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Abstract — A Lagrange function for the general theory of dislotet is presented. The stress functions
are then varied, which fulfill the equations of motidntlze linear Cosserat continuum identically. The
invariance requirement of the theory under gauge transfions of the stress functions leads to
conservation laws (balance principles, resp.) fordistocation density and foreign matter. The energy
balance equation and the field balance equation are deewedhe forces that act upon the dislocation
density and the foreign matter are presented.

1. Introduction

Since the continuum theory of static dislocationsass good as completd-B], the
problem now remains of extending the static theory éodynamical theory of moving
dislocations. Basic equations for a continuum theomnoving dislocations were given
previously by, e.g., Hollanded], Kosevich p], Mura [6, 7], and Bross§]. All of these
theories have in common that in order to determinestifess state and the velocity field a
dislocation flux density (the time variation of theagtic deformation, resp.) must be
present along with the dislocation density. There #mxists a balance equation that
couples the temporal variation of the dislocation dgngith the dislocation flux density,
in complete analogy to the charge conservation laeledtrodynamics. Along with the
presentation of basic dynamical equations, a basic kinexhaquation was also derived
[9, 10] with the aid of a velocity vector for the dislocats.

In this paper, we link up with the work of Hollander afamksevich; i.e., we first solve
the equations of motion by means of stress functid¥ie.then define a Lagrange density
that consists of the Lagrange density for the elastty Iplus interaction terms. Since we
start from the Cosserat continuum, and thus considenenb stresses, we will thus be
inescapably led to introduce new density and flux densitsols in the interaction terms
of the Lagrange density. These tensors describe foraafter, so we deal with the
general dislocation theory in the sense of Kroner. daieve the field equations from
Hamilton’s principle. An examination of the gauge invar@o¢ the theory leads us to
the conservation law (balance principle, resp.) ferdlslocation density and the foreign
matter. Finally, we derive the energy balance equatnwhthe field impulse balance
equation by the method of classical field theory. Wes thiso obtain the forces that act
on the dislocations and the foreign matter in thesstand velocity fields.
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2. Theequations of motion and the material equations

The starting point of our reasoning is defined by the liegaations for the Cosserat
continuum [2]. They are balance equations for the dynamical ingpdénsity and the
rotational impulse density:

6,8 = ik * &rs Cki. (2.2)

Here, p means the mass density,, the velocity of the mass elemet; , the stress
tensor — which is asymmetric hergsris the moment stress tensor, apdis the totally
anti-symmetric unit tensor. For the partial derivatives,setdu /ot = u, du/ dx =u; .
We associate the individual mass elements with adggnee of freedom, in the sense of
the Cosserat theory, that is described by the angulaecityes and the moment of inertia
Bk .

For the elastic deformation tensgf, we assume that it is coupled to the stress tensor

by Hooke’s law:
Tk = Cikm &, Oiky = 3 (G + o). (2.3)

Since we are dealing with an incompatible theory, therdefton tensor may no longer
be derived from a displacement field. An analogous nadtiexv is true for the moment
stress tensor:

i = Bikim X (2.4)

where x- is the elastic curvature tensor, which can be computech fthe anti-
symmetric part of the elastic distortion only in theseice of foreign matter. One can
also consider cross-coupling in the material equations §2@)2.4). The cross-coupling
will play no role in what follows, since it first bemes important when one looks for
solutions of the field equations thus obtained.

A certain geometric quantity is lacking for us in thatemial law for the anti-
symmetric part of the stress tensor. We will thuplesn no material law fordy,
whether or not this practice is entirely satisfactory.

