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FOREWORD 
_____ 

 

 

 The investigations of Helmholtz regarding the “Prinzipien der Statik monocyklischer 

Systeme” and “die physikalische Bedeutung des Princips der kleinsten Wirkung” have led me to 

generalize the definition of force and its measurement that is given in the mechanics of ponderable 

masses, and on the basis of that extension, to exhibit the analytical form of the more general 

principles of mechanics that it implies, which subsume the known principles as special cases. 

However, I would like to regard all of the extended mechanical principles as only mathematical 

truths that, it seems to me, might allow the essence and meanings of the theorems of the mechanics 

of ponderable masses to emerge a bit clearer than when one determines them directly from 

experiments on the basis of Newton’s laws. However, I shall keep myself fundamentally distant 

from the discussion of the question of whether the more general treatment of the theorems of 

mechanics is in any way suitable for representing physical processes of a complicated nature, just 

as Helmholtz succeeded in describing physical processes by not assuming that a separation of 

actual and potential energy was given in the expression for the first-order kinetic potential. 

However, in extending the concept of kinetic potential, it was essential for me to investigate the 

extension of the principles of “hidden motion” and “incomplete problems” that Helmholtz 

introduced into the mechanics of ponderable masses and Hertz made the foundation of his 

mechanics, and to discuss the question in general of when a mechanical problem with a certain 

number of parameters and under the influence of forces of any order can be reduced to a problem 

with a larger or smaller number of parameters under the action of forces of lower or higher order, 

by which, among other things, the motion of two mass-points that move according to Weber’s law 

can be described by the motion of three points, two of which attract each other according to 

Newton’s law, while the third one is coupled to the other two in a well-defined way and acts only 

by way of its inertia. 

 Finally, it seems to me to be essential to point out that the Laplace-Poisson partial differential 

equation also has its analogue in the mechanics of higher-order forces, and that, just as in the theory 

of the ordinary Newtonian potential, the extended Newtonian potential finds a variety of 

applications in the treatment of problems of motion under the influence of higher-order forces. 

 For the extension of the principle of least action while preserving the law of energy, and for 

presentation of the general system of Hamilton’s total differential equations, as well as the 

associated partial differential equation, I refer to the works of: 

 

Ostrogradsky, “Mémoires sur les équations différentielles relative au problème des 

isopérimètres,” Mém. de l’acad. de St. Pétersbourg, sc. math. et phys. 4 (1850). 

and 

Jacobi, “De aequationum differentialium isoperimetricarum transformationibus earumque 

reductione ad aequationem differentialem partialem primi ordinis non linearem,” 

Gesammelte Werke V. 
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For the treatment of the principle of least action in the mechanics of ponderable masses, the works 

of: 

A. Mayer, “Die beiden allgemeinen Sätze der Variationsrechnung, welche den beiden 

Formen des Princips der kleinsten Action in der Dynamik entsprechen,” Verh. kön. 

Ges. Wiss. Leipzig (1886). 

and 

Helmholtz, “Ueber die physikalische Bedeutung des Princips der kleinsten Action.” 

Wissenschaftliche Abhandlungen, Bd. III. 

 

should come under consideration, to which I add: 

 

Réthy, “Ueber das Princip der kleinsten Action,” Math. Ann., Bd. 48, 

 

in which the validity of the action principle based on the aforementioned works of Helmholtz is 

proved without the assistance of the law of vis viva. Finally, in relation to that, I should refer to the 

works of: 

 

Hölder, “Die Principien von Hamilton und Maupertuis,” Nach. kön. Ges. Wiss. zu 

Göttingen, math.-phys. Cl. (1900). 

 

 For works that were included in my first publications on the principle of mechanics, in regard 

to the proof of the existence of the kinetic potential, I would like to stress: 

 

A. Mayer, “Die Existenzbedingungen eines kinetischen Potentials,” Ber. kön. Ges. Wiss. 

zu Leipzig (1896). 

 

A. Hirsch, “Ueber eine charakteristische Eigenschaft der Differentialgleichungen der 

Variationsrechnung,” Math. Ann., Bd. 49. 

 

K. Boehm, “Die Existenzbedingungen eines kinetischen Potentials höherer Ordnung,” J. 

f. Mathematik,” Bd. 121. 

 

Heidelberg in November 1900. 

 

The author.  
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§ 1. – The extended d’Alembert principle. 
 

 

 When one generalizes the known principles of mechanics, one must anticipate the validity of 

Newton’s laws, namely: 

 

 1, A body will remain in a state of rest or uniform rectilinear motion as long as it is not 

compelled to change its state by the application of external forces (Law of Inertia), 

 

 2. The change in the motion of a body is proportional to the applied force and points in the 

same direction, which implies a measure of the force as the product of the mass and the 

acceleration. 

 

 However, one maintains the viewpoint that the specialization of those general principle that 

comes about when one establishes Newton’s laws should lead to the known laws of the mechanics 

of ponderable masses. 

 If a point moves along a straight line whose arc-length from a fixed starting point might be 

measured by s, and if S is a certain function of the motion whose properties will be given later, and 

which will be called the force (for reasons that will be given later), then the work done by the 

displacement of the point through the distance ds by the motion or the forces in that direction might 

be defined by the product: 

S ds , 

 

although nothing further is initially assumed regarding the measure of the forces that is defined by 

the motion. If we now define a fixed coordinate system and, while assuming the decomposability 

of the forces, denote the components of the forces along the three axes by X, Y, Z, and the infinitely-

small increments that correspond to ds by dx, dy, dz then the work done can also be represented 

by: 

X dx + Y dy + Z dz . 

 

 If an arbitrary system of n points is now supposed to move then when we denote the forces that 

act upon the ith point along the coordinates axes by Xi, Yi, Zi , the total work done on the system 

will be defined by the sum: 

1

( )
n

i i i i i i

i

X dx Y dy Z dz
=

+ + , 

 

when we denote the simultaneous variations of the coordinates of the point by dxi, dyi, dzi . If we 

subject the system to arbitrary constraints, such that its motion will be a different one, then the 

forces that must act upon the individual points of the system along the coordinate directions in 

order to allow the motion that now takes place must be different from the previous ones, and the 

total work that is done on the system will be represented by: 
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1

( )
n

i i i i i i

i

X dx Y dy Z dz
=

  + + , 

 

in which the dxi, dyi, dzi can be different from before, in general. 

 We shall now state the following demand as the extended d’Alembert principle for the general 

mechanics: 

 

 The total work that is done on the newly-constrained system is equal to the total work done on 

the original system under the same displacements, and indeed for all of the ones that points of the 

newly-restricted system experience at all. 

 

 When all possible or virtual displacements of the coordinates are denoted by xi, yi, zi , that 

principle can be represented by the equation: 

 

(1)    
1

( )
n

i i i i i i

i

X dx Y dy Z dz
=

  + +  = 
1

( )
n

i i i i i i

i

X dx Y dy Z dz
=

+ + . 

 

 Now, if the new constraint state is characterized by the fact that the xi, yi, zi depend upon  

mutually-independent quantities p1, p2, …, p then for s = 1, 2, …, , a virtual motion (among 

others) will be represented by: 

 

p1 = p2 = … = ps−1 = ps+1 = … = p = 0 

 

while ps remains arbitrary, and the relations will then follow from (1): 

 

(2)         
1

n
i i i

i i i

i s s s

x y z
X Y Z

p p p=

   
  + + 
   

  = 
1

n
i i i

i i i

i s s s

x y z
X Y Z

p p p=

   
+ + 

   
       (s = 1, 2, …, ). 

 

If one now calls the mutually-independent quantities p1, p2, …, p the free coordinates then one 

can speak of a force Ps that must act in the direction of the coordinate ps in order for the motion of 

the system to proceed in the assumed way, and since all of the p with the exception of ps are 

zero, the total work done on the new system that is restricted by constraints, in that sense, will be 

defined by the expression: 

Ps Ps , 

 

such that when one uses (2), the extended d’Alembert principle can also be put into the form: 

 

(3)     Ps = 
1

n
i i i

i i i

i s s s

x y z
X Y Z

p p p=

   
+ + 

   
   (s = 1, 2, …, ), 

 



§ 1. – The extended d’Alembert principle. 3 
 

and when one lets i

s

x

p




, i

s

y

p




, i

s

z

p




 denote the products of those quantities with the projections of 

the forces that act along the directions of the coordinate axes Xi, Yi, Zi onto the direction of the 

coordinate ps , one can also interpret this by saying: 

 

 During the duration of the motion, the force that acts upon the coordinate ps is equal to the 

sum of the projections of all forces that act upon the points of the original system onto the direction 

of ps. 

 

____________ 
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 In order to arrive at an expression for the measure of force, it will be necessary to satisfy the 

relation: 

(1)     Ps = 
1

n
i i i

i i i

i s s s

x y z
X Y Z

p p p=

   
+ + 

   
  , 

 

which is valid from the conventions that were made above under the assumption of the 

decomposability of the forces, in the most general way, and indeed in such a way that the measures 

of the forces that point along the coordinate axes depend upon only the corresponding coordinates 

and their derivatives with respect to time. However, we must preface a few remarks in regard to 

the handling of that problem that will also be applied many times later on. 

 

 Lemma 1: 

 

 Let p1, p2, …, p be quantities that depend upon time t, and let: 

 

R = ( ) ( ) ( )

1 1 1 2 2 2( , , , , , , , , , , , , , )f t p p p p p p p p p  

  
       , 

 

in which n represents the highest-order of derivatives with respect to t that are taken. It will then 

follow from the fact that: 

( )R   = 
d R

dt






, 

 

in which ( )R   means the 
th  derivatives with respect to t, that one has: 

 

( )R   = 
( ) ( ) ( )

( )

( )
1

R R R
p p p

p p p

  
 

   
   

   +

+
=

   
+ + + 

   
  

and 

d R

dt






 = ( )

( )
1 0

d R
p

dt p

  


 
  


= =




  

 

= 
1

( ) ( 1) ( )

1( ) 1 ( ) ( )
1 0

d R d R R
p p p

dt p dt p p

  
   

      
    

   
−

+ +

−
= =

   
+ + + 

   
 , 

 

when one sets the coefficients of the corresponding variations equal to each other, one will have: 

 

(2) 
( )

( )

R

p



 



−




 = 

1 2

1 2( ) 1 ( ) 2 ( 2)

d R d R d R d R

dt p dt p dt p dt p

   

        

   

  
− −

−− − − −

   
+ + + +

   
 ( = 1, 2, …, ) 
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and 

(3) 
( )

( )

R

p



 



+




 = 

1 2

1 2( ) 1 ( 1) 2 ( 2) ( )

d R d R d R R

dt p dt p dt p p

  

         

   

 
− −

+ − + − − + −

   
+ + + +

   
    ( = 1, 2, …, ). 

 

 If R depends upon only t, p1, …, p , and not their derivatives, then it will follow from (2) that 

for  =  and  =  – , when   , that: 

 
( )R

p








 = 

d R

dt p










 and 

( )

( )

R

p










 = 

d R

dt p

 

  




−

−




, 

 

and when the latter equation is differentiated  times with respect to t, those two equations will 

imply the frequently-applied relation: 

 

(4)      
( )

( )

d R

dt p

 

 






 = 

( )R

p











. 

 

 If R depends upon not only t, p1, …, p , but also the first derivatives of those quantities, then 

(2) will imply the following relations for  = ,  =  – 1, and  =  –  : 

 
( )R

p








 = 

d R

dt p










, 

( )R

p








 = 

1

1

d R d R

dt p dt p

 

 

 


−

−

 
+

 
, 

 
( )

( )

R

p










 = 

1 ( )

1 1

d R d R

dt p dt p

    

    

 

 
− + −

− − + −

 
+

 
, 

 

and the relation will once more follow from this that: 

 

(5)  
( )

( )

d R

dt p

 

 






 = 

( ) ( )

1 1 1( )
R d R

p dt p

 

  

 

   − −

 
− +

 
, 

 

while the first two of them and the equation: 

 
( )

( 1)

R

p







+




 = 

R

p




, 

 

which follows from (3) for  = 1, will imply the relation: 

 

(6)     
1 ( )

1 ( 1)

d R

dt p

 

 



+

+ +




 = −

( ) ( )R d R

p dt p

 

 


 

+
 

, 
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and similar formulas that express: 

 
( )

( )

d R

dt p

 

 






 in terms of 

( )R

p








, 

( )d R

dt p








, …, 

( )

( )

d R

dt p

 

 






 

 

linearly and homogeneously when R also includes the 2nd, 3rd, … th derivatives of the p. 

 In order to establish the relations between the partial and derivatives with respect to t of the 

function R, which depends upon t, p1, …, p, and their derivatives up to order , one remarks that: 

 

dR

dt
 = ( 1)

( )
1 1 1

R R R R
p p p

t p p p

  


  
    

+

= = =

   
 + + + +

   
    

will imply that: 

dR

t dt




 = 

2 2 2 2
( 1)

2 ( )
1 1 1

R R R R
p p p

t p t p t p t

  


  
    

+

= = =

   
 + + + +

      
   , 

and since: 

dR

t dt




 = 

2 2 2 2
( 1)

2 ( )
1 1 1

R R R R
p p p

t t p t p t p

  


  
    

+

= = =

   
 + + + +

      
   , 

the equation: 

(7)  
dR

t dt




 = 

d R

dt t




 

 

will follow, and from that, one will have: 

 

(8)  
dR

t dt








 = 

d R

dt t








 

 

in general, or when R is replaced with R  , R , … : 

 

(9)  
d R

t dt

 

 




 = 

d R

dt t

 

 




. 

 

 Lemma 2: 

 

 If R1, R2, … are functions of t, p1, p2, …, p, and V is a function that depends upon t, R1, 1R  , 

…, 1( )

1R


, R2, 2R , …, 2( )

2R


, … then from the principles of the calculus of variations, under the 

assumption that the variations of p1, p2, …, p , as well as their derivatives up to orders 1 – 1, 2 

– 1, …, vanish for t = t0 and t = t1, one will have: 
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1

1 1

0

( ) ( )

1 1 1 2 2 2( , , , , , , , , , )

t

t

V t R R R R R R dt     

 

  = 
1

0

( )
1,2,

( 1)

t

t

V d V d V
R dt

R dt R dt R





 




 
   


=

   
− + + − 

   
  

 

 = 
1

0

( )
1,2,

( 1)

t

t

V d V d V

R dt R dt R





 




 
   =

   
− + + − 

   
  

 
1 2

1 2

R R R
p p p dt

p p p

  




  
   

+ + +     

. 

 

However, when the greatest of the numbers 1, 2, … is denoted by , since one further has: 

 
1

1 1

0

( ) ( )

1 1 1 2 2 2( , , , , , , , , , )

t

t

V t R R R R R R dt     

= 
1

0

( )
1

( 1)

t

t

V d V d V
p dt

p dt p dt p




 
   


=

   
− + + − 

   
 , 

 

a comparison of the two expressions will give the relation: 

 

(10) 
( )

( 1)
V d V d V

p dt p dt p




 

  

  
− + + −

  
 =

( )
1,2,

( 1)
RV d V d V

R dt R dt R p





 


 

 
    =

    
− + + − 

    
 , 

 

which will define the foundation for all further considerations when 1 = 2 = … =  . 

 

 That second lemma will next allow one to find solutions to equation (1) that are already very 

general. Namely, let: 
( )( , , , , , )xT t x x x x   , 

 

in which  is an arbitrary positive whole number, be an arbitrary function of its arguments and set: 

 

T = 
( ) ( ) ( )

1 1 1

( , , , , ) ( , , , , ) ( , , , , )
i i i

n n n

x i i i y i i i z i i i

i i i

T t x x x T t y y y T t z z z  

= = =

  + +   . 

 

When the rectangular coordinates that are introduced by arbitrary constraints are expressed in 

terms of  free coordinates p1, p2, …, p , and one further denotes the resulting value of T by (T) 

then (10) will imply that the following relation must exist: 
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− 1

( )

( ) ( ) ( )
( 1)

s s s

T d T d T

p dt p dt p




 

−  
+ − + −

  
 

 

= 1

( )
1

( 1)
n

i

i i i s s

xT d T d T

x dt x dt x p




 

−

=

    
− + − + − 

    
  

 + 1

( )
( 1) i

i i s s

yT d T d T

y dt y dt y p




 

−    
− + − + − 

    
 

 

 + 1

( )
( 1) i

i i s s

zT d T d T

z dt z dt z p




 

−    
− + − + −  

     
 

 

= 1

( )
1

( 1)i i i

n
x x x i

i i i s s

T T T xd d

x dt x dt x p




 

−

=

     
− + − + − 

    
  

 + 1

( )
( 1)i i iy y y i

i i s s

T T T yd d

y dt y dt y p




 

−
    

− + − + − 
    

 

 + 1

( )
( 1)i i iz z z i

i i s s

T T T zd d

z dt z dt z p




 

−
    

− + − + −  
     

, 

 

and therefore, one of the solutions of equation (1) will be a measure of the force that a point that 

moves along the X-axis in the sense above exerts and is expressed by: 

 

(11) X = − 
1

( )
( 1)

T d T d T

x dt x dt x




 

−  
+ − + −

  
, 

 

in which n is an arbitrary positive whole number, and T is an arbitrary function of t, x, x , x , …, 
( )x 

. 

 

 In the mechanics of ponderable masses, for which  = 1, it will then follow that a measure of 

the force is: 

X = − 
T d T

x dt x

 
+

 
 . 

 

 However, in order to find all solutions of equation (1), as we will need to do later in our 

treatment of the kinetic potential, the question might be posed in the somewhat more general form: 

 

 Suppose that one is given an arbitrarily function: 

 
( ) ( ) ( )

1 1 1 2 2 2( , , , , , , , , , , , , )T r r r r r r r r r  

  
    , 



§ 2. – Analytical expression for the measure of force. 9 
 

in which r1, r2, …, r are arbitrary quantities that depend upon a variable t, and ( )

1r
 , ( )

2r
 , …, ( )r 


 

mean the th derivatives of those quantities with respect to t. What is most general form of the 

function f that one can compose from the partial differential quotients: 

 

s

T

r




, 

s

T

r




, …, 

( )

s

T

r 




, 

 

and their total derivatives with respect to t of any order that will possess the property that when r1, 

r2, …, r are made to depend in any way upon  mutually-independent quantities p1, p2, …, p in 

which the variable t does not occur explicitly, and the function of p1, …, p that results from 

substituting those values in T is denoted by (T), the same function f that is defined by: 

 

( )

s

T

p




, 

( )

s

T

p




, …, 

( )

( )

s

T

p 




, 

 

and the total differential quotients of those quantities with respect to t will be equal to the sum of 

the products of the f-function for the variables rs multiplied by s

s

r

p




, or that the following equation 

will be satisfied: 

 

(12) 
2

2 ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , , , , , , ,

s s s s s s s

T d T d T T d T T d T
f

p dt p dt p p dt p p dt p 

       
 

        
 

 

= 
2

2 ( ) ( )
1

, , , , , , , , , s

s s s s s s s s s

rT d T d T T d T T d T
f

r dt r dt r r dt r r dt r p



 
=

        
 

         
  

 

for every choice of the function T and any relationship between the r and the p? 

 Here, as we will often do in what follows in the proofs of lemmas when the principle of the 

proof remains precisely the same, for the sake of brevity, we would like to assume that  has a 

certain value (but one that is always greater than 1, in order to not remain in the mechanics of 

ponderable masses), and in order to answer the question that was just posed, it will be sufficient to 

assume that the derivatives of the quantities r go only as far as second order. 

 Since the relation (2) must be true for any dependency that might exist between the r and p, it 

must also be true when r1 is chosen to be an arbitrary function of p1. One further sets  =  and r2 

= p2, …, r = p such that when one chooses s = 1 and denotes r1, p1 by r and p, resp., the equation: 

 

(13) 
( ) ( ) ( ) ( ) ( ) ( )

, , , , , , , ,
T d T T d T T d T

f
p dt p p dt p p dt p

      
 

         
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= , , , , , , , ,
T d T T d T T d T r

f
r dt r r dt r r dt r p

       
 

          
 

  

must be satisfied for every choice of T and every relation between r and p. On the one hand, the 

latter demand will specify the dependency of r1, r2, … and r , r , … upon each other, when one 

sets: 

r

p




= r1 , 

2

2

r

p




= r2 , 

3

3

r

p




= r3 , …, 

so: 

r  = 1 pr , r  = 2

1 2p p +r r , r   = 3 3

1 23p p p r p   + +r r ,  … 

 

On the other hand, it is clear that when one sets: 

 

T

r




 = u , 

T

r




 = v , 

T

r




 = w , 

 

since equation (13) must exist for an arbitrary choice of T, not only will the quantities u, v, w be 

independent of each other, but so are the quantities: 

 

d T

dt r




 = u  = u1 , 

2

2

d T

dt r




 = u  = u2 , … 

 

d T

dt r




 = v  = v1 , 

2

2

d T

dt r




 = v  = v2 , … 

 

but neither will a connection exist between the u, v, w, since the higher partial differential quotients 

of T with respect to r, r , r  are independent of each other. If one now sets: 

 

r

p




= r1 = 1 , 

r

p




= 1 p

p






r
 = 2 pr  = 2 , 

r

p




= 22

2 p p
p


 +



r
r  = 2

2 3p p +r r  = 3 , …, 

 

in which the quantities 1, 2, 3, … are, in turn, mutually independent, then with the use of the 

relation: 
( )

( )

r

p








 = 

( )r

p

 


−


 (  ), 

 

which is implied by equation (2), and with the help of the notations that were introduced, it will 

follow that: 
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( )T

p




 = u 1 + v 2 + w 3 ,  

( )T

p




 = v 1 + 2 w 2 , 

( )T

p




 = w 1 , 

 

( )d T

dt p




 = u1 1 + (u + v1) 2 + (v + w1) 3 + w 4 ,  …, 

 
2

2

( )d T

dt p




 = u2 1 + (2u1 + v2) 2 + (u + 2v1 + w2) 3 + (v + 2w1) 4 + (v + 2w1) 3 + w 5 , …, 

………………………………………………………………………………………………….. 

 

Therefore, (13) would demand the following identity for arbitrary values of all the quantities that 

enter into it: 

 

(14) f (u 1 + v 2 + w 3 , u1 1 + (u + v1) 2 + (v + w1) 3 + 4 , 

 u2 1 + (2u1 + v2) 2 + (u + 2 v1 + w2) 3 + (v + 2 w1) 4 + w 5 , …, 

 v 1 + 2w 2, v1 1 + (v + 2 w2) 2 + 2w 3 , 

 v2 1 + (2v1 + 2 w1) 2 + (v + 2  2 w1) 3 + 2 w 4 , …, 

 w 1, w1 1 + w 2 , w2 1 + 2 w1 2 + w 3 , …) 

 

= 1 f (u, u1, u2, u3, …, v, v1, v2, v3, …, w, w1, w2, w3, …) . 

 If one sets: 

v = v1 = v2 = … = w = w1 = w2 = … =  0 , 1 = 1 

 

in that then it will follow from the resulting equation: 

 

f (u, u1 + u 2 , u2 + 2 u1 2 + u 3 , u3 + 3 u2 2 + 3 u1 3 + u 4 , …, 0, 0, …) 

 

= f (u, u1, u2, u3, …, 0, 0, …) 

 

that of the quantities u, u1, u2, u3, … in the function f, only the quantity u can occur, since the 

arguments on the left-hand side from the second one onwards can assume arbitrary values that are 

independent of u, u1, u2, …, due to the arbitrariness in the quantities 2 , 3 , ...  Moreover, if one 

sets: 

w = w1 = w2 = … = 0 ,  1 = 1 ,  2 = 0 ,  

 

in (14) then it will likewise follow from the equation: 

 

f (u, v, v1, v1 + v 3 , v3 + 3 v1 3 + v 4 , …, 0, 0, …) 

 

= f (u, v, v1, v2, v3, …, 0, 0, …) 
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that the function f can no longer depend upon v2, v3, …, nor can it depend upon w2, w3, …, such 

that the necessary form of f that will fulfill equation (14) identically will go to: 

 

(15)  f (u 1 + v 2 + w 3 , v 1 + 2 w 2 , v1 1 + (v + 2 w1) 2 + 2 w 3 , 

 w 1 , w1 1 + w 2 , w2 1 + 2 w1 2 + w 3)  

= 1 f (u, v, v1, w, w1, w2) . 

 

 If we now return to the original demand that was posed by equation (12) and assume that the 

function T depends upon at least two r-quantities then if we recall (15), the equation to be fulfilled 

identically will assume the form: 

 

(16)  ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 1 2, 2 ,f u v w v w         

 

    


+ + +

   

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 3 1( 2 ) 2 , ,v v w w w        

 

   + + +   

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 1 2 3, 2w w w w w         

 

    


+ + + 


   

= ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2( , , , , , )f u v v w w w      



  , 

 

in which we have provided all of the corresponding quantities with the superscript (). However, 

since when it will follow from the equation that results by partial differentiation with respect to 

the arguments when one sets ( )

1

  = 1, ( )

2

  = 0,  ( )

3

  = 0 that the differential quotients are 

independent of the arguments f will then be a linear function of the arguments with constant 

coefficients that has the form: 
( ) ( ) ( ) ( ) ( )

1 2( , , , , )f u v w w w      

 

= ( ) ( ) ( ) ( ) ( ) ( )

0 1 1 1 1 2 2u v v w w w           + + + + + + . 

 

Upon substituting that expression in (16) and identifying the coefficients of 
( )u 

, 
( )v 

, …, and 

again identifying the coefficients of ( )

1

 , ( )

2

 , … in that, the defining equations will follow: 

 

0 = 0 ,  + 1 = 0 , 1 +2 = 0 , 2  + 2 = 0 , 

 

such that f will assume the form: 
( ) ( ) ( ) ( ) ( )

1 2( , , , , )f u v w w w      

 

= ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 3 12u v w v w w       − + − − +  , 
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in which , ,  remain arbitrary. Since two of the quantities , ,  can always be assumed to be 

equal to zero, that will then yield the three necessary and sufficient forms for f as solutions of 

equation (12) in the case of  = 2 : 

 

− 
2

2

T d T d T

r dt r dt r  

  
+ −

   
, 

T d T

r dt r

 
−

 
,  − 

T

r




, 

 

and the theorem will follow for arbitrary  in precisely the same way: 

 

 All of the functions f that satisfy equation (12) for an arbitrary function T of r , r
 , …, ( )r 

 , in 

which  = 1, 2, …, , and for an arbitrary dependency between r1, r2, …, r and p1, p2, …, p , will 

be included in the form: 

 

f = 
2

1

( ) ( 1) 2 ( 2)

( 2)( 1)
( 1) ( 1)

1 2

T d T d T

r dt r dt r

 

     

  

   
 − +

− − + − +

   − + − + 
− − − + + −

   
 

+ 
( )

( 1) ( 1)
( 1)

1 2

d T

dt r




 



   



− − + 
− 

  
, 

 

in which  assumes the values 1, 2, …,  . 

 

 In order to remain in agreement with the mechanics of ponderable masses, if we define: 

 

B = 
2

1

1 2( ) ( 1) 2 ( 2) ( )
( 1) ( 1) ( 2) ( 1)

T d T d T d T

x dt x dt x dt x


  

       
    − +

− − + − +

   
− − − + + − + − + −     

 

 

( = 0, 1, 2, …,  – 1) 

 

to be the moment of motion of order  for a point that moves along the X-axis in the case of  > 1 

then that will yield the form that was found above for general expression for the measure of the 

force: 

X = − 
2

1

2 ( )
( 1)

T d T d T d T

x dt x dt x dt x




 

−   
+ + − + −

    
 , 

 

in which T is initially an arbitrary function of x, x , x , …, 
( )x 

, as the only possible one. 

