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Abstract – A Lagrange function for the general theory of dislocations is presented.  The stress functions 
are then varied, which fulfill the equations of motion of the linear Cosserat continuum identically.  The 
invariance requirement of the theory under gauge transformations of the stress functions leads to 
conservation laws (balance principles, resp.) for the dislocation density and foreign matter.  The energy 
balance equation and the field balance equation are derived, and the forces that act upon the dislocation 
density and the foreign matter are presented. 
 

 
1.  Introduction 

 
Since the continuum theory of static dislocations is as good as complete [1-3], the 
problem now remains of extending the static theory to the dynamical theory of moving 
dislocations.  Basic equations for a continuum theory of moving dislocations were given 
previously by, e.g., Holländer [4], Kosevich [5], Mura [6, 7], and Bross [8].  All of these 
theories have in common that in order to determine the stress state and the velocity field a 
dislocation flux density (the time variation of the plastic deformation, resp.) must be 
present along with the dislocation density.  There thus exists a balance equation that 
couples the temporal variation of the dislocation density with the dislocation flux density, 
in complete analogy to the charge conservation law of electrodynamics.  Along with the 
presentation of basic dynamical equations, a basic kinematical equation was also derived 
[9, 10] with the aid of a velocity vector for the dislocations. 
 In this paper, we link up with the work of Holländer and Kosevich; i.e., we first solve 
the equations of motion by means of stress functions.  We then define a Lagrange density 
that consists of the Lagrange density for the elastic body plus interaction terms.  Since we 
start from the Cosserat continuum, and thus consider moment stresses, we will thus be 
inescapably led to introduce new density and flux density tensors in the interaction terms 
of the Lagrange density.  These tensors describe foreign matter, so we deal with the 
general dislocation theory in the sense of Kröner.  We derive the field equations from 
Hamilton’s principle.  An examination of the gauge invariance of the theory leads us to 
the conservation law (balance principle, resp.) for the dislocation density and the foreign 
matter.  Finally, we derive the energy balance equation and the field impulse balance 
equation by the method of classical field theory.  We thus also obtain the forces that act 
on the dislocations and the foreign matter in the stress and velocity fields. 
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2.  The equations of motion and the material equations 

 
 The starting point of our reasoning is defined by the linear equations for the Cosserat 
continuum [12].  They are balance equations for the dynamical impulse density and the 
rotational impulse density: 

ivρ ɺ  = σki,k ,      (2.1) 

ik ksθ ɺ  = µki,k + εirs σki .     (2.2) 

 
Here, ρ means the mass density, vi , the velocity of the mass element, σki , the stress 
tensor – which is asymmetric here – µki is the moment stress tensor, and εikl is the totally 
anti-symmetric unit tensor.  For the partial derivatives, we set ∂u / ∂t = uɺ , ∂u / ∂xl = u,j .  
We associate the individual mass elements with a spin degree of freedom, in the sense of 
the Cosserat theory, that is described by the angular velocity si and the moment of inertia 
θik . 
 For the elastic deformation tensor E

ikε , we assume that it is coupled to the stress tensor 

by Hooke’s law: 
σ(ik) = Ciklm

E
lmε , σ(ik) = 1

2 (σik + σki).    (2.3) 

 
Since we are dealing with an incompatible theory, the deformation tensor may no longer 
be derived from a displacement field.  An analogous material law is true for the moment 
stress tensor: 

µik = biklm
E
lmχ ,      (2.4) 

 
where E

lmχ  is the elastic curvature tensor, which can be computed from the anti-

symmetric part of the elastic distortion only in the absence of foreign matter.  One can 
also consider cross-coupling in the material equations (2.3) and (2.4).  The cross-coupling 
will play no role in what follows, since it first becomes important when one looks for 
solutions of the field equations thus obtained. 
 A certain geometric quantity is lacking for us in the material law for the anti-
symmetric part of the stress tensor.  We will thus employ no material law for σ[ ik], 
whether or not this practice is entirely satisfactory. 
 