3. The solution of the equations of motion by the use of stress functions

In elastostatics, one often uses the stress fungio, which makesdi = & @Pskr
satisfy the equationgi; = 0. We extend this solution Ansatz by introducing adaitio
stress functions:

Ok = &irs ¢sk,r + wﬁkJ ) (31)
PV = tkiik) (3.2)
Mk = &im &k Pmi — Ellis + Ers Bikr + Xk, (3.3)

B S = Xii) - (3.4)



Kluge — On the dynamics of the general theory of disioeat 3

Eqg. (2.1) and (2.2) are fulfilled identically with this Atsa One must now arrive at
equations for the stress functions, for which we apieelllamilton’s principle. Let it be
remarked that the stress functions for the solutiongo{21) alone were already given
by Hollander #i] and Kosevich %] and by Ginther 3] in the static problem with
moment stresses.

4. TheLagrange density and thefield equations

In classical linear elastomechanics, the Lagrange gedmest the following formL =
1(o&¢ —pv°). We extend this expression by considering the elastioggrbat is

coupled to the curvature and the kinetic energy that isledup the spin of the mass
element. We thus obtain the Lagrange density:

L= %(a-ik‘giE +luik)(ill<5 _pVZ _Hiks %)_ Q<¢ik + \W/’m + @% - §Xik . (4.1)

In regard to the physical meaning of the quantBigs Vi , Bk, andSk, we will first
make a few remarks about the field equations. By analatipyyelectrodynamics, one can
compareDjc with the electric charge densityy with the scalar potentiaViy with the
electric current density, angly with the vector potentialf 5]. In order to arrive at the
field equations, we employ the Hamilton principle:

o[ Ldvdt=o, (4.2)

in which we vary the stress functions, while the qu@stDi , Vik , Bk, andSy are left
fixed by the variation. By varying thgy , we then obtain:

oL —( o j =0, (4.3)
¢, |04, |

by varying they, we get:

oL _Q(GL j+g oL | .o oL _o. 4.4)
0y Ot{ Oy ot a¢/i|<|,m m ot alﬂikl,m,n mn

by varying theg, we get:

a_L_{a_Lj _o, (4.5)
04 04 ),

and by the variation gfi, we get:
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oL -E(GFJ- L S .6)
ox. ot\ok ) (oK )

These are the desired field equations, which assumeltbeihg form with the help of
eg. (4.1):

‘gikl‘gijE,k * Ei &i )@E = Dij ) 4.7)
€ '|rE ~Mik +‘ék|Ei == Vi, (4.8)
Eini ijE] :Bij ) (4.9)

Ski — )(IE =5. (4.10)

In order to facilitate the physical interpretationtiod quantitie®ix , Vik , Bik , andSk
,we first setByx = 0 andSx = 0. On the basis of (4.9), one can then write thstie
curvature tensor as:

Xi = 6B (4.11)
and thus it follows from eq. (4.7) that:
Eina jE,k =Dj . (4.12)

We then summarize the elastic distortjGp as follows:

BE = &5+, (4.13)

It follows immediately from eq. (4.12) th&@ix is the tensor of dislocation density. It
depends upon the elastic curvature tensor according to.&y.r(4he well-known way

[7]:
Xj? = ‘gilk‘glj,l _Dij +%D| q . (4.14)

Next, we consider eq. (4.8), for which we can writehveit). (4.11) andix = 35 + 87
(where B} is the plastic distortion):

(ﬁkE| _Vk,i),l ==Vik =~ IBi::J ==l . (4.15)

Here, we have employed, e.g., the dislocation flux itheriensorly = B, that was

introduced by Kosevichb] or Mura [7]. In the casd@y = 0 andSx = 0, we thus find that
Vik is precisely the gradient of the dislocation flux dignnsor:

Vid = lu;i - (4.16)

We now again come back to the general case Byitid 0 andSyx # 0. Due to eq. (4.9),
Xr no longer represents a gradient, now. However, ®rstike of further calculations
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(e.g., for the presentation of the field impulse badgrend for comparison with the
relations that are known in the literature, we wouke lio split a gradient off from .