 

__________ 
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 The expression that was obtained above for the measure of the force for the mechanics of 

ponderable masses was: 

X = − 
T d T

x dt x

 
+

 
 , 

 

in which T means an arbitrary function of x and x . When one imposes the condition that it should 

be independent of x and x , in harmony with Newton’s laws, that equation will imply that: 

 

− 
2 2

2

T d T

x dt x x

 
+

  
 = 0 , 

2

2

d T

dt x




 = 0 , 

 

and T will then assume the form: 

T = 
2 ( )a x f x x x  + + + , 

 

in which a, ,  are constants, and f (x) can be a function of x that is still arbitrary, while the 

measure of the force will be given in the form: 

 

X = −  + 2a x . 

 

If the two laws of Newton are to be satisfied then obviously one must have  = 0 and a = m / 2. 

Therefore T will go to: 

T = 21
2

m x  

 

when  = 0, which is an expression that one defines to be the vis viva. We would now like to also 

specialize the expression for the measure of the force that was found above in the general case by 

similar conditions in order to be led to the generalization of the expression for the vis viva. 

 To that end, in order to not interrupt the exposition of the general principles of mechanics later 

on, we shall already treat some lemmas at this point that will play an essential role in the general 

formulation of mechanics. 

 

 Lemma 3: 

 

 If V is a function of t, p1, p2, …, p, and their derivatives with respect to t up to order  then it 

is known that: 

(1)    
1

0

t

t

V dt   = 

1

0

1
1

1 ( )
1

( 1)

t

t

V d V d V
p

p dt p dt p




 
   


−

−

−
=

    
− + + −  

     
  
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 + 

1

0

2
2

2 ( )
1

( 1)

t

t

V d V
p

p dt p




 
  


−

−

−
=

   
− + −  

   
  

 + 

1

0

( 1)

( )
1

t

t

V
p

p





 

 −

=

 
 
 

  

 + 
1

0

( )
1

( 1)

t

t

V d V d V
p dt

p dt p dt p




 
   


=

   
− + + − 

   
 . 

 

If one assumes that V is the differential quotient of a function ( 1)

1 1 1( , , , , , ,f t p p p  −

( 1), , , )p p p 

  

−  with respect to t then when one chooses a certain value t1 for the upper limit of 

t and agrees that  p , p  , …, ( 1)p 

 −  should vanish for t0 and t1, then because one has: 

 
1

0

t

t

V dt   = 
1

0

t

t

df
dt

dt
   =   1

0

t

t
f  = 0 , 

 

from (1), the following identity relation should exist: 

 

(2) 
( )

( 1)
V d V d V

p dt p dt p




 

  

  
− + + −

  
 = 0 . 

 

That is then the necessary condition for V to be representable as the differential quotient with 

respect to t of a function, and in that case, under the assumption that  p , p  , …, ( 1)p 

 −  vanish 

for t0, equation (1) will yield the variational expression: 

 

(3)  
1

0

t

t

V dt   = 
1

1

1 ( )
1

( 1)
V d V d V

p
p dt p dt p




 
   


−

−

−
=

   
− + + − 

    
  

 + 
2

2

2 ( )
1

( 1)
V d V d V

p
p dt p dt p




 
   


−

−

−
=

   
− + + − 

    
  + … 

 + ( 1)

( )
1

V
p

p





 

 −

=




 . 

 

 The fact that equation (3) implies an immediately-obvious identity follows from (2) and (3) of 

§ , from which: 
2

2

f d f d f

p dt p dt p  

    
− + −

    
 = 

d f f

dt p p 

  
+ 

  
 , 
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− 
2

2

d d f f d d f f

dt dt p p dt dt p p   

      
+ + − −   

         
 = 

f

p




 

 

f d f

p dt p 

 
− +

  
 = 

d f f d d f f

dt p p dt dt p p   

      
+ + − +   

         
 = 

f

p




, 

 

etc., such that equation (3) will go to: 

 

 f = ( 1)

( 1)
1

f f f
p p p

p p p




  
   

   −

−
=

   
+ + + 

   
  , 

due to V = f  . 

 Now, the converse of that theorem, which is known already, namely, that the existence of the 

identity (2) is also the sufficient condition for V to be representable as the differential quotient with 

respect to t of a function of t, p1, …, p, and its derivatives, will be established with the help of the 

relations (2) and (3) of § 2, to the extent that would seem appropriate for the further applications 

of that theorem. 

 If, in fact, equation (2) is satisfied identically, such that equations (3) will be true under the 

assumption that the variations p, p  , …, ( 1)p 

 −  vanish for t = t0 , or when one sets: 

 

(4)    
( ) ( 1) ( )

( 1)
V d V d V

p dt p dt p

 
 

    

  

−
−

+ −

  
− + + −

  
 = V , 

such that: 

(5)  

0

t

t

V dt   = 
( 1)

1 2

1 1 1

V p V p V p
  



     
  

   −

= = =

+ + +   , 

then by means of (2) and (4): 

 

(6)  1dVV

p dt






−


 = 0 ,   2dVV

p dt






−


 = V1 ,   3dVV

p dt






−


 = V2 , …,   

( 1)

dVV

p dt







−


−


 = V−1  

 

will be fulfilled identically, and partially-differentiating the first of those equations for 1 and 2 

with respect to 
2

p  and 
1

p  will next give the identity: 

 

(7)      1 2

2 1

1 1V Vd

dt p p

 

 

  
− 

   

 = 0 . 

 

 It likewise follows from the first and second of equations (6) with the use of the cited auxiliary 

formulas that: 
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1 1

1 2 2 2

2
1 1V VV d

p p dt p p

 

   

 
− −

    
 = 0 

and 

2 2

2 1 1 1

2
2 1V VV d

p p dt p p

 

   

 
− −

    
 = 0 , 

and therefore, due to (7): 

(8)      1 2

2 1

2
1 2

2

V Vd

dt p p

 

 

  
− 

   

 = 0 , 

 

whereas from the second of equations (6): 

 

1 1 1

1 2 2 2 2

2
2 2 1V V VV d

p p dt p p p

  

    

  
− − −

       
 = 0 , 

2 2 2

2 1 1 1 1

2
2 2 1V V VV d

p p dt p p p

  

    

  
− − −

       
 = 0 . 

 

Therefore, according to (8), that will give: 

 

(9)      1 2

2 1

3
2 2

3

V Vd

dt p p

 

 

  
− 

    

 = 0 . 

 

Thus, as is immediately clear, one will generally have: 

 

(10) 1 2

2 1

1

1 ( 1) ( 1)

V Vd

dt p p

 
  

   

 

+ −

+ − − −

  
− 

   

 = 0 , 

 

in which one can also have  =  and 1 = 2 . Now since  and  will have a value of at most , 

so one will have: 

(11) 1 2

2 1

2 1

2 1 ( 1) ( 1)

V Vd

dt p p


  

  

 

−

− − −

  
− 

   

 = 0 , 

or 

1 2

2 1

( 1) ( 1)

V V

p p

  

 

 

− −

 
−

 
 = c0 + c1 t + … + 2 2

2 2c t 



−

−
, 

 

identically in any case, in which c0, c1, …, c2−2 are constants, then when one sets: 
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(12)           
V

p




 = ( )W  , 

 

as will become clear upon partial differentiation of the equation (2) with respect to p while 

recalling the equation (2) of § 2, the identity will follow that: 

 
( ) ( ) ( )

( )
( 1)

W d W d W

p dt p dt p

   


 

  

  
− + + −

  
 = 0 . 

 

Therefore from (3) and (4), when one sets: 

 

V

p








 = ( )W 

 ,  

that will give: 

(13)   

0

( )

t

t

W dt   = 
( ) ( ) ( ) ( 1)

1 2

1 1 1

W p W p W p
  

   

     
  

   −

= = =

+ + +   . 

 

However, since equation (11) implies the identity relation: 

 

1

2

( 1)

W

p

 





−




 = 2

1

( 1)

W

p

 





−




, 

 

the variation (13) will be the complete variation of a function f of t, p1, p2, …, p , and its 

derivatives up to order  – 1. Therefore, 
( )W 

 will be the total differential quotient of one such 

function F with respect to t. If one now sets: 

 

1

V

p




 = 1dF

dt
, 

so 

V = (1) ( ) ( )

1 1 2 3 1 1( , , , , , , , , , , , )
d

F dp V t p p p p p p p
dt

 

  
 + , 

 

then it will follow by partial differentiation with respect to p2 that: 

 

2

V

p




 = 

(1)

1
1

2 2

Fd V
dp

dt p p

 
+

   = 2dF

dt
. 

Therefore: 
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(1)V  = (2) ( ) ( )1
2 1 2 3 1 1

2

( , , , , , , , , , , )
Fd

F dp dp V t p p p p p p
dt p

 

  

  
 − +  

  
  , 

so 

V = (2)1
1 1 2 1 2

2

Fd
F dp F dp dp V

dt p

  
+ − +  

  
   , 

 

and if one proceeds in that manner then it will follow that: 

 

V = ( ) ( ) ( )

1 1( , , , , , , )
d

V p p p p
dt

  

 


 +  , 

 

in which  represents a function of t, p1, p2, …, p, and their derivatives up to order  – 1. 

 If one now sets: 

d
V

dt


−  = V  

then because when one sets: 

( )p 






 =  + 1,  , 

in addition to equation (5), the relation: 

 

0

t

t

d
dt

dt



  = 

( 1)

1 2

1 1 1

p p p
  



     
  

   −

= = =

 +  + +     

 

will also exist, V  will, in turn, satisfy the variational equation: 

 

0

t

t

V dt   = 
( 1)

2 3

1 1 1

V p V p V p
  



     
  

   −

= = =

 + + +   . 

 

That is analogous to equation (5), by means of the relations (2), (3) in § 2, since V  no longer 

includes the quantities p1, p2, …, p, and as with (5), that will imply that: 

 

d
V

dt


−  = ( ) ( )

1 1( , , , , , , , )V t p p p p 

 
  , 

so 

V = 
d d

V
dt dt

 
+ + . 
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If one continues to reason in that way then V will be represented as the complete differential 

quotient with respect to t of a function of t, p1, …, p, and their derivatives up to order  – 1, and 

we will get the theorem: 

 

 The identical fulfillment of the equation: 

 
2

2 ( )
( 1)

V d V d V d V

p dt p dt p dt p




 

   

   
− + − + −

    
 = 0 

 

is the necessary and sufficient condition for V to be representable as the differential quotient with 

respect to t of a function of t, p1, …, p, and their derivatives up to order  – 1. 

 

 We shall now apply the theorem that was just proved to the proof of a lemma that plays an 

essential role in mechanics, as we will see, and its derivation shall be given in a form that will be 

the basis for our later investigations. 

 

 Lemma 4. – One addresses the problem of ascertaining the necessary and sufficient conditions 

for the  functions N1, N2, …, N of t, p1, …, p, and their derivatives up to order  to be 

representable in the form: 

 

(14)   N = 
2

2 ( )
( 1)

M d M d M d M

p dt p dt p dt p




 

   

   
− + − + −

    
. 

 

 In order to next find the necessary conditions for that representation, one partially-

differentiates (14) with respect to (2 )p 

 , and with the use of the relations (2) and (3) of § 2 (which 

will always find application in what follows), that will give: 

 

(15)    (2 )

N

p










 = 

2

( ) ( )
( 1)

M

p p



 

 


−

 
 = (2 )

N

p










. 

 

In precisely the same way, one will get the two equations: 

 

(2 1)

N

p







−




 = 

2 2 2
1

( 1) ( ) ( ) ( ) ( ) ( 1)
( 1) ( 1)

M d M M

p p dt p p p p

 

     

     

−

− −

   
− + − + 

      
 , 

 

(2 1)

N

p







−




 = 

2 2 2
1

( 1) ( ) ( ) ( ) ( ) ( 1)
( 1) ( 1)

M d M M

p p dt p p p p

 

     

     

−

− −

   
− + − + 

      
 , 

 

whose combination will imply: 
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(2 1) (2 )
2

N Nd

p dt p

 

 

 


−

 
−

 
 = − (2 1)

N

p







−




, 

 

when one recalls (15). The partial differentiation of (14) with respect to 
(2 2)p 



−
 (

(2 2)p 



−
, resp.) 

likewise yields: 
2

1 2(2 2) (2 1) 2 (2 )
(2 1) (2 )

N N Nd d

p dt p dt p

  

  

  

 
− −

  
− − +

  
 = (2 2)

N

p







−




. 

 

Therefore, in general: 

 

(16) 
2 2

2

1 2 2( ) ( 1) 2 ( 2) 2 (2 )
( 1) ( 2) ( 1) (2 )

N N N Nd d d

p dt p dt p dt p

 
    

      

   

  
−

−

−+ + −

   
− − + + − + −

   
 

= ( )
( 1)

N

p

 






−


, 

 

in which  assumes the values 0, 1, 2, …, 2, and  and  assume the values 1, 2, …, , whereas 

when M includes only one variable, along with its derivatives, in addition to t, since k = l, the 

necessary condition for N will go to: 

 

(17) 
2

1 2( ) ( 1) 2 ( 2)
(1 ( 1) ) ( 1) ( 2)

N N Nd d

p dt p dt p

   

  

  

 
+ +

  
− − − + + + −

  
 

 
2

2

2 2 (2 )
( 1) (2 )

Nd

dt p

 
  

    




−

−

− −


+ −


 = 0 , 

 

from (16). One then sees that for  = 2, equation (17) is an identity, and that for  = 2 – 1, one 

further has: 

(18)     (2 1) (2 )

N d N

p dt p 


−

 
−

 
 = 0 , 

 

which will also lead to  = 2 – 2. The assumptions that  = 2 – 3 and  = 2 – 4 will yield the 

two relations: 

 

2 3

1 2 3(2 3) (2 2) 2 (2 1) 3 (2 )
2 (2 2) (2 1) (2 )

N d N d N d N

p dt p dt p dt p   
  

− − −

   
− − + − −

   
 = 0 , 

 

− 
2 3 4

1 2 3 4(2 3) 2 (2 2) 3 (2 1) 4 (2 )
(2 3) (2 2) (2 1) (2 )

d N d N d N d N

dt p dt p dt p dt p   
   

− − −

   
− + − − − +

   
 = 0 . 
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The fact that those two relations will, in turn, go to just one by means of (18) is obvious from the 

fact that when the second of them is divided by 2 – 3 and the first one is differentiated with 

respect to t, multiplied by 2, and added to the latter result, that will produce a homogeneous linear 

equation in 
3

3 (2 1)

d N

dt p  −




 and 

4

4 (2 )

d N

dt p 




 that must necessarily be equation (18), when it is 

differentiated with respect to t three times. It will then follow, as one can see immediately, that 

since the first two terms in (17) for two successive values of  will emerge from each other upon 

differentiation with respect to t, except for a common numerical factor, the condition equations 

that N must necessarily fulfill will be obtained when one sets  = 1, 3, 5, …, 2 − 1. 

 It might be remarked that since equation (17) yields the relations: 

 
2 3 2 1

2 3 2 1 (2 )
2 2 3 4 2

N d N d N d N d N

p dt p dt p dt p dt p



 


−

−

    
− + − + +

       
 = 0 , 

 
2 2 1

2 2 1 (2 )

d N d N d N d N

dt p dt p dt p dt p



 

−

−

    
− + − + 

      
 = 0 

 

for  = 1 and  = 0 , the bracket in the second equation will be a constant that will have the value 

zero, since when it is coupled with the first equation, it must yield a sequence of the remaining 

equations that are homogeneous linear in the differential quotients for  = 3, 5, …, 2 − 1, and that 

will generally give the relation: 

 

(19)    
2 2 1

2 2 1 (2 )

N d N d N d N

p dt p dt p dt p



 

−

−

   
− + − +

     
 = 0 . 

 

For the sake of what follows, it would not be trivial to point out that this relation can also be 

derived directly from equation (14) when it is partially-differentiated with respect to p , p , …, 

(2 )p 
 and one applies formulas (2) and (3) of § 2 and forms the indicated algebraic sum. 

 However, we would now like to show that the conditions on N (N, resp.) that are expressed 

by equations (16) and (17) are also sufficient for the existence of a function M of t, p1, p2, …, p, 

1p , …, p
 , …, 

( )

1p 
, …, 

( )p 

  by which N (N, resp.) can be represented in the form (14), and that 

proof shall be carried out by a method that will find frequent application in the following using 

Lemma 1. 

 For  = 1,  = 1, it is immediately obvious from the only identity condition equation that is 

true in this case: 

(20)      
N d N

p dt p

 
−

  
 = 0 

that one must have: 
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2

2

N

p




 = 0 , so N = ( , , ) ( , , )p t p p t p p   + , 

 

and that when one sets: 

 

Q = N dp  = ( , , ) ( , , )p t p p dp t p p dp   +   = ( , , ) ( , , )p t p p t p p   +   , 

 

as a result of (20), the following relation will exist: 

 

(21)    
Q d Q

p dt p

 
−

  
 = ( , )t p  = 

( , )t p

p

 


, 

 

which is independent of p. However, under the assumption that the variations  p and p   vanish 

at the limits of the integral t0 and t1 , by using the relation (21), one will get: 

 

(22) 
1

0

t

t

N p dt  = 
1

0

t

t

Q
p dt

p




  = 
1 1

0 0

( , )

t t

t t

Q dt t p p dt  −    = 
1

0

( ( , ))

t

t

Q t p dt  − . 

 

If one now determines a function f that is linear in p  and is the differential quotient with respect 

to t of a function: 

( , , )F t p p  = 
1( , , ) ( , )t p p dp t p  +  , 

so 

f = 
dF

dt
 = ( , , )

F F
p t p p p

t p

 
  + + 

 
, 

 

then when one subtracts the identity that is demanded by the first lemma: 

 
1

0

t

t

f dt   = 0 

 

from equation (22), that will imply the relation: 

 
1

0

t

t

N p dt  = 
1

0

( )

t

t

Q f dt − −  = 
1

0

t

t

M dt   = 
1

0

t

t

M d M
p dt

p dt p


  
− 

  
 , 

 

in which M depends upon only t, p, p . That will therefore prove the existence of a function M 

that depends upon only t, p, p  by which N can be expressed in the form (*): 

 
 (*) It would not be superfluous to explain the details of the proof by way of example. 
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N = 
M d M

p dt p

 
−

 
. 

 

 If  = 1,  = 2 then the two identically-fulfilled condition equations will exist: 

 

(23)     
2 3

2 3 IV

N d N d N d N

p dt p dt p dt p

   
− + −

     
 = 0 , 

 

(24)      2
IV

N d N

p dt p

 
−

 
 = 0 . 

That will next imply that: 

 
2

2IV

N

p




 = 0 , so N = ( , , , , ) ( , , , , )IVp t p p p p t p p p p      +  , 

 

and upon substituting that value in (24), one will get: 

 

p




 = 0 , 

p




 = 2 p p p

t p p p

       
  + + + 

     
 , 

 

so it will then follow that: 

 

N = 2( , , , ) 2 ( , , , )IVp t p p p p p p p t p p p
p t p p

   
 

    
        + + + + + 

     
 . 

 

If one once more sets: 

 

(25)  Q = N dp   

 
 Let the function that satisfies equation (20) be: 

N = − 2
6p p p − . 

That will imply that: 

 = − 6 p ,  = − 2
p , Q = −

31
3

6 p p p p  − , 

Q d Q

p dt p

 
−

  
 = 2

6 p ,  = 2
6 p ,  = 2

2 p ,  = − 6 p p , 

F = − 2
3p p , f = − 2

3 6p p p p  − , 

and therefore: 

M = 
3 31

3
p p − . 
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 = 2 2 ( , , , )IVp dp p dp p p p dp t p p p dp
p t p p

   
 

    
     + + + + + 

     
     

 

then by means of (23), one will see that: 

 

(26)    
2 3

2 3 IV

Q d Q d Q d Q

p dt p dt p dt p

   
− + −

     
 = ( , , , , , )IV Vt p p p p p    

 

is independent of p. However, if one partially-differentiates that equation with respect to 
Vp  and 

IVp  then it will once more follow with the help of formulas (2) and (3) of § 2, while considering 

the form (25) for Q, that: 

Vp




 = 0 , IVp




 = 0 , 

 

which is immediately obvious, such that (26) will be independent of p, 
IVp , and 

Vp , and assume 

the form: 

(27)    
2 3

2 3 IV

Q d Q d Q d Q

p dt p dt p dt p

   
− + −

     
 = ( , , , )t p p p    . 

 

That amounts to developing the characteristic property of the function . However, it is easy to 

see, in turn, that by means of (2) and (3) in § 2, one has: 

 

 
p




 = 

2Q

p p



  
 

 − 
2 2 2 2 2 2

2 2
2

d Q Q d Q d Q Q

dt p p p dt p p dt p p p p

       
+ + + +                     

 

 − 
3 2 2 2 2

3 2
3 3

IV IV IV

d Q d Q d Q

dt p p dt p p dt p p

   
+ +        

 , 

 

 
p




 = 

2Q

p p



  
 

 − 
2 2 2 2 2 2

2 2 2
2

d Q Q d Q d Q Q

dt p p p dt p dt p p p p

       
+ + + +                    

 

 − 
3 2 2 2 2 2

3 2
3 3

IV IV IV IV

d Q d Q d Q Q

dt p p dt p p dt p p p p

    
+ + +           

 , 
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and therefore: 

 

d

p dt p

 
−

  
 = 

3 2 2 2 3 2 4 2

3 3 2 4
2 2

IV IV IV

d Q d Q Q d Q d Q

dt p p dt p p p p dt p dt p p

    
− + − +

           
, 

 

which will imply that: 

(28)      
d

p dt p

 
−

  
 = 0 

 

with the use of the form for Q that was found in (25). However, since equations (25) and (27) yield 

the relation: 

(29)    
1

0

t

t

N p dt  = 
1 1

0 0

( , , , )

t t

t t

Q dt t p p p p dt    −    

 

precisely as above, for a function (which is, however, a function of t, p , p , p ) that satisfies 

the relation (28) that is analogous to equation (20), from what was proved before, there will exist 

a function K of t, p , p  that satisfies the equation: 

 

(30)     
1

0

( , , , )

t

t

t p p p p dt     = 
1

0

t

t

K dt  . 

 

The combination of (29) and (30) will then imply that: 

 

(31)     
1

0

t

t

N p dt  = 
1

0

( )

t

t

Q K dt −  = 
1

0

t

t

R dt   , 

 

in which, from (25), R will have the form: 

 

(32)   R = 2 2 ( , , , )IVp dp p dp p p p dp t p p p
p t p p

   
 

    
     + + + + + 

     
   . 

 If one now sets: 

S = 1 ( , , )p dp t p p +   

then: 

 

(33)   = 
S

t




 

= 1 1 1 1IVp dp p p p p dp p p p
t p p p t p p p

   


            
      + + + + + + + + 

           
  , 
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and in that way, one will determine 1 in such a way that: 

 

p




 = p p dp

t p p

     
 + + 

   
 . 

 

Since  is the differential quotient of S with respect to t, one will have: 

 

(34)  
1

0

t

t

dt   = 0 , 

and when one sets: 

R –  = M , 

 

in which M depends upon only t, p, p , p , from (32) and (33), the difference of (31) and (34) 

will yield the relation: 
1

0

t

t

N p dt  = 
1

0

t

t

M dt  . 

 

Will therefore imply the existence of a function M of t, p, p , p  by which N can be represented 

in the form (*): 

N = 
2

2

M d M d M

p dt p dt p

  
− +

   
 . 

 

 For  = 1,   = 3, the question will, in turn, reduce to the determination of a function ( , , ,t p p   

, , )IV Vp p p  that will exhibit both of them for  = 2 and prove to be a necessary and sufficient 

condition to be satisfied, etc. 

 

 (*) For example, if N = − 4 2
IV

p p p p p  + + , which will make the two equations (23) and (24) sufficient, then 

that will give: 

 = 2p ,  = − 4p p p + ,  = − p , 

Q = −
21 4 2

2
IV

p p p p p p p  + + ,   = −
2

4 2p p p  − , 

K = 
2

2 p p  , R = 
2 212 4 2

2
IV

p p p p p p p p p    + − − , 1 = 
2 2

2p p p p  − , 

S = 
2 2

2 2p p p p p p p    + − ,  = 
2

2 4 3
IV

p p p p p p p p    + − . 

Therefore: 

M = R –  = − 
2 21

2
p p p + , 

 

from which, one will in fact have the identity: 

 

− 4 2
IV

p p p p p  + + = 

2

2

M M M

p p p

d d

dt dt
+

  
−

   
 = −

2

2

2
)( ) (2

d d
p p p p

dt dt
  + +  . 
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 We then find that: 

 

 The necessary and sufficient conditions for a function N of t, p, p , …, (2 )p   to be 

representable in terms of a function M of t, p, p , …, ( )p   in the form: 

 

(35)   N = 
2

2 ( )
( 1)

M d M d M d M

p dt p dt p dt p




 

   
− + − + −

    
 

are given by the equations: 

 
2 2

2

1 2 2( ) ( 1) 2 ( 1) 2 (2 )
(1 ( 1) ) ( 1) ( 2) ( 1) (2 )

N d N d N d N

p dt p dt p dt p

 
  

      
  

−
−

−+ + −

   
− − − + + + − + −

   
 = 0 

 

( = 1, 3, 5, …, 2 – 1), 

which must be fulfilled identically. 

 

 However, one also soon sees that there are infinitely-many such functions M, since when M1 

is the differential quotient with respect to t of an arbitrary function of t, p, p , …, ( 1)p  − , from 

Lemma 3, the identity will exist: 

 

(36)   0 = 
2

1 1 1 1

2 ( )
( 1)

M M M Md d d

p dt p dt p dt p




 

   
− + − + −

    
, 

 

and therefore, when one sets: 

M – M1 = L , 

it will follow from (35) and (36) that: 

 

N = 
2

2 ( )
( 1)

L d L d L d L

p dt p dt p dt p




 

   
− + − + −

    
 . 

 

However, all functions M that satisfy (35) will be determined in that way since if M2 means any 

such function then subtracting (35) and M2 would yield the identity: 

 

2 2 2

( )

( ) ( ) ( )
( 1)

M M M M M Md d

p dt p dt p




 

 −  −  −
− + + −

  
 = 0 . 

 

From Lemma 3, that would demand that M – M2 must be the differential quotient of a function of 

t, p, p , …, 
( 1)p  −

 with respect to t. It will then follow that: 
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 When N satisfies the conditions that were given above, infinitely-many solutions M will satisfy 

equation (25), but they will all differ by only differential quotients of functions of t, p, p , …, ( 1)p  −  

with respect to t. 

 

 In order to prove the existence of a function M by which the quantity N can be represented in 

the form that was given in (14) for the case in which  > 1 and the functions N1, N2, …, N satisfy 

the equations (16) and to explain what is applicable, we would like to again restrict the principle 

that is completely analogous to the one that was used before to the case  = 2,  = 1, for which the 

condition equations (16) will assume the form: 

 

(37)     
2

1 1

2

1 1

N Nd d

dt p dt p

 
−

  
 = 0 , 

 

(38)     
2

2 2

2

2 2

N Nd d

dt p dt p

 
−

  
 = 0 , 

 

(39) 1 1

1 1

N Nd

p dt p

 
−

  
 = 0 , 

 

(40) 2 2

2 2

N Nd

p dt p

 
−

  
 = 0 , 

 

(41) 
2

1 1 1

2

2 2 2

N N Nd d

p dt p dt p

  
− +

   
  = 2

1

N

p




, 

 

(42) 
2

2 2 2

2

1 1 1

N N Nd d

p dt p dt p

  
− +

   
 = 1

2

N

p




, 

 

(43) 1 1

2 2

2
N Nd

p dt p

 
−

  
  = − 2

1

N

p




, 

 

(44) 2 2

1 1

2
N Nd

p dt p

 
−

  
  = − 1

2

N

p




, 

 

(45) 1

2

N

p




 = 2

1

N

p




. 