 

3.  The solution of the equations of motion by the use of stress functions 
 

 In elastostatics, one often uses the stress function ϕik , which makes σik = εirs ϕsk,r 
satisfy the equations σik,i = 0.  We extend this solution Ansatz by introducing additional 
stress functions: 

σik = εirs ϕsk,r + ,lik lψɺ ,     (3.1) 

ρ vi = ψkli,k,l ,      (3.2) 
µik = εrim εrkl ϕml − rim irsε ψɺ  + εirs φsk,r + χik ,  (3.3) 

θik sk = χli,l  .      (3.4) 
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Eq. (2.1) and (2.2) are fulfilled identically with this Ansatz.  One must now arrive at 
equations for the stress functions, for which we appeal to Hamilton’s principle.  Let it be 
remarked that the stress functions for the solution of eq. (2.1) alone were already given 
by Holländer [4] and Kosevich [5] and by Günther [13] in the static problem with 
moment stresses. 
 

4.  The Lagrange density and the field equations 
 

 In classical linear elastomechanics, the Lagrange density has the following form: L = 
21

2 ( )E
ik ik vσ ε ρ− .  We extend this expression by considering the elastic energy that is 

coupled to the curvature and the kinetic energy that is coupled to the spin of the mass 
element.  We thus obtain the Lagrange density: 
 

L = 21
2 ( )E E

ik ik ik ik ik i k ik ik ikl ikl ik ik ik ikv s s D V B Sσ ε µ χ ρ θ ϕ ψ φ χ+ − − − + + − . (4.1) 

 
 In regard to the physical meaning of the quantities Dik , Vikl , Bik , and Sik , we will first 
make a few remarks about the field equations.  By analogy with electrodynamics, one can 
compare Dik with the electric charge density, ϕik with the scalar potential, Vikl with the 
electric current density, and ψikl with the vector potential [4, 5].  In order to arrive at the 
field equations, we employ the Hamilton principle: 
 

2

1

t

t V
L dV dtδ ∫ ∫  = 0,     (4.2) 

 
in which we vary the stress functions, while the quantities Dik , Vikl , Bik , and Sik are left 
fixed by the variation.  By varying the ϕik , we then obtain: 
 

, ,ik ik l l

L L

ϕ ϕ
 ∂ ∂−   ∂ ∂ 

= 0,     (4.3) 

by varying the ψikl, we get: 
 

, , ,, , ,ikl ikl ikl m ikl m nm m n

L L L L

t t tψ ψ ψ ψ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂− + +        ∂ ∂ ∂ ∂ ∂ ∂ ∂     ɺ

= 0,  (4.4) 

 
by varying the φik , we get: 

, ,ik ik l l

L L

φ φ
 ∂ ∂−   ∂ ∂ 

 = 0,     (4.5) 

 
and by the variation of χik , we get: 
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, ,ik ik ik l l

L L L

tχ χ χ
  ∂ ∂ ∂ ∂− −     ∂ ∂ ∂ ∂   ɺ

 = 0.   (4.6) 

 
These are the desired field equations, which assume the following form with the help of 
eq. (4.1): 

,
E E

ikl ij k rik rji klε ε ε ε χ+  = Dij ,    (4.7) 

, , ,
E E

rkl lr l i k kl ivε χ ε− +ɺ ɺ  = − Vikl ,     (4.8) 

,
E

ikl ij lε χ  = Bij ,          (4.9) 

sk,i − E
ikχɺ  = Sij .           (4.10) 

 
 In order to facilitate the physical interpretation of the quantities Dik , Vikl , Bik , and Sik 
,we first set Bik = 0 and Sik = 0.  On the basis of (4.9), one can then write the elastic 
curvature tensor as: 

E
jiχ  = 1

[ ],2
E

krs rs iε β ,     (4.11) 

and thus it follows from eq. (4.7) that: 

,
E

ikl lj kε β  = Dij .     (4.12) 

 
We then summarize the elastic distortion E

ikβ  as follows: 

 
E
ikβ  = [ ]

E E
ik ikε β+  .     (4.13) 

 
It follows immediately from eq. (4.12) that Dik is the tensor of dislocation density.  It 
depends upon the elastic curvature tensor according to eq. (4.7) in the well-known way 
[7]: 

E
jiχ  = 1

, 2
E

ilk kj l ij ll ijD Dε ε δ− + .    (4.14) 

 
Next, we consider eq. (4.8), for which we can write, with eq. (4.11) and vi,k = E P

ki ikβ β+  

(where P
ikβ  is the plastic distortion): 

