guestion then, from equations (4), one would finfinde
resultant stress for an ever so small arc segnajttijat
intersects the plate boundary at the correspongdiage.

This is not in itself absurd, except that the pleamest then

be surrounded by a particular stressed thread, hwivie

shall not assume here. It thus still remains ®rtaisolve

the problem:To find a function B, y) that satisfies the )

differential equatiodMAF = Oin the interior of the plate and Fig. 4.

on its boundary assumes the prescribed values fandrthe differential quotient with
respect to the normalF/on. The solution to this problem cannot be multieneal, as was
proved by Mathied). We thus arrive at the end result (F. Klein):

" E. Mathieu:Mémoire sur I'équation aux différences partielles du quatriéme aider= 0, etc, in
Liouville’s Journal, Ser. 2, v. 14, pp. 378 (1869).
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In order to find the stress distribution that is produced in a simply-aiade
homogeneous, elastically-isotropic plate by an equilibrium system adsfahat act on
the boundary one first constructs a developable surface — which is celynpletermined
up to the addition of an arbitrary plane — as the stress surface thatimedddy sequence
of strips for the system of forces, and thus is a developable stini@ceonnects to the
plate boundary everywhere without a notch and satisfies the differentiai@uiarz = 0
everywhere in the interior of the platdf z = F(x, y) is this surface then the desired
stresses themselves are given by the equations:

2 2 2
P:aF’ Q:aF, U:_aF.
oxay

If the plate ismultiply connecte@nd the external forces are in equilibrium at every
point of its boundary then the stated elasticity probé&am be solved in a completely
analogous way by a surfaéz = 0 that is connected with as many closed developable
surfaces without notches as the plate boundaries posbkiess, since howeveeachof
these developable surfaces is determined by the extemcakfonly up to an arbitrary
plane one thus obtairssentially differensurfacesAAz = 0 here for different choices of
these arbitrary planes. Herr Michell, who incidentalig it seems, was the first to
recognize the connection between the differential equaidi = O with the stated
elasticity problem®), found in the treatise cited on page 4 the necessdifianal
condition for the stress surface when he consideredtitbemstance that the stresses
arising from the shifting of the points of the plate mhesunique.

If the external forces are in equilibrium on not jeath individual boundary, but only
for all of the boundaries collectively, then the stresurface shows another inessential
multi-valuedness (affine periodicity) relative to thieesses themselves, whose analogues
for discontinuous systems of stresses we will exanmniatghly in 8§ 2.

4. The ordinary, statibeam problem
provides beautiful and simple examples of
| > stress functionAAF = 0.
""" f We first consider (Fig. 5) a one-sided,
X anchored, horizontal, perpendicular to our
plane, infinitely narrow beam of finite
l heighth and length that is loaded at the
""" 7 free end in such a way that the resultant of
all forces is a forcerr that is directed
Fig. 5 vertically downwards. By a suitable
assumption on the distribution of unit
forces over the cross-section, the associated $tnesison is:

F(x,y) = % (1= %) (4 - 3y).

8 Michell, loc. cit.
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It leads to the stresses that are given for this proth all of the textbooksThus, under
the assumption that the beam can be regarded as a homogeneous, isotropicplalesti
the stress distribution in its interior that is given in the bexiks is precisely correct.
(The same is not true for calculation of the deforomathat the beam suffers under the
influence of the stress system; here, the usual yhatroduces approximations that one
can, by the way, avoid in connection with equations (&) wo extra effort. Naturally,
we cannot go into this here, but we would like to arguedhatgenerally should separate
the determination of the stresses from the possilfitgetermining the deformations.)
Of particular interest is the construction of thees$rsurface that is associated with our
example! Its developable part is, however, too coratgd to be described without a
model. In order to still have an example for whicls tkieasily possible, one considers,
for the anchored beam of Fig. 5, the case of the Bedcgure shear,” which then
corresponds to the stress surface:

_2M
Z= h3

o7,

which satisfies the differential equatidthz = O inside of the beam, whelkéis the shear
moment that acts on the free end. This surface — obyjausllinder whose generator is
parallel to theX-axis — now likewise defines the developable part of tless surface of
the beam.

Maxwell gave a further example in the last treatis® was cited on page 2. The
beam has a heigltit and extends frommx = -1 tox = +1. It is loaded along its upper
boundary with the loa# per unit length, and it further has a weighger unit length. A
null pressure acts on the center of the end surfaces atl; a corresponding simplest-
possible distribution of positive and negative pressure iresmareserved on the
individual elements of the end surfaces. Maxwell found:

k +

K
F(x,y) = T

{(I2 -x?)(3ny* - 2y°)+ hy“—%— K f}

for the stress functiof). He also gave an interesting suggestion as to hovettees
distribution given here could be realized experimentally clever way.

Precisely this example and a large number of other exampitebad already been
treated by Airy himself in his treatise, as well as prgsg some illustrations namely,
the stress trajectories — in which he introduced what leddde stress function for just
that purpose?). He always assumdelto be a polynomial i, y and thus took as many
lower-order terms as possible that he could satisfybttundary conditions. Thus, it is
noteworthy that he completely ignored the fact thanust fulfill a partial differential
equation in the interior of the beam that depends upon élséceproperties of the beam

%) Since the weight is assumed to act on the elen@ntse beam interior, the stress components
themselves assume the form:

2 °F 0°’F
p=9F Q=2 -y U=- :
ay ox oxay

19 Citation on page 2.
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(which is just the equatiahAF = 0 if the beam is elastically isotropic). Maxwalleady
criticized this in his treatise, but likewise showed in ¢ase just mentioned, which was
examined closely by him, that errors of the sort thaewesent in Airy did not affect
the numerical values of the stress components eabgnti

§ 2.