 

Only equations (39), (40), (41), (43), and (45) can be considered to be independent of each other, 

as is immediately obvious. Now, one can once more see immediately from equations (39), (40), 
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and (43), (44) that the functions N1 and N2 must be linear functions of 1p  and 2p . Therefore, by 

means of equation (45), they will have the form: 

 

(46)  N1 = 1 11 1 2 1 2 2 12 1 2 1 2 1 1 2 1 2( , , , , ) ( , , , , ) ( , , , , )p t p p p p p t p p p p t p p p p         + +  , 

 

(47)  N2 = 1 12 1 2 1 2 2 22 1 2 1 2 2 1 2 1 2( , , , , ) ( , , , , ) ( , , , , )p t p p p p p t p p p p t p p p p         + +  , 

 

in which equations (39) and (40) imply that the functions 11, 12, 22, 1 and 2 are subject to the 

conditions: 

(48) 12

1p




 = 11

2p




, 

(49) 12

2p




 = 22

1p




, 

(50) 1

1p




 = 11 11 11

1 2

1 2

p p
t p p

    
 + +

  
, 

(51) 2

2p




 = 22 22 22

1 2

1 2

p p
t p p

    
 + +

  
, 

while from (41) and (42): 

 

(52)   
2 2 2 2

11 1 12 12 12
1 2

2 2 1 1 1 1 2 1

p p
p p p t p p p p p

        
 − + + +

            
 = 0 , 

 

(53)   
2 2 2 2

12 1 12 12 12
1 22

2 2 2 1 2 2 2

2 p p
p p t p p p p p

        
 − + + +

          
 = 22

1p




 , 

 

(54) 
2 2 2 2 2 2

1 1 1 12 12 12 12
1 2 1 22

2 2 2 1 2 2 1 2

p p p p
p p t p p p p t t p t p

            
   − − − + + +

              
 

 +
2 2 2 2 2 2

12 12 12 12 12 12
1 1 2 2 1 22 2

2 1 1 2 2 2 1 2

p p p p p p
p t p p p p t p p p

             
     + + + + +   

            
 = 2

1p




, 

 

along with the ones that emerge by switching the indices 1 and 2 in them. It will finally follow 

from (43) and (44) that: 

 

(55) 1 12 12 12
1 2

2 1 2

2 p p
p t p p

       
 − + + 

    
 = − 2

1p




. 

 If one now sets: 

(56) N1 = 
1

Q

p




, N2 = 

2

Q

p




+ f , 
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in analogy with the previous methods, and in which, from (46): 

 

(57)    Q = 1 11 1 2 12 1 1 1p dp p dp dp   + +   , 

then: 

− f = − N2 + 
2

Q

p




= − 11 12 1

1 12 1 2 22 1 2 1

2 2 2

p dp p dp dp
p p p

  
  

     
 − − − − +   

     
   , 

 

and due to the fact that: 

 

2 2

Q d Q

p dt p

 
−

  
 = − 12 1 12

1 12 2 1 1 1

2 2

p p dp dp dp
p p t

  


  
 − + −

     , 

 

as is easy to see, from (52) and (53), one will have: 

 

− f − 
2 2

d Q d Q

dt p dt p

  
− 

   
 

 

= − 2 + 1 12 12 12
1 1 1 2

2 1 2

dp p p p
p t p p

       
  + + + 

    
  +

2 2

12 12 12
2 1 1 2 12

2 1 2

p dp p p dp
p t p p

     
  + + 

    
   

 

− 
2 2

1 1 1
1 1 2 1

2 2 2 2

dp p p dp
p t p p p

    
 − −

        +
2 2

12 12 12
1 1 2 12

2

dp p p dp
t t t p

    
 + +

     , 

 

and one sees immediately that the right-hand side (so the left-hand side, as well) of that equation 

is independent of p1 and 2p . Namely, if one takes the partial differential quotient of the right-hand 

side with respect to p1 then that will be zero identically as a result of equation (54), while the 

differential quotient with respect to 2p  will vanish as a result of equations (51) and (53), and one 

will then get: 

(58)  f +
2 2

d Q d Q

dt p dt p

  
− 

   
 = 2 1( , , )t p p   . 

It is just as simple to see that: 

 

 
1 1

Q d Q

p dt p

 
−

  
  = 11 12 1

1 1 2 1 1

1 1 1

p dp p dp dp
p p p

    
 + +

        

 − 11 11 11 11 11
1 2 1 2 1

1 2 1 2

p p p p dp
t p p p p

         
   + + + + 

      
  , 

or from (48): 



32 The Principles of Mechanics 
 

1 1

Q d Q

p dt p

 
−

  
 = 1 11 11

2 1 1 11

1 2

p dp p
p p t

  


   
 − − − 

   
 , 

 

from which it will follow that when this expression is differentiated with respect to p1 by means 

of (50) and differentiated with respect to 2p  by means of (48) and (52), it will vanish, and 

therefore: 

(59) 
1 1

Q d Q

p dt p

 
−

  
 = 1 2 1( , , )t p p   

 

will depend upon only p2 and 1p , if one overlooks t. 

 Now, if one makes the convention that the variations  p1,  p2, 1p  , 2p   must vanish for t = 

t0 and t = t1 and forms the integral: 

 

 
1

0

1 1 2 2( )

t

t

N p N p dt +  = 
1

0

1 2 2

1 2

t

t

Q Q
p p f p dt

p p
  

  
+ + 

  
  

 = 
1 1

0 0

2 1 2 1 2

1 2 1 2

t t

t t

Q Q Q Q
Q dt f p p p p p dt

p p p p
     

    
   + − − − − 

       
   

 = 
1 1 1

0 0 0

2 2 1

2 2 1 1

t t t

t t t

Q d Q Q d Q
Qdt f p p dt p dt

p dt p p dt p
   

       
 + − − − −               

    

 

then from (58) and (59), that will go to: 

 
1

0

1 1 2 2( )

t

t

N p N p dt +   

= 
1 1 1 1

0 0 0 0

2 2 1 2 1 2 1 1

2 2

( , , ) ( , , )

t t t t

t t t t

d Q d Q
Qdt p dt t p p p dt t p p p dt

dt p dt p
     

   
   + − + −  

    
    , 

 

or when one uses the limit conditions that were established: 

 

(60)   
1

0

1 1 2 2( )

t

t

N p N p dt +  = 
1 1

0 0

2 1 1( )

t t

t t

Q dt p p dt     + −  . 

 

However, from (58), one has: 

 

1p




 = 

2 2 2 2

1 2 1 2 1 2 1 2 1

2
f d Q d Q Q Q

p dt p p dt p p p p p p

     
+ − − + 

               
, 
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and from (59): 

2p




 = 

2 2

1 2 1 2

Q d Q

p p dt p p

 
−

    
, 

and furthermore, from (56) and (43): 

 

1

f

p




 = 

2

2

1 2 1

N Q

p p p

 
−

   
 = 

2

2 1

1 2 2 1

2
N Nd Q

dt p p p p

  
− −

     
 = 

2 2 2

1 2 2 1 2 1

2
d Q Q Q

dt p p p p p p

  
− −

       
, 

 

from which, it will follow that: 

 

1 2p p

  
+

 
 = − 

2 2 2

2 1 1 2 1 2

d d Q Q Q

dt dt p p p p p p

   
− + 

          
 . 

 

 However, from (57): 

 
2 2 2

2 1 1 2 1 2

d Q Q Q

dt p p p p p p

  
− +

         
  

= 
2 2 2

12 11 11 1 12
1 1 1 2 1 1 1

1 1 2 1 2 1 2 2

d
dp p dp p dp dp dp

dt p p p p p p p p

        
 − − − +

                   

 

will vanish identically due to (48) and (52), so it will follow that: 

 

1p




 = 1

2

( )

p

 −


. 

Therefore: 
1

0

2 1 1( )

t

t

p p dt    −  = 
1

0

2 1( , , )

t

t

t p p dt  . 

Thus, when one sets: 

Q +  = R , 

equation (60) will go to: 

(61) 
1

0

1 1 2 2( )

t

t

N p N p dt +  = 
1

0

t

t

R dt  , 

in which one has: 

(62) R = 
1 1 1

0 0 0

1 11 1 2 12 1 1 1 2 1( , , )

t t t

t t t

p dp p dp dp t p p    + + +     . 

 

If one now determines a function 1 2 1 2( , , , , )F t p p p p   for which: 
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1

F

p




 = 11 1dp  and  

2

F

p




 = 12 1dp , 

 

which is possible because of the relation (48), and sets: 

 

(63) f1 = 
dF

dt
 = 

1 1

0 0

2 1 11 1 2 12 1

1 2

t t

t t

F F F
p p p dp p dp

t p p
 

  
   + + + +

     , 

then by means of Lemma 3: 

(64) 
1

0

1

t

t

f dt   = 0 . 

 

The difference of (61) and (64) will then yield: 

 

(65) 
1

0

1 1 2 2( )

t

t

N p N p dt +  = 
1

0

1( )

t

t

R f dt −  = 
1

0

t

t

M dt  , 

 

in which M depends upon only t, p1, p2, 1p , 2p  because of (62) and (63), and from (65), it will 

have the property that: 

N1 = 
1 1

M d M

p dt p

 
−

 
, N2 = 

2 2

M d M

p dt p

 
−

 
. 

 

The infinitude of different values for M again differ from each other by only functions that are 

complete differential quotients with respect to t of arbitrary functions of t, p1, and p2 . 

 The basic principle of the proof will also remain valid for the general theorem: 

 

 The necessary and sufficient conditions for  functions N1, N2, …, N of t, p1, p2, …, p , and 

their derivatives up to order 2 to be represented by one function M of t, p1, p2, …, p , and their 

derivatives up to order  in the form: 

 

  N = 
2

2 ( )
( 1)

M d M d M d M

p dt p dt p dt p




 

   

   
− + − + −

    
          ( = 1, 2, …, ) 

 

is given by the equations: 

 
2 2

2

1 2 2( ) ( 1) 2 ( 2) 2 (2 )
( 1) ( 2) ( 1) (2 )

N N N Nd d d

p dt p dt p dt p

 
    

      

   

  
−

−

−+ + −

   
− + + + − + −

   
 = 

( )
( 1)

dN

dp

 





− , 
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which must be fulfilled identically, and in which  assumes the values 0, 1, 2, …, 2, while  and 

 assume the values 1, 2, …,  (*). 

 

That method likewise gives the way by which one can exhibit the analytical expression for M. 

 That lemma, which will be exploited in full generality later, shall next be employed to 

specialize the expression for the measure of the force. 

 If we imitate what we did before in the mechanics of ponderable masses and impose the 

demand that for an arbitrary value of , the measure of the force that is represented by the 

expression: 

X = − 1

( )
( 1)

T d T d T

x dt x dt x




 

−  
+ − + −

  
, 

 

in which T means an arbitrary function t, x, x , …, ( )x  , must be independent of x, x , …, ( )x   

then it should next be remarked that for every function T, from Lemma 4, X will be subject to the 

condition that: 

 
 (*) For example, let: 

  N1 = 
2 2

2 2 1

3 2

2 1 1 2 1 26 2 9p p p p p p p p p     − + + , 

   N2 = −
2 2

2 1 1 1 21 2

2

1 2 2 3 4p p p p p p p p p      − − − − , 

 

which satisfy equations (37) to (45) identically. One will then have: 

 

11 = 
3

2 16 p p , 11 = − 1, 11 = −
2

1
2 p , 

1 = 
2 2

2 2 1

2

1 22 9p p p p p  + , 1 = − 
2 2

2 1 1 1 2
3 4p p p p p  − , 

and therefore: 

Q =
2 2

2 2 11

3 2 2

1 2 1 1 2 1 2 16 9p p p p p p p p p p p p      − + + , 

f = −
2

2 2 11 2 1 2

2 2 3

1 1 2 1 2 2 1 1(1 18 ) 2 3 4 18p p p p p p p p p p p p p p p       + − − − − , 

 

from which it will follow that: 

 = 
2 3

2 26 p p ,  = −
1

3 2

26 p p ,  = 
1

3 3

22 p p . 

Furthermore, since: 

F = −
3 2

1 2 1 1 2
3p p p p p  − , 

so 

f1 = 21 2 1 2 1 1 1 2 1

3 3 2 2 3

2 1 2 13 9 6p p p p p p p p p p p p p p       + + − − , 

R = 
2 2

2 2 11 2 1

3 2 2 3 3

1 2 1 1 2 1 2 16 9 2p p p p p p p p p p p p p p       − + + + , 

one will get M in the form: 

M =
1 21 1

2 2 3 3

2 2p p p p p p   − +  , 

so one will in fact have: 

N1 = 

1 1

M d M

p dt p

 
−

 
, N2 = 

2 2

M d M

p dt p

 
−

 
. 

 

 



36 The Principles of Mechanics 
 

(66)    
2 2

2

1 2 2 2( ) ( 1) 2 ( 2) 2 (2 )
(1 ( 1) ) ( 1) ( 2) ( 1) (2 )

X d X d X d X

x dt x dt x dt x

 
  

     
  

−
−

−+ + −

   
− − − + + + − + −

   
 = 0 

 

( = 1, 3, …, 2 – 1), 

which must be fulfilled identically. 

 Now let  be an odd number, and let X be independent of x, x , …, ( )x  , so equations (66), for 

 = 1, 3, 5, …, ,  + 2,  + 4, …, 2 − 3, 2 − 1, will go to: 

 
1 2 1

2 1( 1) 1 ( 2) 2 1 (2 )

2 1 2 1

2 1 2 32 ( 1) 1 ( 2) 2 1 (2 )

(1 ) (2 ) (2 ) 0,

(1 ) (2 ) (2 ) 0,

................................

(67)

d X d X d X

dt x dt x dt x

d X d X d X

dt x dt x dt x

  

       

  

       

  

  

+ −

−+ + + −

− − −

− − −− + − + −

  
+ − + + + =

  

  
+ − + + + =

  

2

1 2( 1) 2 ( 2) (2 )

2

1 2( 2) ( 3)

..........................................................................................

(1 ) (2 ) (2 ) 0,

2 ( 3) (2 )

d X d X d X

dt x dt x dt x

X d X d

x dt x dt



   



  

  

 

+ +

−

−+ + −

  
+ − + + + =

  

 
− + + −

  2 (2 )

4

1 4( 4) ( 5) 4 (2 )

1(2 3) (2 2)

0,

2 ( 5) (2 ) 0,

............................................................................................

2 (2 2) (2

X

x

X d X d X

x dt x dt x

X d X

x dt x





   

 

 

 

−

−+ + −

− −


=



  
− + + − =

  

 
− − + −

 

2 3

2 32 (2 1) 3 (2 )

1(2 3) (2 )

1) (2 ) 0,

2 (2 ) 0.

d X d X

dt x dt x

X d X

x dt x

 

 





−

−




















  − =
  


  − =
    

 

When one differentiates the successive equation 0, 2, 3, …,  – 1,  + 1,  + 3, …, 2 – 2 times 

with respect to t, one will get  homogeneous linear equations in the  quantities: 

 
2 1

2 1 (2 )

d X

dt x



 

−

−




,  

2 2

2 2 (2 1)

d X

dt x



 

−

− −




, …, 

( 1)

d X

dt x



  +




, 

 

with a non-zero determinant. Therefore, one will have: 

 
2 1

2 1 (2 )

d X

dt x



 

−

−




 = 0,  

2 2

2 2 (2 1)

d X

dt x



 

−

− −




 = 0, …, 

( 1)

d X

dt x



  +




 = 0, 

 

identically. If X does not contain the variable t explicitly, either, then it is immediately clear that it 

will follow that the quantities: 
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(2 )

X

x 




,  

(2 1)

X

x  −




, …, 

( 1)

X

x  +




 

 

are constants. Therefore, X will necessarily have the form: 

 

X = (2 ) (2 1) ( 1)

0 1 1A x A x A x A  

 

− +

−+ + + + , 

 

since X should not depend upon t, x, x , …, ( )x   explicitly. However, since the last ( – 1) / 2 

equations in (67) imply that: 

A1 = A3 = … = A−4 = A−2 = 0 , 

 

and since precisely the same argument is valid for even , we will find that: 

 

 The necessary and sufficient condition for the expression: 

 

X = − 1

( )
( 1)

T d T d T

x dt x dt x




 

−  
+ − + −

  
 

 

for the measure of the force that is exerted on a point that moves along the X-axis to be independent 

of t, x, x , x , …, ( )x   has the form: 

 

X = (2 ) (2 2) (2 4) 1

0 2 4 1A x A x A x A x   



− − +

−+ + + +   for odd , 

and 

X = (2 ) (2 2) (2 4) 2

0 2 4 2A x A x A x A x   



− − +

−+ + + +   for odd , 

 

for which T can correspondingly be chosen to be: 

 

 T = − 

2

2 2 2

11

( ) 1 ( 1) 2 ( 2) 21 2
0 2 4 12

( 1) ( 1) ( 1) ( 1)A x A x A x A x


     



+ +
 − − − −  

−

  
− + − + − + + − 

  

 

and 

 T = − 

2

2 2 2 11
( ) 1 ( 1) 2 ( 2) 21 2

0 2 4 12
( 1) ( 1) ( 1) ( 1)A x A x A x A x


     



 
++  − − − −  

−

  
− + − + − + + − 

  

, 

respectively. 

 

 When the function T is based upon either of the last two forms, we will call it the vis viva of 

the moving point. 

 

___________ 
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 Once the measure of the force has been found in the previously-established form, 

d’Alembert’s principle, as represented by equation (1) of § 1, will imply the relation: 

 

(1)  1

( )
1

( 1)
n

i

i i i i

T d T d T
x

x dt x dt x




 
−

=

   
− + − + − 

   
  

+ 1

( )
( 1) i

i i i

T d T d T
y

y dt y dt y




 
−   

− + − + − 
   

 

 + 1

( )
( 1) i

i i i

T d T d T
z

z dt z dt z




 
−

    
− + − + −  

     

 

= 
1

( )
n

i i i i i i

i

X x Y y Z z  
=

+ + , 

 

in which Xi, Yi, Zi mean the applied forces on the system, and one assumes that the restriction on 

the degrees of freedom of the systems is given by m equations that are linear and homogeneous in 

the virtual displacements and take the forms: 

 

(2)  

1 1 1

1

2 2 2

1

3 3 3

1

( ) 0,

( ) 0,

( ) 0,

n

i i i i i i

i

n

i i i i i i

i

n

i i i i i i

i

f x x x

f x x x

f x x x

    

    

    

=

=

=


+ + =




+ + =



+ + =








 

 

in which the functions fki , ki , ki should depend upon time and the coordinates, but not upon their 

derivatives, and whose integrability or non-integrability characterizes the holonomic or non-

holonomic systems, resp. From a well-known argument, multiplying equations (2) by the quantities 

1, 2, …, m and adding them to (1) will yield the Lagrange equations of motion in their first 

form: 
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(3) 

1

1 1 2 2( )

1

1 1 2 2( )

1

1 1 2 2( )

( 1) ,

( 1) ,

( 1)

i i i m mi

i i i

i i i m mi

i i i

i i i m mi

i i i

T d T d T
X f f f

x dt x dt x

T d T d T
Y

y dt y dt y

T d T d T
Z

z dt z dt z




 




 




 

  

     

     

−

−

−

   
− + − + − = + + + +

  
   

− + − + − = + + + +
  

   
 − + − + − = + + + +

  

(i = 1, 2, …, n). 

 

 We will now say that a force system possesses a force function of order  when a function U 

of t, the coordinates xi, yi, zi, and the derivatives with respect to time up to order  exists such that 

Xi, Yi, Zi are defined by the expressions: 

 

Xi = 
( )

( 1)
i i i

U d U d U

x dt x dt x




 

  
− + + −

  
, 

Yi = 
( )

( 1)
i i i

U d U d U

y dt y dt y




 

  
− + + −

  
, 

Zi = 
( )

( 1)
i i i

U d U d U

z dt z dt z




 

  
− + + −

  
. 

 

Those forces will then be referred to as internal forces. From Lemma 4, the necessary and 

sufficient conditions for Xi, Yi, Zi, which are functions of time, the coordinates, and their derivatives 

up to order 2, and when xi, yi, zi are denoted by p1, p2, …, p3n, while Xi, Yi, Zi are denoted by N1, 

N2, …, N3n, are represented by the equations: 

 
2 2

2

1 2 2( ) ( 1) 2 ( 2) 2 (2 )
( 1) ( 2) ( 1) (2 )

N N N Nd d d

p dt p dt p dt p

 
    

      

   

  
−

−

−+ + −

   
− + + + − + −

   
 = 

( )
( 1)

N

p

 






−


, 

 

which must be satisfied identically, in which ,  assume the values 1, 2, …, 3n, and  assumes 

the values 1, 2, …, 2. Thus, if the force R that acts between two points is a function of the distance 

between them and the derivatives with respect to time up to order 2 then, under the assumption 

that the force can be decomposed along the three components with use of formula (10) in § 2, we 

will get the following theorem: 

 

 If a system of forces R acts upon the n points of a system that depends upon the distance r 

from point  to point  and their derivatives with respect to time up to order 2, and if the 

equations: 
2 2

2

1 2( ) ( 1) 2 ( 2) 2 (2 )
(1 ( 1) ) ( 1) ( 2) ( 1)

R R R Rd d d

r dt r dt r dt r

 
     

    

   

 
−

−

+ + −

   
− − − + + + − + −

   
 = 0 
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( = 1, 3, …, 2 – 1) 

 

are satisfied identically, moreover, then the force system will possess a force function of order , 

and indeed, when W means a function of r and the derivatives of those quantities with respect 

to t up to order  that satisfies the equations: 

 

R = 
(2 )

( 1)
W W Wd d

r dt r dt r


  

 

  

  
− + + −

  
, 

it will be represented by: 

 

W12 + W13 + … + W1n + W23 + … + W2n + … + Wn−1,n  . 

 

 Thus, if the force that acts between two electric mass-points is given by Weber’s law as: 

 

R = − 
2

1 1 1

2 2 2 2 2

2mm mm mmr
r

r r k k r


+ −  

then since the condition: 

R d R

r dt r

 
−

  
 = 0 

 

is fulfilled identically, it will have a force function, and indeed, it will take the form: 

 

W = 
2

1

2 2
1

m m r

r k

 
+ 

 
 , 

such that: 

R = 
W d W

r dt r

 
−

 
. 

 

 Therefore, the forces on the systems whose motion is defined by equations (1) or (3) will 

consist of internal and external forces. If we denote the components of the external forces along 

the axes by Qi, Ri, Si then if we set: 

 

(4)  − T – U = H , 

 

those equations of motion will assume the form: 

 

(5)    
( )

1

( 1)
n

i i

i i i i

H d H d H
Q x

x dt x dt x




 


=

   
− + + − − 

   
  
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+ 
( )

( 1) i i

i i i

H d H d H
R y

y dt y dt y




 


   
− + + − − 

   
 

  + 
( )

( 1) i i

i i i

H d H d H
S z

z dt z dt z




 


    
− + + − −  

     

= 0 , 

or 

(6)  

1 1( )

1 1( )

1 1( )

( 1) ,

( 1) ,

( 1) ,

i i m mi

i i i

i i m mi

i i i

i i m mi

i i i

H d H d H
Q f f

x dt x dt x

H d H d H
R

y dt y dt y

H d H d H
S

z dt z dt z




 




 




 

 

   

   

   
− + + − = + + +

  
   

− + + − = + + +
  

   
 − + + − = + + +

  

 

 

in which the function H of t, xi, yi, zi, ix , iy , iz , …, ( )

ix  , ( )

iy  , ( )

iz   that is defined by equation (4) 

shall be called the kinetic potential of order . 

 Equations (6) represent a system of 3n total differential equations of order 2, in which we 

assume that the external forces are either purely functions of time or functions of time, the 

coordinates, and their derivatives, but not the ones of order greater than 2. Now, if the system is 

holonomic, so the equations will be complete variations of the equations: 

 

(7)   
1 1 1 1

1 1 1

( , , , , , , , , , ) 0,

( , , , , , , , , , ) 0,

n n n

m n n n

F t x x y y z z

F t x x y y z z

=

=
 

 

relative to the coordinates, then the 3n + m quantities: 

 

x1 , …, xn , y1 , …, yn , z1 , …, zn , 1 , …, m 

 

can be obtained from the 3n + m equations (6) and (7) by integrating the differential equations as 

functions of time t and 6 m arbitrary constants. However, if the system is not holonomic, but 

arranged such that time t does not occur in the condition equations (2) explicitly, then one can also 

replace the virtual displacements with actual ones, and one will then get m differential equations 

of the form: 

(8)     

1 1 1

1

2 2 2

1

1

( ) 0,

( ) 0,

( ) 0,

n

i i i i i i

i

n

i i i i i i

i

n

mi i mi i mi i

i

f x y z

f x y z

f x y z

 

 

 

=

=

=


  + + =




  + + =



  + + =







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in addition to the 3n differential equations (6) that are given by Lagrange’s equations, such that 

the coordinates will, in turn, be given in terms of time by integrating the 3n + m differential 

equations (6) and (8). However, if t occurs in the condition equations of the non-holonomic system 

then the treatment of the problem will have to be adapted to the constraints in each individual 

problem. 

 If a point it attracted to the origin as the center according to Weber’s law then, from (6), if W 

is the Weber force function, and the vis viva is set equal to: 

 

T = 2 2 21
2

( )m x y z  + + , 

 

the differential equations of motion will be represented by the equations: 

 
2

2

d x
m

dt
 = 

W d W

x dt x

 
−

 
, 

2

2

d y
m

dt
 = 

W d W

y dt y

 
−

 
, 

2

2

d z
m

dt
 = 

W d W

z dt z

 
−

 
. 

 

__________ 
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 If the system is holonomic, so the 3n coordinates xi, yi, zi are given functions of  mutually-

independent quantities p1, p2, …, p, which will be called the free coordinates, then d’Alembert’s 

principle, in the form that given by (3) of § 1, will also imply the  Lagrange equations of motion 

in the second form: 

 

(1)  − 1

( )
( 1)

s s s

T d T d T

p dt p dt p




 

−  
+ + + −

  
 = 

1

n
i i i

i i i

i s s s

x y z
X Y Z

p p p=

   
+ + 

   
  (s = 1, 2, …, ) 

 

for this case, as well, or in turn, by separating the internal and external forces: 

 

(2)  
( )

( 1)
s s s

H d H d H

p dt p dt p




 

  
− + + −

  
 = Ps     (s = 1, 2, …, ) 

 

when one sets: 

(3)     
1

n
i i i

i i i

i s s s

x y z
Q R S

p p p=

   
+ + 

   
  = Ps . 

 

Those equations are implied immediately by (5) in § 4 by means of Lemma 2, and their integration 

will yield the free coordinates p1, p2, …, p as functions of t and 2  arbitrary coordinates. 

 In what follows, we shall assume that the equations of motion take the form of (6) in § 4 or (2) 

above without assuming that H is separated into the two summands – T and – U, on the basis of 

things that we shall go into in detail about later on. 