 

, ,( )E
ki k i lvβ −ɺ  = − Vlik = − ,

P
ik lβɺ  = − I ik,l .   (4.15) 

 
Here, we have employed, e.g., the dislocation flux density tensor I ik = ikβɺ  that was 

introduced by Kosevich [5] or Mura [7].  In the case Bik = 0 and Sik = 0, we thus find that 
Vikl is precisely the gradient of the dislocation flux density tensor: 
 

Vikl = Ikl,i .    (4.16) 
 

We now again come back to the general case with Bik ≠ 0 and Sik ≠ 0.  Due to eq. (4.9), 
E
ikχ  no longer represents a gradient, now.  However, for the sake of further calculations 
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(e.g., for the presentation of the field impulse balance) and for comparison with the 
relations that are known in the literature, we would like to split a gradient off fromE

ikχ .  

We thus write: 
E
ikχ  = 1

[ ],2 krs rs iε β  + Kik .    (4.17) 

 
Here, β[ik] does not mean the anti-symmetric part of an elastic distortion tensor, since, as 
we will show, Bik describes foreign matter, in the sense of Kröner, so from [2], there 
exists no elastic distortion tensor, at all.  Analogous to the decomposition (4.17), we also 
decompose the tensor Vikl into two parts: 
 

Vikl = Ikl,i – εrkl Kir ,     (4.18) 
 
where Ikl is again the tensor of the dislocation flux density.  At present, we cannot 
ultimately decide whether the splittings (4.17) and (4.18) are only convenient for 
calculations or whether, as we assume, a deeper physical sense lies beneath this. 
 With eq. (4.17) and (4.18), we now obtain the field equations (4.7) to (4.10) in the 
following form: 

εilk βkj,l = Dij – εrik εrji  Kkl ,    (4.19) 
εijk Κil,j = Bkl ,       (4.20) 
vk,i − ikβɺ = Bik ,        (4.21) 

sk,i − E
ikχɺ = Ski .        (4.22) 

 
We have thus combined the elastic deformation tensor E

ikε  with the anti-symmetric tensor 

β[ik] from eq. (4.17) into the distortion tensor according to: 
 

βik = E
ikε  + β[ik],  E

ikε  = β(ik) .   (4.23) 

 
Only in the case of no foreign matter is this equal to the elastic distortion tensor, since it 
would then contain no plastic part. 
 We now consider eq. (4.19).  This equation is identical with the relation that was 
given by Kröner [3]: 

rot β = α + γ     (4.26) 
 
if one sets the tensor Dik equal to the dislocation density tensor α and sets – εrik εrjl  Kkl 
equal to the tensor γ, which is a measure of the foreign matter that is present in the 
crystal.  On the basis of eq. (4.21), we thus obtain a confirmation of our conjecture that 
Bik represents the foreign matter – i.e., the density of point defects.  We will now show 
that Bik is identical with the tensor Bik that Kröner [2] introduced.  We first consider eq. 
(4.21).  In the general case Bik ≠ 0, it can be employed for the interpretation of βik , since 
we regard the dislocation flux density I ik as a given quantity in our theory.  If we 
decompose eq. (4.21) into its symmetric and anti-symmetric part then it follows that: 
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( ) ( , )

[ ] [ , ] [ ]

,

.

E P
ik k i ik ik

ik k i ik

I v

I v

ε ε
β

= − =
= −

ɺ ɺ

ɺ
    (4.25) 

 
We will first discuss Sik later, since a relationship that is comparable to eq. (4.22) in the 
literature is not known to us.  However, it will be shown that Sik can be interpreted as the 
flux density for the foreign matter. 
 One can now solve special problems when one substitutes stress functions in the field 
equations (4.7) to (4.10) and prescribes the fields Dik , Vikl , Bik , and Sik .  Naturally, the 
form of the material equations − e.g., whether or not they have cross-couplings – then 
plays a role, while the splittings (4.17) and (4.18) are not necessary.  We would not like 
to examine any special solutions in this paper, but only concern ourselves with general 
properties of the theory. 
 
 

5.  The gauge transformations of the stress functions and the conservation law for 
the tensors of dislocation density and foreign matter density. 

