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 In my textbook on the calculus of variations, I referred to the following problem as the most 

general problem of that discipline as long as one seeks functions of one variable: A number of 

differential equations: 

 

(1)      (y0 , y1 , …, yn , dy0 , dy1 , …, dyn) = 0 ( = 0, 1, …, r) 

 

exist between n + 1 variables y0 , y1 , …, yn that are homogeneous of degree one in the differentials. 

Let C be a region of those variables in a bounded simple manifold to which the differentials that 

occur in equations (1) refer, and the initial and final values of the quantities y will be subject to 

conventions such that the final value of at least one of them (say, y0) is initially subject to no 

restrictions. The problem is then to determine C in such a way that the final value of y0 will be an 

extremum. That implies that the differential equations: 

 

(2)      d
y dy 

   
−

 
 = 0   (n = 0, 1, …, n) 

 

will be true along the manifold C, in which one sets: 

 

 =
0 1 0 1

0

( , , , , , , , )
r

n ny y y dy dy dy 


 
=

  

 

and the  are multipliers that are determined by the combination of equations (1) and (2). 

 That very general problem was recently referred to as the Mayer problem, as opposed to the 

Lagrangian problem, which emerges from it by the following specialization: The quantity y0 does 

not occur at all, and the differential dy0 occurs in only one of equations (1) – say, the first one – 

which one imagines to have been solved for dy0 . One might then have, say: 
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dy0 –  (y0 , y1 , …, yn , dy0 , dy1 , …, dyn) = 0 , 

 

and  is once more homogeneous of degree one in the differentials that occur. The remaining 

equations (1) will be: 

 

(3)      (y1 , …, yn , dy1 , …, dyn) = 0 ( = 1, 2, …, r), 

 

and the problem is now to extremize the integral: 

 

y0 = 1 2
1 2, , , , , , , n

n

dydy dy
y y y dt

dt dt dt


 
 
 

 , 

 

in which one integrates along the manifold C and t means a parameter that varies along it, under 

the condition equations (3). 

 Both terms lack any historical justification. Namely, the Mayer problem was already treated 

by Euler, and quite thoroughly and successfully. Indeed, the examples that he gave are the only 

ones that have been treated seriously up to the present day. Furthermore, Lagrange had also 

mentioned Mayer problems expressly in his ground-breaking treatise, and he later treated an 

example that Euler examined with variable endpoints in the calculus of functions that has found 

no successors up to now, in any event. Now since, on the other hand, Mayer’s most important 

works are dedicated to precisely the problem that is now called the Lagrange problem, one can 

permute both names quite well in the terminology that was introduced. 

 Meanwhile, let us not be pedantic. The fact that those names were established for the classes 

of problems that were referred to undoubtedly corresponds to an existing demand for them, and 

we would then like to accept the names that have been used many times already and refer to them 

as the subject of our investigations. 

 We next point out that when the Lagrange problem is regarded as the Mayer problem, the 

concept of extremals will need to be modified a bit. For example, if one understands that in the 

simplest Lagrange problem, which is given by the equation: 

 

dy0 −  (y1 , y2 , dy1 , dy2) = 0 , 

 

extremals mean curves in the plane in which y1 and y2 are coordinates. In that case, one has to set: 

 

 = 0 (dy0 −  (y1 , y2 , dy1 , dy2)) , 

and equations (2) yield: 

d0 = 0 , 0 = const., 

 

0 0( ) ( )
d

y y 

    
−

 
= 0 ,  ( = 1, 2) 

or since 0 is constant: 
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(4)      d
y y 

  
−

 
 = 0  (n = 1, 2) . 

 

Those two essentially-equivalent equations characterize the extremals. By contrast, if one regards 

our problem as a Mayer problem then, from the definition that I gave in my textbook, the extremals 

will be curves in the space of three coordinates y0, y1, y2 that obey the relation: 

 

y0 = 1 2 1 2( , , , )y y dy dy  , 

 

along with equations (4). Similarly, for every Lagrange problem in the n-fold manifold of the 

variables y1, y2, …, yn , the extremals are initially simple manifolds in the domain of those variables, 

but they will also be such things in the domain of the n + 1 variables y0, y1, …, yn  when one regards 

the problem as a Mayer problem. Now certain symmetries emerge in the latter conception of things 

that would otherwise remain hidden, and problems will be closely related that previously seemed 

distinct. For that reason, in what follows, we would always like to consider the Lagrange problem 

to be a Mayer problem in a space whose number of dimensions is greater by one than it was in the 

former problem. The procedures will first make it possible to adapt certain theories that were 

developed only for the Lagrange problem up to now to the Mayer problem. 

 Known considerations in regard to the isoperimetric problem offer examples of the benefits 

that one can enjoy with spaces of differing numbers of dimensions, in which, say, the integral: 

 

u = ( , , , )F x y dx dy  

 

is to be extremized, while the value of the integral: 

 

z = ( , , , )G x y dx dy  

 

is prescribed. F and G are homogeneous of degree one in the differentials. Here, one next seeks a 

curve, namely, the extremal in the (x, y)-plane. However, that problem has already been treated 

many times, and one seeks, say, a curve in the space of the variables x, y, z that fulfills the relation: 

 

dz – G (x, y, dx, dy) = 0 , 

 

connects two given points, and yields an extremum for u. The isoperimetric condition is then 

defined by the fact that the z-coordinate of the endpoint is prescribed. 

 If one regards the problem as a four-dimensional Mayer problem then one must set: 

 

 =  (du – F) +  (dz – G) 

 

in equation (2), in which one replaces 0, 1, y0, y1, y2, y3 with , , u, x, y, z, and one will find 

that: 
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d = d = 0 , 

 

(5)     
( ) ( )F G F G

d
x dx

    +  +
−

 
 = 0 , 

(6)     
( ) ( )F G F G

d
y dy

    +  +
−

 
 = 0 . 

 

The long-known fact that the roles of the quantities u and z can be switched without changing the 

extremals in the (x, y)-plane is now obvious from that. Indeed, they are characterized by the 

essentially-equivalent equations (5) and (6), which include F and G symmetrically, but u and z not 

at all. One will then obtain the same extremals as before in the new problem of extremizing z for 

a prescribed value of u. 

 However, a deep relationship between both extremal problems that Mayer discovered can also 

be made clear, namely, that the conjugate points of both problems are the same. One calls two 

points 0 and 1 on a two-dimensional extremal of the first isoperimetric problem (i.e., when one 

seeks the extremum of u) conjugate when they can be connected by a neighboring extremal that 

gives the same value to the integral z, when extended from 0 to 1, as the first extremal, on which 

those points lie. If one regards that curve as the projection of a spatial extremal whose point 1 has 

the projection 1 then the points 0 and 1 will be conjugate because they are connected by two 

neighboring extremals. Now the extremal fulfills the necessary condition for the extremum of the 

quantity u. If one goes from the extremal arc 01 to a neighboring one with the same initial and 

final point then the value of u will remain the same to first order. One will then get the same system 

of values x, y, z, u at the endpoints of both two-or-three-dimensional extremal arcs. If one regards 

the problem as four-dimensional, such that the extremals are defined by equations (5), (6), and the 

relations: 

du – F (x, y, dx, dy) = 0 , dz – G (x, y, dx, dy) = 0 , 

 

then the conjugate points will be simply the ones that can be connected by two neighboring 

extremals in the space of the four quantities x, y, z, u. No distinction should be made between z 

and u in that definition. It is equally true for both of the extremum problems that were distinguished 

above, and Mayer’s theorem is immediately obvious. 