 

 

_____________ 
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 If one forms the integral: 
1

0
1

t

t

H P p dt


 
=

 
− 

 
  

 

and assumes that the external forces P are given as functions of time, but independent of the 

coordinates, during the arbitrary, but well-defined, time interval from t0 to t1, and one further 

assumes that H is finite for all values of the coordinates that come under consideration and their 

derivatives during that time period, along with all of its partial differential quotients with respect 

to just those quantities up to order  + 1, then under the assumption that all  ps , sp  , …, ( 1)

sp  −  

vanish for t = t0 and t = t1, one will have: 

 

(1)  
1

0
1

t

t

H P p dt


 



=

 
− 

 
  = 

1

0

( )
1

( 1)

t

s s

s s s st

H d H d H
P p dt

p dt p dt p




 


=

   
− + + − − 

   
 . 

 

Since the variations  ps are mutually independent, it will follow that the relation: 

 

(2)  
1

0
1

t

t

H P p dt


 



=

 
− 

 
  = 0 

 

implies equations (2) of § 5, and conversely that: 

 

 The Hamiltonian principle that is represented by equation (2) is therefore equivalent to the 

second form of the Lagrange equations. 

 

 By means of the assumption that was made about the variations for t0 and t1, when the quantities 

p in them are expressed as functions of time by integrating the equations of motion, and the 

integration constants in them are expressed in terms of the initial and final coordinates and their 

derivatives of order one up to  – 1, one compares them to infinitely-close functions of time that 

assume the same values for t0 and t1, along with their first  – 1 derivatives. In that way, the 

transition time for the system to go from its initial configuration to its final one will be given, and 

it will be the same for all systems that one compares it to. 

 If the external forces are all zero then Hamilton’s principle will go to: 

 

(3)  
1

0

t

t

H dt   = 0 , 
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and that will say that: 

 

 The mean values of the kinetic potential that are calculated over equal time intervals under 

normal motion between given initial and final configurations (which is defined by the same values 

of the coordinates and their first  – 1 derivatives) will be a limiting value. 

 

One then sees immediately, in turn, the identity of Hamilton’s principle (3) with d’Alembert’s 

principle from the relation: 

 

1

0

t

t

H dt   = 
1

0

( )
1

( 1)

t n

i

i i i it

H d H d H
x

x dt x dt x




 


=

   
− + + − 

   
  

 +
( )

( 1) i

i i i

H d H d H
y

y dt y dt y




 


   
− + + − 

   
 

 +
( )

( 1) i

i i i

H d H d H
z dt

z dt z dt z




 


    
− + + −  

     

. 

 

Therefore, it is also equivalent to the first form of the Lagrange equations, whereas when the 

external forces do not vanish, but are, in turn, purely functions of time, that identity will require 

that Hamilton’s principle must take the form: 

 
1

0
1

( )

t

i i i i i i

t

H x Q y R z S dt





=

 
− + + 

 
  = 0 . 

 

Therefore, it will remain valid for holonomic and non-holonomic systems, but, as will usually be 

assumed in the following investigation, it will initially be assumed that the derivatives of the 

coordinates with respect to time will enter into the constraint equations of the problem. However, 

if the latter is the case then the constraint equations will read: 

 

(4) 
( ) ( ) ( )

1

( ) ( ) ( )

( , , , , , , , , , , ) 0,

( , , , , , , , , , , ) 0

i i i i i i i i i

m i i i i i i i i i

F t x y z x y z x y z

F t x y z x y z x y z

  

  

   =

   =
 

 

(in which case, we would also like to call the system a holonomic one). The variations of the 

coordinates and their derivatives for every t will then be subject to the m constraint equations: 

 

(5)    
1

n
r r r

i i i

i i i i

F F F
x y z

x y z
  

=

  
+ +

  
  

 + r r r
i i i

i i i

F F F
x y z

x y z
  

  
  + + +

    
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 + ( ) ( ) ( )

( ) ( ) ( )

r r r
i i i

i i i

F F F
x y y

x y z

  

  
  

  
+ + 

   
 = 0 

 

(r = 1, 2, …, m), 

 

from which, since those relations should be fulfilled for the entire course of the motion during the 

time interval t1 – t0 that one employs in Hamilton’s principle and under the assumption that was 

made for the validity of Hamilton’s principle, namely, that the variations of the coordinates and 

their derivatives up to order  – 1 must vanish at the limits t0 and t1 , one will get: 

 

1

0

( )
1

( 1)

t n
r r r

i

i i i it

F F Fd d
x

x dt x dt x




 


=

   
− + + − + 

   
  

 + 
( )

( 1)r r r
i

i i i

F F Fd d
z dt

z dt z dt z




 


    
− + + −  

     

 = 0 

(r = 1, 2, …, m). 

 

Therefore, the following relations will exist for the variations of the coordinates themselves, which 

are homogeneous and linear in them: 

 

(6) 
( )

1

( 1)
n

r r r
i

i i i i

F F Fd d
x

x dt x dt x




 


=

   
− + + − 

   
  

 + 
( )

( 1)r r r
i

i i i

F F Fd d
y

y dt y dt y




 


   
− + + − 

   
 

 + 
( )

( 1)r r r
i

i i i

F F Fd d
z

z dt z dt z




 


    
− + + −  

     

 = 0 

 

(r = 1, 2, …, m). 

 

When one again endows those m constraint equations with multipliers 1, …, m and adds them to 

equation (4) in § 4, which expresses d’Alembert’s principle, that will give the 3n differential 

equations: 
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(7) 

( ) ( )
1

( ) ( )
1

( 1) ( 1) ,

( 1) ( 1) ,

m
r r r

i r

ri i i i i i

m
r r r

i r

ri i i i i i

i

F F FH d H d H d d
Q

x dt x dt x x dt x dt x

F F FH d H d H d d
R

y dt y dt y y dt y dt y

H d H

z dt z

 
 

   

 
 

   





=

=

     
− + + − = + − + + − 

       

     
− + + − = + − + + − 

       

 
−

 





( ) ( )
1

( 1) ( 1) .
m

r r r
i r

ri i i i i

F F Fd H d d
S

dt z z dt z dt z

 
 

   


=










    + + − = + − + + − 
     



 

 

In conjunction with the differential equations (4), they will produce a simultaneous system of 3n 

+ m differential equations in the 3n + m functions xi, yi, zi, r (
*). 

 However, if the system of constraint equations that also contains the derivatives of the 

coordinates is non-holonomic, so it might have the form: 

 

 
 (*) Therefore, let a constraint equation between, e.g., two coordinates x, y, and their first derivatives be given in 

the form: 

()  
2

2 ( 1) (2 1) 0,y x x x y x − − − − =  

 

such that the relation between the variations will read: 

 
2

[2 (2 1) 2 ] (2 1) (2 1) 2( 1) 0.y x x y x x x y y x x x x y      − − − − − − − − − =  

 

Upon integrating that between the limits t0 and t1, and under the assumption that the variations of the coordinates x 

and y vanish at the limits t0 and t1, that will then go to: 

 

1

0

0(3 (2 1) ( 6 2) )
t

t

dty x x x x y  =  − + − + , 

 

which will therefore produce the relation between the variations of the coordinates: 

 

(2 1) (2 1) 0,y x x x x y  − − − =  

or by means of (): 

 

() 
2

(2 1) 2 ( 1) 0.y x x x x y − − − − =  

 

However, if one remarks that the general integral of the differential equation () is represented by: 

 

() 
2 2

1 ,x x c y− − =  

 

from which the relation between the variations will yield: 

 

() (2x – 1)  x = 2 c y  y , 

 

then eliminating c from () and () will, in turn, lead to the relation (). 
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(8)    

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 0

( ) ( ) ( ) ( ) ( ) ( )

1 0

0 ,

0 ,

n

i i i i i i

i

n

mi i mi i mi i

i

f x y z

f x y z


     




     



    

    

= =

= =

+ + =

+ + =




 

 

then once more by integrating between the limits t0 and t1, reducing to the variations  xi ,  yi ,  zi 

with the help of m Lagrange multipliers 1, …, m, and adding them to d’Alembert’s principle, 

that will next produce the system of differential equations: 

 

(9)  

(1) 2 (1) ( )
(0)

( ) 2
1

(1) 2 (1) ( )
(0)

( ) 2
1

( 1) ( 1) ,

( 1) ( 1)

m
ri ri ri

i r ri

ri i i

m
ri ri ri

i r ri

ri i i

df d f d fH d H d H
Q f

x dt x dt x dt dt dt

d d dH d H d H
R

y dt y dt y dt dt dt

 
 

  

 
 

  



  
 

=

=

   
− + + − = + − + + + − 

    

   
− + + − = + − + + + −

    





(1) 2 (1) ( )
(0)

( ) 2
1

,

( 1) ( 1) .
m

ri ri ri
i r ri

ri i i

d d dH d H d H
S

z dt z dt z dt dt dt

 
 

  

  
 

=






 

    
 − + + − = + − + + + − 

    


 

 

 Now, if the constraint equations (8) once more do not include t explicitly then they will produce 

m differential equations between the coordinates, and together with the 3n differential equations 

(9), they will define a system of simultaneous differential equations for determining xi, yi, zi, 1, 

…, m as functions of time. However, for the case in which equations (8) are not free of t, the 

method for treating the problem must again be adapted to the demands of the problem. 

 However, one can also put the extended Hamilton principle into a more general form. Namely, 

if one replaces the quantities ( )k

sp  with psk in the function H and thus regards H as a function of: 

 

t, p1, p2, …, p , p11, p21, …, p 1, …, p1, p2 , …, p , 

 

then the variation will be: 

 

1

0

( )

1 2

1 1 2

( ) ( ) ( )

t

t

H H H
H P p p p p p p p dt

p p p




       
   


=

     
 − + − + − + + −  

     
  

 

= 
1

0

2 2 2
( )

1 1

1 1 1 11 2

( ) ( ) ( )

t

s s

s s s s st

H H H H
P p p p p p p p

p p p p p p p

   


     
    

 
= = = =

    
 − − − − − − − − 

       
     

 + 
( )

1 2

s s s

s s s

H H H
p p p

p p p





  
  

 + + +
  

 

 − 
2 2 2

( )

1 1 1

1 1 1 2 1 1

( ) ( ) ( ) s

s s s

H H H
p p p p p p p

p p p p p p




     
   


=

    
 − + − + + −  

       
  

 − …………………………………………………………………………………………. 
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 − 
2 2 2

( )

1 1

1 1 2

( ) ( ) ( ) s

s s s

H H H
p p p p p p p dt

p p p p p p




      
      


=

     
 − + − + + −   

         
 . 

 

When one makes the convention that only the variations: 

 

 ps , sp  , …, ( 1)

sp  −  

 

should vanish for t = t0 and t = t1, it will then follow that the equation: 

 

(10)  
1

0

( )

1 2

1 1 2

( ) ( ) ( )

t

t

H H H
H P p p p p p p p dt

p p p




       
   


=

     
 − + − + − + + −  

     
  = 0 

 

is equivalent to the relations: 

 

(11)   
1

( 1) s

s s s

H d H d H
P

p dt p dt p








  
− + + − −

  
 

−
2 2

( )

1

1 11

( ) ( )
s s

H H
p p p p

p p p p

 


   
  = =

 
− − − −

   
  = 0 , 

 

(12) 

2 2 2
( )

1 2

1 1 1 2 1 1

( ) ( ) ( ) 0,

....................................................................................................................

s s s

H H H
p p p p p p

p p p p p p




     
   =

   
    − + − + + − = 

      


2 2 2
( )

1 2

1 1 2

.........

( ) ( ) ( ) 0
s s s

H H H
p p p p p p

p p p p p p




     
      =








        − + − + + − = 
       



 

 

for s = 1, 2, …, . Now, if the determinant of the second differential quotients: 

 
2H

p p  



 
, 

 

in which  and  assume the values 1, 2, …, , while  and  assume the values 1, 2, …, , is not 

identically zero then equations (12) will imply that: 

 

pr = ( )rp
 

 

for all values of  and r from the sequence of numbers 1, 2, …,  (1, 2, …, , resp.), and equations 

(11) will once more go to the Lagrange equations then, so: 
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 Under the given conditions, the generalized Hamilton principle (10) is equivalent to the 

second form of the Lagrange equations. 

 

_____________ 



§ 7. – The extended principle of the conservation of vis viva 
 

 

 If we once more start with the equation: 

 

( )
( 1)

s s s

H d H d H

p dt p dt p




 

  
− + + −

  
 = Ps 

 

then when we multiply it by sp  and sum over s from 1 to , that will give: 

 

(1)   
( )

1 1 1

( 1)s s s

s s ss s s

H d H d H
p p p

p dt p dt p

  


 
= = =

  
  − + + −

  
    = 

1

s s

s

P p


=

  . 

 

If we assume that t does not enter into H explicitly, such that: 

 

(2)  
dH

dt
 = ( 1)

( )
1 1 1

( 1)s s s

s s ss s s

H H H
p p p

p p p

  
 



+

= = =

  
 + + + −

  
   , 

 

then it will follow upon substituting the expression for 
1

s

s s

H
p

p



=





  from (1) in (2) that: 

2
( 1)

2 ( ) ( )
1 1 1

( 1)s s s s s s

s s ss s s s s s

dH d H H d H H d H H
p p p p p p

dt dt p p dt p p dt p p

  
 

  

+

= = =

          
    − + + − + + − −     

             
    

 = 
1

s s

s

P p


=

  

or 

 
1 2

1 ( ) 2 ( )
1 1 1

( 1)s s s s s

s s ss s s s s

dH d H d d H H d d H d H
p p p p p

dt dt p dt dt p p dt dt p dt p

   


   

− −

− −
= = =

      
    − + − + + − − +  

        
    

 − ( )

( )
( 1) s

s

H
p

p

 




− 

 
 = 

1

s s

s

P p


=

 . 

 

Finally, upon integrating over t: 

 
1 2

1 ( ) 2 ( )
1 1 1

( 1)s s s s s

s s ss s s s s

H d H H d H d H
H p p p p p

p dt p p dt p dt p

   


   

− −

− −
= = =

      
    − + − + + − − +  

        
    

 − ( )

( )
( 1) s

s

H
p

p

 




− 

 
 = 

1

s s

s

P p dt h


=

 +  , 
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in which h means a constant, or: 

 

(3)    
1

1

1 ( )
1

( 1)s

s s s s

H d H d H
H p

p dt p dt p




 

−
−

−
=

   
− − + + − 

    
  

 − 
2

2

2 ( )
1

( 1)s

s s s s

H d H d H
p

p dt p dt p




 

−
−

−
=

   
 − + + − 

    
  

 − ……………………………………………… 

 − ( )

( )
1

s

s s

H
p

p





=




  = 

1

s s

s

P p dt h


=

 + , 

 

which expresses the principle of conservation of vis viva. 

 If one sets: 

(4)    
1

1

1 ( )
1

( 1)s

s s s s

H d H d H
H p

p dt p dt p




 

−
−

−
=

   
− − + + − 

    
  

 − 
2

2

2 ( )
1

( 1)s

s s s s

H d H d H
p

p dt p dt p




 

−
−

−
=

   
 − + + − 

    
  

 − ……………………………………………… 

 − ( )

( )
1

s

s s

H
p

p





=




  = E , 

 

in which E, when expressed in terms of the coordinates and their derivatives with respect to time 

up to 2 – 1, shall be called the energy supply of the system then it will follow from (3) that: 

 

dE

dt
 = 

1

s s

s

P p


=

 . 

 

Therefore, the energy supply of the system will continually decrease or increase in measure 

according to whether the forces Ps do negative or positive work, resp., such that when external 

forces are zero, one will have: 

E = h , 

i.e., the energy will be constant. 

 

 If H depends upon only the coordinates and their first derivatives then equation (3) will go to: 

 

1

s

s s

H
H p

p



=


−


  = 

1

s s

s

P p dt h


=

 +  , 

 

and if H is an entire function of degree m in the sp  that reads: 
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H = H0 + H1 + H2 + … + Hm 

 

when it is arranged into homogeneous functions whose degree is given by the index then one will 

get: 

H0 – H2 – 2 H3 – 3 H4 – … − (m – 1) Hm = 
1

s s

s

P p dt h


=

 + . 

 

If all external forces Ps are zero then the principle of the conservation of vis viva will assume the 

form: 

H0 – H2 – 2 H3 – 3 H4 – … − (m – 1) Hm = h . 

 If: 

H = − T – U , 

 

and the force function U, which depends upon the coordinates and their first derivatives, has degree 

only two in its derivatives, and in addition, the vis viva T is a homogeneous function of degree two 

in the first derivatives (which is always the case when the constraint conditions are independent of 

time) then if U is represented in the form: 

 

U = U0 + U1 + U2 , 

 

the energy principle can be expressed by the equation: 

 

T − U0 + U2 = h . 

 

Therefore, for the Weber force function, which satisfies the condition that was imposed, it will go 

to: 

T − W0 + W2 = h , 

in which: 

W0 = 1mm

r
, W2 = 

21

2

m m
r

k r
 . 

 

 Under the assumption that H does not include time explicitly, the principle of the conservation 

of vis viva can be derived from the Lagrange equations in their second form, so the former is a 

necessary consequence of those equations for holonomic systems. 

 In order to exhibit the law of conservation of energy for non-holonomic systems, as well, under 

the assumption that H does not include time t explicitly, we multiply equations (6) of § 4 by ix , 

iy , iz , in succession, and add all of those equations. Under the assumption that the functions fki, 

ki, ki do not include time explicitly, the actual displacements will also become virtual ones, so 

equations (2) of § 4 will be satisfied when the increments are set to dxi, dyi, dzi, instead of  xi,  

yi,  zi,  and the relation will then give: 
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( )

1

( 1)
n

i

i i i i

H d H d H
x

x dt x dt x




 
=

   
 − + + − 

   
  

+ 
( )

1

( 1)
n

i

i i i i

H d H d H
y

y dt y dt y




 
=

   
 − + + − 

   
  

+ 
( )

1

( 1)
n

i

i i i i

H d H d H
z

z dt z dt z




 
=

   
 − + + − 

   
  

= 
1

( )
n

i i i i i i

i

x Q y R z S
=

  + + . 

 

Therefore, in analogy with the transformation that was performed on (1), when: 

 

 
1

n

i

i i i

H d H
H x

x dt x=

  
− − + 

   
  

− 
1

n

i

i i i

H d H
y

y dt y=

  
 − + 

   
  

− 
1

n

i

i i i

H d H
z

z dt z=

  
 − + 

   
  

− 
1

n

i

i i i

H d H
x

x dt x=

  
 − + 

   
  

− ………………………… 

 − ( ) ( ) ( )

( ) ( ) ( )
1 1 1

n n n

i i i

i i ii i i

H H H
x y z

x y z

  

  
= = =

  
− −

  
    = E , 

 

in which E once more means the energy supply that was referred to above, one will have: 

 

dE

dt
 = 

1

( )
n

i i i i i i

i

x Q y R z S
=

  + +  . 

 

 If H is once more decomposed into its components, so one sets: 

 

H = − T – U , 

then: 

− ( )

( )
1 1 1

s s s

s s ss s s s

T d T T T
T p p p

p dt p p p

  



= = =

      
 + − + + − + +   

        
    = Ea 

 

shall be called the actual energy, and: 
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− ( )

( )
1 1 1

s s s

s s ss s s s

U d U U U
U p p p

p dt p p p

  



= = =

      
 + − + + − + +   

        
    = Ep 

 

shall be called the potential energy. When no external forces are present, one will then have: 

 

Ea + Ep = E = h , 

 

so the sum of the actual and potential energy will be constant. 

 If the force system has a force function, so one is dealing with the problem of a kinetic 

potential, then from Lemma 4, we know that infinitely-many kinetic potentials will exist, but they 

will all differ by functions that are complete differential quotients with respect to t of a function of 

the coordinates and their derivatives up to order  – 1. If one now denotes the energy values that 

belong to two such values H1 and H2 of the kinetic potential by E1 and E2, resp., then from (4), one 

will have: 

E1 = ( )1 1 1 1
1 ( )

1 1 1

s s s

s s ss s s s

H H H Hd
H p p p

p dt p p p

  



= = =

      
 − − + − − − −   

        
   , 

 

E2 = ( )2 2 2 2
2 ( )

1 1 1

s s s

s s ss s s s

H H H Hd
H p p p

p dt p p p

  



= = =

      
 − − + − − − −   

        
   . 

When one sets: 

H1 – H2 = K , 

 

and subtracts those two equations, one will get: 

 

E1 – E2 = ( )

( )
1 1 1

s s s

s s ss s s s

K d K K K
K p p p

p dt p p p

  



= = =

      
 − − + − − − −   

        
   . 

 

Therefore, since H1 and H2 (so K, as well) cannot include time t explicitly if the energy principle 

is to be valid, one will have: 

 

1 2( )d E E

dt

−
 = ( 1)

( )
1 1 1

s s s

s s ss s s

K K K
p p p

p p p

  




+

= = =

  
 + + +

  
    

 − 
1

s

s s s

K d K
p

p dt p



=

  
 − + 

   
  

 − 
2

2
1

s

s s s

d K d K
p

dt p dt p



=

  
 − + 

   
  

 − ……………………………… 

 = 
2

2 ( )
1

( 1)s

s s s s s

K d K d K d K
p

p dt p dt p dt p




 
=

    
 − + + − + − 

     
  . 
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However, since K must be a complete differential quotient of a function of t, the coordinates, and 

their derivatives up to order  − 1, from Lemma 3, the parentheses on the right-hand side will 

vanish identically for every value of s, and therefore one will have: 

 

1 2( )d E E

dt

−
 = 0  or E1 – E2 = c , 

 

in which c means a constant, which can also be inferred immediately from the energy principle. 

 

 All of the problems that belong to the same kinetic potential will the differ by differential 

quotients of a function of time, the coordinates, and their derivatives up to order  – 1, and when 

the kinetic potential is free of time, the infinitude of associated energy values will be constants 

when they are regarded as functions of the coordinates and their derivatives. 

 

 Whereas it should be clear from (4) that the energy supply of the system will be determined 

uniquely when the kinetic potential H is given as a function of p1, …, p , 1p , …, p
 , …, ( )

1p  , 

…, ( )p 

 , and indeed as a function of the coordinates and their derivatives up to order 2 – 1, one 

also has that conversely when E is given, the kinetic potential will be the solution to a partial 

differential equation, and in addition, it will be subject to the condition that it should include the 

derivatives of the coordinates only up to order . However, one can already see from this that the 

energy supply of a system cannot be given as an arbitrary function of the coordinates and their 

derivatives but must be determined by the fact that some conditions that are easy to exhibit must 

be satisfied, from the foregoing. 

 Namely, if one sets: 
2

2 ( )
( 1)

s s s s

H d H d H d H

p dt p dt p dt p




 

   
− + + − + −

    
= Ks 

 

then it will follow with the help of the transformation that was applied to equation (1) that: 

 

(5)     
1

s s

s

K p


=

  = 
dE

dt
. 

 

Therefore, one will get the necessary and sufficient conditions for Ks from the necessary and 

sufficient conditions that were developed in Lemma 4 for the quantities Nk to be representable in 

terms of a quantity M in the manner that was given there when one exchanges Nk with Ks and M 

with H. One can then derive the conditions on E that must be fulfilled identically by eliminating 

Ks from them and (5). If we assume, e.g., that there is only one variable p and that  = 1 then the 

only condition equation that will exist will read: 

 

K d K

p dt p

 
−

  
 = 0 . 
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Eliminating K from that equation and (5) with the use of the formulas in Lemma 1 will yield an 

identity. The expression for the energy supply, which depends upon the one coordinate and its first 

derivative, is then subject to no other condition than that it must always be finite in the course of 

motion, and furthermore, since: 

E

p




 = −

2

2

H
p

p





 , 

 

under the assumption that the values 
H

p




 and 

2

2

H

p




 will always remain finite for the values that 

come into question, we must have: 

0p

E

p
=

 
 

 
 = 0 . 

 

Similarly, for  = 1 and an arbitrary number of variables, E can be given as a function of p1, …, 

p, 1p , …, p
  that is constrained by the same restrictions and is arbitrary, moreover. In that case, 

the determination of the kinetic potential by means of (4) will lead to the linear partial differential 

equation: 

1 2

1 2

H H H
p p p

p p p




  
  + + +

    
 = H – E , 

 

whose general integral will produce the value for the kinetic potential: 

 

H = − 32
1 1 12

1 1 1 1

( )
, , ,

pppE
p dp p

p p p p




 
  +  

    
  , 

 
in which (E) means the expression for energy that was given above when one sets: 

 

2p  = 2 1p  , 3p  = 3 1p  , …, p
  = 

1p   

 

in it. After the integration, one once more substitutes the quotients of the p  for the quantities , 

while  means an arbitrary function, and the quadrature that appears in the expression H will be 

finite as a result of the assumption that was made. When one recalls the single-valuedness, finitude, 

and continuity of the kinetic potential, H can be put into the form: 

 

H = − 1 1 1 1 2 22

1

( )E
p dp A p A p A p

p
 

   + + + +
  , 
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in which A1, …, A are arbitrary functions of the p1, …, p . That will then determine the energy 

supply of a system for  = 1 when its kinetic potential is a general linear function in the first 

derivatives of the coordinates, which we will come back to later. 

 For  = 1 and  = 2, from Lemma 4, the necessary and sufficient conditions for K read: 

 
2 3

2 3 IV

K d K d K d K

p dt p dt p dt p

   
− + −

     
 = 0 , 

2
IV

K d K

p dt p

 
−

 
 = 0 . 

 

It is easy to see that eliminating K from (5) and those two equations will produce only one 

necessary and sufficient condition equation that must be satisfied identically by the energy supply 

E that depends upon p and p : 

2
E E d E

p p p
p p dt p

  
  + −

    
 = 0 , 

 

since the substitution of K in the first of the two equations will lead to an identity due to the 

condition on E that was found above, or when one sets: 

 

E = 2

1p E , 

one will get: 

1 1E Ed

p dt p

 
−

  
 = 0 . 

 

Similarly, the conditions that the energy supply must be subject to when its coordinate derivatives 

go up to only order 2 – 1 will follow for every value of  from the necessary and sufficient 

conditions for K that were exhibited above when it includes the derivatives of the coordinates up 

to order 2. 

 Finally, in order to examine the energy principle in the case where time t does not enter 

explicitly into the kinetic potential H or the constraint equations, but the latter includes the 

coordinates and their derivatives up to order , so they are given by: 

 
( ) ( ) ( )

1 ( , , , , , , , , , )i i i i i i i i iF x y z x y z x y z     = 0 , …, ( ) ( ) ( )( , , , , , , , , , )m i i i i i i i i iF x y z x y z x y z     = 0 , 

 

one starts from the equations of motion that were described above: 

 

 

( )
( 1)

i i s

H d H d H

x dt x dt x




 

  
− + + −

  
 = 

( )
1

( 1)
m

r r r
i r

r i i s

F F Fd d
Q

x dt x dt x




 


=

   
+ − + + − 

   
  , 
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( )
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i i s

H d H d H

y dt y dt y




 

  
− + + −

  
 = 

( )
1

( 1)
m

r r r
i r

r i i s

F F Fd d
R

y dt y dt y




 


=

   
+ − + + − 

   
  , 

 

( )
( 1)

i i s

H d H d H

z dt z dt y




 

  
− + + −

  
 = 

( )
1

( 1)
m

r r r
i r

r i i s

F F Fd d
R

z dt z dt z




 


=

   
+ − + + − 

   
  , 

 

multiplies them by ix , iy , iz , and takes the sum over i from 1 to n. Now, since the coefficients 

of the  have precisely the form of the left-hand sides of the equations of motion, according to the 

previous development, when one recalls that Fk = 0 and sets: 

 

−
1 1

1 1

1 ( ) 1 ( )
1 1

( 1) ( 1)
n n

r r r r r r
i i

i ii i i i i i

F F F F F Fd d d d
x z

x dt x dt x z dt z dt z

 
 

   

− −
− −

− −
= =

        
 − + + − − − − + + −   

           
   

 

 −
1 1

n n
r r r r

i i

i ii i i i

F F F Fd d
x z

x dt x z dt z= =

      
 − + − − − +   

         
   

 − ……………………………………………………….. 

