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 The following is a free reference to J. C. Maxwell’s treatises on frames, reciprocal 
figures, and diagrams 2) and indeed, to essentially the last one cited.  We will very much 
deviate from the presentation of Maxwell itself, and results will also be announced that 
were not found by him and which, insofar as nothing special is remarked, originate with 
F. Klein. 
 The inducement for the present treatise was the encyclopedia reference of Herrn 
Henneberg: Über die graphische Statik der starren Körper 3).  Naturally, the Maxwell 
papers find only a brief mention in it, while it still seems desirable to deduce the essential 
content of them – which are difficult to read – in a thorough fashion and likewise discuss 
some ideas that are organically connected with those of Maxwell. 
 

§ 1. 
 

On the Airy stress surfaces of planar continua 
 

 1.  When a planar continuum carries stresses with the components P¸Q, U (Fig. 1), it 
is known that static equilibrium at each place is obtained from the existence of the two 
differential equations: 
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as long as external forces act only on the boundary of 
the continuum, but not on the interior.  Airy 4) has 
already remarked that these equations say nothing more 
than that P, Q, U can be expressed by the equations: 
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 2) The scientific papers of J. C. Maxwell: 
a) V. I, pp. 514-525: On reciprocal figures and diagrams of forces.  London, Edinburgh, and Dublin 

Phil. Mag. v. 27 (4); pp. 250 (1864). 
b) V. I, pp. 598-604: On the calculation of the equilibrium and stiffness of frames.  Phil. Mag., v. 27 (4); 

pp. 294 (1864). 
c) V. II, pp. 102-104: On reciprocal diagrams in space and their relation to Airy’s function of stress, 

Proc. London Math. Soc., v. 2. 
d) V. II, pp. 492-497: On Bow’s method of drawing diagrams in graphical statics, etc.  Camb. Phil. Soc. 

Proc., v. 2, pp. 407 (1876). 
e) V. II, pp. 647-659: Diagrams. Encyclopaedia Brittanica. 
f) V. II, pp. 161-207: On reciprocal figures, frames, and diagrams of forces. Trans. Royal Soc. 

Edinburgh, v. 26, pp. 1 (1872). 
 3) Encyclopädie d. mathematischen Wissenschaften IV. 1 (printed 1903). 
 4) Airy: On the strains in the interior of beams.  Phil. Trans. 1863 (appeared 1864), v. 153. 
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as the second partial differential quotients of a function F(x, y); we will thus call such a 
function F(x, y) with this meaning an “Airy function”  or “stress function.”  From now 
on, it will be suspected and also shown that the stress function for a planar stress problem 
plays a central role. 
 In order to orient ourselves to this situation somewhat, we, along with Maxwell, 
would like to immediately make the connection between resultant stresses along an arc 
segment (ab) in our continuum with the stress functions.  On the arc segment ds (Fig. 2), 
one has stresses with components: 
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and thus, on the arc segment (ab) one has the resultant stress: 
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Thus, the sign is chosen in such a way that in the coordinate system chosen by us in Fig. 
2 the Xr, Yr, Mr represent the resultant stress that acts on each part of the continuum that 
lies on the left-hand side of an advance from a to b on the arc segment (ab). 

 A further aspect of the importance of the stress 
function is the fact that its existence is independent of 
the special physical properties of the continuum since 
they now reflect back into the nature of F, and indeed, 
in such a way that the physical properties of the 
continuum are due to properties of the stress function, 
and conversely. 
 It is therefore almost self-explanatory that we 
illustrate such an important function by the geometric 
consideration of the surface: 
 

(5)      z = F(x, y); 
 
the Z-axis is perpendicular to the plane of the continuum.  We naturally call this surface 
an “Airy surface”  or “stress surface”; the fact that it is independent of the coordinate 
system is easy to confirm, but will not be mentioned expressly. 
 

 
Y 

Q 

U 
P 

X 

Fig. 2. 

b 

a 

Xr, Yr, Mr 



LXXVII.  On stress surfaces and reciprocal diagrams                               4 

  

 2.  We now first consider a homogeneous, elastically-isotropic plate, so there exist 
the well-known relations: 
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between the stress components and the elastic deformations (“strain”), where λ, µ are two 
constants that are individual to the material of the continuum.  If one eliminates the 
deformation magnitudes from these equations by differentiation and takes into account 
(2) then the following condition remains for the stress function: 
 
(7)      ∆∆F = 0, 
where, in the usual way, one has: 
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Therefore, if a surface z = F(x, y) is to be an Airy surface for a homogeneous, elastically-
isotropic plate then it must, in any case, satisfy the differential equation ∆∆z = 0 5). 
 Secondly, we consider a special electrostatic stress state in the ether, in which we 
specialize the function Ψ that appears in the formula on page 147 of Maxwell’s 
“Electricity” 6) in such a way that it depends upon only x and y, but not z.  We then have 
the stress state: 
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in an ether plane, where Ψ is a function that satisfies the condition ∆Ψ = 0.  Since P + Q 
= 0, it follows immediately upon consideration of equation (2): If a surface z = F(x, y) is 
the stress surface that goes with the electrostatic stress state in equations (8) then it must 

                                                
 5) This result seems to have been first found by Herr Michell: J. H. Michell, On the direct calculation 
of stress in an elastic solid, etc. Proc. London Math. Soc., v. 31 (1900). 
 6) J. C. Maxwell, A treatise of electricity and magnetism.  v. 1, 2nd ed., Oxford 1881. 
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likewise satisfy the differential equation ∆z = 0.  (Incidentally, F and Ψ are connected by 

the formula: F = − dx dy
x y

∂Ψ ∂Ψ
∂ ∂∫∫ .) 

 Finally, we would like to investigate what sort of stress distribution exists in a planar 
continuum when the associated stress surface is a piece of a developable surface, which 
we assume, for the sake of simplicity, is single-valued and singularity-free.  If z = F(x, y) 
is its equation and we let the XY-plane go through one of its generators then ∂z/∂x and 
∂z/∂y are naturally constant along this generator.  Therefore, along the X-axis, as the 
projection of the generator onto the XY-plane, one has: 
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Thus, if (∂z/∂x)′ and (∂z/∂y)′ are the values of the first differential quotients for an 
infinitely close generator then from equations (4) one obtains, on an infinitely narrow 
generating strip between two generators, the constant resultant normal stress: 
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A developable surface, as a stress surface, thus 
corresponds to a stress distribution in the form of a 
sort of “sequence of strips,” namely, the strips in 
the XY-plane of the continuum that come about as 
projections from the surface.  Along each strip there 
reigns a certain normal stress that generally varies 
from strip to strip, while no stress at all is carried 
over from one strip to another.  We can think of the 
stress system of this sequence of strips as best 
realized mechanically by neighboring threads – i.e., 
a sequence of threads – when we replace each strip 

with a middle thread, which we stress in such a way that its stress is equal to the stress on 
the strip when it is replaced (Fig. 3). 
 