 If one next addresses the simplest class of problems, for which the integral: 

 

u = ( , , , )F x y dx dy  

 

is to be extremized, in which F is homogeneous of degree one in the differentials, then one will 

need a field for the Weierstrass derivation of sufficient conditions for the extremum, i.e., a family 

of extremals along which one defines Hamilton’s principal function from the integral u for 

suitably-chosen starting points. One restricts the field according to the Jacobi condition such that 

a certain region of the plane will be simply covered, and u can be regarded as a function of x and 

y. Finally, and above all, one chooses the family of curves and the starting point of the integration 

such that the equation: 
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(7)      u = 
F F

x y
dx dy

 
 

+
 

 

 

will be true, in which  means an advance along an arbitrary direction in the (x, y)-plane and d 

means an advance along an extremal of the field. The essence of the Weierstrass method can now 

be characterized in fewer words. 

 Let the points 1 and 2 lie inside the field along the same extremal. One will then have: 

 

u12 = 
2

1
u  

 

for the value of the integral u when it is defined along the extremal arc 12. Furthermore, if B is an 

arbitrary curve in the field that runs from 1 to 2, and along which the differential sign  will apply, 

and one sets: 

dU = F (x, y, dx, dy) 

then: 

U12 = 
2

1
U  

 

will be the integral U when it is extended along this curve from 1 to 2, and equation (7) will yield 

the equation: 

 (U – u) = F (x, y, dx, dy) − 
F F

x y
dx dy

 
 

−
 

, 

 

in which F, with no arguments, is understood to mean the same thing as before, and the right-hand 

side means the Weierstrass quantity: 

 

E = E (x, y, dx, dy, x, y) . 

 

One finds directly by integration that: 

 
2

1

( )U u − = U12 – u12 = 

2

1

E , 

 

in which one integrates over the differential  on the right, i.e., along the curve B. Now the sign 

of the quantity E is generally easy to examine. If it is fixed then the same will be true of the sign 

of the difference U12 – u12 , and that will guarantee the extremum property of the extremal arc 12 

compared to the curves B that run through the interior of the field and give a fixed sign to the 

quantity E. 

 In that line of reasoning, Weierstrass had always employed a field whose extremals went 

through a fixed point and defined the integral u from there on. In my textbook, I referred to the 

fact that the Weierstrass theory can also be developed in a field that is defined by an arbitrary 
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simply-infinite family of extremals. One will then have to define the integral u only according to 

equation (7) along a curve that intersects the extremals transversally, when  means the advance 

along it, i.e., such that the equation: 

F F
x y

dx dy
 

 
+

 
 = 0 

 

is true. Obviously, such transversals can constitute a family. For less-simple problems (e.g., when 

higher differential quotients occur in the isoperimetric and general Mayer problems), I have 

applied fields with the special nature that Weierstrass employed throughout, except that for the 

isoperimetric problem with a variable boundary, a more general field will appear that still has a 

special character, however. 

 In fact, the simplest problem of the type that was considered more closely above stand alone 

in those questions. For example, already in the problem of the shortest line in three-dimensional 

space, one cannot employ any arbitrary family of extremals that have the necessary number of 

dimensions in order to construct a field, which would be a two-fold infinite family of lines in the 

present case. That is because, above all, one seeks the extremum of a quantity u that is defined by 

the equation: 

du = F (x, y, z, dx, dy, dz) , 

 

in which F is again homogeneous of degree one in the differentials, so by analogy with equation 

(7), one poses the relation: 

u = 
F F F

x y z
dx dy dz

  
  

+ +
  

 

 

in a field, and the extremals of the field will be intersected transversally by every surface u = const., 

i.e., according to the relation: 

F F F
x y z

dx dy dz
  

  
+ +

  
 = 0 . 

 

In the case of the shortest line, one sets: 

 

F = 
2 2 2dx dy dz+ + . 

 

Transversal position is a right-angle intersection. The family of extremals, i.e., the family of lines 

with which one would like to form the field, must then be intersected by surfaces orthogonally, 

which is known to be impossible for any two-dimensional family of lines. 

 That suggests the problem of characterizing those manifolds of extremals with which one can 

form fields and defining the general concept of a field for which the Weierstrass method can always 

be applied, and it is quite wonderful that this is the case for even the most general Mayer problem. 

For the Lagrange problem, the theory of the field was essentially established by the work of Bolza 
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(1) and Radon (2). The main problem of the present treatise is to carry out corresponding 

developments for the Mayer problem. 

 For that, it proves to be preferable to refer the concept of an extremal in the way that was 

suggested above to a manifold whose number of dimensions is raised by one compared to the 

ordinary picture, and the concepts of transversals and the field are likewise modified. From a closer 

investigation, one sees that those modifications are already advantageous even for the simplest 

problems, say, the ones that are characterized by the equation: 

 

du = F (x, y, dx, dy) . 

 

If one would like to apply the formulas that were cited above and valid for the Mayer problem then 

one must set: 

 =  (du – F (x, y, dx, dy)) . 

 

One of equations (2) that relates to u will yield: 

 

d = 0 ,  = const. 

 

along the extremal. Equation (7) can then be written: 

 

(8)     u x y
du dx dy

  
     

+ +
  

 = 0 , 

 

which then defines the modified transversality in the space of three variables x, y, u, and at the 

same time, the field. That can be regarded as a simply-infinite family of three-dimensional 

extremals, i.e., space curves. If  gives the advance on the surface that they define, and d denotes 

the advance along one of the curves then equation (8) will be valid. If the equation of that surface 

is represented in the form: 

 

(9)      W (x, y, z) = 0 

 

then one will have the relation: 

W W W
x y u

x y u
  

  
+ +

  
 = 0 , 

 

and together with equation (8), that will yield: 

 

: :
W W W

x y y

  

  
 = : :

dx dy du

     

  
 , 

 
 (1) Rendiconti del circolo matematico di Palermo 31 (1911). 

 (2) Sitzungsberichte der Wiener Akademie (1911). 
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since two of the differentials  are arbitrary. One can eliminate the ratio dy : dx from that 

proportion, which is free of  and du and represents two equations, so one can obtain a first-order 

partial differential equation for W that does not include that quantity and is homogeneous in the 

derivatives. If one then imagines that equation (9) has been solved for u then one can introduce the 

derivatives: 

u

x




 = − :

W W

x u

 

 
, 

u

y




 = − :

W W

y u

 

 
 

 

into the partial differential equation and then obtain a new equation for u as a function of x and y 

that is naturally identical to the Jacobi-Hamilton equation. It then characterizes the field in the 

space of quantities x, y, u as a surface that is composed of spatial extremals. 

 That result can be adapted to an arbitrary Mayer problem. It will again give the problem (1). 

We then define a field to be an (n – 1)-fold manifold of extremals in the space of (n + 1) variables 

y0, y1, …, yn along which the relation: 

0

n

y
dy


 


=

 


  = 0 

 

is true in the following sense: The differential d refers to the advance along the extremals of the 

family. As many of the differentials  are arbitrary as equations (1) will admit when one writes  

for d. The remaining ones are determined from those equations. One further has a Jacobi condition 

that has the character of an inequality. 