− ( ) ( ) ( )

( ) ( ) ( )
1 1 1

n n n
r r r

i i i

i i ii i i

F F F
x y z

x y z

  

  
= = =

  
− −

  
    = Ek , 

 

one will get the relation: 

 

dE

dt
 = 1

1

1

( )
n

m
i i i i i i m

i

dd
Q x R y S z

dt dt
 

=

  + + + + +
EE

, 

 

or when the external forces are zero: 

 

dE

dt
 = 1

1
m

m

dd

dt dt
 + +

EE
. 

 

 Now, since E = h will prove to be independent of the values of  when: 

 

1d

dt

E
 = 0 , 2d

dt

E
 = 0 , …, md

dt

E
 = 0 , 

it will then follow that: 

 

 When the equations of constraint are free of t, but depend upon the coordinates and their 

derivatives up to an arbitrary order, the principle of the conservation of vis viva will be valid when 

the quantities E1, E2, …, Em that were defined above go to constants because of the equations of 

constraint and their differential quotients with respect to t. 
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 Thus, for  = 1, the series of constraint equations: 

 

1 ( , , , , , )i i i i i iF x y z x y z   = 0 , …, ( , , , , , )m i i i i i iF x y z x y z    = 0 

 

will require that in order for the energy principle to be valid, those equations must make the 

expressions: 

1

n
k k k

i i i

i i i i

F F F
x y z

x y z=

   
  + + 

     
  

 

into constants, which will be the case when, e.g., the equations of constraint represent 

homogeneous function relative to ix , iy , iz . 

 If the equations of constraint are free of t and given as linear homogeneous equations in the 

variations of the coordinates and their derivatives, so for non-holonomic systems, in the form: 

 

 
(1) (1) (1)

1

{
n

ki i ki i ki i ki i ki i ki i

i

f x y z f x y z         
=

  + + + + + +  

+ ( ) ( ) ( ) ( ) ( ) ( )}ki i ki i ki if x y z         + + = 0  

 

(k = 1, 2, …, m), 

 

in which the coefficients of the variations mean given functions of the coordinates and their 

derivatives up to order , then the actual variations will once more become virtual ones. Therefore, 

those conditions will go to the differential equations: 

 

 
(1) (1) (1)

1

{
n

i ki i ki i ki i ki i ki i ki

i

x f y z x f y z   
=

     + + + + + +  

+ ( 1) ( ) ( 1) ( ) ( 1) ( )}i ki i ki i kix f y z      + + ++ + = 0  

 

(k = 1, 2, …, m), 

 

which will now enter in place of the previous constraint equations Fk = 0 . 

 

___________ 
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 If one forms the expression: 

 

(1) M = 

2

( )
1

( 1)
n

i i

i i i i

H d H d H
A Q

x dt x dt x




 
=

    
− + + − −  

    
  

 + 

2

( )
( 1)i i

i i i

H d H d H
B R

y dt y dt y




 

   
− + + − − 

   
 

+ 

2

( )
( 1)i i

i i i

H d H d H
C S

z dt z dt z




 

    
− + + − −  

    

, 

 

in which Ai, Bi, Ci shall be arbitrary functions of t, the coordinates, and their derivatives up to order 

2 – 1, while the Qi, Ri, Si depend upon those same quantities in a given way, and one seeks the 

minimum of M when one considers that quantity to be a function of the (2 )

ix  , (2 )

iy  , (2 )

iz  , while 

fixing xi, yi, zi, ix , iy , iz , …, (2 1)

ix  − , (2 1)

iy  − , (2 1)

iz  −  then that will give the necessary condition 

that: 

 

(2)  1
2

M  = 
( )

1 1

( 1) ( 1)
n n

i i

r i i i i

H d H d H
A Q

x dt x dt x
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 
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
 

 
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   
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 +
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
 

 
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 = 0 , 

 

since (2 )

ix  , (2 )

iy  , (2 )

iz   occur only in the terms: 

 

( )

i

d H

dt x



 




, 

( )

i

d H

dt y



 




, 

( )

i

d H

dt z



 




. 
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Indeed, they are endowed with the coefficients: 

  
2

( ) ( )

i r

H

x x 



 
, 

2

( ) ( )

i r

H

x y 



 
, 

2
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i r

H

x z 



 
, 

2

( ) ( )

i r

H

y x 



 
, …, 

2

( ) ( )

i r

H

z x 



 
, … 

 

 Now, if that equation is to go to the equations of motion (5) in § 4 then one would need to 

have: 

(3)     
2

( ) ( )

i r

H

x x 



 
 = 

2

( ) ( )

i r

H
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
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 = 

2
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i r

H

z z 



 
 = 0 

 

when i is different from r, and furthermore that: 
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2

( ) ( )

i r

H

x y 


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2

( ) ( )

i r

H

x z 


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2

( ) ( )

i r

H

y z 



 
 = 0 

 

when i and r are either equal or unequal, and finally that: 

 

Ai = 
2

( )2

1
( 1)

i

H

x





− 




, Bi = 
2

( )2

1
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i

H
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
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



, Ci = 
2

( )2

1
( 1)

i

H

z





− 




. 

 

In order for the expression: 
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2
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i i i i
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H d H d H
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 + 
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i
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y

 
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 + 

2
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( )2

( 1)
( 1) i
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i
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z

 
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to be a minimum, the following relation must be true: 

 

1
2

M  = (2 )

1

n
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H d H
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§ 8. – The extension of Gauss’s principle of least constraint. 63 
 

 + (2 )

i i

i i

H d H
S z

z dt z


   

− + −  
    

 = 0 , 

 

which agrees with the equations of motion that were referred to above, since when one fixes the 

values of xi, yi, zi, and their derivatives up to order 2 – 1, the variations (2 )

ix  , (2 )

iy  , (2 )

iz   will 

likewise satisfy the equations of motion (2) in § 4, and can therefore be considered to be virtual 

displacements. However, in order to see whether the expression M does, in fact, experience a 

maximum or minimum, one forms: 

 

21
2

M  = 2 (2 )

1

n

i i

i i i

H d H
Q x

x dt x
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=
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 + 2 (2 )
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+ ( ) ( ) ( )
2 2 2

2 2 2
2 (2 ) 2 (2 ) 2 (2 )

( )2 ( )2 ( )2
1

( 1) ( 1) ( 1)
n

i i i

i i i i

H H H
x y z

x y z
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   
 , 

 

under the assumption that equations (3) and (4) are true. That will then imply that when  M = 0, 

so during the course of the motion: 

 

()   
2

( )2
( 1)

i

H

x






−


, 

2

( )2
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
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−
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2

( )2
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i

H

z
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
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−


 

 

will always be positive quantities. One will then have that 
2M  > 0 and M is positive, and when 

those quantities are negative, one will have that 
2M  < 0, but M is negative, so the absolute value 

of M will always experience a minimum. It will then follow that: 

 

 The absolute value of the expression M in equation (5) will assume a minimum value over all 

values of (2 )

ix  , (2 )

iy  , (2 )

iz   with fixed values of xi, yi, zi, ix , iy , iz , …, (2 1)

ix  − , (2 1)

iy  − , (2 1)

iz  −  that 

satisfy the Lagrange equations of motion when the kinetic potential satisfies the conditions (3) and 

(4) (which would be the case when it were an entire function of ( )

ix  , ( )

iy  , ( )

iz   in which only 

powers of the individual quantities appeared, but not products of them), and the quantities () 

always keep the same common sign during the course of motion. Among those conditions, one will 

then find the equivalence of the principle of least constraint with the extended d’Alembert 

principle, so with Lagrange’s equations in the first form. 

 

 For  = 1, when the actual energy is separated from the potential energy in the kinetic potential: 
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H = − ( )2 2 21
2

1

n

i i i i

i

m x y z U
=

  + + − , 

 

in which U depends upon only the coordinates, so the conditions (3) and (4) are satisfied, and the 

quantities () all assume the value mi, such that in the mechanics of ponderable masses, the positive 

expression: 

M = 

2 2 2

1

1n

i i i i i i i i i

i i i i i

U U U
m x Q m y R m z S

m x y z=
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  

 

will assume a minimum for those values of that are defined by d’Alembert’s principle: 

 

1

n

i i i i i i i i i i i i

i i i i

U U U
m x Q x m y R y m z S z
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  

=
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  = 0 

 

when the values of xi, yi, zi, ix , iy , iz  are preserved for all value systems being compared. 

 If the kinetic potential is once more given as a function of the  free coordinates p1, p2, …, p, 

and one forms: 

M = 

2
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1

( 1) s

s s s s

H d H d H
P

p dt p dt p




 
=
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then it will become immediately obvious that the Lagrange equations in their second form will 

assign the value zero to the positive quantity M . 

 

 If the kinetic potential that is exerted upon a moving point with the origin as its center is: 

 

H = − T + 
( )( , , , , )W r r r r   , 

 

in which the vis viva T is defined in complete generality, as in § 3 by: 
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for odd , and: 

T = − 
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−
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for even , then from (2) in § 2, one will have: 
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and therefore: 
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 Now, should the conditions that are expressed by equations (4) be fulfilled, so one would need 

to have 2
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W
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
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and since the quantities () would then assume the constant value A0, in this case, Gauss’s 

principle of least constraint would exist for: 
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for a free or constrained point. 

 

 Since the kinetic potential in Weber’s law has degree two relative to r , the extended Gauss 

principle of least constraint will not be valid under the conditions that were imposed for Weber’s 

law when the attracted point is subject to constraints. 

 

____________
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 Under the assumption that the kinetic potential H can also include time t explicitly, when the 

initial and final values of the coordinates can vary, along with their derivatives up to order  – 1, 

as well as the time duration for the comparison motion, a known formula from the calculus of 

variations will imply the relation: 
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When one lets the variations of the coordinates and their derivatives up to order  – 1 vanish and 

sets  t =  t0 = 0, so the comparison motions will again require the same time duration, for the 

case in which the Lagrange equations: 
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are fulfilled, one will once more get: 
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Under the assumption that the external forces Ps are functions of only time, but not the coordinates, 

one will once more get the previous form of Hamilton’s principle: 
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 If one uses the expression (4) of § 7 for the energy supply E to put equation (1) into the form: 
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then for the functions p1, p2, …, p of t that correspond to the actual motion, so they fulfill equations 

that take the form: 
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(in other words, when H does not include time t explicitly), from the energy principle, one will 

have the equation: 

E = 
1

s s

s

h P p dt

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+    , 

 

in which h is a constant during the normal motion. Equation (2) will then go to: 
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 If we consider the variation: 
1

0

t

t

E dt   

 

under the assumption that the energy principle is valid for not only the normal motion, but also for 

the motions that it is compared to, then the variation of time must not be drawn into consideration 

on the basis of that fact, because that would demand the preservation of not merely the principle 

of energy, but also the constant of the energy as a result, and for that reason, when the arbitrariness 
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of the variation of the coordinates is also supposed to remain true, due to the appearance of a new 

equation between those variations, we must appeal to the variation of time, such that the time 

duration will not be the same for the normal and comparison motions, as it is in Hamilton’s 

principle, but different. 

 Now, if one regards all quantities as functions of a non-varying quantity u, in the known way, 

then when one sets dt / du = t , one will get: 
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or from the energy principle: 
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However, since: 

 

( )
0

u

s s

u

P p dt t du    = ( )
0

0

u
t

s s s s
t

u

d
P p dt t P p dt t du

du
     −

     = 
0

0

t
t

s s s s
t

t

P p dt t P p t dt    − 
   , 

 

one will get: 
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If one subtracts that equation from (3) then that will give: 

 

(4) 

0

( )

t

t

H E dt −  = − 

0 0
1

t t

s s

st t

E dt P p dt


 
=

 +    

+ 

00 0

( 1)

( )
1 1 1

t t t

s s s

s s ss s s s s tt t

H d H H d H H
p p p

p dt p p dt p p

  



   −

= = =

            
− + + − + + +        

               
   , 

 

and that equation represents the principle of least action. 

 

 Should those coordinates and the derivatives of those quantities up to order  – 1 remain the 

same for t0 and t under the normal and comparison motion, then the principle of least action would 

go to: 
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When no external forces are present, so the energy principle is represented by E = h for the normal 

motion, but the comparison motions, in turn, satisfy the energy principle, but with a different 

energy constant, by assumption, it will go to: 
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H E dt −  = − (t – t0) dh . 

 

 Finally, if one establishes that the energy constant should be the same for the normal and 

comparison motions, so  h = 0 (which is permissible, since we also vary the time duration), then 

the principle of least action, in its simplest form, will imply that: 
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in which, here, as well as in the previous equation, one understands H – E to mean the expression 

in the coordinates and their derivatives that was defined above: 
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and one regards the equation: 

E = h 

as the constraint equation for the variations. 

 

 For the mechanics of ponderable masses, one has from the definition of E that: 
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since: 

H = − T – U , 

 

in which: 
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T = 
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i i
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when vi means the velocity of the thi  point. For holonomic constraints that do not include time t 

explicitly, that will be a homogeneous function of degree two in 1p , 2p , …, p
  with coefficients 

that are functions of p1, p2, …, p , like U, and one will then have: 
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when di means the path element of the thi  point. The principle of least action (4) can then be 

represented by the equation: 

 

(5) 

0
1

t n

i i i

it

m v d 
=

  = 

0 0 0
1 1

tt t

s s s

s s st t t

T
E dt P p dt p

p

 

  
= =

 
− +  

 
   , 

which will go to: 
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when the external forces are all zero. If we now establish that the coordinates of the system suffer 

no variations at the beginning t0 of the motion and the arbitrarily-chosen end time t, and the 

variation of h vanishes, moreover (which is, as is immediately obvious, identical to saying that the 

comparison motions possess the same vis viva as the normal one at the beginning t0) then the 

Lagrange equations will be equivalent to the principle of least action that is expressed by the 

equation: 

(6)  

0
1

t n

i i i

it

m v d 
=

 = 0 . 

 

However, if we drop the assumption that the external forces all vanish then, according to equation 

(5), under the assumption that the coordinates suffer no variations at the beginning and end, that 

the energy supply of the system can change from the normal motion to the comparison motions, 

moreover, and that its measure will decrease or increase according to whether the forces Ps do 

negative or positive work under the displacement ps. Then the principle of least action will, in 

turn, be represented by equation (5), since time does not need to be varied, due to the change in 

energy supply with time. 

 However, it is still essential for us to explain how the variation that is included in the principle 

of least action: 
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under which the time t is also varied, due to the conservation of the energy constant, must be 

carried out in order to lead to the Lagrange equations, which are equivalent to that principle. 

Indeed, that is again indicated by the Weber force function: 
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as was shown above, such that equation (7) will go to: 
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The variation is performed in such a way that vis viva constant does not change, so the constraint 

equation will exist: 
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 It we regard all variables as functions of one variable u and set: 

 

x = x1 ,      y = y1 ,      z = z1 ,      
dx

du
 = 1x ,      

dy

du
 = 1y ,      

dz

du
 = 1z ,      r = r1 ,      

dr

du
 = 1r  

 

then when we set: 

(10)   1mm

r
+ h = M , 

2
2 2 2 11

2 2
( )

m m r
m x y z

r k


  + + +  = N , 

 

the two equations (8) and (9) will go to: 
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and 
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Eliminating dt from (11) and (12) will produce the variation that must now be performed: 
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 Now since the known transformation of the calculus of variations will make that equation 
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one will have the following three equations: 

 

(15)    

1 1

1 1

1 1

0,

0,

0,

M N M Nd

x du x

M N M Nd

y du y

M N M Nd

z du z

  
− =

 


 
− =

 
  
 − =

 

 

since the point is free. 

 However, equations (10) will imply the expressions: 
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or with the help of (12): 
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1

M N

x




 = 21 1 1

2 3 2 2 3

3 2

2

N mm mm mm
x r x r x

k r k r rM

 
  − + − 

 
, 

 
1

M N

x




 = 1

2 2

21

2

m m
m x x r

k r

 
 + 

 
. 

Since: 

1

M Nd

du x




 = 

1

M Ndt d

du dt x




 = 

1

N M Nd

dt xM




, 

 

the first of equations (15) will go to: 

 

m x  = − 
21 1 1

3 2 3 2 2

2m m m m m m
x x r x r

r k r k r
 + − , 

 

and those three equations will assume the necessary form of the Lagrange equations of motion: 

 

 m x  = 
W d W x

r dt r r

  
− 

  
 , 

 m y  = 
W d W y

r dt r r

  
− 

  
 , 

 m z  = 
W d W z

r dt r r

  
− 

  
 . 

 

__________ 
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 If one starts from the Lagrange equations of motion in the first form and assumes, e.g., that 

the ones that belong to the x and y coordinates are: 

 

(1)   
1 1( )

( 1) i i m mi

i i i

H d H d H
Q f f

x dt x dt x




 
 

  
− + + − − − − −

  
 = 0 , 

 

(2)   
1 1( )

( 1) i i m mi

i i i

H d H d H
Q

y dt y dt y




 
   

  
− + + − − − − −

  
 = 0 , 

 

multiplies them by yi and xi, resp., and subtracts them from each other then it will follow that: 

 

(3)  
( ) ( )

( 1)i i i i i i

i i i i i i

H H d H d H d H d H
x y x y x y

y x dt y dt x dt y dt x

 


   

        
− − − + + − −   

         
 

− 1 1 1( ) ( ) ( )i i i i i i i i m i mi i mix R y Q x y f x y f   − − − − − −  = 0 . 

 

 However, one now has: 

 

(4)  
( ) ( )

r r

i ir r r r

i i

d H d H
x y

dt y dt x

 
−

 
 

 

  = 
1 1 2 2

1 ( ) 1 ( ) 2 ( ) 2 ( )

r r r r

i i i ir r r r r r r r

i i i i

d d H d H d H d H
x y x y

dt dt y dt x dt y dt x

− − − −

− − − −

      
 − − − +   

      

 

  + 1 ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( )
( 1) ( 1)r r r r r r

i i i ir r r r

i i i i

H H H H
x y x y

y x y x

− − −
      

− − + − −   
      

 

 

  = 1 ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( )
1

( 1) ( 1)
r rr

r r r

i i i ir r r r r r

i i i i

d d H d H H H
x y x y

dt dt y dt x y x

 
  

 


− −
− − −

− −
=

      
− − + − −   

      
  , 

 

and equation (3) will then go to: 

 

(5)  1 ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( )
1 1 0

( 1) ( 1)
r rr

r r r

i i i ir r r r r r
r ri i i i

d d H d H H H
x y x y

dt dt y dt x y x

  
  

 


− −
− − −

− −
= = =

      
− − − + −   

      
    

− 1 1 1( ) ( ) ( )i i i i i i i i m i mi i mix R y Q x y f x y f   − − − − − −  = 0 . 
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Finally, when one sums over i from 1 to n and further assumes that: 

 

(6)     ( ) ( )

( ) ( )
1 0

n
r r

i ir r
i r i i

H H
x y

y x



= =

  
− 

  
  = 0 , 

 

(7)      
1

( )
n

i i i i

i

x R y Q
=

−  = 0 , 

 

(8)      
1

( )
n

i i i i

i

x y f 
=

−  = 0   ( = 1, 2, …, m) 

 

upon integrating over t, one will get the principle of areas: 

 

(9)  1 ( 1) ( 1)

( ) ( )
1 0 1

( 1) ( 1)
r rn r

r

i ir r r r
i r i i

d H d H
x y

dt y dt x

 
  

 


− −
− − −

− −
= = =

  
− − − 

  
   = c , 

 

in which c is a constant, and the left-hand side of that equation is a differential expression of order 

2 – 1. 

 For  = 1 and H = − T – U, that equation will go to: 

 

1

( )
n

i i i i i

i

m x y y x
=

 −  = c , 

 

and the geometric interpretation of that equation is what gives the principle its name. 

 However, the form of H that is required by equation (6) is easy to find, since that partial 

differential equation leads to the total differential equation: 

 

 
( )

1

( )

1

r

r

dy

x
= … = 

( )

( )

r

n

r

n

dy

x
= − 

( )

( )

r

n

r

n

dx

y
= … = − 

( )

( )

r

n

r

n

dx

y
 

= 
( )

1

( )

1

s

s

dy

x
= … = 

( )

( )

s

n

s

n

dy

x
= − 

( )

( )

s

n

s

n

dx

y
= … = − 

( )

( )

s

n

s

n

dx

y
, 

 

whose integral functions can be represented by: 

 
( ) 2 ( ) 2( ) ( )r r

i ix y+ , 
1 1

( ) ( ) ( ) ( )r r r r

i i i ix x y y+ , ( ) ( ) ( ) ( )r s r s

i i i ix x y y+  

 

(i = 1, 2, …, n ;   r, s = 0, 1, 2, …, ), 
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such that all of the forms for the kinetic potential that satisfy the principle of areas for the x and y 

coordinates are represented by: 

 

(10) H = 
1 1

( ) 2 ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(( ) ( ) , , , )r r r r r r r s r s

i i i i i i i i i iF x y x x y y x x y y t+ + +  

 

(i = 1, 2, …, n ;  r, s = 0, 1, 2, …, ) . 

We then find that: 

 

 For a kinetic potential of the form (10), the principle of the conservation of areas is given in 

the form that is represented in equation (9) when equations (7) and (8) are valid identically. 

 

 Since the kinetic potential of Weber’s law is given by the expression: 

 

H = − 
2

2 2 2 11
2 2 2 2 22 2 2

( )
( ) 1

( )

mm x x y y z z
m x y z

k x y zx y z

   + +
  + + − + 

+ ++ +  
 , 

 

the law of areas that was defined above will then be true for the three coordinate planes. 

 In order to derive the principle of areas for the second form of Lagrange’s equations, one must 

multiply: 

( )
( 1)

H d H d H

p dt p dt p




 

  

  
− + + −

  
 = P , 

  
( )

( 1)
H d H d H

p dt p dt p




 

  

  
− + + −

  
 = P 

 

by p (p, resp.) and subtract them from each other, which will give: 

 

( ) ( )
( 1)

H H d H d H d H d H
p p p p p p

p p dt p dt p dt p dt p

 


        

     

        
− − − + + − −   

         
 

 

= p P – p P , 

 

or, in turn, when one applies the relation (4) that was developed above, when the expression for 

the kinetic potential satisfies the equation: 

 

( ) ( )

( ) ( )
, 1,2, , 0s

H H
p p

p p


 

  
    = =

  
− 

  
   = 0  

 

identically, and the external forces are subject to the condition that: 
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, 1,2, ,

( )p P p P   
  =

−  = 0 , 

 

in which the sums over  and  extend over all different combinations of values for the numbers 

1, 2, …, , one will get the principle of areas in the form: 

 

1 ( 1) ( 1)

( ) ( )
, 1,2, , 1 1

( 1) ( 1)
s ss

s

s s s s
s

d H d H
p p

dt p dt p

 
  

  
     

− −
− − −

− −
= = =

  
− − − 

  
    = c . 

 

 If one multiplies equations (1) and (2), in which the index i should be replaced with , by ( )y 


 

and ( )x 


, resp., subtracts them from each other, and remarks that: 

 

( ) ( )

( ) ( )

r r

r s r r

d H d H
x y

dt p dt p

 

 

 

 
−

 
 

 

 = 
1 1 2 2

( ) ( ) ( 1) ( 1)

1 ( ) 1 ( ) 2 ( ) 2 ( )

r r r r

r r r r r r r r

d d H d H d H d H
x y x y

dt dt y dt x dt y dt x

   

   

   

− − − −
+ +

− − − −

      
− − − +   

      

 

+ 1 ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( )
( 1) ( 1)r r r r r r

r r r r

H H H H
x y x y

y x y x

   

   

   

− + − + − + +
      

− − + − −   
      

 

 

 = 1 ( 1) ( 1) 2 ( ) ( )

( ) ( ) ( ) ( )
1

( 1) ( 1)
r rr

r r

r r r r r r

d d H d H H H
x y x y

dt dt y dt x y x

 
      

    
    

− −
− + − + − + +

− −
=

      
− − + − −   

      
  

 

then that will give: 

 

(11)   1 ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( )
1 1 0

( 1) ( 1)
r rr

r r r

r r r r r r
r r

d d H d H H H
x y x y

dt dt y dt x y x

  
      

    
    

− −
− + − + − + +

− −
= = =

      
− − − + −   

      
    

 

− ( ) ( ) ( ) ( ) ( ) ( )

1 1 1( ) ( ) ( )m m mx R y Q x y f x y f     

              − − − − − −  = 0 . 

 

If one now sums over  from 1 to n and once more makes the assumption that: 

 

  
( ) ( )

1

( )
n

x R y Q 

   
 =

− = 0 , 

  
( ) ( )

1

( )
n

s sx y f 

   



=

− = 0  (s = 1, 2, …, ), 
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such that the functions s and fs must vanish since they should not include the derivatives of the 

coordinates, then under the assumption that the second term in the equation (11), thus-converted, 

will be a complete differential quotient with respect to t, or that: 

 

(12) ( ) ( )

( ) ( )
1 0

n
r r

r r
r

H H
x y

y x


 

 
  

+ +

= =

  
− 

  
  

 

= ( 1) ( 1) ( 1)( , , , , , , , , , , , , )s s s s s s s s s

d
F t x x x y y y z z z

dt

    + − + − −   , 

 

that will give an integral equation of the form: 

 

(13) 1 ( 1) ( 1)

( ) ( )
1 1 1

( 1) ( 1)
r rn r

r

r r r r
r

d H d H
x y

dt y dt x

 
    

  
   

− −
− + − + −

− −
= = =

  
− − − 

  
   

 

+ ( 1) ( 1) ( 1)( , , , , , , , , , )s s s s s sF t x x y y z z    + − + − −  = C , 

 

in which   . That can then be regarded as a further generalization of the principle of areas. 

 We can next ignore the case of  = 0, since equation (12) would require an identity of the form: 

 

( ) ( )

( ) ( )
1 0

n
r r

r r
r

H H
x y

y x



 
  = =

  
− 

  
  

= ( 1) ( 1) ( 1)( , , , , , , , , , , , , )s s s s s s s s s

d
F t x x x y y y z z z

dt

  − − −    

  = ( )

( 1)
1 1 1

n n nF F F F
x x y

t x x y



  
    

−
= = =

   
 + + + + +

   
    

 

In the mechanics of ponderable masses, so for  = 1, when one sets: 

 

H = − 
2 2 21

2

1

( )
n

m x y z U   
 =

  + + − , 

that will go to: 

− 
1

n H H
x y

y x
 

  =

  
− 

  
  = 

1 1 1

n n nF F F F
x y z

t x y z
  

    = = =

   
  + + +

   
    . 