 3.  Of particular interest now is the consideration of a continuum that is composed of 
a sequence of strips or a corresponding sequence of threads and a homogeneous, 
elastically-isotropic plate, since that is closest to the problem that appears in the 
applications of the theory of elasticity of finding the stresses in such a plate under the 
influence of an equilibrium system of external forces that act on the boundary of the 
plate. 
 We think of the boundary of the plate − which we assume to be simply-connected, in 
order to avoid complications – as being given in such a way that the coordinates of its 
points are given by two functions of a parameter t that runs from 0 to T, and in a 
completely analogous way, we give the external forces: 

 

Fig. 3. 
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X dt,  Y dt,  M dt = (yX – xY) dt 
 
that act on an element dt by means of three equations: 
 

X = ϕ(t), Y = ψ(t), M = χ(t), 
 
where, for the sake of simplicity, the functions ϕ, ψ, χ may be chosen such that the 
sequence of strips (11) covers the part of the plane outside of the plate only once.  Since 
the system of forces is an equilibrium system, one has the equations: 
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If we now extend our elastic plate to one that is extended over the entire plane by setting: 
 
(11)    − ψ(t) ⋅ x + ϕ(t) ⋅ x − χ(t) = 0 
 
outside of the sequence of strips (threads, resp.) then we will be led to essentially the 
solution of the aforementioned problem of elasticity of finding a stress surface for the 
continuum thus composed for which along any piece t0, t of the plate boundary the 
resultant strip-stress has the components: 
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 Next, we construct those parts of the desired stress surface that exist over the 
sequence of strips.  There is an associated developable surface that admits the parametric 
representation: 
 
(12) z = Φ(x, y, t) = A(t) x + B(t) y + C(t),  Φ′ = A′(t) x + B′(t) y + C′(t) = 0, 
 
where the prime symbol means differentiation with respect to the parameter and A, B, C 
are three unknown functions; they may be determined immediately.  For an arbitrary 
advance on the surface, one has: 
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Thus, it follows that: 

A = − 
0

t
dtψ∫  + a, B = 

0

t
dtϕ∫ + b, 

 
where a and b are integration constants.  Since, from equation (11), one must have: 
 

A′ : B′ : C′ = −ψ  : ϕ  : −χ, 
 one then has, analogously: 

C = −
0

t
dtχ∫  + c, 

 
where c is a new integration constant.  The desired developable surface is then given by 
the equations: 
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The developable part of the desired stress surface is then uniquely established, up to the 
addition of an arbitrary plane, which naturally must influence the stresses on the 
sequence of strips.  Outside of that, it is closed.  (From (10), the three integrals from 0 to 
T in (13) vanish.) 
 With the developable part, we now proceed to likewise say something about the still-
missing piece of the desired stress surface, namely, the one with coordinates and 
tangential planes along the space curve that the developable surface has in common with 
the vertical cylinder above the boundary of the plate.  They must then equal the 
corresponding quantities for the developable surface in the event that we would like to 
exclude the singularity here that appears as finite stresses in the boundary of the plate 
itself, hence, an element without breadth.  If the entire stress 
surface possesses a notch somewhere on the space curve in 
question then, from equations (4), one would find a finite 
resultant stress for an ever so small arc segment (ab) that 
intersects the plate boundary at the corresponding place.  
This is not in itself absurd, except that the plate must then 
be surrounded by a particular stressed thread, which we 
shall not assume here.  It thus still remains for us to solve 
the problem: To find a function F(x, y) that satisfies the 
differential equation ∆∆F = 0 in the interior of the plate and 
on its boundary assumes the prescribed values for F and the differential quotient with 
respect to the normal ∂F/∂n.  The solution to this problem cannot be multi-valued, as was 
proved by Mathieu 7).  We thus arrive at the end result (F. Klein): 
 

                                                
 7) E. Mathieu: Mémoire sur l’équation aux différences partielles du quatrième order ∆∆u = 0, etc., in 
Liouville’s Journal, Ser. 2, v. 14 , pp. 378 (1869). 
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 In order to find the stress distribution that is produced in a simply-connected, 
homogeneous, elastically-isotropic plate by an equilibrium system of forces that act on 
the boundary one first constructs a developable surface – which is completely determined 
up to the addition of an arbitrary plane – as the stress surface that is defined by sequence 
of strips for the system of forces, and thus is a developable surface that connects to the 
plate boundary everywhere without a notch and satisfies the differential equation ∆∆z = 0 
everywhere in the interior of the plate.  If z = F(x, y) is this surface then the desired 
stresses themselves are given by the equations: 
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 If the plate is multiply connected and the external forces are in equilibrium at every 
point of its boundary then the stated elasticity problem can be solved in a completely 
analogous way by a surface ∆∆z = 0 that is connected with as many closed developable 
surfaces without notches as the plate boundaries possess.  Now, since however each of 
these developable surfaces is determined by the external forces only up to an arbitrary 
plane one thus obtains essentially different surfaces ∆∆z = 0 here for different choices of 
these arbitrary planes.  Herr Michell, who incidentally, as it seems, was the first to 
recognize the connection between the differential equation ∆∆F = 0 with the stated 
elasticity problem 8), found in the treatise cited on page 4 the necessary additional 
condition for the stress surface when he considered the circumstance that the stresses 
arising from the shifting of the points of the plate must be unique. 
 If the external forces are in equilibrium on not just each individual boundary, but only 
for all of the boundaries collectively, then the stress surface shows another inessential 
multi-valuedness (affine periodicity) relative to the stresses themselves, whose analogues 
for discontinuous systems of stresses we will examine thoroughly in § 2. 
 

 4.  The ordinary, static beam problem 
provides beautiful and simple examples of 
stress functions ∆∆F = 0. 
 We first consider (Fig. 5) a one-sided, 
anchored, horizontal, perpendicular to our 
plane, infinitely narrow beam of finite 
height h and length l that is loaded at the 
free end in such a way that the resultant of 
all forces is a force π that is directed 
vertically downwards.  By a suitable 
assumption on the distribution of unit 

forces over the cross-section, the associated stress function is: 
 

F(x, y) = 
32h

π
(l – x) (4y3 – 3h2y). 

                                                
 8) Michell, loc. cit. 
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It leads to the stresses that are given for this problem in all of the textbooks.  Thus, under 
the assumption that the beam can be regarded as a homogeneous, isotropic, elastic plate 
the stress distribution in its interior that is given in the textbooks is precisely correct.  
(The same is not true for calculation of the deformation that the beam suffers under the 
influence of the stress system; here, the usual theory introduces approximations that one 
can, by the way, avoid in connection with equations (6) with no extra effort.  Naturally, 
we cannot go into this here, but we would like to argue that one generally should separate 
the determination of the stresses from the possibility of determining the deformations.)  
Of particular interest is the construction of the stress surface that is associated with our 
example!  Its developable part is, however, too complicated to be described without a 
model.  In order to still have an example for which this is easily possible, one considers, 
for the anchored beam of Fig. 5, the case of the so-called “pure shear,” which then 
corresponds to the stress surface: 

z = 3
3

2M
y

h
⋅ , 

 
which satisfies the differential equation ∆∆z = 0 inside of the beam, where M is the shear 
moment that acts on the free end.  This surface – obviously, a cylinder whose generator is 
parallel to the X-axis – now likewise defines the developable part of the stress surface of 
the beam. 
 Maxwell gave a further example in the last treatise that was cited on page 2.  The 
beam has a height h and extends from x = − l to x = + l.  It is loaded along its upper 
boundary with the load K per unit length, and it further has a weight k per unit length.  A 
null pressure acts on the center of the end surfaces at x = ± l; a corresponding simplest- 
possible distribution of positive and negative pressure remains preserved on the 
individual elements of the end surfaces.  Maxwell found: 
 

F(x, y) = 
5

2 2 2 3 4 3 2
3

2
( )(3 2 )

2 5

k K y
l x hy y hy h y

h

 + − − + − − 
 

 

 
for the stress function 9).  He also gave an interesting suggestion as to how the stress 
distribution given here could be realized experimentally in a clever way. 
 Precisely this example − and a large number of other examples − had already been 
treated by Airy himself in his treatise, as well as presenting some illustrations − namely, 
the stress trajectories – in which he introduced what he called the stress function for just 
that purpose 10).  He always assumed F to be a polynomial in x, y and thus took as many 
lower-order terms as possible that he could satisfy the boundary conditions.  Thus, it is 
noteworthy that he completely ignored the fact that F must fulfill a partial differential 
equation in the interior of the beam that depends upon the elastic properties of the beam 

                                                
 9) Since the weight is assumed to act on the elements of the beam interior, the stress components 
themselves assume the form: 
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 10) Citation on page 2. 
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(which is just the equation ∆∆F = 0 if the beam is elastically isotropic).  Maxwell already 
criticized this in his treatise, but likewise showed in the case just mentioned, which was 
examined closely by him, that errors of the sort that were present in Airy did not affect 
the numerical values of the stress components essentially. 
 