 One now assumes the following proportions: 

 

0

:
W W

y y

 

 
 = 

0

:
dy dy

   

 
   ( = 1, 2, …, n) . 

 

Only the r ratios of the r + 1 multipliers and the n ratios of the n + 1 differentials dy occur in them. 

If one combines them with equations (1) then one will have a system of n + r + 1 equations from 

which one can imagine eliminating the indicated n + r ratios: 

 

 : 0 , dy : dy0 . 

 

One will then obtain a first-order partial differential equation that is free of W and includes only 

the ratios: 

0

:
W W

y y

 

 
 . 

If one imagines solving the equation: 

W = 0 

 

for one of the quantities y (say y0), which then appears as a function of y1 , y2 , …, yn , then one 

will have: 
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0y

y




 = − 

0

:
W W

y y

 

 
, 

 

and one can introduce those quantities in place of the derivatives of W into the partial differential 

equation that is obtained for W, which will then imply a partial differential equation for y0 that is 

essentially the Jacobi-Hamilton equation. y0 can be replaced with any of the quantities y in that 

entire representation. 

 The main result of the foregoing investigation is now the following one: 

 

 An (n – 1)-fold infinite family of extremals of the Mayer problem in the space of n + 1 variables 

y define a field in which the Weierstrass theory will unfold if and only if they combine into an n-

fold manifold for which the Jacobi-Hamilton differential equation is satisfied. 

 

 In the context of the general concept of a field, we shall discuss the special types of fields for 

which all of the extremals have a fixed location in common or, more generally, intersect fixed 

manifolds. 

 

 

§ 1. – The shortest line in the plane as a Mayer problem. 

 

 If u is the arc-length in the plane then one will have the equation: 

 

(10)     du − 
2 2dx dy+  = 0 . 

 

If one seeks the extremum of u then will have to set: 

 

 =  (du − 
2 2dx dy+ ) , 

 

as a general rule, and find the equations for the extremals in the space of quantities x, y, u : 

 

d = 0 , 
2 2

dx
d

dx dy



+
 = 

2 2

dy
d

dx dy



+
 = 0 ,  

dy

dx
 = const. 

 

That must be combined with equation (10). That will show that the extremals are lines in space 

that are inclined at an angle of 45o with respect to the xy-plane. One will get different parallels that 

lie vertically above each other (when one considers the xy-plane to be horizontal) depending upon 

the starting point from which the arc-length along a line in the plane is measured. 

 Three-dimensional transversality will be defined by the equation: 
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(11)    u x y
du dx dy

  
     

+ +
  

 = 0  

or 

u = 
dx dy

x y
du du

 +  . 

 

A field can be defined by any family of lines along which one measures the arc-length from an 

orthogonal trajectory. The corresponding spatial extremals will then be lines that are inclined by 

45o with respect to the horizontal plane and whose horizontal projections onto lines K in the 

horizontal plane will be perpendicular to the lines of the family. If that line of intersection is a 

circle then the spatial extremals will go through a point that lies vertically above the center of the 

circle and defines a cone. If the curve of intersection K is not a circle then at least the projections 

of two neighboring lines can be normals to the curvature circle of the curve K, and the 

corresponding neighboring plane of the family that are inclined by 45o with respect to the 

horizontal will intersect. The lines of a spatial field will then define a developable surface whose 

generators are inclined by 45o with respect to the xy-plane. 

 If one intersects that surface with a family of horizontal planes u = const. and projects the lines 

of intersection onto the xy-plane then one will get the transversals, i.e., here they would be the 

orthogonal trajectories to the planar family of lines that one ordinarily considers. 

 In order to establish that geometrically-obvious fact analytically, we write equation (11) 

as: 

(12) − u +
dx dy

x y
du du

 +  = 0 

 

and see from this that the direction that corresponds to the differential  will be perpendicular to 

another one whose direction cosines have the ratios: 

 

− 1 : 
dx

du
 : 

dy

du
 . 

 

Since the sum of the squares of those quantities equals 2, the direction cosine that relates to the u-

axis will be – 1 : 2 . The direction that we speak of will then define an angle with the vertical of 

135o, and the directions that are denoted by  will lie in a plane that is inclined by 45o with respect 

to the horizontal. Now since one can also set  = d, in particular, in equation (12), those directions 

will define a surface element that includes a line element of the spatial extremal.  

 If one further regards the element  as something that belongs to a surface F and sets: 

 

u = p x + q y , 

 

accordingly, then equation (12) will immediately yield: 
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(13) 2 2p q+  = 1 , 

 

i.e., a first-order partial differential equation for the surface F. Since one can write that equation 

as: 

2 2

1

1 p q

−

+ +
 = 

1

2
 , 

 

the surfaces F can be defined to be the ones whose normals are inclined by 45o with respect to the 

vertical. That already implies that the surfaces must be developable because their spherical images 

by parallel normals will degenerate into two curves on the cone. 

 If one further defines equation (13) by the general method of characteristics then one will get 

the simultaneous system: 

dx

p
= 

dy

q
 = 

0

dp
 = 

0

dq
 = 

1

du
, 

so 

p = const., q = const., 
dx

du
 = p = const., 

dy

du
 = q = const., 

and from (10): 
2

dx

du

 
 
 

 = 

2
dy

du

 
 
 

 = 1 ,  
dx dy

p q
du du

+  = 1 . 

 

Those equations make it clear that the characteristics are identical with the spatial extremals. The 

surface element that is associated with each point of the characteristic is the same as the one that 

was employed above in order to interpret equation (11). 

 It is also interesting to verify the general fact of Cauchy’s theory of integration that when two 

neighboring characteristics belong to the surface element that fulfills the partial differential 

equation at any of their locations, that relationship will present itself over their entire extent and 

bound a strip on an integral surface, which will be a “characteristic strip,” in Lie’s terminology. 

 A family of spatial extremals depends upon a parameter a that is constant along each extremal, 

while the points along that extremal will be distinguished by the values of the parameter t. If one 

sets: 

(14)      = da dt
a t

 
+

 
 

then the terms in the expression: 

− u +
dx dy

x y
du du

 +  

 

that involve dt will drop out, and one will have the equation: 
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− u +
dx dy

x y
du du

 + = 
u dx x dy y

da
a du a du a

   
− + +    

, 

 

so when one differentiates with respect to t and imagines that dx : du and dy : du are constant along 

each extremal, one will get: 

 

(16)  
d dx dy

u x y
dt du du

  
 

− + + 
 

 = 
2 2 2u dx x dy y

da
a t du a t du a t

   
− + + 

      
 . 

 

However, it follows from the general equation: 

 

du = 
2 2dx dy+  

that: 

u

t




 = 

2 2
x y

t t

    
+   

    
, 

dx

du
 = :

x u

t t

 

 
, 

 

2u

a t



 
 = 

2 2x x y y

u a t u a t

u

t

   
+

     





 = 
2 2dx x dy y

du a t du a t

 
+

   
 . 

 

Equation (16) will then imply that: 

 

(17)    
d dx dy

u x y
dt du du

  
 

− + + 
 

 = 0 . 

Hence, when the equation: 

dx dy
u x y

du du
  − + +  = 0 

 

is true at any location along an extremal of the family, along with the relation (14), it will be true 

everywhere. However, for independent differentials dt and da, that will mean that the connecting 

lines between a point on an extremal and all neighboring points of the neighboring curves of the 

family will lie in a surface element that fulfills the partial differential (13). With that, the cited 

theorem of Cauchy is confirmed. 