 

Therefore, it cannot be satisfied identically when F is not a constant, such that this equation will 

go to the previous condition equation (6). If we would then like to look for an extension of the 

principle of areas that was developed above that could also produce integrals for the mechanics of 

ponderable masses then we would have to set   1. 
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 For  = 1, the question would arise of when equation (12) could be satisfied identically, as a 

result of the relation: 

( 1) ( 1)

( ) ( )
1 0

n
r r

r r
r

H H
x y

y x



 
  

+ +

= =

  
− 

  
  

= ( ) ( ) ( 1)( , , , , , , , , , , , , )s s s s s s s s s

d
F t x x x y y y z z z

dt

   −    

or 

(14)  ( 1) ( 1)

( ) ( )
1

n H H H H H H
x y x y x y

y x y x y x

 

      
      

+ +

=

            
   − + − + + −      

             
  

 

= ( 1)

( )
1

nF F F F
x x x

t x x x



  
   

+

=

   
 + + + +

   
  

 + ( 1)

( )
1

n F F F
y y y

y y y



  
   

+

=

  
 + + +

  
  

 + ( )

( 1)

F F F
z z z

z z z



  

  

−

  
 + + + 

   
. 

 

 Since H includes the derivatives of the coordinates only up to order , (14) can be fulfilled 

identically only when: 

  
( )

F

x 






 = 

( )

H

y 






 and 

( )

F

y 






 = − 

( )

H

x 






. 

 

So F is then the real part of a function of ( ) ( )x i y 

 + , and H is the imaginary part, without the i, 

and F must subject to the further condition that it must satisfy equation (14), once the terms that 

are linear in ( 1)x 



+  and ( 1)y 



+  are dropped from both sides of them. In order to satisfy that equation, 

it is obviously sufficient that one has: 

 

(15) 
( )r

F

x




 = 

( )r

H

y




 and 

( )r

F

y




 = − 

( )r

H

x




 

and 

(16)   ( )

( 1)
1

nF F F F
z z z

t z z z



  
   

−
=

    
 + + + + 

    
  = 0 , 

 

in general, for r = 0, 1, 2, …,  and  = 1, 2, …, n. However, since F includes the derivatives of z 

only up to order  – 1, equation (16) demands that one must have 
( 1)

F

z 



−




= 0, and then once more, 
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( 2)

F

z 



−




= … = 

F

z




 = 

F

t




 = 0 , so F must be independent of t, z , z

 , …, ( 1)z 



− . Therefore, from 

equations (15), the same thing must be true of the partial differential quotients of H with respect 

to the x, y, and their derivatives, such that under the assumption that the sufficient conditions 

(15) are verified (which will, in turn, be satisfied by functions of complex variables), that will yield 

the following forms for F and H : 

 

F =  ( ) ( )1
( , , , )

2
f x i y x i y x i y 

     
 + + +  

 + ( ) ( )( , , , )f x i y x i y x i y 

     
 − − − , 

 

(17) H =  ( ) ( )1
( , , , )

2
f x i y x i y x i y

i

 

     
 + + +  

  − ( ) ( )( , , , )f x i y x i y x i y 

     
 − − −  

+ ( )

1( , , , , )f t z z z 

  
 , 

 

in which f and f1 mean arbitrary real functions of their arguments. 

 

 For the form of the kinetic potential that is represented by (17), the extension of the principle 

of areas is given by the equation (*): 

 
 (*) Thus, if one has, e.g.: 

 

H = 
2 2

1 1 2 2 3 3 2 2

1
{( ) ( ) ( )( )

2
x i y x i y x i y x i y

i
     + + − + + − 

2 2

1 1 2 2 3 3 2 2
( ) ( ) ( )( ) }x i y x i y x i y x i y     − − + − −  

+ 
2 2 3

1 2 3 1 2
t z z z z z   +  

= 
2 2 2 2 2 2 3

1 1 2 1 1 2 3 2 2 3 2 2 1 2 3 1 2
( ) 2 ( ) 2x y y x y x y x y x x y t z z z z z           − + − − + + + , 

so one sets: 

F = 
2 2

1 1 2 2 3 3 2 2

1
{( ) ( ) ( )( )

2
x i y x i y x i y x i y     + + − + + + 

2 2

1 1 2 2 3 3 2 2
( ) ( ) ( )( ) }x i y x i y x i y x i y     − − + − −  

= 
2 2 2 2

1 1 2 1 1 2 3 2 2 3 2 2
( ) 2 ( ) 2x y x x y y x x y y x y       − + − − + , 

 

then, as one can see immediately, the equation: 
 

3 2
( 1) ( 1)

( ) ( )
0 0

r r

r r
r

H H dF
x y

y x dt
 

  

+ +

= =

  
− = 

  
  

 

will be satisfied identically, and the integral equation (18) will then read: 
 

  
2 2 3 2 3 2 2 3 2 3 3 2 2 2 3

2 ( ) 2 ( ) 2 ( )x y y x x y x y y x y x y y x              − + + + −  

+ 
2 2

3 2 2 3 2 3 2 2 3 2 2
2 ( ) 2 ( ) 4x y y x x x x y y x y          − + − − + 

2 1 1 1 1 2 1 1 1 1
2 ( ) 2 ( )x x x y y y x y y x     − − +  = C . 
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(18) 1 ( ) ( )

( ) ( )
1 1 1

( 1) ( 1)
r rn r

r

r r r r
r

d H d H
x y F

dt y dt x

 
  

  
   

− −
−

− −
= = =

  
− − − + 

  
  = C . 

 

 One can investigate the conditions for the kinetic potential when one assumes that  = 2, 3, …, 

 similarly. It is easy to see that the first form that was found (9) for the principle of areas cannot 

be included in the integral equations (13) that were just presented. 

 

__________ 



§ 11. – The extended principle of the conservation of the motion  

of the center of mass 
 

 

 Assume that when the constraint conditions of the problem are given in finite form, they shall 

depend upon only the difference of coordinates of the same type, so: 

 

 x1 =  x2 = … =  xn = p ,   y1 =  y2 = … =  yn = q ,  z1 =  z2 = … =  zn = r , 

 

in which p, q, r mean arbitrary quantities, so they can be considered to be virtual displacements, 

or that one has: 

  
1

n

ki

i

f
=

  = 0 , 
1

n

ki

i


=

  = 0 , 
1

n

ki

i


=

  = 0 (k = 1, 2, …, m) 

 

in the Lagrange equations in the first form. Equations (6) of § 4 will then emerge from the 

relations: 

(1)  

( )
1 1 1 1

( )
1 1 1 1

( )
1 1 1 1

( 1) ,

( 1) ,

( 1) .

n n n n

i

i i i ii i i

n n n n

i

i i i ii i i

n n n n

i

i i i ii i i

H d H d H
Q

x dt x dt x

H d H d H
R

y dt y dt y

H d H d H
S

z dt z dt z




 




 




 

= = = =

= = = =

= = = =

   
− + + − =

  
   

− + + − =
  

   
 − + + − =

  

   

   

   

 

 

 Now let H1 be an arbitrary function of t, ,  , …, 
( ) , ,  , …, 

( ) , ,   , …, 
( ) , in 

which , ,  shall initially be functions of x1, …, xh ; y1, …, yh ; z1, …, zh that are still arbitrary. It 

will then follow from the equation in Lemma 2 that: 

 

1 1 1

( )
( 1)

i i i

H H Hd d

x dt x dt x




 

  
− + + −

  
 = 1 1 1

( )
( 1)

i

H H Hd d

dt dt x




 



  

    
− + + − 

    
. 

 

There will be two corresponding equations for the other coordinates, such that when , ,  are 

subject to the conditions that: 

(2)     
1

n

i ix



=




  = 1 , 

1

n

i iy



=




  = 1 , 

1

n

i iz



=




  = 1 , 

or 

 = x + 1 (x1 – x, …, xn – x) ,  = y + 2 (y1 – y, …, yn – y) , 

 = z + 3 (z1 – z, …, zn – z) , 
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in which  means any of the indices 1, 2, …, n, and 1, 2, 3 mean arbitrary functions, that will 

give the relations: 

(3)    

1 1 1

( )

1 1 1

( )
1 1 1

1 1 1

( )

1 1 1

( )
1 1 1

1 1

( 1)

( 1) ,

( 1)

( 1) ,

n n n

i i ii i i

n n n

i i ii i i

H H Hd d

dt dt

H H Hd d

x dt x dt x

H H Hd d

dt dt

H H Hd d

y dt y dt y

H Hd

dt




 




 




 




 

  

  

 

= = =

= = =

  
− + + −

  

  
= − + + −

  

  
− + + −

  

  
= − + + −

  

 
− +

 

  

  

1

( )

1 1 1

( )
1 1 1

( 1)

( 1) .
n n n

i i ii i i

Hd

dt

H H Hd d

z dt z dt z




 




 



= = =
















+ − 


   

= − + + −   
  

 

 

 Now if the kinetic potential H has the form: 

 

(4)    H = H2 (t, x + 1 (x1 – x, …, xn – x),  

  y + 2 (y1 – y, …, yn – y), 

  z + 3 (z1 – z, …, zn – z), 

 1x  + , 2y  + , 3z  + , …, 

 ( ) ( ) ( ) ( ) ( ) ( )

1 2 3, , )x y z     

    + + +  

 

 + H3 (t, xr – xs , 
( ) ( ), , ,r s r sx x x x  − −   

  yr – ys , 
( ) ( ), , ,r s r sy y y y  − −  

 zr – zs , 
( ) ( ), , )r s r sz z z z  − − , 

 

in which H2 and H3 are arbitrary functions of their arguments, then on the one hand, from (3), 

one will have: 

(5)  2 2 2

( )
1 1 1

( 1)
n n n

i i ii i i

H H Hd d

x dt x dt x




 
= = =

  
− + + −

  
    

= 2 2 2

( )
1 1 1

( 1)
n n n

i i i

H H Hd d

dt dt




   = = =

  
− + + −

  
   , 

 

along with corresponding equations for the yi, zi (, , resp.). On the other hand, since it is known 

that: 
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 3

( )
1

n

i i

H

x 
=




 = 0 , 3

( )
1

n

i i

H

y 
=




 = 0 , 3

( )
1

n

i i

H

z 
=




 = 0     ( = 0, 1, 2, …, ), 

 

(6) 3 3 3

( )
1 1 1

( 1)
n n n

i i ii i i

H H Hd d

x dt x dt x




 
= = =

  
− + + −

  
    = 0 

 

with corresponding equations for the other coordinates, such that when one adds equations (5) and 

(6), one will get: 

 

( )
1 1 1

( 1)
n n n

i i ii i i

H d H d H

x dt x dt x




 
= = =

  
− + + −

  
    = 2 2 2

( )
( 1)

H H Hd d

dt dt




   

  
− + + −

  
. 

 

Therefore from (1), that will give the relations: 

 

(7) 

2 2 2

( )
1

2 2 2

( )
1

2 2 2

( )
1

( 1) ,

( 1) ,

( 1) .

n

i

i

n

i

i

n

i

i

H H Hd d
Q

dt dt

H H Hd d
R

dt dt

H H Hd d
S

dt dt




 




 




 

  

  

  

=

=

=

   
− + + − =   


   

− + + − =
  

   
− + + − =

  







 

 

The relations that they express, which will then imply equations (7), when H is given by equation 

(4) as: 

H = H2 + H3 , 

 

and , ,  are determined by the expressions: 

 

 = x + 1 (x1 – x, …, xn – x) ,  = y + 2 (y1 – y, …, yn – y) , 

 = z + 3 (z1 – z, …, zn – z) , 

 

shall represent the extended principle of the conservation of the motion of the center of mass. 

 

 In the mechanics of ponderable masses, when 
im  = M, if one sets 

 

T = 
2 2 2)1

2

1

( )
n

i i i i

i

m x y z
=

  + +  

 

= 2 2

1 1 2 1 2 1

1
( ) ( )

2 2

i k
i k

m m
m x m x m x x x

M M
    + + + + − +  
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 = 22
1 2 1 1( ( ) ( )) ( )

2 2

n i k
n i k

m m mmM
x x x x x x x

M M M
      + − + + − + − +  

 

then if U depends upon only the differences of the coordinates, the kinetic potential H = − T – U 

will have the form (4), in which: 

 

H2 = − 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2

1
{( ) ( ) ( ) }

2
n n n n n nm x m x m x m y m y m y m z m z m z

M
        + + + + + + + + + + +  

and 

 = 
1

M
(m1 x1 + … + mn xn) ,  = 

1

M
(m1 y1 + … + mn yn) ,  = 

1

M
(m1 z1 + … + mn zn) . 

 

However, , ,  are the coordinates of the center of mass then, and from (7), since one has: 

 

H2 = − 2 2 21
2

( )M     + +  , 

 

its motion will be subject to the known equations: 

 
2

2

d
M

dt


 = 

1

n

i

i

Q
=

 ,      
2

2

d
M

dt


 = 

1

n

i

i

R
=

 ,      
2

2

d
M

dt


 = 

1

n

i

i

S
=

 . 

 

 In order to give a simple application of the mechanical principles that were developed up to 

now, we would next like to treat the motion of a point that is attracted to a fixed center according 

to Weber’s law. When the center possesses a mass m2 and the coordinates x2, y2, while the 

coordinates of the moving point of mass m1 are denoted by x1, y1, that motion will be described by 

the differential equations: 

1 1m x  = 1 2x xW d W

r dt r r

−  
− 

  
, 

1 1m y  = 1 2y yW d W

r dt r r

−  
− 

  
, 

 

in which the xy-plane is laid through the center and the direction of the initial velocity, and we set: 

 
2r  = (x1 – x2)

2 + (y1 – y2)
2 . 

 

Since the law of conservation of energy: 
2

2 2 1 21
1 1 12 2
( ) 1

m m r
m x y

r k

 
 + − − 

 
 = h 

further implies the principle of areas: 
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1 1 2 1 1 2 1{( ) ( ) }m x x y y y x − − −  =  , 

upon substituting: 

x1 – x2 = r cos  , y1 – y2 = r sin  

 

in that, it will follow, as we can see immediately, that: 

 

t + c = 

2

2

2

2 2

1 1

2

2

m
r r

k
dr

h
r r m

m m



+

 
+ − 

 

  

and 

 + c1 = 

2

2

2
3

2 2

1 1

2

1

2

m
r

k
dr

h
r r r m

m m

 

+

 
+ − 

 

 . 

 

Therefore, we have been led back to a problem that involves elliptic integrals. 

 However, if we assume that the attracting center is also moving, so we investigate the motion 

of two free points that are attracted to each other according to Weber’s law, and whose initial 

velocities might be assumed to lie in a plane, for the sake of brevity, so the entire motion will then 

take place in that plane, then, from the above, the principle of the center of mass will be valid for 

the four equations of motion: 

 

1 1m x  = 1 2x xW d W

r dt r r

−  
− 

  
, 1 1m y  = 1 2y yW d W

r dt r r

−  
− 

  
, 

2 2m x  = 2 1x xW d W

r dt r r

−  
− 

  
, 2 2m y  = 2 1y yW d W

r dt r r

−  
− 

  
. 

 

Thus, for the coordinates that are defined by the equations: 

 

(m1 + m2)  = m1 x1 + m2 x2 ,  (m1 + m2)  = m1 y1 + m2 y2 , 

 

one will have the equations: 
2

2

d

dt


 = 0 , 

2

2

d

dt


 = 0 . 

 

Therefore, the center of mass will advance along a straight line with constant velocity. If one now 

denotes the relative coordinates of the two points relative to the center of mass by 1, 1,  2,  2 

such that: 
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1 = x1 –  ,      1 = y1 –  ,      2 = x2 –  ,      2 = y1 –  , 

 

then when one sets: 
2 2

1 1 +  = 2

1 , 2 2

2 2 +  = 2

2 , 

so: 

r = 1 2
1

2

m m

m


+
 = 1 2

2

2

m m

m


+
, 

and 

2

1 2

W m

m m+
 = W1 , 

1

1 2

W m

m m+
 = W2 , 

the equations will go to: 

 

  1 1m    = 1 1 1

1 1 1

W Wd

dt



  

  
− 

  
,  1 1m   = 1 1 1

1 1 1

W Wd

dt



  

  
− 

  
, 

  2 2m    = 2 2 2

2 2 2

W Wd

dt



  

  
− 

  
, 2 2m   = 2 2 2

2 2 2

W Wd

dt



  

  
− 

  
. 

When one sets: 

2

1 2

m k

m m+
 = k1 , 

1

1 2

m k

m m+
 = k2 , 

one will then find that: 

W1 = 
3 2

2 1
1 2 2

1 2 1 1

1
1

( )

m
m

m m k





 
 + 

+  
 , 

W2 = 
3 2

1 2
2 2 2

1 2 2 2

1
1

( )

m
m

m m k





 
 + 

+  
 , 

such that: 

 

 The motion of two points that are attracted to each other by Weber’s law will be around a 

center of mass that advances along a straight line with constant velocity in such a way that it is as 

if the masses were found to be: 
3

2

2

1 2( )

m

m m+
 and 

3

1

2

1 2( )

m

m m+
, resp., 

 

which attract the two mass-points m1 (m2, resp.) according to Weber’s law with the constants: 

 

k1 = 2

1 2

m k

m m+
 and k2 = 1

1 2

m k

m m+
, resp. 

 

__________ 
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Hamilton’s system of total differential equations 
 

 

 If the external forces Ps are all zero then the second form of the Lagrange equations of motion 

will read: 

(1)     
( )

( 1)
s s s

H d H d H

p dt p dt p




 

  
− + + −

  
 = 0  (s = 1, 2, …, ), 

 

while the energy E will be defined by the expression: 

 

(2)  E = ( )

( )
1 1 1

H d H H d H H
H p p p

p dt p p dt p p

  


   
      = = =

       
 − − + − − + − −                

   . 

 

 If one now sets: 

(3)     

1
1

01 ( )

2
2

12 ( )

, 1( )

( 1) ,

( 1) ,

.......................................................................

,

H d H d H
q

p dt p dt p

H d H d H
q

p dt p dt p

H
q

p




 

  




 

  

 



−
−

−

−
−

−

−

   
− + + − =    


   
 − + + − =

   


 

=


 

 

and calculates the  quantities ( )p 

 , ( 1)p 



+ , …, (2 1)p 



−  as functions of t, ps, sp , …, ( 1)

sp  + , qs0, 

qs1, …, qs,−1 using those  equations then the ( )p 

  will be given as functions of only ps, sp , …, 

( 1) ,sp  −  and qs,−1 by the last  of equations (3), while the other equations, which are linear in the 

quantities ( 1)p 



+ , ( 2)p 



+ , …, (2 1)p 



− , resp., will give their values as functions of all of the quantities 

that were just referred to. The energy, which assumes the following form in terms of the quantities 

q that were introduced in (3): 

 

E = ( )

0 1 , 1

1 1 1

H p q p q p q
  



      
  

−

= = =

 − − − −   , 

 

when we let (E), (H), ( )( )p 

  denote the values that the quantities E, H, and ( )p 

  go to after 

substituting them in the expressions that are calculated from the system of equations (3), will yield 

the relation: 
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(4)  (E) = ( )

0 1 , 1

1 1 1

( ) ( )H p q p q p q
  



      
  

−

= = =

 − − − −    . 

 

 If one partially differentiates that equation with respect to ( )p 

 , in which  = 1, 2, …,  – 1, 

then one will get: 

( )

( )

s

E

p 




 = 

( )

, 1 , 1( ) ( )
1

( )( )
s

s s

pH
q q

p p




   


− −

=


− −

 
 , 

and since one has: 

 

( )

( )

s

H

p 




 = 

( )

( ) ( ) ( )
1

( )

s s

pH H

p p p




  
 =

    
+          
  = 

( )

, 1( ) ( )
1

( )

s s

pH
q

p p




  


−

=

 
+ 

  
 , 

 

in which the parentheses shall always denote the value of the bracketed expression after one applies 

the substitutions that were given above, one will get the relation: 

 

( )

( )

s

E

p 




 = 

, 1( ) s

s

H
q

p
 −

 
− 

 
, 

or since: 

( ) ( 1) ( )
( 1)

s s s

H d H d H

p dt p dt p

 
 

    

−
−

+ −

  
− + + −

  
 = qs,−1 , 

and therefore: 

 

( )

s

H

p 

 
 

 
 = 

1
1

, 1 ( 1) ( 2) 1 ( )
( 1)s

s s s

d H d H d H
q

dt p dt p dt p

 
 

     

− −
− −

− + + − −

    
+ − + + −       

 = qs,−1 + sdq

dt

 , 

 

one will get the relation: 

 
( )

( )

s

E

p 




 = sdq

dt

    ( = 1, 2, …,  – 1). 

 

By contrast, when equation (4) is differentiated with respect to ps, only the terms in qs,−1 will drop 

out of the previous equations, and the relation: 

 

( )

s

E

p




 = 

s

H

p

 
 

 
 

will go to 

( )

s

E

p




 = sdq

dt
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as a result of the Lagrange equations (1), which will then yield  equations of the form: 

 

(5) 
( )

( )

s

E

p 




 = sdq

dt

    ( = 0, 1, 2, …,  – 1). 

 Furthermore, since (4) implies that: 

 

( )

s

E

q 




 = 

( )( )

( 1)

, 1

1

( )
s

s s

pH
p q

q q




 
 

+

−

=


− −

 
  = 

( ) ( )( ) ( )

( 1)

, 1( )
1 1

( )
s

s s

p pH
p q

p q q

  
 

 
   

+

−

= =

  
− −     

   , 

 

due to the identity of the first and third terms on the right-hand side, that will give: 

 

(6)  
( )

s

E

q 




 = − 

( )

sdp

dt



. 

 

One will then get from (5) and (6) that: 

 

 Hamilton’s system of total differential equations, which consists of    first-order differential 

equations that is equivalent to the Lagrange equations of motion in the case where the external 

forces are all zero is expressed in the form: 

 

(7)  sdq

dt

  = 
( )

( )

s

E

p 




,  

( )

sdp

dt



 = − 
( )

s

E

q 




 

 

( = 0, 1, 2, …,  − 1 ; s = 1, 2, …, ) , 

 

in which (E) means the value of energy that is defined by (2) when the values of ( )p 

 , ( 1)p 



+ , …, 

(2 1)p 



−  as functions of t, ps, sp , …, ( 1)

sp  − , qs0, qs1, …, qs,−1 that are inferred from equations (3) 

are substituted in them. 

 

 For the case in which the kinetic potential includes only the first derivatives of the coordinates, 

as one can see immediately, Hamilton’s differential equations go to the system of 2 simultaneous 

differential equations: 

0sdq

dt
 = 

( )

s

E

p




,  sdp

dt
 = − 

0

( )

s

E

q




, 

 

in which (E) represents the expression: 

1

H
H p

p




 =


−


 , 
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when the p
  in them are replaced with their values as functions of t, ps, qs0 that one infers from 

the  equations: 

H

p




 = q 0 . 

 

If the actual energy is, in turn, separated from the potential energy, so H = − T – U, then the last 

equation will go to the  equations: 

− 
T

p




 = q 0 , 

 

which are linear in 1p , 2p , …, p
 , and in which: 

 

E = T – U . 

 

 From the form of the differential equations (7), it is immediately clear that: 

 

 The multiplier in the extended Hamiltonian system is also a constant, and therefore the known 

theorem of Jacobi on the last multiplier will retain its validity. 

 

Similarly, Poisson’s theorem for the differential system (7) shows that: 

 

 If: 
( 1)

0 1 , 1( , , , , , , , , )s s s s s sp p p q q q t

 −

−
  

and 
( 1)

0 1 , 1( , , , , , , , , )s s s s s sp p p q q q t

 −

−
  

 

are two integral functions of system of the differential equations then the expression: 

 

1

( ) ( )
1 1 p q q p

 

 
     

   −

= =

     
− 

     
  

 

will likewise represent an integral function of that differential equation. 

 Finally, we might add a theorem on the nature of the integrals of the extended Hamiltonian 

equations of motion. 

 Let the kinetic potential H1 be an algebraic function of t, ps, sp , …, ( )

sp   that might satisfy the 

equation: 

 

(8)  ( ) 1 ( )

1 ( , , , , ) ( , , , , )s s s s s sH r t p p p H r t p p p   



− + + +  = 0 , 
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in which r1, r2, …, r mean rational functions of the quantities that are included in it. The 

derivatives of H1 of arbitrary order with respect to the coordinates and their derivatives with respect 

to time will then be rational functions of just those quantities and H1 itself, and equations (3) can 

then be put into the form: 

(9)  

(2 1)

0 1 0

(2 2)

1 1 1

( )

, 1 1 , 1

( , , , , , ) ,

( , , , , , ) ,

............................................................

( , , , , , ) ,

s s s

s s s

s s s

R t H p p p q

R t H p p p q

R t H p p p q



 



 



   

−

−

− −

 =


 =


  =

 

 

in which R 0, …, R− are rational functions of the quantities that they include, the first of which 

is linear in (2 1)

sp  − , the second of which is linear in (2 2)

sp  − , …, and last of which is linear in ( )

sp  . 

Eliminating the  + 1 quantities ( )

sp   and H1 from the  + 2 equations (8) for H = H1, the  

equations: 
( )

, 1 1( , , , , , )s s sR t H p p p 

  −
  = q,−1 , 

and the equation: 

(10)   E1 = ( )

1 0 1 , 1

1 1 1

H p q p q p q
  



      
  

−

= = =

 − − − −   , 

 

in which E1 denotes the unique value E that corresponds to H1 by way of equation (2), will yield 

(E1) as the solution to the algebraic equation: 

 

(11)   ( 1) 1

1 0 1 , 1( ) ( , , , , , , , , )( )s s s s s sE t p p p q q q E  



− −

−
+ +r  

+ ( 1)

0 1 , 1( , , , , , , , , )s s s s s st p p p q q q

 

−

−
r  = 0 , 

 

in which r1, …, r mean rational functions of the quantities that they include. Now, equation (11) 

is assumed to be irreducible when one adjoins the quantities t, ps, sp , …, ( 1)

sp  − , qs0, qs1, …, qs,−1 

[because otherwise we would have to substitute those irreducible factors in it that possess the 

solution (E1), instead of equation (11)]. If one assumes that Hamilton’s system of differential 

equations (7), in which E is replaced with E1, possesses an algebraic integral: 

 
( 1)

1 0 1 , 1( , , , , , , , , )s s s s s st p p p q q q

 −

−
  =  , 

 

in which  means an arbitrary constant, and the integral function 1 might be the solution of an 

irreducible equation with the adjunction of (E1), t, ps, sp , …, ( 1)

sp  − , qs0, qs1, …, qs,−1 : 

 

(12)   ( 1) 1

1 1 0 1 , 1(( ), , , , , , , , , )m m

s s s s s sf E t p p p q q q

 − −

−
+ +  

+ ( 1)

1 0 1 , 1(( ), , , , , , , , , )m s s s s s sf E t p p p q q q



−

−
  = 0 , 
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in which f1, …, fm represent rational functions of the quantities that they include. 

 Now since, by definition, an integral function must satisfy the equation: 
 

(13) 1 1 1 1 1 1 1

( 1)
1 1 10 1 , 1

( ) ( ) ( )

s s ss s s s s s

E E E

t p q p q p q

  





   
−

= = = −

      
− − − −

      
    

+ 1 1 1 1 1 1

( 1)
1 1 10 1 , 1

( ) ( ) ( )

s s ss s s s s s

E E E

q p q p q p

  





  
−

= = = −

     
+ + +

     
    = 0 

 

identically by means of (7), but from equation (11), the partial differential quotients of (E1) can be 

expressed rationally in terms of (E1) and the other quantities that enter into the coefficients of that 

equation, and therefore, from (12), the partial differential quotients of 1 will also be rational 

functions of: 

1, (E1), t, ps, sp , …, ( 1)

sp  − , qs0, qs1, …, qs,−1 

 

then (13) will go to an equation in  of the same type as equation (12) and will likewise be satisfied 

by 1 . Therefore, it will follow from the irreducibility of (12) that all solutions of the latter also 

satisfy equation (13), so they will also be integrals of Hamilton’s system of differential equations. 