On stress surfacesfor plane discontinua (frames)

1. Equations (1), from which Airy concluded the existencthefstress function for a
planar continuum that carries stresses, immedidtale no sense when one is treating
the stress distribution in a discontinuum, such as maplfame. However, the stress
function or the stress surface is somewhat more gaharathe equations that it was first
obtained from; it exists just as well for discontiragafor continua. One must then (with
Maxwell) simply use the formulas (4) that were ot by integration as the basis, as
will be discussed further in the sequel. In what feflpit will be our problem to discuss
the special circumstances that arise from this fonés.

In order to avoid unnecessary complications in the
\ presentation we will throughout treat only those planar
/ frames that define the image of a polygonal net whose
/ elements nowhere cross and overlap, but all lie #at n
to each other (Fig. 6). For them, we will assume, until
later, that external forces act only on the junctiohthe
encircling polygon. At the conclusion of this paragraph,
we will then also briefly treat some frames thatndo fit
into this schema. Naturally, we think of the junctioss a
N\ frictionless links such that only stresses in the normal
Fig. 6 direction of the rods — so-called “basic stresses” or
principal stresses” can be present.

K. Wieghardt set the goal for himself in what folloastarting with the complete
analogy to the Maxwell Ansatzen and working out the eotion that exists in a
continuum between the Airy stress function and the airgss surfacét shall be shown
that the existence of equilibrium conditions for a frame is completglywalent with the
existence of an as-yet-to-be-defined stress surface.

One achieves this objective in two steps: First, on&sthat one can always give a
stress surface, by means of which, a stress systenbeatefined, and which, by a
simultaneous definition of a notion of force, is gquéibrium with our frame, and second,
one shows the converse, that such a stress surfadeecaonstructed from any stress
distribution on the frame that is in equilibrium tbe given notion of force.

We construct a surface over our frame that is composewthing but adjacent
planar polygonal surfaces such that their edges, wheegbedj onto the plane of the
frame, yield precisely the rods of the frame. The wangon of such a surface, which
we would like to call a “faceted surface,” is always $ble; in the simplest case, it
represents a single planar surface polygon. On thistddcsurface we now fix a
“polyhedral zone” as follows: Through each edge of the encircling polygonlayea
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plane that is, however, not completely arbitrary, sufitends an angle different from°90

with the plane of the frame and furthermore the edgested wherever two consecutive
planes intersect possess the following properties: ahéxwo half-rays, into which each

such edge will be divided by the vertex of the faceted seigaciphery that it lies on, one

of them — when projected onto the frame — shall alwagssact the domain of the frame,
but not the other. b) All half-rays that — when praeconto the plane of the frame — do
not intersect the domain of the frame shall nevégrgect. Any two of these latter

consecutive half-rays then intersect in a strip wilie side of the faceted surface
periphery that lies between them and the three pldma¢they have in common, and the
surface that is composed of these strips is the degsogtiedral zone; it is the analogue
of the developable surface of 8 1. The denser the eddgles pblyhedral zone are joined
together, the more they will be comparable to the goes of a developable surface,
while simultaneously our strips approach the generatimgssif a developable surface.

Having constructed the total surface in this way from &tstrfaces and polyhedral
zones such that it is continuous and covers the place, ave must now consider it in
more detail; we would like to see which stress distiangt on the frame it gives rise to
when we regard it as a stress surface. In any casghmg is clear from the outset: that
it gives us no information aboapecificstresses — i.e., stresses per unit length or area — if
they are given by equations (2) by means ostmonddifferential quotients of the stress
surface, since the second differential quotients forsowuface are either null, namely, in
the interior of the individual facets and strips, dinitely large, namely, on the edges.
By contrast, thdirst differential quotients are finite everywhere, but alsscontinuous
on the edges. Accordingly, we define tlesultantstresses on our surface by means of
Maxwell equations (4) on any arc segmabin the plane of the network. If we now first
assume the formulas (4) for an arc segment thatdiegpletely inside of a facet or a strip
and then for an arbitrarily small arc segmahtthat intersects a (projected) edge of the
stress surface then we find that our surface, whendedas a stress surface, mediates a
system of stresses that is found to be in equilibraumeh acts on the projected edges. If
we then replace the stresses in the projected edges pblyhedral zone with forces that
act upon the vertices of the encircling polygon then asetarrived at a first resulkny
surface that is composed in the manner described of faceted surface®lghedral
zones defines for us an equilibrium system of external forces thatpan the
corresponding frame and a stress distribution that is under the influentes# forces
when in equilibrium.

With that, the first step towards attaining our goaaspleted, and we now take the
second one. Any line of action of the force systenh maldivided into two half-rays by
the vertex point of the encircling polygon that liesibn We expect these half-rays to
fulfill conditions a) and b), just like the correspamgl half-rays in space. We now
choose any junction of the frame and, for the salengplicity, make it the starting point
of anXYZcoordinate system, as shown in Fig. 7 (on pp. 12). Thesedg?, ...,n and
the angle-spaces I, I, ..N can collide at this junction. For one of the arngpaces —
say, | — we assume only an arbitrary facet (strip, yesp.

z=ax+py+y
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We then proceed through the facets (strips, resp) IlI,.1l] N by going through our
junction cyclically, while making sure that whenever agply equations (4) to two
consecutive planes I, I, ..N this always gives the same stress on the common dftige.
Xi, Y; are the components of the stress on the @dgg, J, as in Fig. 7, then the equations
for these planes read:

D z=ax+pBy+y,
(2) z=-YIx+ XOpa %[ vy,
Q) z=-(L+Y) ¥ ( X+ X) yra xB vV,

(14)

0 Z*@YJ%@ xjmwa X3 Yy,

(n) zz—(zn:\(jmﬁ[zn: )I(ija X[ .