 Naturally, it is geometrically obvious that two neighboring lines that can be connected by a 

surface element at any location will then intersect when they are extremals that belong to that 

developable surface that we have defined to be a field. 

 Finally, we remark that equation (17) will also be obtained when t is a function of a and that 

quantity runs through a finite interval because the terms that are multiplied by dt will also drop out 

under that assumption. If the equation: 
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(18)     
dx dy

u x y
du du

  − + +  = 0 

 

is true for the indicated values of t as a function of a then it will be true along all of the extremals 

that correspond to the region of the quantity a under consideration. One can interpret that fact 

geometrically as follows: If one intersects an arbitrary family of lines in the plane with an arbitrary 

curve and assumes that the value of u (so the initial value of the length as measured along the 

extremal) is such that equation (18) will be verified then that will be true in general, and the lines 

at a distance of u as measured along them will define a field. 

 

 

§ 2. – A problem that is closely related to the shortest line in the plane. 

 

 The spatial extremals will remain the same as before when one seeks the extremum of the 

quantity y in the equations: 

du =
2 2dx dy+ , dy =

2 2du dx− . 

 

The problem makes good sense: Perhaps a rope of given length and given starting point reaches 

up a vertical pole as high as possible. The interpretation in the ux-plane is somewhat different and 

more convenient for theoretical explanation. One seeks the shortest line of non-Euclidian length 

in it when one regards 
2 2du dx−  as the differential of arc-length. We refer to that problem as 

(B) and distinguish it from the problem that was treated in the previous section by calling the latter 

(A). 

 Both of them have the spatial extremals in common, so they are spatial fields. However, the 

planar fields prove to be different. One obtains them for problem (B) when one intersects the 

developable surface that defines the spatial field by planes y = const. and projects the line of 

intersection onto the ux-plane. As was mentioned before, for problem (A), one must intersect with 

planes u = const. and project onto the xy-plane. On the developable surface, one has the equation: 

 

− u + 
2 2

dx x dy y

dx dy

 +

+
 = 0 , 

 

so along the curves u = const., one will have: 

 

x dx + y dy = 0 , 

 

whereas along the curves y = const., one will have: 

 

(19) dx x – du u = 0 . 
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The last equation will give the transversality condition for the problem (B) in the ux-plane. A non-

Euclidian orthogonality exists between the directions that are denoted by d and  . They will be 

harmonically separated by the directions of the lines u =  x . 

 Among the fields, the ones for which the developable surface degenerates into a cone that must 

have a vertical axis and an opening angle of 90o at the vertex deserve special attention. Its 

intersection with the planes u = const. are circles whose projections onto the xy-plane appear to be 

orthogonal trajectories of a pencil of lines and transversals in the sense of problem (A). By contrast, 

if one intersection the cone with planes y = const. then one will obtain hyperbolas in the ux-plane 

whose asymptotes run parallel to the lines u =  x . They intersect the generators of the cone (so in 

turn, a pencil of lines) transversally according to equation (18) under the assumption that dy = 0, 

and they are the geometric loci of the points that have a constant non-Euclidian distance: 

 

y = 
2 2du dx−  

 

from their centers. One will then have y = const. along the intersection with the cone. 

 Incidentally, the plane sections of a non-degenerate developable surface have points of 

regression along the edge of regression. However, the edge of regression projects onto the 

enveloping line of the projections of the generators. One will then get an intuitive proof of the fact 

that the orthogonal trajectories of a family of lines will exhibit points of regression on the 

enveloping line, and indeed regardless of whether that orthogonality is understood in the ordinary 

sense or the sense of equation (19). 

  The projections of the edges of regression onto the xy and ux-planes are the envelopes of the 

plane fields in problems (A) and (B), so they will be the loci of extremal focal points of the curves 

in which the developable surface is cut by the xy and ux-planes, resp. The focal points then yield 

the same system of values (x, y, u) for either problem when the quantity u is defined by integrating 

the relevant curve for problem (A), and the quantity y for problem (B), as one postulates in the 

ordinary theory. With that, the reciprocity law that Mayer exhibited for the isoperimetric problems 

is adapted to the simplest problem of the calculus of variations and the ones that are connected 

with it. The special nature of the problems brings with it only the fact that no pairs of conjugate 

points will appear. 

 

 

§ 3. – Fields for the general Mayer problem. 

 

 Now let the n + 1 variables y0 , y1 , …, yn be generally constrained by the differential equations: 

 

(20)    (y0 , y1 , …, yn , dy0 , dy1 , …, dyn) = 0  ( = 0, 1, …, r), 

 

in which the differentials appear homogeneously of degree one. One sets: 

 

(21)   = 
0

r

 


 
=

 ,  
y

 


 = 

0

r

y




 




=




 , 

dy

 


 = 

0

r

dy




 




=




 , 



Kneser – Contributions to the calculus of variations. 15 

 

and define an extremal to be any simple manifold in the domain of the quantities y for which the 

equations: 

 

(22)    d
y dy 

   
−

 
 = 0  ( = 0, 1, …, n) 

 

are true, along with equations (20), for a suitable choice of the multiplier  as a function of position. 

 An (n – 1)-fold family of extremals will be represented with associated multipliers by the 

equations: 

y =  (t, a1, a1, …, an−1) ,  =  (t, a1, a1, …, an−1) , 

 

in which only t varies along the individual extremals. If one imagines that those values, as well as 

dy = dt
t




, are substituted in equations (20) and differentiated with respect to one of the 

quantities a then that will yield: 

 
2

0 0

n n

dt
y a dy t a

  

  

  

= =

  
+

    
   = 0 , 

 

so from (21), one will also have: 

 

(23)    
2

0 0

n n

dt
y a dy t a

 

  

 

= =

  
+

    
   = 0 . 

If one sets: 

 = 1 2 1

1 2 1

n

n

da da da
a a a

−

−

  
+ + +

  
 

 

then that symbol can be switched with the differentiation with respect to t (so ), and the equations 

(23) that correspond to the different parameters a will yield: 

 

0 0

n n

y dt d y
y dy

 
  

 
= =

 
 +

 
   = 0 

 

when one once more replaces  with y , or also: 

 

0 0

n n

d y d y
y dy dy

 
   

 
= =

   
 − + 

   
   = 0 , 

 

from which it will follow that: 
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(24)     
0

n

d y
dy


 


=





  = 0 

when one recalls equations (22). 

 Furthermore, due to the homogeneity of the quantities  and , one has the identity: 

 

(25)     
0

n

dy
dy


 =




  = 0 , 

so one will have: 

(26)     
0

n

d dy
dy


 =




  = 0 

a fortiori. If one sets: 

 = dt
t




+


 

 

and adds equations (24) and (26) then it will follow that: 

 

(27)     
0

n

d y
dy


 


=




  = 0 , 

 

and since d means the advance along an extremal, as always, one can express that result by saying 

that the quantity: 

0

n

y
dy


 


=




  

 

is constant along any extremal. In particular, it will vanish everywhere when that is true at one 

location. 

 Now one defines an (n – 1)-fold family of points along the extremals considered by the 

equation: 

 

(28)     t =  =  (a1, a2, …, an−1) . 