 

§ 2. 
 

On stress surfaces for plane discontinua (frames) 
 

 1.  Equations (1), from which Airy concluded the existence of the stress function for a 
planar continuum that carries stresses, immediately have no sense when one is treating 
the stress distribution in a discontinuum, such as a planar frame.  However, the stress 
function or the stress surface is somewhat more general than the equations that it was first 
obtained from; it exists just as well for discontinua as for continua.  One must then (with 
Maxwell) simply use the formulas (4) that were obtained by integration as the basis, as 
will be discussed further in the sequel.  In what follows, it will be our problem to discuss 
the special circumstances that arise from this for frames. 

 In order to avoid unnecessary complications in the 
presentation we will throughout treat only those planar 
frames that define the image of a polygonal net whose 
elements nowhere cross and overlap, but all lie flat next 
to each other (Fig. 6).  For them, we will assume, until 
later, that external forces act only on the junctions of the 
encircling polygon.  At the conclusion of this paragraph, 
we will then also briefly treat some frames that do not fit 
into this schema.  Naturally, we think of the junctions as 
frictionless links, such that only stresses in the normal 
direction of the rods – so-called “basic stresses” or 
principal stresses” − can be present. 

 K. Wieghardt set the goal for himself in what follows of starting with the complete 
analogy to the Maxwell Ansätzen and working out the connection that exists in a 
continuum between the Airy stress function and the Airy stress surface: It shall be shown 
that the existence of equilibrium conditions for a frame is completely equivalent with the 
existence of an as-yet-to-be-defined stress surface. 
 One achieves this objective in two steps: First, one shows that one can always give a 
stress surface, by means of which, a stress system can be defined, and which, by a 
simultaneous definition of a notion of force, is in equilibrium with our frame, and second, 
one shows the converse, that such a stress surface can be constructed from any stress 
distribution on the frame that is in equilibrium for the given notion of force. 
 We construct a surface over our frame that is composed of nothing but adjacent 
planar polygonal surfaces such that their edges, when projected onto the plane of the 
frame, yield precisely the rods of the frame.  The construction of such a surface, which 
we would like to call a “faceted surface,” is always possible; in the simplest case, it 
represents a single planar surface polygon.  On this faceted surface we now fix a 
“polyhedral zone” as follows: Through each edge of the encircling polygon we lay a 

 

Fig. 6 
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plane that is, however, not completely arbitrary, but subtends an angle different from 90o 
with the plane of the frame and furthermore the edges created wherever two consecutive 
planes intersect possess the following properties: a) Of the two half-rays, into which each 
such edge will be divided by the vertex of the faceted surface periphery that it lies on, one 
of them – when projected onto the frame – shall always intersect the domain of the frame, 
but not the other.  b) All half-rays that – when projected onto the plane of the frame – do 
not intersect the domain of the frame shall never intersect.  Any two of these latter 
consecutive half-rays then intersect in a strip with the side of the faceted surface 
periphery that lies between them and the three planes that they have in common, and the 
surface that is composed of these strips is the desired polyhedral zone; it is the analogue 
of the developable surface of § 1.  The denser the edges of the polyhedral zone are joined 
together, the more they will be comparable to the generators of a developable surface, 
while simultaneously our strips approach the generating strips of a developable surface. 
 Having constructed the total surface in this way from faceted surfaces and polyhedral 
zones such that it is continuous and covers the plane once, we must now consider it in 
more detail; we would like to see which stress distributions on the frame it gives rise to 
when we regard it as a stress surface.  In any case, one thing is clear from the outset: that 
it gives us no information about specific stresses – i.e., stresses per unit length or area – if 
they are given by equations (2) by means of the second differential quotients of the stress 
surface, since the second differential quotients for our surface are either null, namely, in 
the interior of the individual facets and strips, or infinitely large, namely, on the edges.  
By contrast, the first differential quotients are finite everywhere, but also discontinuous 
on the edges.  Accordingly, we define the resultant stresses on our surface by means of 
Maxwell equations (4) on any arc segment ab in the plane of the network.  If we now first 
assume the formulas (4) for an arc segment that lies completely inside of a facet or a strip 
and then for an arbitrarily small arc segment ab that intersects a (projected) edge of the 
stress surface then we find that our surface, when regarded as a stress surface, mediates a 
system of stresses that is found to be in equilibrium and acts on the projected edges.  If 
we then replace the stresses in the projected edges of the polyhedral zone with forces that 
act upon the vertices of the encircling polygon then we have arrived at a first result: Any 
surface that is composed in the manner described of faceted surfaces and polyhedral 
zones defines for us an equilibrium system of external forces that act upon the 
corresponding frame and a stress distribution that is under the influence of these forces 
when in equilibrium. 
 With that, the first step towards attaining our goal is completed, and we now take the 
second one. Any line of action of the force system will be divided into two half-rays by 
the vertex point of the encircling polygon that lies on it.  We expect these half-rays to 
fulfill conditions a) and b), just like the corresponding half-rays in space.  We now 
choose any junction of the frame and, for the sake of simplicity, make it the starting point 
of an XYZ-coordinate system, as shown in Fig. 7 (on pp. 12).  The edges 1, 2, …, n and 
the angle-spaces I, II, …, N can collide at this junction.  For one of the angle-spaces – 
say, I – we assume only an arbitrary facet (strip, resp.): 
 

z = αx + βy + γ. 
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We then proceed through the facets (strips, resp) II, III, …, N by going through our 
junction cyclically, while making sure that whenever we apply equations (4) to two 
consecutive planes I, II, …, N this always gives the same stress on the common edge.  If 
Xi, Yi are the components of the stress on the edge J – 1, J, as in Fig. 7, then the equations 
for these planes read 11): 
 

(14)  

2 2

2 3 2 3

2 2

2 2

(1) ,

(2) ,

(3) ( ) ( ) ,

( ) ,

( ) .

i i

i i

n n

i i

z x y

z Y x X y x y

z Y Y x X X y x y

i z Y x X y x y

n z Y x X y x y

α β γ
α β γ

α β γ

α β γ

α β γ

= + +
 = − ⋅ + ⋅ + + +
 = − + + + + + +




    = − ⋅ + ⋅ + + +   
   




    = − ⋅ + ⋅ + + +       

∑ ∑

∑ ∑

⋮

⋮

 

 
Now, since the n stresses on the junction are in equilibrium, the last equation is identical 
with: 

z = Y1x – X1y + αx + βy + γ, 
 
and if we assume the points x, y are on the projected 
edge 1 then we would have: z = αx + βy + γ; i.e., the 
entire cyclic sequence of n facets (facets and strips, 
resp.) is closed in itself.  Therefore, the fact that 
equilibrium reigns between the stresses at any junction 
of our frame implies the existence of a piece of the 
stress surface at the junction that surrounds it and is 
completely determined up to an arbitrary plane. 
 We will seek to unite all of these pieces that are 
associated with the various junctions of the frame into a 
continuous, nowhere branching surface by a suitable 
choice of the arbitrary plane.  Beginning with any junction, we shade the stress surface 
piece (Fig. 8, left) that was constructed around it (with an arbitrary plane).  We enumerate 
the vertex points of the shaded polygon (which might possibly extend to infinity) 
cyclically by 1, 2, …, m.  We can now identify the plane, which is arbitrary for the stress 
surface piece around 1, with one of the shaded surfaces that contact 1 (perhaps I); then M 
also belongs to this surface piece, since in such surface pieces the opposite position to 
two consecutive planes is completely determined by the stress in their common 
(projected) edge.  Hence, the stress surface piece around 1 is smoothly connected with the 

                                                
 11) Formulas (14) and (15), which will be operated with here and on page 14, were first presented by F. 
Klein in a lecture during the Summer of 1896; cf., the Henneberg Enzyklopädie reference.  They 
correspond to the formulas that were presented in (13) of § 1 for the developable surface that was 
considered there (which is a limiting case of the polyhedral zone considered here). 