We thus write:
E

X = %‘gkrs:qrs],i + Kik - (4.17)

Here, Fiq does not mean the anti-symmetric part of an elasstoion tensor, since, as
we will show, B describes foreign matter, in the sense of Kronerr@m {2], there
exists no elastic distortion tensor, at all. Analogmuthe decomposition (4.17), we also
decompose the tensyy, into two parts:

Vik = lui — &k Kir (4.18)

where |y is again the tensor of the dislocation flux densitt present, we cannot
ultimately decide whether the splittings (4.17) and (4.1 anly convenient for
calculations or whether, as we assume, a deeper physitse lies beneath this.

With eq. (4.17) and (4.18), we now obtain the field equat{@dngd to (4.10) in the
following form:

&k G = Dij — &i &ji K, (4.19)
Eik /<i!,j = Bu, (4.20)
Vki — B, = Bi, (4.21)
Sqi — X = S (4.22)

We have thus combined the elastic deformation teaSowith the anti-symmetric tensor
B from eq. (4.17) into the distortion tensor according to:

B = & * B, Ex = Bk - (4.23)

Only in the case of no foreign matter is this equahtdlastic distortion tensor, since it
would then contain no plastic part.
We now consider eq. (4.19). This equation is identicah whe relation that was
given by Kroner 3]:
rotf=a+y (4.26)

if one sets the tens@i equal to the dislocation density tenspand sets i & K
equal to the tensoy, which is a measure of the foreign matter that isgmtes the
crystal. On the basis of eq. (4.21), we thus obtaiordircnation of our conjecture that
Bik represents the foreign matter — i.e., the density oft mtefects. We will now show
that By is identical with the tensdiy that Kroner B] introduced. We first consider eq.
(4.21). In the general caBg # 0, it can be employed for the interpretationf since
we regard the dislocation flux density as a given quantity in our theory. If we
decompose eq. (4.21) into its symmetric and anti-symnyaricthen it follows that:
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| =V o —&F =&F,
I(|k) ~ (k,|)_ ‘|k ik (425)
g =iy ~ B

We will first discussSk later, since a relationship that is comparable tq482) in the
literature is not known to us. However, it will be shothatS, can be interpreted as the
flux density for the foreign matter.

One can now solve special problems when one subst#iness functions in the field
equations (4.7) to (4.10) and prescribes the fi®lds Vi , Bk , andSx . Naturally, the
form of the material equations e.g., whether or not they have cross-couplings — then
plays a role, while the splittings (4.17) and (4.18) arenegcessary. We would not like
to examine any special solutions in this paper, but onlyeroncurselves with general
properties of the theory.

5. The gaugetransformations of the stress functions and the conservation law for
thetensors of dislocation density and foreign matter density.

Precisely as in elastomechanics, where one can adwar tef null stress functions
Ok, to the stress functiongx , we have also have the possibility here of transfogntine
stress function®i , ¢ , ¢, and i , without changing the physical quantit®s, ovi,
Lk, B« . We would like to call these transformatiogeguge transformationsas in
electrodynamics. These gauge transformations haveitime f

P = P + & —bik, (5.1)
Wiy = W + &as s + & iy, (5.2)
@ = @ +Ci — ik & + Eim Aimi — hik, (5.3)
Xic = X+ &q hicr . (5.4)

The “null stress functionsg; , b, di , G, andhyi can be chosen arbitrarily. However,
that means that one can impose a large number of ayxd@nditions on the stress
functions, and one might hope that by that means aghtrarrive at a coupling of the
field equations in terms of the stress functions.