Now, since then stresses on the junction are in equilibrium, gst quation is identical
with:
Z=YiX=Xey+tax+ Ly +y,

and if we assume the poirmtsy are on the projected ) Z
edge 1 then we would have= ax + By + ), i.e., the
entire cyclic sequence af facets (facets and strips,
resp.) is closed in itself. Therefore, the fact that i X1 Y1
equilibrium reigns between the stresses at any junction :
of our frame implies the existence of a piece of the —/~Z ===~
stress surface at the junction that surrounds it and is
completely determined up to an arbitrary plane.

We will seek to unite all of these pieces that are
associated with the various junctions of the frante & Fig. 7
continuous, nowhere branching surface by a suitable
choice of the arbitrary plane. Beginning with any jioict we shade the stress surface
piece (Fig. 8, left) that was constructed around it (aitharbitrary plane). We enumerate
the vertex points of the shaded polygon (which might pbssextend to infinity)
cyclically by 1, 2, ...m. We can now identify the plane, which is arbitranytfte stress
surface piece around 1, with one of the shaded surfagesdahtact 1 (perhaps I); théh
also belongs to this surface piece, since in such supiaces the opposite position to
two consecutive planes is completely determined by dtiess in their common
(projected) edge. Hence, the stress surface piece atasmsnoothly connected with the

) Formulas (14) and (15), which will be operated with heere on page 14, were first presented by F.
Klein in a lecture during the Summer of 1896; cf., the Hdeng Enzyklopadie reference. They
correspond to the formulas that were presented in (13 offor the developable surface that was

considered there (which is a limiting case of the Ipetiral zone considered here).
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shaded polygon. We can then smoothly connect the piétlks stress surfaces 2, 3, ...,
m — 1 on the shaded surfaces Il, Ill, .M, — 1 one after the other into our shaded
polygon, with the presently arbitrary planes identifie@he question still remains of
whether the last surface piece construdegdacet or strip) smoothly connects with the
first surface piece constructéd However, this must be the case if we choose (Fig. 8,
right) the planeA to be the arbitrary plane at the junctiorand construct the piece of the
stress surface aroumd since then we can arrive at no other facets (tiasM, M — 1,

..., Z since the opposite location to two neighboring plarigkis sequence is completely
determined by the stress in the common (projected) edbe.sdquenca to Z — as the
piece of the stress surface around- then likewise closes on itself. If one now shades
all of the stress surface pieces constructed up toamolwepeats the construction that we
just described at the vertices of the now-shaded larggg@olthen one ultimately
arrives, in fact, at a continuous, closed in itssifagle-valued” stress surface that covers
the entire plane simply. With that, our goal ikiaeed; in summation, we say:

Fig. 8.

For a planar frame that is composed of nothing but smoothly neighboring polygons,
and whose junctions are frictionless links, and on which externald@téhe described
type act only upon the junctions of the encircling polygon, the existendbe of
equilibrium conditions is completely equivalent to the existence aintinoous and
everywhere single-valued stress surface. The stress sedasists of a polyhedral zone
whose edges, when projected, yield the lines of action of themsydtforces, and a
facetted surface whose edges, when projected, deliver the rodSraintlee

If the external forces do not satisfy both of thstnietions that we made then
complications can appear that hardly affect the undetstg of the problem, but do

affect the two-dimensional representation, insofathas
polyhedral zone can be become very complicated (similar
to the developable surface in the first beam examp® of
1, pp. 8); we shall therefore not go into them further.

2. A lovely application of the theorem just derived is
the following one: Let the frame be composed of nothing
but triangles (Fig. 9); it is subjected to the influernde
some equilibrium system of forces that act on the
junctions of the encircling polygon. The question is this:

Fig. 9. How many stress surfaces are there for this given system
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of forces; in other words, how statically indeterminate¢he frame? We construetin
direct reproduction of the developable surface for a wouatn (equation (13)) — the
polyhedral zone that is defined by our system of foXe¥;, Mi, when we set down the
following sequence of strip$):

z=ax+tpBy+y,
z=-Y,x+ X, y- M+a % v,
z==(L+Y) ¥ ( X+ %) y( M+ M+a x[ ¥V,

B A o s e

The faceted surfaces on the periphery of our framedikewise established by means of
this closed polyhedral zone, which is completeliedained up to the arbitrary plage=

ax + By + y. However, the coordinates of the faceted sura@e any junction inside of
the encircling polygon can be chosen in a complesebitrary way since a plane can
indeed be defined by three completely arbitrarynfsoi Hence, the degree of the static
indeterminacy of our triangular frame is simply afjgo the number of its “internal”
junctions.

Thus, should the problem of determining the stsesface of a plane triangular frame
possess a unique solution one would have to mad@ad@ssumptions about the physical
nature of the rods of the frame that are analodouteir behavior as continua. We
therefore do not go into this here; the case inctvlihe rods are elastic, in the sense of
Hooke’s law, was examined by K. Wieghardt in a sddceatise"?).

3. The stress surfaces that we obtained up to naw we
always single-valued surfaces; a poirt y always
corresponded to just a single value One can, with little
effort, define examples of multi-valued stress scek that

likewise lead to the stress systems of planar feaniéhus, k
there is a spatial polyhedron that is composed lahgy
polygons and closed in itself that can be rega@edhe

stress surface ofsystem of self-stressasthat frame that Fig. 10
comes about as its orthogonal projection. Ther@as '

13 Cf., the footnote on pp. 12.
13 [Appearing in the Verhandlungen des Vereins zur FérderusgGeaverbefleisses in Preussen, 85
(1906)].
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difficulty in seeing this: Formulas (4) are also val@rdy only one must pay attention to
the fact that the frame surface now covers the seidéits encircling polygotwice, and
therefore at a poirt, y the differential quotient8z / 0x , 0z / dy have different values
according to whether one finds them in the upper “sheethe@idower one. One must
further observe that for the lower sheet the signdormulas (4) are inverted. The
detailed behavior of these figures was treated quite thorpbgVlaxwell himself').