 

Equation (24) then shows that the equation: 

 

0

n

d y
dy


 


=





  = 0 

 

will be true for all values of the parameters a and t that come under consideration when it is true 

under the assumption that (28) is true. If one adds equation (25) to it, in which the dt is once more 

independent of the parameters a, then one will obtain the equation: 
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(29)     
0

n

y
dy


 


=




  = 0 , 

 

in general, under the same assumption, i.e., for independent values of t, a1, …, an−1 . 

 One can also formulate that result by saying that only equation (29) enters into the assumption 

that one initially assumes for the manifold (28). Since equation (25) generally implies that: 

 

0

n

t dy



 



=

 

 
  = 0 , 

it will follow that: 

0

n y
d

t dy



 


=

 

 
  = 0 . 

 

Thus, when equation (29) is true for the manifold (28), on which one sets: 

 

 = dt
t




+


, 

 

it will follow that for any location on any extremal of the family, one will have: 

 

0

n

y
dy


 


=





  = 0 , 

 

which is the relation from which we have derived equation (29) above for independent t, a . That 

is, if equation (29) is true in the region t =  (a1, a2, …, an−1) then it will be true in general for 

independent t, a1, …, an−1 . We then call the system of extremals: 

 

y =  (t, a1, a2, …, an−1) 

 

a field. For that concept, it is essential that the number of parameters a is exactly n – 1. Obviously, 

no use of that number is made in the chain of inferences. 

 We shall explain the result obtained in more generality and specialize it with some examples. 

 The fact that the quantities  / y are differential quotients is not employed, except in 

equation (25). Accordingly, let P , Q be arbitrary functions of the n + 1 functions y and their 

differentials. In the latter, let them be homogeneous, and indeed the quantities P have degree one, 

while the quantities Q have degree zero. One further has the identity: 

 

0

n

Q dy 
 =

 = 0 . 

 



Kneser – Contributions to the calculus of variations. 18 

 

A family of simple manifolds that fulfill the equations: 

 

P – dQ = 0  ( = 0, 1, …, n) 

 

will be represented by equations: 

 

(30)     y =  (t, a1, a2, …) , 

 

and let it be so arranged that when one sets: 

 

 = 1 2

1 2

da da
a a

 
+ +

 
,  = dt

t



 +


 , 

the equation: 

0

( )
n

P y Q d y   


 
=

 +  = 0  

 

will be true. Therefore, if the equation: 

 

0

n

Q y 



=

  = 0  

 

is true relative to the family (30) under the assumption that t =  (t, a1, a2, …) then it will be true 

in general for independent t, a1, a2, … 

 As an example, we can further take the simplest problem in the calculus of variation, for which: 

 

du − 
2 2dx dy+  = 0 , 

 

in the notation of § 1. The extremals in xyu-space are lines that are inclined by 45o with respect to 

the horizontal xy-plane. A field is a developable surface that is defined by a family of those 

extremals. From § 1, the equation: 

− u + 
dx dy

x y
du du

 +  = 0 

 

that characterizes the field expresses the idea that the direction  lies in a plane that is inclined 45o 

with respect to the horizontal. That plane, which also includes the directions, is the tangent plane 

to the surface that is defined by the lines. Our theorem then has the following geometric content: 

A family of lines that are inclined 45o with respect to the horizontal define a ruled surface. it will 

be developable if and only a curve can be drawn on it, along which all tangent planes are inclined 

45o with respect to the horizontal. 

 In the xy-plane, the extremals are lines along which the length u is measured from any starting 

point. If we intersect a family of those lines with a curve K, along which A and B are two 
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neighboring points, then u will vary under the transition from A to B just as much as the projection 

of the element AB onto the line in the family that goes through B amounts to. Any curve with 

which we intersect the family of lines will then have just that property. In particular, the curves u 

= const. will intersect the lines orthogonally. (One should confer § 1.) 

 

 

§ 4. – The method of Jacobi and Hamilton. 

 

 One can imagine eliminating the n quantities t, a1, …, an from the n + 1 equations: 

 

(31)    y =  (t, a1, …, an−1)  (n = 0, 1, …, n) 

 

and thus obtaining an equation: 

 (y0, y1, …, yn) = 0 . 

 

Thus, if  once more means the advance along the n-fold manifold that is defined by (31) then it 

will follow that: 

(32)     
0

n

y
y


 


=




  = 0 . 

 

Now it is obviously proper to assume that at least one system of n of the quantities  possesses a 

non-zero functional determinant with respect to the variables t, a1, …, an−1 . Otherwise, the number 

of parameters a could be reduced, which would contradict the concept of a field that was 

established in § 3. Hence, n of the n + 1 differentials y are certainly independent. When one 

recalls the equation that characterizes the field: 

 

(33)     
0

n

y
dy


 


=

 


  = 0 , 

 

it will then follow that the coefficients of the y in the two equations (32) and (33) must be 

proportional: 

(34)   
0 1

: : :
ny y y

  

  
 = 

0 1

: : :
ndy dy dy

     

  
 . 

 

 Now only the n ratios of the the differentials y occur in the ratios on the right-hand side, and 

likewise only the r ratios of the r + 1 multipliers. One can imagine eliminating those n + r ratios 

from the n + r + 1 equations, namely, the proportion (34), that represent the n equations and the r 

+ 1 equations  = 0, in which the differentials dy likewise appear only by way of their ratios. As 

a result of that elimination, one will get a partial differential equation in the unknown  in which 

that unknown itself does not occur, and its derivatives  / y occur only by way of their ratios. 
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If one then imagines determining one of the quantities y (say, y0) as a function of the remaining 

ones by way of the equation  = 0 and sets: 

 

y0 =  (y1, …, yn) , 
y




 = − 

0

:
y y

 

 
  ( = 1, 2, …, n) 

 

then that will yield a first-order partial differential equation for , say: 

 

(35)    1 2

1 2

, , , , , , ,n

n

F y y y
y y y

  


   
 

   
 = 0 , 

 

which is the Jacobi-Hamilton differential equation. 

 With that, we have shown that any field, when regarded in the sense of our definition as a 

manifold in the domain of the n + 1 variables y , will fulfill the Jacobi-Hamilton differential 

equation. 

 Conversely, if any solution of the Jacobi-Hamilton equation is given in the form: 

 

 (y0 , y1 , … yn) = 0 

then any equation: 

 

(36)  (y0 , y1 , … yn) = C = const. 

 

will also give a solution, and one can start from n + r of the n + r + 1 equations (34) and  = 0 

and determine from them the n ratios of the differentials dy and the r ratios of the quantities  , 

one of which can be chosen arbitrarily. The last of those n + r + 1 equations will be fulfilled in any 

event on the basis of the assumption (35). Now since the equation: 

 

0

n

y
y


 


=




  = 0 

 

is valid for the advance along the manifold (36), it will follow from the proportion (34) that: 

 

(37) 
0

n

y
dy


 


=




  = 0 , 

 

in which  is naturally defined with the multipliers that were just determined such that one will 

still not know whether it is the quantity that was previously denoted in that way. 

 In any event, any point of the manifold (36) is associated with a certain direction of advance 

on that manifold in that way by the ratios of the dy , and there will be a certain simple manifold 

that starts from any point and for which equation (34) is true. The simple manifold (36) will then 

be divided into n−1 simply-extended ones then. 
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 The proportion (34) further says that there exists a quantity  that fulfills the equations: 

 

y




 = 

y


 


  ( = 0, 1, …, n) . 