 
Y 

II 

Z 

I 

N X 

X1Y1 

n 

1 

Fig. 7 
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shaded polygon.  We can then smoothly connect the pieces of the stress surfaces 2, 3, …, 
m – 1 on the shaded surfaces II, III, …, M − 1 one after the other into our shaded 
polygon, with the presently arbitrary planes identified.  The question still remains of 
whether the last surface piece constructed Z (facet or strip) smoothly connects with the 
first surface piece constructed A.  However, this must be the case if we choose (Fig. 8, 
right) the plane A to be the arbitrary plane at the junction m and construct the piece of the 
stress surface around m, since then we can arrive at no other facets (strips) than M, M – 1, 
…, Z since the opposite location to two neighboring planes of this sequence is completely 
determined by the stress in the common (projected) edge.  The sequence A to Z – as the 
piece of the stress surface around m – then likewise closes on itself.  If one now shades 
all of the stress surface pieces constructed up to now and repeats the construction that we 
just described at the vertices of the now-shaded larger polygon then one ultimately 
arrives, in fact, at a continuous, closed in itself, “single-valued” stress surface that covers 
the entire plane simply.  With that, our goal is achieved; in summation, we say: 

 

A 

Z 
m m−1 

1 
2 

I II 
M 

M−−−−1 

 

m − 1 

Z 
m 

A 
1 

2 

 
Fig. 8. 

 
 For a planar frame that is composed of nothing but smoothly neighboring polygons, 
and whose junctions are frictionless links, and on which external forces of the described 
type act only upon the junctions of the encircling polygon, the existence of the 
equilibrium conditions is completely equivalent to the existence of a continuous and 
everywhere single-valued stress surface.  The stress surface consists of a polyhedral zone 
whose edges, when projected, yield the lines of action of the system of forces, and a 
facetted surface whose edges, when projected, deliver the rods of the frame. 
 If the external forces do not satisfy both of the restrictions that we made then 
complications can appear that hardly affect the understanding of the problem, but do 

affect the two-dimensional representation, insofar as the 
polyhedral zone can be become very complicated (similar 
to the developable surface in the first beam example of § 
1, pp. 8); we shall therefore not go into them further. 
 
 2.  A lovely application of the theorem just derived is 
the following one:  Let the frame be composed of nothing 
but triangles (Fig. 9); it is subjected to the influence of 
some equilibrium system of forces that act on the 
junctions of the encircling polygon.  The question is this: 
How many stress surfaces are there for this given system 

 

Fig. 9. 
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of forces; in other words, how statically indeterminate is the frame?  We construct − in 
direct reproduction of the developable surface for a continuum (equation (13)) – the 
polyhedral zone that is defined by our system of forces Xi, Yi, Mi, when we set down the 
following sequence of strips 12): 
 

(15)   

2 2 2

2 3 2 3 2 3

2 2 2

2 2 2

1 1

,

,

( ) ( ) ( ) ,

,

,

i i i

i i i

m m m

i i i

m m

i i

z x y

z Y x X y M x y

z Y Y x X X y M M x y

z Y x X y M x y

z Y x X y M x y

z Y x X

α β γ
α β γ

α β γ

α β γ

α β γ

= + +
= − + − + + +
= − + + + − + + + +

     = − ⋅ + ⋅ − + + +     
     

     = − ⋅ + ⋅ − + + +     
     

   = − ⋅ +  
   

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

⋮

⋮

1

.
m

iy M x y x yα β γ α β γ















  ⋅ − + + + = + +   
  

∑

 

 
The faceted surfaces on the periphery of our frame are likewise established by means of 
this closed polyhedral zone, which is completely determined up to the arbitrary plane z = 
αx + βy + γ.  However, the coordinates of the faceted surface over any junction inside of 
the encircling polygon can be chosen in a completely arbitrary way since a plane can 
indeed be defined by three completely arbitrary points.  Hence, the degree of the static 
indeterminacy of our triangular frame is simply equal to the number of its “internal” 
junctions. 
 Thus, should the problem of determining the stress surface of a plane triangular frame 
possess a unique solution one would have to make special assumptions about the physical 
nature of the rods of the frame that are analogous to their behavior as continua.  We 
therefore do not go into this here; the case in which the rods are elastic, in the sense of 
Hooke’s law, was examined by K. Wieghardt in a special treatise 13). 
 
 3.  The stress surfaces that we obtained up to now were 
always single-valued surfaces; a point x, y always 
corresponded to just a single value z.  One can, with little 
effort, define examples of multi-valued stress surfaces that 
likewise lead to the stress systems of planar frames.  Thus, 
there is a spatial polyhedron that is composed of planar 
polygons and closed in itself that can be regarded as the 
stress surface of a system of self-stresses in that frame that 
comes about as its orthogonal projection.  There is no 

                                                
 12) Cf., the footnote on pp. 12. 
 13) [Appearing in the Verhandlungen des Vereins zur Förderung des Gewerbefleisses in Preussen, 85 
(1906)]. 

 

Fig. 10. 
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difficulty in seeing this: Formulas (4) are also valid here, only one must pay attention to 
the fact that the frame surface now covers the surface of its encircling polygon twice, and 
therefore at a point x, y the differential quotients ∂z / ∂x , ∂z / ∂y have different values 
according to whether one finds them in the upper “sheet” or the lower one.  One must 
further observe that for the lower sheet the signs in formulas (4) are inverted.  The 
detailed behavior of these figures was treated quite thoroughly by Maxwell himself 14). 
 By the way, such a self-covering frame can also give rise to the existence of a single-
valued stress surface; namely, if one knows the stress system then one can conversely 
construct a single-valued stress surface.  One simply regards all of the geometric 
intersection points of the rods as actual junctions and then constructs the stress surface 
that they generate, with the encircling polygon corresponding to the simply-covering 
frame of the given stress system.  However, since any stress surface of this frame does 
not conversely have meaning for our self-covering frame this is of only secondary 
interest.  An interesting question is the following: What is the general situation for the 
single or multi-valued stress surfaces of such self-covering frames that lead to the so-
called “one-sided” surfaces, when regarded spatially?  (Fig. 11.) 15) 
 

Fig. 11. 

 

Fig. 12. 

 

Fig. 13. 