By the way, such a self-covering frame can also gseeto the existence ofsingle-
valuedstress surface; namely, if one knows the stredemythen one can conversely
construct a single-valued stress surface. One simgdgrds all of the geometric
intersection points of the rods as actual junctiors thien constructs the stress surface
that they generate, with the encircling polygon corredponto the simply-covering
frame of the given stress system. However, sincestegs surface of this frame does
not conversely have meaning for our self-covering frame is of only secondary
interest. An interesting question is the followingh&V is the general situation for the
single or multi-valued stress surfaces of such selftaoydrames that lead to the so-
called “one-sided” surfaces, when regarded spatiallyg. {#i.)*°)

Fig. 11. Fig. 12.

Conversely, there are, however, atsalti-valuedstress surfaces for our frames that
do not cover them. For example, if no external forceisthen all of the strips of the
polyhedral zone lie in a plane, and we regard pedgithat part of this plane as the
polyhedral zone that extends the faceted surfaca ¢bsed spatial polyhedron. We
consider the frame of Fig. 12 as an example. We Hew many self-stresses are
possible in it? The associated spatial polyhedsarbviously composed of two hexagons
and twelve triangles. Had we established the texagons arbitrarily then it would be
completely determined. Now, since the oppositatioa (?) to two planes includes
essentially three arbitrary parameters it followsily from our construction that there are
o self-stresses in our frame (of the foi®x aS + bS +cS).

Another interesting example of multi-valued stressfaces is provided by the
“multiply connected” frames. We call a frame that does not cover fitsalltiply
connected when not all of the internal junctions farce-free. Thus, the frame that we
just mentioned is multiply connected for the logdof Fig. 13. We seek to construct a
stress surface for it! We regard the entire frasi@ne such with two encircling polygons
— an outer and an inner hexagon — and then begiasten a polyhedral zone for the

%) See reference a) on pp. 2.
% [I have answered this, in any case, theoreticallyairtant question. See the treatise LXXVIII that

follows this one. K]
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corresponding external forces to both vertical cylindever these two encircling
polygons. Let the forces on the outer hexagoiXheY; , M; and on the inner on&!,

Y',M/. Inorder for all of them to be in equilibrium itaslly necessary that:

(16) DX X)=0, D +N=0, Y (M, +M)=0,

6 6
while the individual sumsz X ZX etc., can very well be non-zero. If we now
1 1

construct the external polyhedral zone, by enurnmerahe strips:

(17) 7=~ [2@5@@ xjmy—@ Mj, v=01,2, ..)

just as in the prescription of equations (15) — nehan arbitrary plane is considered
through the three quantities, Yo, Mo — then this sequence does not close under a
complete circuit, and moreover, thef the polyhedral zone increases with each circuit
by the period:

o e {ef{afo ]

so we do not have @dosed polyhedral zondut an‘affine-periodic” one, in the sense of
these formulas.We obtain corresponding formulas for the intep@lhedral zone, only
we must invert all signs when applying formulas)(tborder that under the application
of equations (4) to two neighboring strips the eotrstress is associated with the
common edge. We thus have the sequence of planes:

(19) z = [gvj D(—[io x’j Dy+[io Mj, (v=0,1,2,..)

where the three quantitie¥;, Y, , M, again represent the arbitrariness in a planee (Th
«® self-stresses of the frame are expressed by tee tjuantitiesXo — X;, Yo =Y., M
-M,!) We thus obtain the period:

6 6 6
(20) Z [ZYJD«[Z xjmy{z Mj,
1 1 1
and, from formulas (16), this is equal to the perzp above. Now, since the faceted
surface is also given for the two polyhedral zorassjs immediately obvious, we have
the result:The entire stress surface has a period determinedobmula (18) or (19)

corresponding to a cyclic circuit of our frame;istcomposed of two unclosed polyhedral
zones and an unclosed faceted surface that windangs like a spiral staircase.
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Naturally, none of this infinite winding upwards of therapstaircase is noticed in
the projection of the stress surface onto the plandeframe; it covers the projection
simply and will thus be unknowable.

The aforementioned behavior has nothing surprising to lsayt dhe things that one
trusts in the integration of exact differentials ao$ffiorder, perhaps from function theory.
If:

df = p dx+qdy

is such a differential and one integrateser a ringlike-connected domain thietiakes on
an additive period under a circuit of the ring. Pregisbe same thing is true for the
stress function that is defined by the second diffeaénti

d?F = Q [y — 2U [Hx dy+ P [y,

except that the additive period is not a constant) #ei previous case, but a linear entire
rational function ok andy. — It would be interesting to reconstruct the behaviat Was
discussed here only in an abstract, analytical faslionmerous examplés concreto.

8§ 3.
On reciprocal figures and diagrams.

1. a) Any rectilineatine segmen(in a plane) with the endpoinés(X,, Ya) andb (X,
Vb) possessesb initio, a certainengthand a certainlirection, but no definitesense. A
line segment thus defines for us, in the simplest fowa, vectors that are parallel to it,
namely, the two vectors with the components:

== Xp—Xa, H= Vb~ Va, on the one hand,

and == (Xp — Xa), H=- (Vb —Va), on the other,
as well as two vectors that are perpendicular to them:

== (Vb — Ya), H= X —X), on the one hand,

and = VYo~ Ya H= - —X), on the other.