 
 Precisely as in elastomechanics, where one can add a tensor of null stress functions 
qk,i to the stress functions ϕik , we have also have the possibility here of transforming the 
stress functions ϕik , ψikl , φik , and χik , without changing the physical quantities sik , ρvi, 
µik , θik sk .  We would like to call these transformations gauge transformations, as in 
electrodynamics.  These gauge transformations have the form: 
 

ikϕ′  = ϕik + ak,i – bik ,      (5.1) 

iklψ ′  = ψikl + εkis bsl + εirj  dklj,r ,      (5.2) 

ikφ ′  = φik + ck,i  − εlik al + εklm dlmi − hik ,   (5.3) 

ikχ ′  = χik + εirj  hjk,r .       (5.4) 

 
The “null stress functions” ai , bik , dikl , ci , and hik can be chosen arbitrarily.  However, 
that means that one can impose a large number of auxiliary conditions on the stress 
functions, and one might hope that by that means one might arrive at a coupling of the 
field equations in terms of the stress functions. 
 We would now like to investigate the influence of the gauge transformations on the 
Lagrange density.  Naturally, the field equations that one obtains by variation of the stress 
functions must always be the same independently of the gauge of the stress functions.  
However, that means that the gauge transformation may change the Lagrange density 
only by a divergence and a term that can be written as a time derivative.  This 
requirement then leads to conditions that must be fulfilled by the tensors of dislocation 
density, foreign matter density, and the corresponding fluxes.  The Lagrange density (4.1) 
has the form L = LE + LW.  LE = 21

2 ( )E E
ik ik ik ik ik i kv s sσ ε µ χ ρ θ+ − −  does not change under a 

gauge transformation, since it is constructed out of the physical quantities σik , µik , vi , and 
si ,.  Things are different for the LW part.  For it, one has: 
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2

1

( )
t

ik ik ikl ikl ik ik ik ikt V
D V B s dV dtϕ ψ φ χ′ ′ ′ ′− + + −∫ ∫  = I1 + I2 

= 
2

1

( )
t

ik ik ikl ikl ik ik ik ikt V
D V B S dV dtϕ ψ φ χ− + + −∫ ∫  

+ 
2

1
,{ ( ) ( )

t

ik k i ik ikl ikl ik irj kljirt V
D a b V b dε ε− − + +∫ ∫  

, ,( ) }ik k i lik l krs rsi ik ik irs jk rB c a d h S h dV dtε ε ε+ − + − −ɺɺ .      (5.5) 

 
Here, the last integral must vanish, up to a boundary integral, as well as the terms that one 
can write as time derivatives.  For that reason, we convert the last integral I2 in eq. (5.5) 
into: 

I2 = {2

1
,( )

t

ik k rij rkl klj ik k rij rk jk it V
D a V d B c S hε ε− + + −∫ ∫  

+ ( )ik ik skl klj js ik ikD b d B B h dV dt
t

ε∂ + − ∂ 
 

+ {2

1
,( ) ( )

t

lik ik il i l sl rkl kis slt V
B D a D V bε ε− + + − +∫ ∫ ɺ  

+ (− εirj  Vikl,r – εskl jsBɺ ) dklj − Bik,i ck + (
jsBɺ +εirj  Sik,r) hjk} dV dt.  (5.6) 

 
The first integral does not contribute to the field equations, so the second one must 
vanish.  Since the gauge functions ai , bik , dikl , ci , and hik can be chosen arbitrarily, by 
and large, the factors in front of these functions must be zero.  Upon consideration of eq. 
(4.18), we thus obtain the following conditions, which we would to refer to briefly as the 
conservation laws (balance equations, resp.) for the tensors Dik and Bik : 
 

Dil,i  = εlik Bik ,     (5.7) 

slDɺ  + εsik Vikl = 0,      

or 

slDɺ  + εsik Ikl,i = εkis εkjl ijKɺ ,      (5.8) 

jsBɺ = εirj ,is rKɺ ,      (5.9) 

Bik,i  = 0,     (5.10) 

jsBɺ  = − εirj  Sis,r .     (5.11) 

 
In the case of no foreign matter (Bik = 0, Kik = 0, Sik = 0), these are precisely the known 
relations for the dislocation density [2, 5, 7, 8]: 
 