2 1 

6 

5 4 

3 
3′ 

2′ 
1′ 

6′ 

5′ 
4′ 

 
 Conversely, there are, however, also multi-valued stress surfaces for our frames that 
do not cover them.  For example, if no external forces act then all of the strips of the 
polyhedral zone lie in a plane, and we regard precisely that part of this plane as the 
polyhedral zone that extends the faceted surface to a closed spatial polyhedron.  We 
consider the frame of Fig. 12 as an example.  We ask: How many self-stresses are 
possible in it?  The associated spatial polyhedron is obviously composed of two hexagons 
and twelve triangles.  Had we established the two hexagons arbitrarily then it would be 
completely determined.  Now, since the opposite location (?) to two planes includes 
essentially three arbitrary parameters it follows easily from our construction that there are 
∞3 self-stresses in our frame (of the form: S = aS1 + bS2 + cS3). 
 Another interesting example of multi-valued stress surfaces is provided by the 
“multiply connected” frames.  We call a frame that does not cover itself multiply 
connected when not all of the internal junctions are force-free.  Thus, the frame that we 
just mentioned is multiply connected for the loading of Fig. 13.  We seek to construct a 
stress surface for it!  We regard the entire frame as one such with two encircling polygons 
– an outer and an inner hexagon – and then begin to fasten a polyhedral zone for the 

                                                
 14) See reference a) on pp. 2. 
 15) [I have answered this, in any case, theoretically important question.  See the treatise LXXVIII that 
follows this one. K]  
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corresponding external forces to both vertical cylinders over these two encircling 
polygons.  Let the forces on the outer hexagon be Xi , Yi , Mi and on the inner one iX ′ , 

iY′ , iM ′ .  In order for all of them to be in equilibrium it is only necessary that: 

 

(16)  
6

1

( )i iX X′+∑ = 0, 
6

1

( )i iY Y′+∑ = 0, 
6

1

( )i iM M ′+∑ = 0, 

 

while the individual sums 
6

1
iX∑ ,

6

1
iX ′∑ , etc., can very well be non-zero.  If we now 

construct the external polyhedral zone, by enumerating the strips: 
 

(17)  z = − 
0 0 0

i i iY x X y M
ν ν ν     ⋅ + ⋅ −     

     
∑ ∑ ∑ , (ν = 0, 1, 2, …) 

 
just as in the prescription of equations (15) – where an arbitrary plane is considered 
through the three quantities X0, Y0, M0 – then this sequence does not close under a 
complete circuit, and moreover, the z of the polyhedral zone increases with each circuit 
by the period: 

(18)  z0 = − 
6 6 6

1 1 1
i i iY x X y M

     ⋅ + ⋅ −     
     
∑ ∑ ∑ , 

 
so we do not have a closed polyhedral zone, but an “affine-periodic” one, in the sense of 
these formulas.  We obtain corresponding formulas for the internal polyhedral zone, only 
we must invert all signs when applying formulas (15) in order that under the application 
of equations (4) to two neighboring strips the correct stress is associated with the 
common edge.  We thus have the sequence of planes: 
 

(19)  z′ = 
0 0 0

i i iY x X y M
ν ν ν     ′ ′ ′⋅ − ⋅ +     

     
∑ ∑ ∑ , (ν = 0, 1′, 2′, …) 

 
where the three quantities 0X ′ , 0Y′ , 0M ′  again represent the arbitrariness in a plane.  (The 

∞3 self-stresses of the frame are expressed by the three quantities: X0 − 0X ′ , Y0 − 0Y′ , M 

− 0M ′ !)  We thus obtain the period: 

 

(20)  0z′ = 
6 6 6

1 1 1
i i iY x X y M

     ⋅ − ⋅ +     
     
∑ ∑ ∑ , 

 
and, from formulas (16), this is equal to the period z0 above.  Now, since the faceted 
surface is also given for the two polyhedral zones, as is immediately obvious, we have 
the result: The entire stress surface has a period determined by formula (18) or (19) 
corresponding to a cyclic circuit of our frame; it is composed of two unclosed polyhedral 
zones and an unclosed faceted surface that winds upwards like a spiral staircase. 
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 Naturally, none of this infinite winding upwards of the spiral staircase is noticed in 
the projection of the stress surface onto the plane of the frame; it covers the projection 
simply and will thus be unknowable. 
 The aforementioned behavior has nothing surprising to say about the things that one 
trusts in the integration of exact differentials of first order, perhaps from function theory.  
If: 

df = p dx + q dy 
 
is such a differential and one integrates f over a ringlike-connected domain then f takes on 
an additive period under a circuit of the ring.  Precisely the same thing is true for the 
stress function that is defined by the second differential: 
 

d2F = Q ⋅ dx2 – 2U ⋅ dx dy + P ⋅ dy2, 
 

except that the additive period is not a constant, as in the previous case, but a linear entire 
rational function of x and y. – It would be interesting to reconstruct the behavior that was 
discussed here only in an abstract, analytical fashion for numerous examples in concreto. 
 

§ 3. 
 

On reciprocal figures and diagrams. 
 

 1.  a)  Any rectilinear line segment (in a plane) with the endpoints a (xa, ya) and b (xb, 
yb) possesses, ab initio, a certain length and a certain direction, but no definite sense.  A 
line segment thus defines for us, in the simplest form, two vectors that are parallel to it, 
namely, the two vectors with the components: 
 
  Ξ = xb − xa , Η =  yb − ya ,  on the one hand, 
 
and  Ξ = − (xb − xa), Η = −  (yb − ya), on the other, 
 
as well as two vectors that are perpendicular to them: 
 
  Ξ = − (yb − ya), Η =  xb − xa),  on the one hand, 
 
and  Ξ = yb − ya, Η =  − (xb − xa), on the other. 
 
 We would like to call the first two polar vectors to our line segment, and the last two 
the associated transversal vectors.  When we now assign our line segment a definite 
sense of motion we call it “the line segment (a b)” or the “the line segment (b a),” 
according to whether we think of ourselves as moving from a to b or from b to a.  For the 
sake of illustration, one will interpret the sense of motion as saying that one understands 
the line segment to be endowed with an arrowhead.  We can now associate each of the 
two “line segments with arrowheads” with one of the two polar vectors, and likewise, one 
of the two transversal vectors, such that when one of the two possibilities is established 
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once and for all each of the two line segments with arrowheads is associated with a 
completely well-defined polar vector, as well as a completely well-defined transversal 
vector.  We now deal with the arbitrariness in the following way: 
 By the phrase “the polar vector that belongs to the line segment (a b)” − or briefly 
“the polar vector (a b)” − we understand this to mean the vector with the components: 
 

Ξ =  xb − xa , Η = yb − ya ; 
 
and by the phrase “the transversal vector that belongs to the line segment (a b)” – or, 
briefly, “the transversal vector (a b)” – we understand this to mean the vector with the 
components: 

Ξ =  yb − ya , Η = − (xb − xa). 
 