We would now like to investigate the influence of the gatgesformations on the
Lagrange density. Naturally, the field equations that dmaies by variation of the stress
functions must always be the same independently ofélige of the stress functions.
However, that means that the gauge transformation chapge the Lagrange density
only by a divergence and a term that can be written @sna derivative. This
requirement then leads to conditions that must be &dfiby the tensors of dislocation
density, foreign matter density, and the correspondin@$lux he Lagrange density (4.1)

has the formk = L% + L. L® = (g, &5+, x5 - pv* -6,55) does not change under a

gauge transformation, since it is constructed out ophlysical quantitiesk, i, vi, and
s,. Things are different for tHe" part. For it, one has:
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J:ZJV (-Du&i *Vitlia * B — s X)) dVdi=li+12
= ,[:Z'[V (—Du by t*Vitia * B — S X)) dV d
+ J:Z '[V{_Dik( a ; —h) + V(& R * & qjir)
+B, (G — & @ * s ds — h) - S&. h.} dva (5.5)

Here, the last integral must vanish, up to a boynaféegral, as well as the terms that one
can write as time derivatives. For that reasoncamvert the last integréd in eq. (5.5)
into:

l2= .EZ.[V{(_Dikak +£fiivrk| q<lj + $< f & § jb)i,
+ %(Dikhk + &40 B — By hl()} dvd

+ 'EZ'[V{(_‘SHK B, + Dnj )a + (- Q| + Vi &is ) B
+ (= &;j Vikiy — &k BJ-S) O — Bik,i G + (Bjs+r€irj Sikr) hy} dV dt (5.6)

The first integral does not contribute to the fi@duations, so the second one must
vanish. Since the gauge functiams bi , dii , ¢, andhi can be chosen arbitrarily, by
and large, the factors in front of these functionsst be zero. Upon consideration of eq.
(4.18), we thus obtain the following conditions,iedhwe would to refer to briefly as the
conservation lawgbalance equationgesp.) for the tensof3, andB :

D = & B (5.7)
D, + &ik Vik =0,
or
D, + &ik ki = &is & Ki,- , (5.8)
Bjs: &irj Kis,r ) (5.9)
Bii =0, (5.10)
B =~ & Ser- (5.11)

In the case of no foreign mattdy(= 0, K = 0, Sk = 0), these are precisely the known
relations for the dislocation densit3; b, 7, 8]:

Dii =0, Dsl + &ik lai = 0. (5.12)

If one considers foreign matter, then from Kroridr pne had;; = gk Bk . However,
that is precisely our equation (5.7), from whick thterpretation oBj as the tensor of
foreign matter is confirmed. As a consequencehefdonsideration of foreign matter, a

source termes & K'i]. appears in the balance equation (5.8) for th@chsion density,
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which is connected with the temporal variation of theeifpn matter. However, on the
grounds of eq. (4.19), one can also interfgt & &mjKim as the effective dislocation
density. The divergence of this effective dislocationsitg then vanishes once more.
Eq. (5.10) is a condition on the tensor of foreign mdttat Kroner 2] likewise derived
from a geometric argument.

Ultimately, we have obtained a balance equatiortHertensor of foreign matter that
is completely analogous to the dislocation density (5.¥2¢. can thus interpr&i as the
tensor of foreign matter flux. Due to eq. (5.19) and 1), this tensor depends upon the
tensorVigy (Kik, resp.) by way of:

& (&w Ss— Viky),r = 0, (5.13)
or:

tgirj (tgskl Kis + Ss) = 0 (514)

The foreign matter fluxSk is then equal to the tensor (the temporal variatibthe
curvature tensoKy, resp.), up to a gradient field. After a brief caltiola, it follows
that:

&5 Ss — Vit = (&S —Vikn).i = = F g
or.
Sk+K_(Sk ‘gkrsﬁrs])l_ k,i*

19[k|] describes the relative angular velocity betweentobal angular velocity and the

angular velocity of the individual mass element. Omghinconjecture that the tensgk

is closely connected with the velocity of the foreigtoms (or point defects), and
possibly with diffusion in crystals. Further investigatiemeeded in order to make more
precise statements.