If one sets: 

  = , 
dy

 


 =  

then it will generally follow that: 

 

y





 


 = 

y





 


  (   = 0, 1, …, n) . 

 

Those equations are based upon the intuition that one can determine the ratios of the differentials 

dy and the quantities  that occur in  as functions of the quantities y in the way that was given 

above. They can be regarded as independent variables due to the arbitrary constant C that appears 

in equation (36). 

 Now let t be a parameter that varies along one of the simple manifolds, say the value of a 

function of position t (y0, y1, …, yn), such that the quantities y
  = dy : dt can be considered to be 

functions of the arguments y . If one generally introduces y
  in place of dy in , which will take 

that expression to , then the derivatives with respect to the differentials will be equal to ones 

that are taken with respect to the quantities y
  : 

 

dy

 


 = 

dy

 


 =  . 

 

Furthermore, due to the homogeneity of the expression , one has the equations: 

 

(38)   
dy

 


 = 

2

0

n

y
y y


  =

 


 
  , 

2

0

n

y
y y


  =

 


  
  = 0 . 

 

Now, one obviously has: 

 

0

0y

 


 = 

2 2 2

0 1

0 0 0 0 0 0 1 0

y y

y y y y y y y y

       
+ + +

           
, 

 

  0

1y

 


 = 1

0y

 


 = 

2 2 2

0 1

1 0 1 0 0 1 1 0

y y

y y y y y y y y

        
+ + +

           
, 

  ………………………………………………………… 
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1

1y

 


 = 

2 2 2

0 1

1 1 1 0 1 1 1 1

y y

y y y y y y y y

       
+ + +

           
, 

 

  1

2y

 


 = 2

1y

 


 = 

2 2 2

0 1

2 1 2 0 1 2 1 1

y y

y y y y y y y y

        
+ + +

           
, 

 

etc. When one starts from the first of equations (38), it will follow from this that: 

 

0y

 


 = 

2

0 0

n

y
y y


 =

 


 
  = 0

0

n

y
y


 =





  = 0d

dt


  

 

because the quantities y
  : y0 on the right-hand side vanish due to the second of equations (38). 

One likewise finds in general that: 

d

y dt y 

    
−

 
= 0 , 

or also: 

d

y dt y 

    
−

 
= 0 . 

 

Now since  is an expression of the same form as , only it is formed with other multipliers, that 

will show that the simple manifolds that are constructed are extremals of the original variational 

problem. The families that are constructed from them, which correspond to a well-defined value 

of the constant in the equation: 

 

(39)      (y0, y1, …, yn) = C , 

 

are fields in the sense of our definition, due to the relation (37), or: 

 

0

n

y
dy


 


=

 


  = 0 . 

 

 Any solution of the Jacobi-Hamilton equation of the form (39) then leads to a family of fields 

that each correspond to a value of the constant C. 

 As an example, we consider the shortest line in space. We set: 

 

n = 3 ,  r = 0 ,   = ( )2 2 2du dx dy dz − + +  , 

and find that along the extremals: 
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d = 0 , 
dx

d
du

 
 
 

 = 
dy

d
du

 
 
 

 = 
dz

d
du

 
 
 

 = 0 . 

 

The extremals are then lines with assigned lengths. Due to the proportion: 

 

(40)    : : :
u x y z

   

   
 = − 1 : : :

dx dy dz

du du du
 

so 
2

u

  
 

 
= 

22 2

x y z

         
+ +    

      
, 

 

or when one imagines calculating u =  (x, y, z) from the equation: 

 

(41)      (x, y, z, u) = C , 

 

the Jacobi-Hamilton differential equation will then imply that: 

 

(42)    

22 2

x y z

        
+ +    

      
 = 1 , 

 

and the proportion (40) will yield: 

 

(43)   
x




= 

dx

du
, 

y




 = 

dy

du
, 

z




 = 

dz

du
. 

 

The lines of the field will then be intersected normally by the surfaces u = const. or  = const. If 

one places the starting point from which the length u is measured in a suitable way then one will 

get the family of fields that correspond to the different values of the constant C in equation (41). 

 The fact that any solution of equation (42) will produce such a family of fields is clear: One 

needs only to measure out lengths along the normals to any surface y = const. that are measured 

from any other such surface in order to obtain a family of three-fold manifolds in the space of four 

variables x, y, z, u that fulfill the characteristic equation of the field. Indeed, equations (43) imply 

that: 

u = x y z
x y z

  
  

  
+ +

  
 = 

dx dy dz
x y z

du du du
  + +  , 

or 

u x y z
du dx dy dz

   
   

+ + +
   

 = 0 . 
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§ 5. – Focal points and the Weierstrass theory. 

 

 In the Mayer extremum problem, one compares a piece C of an extremal with a piece of another 

simple manifold M in the domain of the n + 1 quantities along which those quantities have the 

values Y and might be functions of a parameter  that fulfills the r + 1 equations: 

 

0 1
0 1, , , , , , , n

n

dY dYdY
Y Y Y

d d d


  

 
 
 

 = 0 , 

 

and the Weierstrass theory will show that when one considers y0 and Y0 at the endpoint of the 

extremal arc C and at those of the manifold M, the difference y0 – Y0 will possess a fixed sign for 

all manifolds M that are characterized in a certain way, which would then make y0 take the form 

of an extremum. 

 The extremals C belong to a field whose extremals might be denoted by the symbols y and 

dy . Let: 

y =  (t, a1, a2, …, an−1)  (n = 0, 1, …, n) 

 

in it, as before. The Weierstrass construction, whose possibility we initially assume, but will later 

verify under certain assumptions, consists of looking for an extremal of the field for any system of 

values Y that is constructed on M and a location that is associated with it for which the n 

equations: 

y = Y  ( = 1, 2, …, n) 

 

are valid, such that y takes the form of a function of , and the equations: 

 

(44)     
dy

d




 = 

dY

d




 

 

can be added to them, while y0 – Y0 generally remains non-zero. Furthermore, since the system of 

values y belongs to the field, any change in  will imply an advance along the field, and its 

characteristic will then yield: 

0

n dy

dy d



  =

 


  = 0 , 

or when we set: 

( , )y dy

dy

 


 =  

and employ equations (44): 
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(45)    0 0
0

0

n dY dy dY

d d d




   =

 
 +  − 

 
  = 0 . 

 

If one further introduces the quantities: 

y
  = 

t




, 

such that one can set: 

 = 
( , )y y

y

 


 , 

and if one recalls the identity: 

0

n

dy 
 =

  = 0 , 
0

n

y 
 =

  = 0 

 

then one can regard the expression: 

 

0

n dY

d




 =

 = 
0

n dY
y

d


 

 =

 
 − 

 
  

 

as the sum of the linear terms in the Taylor development of the quantity: 

 

,
dY

y
d

 
 

 
 = , ( , )

dY
y y y

d

 
 −  

 
 , 

 

in which naturally each symbol y, Y should appear with the n + 1 indices 0, 1, … that they are 

assigned; one then develops the quantities 
dY

y
d





− . It will then follow that the quantity 

 

−
0

,
n dYdY

y
d d




 =

 
 +  

 
  = , ,

dY
E y y

d

 
 

 
 , 

 

with the notation that was chosen by Weierstrass, can be represented as the remainder term in the 

aforementioned Taylor development and a quadratic form in the quantities 
dY

y
d

 − , which will 

make it possible to discuss the sign of that quantity. 