However, it will follow from this that since: 
 

1d

dt


, 2d

dt


, …, md

dt


 

 

must then vanish identically with the use of those differential equations, either f1, f2, …, fm 

themselves must be integral functions of the system or we must have m = 1. We will then find that 

an algebraic integral function of Hamilton’s system of differential equations will either be itself 

composed rationally from (E1), t, ps, sp , …, ( 1)

sp  − , qs0, qs1, …, qs,−1 or it will define an algebraic 

combination of such rational integral functions. 

 If one now replaces the quantities qs0, qs1, …, qs,−1 in those rational integral functions with 

rational functions that are given by equations (9) then (E1) will go to E1, which will, in turn, be 

expressible rationally in terms of H1, t, ps, sp , …, ( 1)

sp  − , and that will give the following theorem: 

 

 If the kinetic potential is an algebraic function of time, the coordinates, and their derivatives 

with respect to time up to order , and if Hamilton’s system of differential equations possesses an 

algebraic integral function then it will either be itself a rational function of the kinetic potential, 

time, the coordinates, and their derivatives with respect to time up to order 2 – 1 or an algebraic 

combination of such rational functions. 
 

 Similarly, as one can easily show, there are corresponding theorems when the kinetic potential 

includes logarithms with algebraic logarithmands or Abelian integrals of the logarithmands and 

the upper limits of the integrals whose upper limits are algebraic functions of the quantities that 

were just referred to. 

 

__________ 
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 If we assume, in turn, that the external forces all vanish then from a known theorem of Jacobi 

regarding the complete integrals of the first-order differential equation that one obtains when one 

substitutes the partial differential quotients ( )/ k

sV p   for the quantities qsk in the expression for 

(E) that represents it as a function of t, ps, sp , …, ( 1)

sp  − , qs0, qs1, …, qs,−1 , the general integral of 

the total system of differential equations: 

 

  0sdq

dt
 = 

( )

s

E

p




,   1sdq

dt
 = 

( )

s

E

p




, …, 

, 1sdq

dt

 −
 = 

( 1)

( )

s

E

p  −




, 

 

  sdp

dt
 = − 

0

( )

s

E

q




,  sdp

dt


 = −

1

( )

s

E

q




, …, 

( 1)

sdp

dt

 −

 = − 
, 1

( )

s

E

q  −




 

 

will imply that: 

 

(1)    ( 1)

( 1)
, , , , , , , ,s s s

s s s

V V V V
E p p p

t p p p





−

−

     
+         

 = 0 . 

 

 However, if the values of ( )

sp   that one gets from the last of equations (3) in § 12 are denoted 

by: 
( )

sp   = ( 1)

, 1( , , , , , )s s s st p p p q

  −

−
  

 

then since equation (4) of § 12 says that one has: 

 

(E) = ( 1) ( 1)

0 1 , 2 , 1 , 1

1 1 1 1

( ) ( , , , , , )sH p q p q p q t p p p q q
   

 

             
   

− −

− − −

= = = =

  − − − − −    , 

 

the partial differential equation (1) will go to: 

 

(2)    ( 1)

( 1)
, , , , , , , ,s s s

s s s

V V V V
E p p p

t p p p





−

−

     
+         

 

− ( 1) ( 1)

( 2) ( 1) ( 1)
1 1 1 1

, , , , ,s

V V V V V
p p p t p p p

p p p p p

   
 

       
       

− −

− − −
= = = =

     
  − − − −        

    = 0 , 

 

with the dependent variable V and the   + 1 independent variables: 
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t, p1, 1p , …, ( 1)

1p  − , p2, 2p , …, ( 1)

2p  − , qs0, qs1, …, qs,−1 , 

 

which will be called Hamilton’s partial equation. 

 

 If one knows the complete integral of that partial differential equation, which includes   + 1 

arbitrary constants, one of which is an additive one, while the others might be denoted by 1, 2, 

…, , then it is known that one will obtain the solutions of Hamilton’s system of total differential 

equations when one uses the equations: 

 

1

V






 = 1, 

2

V






 = 2, …, 

V






 =  , 

 

in which 1, 2, …,  , in turn, mean a system of  arbitrary constants, to represent: 

 

p1, p2, …, p, 1p , …, p
 , …, ( 1)

1p  − , …, ( 1)p 



−  

 

as functions of t and the 2 constants. 

 

 For the case in which the kinetic potential includes only the first derivatives of the coordinates, 

the partial differential equation will go to: 

 

1

, , , ,s s

s s s

V V V V
H t p t p

t p p p







=

      
+ −   

      
  = 0 , 

 

when the solutions of the equations: 

  
H

p




 = q 0   ( = 1, 2, …, ) 

are denoted by: 

p
  =  (t, ps, qs0) . 

 

 Now consider the case of the mechanics of ponderable masses with a separation of actual and 

potential energy: 

H = − T – U 

 

and assume that the constraint equations do not include time t explicitly, such that T will be a 

homogeneous function of degree two in 1p , 2p , …, p
  whose coefficients are functions of the 

coordinates themselves. When the values of p
  that are obtained from the equation: 
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− 
T

p




 = q 0 

are represented by: 

 p
  =  (ps, qs0) = B1 q10 + B2 q20 + … + B q 0 , 

 

in which B1, …, B are functions of p1, …, p, the partial differential equation will assume the 

form: 

1
1 22

1 1 2s

V V V V V
B B B U

t p p p p



  
 =

     
− + + + −       

  = 0 , 

as is easy to see. 

 

 If the vis viva includes only the square of the first derivatives of the coordinates, so: 

 

T = 21
2

1

a p


 
=

 , 

 

then Hamilton’s partial differential equation will go to: 

 
2

1
2

1

1

s

V V
U

t a p



 =

  
+ − 

  
  = 0 . 

 

_________ 



§ 14. – Helmholtz’s principle of hidden motion in the mechanics of 

ponderable masses and its application to the motion of three points. 
 

 

 In his paper “Über die physikalische Bedeutung des Princips der kleinsten Wirkung,” 

Helmholtz highlighted two cases of equations of motion in which an essential reduction in the 

number of coordinates could be achieved, and indeed not by restricting the freedom of motion of 

the system by fixed constraints that are expressed by equations in the coordinates, as is customary, 

but by a special property of the kinetic potential and the nature of Lagrange’s equations of motion. 

He initially assumed that the kinetic potential: 

 

H = − T – U , 

 

in which T means the vis viva, and U means the force function, was free of a number of the 

mutually-independent coordinates p1, p2, …, p , such that when they are denoted by p1, p2, …, p  

(to use the same notations here that shall be preserved in what follows), the associated Lagrange 

equations: 

r r

H d H

p dt p

 
−

 
 = Pr 

will go to: 

  
r

d H

dt p




 = 0 (r = 1, 2, …, ) 

 

when one assumes that Pr = 0, in addition, while the other equations of motion will be represented 

in the form: 

  
r r

H d H

dt

 
−

 p p
 = Ps  (s = 1, 2, …, ) 

when one has: 

ps = p+s , Ps = P+s ,  +  =  . 

 

Now when 1p , 2p , …, p
  are expressed in terms of p1, …, p using the  equations: 

 

r

H

p




 = cr , 

 

in which the quantities cr mean integration constants, and one substitutes them in the other 

equations of motion, it will then follow that since: 
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( )

s

H

p
 = 1

1

( )( )

s s s

ppH H H 



        
+ + +                p p p p p

, 

  
( )

s

H

p
 = 1

1

( )( )

s s s

ppH H H 



        
+ + +                   p p p p p

 

 

(in which the previous notation is preserved), when one sets: 

 

H = 
1 1 2 2( ) ( ) ( ) ( )H c p c p c p 

  − − − − , 

 

the latter  equations, which are free of pr and rp  (in which the quantities in parentheses shall 

once more denote the values after completing the substitution), will go to: 

 

  
r r

d

dt

 
−

 

H H

p p
 = Ps  (s = 1, 2, …, ). 

 

Thus, one has the Lagrange form for a first-order kinetic potential, and therefore Hamilton’s 

principle will still remain valid. The fact that the energy does not change in this case is self-

explanatory in the mechanics of ponderable masses, but one can also see it as analytically 

immediate for the general first-order kinetic potential. Namely, since one has: 

 

E = 
1




 =


−




H
H p

p
 

and 

 

 






H

p
 = 1 2

1 2

( )( ) ( )( )H
c c c





   

  
− − − −

      

pp p

p p p p
 

= 1 2 1 1
1 1

1 2

( ) ( ) ( ) ( )p p p pH H H
c c

p p    

             
+ + + − − −     

                p p p p p
 = 

H



 
 

 p
 , 

 

it will follow that: 

E = 1 1 2 2

1

( ) ( ) ( ) ( )
H

H c p c p c p


  
 =

 
   − − − − −  

 
p

p
 , 

while it will follow from: 

E = 
1 1

1 1

H H H H
H p p

p p
 

 

   
   − − − − − −

      
p p

p p
, 

after a subsequent substitution, that: 
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(E) = 1 1 2 2

1

( ) ( ) ( ) ( )
H

H c p c p c p


  
 =

 
   − − − − −  

 
p

p
 , 

which will give: 

E = (E) . 

 

 However, in the mechanics of ponderable masses, as well, since the substitution equations 

include the quantities rp  and s
p  to the first degree, the kinetic potential H will now include not 

only terms of dimension two in the s
p , but also terms of degree one. Because of that analogy with 

the mechanics of ponderable masses, Helmholtz called other cases of physical processes in which 

the kinetic potential also included terms that are linear in the velocities cases with hidden motion, 

in order to suggest that those physical processes can take place as motions of ponderable masses, 

some of which are not visible, and whose influence corresponds to the algebraic elimination 

process. 

 Now, before this principle is extended to the general first-order kinetic potential and the path 

to the extension of that theory to potentials of arbitrary order is stated in advance, the application 

and meaning of it shall first be discussed for the simplest case of hidden motion, and indeed for 

one point that is constrained to remain on a surface. 

 Let the equation of the surface be: 

z = F (x, y) , 

so the kinetic potential: 

H = − 2 2 21
2

( ) ( , , )m x y z U x y z  + + −  

will assume the form: 

 

H = −

22

2 21 1
2 2

1 1 ( , , )
F F F F

m x m y m x y U x y F
x y x y

        
    + − + + −                

 

 

in the free coordinates x and y. When one makes the assumption that H does not include the 

variable x, one must have: 

 

F

x




= F1 (y) , 

F

y




= F2 (y) , U (x, y, F) = V (y) . 

Therefore, since: 
2F

x y



 
 = 1 ( )F y = 2 ( )F y

x




 = 0 , F1 (y) =  , 

 

in which  means a constant, the required form for the kinetic potential must be: 

 

H = − 2 2 2 21 1
2 22 2

(1 ) (1 ( ) ) ( ) ( )mx m y F y m F y x y V y    + − + − −  , 
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while the equation of the surface will be given by: 

 

z =  x + 2 ( )F y dy . 

 

It will then define a cylinder surface whose generating line is in the XZ-plane and parallel to the 

line x = − (1/) z through the origin, and U and V are given by the expressions: 

 

U = ( )2 1 2( ) ( , , ) ( , )z x F y dy x y z z x y   − − + − , 

 V (y) = ( )2 2 ( ) ,F y dy y   , 

 

in which 1 and 2 mean arbitrary functions. 

 Now since the Lagrange equation that belongs to the variable x: 

 

H d H

x dt x

 
−

 
 = 0 

will imply the relation: 

 

2

2(1 ) ( )x y F y  + +  = c or x  = 22

1
( ( ))

1
c y F y


−

+
, 

 

since one has H / x = 0, the substitution of that value of x  in the second Lagrange equation 

will again produce one of the form: 

d

y dt y

 
−

 

H H
 = P , 

 

in which the kinetic potential is given by: 

 

H = 2 2 2 2

2 22
{ (1 ( ) 2 ( ) 3 }

2(1 )

m
y F y c y F y c 


 + + + +

+
. 

 

The image of the moving point on the Y-axis will then move as if it were driven autonomously by 

the kinetic potential H, which depends upon only y and y , but also includes y  to the first power. 

 Now in order to make the meaning of Helmholtz’s principle emerge even clearer, we would 

like to consider the motion of three material points with masses m1, m2, m3 whose coordinates are 

subject to the constraint equation: 

 

(1)  z1 = f (x1, y1, x2, y2, z2, x3, y3, z3) , 

 

and its internal forces might be given by a force function: 
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U (x1, y1, x2, y2, z2, x3, y3, z3) . 

 Since the kinetic potential: 

 

H = − T – U = − 2 2 2 2 2 2 2 2 21 1 1
1 1 1 1 2 2 2 2 3 3 3 32 2 2
( ) ( ) ( )m x y z m x y z m x y z U        + + − + + − + + −  

 

assumes the form: 

 

(2)   

2 2

2 21 1
1 1 1 12 2

1 1

2 2

2 21 1
2 1 2 2 1 22 2

2 2

22

2 21 1
2 1 2 3 1 32 2

2 3

1
3 12

1 1
f f

H m x m y
x y

f f
m m x m m y

x y

f f
m m z m m x

z x

m m

       
    = − + − +   

          

       
    − + − +   

          

      
   − + − +   

          

− +

22

2 21
3 3 1 32

2 3

1 1 1 1 1 2

1 1 1 2

1 1 2 2 2 3 3 3( , , , , , , , , )

f f
y m m z

y z

f f f f
m x y m x x

x y x x

U x y f x y z x y z













            − +              
    

   − − −
   

 −

 

 

as a result of the relation (1), it will follow that when it is supposed to be independent of the 

coordinates x1 and y1, that must also be the case for the coefficients of all derivatives of the 

coordinates. Therefore, when f / x1 and f / y1 are independent of x1 and y1 : 

 

f = x1  (x2, y2, z2, x2, y3, z3) + y1  (x2, y2, z2, x2, y3, z3) +  (x2, y2, z2, x2, y3, z3) . 

 

Hence, since 
2

f

x




, 

3

f

x




, 

3

f

y




, … must also be free of x1 and y1, the function f, and thus the 

constraint equation (1), will have the form: 

 

(3)     z1 = a x1 + b y1 +  (x2, y2, z2, x2, y3, z3) , 

 

in which a and b mean constants, and the kinetic potential will be: 
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(4)  

( ) ( )2 2 2 21 1
1 1 1 12 2

2 2 2

2 2 21 1 1
2 1 2 2 1 2 2 1 22 2 2

2 2 2

22

2 21 1 1
3 1 3 3 1 3 3 12 2 2

2 3

1 1H m a x m b y

m m x m m y m m z
x y z

m m x m m y m m
x y z

  

  

 = − + − +

            
       − + − + − +     

                 

       
   − + − + − +  

           

2

2

3

3

1 1 1 1 1 2 1 1 2

2 2

1 1 2 1 1 2 1 12 2

1 2 2 2

1 1 2 2 2 3 3 3( , , , , , , , , ) .

z

m a b x y m a x x m a x y
x y

m b y x m b y y m x y
x y x y

U x y f x y z x y z

 

   







   
         


       − − − +
  


         − − − −
    


−

 

 

 However, since the last part of U is supposed to be free of x1 and y1, it is clear from (3) that U 

must have the form: 

 

(5)   
1 1 1 1 1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

( ) ( , , , , , , , , )

( , , , , , , , , ).

U z a x b y F x y z x y z x y z

F x y z x y z x y z

= − − −


+
 

 

The Lagrange equations that belong to the coordinates x1 and y1 will then assume the form: 

 

1

d H

dt x




 = 0 and 

1

d H

dt y




 = 0 , 

or as is easy to see: 

2

1 1(1 )a x ab y + +  = 1

d
c a

dt


− , 

2

1 1(1 )ab x b y + +  = 2

d
c b

dt


− , 

 

when c1 and c2 mean integration constants, which will then yield: 

 

(6)    

2 2 2

1 1 2

2 2 2

1 1 2

(1 ) (1 ) ,

(1 ) (1 ) .

d
a b x c b c a b a

dt

d
a b y c ab c b b

dt






+ + = + − −


 + + = − + + −


 

 

If one substitutes the values of 1x  and 1y  that follow from that in the other six equations of motion, 

in which all of the external forces are assumed to be zero, then with the previously-emphasized 

meaning of the expressions in parentheses, e.g., the first one of them will give: 
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2 2

H d H

x dt x

    
−   

    
 = 0 , 

or since one has: 

 

2

( )H

x




 = 1 1

2 1 2 1 2

x yH H H

x x x y x

         
+ +     

          
 = 1 1

1 1 2 1

2 2 2

x yH
c m c m

x x x

    
+ + 

   
, 

 

2

( )H

x




 = 1 1

2 1 2 1 2

x yH H H

x x x y x

         
+ +     

             
 = 1 1

1 1 2 1

2 2 2

x yH
c m c m

x x x

    
+ + 

     
, 

 

when one sets: 

 

(7)      H = 1 1 1 2 1 1( )H c m x c m y − − , 

 

one will again get the Lagrange form: 

 

(8)  
2 2

d

x dt x

 
−

 

H H
 = 0 . 

 

The other five equations of motion for that same kinetic potential H will be similar. 

 When we substitute the values of 1x  and 1y  from (6) in (7), an easy calculation will give the 

following simple form to the kinetic potential that now arises: 

 

(9)

2

1 1 2
12 2 2 2

2 2 2 2
2 2 2 2 2 21 1 2 2 1 1

1 2 2 2 2 3 3 3 32 22 2

2 2 2 3 3 3

2(1 ) 1

(1 ) 2 (1 )3
( ) ( )

2 1

( , , , , , , ) ,

m a c bcd d
m

a b dt a b dt

c b abc c c a
m m x y z m x y z

a b

F x y z x y z

 



 + 
= − +  

+ + + + 
 + − + +

     − − + + − + +
+ +

−



H

 

 

and we will then find that: 

 

 The necessary and sufficient condition for the motion of three material points whose 

coordinates are subject to one constraint equation to go from eight equations of motion to two 

equations in complete differential quotients with respect to time, or equivalently, that the kinetic 

potential must be independent of two of the eight coordinates, is that the constraint equation must 

have the form: 

z1 = a x1 + b y1 +  , 
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in which a and b mean constants, and  depends upon only x2, y2, z2, x3, y3, z3, while the force 

function possesses the form: 

 

U = (z1 – a x1 – b y1 – ) F1 (x1, y1, z1, x2, y2, z2, x2, y3, z3) + F2 (z1 − a x1 − b y1, x2, y2, z2, x2, y3, z3). 

 

In that case, the six equations of motion for the coordinates x2, y2, z2, x2, y3, z3 will once more 

assume the Lagrangian form for the kinetic potential H that is given by equation (9). 

 

 When one assumes that F1 = 0, the form for the force function that was found above will 

demand that since: 

 

X1 = − 
1 1 1( )

F
a

z a x b y



 − −
, Y1 = − 

1 1 1( )

F
b

z a x b y



 − −
, Z1 = − 

1 1 1( )

F
c

z a x b y



 − −
, 

 

the direction of the force that acts upon the point m1 must be constant. 

 We would now like to raise the question of the necessary and sufficient conditions for the 

kinetic potential to have the form: 

 

(10)   H = − 2 2 2 2 2 21 1
2 2 2 2 3 3 3 32 2
( ) ( ) ( , )m x y z m x y z W r r      + + − + + − , 

 

in which W is an arbitrarily-given function of r and r , and: 

 
2r  = (x2 – x3)

2 + (y2 – y3)
2 +(z2 – z3)

2 . 

 

One next infers from the values (9) that ( , )W r r  can only be an entire function of degree two in 

r  with the form: 

(11) W = 

2

0 1 2( ) ( ) ( )
dr dr

r r r
dt dt

  
 

+ +  
 

, 

and therefore: 

(12) 

2

2 ( )
dr

r
dt


 
 
 

 =   

2

1

2 22(1 )

m d

a b dt

 
 

+ +  
 

and 

(13) 

2

1( )
dr

r
dt


 
 
 

 = − 1 2
1 2 21

ac bc d
m

a b dt

+

+ +
. 

 

 However, it will now follow from equation (12) that: 

 

 = 
2 2

2

1

2(1 )
( )

a b
r dr

m


+ +
 , 
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such that for an arbitrary choice of 2 (r), one can determine 1 (r) from (13) as: 

 

1 (r) = − 1
1 2 22 2

2
( ) ( )

1

m
ac bc r

a b
+

+ +
, 

 

while 0 (r) is characterized by the expression: 

 

0 (r) = 
2 2 2 2

1 1 2 2
1 2 2 3 3 3 32 2

(1 ) 2 (1 )3
( , , , , , , )

2 1

c b abc c c a
m F x y z x y z

a b


+ − + +
+

+ +
 . 

 

From that, one can get: 

 

2 2

2 2 2 3 3 3 3

1

2(1 )
( ) , , , , , ,

a b
F r dr x y z x y z

m


 + +
 
 
 

  

 

as a function of r, and therefore, from (5), one can get the force function in the form: 

 

U = −
2 2

1 1 1 2

1

2(1 )
( )

a b
z a x b y r dr

m


 + +
− − − 

 
 

  F1 (x1, y1, z1, x2, y2, z2, x3, y3, z3) 

+ F (z1 – a x1 – b y1, r) , 

 

while the coordinates are subject to the condition: 

 

z1 = 
2 2

1 1 2

1

2(1 )
( )

a b
a x b y r dr

m


+ +
+ +  . 

 We then find that: 

 

 The necessary and sufficient condition for the motion of three material points m1, m2, m3 whose 

coordinates are subject to one condition to go from the eight equations of motion to two equations 

in complete differential quotients with respect to time, while the remaining six again assume the 

Lagrangian form after eliminating the coordinates of one point as a result of that, and for the 

kinetic potential of the latter equations to further be composed of the negative sum of the vis viva 

of the two other points and a function of the distance r between them and its derivatives with 

respect to time is that the condition that exists between the coordinates of the three points must 

have the form: 

z1 = 
2 2

1 1 2

1

2(1 )
( )

a b
a x b y r dr

m


+ +
+ +  , 
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in which a and b mean arbitrary constants, and 2 means an arbitrary function, and that the force 

function must be defined by an expression of the form: 

 

U = −
2 2

1 1 1 2

1

2(1 )
( )

a b
z a x b y r dr

m


 + +
− − − 

 
 

  F1 (x1, y1, z1, x2, y2, z2, x3, y3, z3) 

+ F (z1 – a x1 – b y1, r) , 

 

moreover, in which F1 and F are also arbitrary. The kinetic potential for the motion of the two 

points will then read: 

 

 H = − 2 2 2 2 2 2 21 1
2 2 2 2 3 3 3 3 22 2
( ) ( ) ( )m x y z m x y z r r      + + − + + −  

− 
2 2 2 2

1 1 1 2 23
1 1 2 122 2 2 2

2 (1 ) 2 (1 )
( ) ( )

1 1

m c b abc c c a
ac bc r r m

a b a b


+ − + +
+  −

+ + + +
 

 −
2 2

2

1

2(1 )
( )

a b
F r dr

m


 + +
 
 
 

  , 

 

and from (6), the coordinates x1, y1, z1 will be given by the expressions: 

 

 x1 = 
2 2

1 2
22 2 2 2

1

(1 ) 2
( )

1 (1 )

c b c ab
t a r dr

a b m a b


+ −
−

+ + + +  , 

y1 = 
2 2

1 2
22 2 2 2

1

(1 ) 2
( )

1 (1 )

c b c ab
t b r dr

a b m a b


− + −
−

+ + + +  , 

 z1 = 1 2
22 2 2 2

1

2
( )

1 (1 )

a c cb
t r dr

a b m a b


+
+

+ + + +  . 

 

 If we choose the constants a, b, c1, c2 such that: 

 

a c1 + b c2 = 0 , 

and further choose: 

2 (r) = 2 3

2

1m m

k r
, so 2 ( )r dr  = 1/22 3

2
2

m m
r

k
, 

 along with: 

U =
2 2

1/22 3

1

2 (1 )2
,

m m a b
F r r

k m

 + +
 
 
 

 = 2 22 3 3
1 1 22
( )

m m
m c c

r
− +  , 

then the expression: 

H = − 
2

2 2 2 2 2 2 2 31 1
2 2 2 2 3 3 3 32 2 2

( ) ( ) 1
m m r

m x y z m x y z
r k

 
     + + − + + − + 

 
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will yield the kinetic potential of Weber’s law, while the coordinates x1, y1, z1 are given by: 

 

  x1 = 1/22 3
1 2 2

1

22

(1 )

m ma
c t r

k m a b
−

+ +
, 

  y1 = 1/22 3
2 2 2

1

22

(1 )

m mb
c t r

k m a b
−

+ +
, 

  z1 = 1/22 3

2 2

1

22

(1 )

m m
r

k m a b+ +
, 

 

in which one can also choose a = 0, b = 0 such that one will have: 

 

x1 = c1 t , y1 = c2 t , z1 = 1/22 3

1

22 m m
r

k m
. 

 

 Therefore, if one of three mass-points is coupled with the other two by the condition that its 

distance from a fixed plane is always proportional to the square root of the distance between the 

other two mass-points, while the latter are attracted according to Newton’s law, then its motion 

will take place according to Weber’s law. 

 

 Finally, if we consider the case in which two constraint equations exist between the coordinates 

the three mass-points, which might take the form: 

 

y1 = f (x1, y1, z1, x2, y2, z2, x2, y3, z3) , z1 =  (x1, y1, z1, x2, y2, z2, x2, y3, z3) , 

 

then the kinetic potential will go to: 

 

(14)   

2 2

21
1 12

1 1

2 2

21
2 1 1 22

1 1

2 2

21
2 1 1 22

1 1

1 1 2

1 2 1 2

1

1 2 1

1
f

H m x
x x

f
m m m x

x x

f
m m m x

x x

f f
m x x

x x x x

f f
m

x y x







 

 

     
 = − + +   

      

     
 − + +   

      

     
 − + + −   

      

    
 − + 

    

   
− +

   
1 2

2

1 2 2 2 3 3 3( , , , , , , , , ).

x y
y

U x f x y z x y z


















 
  + 

 
 −
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If that should be independent of x1 then that would also have to be true for the coefficients of the 

derivatives of the coordinates, and therefore the expressions: 

 
2 2

1 1

f

x x

    
+   

    
, 

2 2

2 2

f

x x

    
+   

    
, 

2 2

2 2

f

y y

    
+   

    
, …, 

 

1 2 1 2

f f

x x x x

    
+

   
, 

1 2 1 2

f f

x y x y

    
+

   
, …  

 

would be functions of only x2, y2, z2, x2, y3, z3 . 

 If one sets: 

 

(15) 

2 2

1 1

f

x x

    
+   

    
= 1 ,  

2 2

2 2

f

x x

    
+   

    
= 2 , 

1 2 1 2

f f

x x x x

    
+

   
 =  , 

 

in which 1, 2,  mean the coordinates of the second and third mass-points, then by simply 

combining them, that will imply that the function  must satisfy the partial differential equation: 

 

(16)   

2 2

2 1

1 1 1 2

2
x x x x

   
 

      
+ −    

      
 = 1 2 – 2, 

 

while f and  are coupled by the relations: 

 

(17)   

2

1 2 1

1 1 1

2

1 2 2

2 1 1

,

,

f

x x x

f

x x x

 
  

 
  

  
−  = − +   


   −  = − + 

   

 

 

and, in turn, upon differentiating the first of those equations by x2 and the second one by x1, one 

will get a further second-order partial differential equation for  : 

 

 (18)  

2 2 2

2 12 2

1 2 1 2

2

1 22

1 1 2 2 2

21 1
1 22

2 2 1 2 2

2

1
( )

2

1
( ) 0.