6. Thefield impulse theorem

In order to arrive at statements about the forcesithen the dislocation density, the
dislocation flux density, the foreign matter, and theeign matter flux density, we
exhibit the field impulse balance law that belongs toLngrange density (4.1). For this,
we employ the method that was given by Landau and Lils¢if. We define:

oL oL oL oL
_— = 0, t—0 A FT—U
ox 09, P ¢y, P T, i 6w.k| T
oL oL 6 6L
t———y, T Y TR TR
6¢’Ik| r i a¢l|klx s k|l’$J a% ! a%l
N oL Yoo+ oL ¥ oL oLy 6L oL 5
6)(ik o a).(ik o a)(uu < aDik o
oL oL oL
+ B, *=—=— S, - (6.1)

_Vikl i t—
Vi 0B, 0S



Kluge — On the dynamics of the general theory of disioeat 9

With the help of the field equations (4.3) to (4.6), this equatan be easily converted

into:
0| oL oL oL
1 =y, - — Ay
ot {a‘/’im 1/ (0% ,m Jmlﬂukl,] . X j }

{ oL oL oL oL
+

¢i C+ Q.+ X T
a¢ik,r ! a%(r ! a)(ik,r ) a¢/iklr

YR AL Y . — Lo,
IWtime Pam. (awikl i Jn Yo ” }r

oL oL oL oL
=- D, +—V, +—B +—% . | 6.2
(aDik 4oy, 0 om,  Tog $“j >

7/ i

This is the desired field impulse balance, but still foran that one cannot interpret, and
even when one substitutes the derivatives of the Lagranggion (4.1). We now

convert eq. (6.2), giving consideration to the field equatiom such a way that only
physical quantities, and not stress functions, enterti@dield impulse balance. After
some tedious computations, it then follows that:

pj +err = kJ " (63)
In this:
B=-pVviB -6k sX; (6.4)

means the field impulse density, while:
2 = Bm Om + )(JI|E Lrm — LEdj (6.5)
is the “Maxwell tensor of elasticity” that is coupledth the field impulse density;, and:

K = & Tim (Dkm — &ik &sm Kis) = &kl fhim Bim — &irs ths Kit + P &« S (6.6)

is the force density that acts on the dislocatioresfaheign matter, and the corresponding
flux in the continuum considered.

The field impulse density is constructed similarlyhie energy flux density gi W in
classical elasticity theory, except that in thedfishpulse density;, in place of the stress
tensordi , one has the distortion tens@k, and in place of the velocity, one finds the
dynamical impulse density. One then adds the corréépgprpart with the elastic
curvature tensor to this.

The stress tensdy corresponds to the Maxwell stress tensor in electraaycs.
This tensor and eq. (6.3) were already given by EshHEbyor the static case with no
moment stresses. The name “Maxwell tensor ofielgstalso goes back to Eshelby.
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The most interesting thing is the force denkity In the case with no foreign matter,
one obtains precisely the force dengity dn Dikm that was given by Peach and Koehler
[16], which acts on the dislocation density in the stfiedd, and the force densily v I
that Kosevich 17] found, which acts on the dislocation flux densityhe tvelocity field

vi . Here, we have found, in addition, the force denkfty which acts on the foreign
matter. It reads:

kiF == &k Om &ik &sm Kis = &nrs Ois Kim = g Gim Kl = &k fdm Bim - (6.7)

The first term originates in the effective dislooatidensityDi — &a tim Kim in the
Peach-Koehler expression in eq. (6.6); i.e., the fareigtter acts partly like a dislocation
density, and for that reason a force acts on thegiommiatter in the stress field according
to the formula of Peach and Koehler. The second tevesghe force density that acts
upon the foreign matter in the moment-stress field. s Towce density is, up to sign,
analogous to the Peach-Koehler force, except thatarepdf the dislocation densiByx
one now finds the tensor of foreign matBgr. The last term in eq. (6.7) finally gives the
part of the force density that is connected with onlyahg-symmetric part of the stress
tensor. One can combine the first and third terms suahittiormally has almost the
same appearance as the Peach-Koehler force. In agdite® have also obtained the
force densitygx sc §; that acts on the foreign matter flux in eq. (6.6); fime the spin
impulse 8« scin place of the impulspv; in the force density of Kosevich, here.