 Now, equation (45) yields: 

 

(46)    0 0
0

( )d y Y

d

−
  = , , , ,

dY dY dY
E y y y Y

d d d  

     
 +  −      

     
 , 
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since the last term has the value zero. Now since all of the quantities yr , except for y0 , coincide 

with the Y with the same index, one can set: 

 

, ,
dY dY

y Y
d d 

   
 −    

   
 = − (y0 – Y0)  , 

 

and the quantity  will be finite when the difference | y0 – Y0 | does not exceed a certain limit. 

Therefore, if one restricts the extremal arc C by the assumption that 0 should not vanish along it 

then one can write equation (46) as: 

 
1

0

0 0( )
dd

y Y e
d





− −  = 

1
0

0

d

E e
− 


. 

 

That equation will give information about the sign of the quantity y0 – Y0 at the end of the manifold 

M when E has a fixed sign along it and does not vanish everywhere, and furthermore when y0 – 

Y0 vanishes at the starting point of M or has the sign of the product E 0 and its absolute value 

remains below a certain limit along the manifold M. The equation shows that the signs of the 

quantities y0 – Y0 and E 0 are also the same at the endpoint of M. With that, the extremum is 

verified. 

 However, the entire line of reasoning that was followed rests upon the possibility of making 

the Weierstrass construction. It will be possible when a condition is fulfilled that we can properly 

refer to as the Jacobi condition. 

 One sets: 

0 = 1 2

1

( , , , )

( , , , )

n

nt a a

  


= 0 (t, a1, a2, …, an−1) 

 

and assumes that along the extremal C, one has: 

 

a1 = 0

1a ,  a2 = 0

2a ,  …,  an−1 = 0

1na −
 . 

 

Hence, when the quantity 0 0 0

0 1 2 1( , , , , )nt a a a −  is non-zero along the manifold C – and that is the 

Jacobi condition – one can surround the simple manifold C, which is defined by the equations: 

 

y = 0 0 0

1 2 1( , , , , )nt a a a −   ( = 1, 2, …, n) 

 

and represents a projection of C, with a region G with the property that every location in it lies on 

precisely one of the manifolds y =  (t, a1, a2, …, an−1), so the values of t, a1, a2, …, an−1 that are 

associated with that equation will be single-valued functions of position. They will be continuous, 

along with their derivatives, when we assume the same thing of the functions  , which is 
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reasonable. Now the previously-considered manifold M gives the system of values Y1, Y2, …, Yn , 

which lies in the interior of the region G. The values t, a1, a2, …, an−1 that were just defined then 

take the form of functions of  that are continuous, along with their derivatives, and the Weierstrass 

construction is guaranteed. 

 Along with the determinant 0 , we consider all determinants: 

 

 = 0 1 1 1

1 2 1

( , , , , , , )

( , , , , )

n

nt a a a

     − +

−




 

 

that have a simple relationship to it. Namely, from the characteristic equation of the field: 

 

0

n

y 



=

 = 0 , 

when we write one of the symbols: 

 

dt
t




, 1

1

da
a




, …, 1

1

n

n

da
a

−

−




 

 

as , that will imply the equations: 

 

1

n

t








=





  = − 0

0
t





, 

  
1

n

a




 



=





  = − 0

0
a





,  ( = 1, 2, …, n – 1) . 

 

If one then adds the first row in the determinant: 

 

1 0 = 

1 1 1
1 1 1

1 1

2 2 2

1 1

1 1

n

n

n n n

n

t a a

t a a

t a a

  

  

  

−

−

−

  
  

  

  

  

  

  

 

 

to the second row when multiplied by 2 , adds it to third row multiplied by 3 , etc., then that 

will give: 

1 0 = − 0 1 . 
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Similarly, one would generally obtain: 

 

 0 =  0    ( = 1, 2, …, n) . 

 

If we then introduce the new assumption for the manifold C that all of the quantities  are non-

zero on it then all of the determinants  will vanish only simultaneously. 

 That fact leads to the essential content of the Mayer reciprocity law. Now one of the quantities 

y is to be preferred in the equations  = 0, as well as in the concept of a field. Hence, if one poses 

the problem of extremizing the quantity y1 in the same sense that applied to y0 before then one can 

employ precisely the same field as one has up to now in order to establish the extremum. However, 

y0 is preferred in the quantity 0 ; 1 enters in its place. Now since both of them vanish only at the 

same time, the Jacobi condition for the extremum of the quantity y1 will be simultaneously fulfilled 

along with the one for the extremum of y0 . If the former is provided by the manifold C then the 

same thing will be true for the latter extremum. 

 One understands a focal point for a field to mean a point where 0 = 0. One sees that 1 also 

vanishes in it, so it will also be a focal point for the problem of extremizing the quantity y1 . 

Naturally, any of the quantities yn can enter in place of y1 in all of those considerations. That is 

Mayer’s theorem in its full generality. 

 

 

§ 6. – Special types of fields. 

 

 As was the case in § 2 for the simplest problem in the calculus of variations, one can also 

distinguish special types of fields in the general Mayer problem. In order to do that, as discussed 

in § 61 of my textbook, it is necessary to determine the arbitrary constants that the extremals 

depend upon. 

 We first observe the identity: 

 

(47) 
1

n

dy d
y dy


  =

    
− 

  
  = 0 , 

 

which follows from the homogeneity of the expression . It shows that one can drop one of the n 

+ 1 equations: 

d
y dy 

   
−

 
 = 0 , 

 

say the one that relates to  = n when dyn is non-zero. We make that assumption, introduce yn as 

the independent variable accordingly, and set: 

 

x = yn ,  
dx


 =  , 

dx


 =  , 



Kneser – Contributions to the calculus of variations. 29 

 

dy

dx

  = y
 , 

2

2

d y

dx

  = y
 ,  ( = 0, 1, …, n – 1) . 

 

The barred expressions will then include the differentials dy only by way of the y, and the 

extremals will be determined by the n + r + 1 equations: 

 

(48)     
  = 0   ( = 0, 1, …, r) , 

 

(49)    
d

y dx y 

   
−

 
 = 0   ( = 0, 1, …, n – 1) . 

 

If we replace equations (48) with the more general ones: 

 

d

dx


 = 0 

 

then those equations, along with equations (49), will give us a system of n + r + 1 equations from 

which the n + r + 1 quantities y
 , 

  can be determined, so y and  will prove to be functions 

of x and 2n + r + 1 arbitrary constants, say, the initial values of the quantities y , y
 ,  . However, 

since the r + 1 equations (49) must be true, that will reduce the number of those constants by r + 

1 to 2n. Furthermore, since it is clear from the form of equations (49) that the multipliers  can 

be multiplied by an arbitrary constant factor without altering the values of the quantities y , only 

2n – 1 constants are essential in order to specify the extremal as a simple manifold in the domain 

of the quantities x, y ,  say the initial values of the n quantities y and the n – 1 quantities 0 : r , 

1 : r , …, r−1 : r , 1ry +
 , 2ry +

 , …, 1ny −
 . We call the latter the second group of constants. 