 With these abbreviations, one obtains the transversal vector (a b) in the coordinate 
system that we have always used, when one rotates the polar vector (a b) 90o clockwise. 
 b)  Any simply-connected planar region with a boundary curve that does not intersect 
itself possesses a certain surface area and a certain normal direction.  A planar region of 
this type thus defines, in the simplest way, two vectors whose lengths are equal to the 
surface area and whose directions are equal to the normal directions.  When we assign 
our planar region one or the other sense of circulation and each of these senses of 
circulation is again one of the two previously-defined vectors through the planar region, 
once we have eliminated the arbitrariness once and for all, each “planar region with sense 
of circulation” – or briefly, each “planar magnitude – is associated with a completely 
well-defined vector. 
 A curved surface region with a definite sense of circulation also defines a completely 
well-defined vector; it may be, as we can say, “regarded as a planar magnitude,” namely: 
One divides it into infinitely many, infinitely small planar regions.  One assigns each 
planar region with a sense of circulation such that the boundary of the surface region 
preserves its original sense of circulation and each edge between two neighboring planar 
regions is associated with both senses of circulation.  If one associates each planar region 
with the vector that was described above and sums over all of these infinitely many, 
infinitely small vectors then one obtains a completely well-defined resultant vector that 
is, moreover, defined by the surface region with the sense of circulation. 
 c)  All of these ideas, which have been more or less well-known since Grassmann’s 
“Ausdehnungslehre,” take on a practical meaning when one treats the graphical 
representation of the stresses in a continuous or discontinuous medium (frame).  For 
example, a plate is governed by an equilibrium system of stresses.  If we cut the plate 
along any arc segment then we perturb the equilibrium, insofar as we eliminate the 
stresses that prevail along the arc segment.  Any two of these forces, which act on the two 
lips, but at the same separation locus, are then equal and opposite and completely 
measure the stress that occurs on the arc element of the separation locus.  (We can also 
sum all individual forces along each lip and thus obtain two resultants that are equal and 
opposite and measure the stresses that occur on the entire arc segment.) 
 From the previous remarks, it is clear that a line segment αβ – and indeed, a simple 
line segment with no sense of motion – is quite sufficient for the graphical representation 
of the stress that belongs to a definite cross-section.  Its length and direction then provide 
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the length and direction of the stress, with nothing further (the stress direction is either 
parallel to the direction of the line segment or perpendicular to it).  However, by a certain 
abbreviation, it also provides a sense – i.e., the sign – for the stress.  Two senses of 
motion are then assigned to it; a certain (polar or transversal) vector belongs to each of 
these two senses of motion, although we can, in an abbreviated way that is fixed once and 
for all, assign each of the two senses of motion with one of the two lips of the cross-
section locus on which the stress acts.  Hence, through the intermediary of our line 
segment, each lip of the cross-section locus in question relates to a definite vector and 
this assignment may naturally be arranged so that this vector directly represents the stress 
that acts on this lip, from which the sense of the stress is established.  One can proceed, 
e.g.: After the notations αβ and ab are introduced on the cross-section, one thinks of α as 
corresponding to a, β, to b, and thus, the vector (αβ), to the vector (ab).  On the other 
hand, one assigns the vector (ab) to perhaps the lip of the cross-section that lies to the left 
of an advance of the cross-section in the direction from a to b.  In the given case, the 
vector (αβ) then represents the force that acts on this lip and the vector (βα), the one on 
the right. 
 Naturally, in a completely analogous way, a planar region (surface region, resp.) 
with no definite sense of circulation is a very suitable means for the geometric 
representation of the stress that acts on an associated surface element. 
 We will learn some examples of these general developments in § 4. 
 
 2.  If one could “designate” planes in space with the same facility as one does for 
straight lines in the plane then one would, by the means of the stresses on a planar frame, 
plausibly direct one’s primary attention to the stress surface, since it indeed represents all 
of the stress phenomena simply and clearly.  We do not actually possess this capability 
now; one must therefore initially endeavor to find planar figures that exhibit the same 
behavior as stress surfaces.  One calls these figures “force planes”; we will see that they 
are closely connected with stress surfaces. 
 We would like to regard the force plane of a frame, as Maxwell himself did, as a 
special case of Maxwell’s “reciprocal planar diagrams;” we will therefore arrive at the 
m as the simplest ones.  Maxwell’s definition is the following: In the xy-plane, one finds 
any continuum or discontinuum with the stress surface: z = F(x, y).  We let it correspond 
to a definite continuum or discontinuum in the ξη-plane that is defined by the equations: 
 

(21)    ξ = 
F

x

∂
∂

, η =
F

y

∂
∂

, 

and has the stress surface: 
(22)   ζ = Φ(ξ, η), 
where Φ is defined by the equation: 
(23)   F + Φ = xξ + yη. 
 
The stress surfaces thus defined in xyz-space and ξηζ-space have a reciprocal relationship 
to each other that one can express in the sense of projective geometry when one says: 
Each of the two stress surfaces is always the polar image of the other one relative to the 
paraboloid: 
(24)     2z = x2 + y2. 
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 Insofar as the interpretation of the surfaces F and Φ as stress surfaces can also be 
overlooked, since their reciprocity obviously does not depend upon it, we would like to 
speak of them more generally as “reciprocal (spatial) figures.”  The two plane figures 
that one obtains by projection of the reciprocal figures onto the xy-plane and the ξη-
plane, which we would like to call “diagrams,” for the sake of brevity, are also reciprocal, 
if, along with equations (21), the reciprocal equations: 
 

(25)     x =
ξ

∂Φ
∂

, y =
η

∂Φ
∂

, 

 
are also valid, as one confirms by differentiating equation (23).  We thus speak of the 
diagrams as “reciprocal (planar) diagrams.” 
 What does the ξη-diagram now tell us if we would like to instruct ourselves in the 
stresses that were elicited by the stress function F in the xy-diagram?  In the xy-plane, we 
denote an arc element by ds and in the ξη-plane, by dσ (with the components dξ, dη). 
From equations (3), one has: 
 
(26)    X ds = dη,  Y ds = − dξ. 
 
Hence, for a finite arc segment ab, which might correspond to the arc segment αβ: 
 
(27)    Xr = ηβ – ηα ,  Yr = − (ξβ – ξα). 
 
 The connecting line segment of the two endpoints α and β of a finite or infinitely 
small arc segment in the ξη-plane provides, when regarded as a transversal vector, the 
magnitude, direction, and sense of the resultant stress that appears on the corresponding 
arc segment ab in the xy-plane; indeed, the transversal vector (αβ) provides the action of 
the stress on that lip of the cross-section that lies on the left-hand side when one goes 
from a to b, and the 
transversal vector (βα) 
provides the action on the 
right-hand side.  The rule is 
valid only as long as the 
xyz-figure is single-valued, 
and in the other case, where 
the xy-diagram thus doubly 
covers the plane, one must 
switch left and right in the 
rule above for the lower 
leaf. 
 One finds the case of continuous diagrams discussed and illustrated by examples in 
Maxwell 16); there, he treated the example from beam theory that was mentioned above 
(pp. 8).  Here, in order to arrive at the behavior for frames, we would like to consider the 
case where the xyz-figure is a closed spatial polyhedron composed of planar polygons.  
                                                
 16) In the treatise of reference f), pp. 2  (Table XIV). 
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Due to its polar relationship relative to the paraboloid, the ξηζ-figure is also like it, and 
indeed each polygon of the one 
polyhedron mutually corresponds to a 
vertex of the other, each vertex, to a 
polygon, and each edge, to an edge.  
Corresponding statements are then true 
for two reciprocal diagrams, and in 
addition, corresponding edges are 
perpendicular to each other and the edges 
of one diagram – when interpreted in the 
most beautifully described way as 
transversal vectors – yield stresses on the 
corresponding edges on the other diagram 
that are in equilibrium for that diagram.  Since the spatial polyhedron is a closed surface, 
each diagram covers the surface of its encircling polygon at least doubly (Fig. 15.) 
 