If one setdy, Viu, Bk, andSx equal to zero then one can introduce a displacement
field and the field impulse (6.3) reads, when wetget 0 ands = O:

1
=5 (Gt —PY Y, } =0. (6.8)

i(—ﬂvu -)+{un 0,

6t 1M, o rm
Here,u is the displacement vector. The field impulse hedais to be distinguished from
the equation of motion (2.1), which is to be interpretedh@ impulse balance for the
dynamical impulse densitgvi. Along with this dynamical impulse, however, one must
on the grounds of eq. (6.3) ((6.8), resp.), one must aszriiedd impulse density (which
is analogous to the impulse densityB] in electrodynamics) to the solid body in
guestion. In order to interpret this situation, we abeisa plane harmonic sound wave,
which, according to BreniglB], one must associate with an impulse. However, the
dynamical impulse that is coupled to plane harmonic davaves vanishes in the time
average, while the temporal mean of the impulse densiggi (6.8) coincides with the
impulse density that was given by Brenig. It seemsithatost cases the field impulse
density, as a quadratic — i.e., small — quantity, is natewmible when compared to the
dynamical impulse density, and only plays an essemtialwhen, as in the example of
sound, the time average of the dynamical impulse devesitighes.

The field impulse balance equation (6.3) can also be derivectly from the field

equations (4.19) to (4.22). In order to do this, one must ryukip. (4.19) by&im Omj,
eq. (4.20) by&im dmj, €. (4.21) bywi, and eq. (4.22) by s, add them, and convert
them accordingly.
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7. Theenergy theorem

Starting from the Lagrange density, we arrive at trexggntheorem precisely as we
arrived at the impulse theorem, except that we now ®irmot. With the help of the
field equations (4.3) to (4.6), we then obtain:

ofoL oL, [ ),
ot ok ™ o " \ 0 )

oL oL - oL . oL oL oL
+ { ¢ik + A Xi _{ j wikl + ¢/ikl m wikl

+ - +——
a¢ik,r aWKr a)(|k r a¢likl rm a¢likl mr a¢likl T,

= P Dik _WkBuk _wiklvikl * X $< . (7.1)

The stress functions will be eliminated from this equatwith the help of the field
equations and the conservation law, and it then foltitvats

o0jp ., b 1 e, 1 ¢
1By +20, 5 += 1 yE L+ {= Oic Vio— Lk S
6'[{2 23§ 5k 2/'llkX|k {— Ok W — ik S,

= = Ok lik — Hik Sk _glrsarszz : (72)

Here, 1/2 §V + Bisis) is the total kinetic energy, 1R e, is the energy density that is

coupled with the elastic deformation tensor, andhis energy density (viz., elastic
potential) that is coupled with an elastic curvattensor. The energy flux density is
given by- gk W — tk S . Along with the energy flux that is connectedhnthe stress
tensor, an analogous part emerges that is conneittethe moment-stress tensor.

Now, one has no conservation law for the sum efkimetic and potential energy
since the right-hand side of eq. (7.2) is not eqoiaero. A mechanical field energy for
the solid body will be removed through the intei@atof the stress fields with — e.g. — the
dislocation flux density. This can happen revdysitthen no friction is coupled with the
dislocation fluxes, while in the other cafe = - gk lik — ik Sk gives the part of
mechanical field energy that is converted into hgatvay of dissipative processes. Here,
one can (by neglecting the cross-couplings) intcedtwo material equations that are
analogous to Ohm’s lawi]:

Tic = Niamlims (7.3)
luik = rllgﬁr)lSm

The third termg,s dis & is connected with the angular velocify that was introduced in

eg. (5.14), which one can connectgg by means of a material law.
The appearance of dissipative terms in the enbejgnce does not contradict the
application of Hamilton’s principle, since we indeesgard the currentl and Sk as
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given, so they do not vary. For this reason, we @soot need to assume anything about
the nature of the forces that these currents create.