Dil,i  = 0, slDɺ  + εsik Ikl,i = 0.   (5.12) 

 
If one considers foreign matter, then from Kröner [2], one has Dil,i  = εlik Bik .  However, 
that is precisely our equation (5.7), from which the interpretation of Bik as the tensor of 
foreign matter is confirmed.  As a consequence of the consideration of foreign matter, a 
source term εkis εkjl ijKɺ  appears in the balance equation (5.8) for the dislocation density, 
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which is connected with the temporal variation of the foreign matter.  However, on the 
grounds of eq. (4.19), one can also interpret Dij − εkli εkmj Klm as the effective dislocation 
density.  The divergence of this effective dislocation density then vanishes once more.  
Eq. (5.10) is a condition on the tensor of foreign matter that Kröner [2] likewise derived 
from a geometric argument. 
 Ultimately, we have obtained a balance equation for the tensor of foreign matter that 
is completely analogous to the dislocation density (5.12).  We can thus interpret Sik as the 
tensor of foreign matter flux.  Due to eq. (5.19) and (5.11), this tensor depends upon the 
tensor Vikl (Kik , resp.) by way of: 
 

εirj  (εskl Sis – Vi[kl]), r = 0,    (5.13) 
or: 

εirj  (εskl isKɺ + Sis) = 0.     (5.14) 

 
The foreign matter flux Sik is then equal to the tensor (the temporal variation of the 
curvature tensor Kik, resp.), up to a gradient field.  After a brief calculation, it follows 
that: 

εskl Sis – Vi[kl] = (εskl sr – v[k,l]), i = − [ ],kl iϑɺ , 

or: 
Sik + ikKɺ = (sk – εkrs [ ]rsβɺ ), i = ,k iϑɺ . 

 

[ ]klϑɺ  describes the relative angular velocity between the total angular velocity and the 

angular velocity of the individual mass element.  One might conjecture that the tensor Sik 
is closely connected with the velocity of the foreign atoms (or point defects), and 
possibly with diffusion in crystals.  Further investigation is needed in order to make more 
precise statements. 
 
 

6.  The field impulse theorem 
 

 In order to arrive at statements about the forces the act on the dislocation density, the 
dislocation flux density, the foreign matter, and the foreign matter flux density, we 
exhibit the field impulse balance law that belongs to the Lagrange density (4.1).  For this, 
we employ the method that was given by Landau and Lifschitz [14].  We define: 
 

   
j

L

x

∂
∂

 = , , , , ,
,

ik j ik l j ikl j ikl j
ik ik l ikl ikl

L L L Lϕ ϕ ψ ψ
ϕ ϕ ψ ψ
∂ ∂ ∂ ∂+ + +

∂ ∂ ∂ ∂
ɺ

ɺ
 

    + , , , , , , , ,
, , , ,

ikl r j ikl r s j ik j ik l j
ikl r ikl r s ik ik l

L L L Lψ ψ φ φ
ψ ψ φ φ
∂ ∂ ∂ ∂+ + +

∂ ∂ ∂ ∂
ɺ

ɺ
 

    + , , , , ,
,

ik j ik j ik l j ik j
ik ik ik l ik

L L L L
D

D
χ χ χ

χ χ χ
∂ ∂ ∂ ∂+ + +

∂ ∂ ∂ ∂
ɺ

ɺ
 

+ , , ,ikl j ik j ik j
ikl ik ik

L L L
V B S

V B S

∂ ∂ ∂+ +
∂ ∂ ∂

.        (6.1) 
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With the help of the field equations (4.3) to (4.6), this equation can be easily converted 
into: 

   , ,
, ,

ikl ikl j ik j

ikl ikl m ikm

L L L

t
ψ ψ χ

ψ ψ χ

  ∂ ∂ ∂ ∂ − +   ∂ ∂ ∂ ∂   
ɺ ɺ ɺ

 

   + , , , ,
, , , ,

ik j ik j ik j ikl j
ik r ik r ik r ikl r

L L L Lϕ φ χ ψ
ϕ φ χ ψ

 ∂ ∂ ∂ ∂ + + +∂ ∂ ∂ ∂
ɺ

ɺ
 

   + , , ,
, , , , , ,

ikl m j ik j rj
ikl m r ikl r n n r

L L
Lψ ψ δ

ψ ψ

 ∂ ∂ − −   ∂ ∂   

 