 If one would now like to select a field from the totality of extremals that are defined in that 

way then precisely n – 1 of those 2n – 1 constants would have to remain free parameters. We then 

classify the possibilities that exist in such a way that the initial values of the quantities y are either 

fixed or constrained to a k-dimensional manifold, where one can have that k = 1, 2, …, n – 1. n – 

1 – k of the constants in the second group are still free then, but the remaining one are established 

by the demand that the family of extremals to be represented must define a field. In order for that 

to be the case, from § 3, it will suffice for the characteristic equation to be fulfilled for a certain 

domain of the constants that remain free. That equation will read: 

 

(50)     
1

0

n

n x y 


 
−

=

 +   = 0 , 

 

with the current notations, so as a result of the identity (47), one can set: 
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n = − 
1

0

n

y 


−

=

 ,  = 
y

 


 = 

dy

 


. 

 

 Now let the initial values of the n quantities y be established by any initial value x0 . If the 

symbol  then refers to the change in the remaining n – 1 integration constants then one will 

obviously have: 

x = y = 0 

 

at the location x = x0 . Equation (50) will then be fulfilled for an n – 1-dimensional region. From § 

3, the extremals that go through a fixed initial location will then define a field as long as one further 

condition is fulfilled. If the equations: 

 

x = t , y =  (t, a1, a2, …, an−1) , 

 

in which a1, a2, … mean the integration constants that remain free, represent the family of 

extremals thus-defined then they must generally be soluble for x, a1 , …, an−1 . The functional 

determinant: 

0 1 1

1 1

( , , , )

( , , , )

n

nx a a

   −

−




 

 

cannot vanish identically. Up to now, that condition, which we would like to refer to as the 

independence condition from now on, does not prove to be fulfilled in general. We must then show 

that it is fulfilled in each individual case, which is usually easy. 

 More generally, let the initial values of y not be fixed, but only given as functions of k 

parameters t1 , t2 , …, tk . n – 1 – k of the integration constants in the second group shall remain 

freely available, when that is possible. One must then set: 

 

(51)    x = 0 , y = 
1

k

a dt 
 =

    ( = 0, 1, …, n – 1) 

 

for x = x0 , which will make the a functions of the parameters t1 , t2 , …, tk . The characteristic 

equation (50) will then be fulfilled when the k equations: 

 

(52)     
1

0

n

a 


−

=

  = 0   ( = 1, 2, …, k) 

 

are true for x = x0 . In that way, k of the integration constants in the second group will be functions 

of the n – 1 – k remaining ones, which will remain free and might be denoted by tk +1 , …, tn−1 , as 

well as establishing the quantities t1 , t2 , …, tk , and the characteristic equation will be valid for an 

n – 1-dimensional region in which the quantities t1 , t2 , …, tn−1 vary freely. From § 3, it will then 

be true in general for the extremal system thus-obtained, and that system will be a field when a 
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further independence condition is fulfilled, which we shall leave unspecified, as we did above for 

the general theory. 

 The fixed initial values of all of the quantities y then characterize n types of fields in total, 

corresponding to the values k = 1, 2, …, n – 1 and the special case that was considered before. 

They correspond to the various types of integrals of the first-order partial differential equations 

that the Cauchy method of integration implies. 

  

 

§ 7. – Examples for § 6. 

 

 We next consider the shortest line in space, in which y0, y1, y2 mean the rectangular coordinates, 

while x means the length. One then has: 

 

 = dx −
2 2 2

0 1 2dy dy dy+ + , 

 

since the multiplier is constant, as was pointed out before in § 4, so one can set it equal to 1. With 

the notations that were introduced, one further has: 

 

  = 1 − 0 0 1 1 2 2y y y y y y     + +  = 0 ,  n = 3, 

(53) 

0 = 0dy

dx
 = 0y  , 1 = 1y  , 2 = 2y  . 

 

 If one next sets the initial values 0

0y , 0

1y , 0

2y  equal to constants then one will get a pencil of 

lines through a fixed point as the field. 

 If those values are functions of t1 for which: 

 

y0 = a01 dt1 , y1 = a11 dt1 , y2 = a21 dt1 

 

then equation (52), with the values (53), will give: 

 

01 0 11 1 21 2a y a y a y  + +  = 0 . 

 

One will then get the family of lines that radiate perpendicular to a curve as a field of the second 

kind. 

 Finally, if the starting point 0 0 0

0 1 2( , , )y y y  lies on a surface along which: 

 

y0 = a01 dt1 + a02 dt2 ,  y1 = a11 dt1 + a12 dt2 ,  y2 = a21 dt1 + a22 dt2 

 

then equations (52) will yield: 
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01 0 11 1 21 2a y a y a y  + +  = 0 , 02 0 12 1 22 2a y a y a y  + +  = 0 , 

 

i.e., one will get the lines that are perpendicular to the surface that runs through the starting point 
0 0 0

0 1 2( , , )y y y . 

 One will then, in fact, have three types of fields that correspond to the value n = 3. The 

independence condition is fulfilled since the system of lines fill up spatial regions in all three cases. 

If one would like to regard the fields as three-fold-extended manifolds in four-dimensional space, 

corresponding to the general theory, then one would only have to define, say, the distance to each 

point on each line as measured from the position of the starting point as the fourth coordinate. The 

first of equations (51) will then be fulfilled at the starting point, as well. If one increases that length 

by a constant then one will obtain the families of fields that were imagined at the end of § 5. 

 

 As a second example, we consider the isoperimetric problem in the plane, in which y1, y2 are 

rectangular coordinates, and seek the extremum of the integral: 

 

y0 = 1 2 1 2( , , , )F y y dy dy  

for a given value of the integral: 

y3 = x = 1 2 1 2( , , , )G y y dy dy . 

 

In those expressions, F and G are homogeneous of degree one in the differentials. We must 

obviously set: 

 

n = 3,   = 0 (dy0 – F (y1, y2, dy1, dy2)) + 1 (dy3 – G (y1, y2, dy1, dy2)) , 

 

and we will find that: 

1 = − 
1

H

y




, 2 = − 

2

H

y




, 

when: 

H = 0 1 2 1 2 1 1 2 1 2( , , , ) ( , , , )F y y y y G y y y y    +  . 

The equations: 

1 1

H d H

y dx y

 
−

 
 = 0 , 

2 2

H d H

y dx y

 
−

 
 = 0 

are true for planar extremals. 

 If one considers the set of all of them that go through the fixed point 0 0

1 2( , )y y  then it will 

generally be consistent with the sense of the extremum problem to calculate the integrals y0 and y3 

from that point onward, such that: 

 

(54)     0

0y  = x0 = 0 . 

 



Kneser – Contributions to the calculus of variations. 33 

 

2 or n−1 planar extremals go through the fixed point. One will get the field in four-dimensional 

space when one imagines that the values of x and y0 along the curves amount to further coordinates. 

 We will get a second type of special field when we constrain the point 0 0

1 2( , )y y  to a planar 

curve C along which: 

 

(55)    y1 = a11 dt1 ,  y2 = a21 dt1 . 

 

Equations (54) might once more remain valid, such that a01 = 0 . Equation (52) will then give: 

 

11 21

1 2

H H
a a

y y

 
+

  
 = 0 , 

or also, from (55): 

1 2

1 2

H H
y y

y y
 

 
+

  
 = 0 . 

 

The field will be defined by the planar extremals that lie transversal to the curve C. The integrals 

y0 and y3 will be defined from the curve C onward. The manifold of the extremals is once more 

two-fold, as it must be. I have employed that type of field in § 39 of my textbook in order to verify 

the extremum for the isoperimetric problem with a variable limit. 

 

___________ 

 