We would like to consider the termai lik for a moving singular dislocation line
(with no foreign matter)q, 10]. li then reads:

lik = &mi T bk Vim I b= Dy . (7.4)

7 is the unit vector in the direction of the dislocatlme, by is the Burgers vector, ang
is the velocity of the dislocation line. With eq. (7.4 Yollows:

— O lik == &mi T bk Gk Vim=— KEXV_. (7.5)

In other words, in this casej lik can be interpreted as the work that is done by the
Peach-Koehler force on the moving dislocation line.

8. On thedescription of a single foreign atom

It is known from the literaturel[ 3] that one can describe a single foreign atom as an
elastic dipole. The force that acts on such a digpeent dipole€y in the stress field
is given by:
Kr = Qj Giir (8.1)

in the static case and fgi = 0. In eq. (6.7), we also possess a formula for theefo
density of the foreign matter. Here, we are intex@sh seeing how the tensd{g and
Bik look for a single foreign atom. We would thus likekendhe following proposal,
which is suggested by the possibility of representing a siogégn atom as an elastic
dipole. We set:

= &ik & Kij = &k Ms1 Sy . (8.2)

Here, the constant tensty describes the individual foreign atom (or better get: it
displacement dipole), and is the well-knowndfunction, sod  is then the dipole
function. Next, we calculate the force that tlsag¢xerted on the foreign atom (8.2) in the
stress fieldoi , Cuex = 0. In order to do this, we must substitute eq. (8.2) irféed) and
then integrate over the entire domain:

Ke= .[kadV = ,[{Mikaika_,r -M, 0,0} dV =Mi Gicr — M G . (8.3)

For the sake of simplicity, we consider the statisedy ; = 0, for which the force (8.3) is
identical with the force (8.1) that is given in tlieerature, soMy is equal to the
displacement dipol®y . In this case, the tensor of foreign matterangsiadrupole:

1
Bik = (é‘,sié‘jrkl\/l“ —Eﬁksfjrl M; j‘srs : (8.4)
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and here we have:
ik Bik = 0. (85)

In other words, the tens& is symmetric for an individual foreign atom with ttigole
character (8.2).

Our proposal for the structure Bf andKi delivers the correct force on the foreign
atom, but it has the drawback that we can give no directigdlybasis for the Ansatz
(8.2).

9. Concluding remarks

In our theory, we started from the equations of mot@mnthe Cosserat continuum.
We fulfilled these equations by means of stress funetidentically. We have then
extended the Lagrange density for the Cosserat continuwan interaction term, and by
variation of the stress functions, we were led to fiell equations of the theory of
dislocations with foreign atoms. Thus, since the ampea of foreign matter is
connected with the use of the Cosserat continuum, whenstarts with only eq. (2.1),
one obtains only the basic equations for the theorystdchtions without foreign matter
[5]. One can then say that the ordinary theory dbd&ions corresponds to a continuum
whose mass elements possess the degrees of freedomgaf aody. This result is
connected with our interpretation of the individual fgreatom as being described by an
elastic dipole which then possesses the same degréeeaddm as the mass element of
the Cosserat continuum.

In conclusion, we would like to once more mention thest important open
guestions that remain. First, there is the questiohefieometrical quantities that one
can associate with the anti-symmetric part of thessttensor. Furthermore, the question
of the physical interpretation of the splitting of th&astic curvature tensor and the
dislocation flux densityi, and in connection with that, the question of the meaning o
the not-purely-elastic distortiofik . Ultimately, the question remains of reaching a better
understanding of the flux density for the foreign maSgrand thus, e.g., its possible
connection with the diffusion currents.

Remark | would like to thank Herrn Prof. Dr. K. Schuster &imultating discussions. |
would also like to thank Herrn Dr. F. Hehl, Clausthall&@¢ld, for worthwhile advice.
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