We would like to call the first twpolar vectorsto our line segment, and the last two
the associatetransversal vectors. When we now assign our line segment a definite
sense of motionve call it “the line segmenta(b)” or the “the line segmentb(a),”
according to whether we think of ourselves as moving fadob or fromb toa. For the
sake of illustration, one will interpret the sensemaition as saying that one understands
the line segment to be endowed with an arrowhead. allenow associate each of the
two “line segments with arrowheads” with one of te fpolar vectors, and likewise, one
of the two transversal vectors, such that when ontbdetwo possibilities is established
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once and for all each of the two line segments witbveheads is associated with a
completely well-defined polar vector, as well as a cletay well-defined transversal
vector. We now deal with the arbitrariness in tH®tang way:

By the phrase “the polar vector that belongs tolitee segmentd b)” — or briefly
“the polar vector @ b)” — we understand this to mean the vector with the components:

==X~ Xa, H=Yo~Va;

and by the phrase “the transversal vector that beltmgke line segmenta(b)” — or,
briefly, “the transversalvector @ b)” — we understand this to mean the vector with the
components:

Z=Yb~Ya, H==(—X).

With these abbreviations, one obtains the transveesdbr @ b) in the coordinate
system that we have always used, when one rotateskrevector & b) 90° clockwise.

b) Any simply-connectegdlanar regionwith a boundary curve that does not intersect
itself possesses a certanrface areaand a certaimormal direction A planar region of
this type thus defines, in the simplest way, two vectanisse lengths are equal to the
surface area and whose directions are equal to the hdimeetions. When we assign
our planar region one or the othsense of circulatiorand each of these senses of
circulation is again one of the two previously-definedtoes through the planar region,
once we have eliminated the arbitrariness once and faagh “planar region with sense
of circulation” — or briefly, each “planar magnitude s-associated with a completely
well-defined vector.

A curved surface regiowith a definite sense of circulation also defines mgletely
well-defined vector; it may be, as we can say, “regardedmanar magnitude,” namely:
One divides it into infinitely many, infinitely smafilanar regions. One assigns each
planar region with a sense of circulation such that boundary of the surface region
preserves its original sense of circulation and each eeiyeeen two neighboring planar
regions is associated with both senses of circulatibone associates each planar region
with the vector that was described above and sums olerf giese infinitely many,
infinitely small vectors then one obtains a completesfl-defined resultant vector that
is, moreover, defined by the surface region with the sehsieculation.

c) All of these ideas, which have been more or legdtkmown since Grassmann’s
“Ausdehnungslehre,” take on a practical meaning when oeatstrthe graphical
representation of the stresses in a continuous or rdisaous medium (frame). For
example, a plate is governed by an equilibrium systentre$ses. If we cut the plate
along any arc segment then we perturb the equilibriungfansas we eliminate the
stresses that prevail along the arc segment. Anyflese forces, which act on the two
lips, but at the same separation locus, are then eauhblopposite and completely
measure the stress that occurs on the arc eleméim¢ separation locus. (We can also
sum all individual forces along each lip and thus obtam esultants that are equal and
opposite and measure the stresses that occur on iteeagatsegment.)

From the previous remarks, it is clear thdtne segmentr5— and indeed, a simple
line segment with no sense of motion — is quite sufficient for dpdigal representation
of the stress that belongs to a definite cross-sectitsnlength and direction then provide
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the length and direction of the stress, with nothinghnt(the stress direction is either
parallel to the direction of the line segment or pedparar to it). However, by a certain
abbreviation, it also provides a sense — i.e., the sign — for thesstiewo senses of
motion are then assigned to it; a certain (polar amstversal) vector belongs to each of
these two senses of motion, although we can, in aealbbed way that is fixed once and
for all, assign each of the two senses of motion wite of the two lips of the cross-
section locus on which the stress acts. Hence, thrdwghntermediary of our line
segment, each lip of the cross-section locus in gquestlates to a definite vector and
this assignment may naturally be arranged so that élestowdirectly represents the stress
that acts on this lip, from which the sense of thesstige established. One can proceed,
e.g.: After the notationgs andab are introduced on the cross-section, one thinks as
corresponding t@, £, to b, and thus, the vectoof), to the vectordb). On the other
hand, one assigns the vectab)(to perhaps the lip of the cross-section that bethé left

of an advance of the cross-section in the direckiom a to b. In the given case, the
vector (@) then represents the force that acts on this lipth@d/ector fa), the one on
the right.

Naturally, in a completely analogous wayplanar region (surface region, resp.)
with no definite sense of circulatiols a very suitable means for the geometric
representation of the stress that acts on an atstcarface element.

We will learn some examples of these general develofaie § 4.

2. If one could “designate” planes in space with the séaugity as one does for
straight lines in the plane then one would, by the meétise stresses on a planar frame,
plausibly direct one’s primary attention to the sresrface, since it indeed represents all
of the stress phenomena simply and clearly. We dactoially possess this capability
now; one must therefore initially endeavor to fipldnar figures that exhibit the same
behavior as stress surfaces. One calls these figimee planes we will see that they
are closely connected with stress surfaces.

We would like to regard the force plane of a frameMaswell himself did, as a
special case of Maxwell"seciprocal planar diagrams;” we will therefore arrive at the
m as the simplest ones. Maxwell's definition is fbkowing: In thexy-plane, one finds
any continuum or discontinuum with the stress surfacek(x, y). We let it correspond
to a definite continuum or discontinuum in tfre-plane that is defined by the equations:

oF oF
(21) g_axi O_aya
and has the stress surface:
(22) = ),
where® is defined by the equation:
(23) F+®=x{+yn.