   = − , , , ,ik j ikl j ik j ik j
ik ikl ik ik

L L L L
D V B S

D V B S

 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 
.   (6.2) 

 
This is the desired field impulse balance, but still in a form that one cannot interpret, and 
even when one substitutes the derivatives of the Lagrange function (4.1).  We now 
convert eq. (6.2), giving consideration to the field equations, in such a way that only 
physical quantities, and not stress functions, enter into the field impulse balance.  After 
some tedious computations, it then follows that: 
 

,j rj rp + Σɺ  = kj .      (6.3) 

In this: 
pj = − ρ vl βjl – θlk sk

E
jlχ     (6.4) 

 
means the field impulse density, while: 
 

Σrj = βjm σrm + E
jlχ µrm – LEδrj    (6.5) 

 
is the “Maxwell tensor of elasticity” that is coupled with the field impulse density pi, and: 
 

kj = εjkl σlm (Dkm – εrik εrsm Kis) − εjkl µlm Bkm − εlrs µrs Kjl + ϕlk sk Sjl ,  (6.6) 
 

is the force density that acts on the dislocations, the foreign matter, and the corresponding 
flux in the continuum considered. 
 The field impulse density is constructed similarly to the energy flux density – σik vk in 
classical elasticity theory, except that in the field impulse density pi, in place of the stress 
tensor σik , one has the distortion tensor βik , and in place of the velocity, one finds the 
dynamical impulse density.  One then adds the corresponding part with the elastic 
curvature tensor to this. 
 The stress tensor Σik corresponds to the Maxwell stress tensor in electrodynamics.  
This tensor and eq. (6.3) were already given by Eshelby 15] for the static case with no 
moment stresses.  The name “Maxwell tensor of elasticity” also goes back to Eshelby. 
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 The most interesting thing is the force density kl .  In the case with no foreign matter, 
one obtains precisely the force density εikl σlm Dkm that was given by Peach and Koehler 
[16], which acts on the dislocation density in the stress field, and the force density ρ vj Iij 
that Kosevich [17] found, which acts on the dislocation flux density in the velocity field 
vi .  Here, we have found, in addition, the force density F

ik , which acts on the foreign 

matter.  It reads: 
 

F
ik = − εjkl σlm εrik εrsm Kis − εmrs σrs Kjm = εjkl σlm Kml − εjkl µlm Bkm .  (6.7) 

 
The first term originates in the effective dislocation density Dik − εjkl µlm Klm  in the 
Peach-Koehler expression in eq. (6.6); i.e., the foreign matter acts partly like a dislocation 
density, and for that reason a force acts on the foreign matter in the stress field according 
to the formula of Peach and Koehler.  The second term gives the force density that acts 
upon the foreign matter in the moment-stress field.  This force density is, up to sign, 
analogous to the Peach-Koehler force, except that in place of the dislocation density Dik 
one now finds the tensor of foreign matter Bik .  The last term in eq. (6.7) finally gives the 
part of the force density that is connected with only the anti-symmetric part of the stress 
tensor.  One can combine the first and third terms such that it formally has almost the 
same appearance as the Peach-Koehler force.  In addition, we have also obtained the 
force density θjk sk Sij that acts on the foreign matter flux in eq. (6.6); we find the spin 
impulse θjk sk in place of the impulse ρvi in the force density of Kosevich, here. 
 If one sets Dik , Vikl , Bik , and Sik equal to zero then one can introduce a displacement 
field and the field impulse (6.3) reads, when we set µik = 0 and si = 0: 
 

, , ,
,

1
( ) ( )

2l l j m j rm ik i k i i rj
r

v u u u v u
t

ρ σ σ ρ δ∂  − + − − ∂  
= 0.   (6.8) 