 3.  This Ansatz has a different meaning for the statics of frames.  We can, e.g. (cf. § 
2), immediately regard either of the two diagrams as a frame, and the other one provides 
a possible system of self-stresses in this frame; however, we can also proceed as follows: 
We single out any polygon of one of the two spatial polyhedra and assert: The polygon is 
the stress surface that belongs to a frame acted upon by external forces, and whose 
polyhedral zones is cut from a plane – viz., the plane of the distinguished polygon.  In the 
projection – into the diagram – we then must regard the edges that intersect the vertices 

of the distinguished polygon as the line of action of an equilibrium system of forces, the 
projection of the distinguished polygon as a so-called wire polygon (Seilpolygon) of this 
force system, and the remaining edges as the rods of a frame that is under the influence of 
this system of forces.  We then obtain a force plane of the thus-defined frame using these 
forces when we omit the superfluous lines in the reciprocal diagrams – they are the 
corresponding edges of the wire polygon.  We then obtain, e.g., when we distinguish the 
polygon g on the left in Fig. 15, the assignment of Fig. 16, and the assignment of Fig. 17 
when we distinguish the polygon I on right in Fig. 15. 
 The force plane of a frame naturally includes just as many essential indeterminacies 
as the stress surface of the frame.  This fact, that there are just as many force planes for a 
frame as solutions to the stress problem, is usually not very clearly emphasized in the 
textbooks on graphical statics, which might imply that one is essentially occupied at such 
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a time with statically determinate frames, since the force plane naturally allows no 
essential arbitrariness. 
 Of particular interest are the force planes that belong to the multiply-connected 
frames of § 2.  Corresponding to the circumstance that the stress surface of such a frame 
is affine-periodic, the force plane is no longer a closed figure, but consists of the parallel, 
congruent repetition of one and the same basic figure. 
 A noteworthy fact must still be mentioned here, 
namely, that one, as is known in practice, mostly does 
not operate on the Maxwellian force plane, but on the 
so-called Cremona force plane.  This is nothing but 
the Maxwell force plane rotated through a right angle; 
in fact, when Cremona gave the self-sufficient basis 
for his theory, he expressly referred to Maxwell 17).  
As is known, he used, in place of the Maxwell 
formulas (21) and (23), the following ones to define 
the reciprocal figures: 
 

 ξ = − 
F

y

∂
∂

,  η = 
F

x

∂
∂

, z – ζ = ηx – ξy . 

 
This means the same thing as: In place of the polar correspondence relative to the 
paraboloid of eq. (24), one has a polar correspondence relative to a Möbius null system by 
means of the Cremona equations.  If Maxwell associated the plane: 
 

z = αx + βy + γ 
with the point: 

ξ = α,  η = β,  (ζ = − γ), 
 

then Cremona associated it with the point: 
 

ξ = − β, η = α,  (ζ = γ); 
 
thus, for Cremona the edges of the force plane run parallel to the corresponding rods of 
the frame, while, for Maxwell, they are perpendicular; the stresses will thus no longer be 
represented by transversal vectors, but by polar ones.  If one is now inclined to use the 
Cremona association in practice then this certainly lies partly in the fact that regarding a 
line segment as a polar vector is familiar in general mechanics, while regarding the line 
segment as a transversal vector is somewhat foreign, and also partly in the fact that one 
might find it more convenient to draw the parallels to a given line as directed 
perpendicular to it.  Theoretically, the Maxwell association serves the purpose, in any 
case, because it alone allows a generalization to space (which we will likewise do). 

                                                
 17) See, especially: L. Cremona: Les figures réciproques en statique graphique (transl. by Bossut), Paris 
1885, pp. 7 and 8.  Then: L. Cremona, Le figure reciproche nella statica grafica, Mailand 1872; 3rd ed., with 
introduction by G. Jung, Mailand 1879. 

 

Fig. 18. 
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 Incidentally, the entire chapter “Reciprocal diagrams” in Maxwell might be more 
interesting to read than the one in Cremona.  Overlooking the fact that Cremona restricted 
himself to the consideration of discontinua (frames), the theory to him seemed trivial, 
since the idea of stress surface is not emphasized, and that is the quintessence of the 
entire theory. 
 
 4.  Henceforth, we, along with Maxwell, would like to spatially generalize formulas 
(21) to (25), and then introduce reciprocal spatial diagrams in a purely geometric way.  
In xyz-space, let any figure be given – a “spatial diagram, − and furthermore, a function 
F(x, y, z), which we will, however, later interpret as a “stress function” that belongs to 
this diagram.  With the help of the equations: 
 

(28)    ξ = 
F

x

∂
∂

, η =
F

y

∂
∂

, ζ =
F

z

∂
∂

, 

 
we associate this diagram with a second diagram in a ξηζ-space.  The relationship 
between both diagrams is then a reciprocal one: If we would like to define a function 
Φ(ξ, η, ζ) through the equation: 
(29)     F + Φ = xξ + yη + zζ, 
then one has: 

(30)    x =
ξ

∂Φ
∂

, y =
η

∂Φ
∂

, z =
ζ

∂Φ
∂

, 

 
which one easily confirms by differentiating eq. (29). 
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 In particular, we now define “reciprocal cell systems,” just as in the Maxwell 
process, and indeed, as a spatial analogue of the frame diagrams of Figures 10, 12, 15, 
which doubly cover the surface of a certain encircling polygon.  We think of there being 
a configuration of adjacent polyhedra (cells) in xyz-space that doubly fills up the volume 
of a certain closed encircling polyhedron.  We thus obtain a first spatial cell system, 
whose cells, faces, edges, and vertices we shall speak of (Fig. 19 left).  We then define a 
continuous function F(x, y, z) of a sort that, inside of the individual cell J, it always 



LXXVII.  On stress surfaces and reciprocal diagrams                               24 

  

agrees with a linear function ai x + bi y + ci z + di , and that when J and K come together 
in the face JK the equation of this face will be represented through: 
 

(ai – ak) x + (bi – bk) y + (ci – ck) z + di – dk = 0. 
 

This cell system then corresponds to a second cell system in ξηζ-space by means of 
formulas (28).  Both cell systems have the following reciprocal relationship: Each cell of 
a diagram corresponds to a vertex of the other one, each vertex, to a cell, each face, to an 
edge, and each edge, to a face.  Each edge of one system is perpendicular to the 
corresponding face of the other system. 
 Inspired by the example that K. Wieghardt constructed in Fig. 19, the relationship is 
as follows.  We have: 
 
 Left: Right: 
 
7 cells 

 
(The cube itself and the 6 
pyramids into which it 
decomposes when one 
intersects it along the 
twelve triangles that run 
from the center of the 
cube to the edges) 
 

 
7 vertices 

 
(The 6 octahedral vertices 
and the midpoint) 

 
18 faces 

 
(The 6 cube faces and the 
12 isosceles triangles 
with the 12 cube edges as 
bases and its midpoint as 
vertex) 
 

 
18 edges 

 
(The 12 octahedral edges 
and the 6 line segments 
that extend from its 
midpoint to the octahedral 
vertices) 

 
20 edges 

 
(The 12 cube edges and 
the 8 line segments that 
extend from its midpoint 
to the cube vertices) 

 
20 faces 

 
(The 8 octahedral faces 
and the 12 isosceles right 
triangles with the 12 
octahedral edges as 
hypotenuses and the 
midpoint as vertices) 
 

 
9 vertices 

 
(The 8 corners of the 
cube and its midpoint) 

 
9 cells 

 
(The octahedron itself and 
the 8 tetrahedra into 
which it is divided when 
one intersects it along the 
three planes that go 
through each four 
octahedral vertices) 
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 The function F(x, y, z) has the following values in the individual cells: 
 
   In the cubic cells:   Zero 
   In the pyramidal cells:    I: x − 1 
    “ “   II: y – 1 
    “ “  III:    − x 
    “ “  IV:    − y 
    “ “   V: z – 1 
    “ “  VI:    − z. 
 
 We will give an application of this reciprocal cell system for the purposes of 
mechanics in the next paragraph. 
 

§ 4. 
 