The stress surfaces thus defineayaspace and7{-space have a reciprocal relationship
to each other that one can express in the sense ottwejgeometry when one says:
Each of the two stress surfaces is alwaysthlar imageof the other one relative to the
paraboloid:

(24) 2= +V



LXXVII. On stress surfaces and reciprocal diagrams 20

Insofar as the interpretation of the surfaBeand ® as stress surfaces can also be
overlooked, since their reciprocity obviously does not depgron it, we would like to
speak of them more generally ‘@sciprocal (spatial) figures.” The two plane figures
that one obtains by projection of the reciprocal figureso thexy-plane and thefs-
plane, which we would like to call “diagrams,” for tbeke of brevity, are also reciprocal,
if, along with equations (21), the reciprocal equations:

(25) X _9® : y _9® :

o0& on
are also valid, as one confirms by differentiating equa23). We thus speak of the
diagrams asreciprocal (planar) diagrams.”

What does th&n-diagram now tell us if we would like to instruct ourg=vin the
stresses that were elicited by the stress funétionthexy-diagram? In they-plane, we
denote an arc element big and in theén-plane, bydo (with the componentdé, dr).
From equations (3), one has:

(26) X ds=dp, Y ds=-d¢.
Hence, for a finite arc segmeatb, which might correspond to the arc segmeft
(27) X =ng—1Na, Yr == (p—¢a).

The connecting line segment of the two endpanénd S of a finite or infinitely
small arc segment in thé&-plane provides, when regarded as a transversal vector, the
magnitude, direction, and sense of the resultant stress that appears amrdspaonding
arc segment ab in the xy-plane; indeed, the transversal viagf®mprovides the action of
the stress on that lip of the cross-section that lies on thédefd- side when one goes
from a to b, and the
transversal vector (fa) Y X Y. M H
provides the action on the | b r 1 Y B
right-hand side. The rule is ds
valid only as long as the
xyz-figure is single-valued, a
and in the other case, where X
the xy-diagram thus doubly
covers the plane, one must _ \
switch left and right in the Fig. 14.
rule above for the lower
leaf.

One finds the case @bntinuous diagramsdiscussed and illustrated by examples in
Maxwell *°): there, he treated the example from beam theatywlas mentioned above
(pp- 8). Here, in order to arrive at the behavior fames, we would like to consider the
case where thgyzfigure is a closed spatial polyhedron composed of planaigpns.

a do

%) In the treatise of reference f), pp. 2 (Table XIV).
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Due to its polar relationship relative to the parabolthd,énd-figure is also like it, and
indeed each polygon of the one

d a

polyhedron mutually corresponds to a Vi
vertex of the other, each vertex, to a N A ;
polygon, and each edge, to an ed el ¢ Vil
Corresponding statements are then true\! . g b
for two reciprocal diagrams, and in ¢ [ b f—mm g—— o
addition, corresponding edges are NI V7

rpendicular t h other and th N I WA
perpendicular to each other and the edges o i'.’_"'"= EV)(V"E

of one diagram — when interpreted in the
most beautifully described way as
transversal vectors — yield stresses on the Fia. 15
corresponding edges on the other diagram 9.

that are in equilibrium for that diagram. Since thetisppolyhedron is a closed surface,
each diagram covers the surface of its encircling paolygdeast doubly (Fig. 15.)

= a+b+c+d+e+f (/I ' ;
R S AT T

3. This Ansatz has a different meaning for the statidsamnes. We can, e.g. (cf. 8
2), immediately regard either of the two diagrams asmad, and the other one provides
a possible system of self-stresses in this frame; henyvexe can also proceed as follows:
We single out any polygon of one of the two spatial polyaheahd assert: The polygon is
the stress surface that belongs to a frame acted upaxtbynal forces, and whose
polyhedral zones is cut from a plane — viz., the plantbedlistinguished polygon. In the
projection — into the diagram — we then must regarcetiges that intersect the vertices

Pid I
e “~‘
d‘ ~_
Pl ~
. ~
- —— —_
. v
~ ’
’
-
¢
’
.

’
Y s —_ -
N ’
\ ’

Y ’
A4

Fig. 16 Fig. 17

of the distinguished polygon as the line of action of guldrium system of forces, the
projection of the distinguished polygon as a so-callee walygon (Seilpolygon) of this
force system, and the remaining edges as the rodsaie that is under the influence of
this system of forces. We then obtaifoece planeof the thus-defined frame using these
forces when we omit the superfluous lines in the reciprdzgrams — they are the
corresponding edges of the wire polygon. We then obgagn, when we distinguish the
polygong on the left in Fig. 15, the assignment of Fig. 16, andaisggnment of Fig. 17
when we distinguish the polygon I on right in Fig. 15.

The force plane of a frame naturally includes just asynessential indeterminacies
as the stress surface of the frame. This fact thieae are just as many force planes for a
frame as solutions to the stress problem, is usuallweot clearly emphasized in the
textbooks on graphical statics, which might imply thag anessentially occupied at such
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a time with statically determinate frames, since tbecd plane naturally allows no
essential arbitrariness.

Of particular interest are the force planes thabrmplto the multiply-connected
frames of § 2. Corresponding to the circumstancettieastress surface of such a frame
is affine-periodic, the force plane is no longer a@ibgure, but consists of the parallel,
congruent repetition of one and the same basic figure.