 
Here, ui is the displacement vector.  The field impulse balance is to be distinguished from 
the equation of motion (2.1), which is to be interpreted as the impulse balance for the 
dynamical impulse density ρvi .  Along with this dynamical impulse, however, one must, 
on the grounds of eq. (6.3) ((6.8), resp.), one must ascribe a field impulse density (which 
is analogous to the impulse density [DB] in electrodynamics) to the solid body in 
question.  In order to interpret this situation, we consider a plane harmonic sound wave, 
which, according to Brenig [18], one must associate with an impulse.  However, the 
dynamical impulse that is coupled to plane harmonic sound waves vanishes in the time 
average, while the temporal mean of the impulse density in eq. (6.8) coincides with the 
impulse density that was given by Brenig.  It seems that in most cases the field impulse 
density, as a quadratic – i.e., small – quantity, is not noticeable when compared to the 
dynamical impulse density, and only plays an essential role when, as in the example of 
sound, the time average of the dynamical impulse density vanishes. 
 The field impulse balance equation (6.3) can also be derived directly from the field 
equations (4.19) to (4.22).  In order to do this, one must multiply eq. (4.19) by εrim σmj , 
eq. (4.20) by εrim σmj , eq. (4.21) by ρvk , and eq. (4.22) by θjk sk , add them, and convert 
them accordingly. 
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7.  The energy theorem 
 

 Starting from the Lagrange density, we arrive at the energy theorem precisely as we 
arrived at the impulse theorem, except that we now form ∂L / ∂t.  With the help of the 
field equations (4.3) to (4.6), we then obtain: 

 

 
, ,

ik ikl ikl

ik ikl ikl m m

L L L
L

t
χ χ ψ

χ χ ψ

  ∂ ∂ ∂ ∂ + − −   ∂ ∂ ∂ ∂   

ɺ ɺ

ɺ ɺ
 

+ ,
, , , , , , , ,, ,

ik ik ik ikl ikl m ikl
ik r ik r ik r ikl r m ikl m r ikl rm r

L L L L L Lϕ φ χ ψ ψ ψ
ϕ φ χ ψ ψ ψ

  ∂ ∂ ∂ ∂ ∂ ∂ + + − + +   ∂ ∂ ∂ ∂ ∂ ∂   

ɺɺ ɺ ɺ ɺ ɺɺ

ɺ ɺ
 

 
= ik ik ik ik ikl ikl ik ikD B V Sϕ φ ψ χ− − + ɺɺ ɺ ɺ .      (7.1) 

 
The stress functions will be eliminated from this equation with the help of the field 
equations and the conservation law, and it then follows that: 
 

  2 1 1

2 2 2 2
E Eik

i k ik ik ik ikv s s
t

θρ σ ε µ χ∂  + + + ∂  
+ {− σik vk – µik sk} , i  

=  − σik Iik – µik Sik − lrs rs lε σ ϑɺ .     (7.2) 

 
Here, 1/2 (Sv2 + θiksisk) is the total kinetic energy, 1/2σik

E
ikε  is the energy density that is 

coupled with the elastic deformation tensor, and is the energy density (viz., elastic 
potential) that is coupled with an elastic curvature tensor.  The energy flux density is 
given by − σik vk – µik sk .  Along with the energy flux that is connected with the stress 
tensor, an analogous part emerges that is connected with the moment-stress tensor. 
 Now, one has no conservation law for the sum of the kinetic and potential energy 
since the right-hand side of eq. (7.2) is not equal to zero.  A mechanical field energy for 
the solid body will be removed through the interaction of the stress fields with – e.g. – the 
dislocation flux density.  This can happen reversibly when no friction is coupled with the 
dislocation fluxes, while in the other case D = − σik Iik – µik Sik gives the part of 
mechanical field energy that is converted into heat by way of dissipative processes.  Here, 
one can (by neglecting the cross-couplings) introduce two material equations that are 
analogous to Ohm’s law [4]: 

(1)

(2)

,

.
ik iklm lm

ik iklm lm

r I

r S

σ
µ

=
=

      (7.3) 

 
The third term εlrs σrs ϑi is connected with the angular velocity iϑɺ  that was introduced in 

eq. (5.14), which one can connect to σ[ik] by means of a material law. 
 The appearance of dissipative terms in the energy balance does not contradict the 
application of Hamilton’s principle, since we indeed regard the currents I ik and Sik as 
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given, so they do not vary.  For this reason, we also do not need to assume anything about 
the nature of the forces that these currents create. 
 We would like to consider the term – σik Iik for a moving singular dislocation line 
(with no foreign matter) [5, 10].  I ik then reads: 
 

I ik = εiml τl  bk Vm ,  τl  bk = Dlk .   (7.4) 
 

τi is the unit vector in the direction of the dislocation line, bi is the Burgers vector, and Vi 
is the velocity of the dislocation line.  With eq. (7.4), it follows: 
 

– σik Iik = − εiml τl  bk σik Vm = − PK
m mk V .   (7.5) 

 
In other words, in this case, σik Iik can be interpreted as the work that is done by the 
Peach-Koehler force on the moving dislocation line. 
 