Comments on spatial stress systems and associated 
stress functions 

 
 1.  The thought certainly suggests itself that we might connect the equilibrium 
conditions for the stresses in a spatial continuum (Fig. 20): 
 

(31)  

0,

0,

0,

P U T

x y z

U Q S

x y z

T S R

x y z

∂ ∂ ∂+ + = ∂ ∂ ∂
∂ ∂ ∂+ + = ∂ ∂ ∂
 ∂ ∂ ∂+ + = ∂ ∂ ∂

 

 
(in the event that only outer surface forces act on it) 
 

with a function F(x, y, z) that would be analogous to the Airy Ansatz.  In that regard, 
Maxwell found that, as one may also assume this to be true, one does not arrive at all 
possible stress systems for the continuum in this way, since the equations above must be 
related to three different functions, moreover.  He examined this move closely. 
 There are thus special, but interesting, spatial stress distributions that we obtain when 
we, with Maxwell, now make the following two different spatial extensions of the Airy 
formulas (2): 
 The first Ansatz is: 
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Fig. 20. 
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(32)  

2 2 2

2 2 2

2 2 2

, , ,

, ,

F F F
P F Q F R F

x y z

F F F
S T U

y z z x x y

 ∂ ∂ ∂= ∆ − = ∆ − = ∆ − ∂ ∂ ∂


∂ ∂ ∂ = − = − = −
 ∂ ∂ ∂ ∂ ∂ ∂

 

 

[where we now let ∆ =
2 2 2

2 2 2x y z

∂ ∂ ∂+ +
∂ ∂ ∂

]. 

 The second Ansatz consists of assuming that the P, Q, U of the Airy Ansatz can be 
defined by the following formula, in which α, β are understood to mean arbitrary 
quantities: 

P ⋅ α2 + 2U ⋅ αβ + Q ⋅ β2 = − 

2 2

2

2 2

2

0

F F

x x y

F F

y x y

α

β

α β

∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂ ∂

, 

 
which yields the following spatial generalization: 
 

(33) 

2 2 2

2

2 2 2
2 2 2

2

2 2 2

2

2 2 2

0

F F F

x x y x z

F F F
P Q R

y x y y z
S T U

F F F

z x z y z

α

βα β γ
βγ αγ αβ

γ

α β γ

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂

 ⋅ + ⋅ + ⋅
= − ∂ ∂ ∂ ∂ ∂+ ⋅ + ⋅ + ⋅ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

, 

 
where α, β, γ mean arbitrary quantities. 
 One easily confirms that the stress components of (32) and (33) satisfy equations (31) 
for an arbitrary F. 
 
 2.  The content of formulas (32) and (33) may be better described when we link them 
with the idea of reciprocal diagrams.  The statement of the question is then: For a given 
function F(x, y, z), there is given, on the one hand, a reciprocal relationship between an 
xyz-diagram and a ξηζ-diagram according to formulas (28), and, on the other hand, a 
stress distribution in the xyz-diagram according to formulas (32) or (33).  Of what use to 
us is the knowledge of the ξηζ-diagram if we would like to learn about this stress 
distribution? 
 Let do be a surface element in xzy-space with the normal n, and let dϖ be the 
corresponding surface element in ξηζ-space.  We then find, by an application of the first 
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Maxwell Ansatz (equations (32)) to do, first, a normal stress of magnitude ∆F per unit 
area, and second, a stress [in the surface element itself] with the components ∂ξ / ∂n, ∂η 
/ ∂n, ∂ζ / ∂n per unit area.  An application of the second Ansatz (33), however, gives us 
simply dϖ, regarded as a planar quantity, which gives the stress on do as a magnitude, 
direction, and sense.  If we are concerned with the resultant stress on a finite surface 
piece o then we find, by an application of the first Ansatz, its components are determined 
by means of the equations: 
 

(34)  

cos , , ,

, , cos cos ,

r r r

yz zx xy

X F nx do Y Z
n

M M M x F nx y F nx do
n n

ξ

η ξ

 ∂ = ∆ ⋅ − = =  ∂ 


 ∂ ∂     = = = ∆ ⋅ − − ∆ ⋅ −     ∂ ∂    

∫∫

∫∫

⋯ ⋯

⋯ ⋯

 

 
in which we convert the surface integral into an integral over the boundary curve by 
means of the equations: 
 

(35) 
, , ,

, , ( ) ( ) .

r r r

yz zx xy

X dz dy X X

M M M x dx y dy z dz x y z F dz

η ζ

ζ ξ η ζ

 = − = =


= = = + + − + + −

∫

∫

⋯ ⋯

⋯ ⋯

 

 
An application of the second Ansatz, however, tells us the resultant stress on o as a 
magnitude, direction, and sense (we shall not bother with the three rotational moments), 
the surface piece o corresponding to the surface piece ϖ, when regarded as planar 
quantities. 
 The three opposite relations thus found between a stress function F(x, y, z) for an 
associated stress system and its reciprocal diagram are completely analogous to the 
corresponding relations in two dimensions.  This is especially clear upon application of 
the second Maxwell Ansatz; the surface element dϖ, regarded as a planar quantity, is the 
direct spatial generalization of the arc element do of the plane, regarded as a transversal 
vector.  However, also by the first Ansatz, the analogy is easy to find.  We first have, e.g., 
for two dimensions, the formula (cf., eq. (3)) for Xr: 
 

(36)   Xr = P dy U dx−∫  = ( cos cos )P nx U ny ds+∫ , 

 
and that is nothing but: 

cosF nx ds
n

ξ∂ ∆ ⋅ − ∂ 
∫ , 

 

[where ∆ =
2 2

2 2x y

∂ ∂+
∂ ∂

 ], which is analogous to the first spatial equation (34); likewise, the 

first equation in (35) has its planar analogue, namely, the equation that arises from 
equations (27) on pp. 20: 

Xr = ηβ – ηα , 



LXXVII.  On stress surfaces and reciprocal diagrams                               28 

 Göttingen, 10 February 1904. 

if z = ∂F / ∂z is null for two dimensions, hence, we 
obtain for the stress component on the vertical 
cylinder of unit height over the arc segment ab (Fig. 
21): 
 

(37)  dz dyη ζ−∫  = ηβ – ηα . 
 
 As a consequence, one can carry out the analogy 
when one introduces a “four-dimensional space” as 
an aid, and constructs an “Airy manifold” in it, 
corresponding to the formula: 

 
t = F(x, y, z). 

With the formulas: 
 

ξ = 
F

x

∂
∂

, η = 
F

y

∂
∂

, z = 
F

z

∂
∂

, t + ϑ = x ξ + y η + z ζ, 

 
one could “polarize” this Airy manifold relative to the “paraboloid”: 
 

2 t = x2 + y2 + z2, 
 
and the “perpendicular” projection of this polar image onto the ξηζ-space yields the 
diagram that is reciprocal to the stress system in it.  Such consequences would lead us 
into four-dimensional relationships that are very beautiful and convincing, but the 
majority of readers would then encounter unnecessary difficulties. 
 
 3.  After the development that was just given, we may now, with only minor effort, 
arrive at the following mechanically-described meaning for our previously considered 
reciprocal cell system: 
 With both Maxwell Ansätzen, we obtain, on the one hand, stresses on the faces of the 
diagram that are given by the lengths of the corresponding edges of the other diagram 
(homogeneous stresses, as might occur in the cell faces of soapsuds).  On the other hand, 
we obtain stresses on the edges of the diagram that are quantities given by the surface 
areas of the corresponding faces of the other diagram. 
 Hence, only the second spatial Ansatz leads to the understanding of stress systems in 
spatial frames.  For that reason, the Henneberg reference also speaks only of this second 
Ansatz (no. 41), and also only more casually, since the general study of Airy stress 
functions could not be assumed in it. 
 The statics of stress states for arbitrary loads that one obviously achieves when one 
grasps the entire Maxwell line of thought has an interesting aspect to it; however, its 
various parts appear in a wonderful connection that has been understood only slightly up 
to now.  For that reason, in the current presentation the task of working out that 
connection was considered to be an actual goal, from which the basis for new 
developments of the theory is likewise arrived at. 

 

Fig. 21. 
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