A noteworthy fact must still be mentioned here,
namely, that one, as is known in practice, mostlysdoe
not operate on thielaxwellian force plangbut on the
so-calledCremona force plane.This is nothing but
the Maxwell force plane rotated through a right angle;
in fact, when Cremona gave the self-sufficient basis
for his theory, he expressly referred to Maxw@)l
As is known, he used, in place of the Maxwel
formulas (21) and (23), the following ones to defi
the reciprocal figures:

_OF oF Fig. 18

5: a_yi ,7:&! Z—Zzﬂx_fy-

This means the same thing as: In place of the polaesmondence relative to the
paraboloid of eq. (24), one has a polar correspondend&edia aMobius null systerby
means of the Cremona equations. If Maxwell assoctateglane:

z=ax+py+y
é=a, n=p4 (==,

then Cremona associated it with the point:

with the point:

$=-5 n=a, ¢=)»

thus, for Cremona the edges of the force plane ruriglai@ the corresponding rods of
the frame, while, for Maxwell, they are perpendicutage stresses will thus no longer be
represented btransversalvectors, but byolar ones. If one is now inclined to use the
Cremona association in practice then this certaing/pgartly in the fact that regarding a
line segment as polar vector is familiar in general mechanics, while regagdihe line
segment as #ansversalvector is somewhat foreign, and also partly in the tlaat one
might find it more convenient to draw the parallels togigen line as directed
perpendicular to it. Theoretically, the Maxwell association serves tlheppse, in any
case, because it alone allows a generalizatiorpace(which we will likewise do).

) See, especially: L. Cremona: Les figures réciproguestatique graphique (transl. by Bossut), Paris

1885, pp. 7 and 8. Then: L. Cremona, Le figure reciraoehla statica grafica, Mailand 1872 &., with
introduction by G. Jung, Mailand 1879.
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Incidentally, the entire chapter “Reciprocal diagrams Maxwell might be more
interesting to read than the one in Cremona. Overlgakia fact that Cremona restricted
himself to the consideration of discontinua (framélsg, theory to him seemed trivial,
since the idea of stress surface is not emphasizedthahds the quintessence of the
entire theory.

4. Henceforth, we, along with Maxwell, would like tpagially generalize formulas
(21) to (25), and then introduceciprocal spatial diagrams a purely geometric way.
In xyzspace, let any figure be given — a “spatial diagrarand furthermore, a function
F(x, vy, 2, which we will, however, later interpret as a “strégnction” that belongs to
this diagram. With the help of the equations:

(28) =, n=—, Z:_,

we associate this diagram with a second diagram §m@space. The relationship
between both diagrams is then a reciprocal one: Iiwaeld like to define a function
®(¢, n, ) through the equation:

(29) F+d=xf+yn+ 2,

then one has:

(30) X :a£ , :aﬁ , 7 :aﬁ ,
o0& on (14

Fig. 19.

In particular, we now defineréciprocal cell systems,’just as in the Maxwell
process, and indeed, as a spatial analogue of the frageahs of Figures 10, 12, 15,
which doubly cover the surface of a certain encircling gaty We think of there being
a configuration of adjacent polyhedra (cellskyzspace that doubly fills up the volume
of a certain closed encircling polyhedron. We thus abgaifirst spatial cell system,
whose cells, faces, edges, and vertices we shall sf€klg. 19 left). We then define a
continuous functiorF(x, y, 2 of a sort that, inside of the individual cdll it always
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agrees with a linear functics x + bjy + ¢z + d; , and that whed andK come together
in the facelK the equation of this face will be represented through:

(@—a) x+ b —-b)y+(C—-c)z+d—d=0.

This cell system then corresponds to a second cellmsysteér7{-space by means of
formulas (28). Both cell systems have the followingjpecal relationshipEach cell of
a diagram corresponds to a vertex of the other one, each vertexellp @ach face, to an

edge, and each edge, to a face.

corresponding face of the other system.
Inspired by the example that K. Wieghardt constructefign 19, the relationship is
as follows. We have:

7 cells

18 faces

20 edges

9 vertices

Left:

(The cube itself and the 67 vertices
pyramids into which it
decomposes when one
intersects it along the

twelve triangles that run

from the center of the

cube to the edges)

(The 6 cube faces and th&8 edges
12 isosceles triangles

with the 12 cube edges as

bases and its midpoint as

vertex)

(The 12 cube edges an@O faces
the 8 line segments that
extend from its midpoint

to the cube vertices)

(The 8 corners of the9 cells
cube and its midpoint)

Each edge of one system is perpendidhlar

Right:

(The 6 octahedral vertices
and the midpoint)

(The 12 octahedral edges
and the 6 line segments
that extend from its
midpoint to the octahedral
vertices)

(The 8 octahedral faces
and the 12 isosceles right
triangles with the 12
octahedral edges as
hypotenuses and the
midpoint as vertices)

(The octahedron itself and
the 8 tetrahedra into
which it is divided when
one intersects it along the
three planes that go
through each four
octahedral vertices)
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The functionF(X, y, 2) has the following values in the individual cells:

In the cubic cells: Zero
In the pyramidal cells: I x-1

“ “ Il y—1

“ “ [l: - X

“ “ IV: -y

“ “ V: z-1

“ “ VI: -z

We will give an application of this reciprocal cellssgm for the purposes of
mechanics in the next paragraph.

§ 4.

Comments on spatial stress systems and associated
stressfunctions

1. The thought certainly suggests itself that we mightneoh the equilibrium
conditions for the stresses irspatial continuum (Fig. 20):

Z R E.}.a_u.{.a_T:O’

P ox 0y 0z
// X (31) 6_U+6_Q+G_S:O’

“0 ox dy 0z

\/ — aT S AR
— +—=+—"=0,

| — ox 0y 0z

|S T

(in the event that only outer surface forces aat)on
Fig. 20
with a functionF(x, y, 2) that would be analogous to the Airy Ansatz. Hattregard,
Maxwell found that, as one may also assume thisetdrue, one does not arrive at
possiblestress systems for the continuum in this way,esthe equations above must be
related to three different functions, moreover. édamined this move closely.