 

8.  On the description of a single foreign atom 
 

 It is known from the literature [1, 3] that one can describe a single foreign atom as an 
elastic dipole.  The force that acts on such a displacement dipole Qik in the stress field σik 
is given by: 

Kr = Qjl σjl,r      (8.1) 
 
in the static case and for µik = 0.  In eq. (6.7), we also possess a formula for the force 
density of the foreign matter.  Here, we are interested in seeing how the tensors Kik and 
Bik look for a single foreign atom.  We would thus like make the following proposal, 
which is suggested by the possibility of representing a single foreign atom as an elastic 
dipole.  We set: 

− εrik εrjl  Kij = εsrk Msl S,r .    (8.2) 
 
Here, the constant tensor Mik describes the individual foreign atom (or better get: its 
displacement dipole), and δ is the well-known δ-function, so δ, r is then the dipole 
function.  Next, we calculate the force that that is exerted on the foreign atom (8.2) in the 
stress field σik , Cµik = 0.  In order to do this, we must substitute eq. (8.2) in eq. (6.7) and 
then integrate over the entire domain: 
 

Kr = E
rk dV∫  = , ,{ }ik ik r rk ik iM M dVσ δ σ δ−∫  = Mik σik,r – Mrk σik,i . (8.3) 

 
For the sake of simplicity, we consider the static case σik,i = 0, for which the force (8.3) is 
identical with the force (8.1) that is given in the literature, so Mik is equal to the 
displacement dipole Qik .  In this case, the tensor of foreign matter has a quadrupole: 
 

Bik = , ,

1

2lsi jrk jl iks jrl jl r sM Mε ε ε ε δ − 
 

,   (8.4) 
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and here we have: 
εlik Bik = 0.     (8.5) 

 
In other words, the tensor Bik is symmetric for an individual foreign atom with the dipole 
character (8.2). 
 Our proposal for the structure of Bik and Kik delivers the correct force on the foreign 
atom, but it has the drawback that we can give no direct physical basis for the Ansatz 
(8.2). 
 

9.  Concluding remarks 
 

 In our theory, we started from the equations of motion for the Cosserat continuum.  
We fulfilled these equations by means of stress functions identically.  We have then 
extended the Lagrange density for the Cosserat continuum by an interaction term, and by 
variation of the stress functions, we were led to the field equations of the theory of 
dislocations with foreign atoms.  Thus, since the appearance of foreign matter is 
connected with the use of the Cosserat continuum, when one starts with only eq. (2.1), 
one obtains only the basic equations for the theory of dislocations without foreign matter 
[5].  One can then say that the ordinary theory of dislocations corresponds to a continuum 
whose mass elements possess the degrees of freedom of a rigid body.  This result is 
connected with our interpretation of the individual foreign atom as being described by an 
elastic dipole which then possesses the same degrees of freedom as the mass element of 
the Cosserat continuum. 
 In conclusion, we would like to once more mention the most important open 
questions that remain.  First, there is the question of the geometrical quantities that one 
can associate with the anti-symmetric part of the stress tensor.  Furthermore, the question 
of the physical interpretation of the splitting of the elastic curvature tensor and the 
dislocation flux density Vikl, and in connection with that, the question of the meaning of 
the not-purely-elastic distortion βik .  Ultimately, the question remains of reaching a better 
understanding of the flux density for the foreign matter Sik, and thus, e.g., its possible 
connection with the diffusion currents. 
 
Remark- I would like to thank Herrn Prof. Dr. K. Schuster for stimultating discussions.  I 
would also like to thank Herrn Dr. F. Hehl, Clausthal-Zellerfeld, for worthwhile advice. 
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