There are thus special, but interesting, spattiats distributions that we obtain when
we, with Maxwell, now make the following two diffemt spatial extensions of the Airy
formulas (2):

Thefirst Ansatzs:
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2 2 2
P=AF—6'§, Q:AF—a—F, R:AF—a—F,
(32) X ay 07
__0°F T__62F U__62F
dyoz’ 020 X 09y
2 2 2
[where we now lets :6_2+6_2+6_ :
ox* oy’ o7

26

The second Ansatzonsists of assuming that tRe Q, U of the Airy Ansatz can be
defined by the following formula, in whicle, S are understood to mean arbitrary

guantities:
0°F 0°F
x> oxoy
0°F 0°F
PZ+2U o+ =- — A,
p+Qp dyox ay g
a L 0
which yields the following spatial generalization:
0°F 0°F O°F o
x> 0xdy 0x0z
0°F 0°F O°F
PLar® + >+ R/”
(33) {+2su9 +§TE§7 + Z?J/B?,[z’:_ ovox oy ayz *|
4 4 0°F 0°F O°F
0z0x 020y 0%
a 4 y O

wherea, B, ymean arbitrary quantities.
One easily confirms that the stress components of (82]38) satisfy equations (31)
for an arbitraryF.

2. The content of formulas (32) and (33) may be bettesribesl when we link them
with the idea of reciprocal diagrams. The statenoéhe question is then: For a given
function F(x, vy, 2), there is given, on the one hand, a reciprocal ogighip between an
xyzdiagram and &rnd-diagram according to formulas (28), and, on the othed,han
stress distribution in theyzdiagram according to formulas (32) or (33). Of what use to
us is the knowledge of thén{-diagram if we would like to learn about this stress
distribution?

Let do be a surface element keyspace with the normat, and letdw be the
corresponding surface elementénd-space. We then find, by an application of the first
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Maxwell Ansatdequations (32)jo do, first, a normal stress of magnitudg per unit

area, and second, a stress [in the surface element itself] wittotin@onent8/ on, an

/on, d{/ on per unit area. An application of the second Anga8), however, gives us
simply do, regarded as a planar quantity, which gives the stress on do as a magnitude,
direction, and sense.If we are concerned with the resultant stress dimite surface
pieceo then we find, by an application of the first Ansatg,dbmponents are determined

by means of the equations:

- _9¢ N
Xr—”(AFm:osnx %j do, Y=-, Z=-,
(34)
M,=-, My=-, M, =H{x[AFEosnx—a—/7j— ;{AFDcosnx—gj} do
Y Y on on

in which we convert the surface integral into an integrar the boundary curve by
means of the equations:

X, :J’,;dz_( dy Xz, X=eo,

(35)
My, =, M=, M =[{(xdx+ ydy+ zdp-( &+ 9+ &= F c

An application of the second Ansatz, however, tellshesresultant stress anas a
magnitude, direction, and sense (we shall not bother tiwitlthree rotational moments),
the surface piec® corresponding to the surface pieae when regarded as planar
guantities.

The three opposite relations thus found between asstumctionF(x, y, z) for an
associated stress system and its reciprocal diagrantampletely analogous to the
corresponding relations in two dimensions. This is eslheackear upon application of
the second Maxwell Ansatz; the surface elengentregarded as a planar quantity, is the
direct spatial generalization of the arc elemdmbf the plane, regarded as a transversal
vector. However, also by the first Ansatz, the agwlis easy to find. We first have, e.g.,
for two dimensions, the formula (cf., eq. (3)) Kr

(36) X = j Pdy-Udx= j (Pcosnx+ U cosny )ds,
and that is nothing but:
j(AF Rsosnx—gj ds,
on

2 2
[whereA :% +F ], which is analogous to the first spatial equaiid4); likewise, the
X y

first equation in (35) has its planar analogue, elgmthe equation that arises from
equations (27) on pp. 20:

X =Ng—Na,
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if z=0F / dzis null for two dimensions, hence, we

VA obtain for the stress component on the vertical
cylinder of unit height over the arc segmaht(Fig.
21):

(37) j/]dz—Z dy =ns—1a.

As a consequence, one can carry out the analogy
] when one introduces“éour-dimensional space’as
Fig. 21 an aid, and constructs aairy manifold” in it,
corresponding to the formula:

t=F(X Y, 2.
With the formulas:
5:6_F, :a—F, Z:a—F, t+3=xé+yn+z4
ox oy 0z

one could “polarize” this Airy manifold relative to thedraboloid™:
2t =X +y + 7,

and the “perpendicular’ projection of this polar imageoothe {nd-space yields the
diagram that is reciprocal to the stress system irSiich consequences would lead us
into four-dimensional relationships that are very bealut#nd convincing, but the
majority of readers would then encounter unnecessaigudifés.

3. After the development that was just given, we may,nwith only minor effort,
arrive at the following mechanically-described meaningdar previously considered
reciprocal cell system:

With both Maxwell Ansatzen, we obtain, on the oaadstresses on the faces of the
diagramthat are given by the lengths of the corresponding edgdseadther diagram
(homogeneous stresses, as might occur in the cel tdoapsuds). On the other hand,
we obtainstresses on the edges of the diagthat are quantities given by the surface
areas of the corresponding faces of the other diagram.

Hence, only the second spatial Ansatz leads to the @adénsg of stress systems in
spatialframes For that reason, the Henneberg reference also spagksf this second
Ansatz (no. 41), and also only more casually, sincegdmeral study of Airy stress
functions could not be assumed in it.

The statics of stress states for arbitrary loads dime obviously achieves when one
grasps the entire Maxwell line of thought has an interg@saspect to it; however, its
various parts appear in a wonderful connection that &s bnderstood only slightly up
to now. For that reason, in the current presentatien task of working out that
connection was considered to be an actual goal, frdmchwthe basis for new
developments of the theory is likewise arrived at.

Gottingen, 10 February 1904.