2

x x x x

x x x

x x x

  
 

 
 

 

 
 

 

   
+ − 

   
     

+ −  −  
 −    

    + − −  = 
   −   
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 If one now partially differentiates equation (16) with respect to x1 and x2, and then the first 

equation thus-obtained with respect to x1 and x2 and the second one with respect to x2 then one will 

get five equations in the differential quotients that have orders two and three in the function . If 

one differentiates equation (18) with respect to x1 and x2, along with those three equations in the 

same quantities, then that will give eight equations (which one easily sees to be independent of 

each other) in the seven quantities: 

 
2

2

1x




,      

2

1 2x x



 
,      

2

2

2x




,      

3

3

1x




,      

3

2

1 2x x



 
,      

3

2

1 2x x



 
,      

3

3

2x




. 

 

When one eliminates them, that will yield a relation of the form: 

 

(19)     1 2

1 2

, ,F x
x x

   
 

  
 = 0 , 

 

in which the variable x1 does not occur. The two equations (16) and (19) now demand that 
1x




 

and 
2x




 must be independent of x1 , and therefore since the same thing must be true for the other 

variables, one will have: 

 

(20)  = b x1 +  (x2, y2, z2, x3, y3, z3) , 

 

in which b means a constant. Therefore, from (17), 
1

f

x




 and 

2

f

x




 must also be independent of x1, 

and f can be represented in the form: 

 

(21) f = a x1 + F (x2, y2, z2, x3, y3, z3) , 

 

in which a, in turn, represents a constant. As one can see immediately, the forms for f and  that 

were just found are not only the necessary, but also sufficient, conditions for the kinetic potential 

H to be independent of x1 when the force function is subject to a condition of the form: 

 

(22)   

1 1 1 1 1 1 2 2 2 3 3 3

1 1 2 1 1 1 2 2 2 3 3 3

1 1 1 1 2 2 2 3 3 3

( ) ( , , , , , , , , )

( ) ( , , , , , , , , )

( , , , , , , , ).

U y a x F x y z x y z x y z

z b x x y z x y z x y z

y a x z b x x y z x y z







= − −


+ − − 
 + − −

 

 

 Now, since the form of the kinetic potential: 
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(23)   

2 2 21
1 12

2 2

21
2 1 1 22

2 2

2 2

21
2 1 1 22

2 2

1 1 2

2 2

1 1 2

2 2

1

2 2 2 2

(1 )H m a b x

F
m m m x

x x

F
m m m y

y y

F
m a b x x

x x

F
m a b x y

y y

F F
m

x y x y

= − + +

     
 − + +   

      

     
 − + + +   

      

  
 − + 

  

  
 − + − 

  

    
− +

   
2 2

2 2 2 3 2 3( , , , , , , , )

x y

F x y z x y z

















 
   − 
 


− 

 

 

implies that the Lagrange equation that belongs to x1 : 

 

1

H

x




 = c m1 , 

 

in which c means an integration constant, will assume the form: 

 

(24)    2 2

1(1 )a b x+ +  = − 
dF d

c a b
dt dt


− − , 

 

upon substituting the value of 1x  in the six following equations, e.g., the first of them will give: 

 

2 2

H d H

x dt x

    
−   

    
 = 0 , 

 

when all external forces are assumed to be equal to zero. Since: 

 

2

( )H

x




 = 1

2 1 2

xH H

x x x

     
+   

     
 = 1

1

2 2

xH
c m

x x

  
+ 

  
, 

2

( )H

x




 = 1

2 1 2

xH H

x x x

     
+   

       
 = 1

1

2 2

xH
c m

x x

  
+ 

   
, 

when one sets: 
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(25)     H = (H) − 1 1c m x , 

 

the Lagrange equation will become: 

2 2

d

x dt x

 
−

 

H H
 = 0 , 

 

and the same thing will be true for the other five equations of motion for the same kinetic potential 

H. 

 If one now substitutes the value of 1x  from equation (24) in (25) then that will give the kinetic 

potential in the form: 

 

(26)     

2 22 2 2

1 1
1 1 12 22 2 2 2 2 2

2 2 2

1 1 12 2 2 2 2 2

2 2 2 2 2 21 1
2 2 2 2 3 3 3 32 2

2 2 2 3 3 3

1 1 1

1 1 1

1 1

1 1 1

( ) ( )

( , , , , , , , ) ,

b dF a d a dF d
m m m

a b dt a b dt a b dt dt

a dF b d c
m m m

a b dt a b dt a b

m x y z m x y z

F x y z x y z

 + +  +    
= − − +    

+ + + + + +   
 + + 

+ + +
+ + + + + +

     − + + − + +

− 

H





 

 

and one will then find that: 

 

 The necessary and sufficient condition for the motion of three material points whose 

coordinates are subject to two constraint equations to go from seven equations of motion to one 

equation in complete differential quotients with respect to time, or equivalently, for the kinetic 

potential to be independent of one of the seven coordinates, is that the constraint equations must 

have the form: 

y1 = a x1 + F ,  z1 = b x1 +  , 

 

in which a and b are constants, and F, as well as , must depend upon only: 

 

x2 , y2 , z2 , x3 , y3 , z3 , 

 

and the force function must possess the form: 

 

  U = (y1 – a x1 – F) 1 (x1 , y1 , z1 , x2 , y2 , z2 , x3 , y3 , z3) 

  + (z1 – b x1 – ) 2 (x1 , y1 , z1 , x2 , y2 , z2 , x3 , y3 , z3) 

 +  (y1 − a x1 , z1 − b x1 , x2 , y2 , z2 , x3 , y3 , z3) . 

 

In that case, the six equations of motion for the coordinates x2 , y2 , z2 , x3 , y3 , z3 will once more 

assume the Lagrangian form for the kinetic potential H that is given by equation (26). 
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 The form for the force function that was found above demands that the force that acts upon the 

first point must satisfy the relation: 

X1 = − a Y1 – b Z1 , 

when 1 = 0, 2 = 0. 

 Should the kinetic potential, in turn, have the form (10), so W is determined by the expression 

(11), then one would need to have: 

 
2

2 ( )
dr

r
dt


 
 
 

= 

2 22 2

1 1
1 1 12 22 2 2 2 2 2

1 1

1 1 1

b dF a d ab dF d
m m m

a b dt a b dt a b dt dt

+ +     
+ −   

+ + + + + +   
, 

 

 1( )
dr

r
dt

 = − 1 12 2 2 21 1

ac dF bc d
m m

a b dt a b dt


−

+ + + +
, 

 

 0 (r) = − 
2

1
1 2 2 2 3 3 32 2 2

( , , , , , , , )
1

c
m F x y z x y z

a b
+ 

+ +
, 

 

from which it would easily follow that: 

 

dF

dt
 = 

2 2 2 2 2 2 2 2

1 1 2 1

2 2

1

(1 ) ( ) 2 ( ) ( ) (1 ) ( )

( )

a a b r b m c a b r a b r dr

m c a b dt

  − + + + + − + +


+
, 

 

d

dt


 = 

2 2 2 2 2 2 2 2

1 1 2 1

2 2

1

(1 ) ( ) 2 ( ) ( ) (1 ) ( )

( )

b a b r a m c a b r a b r dr

m c a b dt

  − + + − + − + +


+
, 

 

and therefore: 

(27)  F = 

2 2 2 2 2 2 2 2

1 1 2 1

2 2

1

(1 ) ( ) 2 ( ) ( ) (1 ) ( )

( )

a a b r b m c a b r a b r
dr

m c a b

  − + + + + − + +

+  

and 

(28)   =

2 2 2 2 2 2 2 2

1 1 2 1

2 2

1

(1 ) ( ) 2 ( ) ( ) (1 ) ( )

( )

b a b r a m c a b r a b r
dr

m c a b

  − + + − + − + +

+  

 

are functions of only r. In addition: 

 

(29)  0 (r) = − 
2

1
1 2 2 2 3 3 32 2 2

( ( ), ( ), , , , , , )
1

c
m F r r x y z x y z

a b
+ 

+ +
, 

so 
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(30) 

1 1 1 1 1 1 2 2 2 3 3 3

1 1 2 1 1 1 2 2 2 3 3 3

1 1 1 1

( ( )) ( , , , , , , , , )

( ( )) ( , , , , , , , , )

( , ),

U y a x F r x y z x y z x y z

z b x r x y z x y z x y z

y a x z b x







= − −


+ − − 
 + − −

 

 

and the constraint equations between the coordinates will become: 

 

(31)    y1 = a x1 + F (r) , z1 = b x1 +  (r) . 

 

 We then find that: 

 

 The necessary and sufficient condition for the motion of three material points m1, m2, m3 whose 

coordinates are subject to two conditions to go from seven equations of motion to one equation in 

complete differential quotients with respect to time, while the remaining six again assume the 

Lagrange form as a result of eliminating the coordinates of one point, and for the kinetic potential 

of the latter to be composed of the negative sum of the vis viva of the other two points and a function 

of the distance r between them and its derivatives with respect to time, moreover, is that the two 

constraint equations between the coordinates must have the form (31), in which F (r) and  (r) 

are determined by the expressions (27) and (28), in which 1 (r) and 2 (r) mean arbitrary 

functions of r, and furthermore that the force function must be represented by an expression of the 

form (30). The kinetic potential for the motion of the two points will then read: 

 

(32)  

2 2 2 2 2 21 1
2 2 2 2 3 3 3 32 2

2 2

1
2 1 12 2 2

( ) ( )

( ) ( ) ( , , ) ,
1

m x y z m x y z

dr dr c
r r m F r

dt dt a b
  

      = − + + − + +

  

− − + −   
+ + 

H

 

 

and from (24), the coordinates x1, y1, z1 will be given by the expressions: 

 

x1 = − 
2

12 2

1

1
( )

1

c
t r dr

a b m c
+

+ +  , 

 

y1 = − 

2 2 2 2 2 2 2 22
1 1 2 1

2 2 2 2

1

(1 ) ( ) 2 ( ) ( ) (1 ) ( )

1 ( )

a a b r b m c a b r a b rc
t dr

a b m c a b

  − + + + + − + +
+

+ + + , 

 

z1 = − 

2 2 2 2 2 2 2 2

1 1 2 1

2 2 2 2

1

(1 ) ( ) 2 ( ) ( ) (1 ) ( )

1 ( )

b a b r a m c a b r a b rbc
t dr

a b m c a b

  − + + − + − + +
+

+ + + . 

 

 If one would like to be led to Weber’s law then one must, in turn, set: 
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1 (r) = 0 , 2 (r) = 2 3

2

1m m

k r
, 

U =  (F, , r) = 
2

2 3 1
12 2 21

m m c
m

r a b
+

+ +
, 

 

for which the kinetic potential (32) will assume the form: 

 

H = 
2

2 2 2 2 2 2 2 31 1
2 2 2 2 3 3 3 32 2 2

( ) ( ) 1
m m r

m x y z m x y z
r k

 
     + + − + + − + 

 
 , 

 

while from (27) and (28) the constraint equations between the coordinates will go to: 

 

y1 = 1/22 3
1 2 2

1

22

( )

m mb
a x r

k m a b
+

+
, 

z1 = 1/22 3
1 2 2

1

22

( )

m ma
b x r

k m a b
−

+
, 

 

and the coordinates x1, y1, z1 will be given by the expressions: 

 

 x1 = − 
2 21

c
t

a b+ +
, 

y1 = − 1/22 3

2 2 2 2

1

22

1 ( )

m ma c b
t r

a b k m a b
+

+ + +
, 

z1 = − 1/22 3

2 2 2 2

1

22

1 ( )

m mbc a
t r

a b k m a b
−

+ + +
. 

 

 If one takes b = a then the constraint equations will go to: 

 

y1 = 1/22 3
1 2 2

1

22

( )

m m
a x r

k m a b
+

+
, 

z1 = 1/22 3
1 2 2

1

22

( )

m m
a x r

k m a b
−

+
, 

 

and if one finally sets a = 0 then it will follow that: 

 

 If one of the three mass-points is subject to the condition that its distance from two mutually-

perpendicular planes always remains proportional to the square root of the distance between the 
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other two mass-points, but with opposite signs on the factor, while the latter are attracted 

according to Newton’s law, then its motion will take place according to Weber’s law. 

 

 The force function will then have the form: 

 

U = 22 3 1
12

m m
m c

r
+ , 

 

in which c means the x-component of the initial velocity of the first point. 

 

___________ 



§ 15. – Extension of Helmholtz’s principle of hidden motion  

for the general first-order kinetic potential 
 

 

 The idea that led Helmholtz to introduce his principle into the mechanics of ponderable masses 

was that for physical processes that could be described by Lagrange’s equations when the kinetic 

potential is not clearly resolvable into current and potential energy and possesses not only terms 

that are quadratic in the derivatives of the coordinates, but also ones that are linear in them, one 

might introduce a large number of ponderable material points that belong to a kinetic potential in 

the conventional sense and whose Lagrange equations would lead back to the Lagrange equations 

for the original physical process upon eliminating the coordinates of the newly-introduced points. 

 In what follows, we would now like to take up the problem of eliminating the coordinates 

between the Lagrange equations of motion in full generality for the extended Lagrange equations, 

as well, but for the sake of simplicity of representation, we shall first make the assumption that the 

kinetic potential H depends upon only the coordinates and their first derivatives, so it is one of first 

order, but other than that, it is an arbitrary function of those quantities that is free of time. The 

extension to the case in which the kinetic potential includes the derivatives of the coordinates to 

arbitrarily-high order will be immediately clear (*). 

 The problem that will be solved in what follows will then read: 

 

 Under what conditions will the elimination of a number of coordinates in a system of Lagrange 

equations with a first-order kinetic potential lead, in turn, to Lagrange equations with a first-order 

potential? 

 

 If we first look for the necessary and sufficient conditions for the left-hand sides of the first  

Lagrange equations of motion to be representable as complete differential quotients with respect 

to time of a function of the coordinates and their derivatives, such that we will have: 

 

r r

H d H

p dt p

 
−

 
 = rdK

dt
  or 

r

H

p




 = r

r

d H
K

dt p

 
+ 

 
 , 

 

then if we preserve the previously-used notations, we will have: 

 

r

r

H
K

p


+


 = r (p1, …, p, p1, …, ps) . 

 

Since H / pr does not include the second derivatives of the coordinates, it must be free of their 

first derivatives, and therefore H / pr, as the total differential quotient of a function of just the 

coordinates, must be a linear function of their first derivatives in the form: 

 
 (*) How that same problem can be treated as a problem in the calculus of variations on the basis of Hamilton’s 

principle will be shown in a later investigation. 
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(1)  
r

H

p




 = rd

dt


. 

 

When r1 and r2 mean two numbers from the sequence 1, 2, …, , that will immediately imply that: 

 

(2)  1

2

r

r

d

dt p




 = 2

1

r

r

d

dt p




, 

so 

(3)  1

2

r

rp




 = 2

1 2

1

r

r r

r

c
p


+


, 

 

in which 
1 2r rc  mean constants for which one has: 

 

1 2r rc = − 
2 1r rc . 

 

 If one now multiplies equation (1) by dpr and adds the equations thus-obtained for r = 1, 2, …, 

 then it will follow that: 

1 2

1 2

H H H
dp dp dp

p p p




  
+ + +

  
 

 

 = 1 1
1 1 1

1 1

p dp dp p dp dp
p p p p

 

  

 

      
 + + + + + +          

 

+ 1 1
1 1 1

1 1

dp dp dp dp
 

  

 

      
 + + + + + +          

p p
p p p p

 , 

 

or by means of (3), upon integration: 

 

 H = 
1 1 21 2 1 1 1 1, 1( ) ( )p c p c p p c p c p         − −
 + + + + + + + +  

+ 1 1
1 1 1

1 1

dp dp dp dp
 

  

 

      
 + + + + + +          
 p p

p p p p
 

 + 
1 1 1( , , , , , , , , )p p  

    p p p p , 

 

in which  means an arbitrary function of the included quantities, and the coefficients of 1
p , …, 


p  are represented as complete differential expressions in the variables p1, …, pr by means of 

equations (3). Finally, if one sets: 
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1 1 1 1
1 1 , 1 1 , 1 12 2 2 2r r r r r r r r rc p c p c p c p  − − + +− − − − − −  = r  

 

then r  will mean functions of p1, …, p, p1, …, ps that satisfy the condition: 

 

(4)  1

2

r

rp




 = 2

1

r

rp




 

 

according to (3). That will then imply that the necessary condition for the first  Lagrange 

equations to go to complete differential quotients with respect to time is that the kinetic potential 

H must take the form: 

H = 1 1 1
1 1 1 1 1

1

)p p dp dp dp dp


    

  

  
 

     
   + + + + + + + + +         

 p p
p p p p

 

 + 1
1 1 2 2 1 1 12

1

( ) ( , , , , , , , , )r r r r

r

p c p c p c p p p


    
=

    + + + +  p p p p , 

  

or since Lemma 3 says that one can add the differential quotient of an arbitrary function of t, p1, 

…, p, p1, …, ps with respect to t to any first-order kinetic potential, and: 

 

1 1 1
1 1 1 1 1

1

)p p dp dp dp dp


    

  

  
 

     
   + + + + + + + + +         

 p p
p p p p

 

 

is the differential quotient of: 

1 1 2 2( )dp dp dp   + + +  

 

with respect to t, it must take the form: 

 

(5)  , 1 1 , 2 2 1 1 1

1

( ) ( , , , , , , , , )r r r r r r r r

r

p C p C p C p p p


    + + + +

=

    + + + +  p p p p  , 

 

in which Cr,r+1, …, Cr mean arbitrary constants. However, that form is also sufficient. 

 

 That is because it follows immediately from this that in that form, the system of the first  

Lagrange equations will be: 

 

1 1 2 2 1, 1 , 1 1 , 2 2r r r r r r r r r r r r

r

d
C p C p C p C p C p C p

dt p
 − − + + + +


     − − − + + + + +


 = − Pr , 

or when integrated over t : 
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(6)  1 1 2 2 1, 1 , 1 1 , 2 2r r r r r r r r r r r r

r

C p C p C p C p C p C p
p

 − − + + + +


− − − + + + + +


= r rh P dt−  , 

 

in which hr means an integration constant, and the external forces might be given functions of 

time. 

 Now, should the  coordinates p1, …, p, and their first derivatives be eliminated from the  

equations of motion: 

(7)      
H d H

dt 

 
−

 p p
 = Ps 

 

with the help of (6) then two and only two assumptions are permissible: 

 

 a) If we assume that equations (6) are independent of the coordinates p1, …, p, and develop 

the values of 1p , …, p
  from those equations then since those  coordinates are not included in 

, we must have: 

C1r = C2r = … = Cr−1,r = Cr,r+1 = Cr,r+2 = … = Cr = 0 . 

 

The values of 1p , …, p
  that are obtained from the equations: 

 

 (8)  
rp




 = r rh P dt−  , 

 

whose determination assumes that the determinant of the partial differential quotients of  with 

respect to the derivatives of the coordinates p1, …, p is non-zero, will then be represented by: 

 

(9)     

1 1 1 1

1 1

( , , , , , , ) ,

................................................

( , , , , , , ) ,

p t

p t

 

   

   = 


   = 

p p p p

p p p p

 

 

into which t does not enter explicitly when the external forces P1, …, P are zero. If one now forms 

the system of  Lagrange equations (7) from (5) then that will give them in the form: 

 

s s

d

dt

   
−

 p p
 = Ps , 

 

in which  is a function of p1, …, p , 1
p , …, 

p , 1p , …, p
 , or after substituting the values (9), 

in the form: 
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(10)     
s s

d

dt

      
−   

    p p
 = Ps , 

 

with the notation that we have always used. 

 However, since (8) implies that: 

 

  
( )

s

 

p
 = ( ) ( )1

1 1

s s s

h P dt h P dt


 

     
+ − + + − 

   
 p p p

, 

  
( )

s

 

p
 = ( ) ( )1

1 1

s s s

h P dt h P dt


 

     
+ − + + − 

     
 p p p

, 

when one sets: 

H = ( ) ( ) ( )1 1 1h P dt h P dt   + −  + + −   , 

 

in which H means a function of t, p1, …, p , 1
p , …, 

p , equations (10) will then go to: 

 

s s

d

dt

 
−

 

H H

p p
 = Ps . 

 

The Lagrange equations of motion will then keep their original form, while the kinetic potential 

H in them will be a function of the coordinates p1, …, p , and their first derivatives that will have 

a completely-different form from the given potential H. 

 If we next summarize the first part of the theorem that this gives then we will find that: 

 

 The necessary and sufficient condition for the left-hand sides of the Lagrange equations of 

motion that correspond to the coordinates p1, …, p for a kinetic potential H that is free of t to be 

completed by the time derivatives of functions of all coordinates and their first derivatives, which 

do not, however, include the coordinates p1, …, p themselves, is that the kinetic potential must 

have the form: 

 

(11)    H = 
1 1 1( , , , , , , , , , )t p p  

    p p p p , 

 

in which  is an arbitrary function of the quantities in parentheses. 

 When the first  of the equations of motion, which assume the form: 

 

1p

 


 = 1 1h P dt−  , …, 

p




 = h P dt −  , 
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determine the quantities 1p , …, p
 as functions of t, p1, …, p , 1

p , …, 
p , under the assumption 

that the determinant of the second differential quotients of  with respect to 1p , …, p
  does not 

vanish identically, and one then substitutes them and sets: 

 

H = ( ) ( ) ( )1 1 1( ) ( )h P dt p h P dt p  
  − − − − −  , 

 

the other  equations of motion will, in turn, go to the Lagrangian form: 

 

s s

d

dt

 
−

 

H H

p p
 = Ps , 

 

in which H is, in turn, a first-order kinetic potential. 

 

 The form (11) of the kinetic potential is independent of p1, …, p , so: 

 

1

H

p




 = 0 , …, 

H

p




 = 0 , 

 

and the left-hand sides of the first  Lagrange equations will then become complete differential 

quotients: 

1

d H

dt p




, …, 

d H

dt p




, 

 

which is the case that Helmholtz considered for the kinetic potential in the mechanics of 

ponderable masses: 

H = − T – U , 

 

in which the derivatives of the coordinates enter in only degree two, since the equations of motion 

do not include time explicitly, and equations (6) will then be linear in them. It will then be clear 

that: 

 

 For kinetic potentials in the mechanics of ponderable masses, the case of hidden motion that 

Helmholtz emphasized, for which the kinetic potential should be independent of some of the 

coordinates, will be the only case in which the associated Lagrange equations will go to complete 

differential quotients with respect to time (which is always the case then) and admit eliminations 

of the coordinates that make the resulting equations of motion, in turn, assume the Lagrangian 

form for a first-order kinetic potential. 

 

 The theorem that was developed above for an arbitrary first-order kinetic potential then yields 

a generalization of the principle of hidden motion in one direction. 
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 We now go on to the second part of the investigation, in which we, in turn, establish the 

necessary and sufficient form (5) for the kinetic potential H to represent the first  Lagrange 

equations as complete differential quotients with respect to time, and assume: 

 

 b) Equations (6) are independent of the 1p , …, p
 . We will then be dealing with the 

calculation of the coordinates p1, …, p from those equations and their substitution in the other  

equations of motion. It will follow immediately from the assumption that was made that: 

 

(12)    = 
1 1 1 1 1 1 1 1( , , , , , ) ( , , , , , ) ( , , , , , )p p                + + +p p p p p p p p p p p p , 

 

and from (5), the kinetic potential will then assume the form: 

 

(13)   H = , 1 1 , 2 2

1

{ (r r r p r r p r

r

p C p C p C p


 + + + +

=

+ + +  

  + 1 1( , , , , , )}r    p p p p  

  + 1 1( , , , , , )   p p p p . 

 

 The fact that this case is excluded in the mechanics of ponderable masses emerges from the 

fact that the kinetic potential includes 1p , …, p
  only linearly. If one again forms the expression: 

 

H d H

dt 

 
−

 p p
 

then, as is easy to see, when one sets: 

 

(14) 
1 1p p    + + +  =  , 

 

in which  is independent p1, …, p, that will give the second set of  Lagrange equations in the 

form: 

(15)     
s s

d

dt

 
−

 

H H

p p
 = Ps . 

 

The question will now arise of whether, for arbitrary functions 1, 2, …,  of p1, …, p , 1
p , …, 


p , one can use the first  Lagrange equations, which assume the form: 

 

(16) − C1r p1 − C2r p2 −  − Cr−1,r pr−1 + Cr,r+2 pr+2 +  + Cr  p 

 

  = 1 1( , , , , , )r r rh P dt    − − p p p p   (r = 1, 2, …, ), 
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from (6) and (12), in order to express the quantities p1, …, p in terms of t, p1, …, p , 1
p , …, 

p , 

so 1p , …, p
  are expressed in terms of t, p1, …, p , 1

p , …, 
p , 1

p , …, 
p , such that substituting 

that in (15) will make the resulting equation: 

 

(17)  
s s

d

dt

      
−   

    p p
 = Ps , 

 

in turn, assume the Lagrangian form. 

 The investigation has now become essentially more complicated, and as we will see, that fact 

is closely connected to some later general considerations that will also allow us to treat the question 

here without the help of the transformation of Hamilton’s principle. 

 Since one has: 

 

s

 

p
= 

1

r
r

r s s

p
  

=

 
 +

 


p p
,  

s

 

p
 = 

1

r
r

r s s

p
  

=

 
 +

  


p p
, 

 

from (14), equation (17) will go to: 

 

(18)   
1 1

( ) ( )r r
r r

r rs s s s

d d
p p

dt dt

    

= =

   
 − + −

    
 

p p p p
 = Ps . 

 

If one is to investigate the possibility of converting the left-hand side of that equation into 

Lagrangian form then it will suffice to ignore the last two terms, since they already appear in the 

desired form. 

 If one differentiates equation (16) with respect to t, multiplies it by ( )rp , and sums over r from 

1 to  then that will yield: 

 

(19) 
1 1

1 1 1 11

( ) ( ) ( ) ( )r r r r
r r r r

r r r rs

p p p p
   

 

 

   

= = = =

   
       + + + + +

     
   p p p p

p p p p
 = −

1

( )r r

r

P p


=

 . 

 

If one differentiates that with respect to t, makes a subsequent substitution, differentiates the 

identity (16) with respect to s
p , multiplies it by 

( )r

s

p

p
, and in turn sums over r from 1 to  then 

it will follow that: 

(20)     
1

( )r r

r s s

p 

=

 

  


p p
 = 0  (s = 1, 2, …, ). 

 If we now set: 

1 1

( ) ( )r r
r r

r rs s

d
p p

dt

  

= =

 
 −

 
 

p p
 = Qs 
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in equation (18), or: 

 

(21) Qs = 
1

( ) r
r

r s

p
 

=







p
 

 − 
2 2

1

1 11 1

( ) ( )
( ) ( ) ( ) ( )r r r r r r

r r r r

r rs s s s

p p
p p p p

 



 

   

= =

         
     + − − +   

             
 p p

p p p p p p p p
 

 − 
2 2

1

1 11 1

( ) ( )
( ) ( ) ( ) ( )r r r r r r

r r r r

r rs s s s

p p
p p p p

 



 

   

= =

         
     + − − +   

                 
 p p

p p p p p p p p
 

 − 
1

1 11

( ) ( )r r r r

r rs s

p p 





 

= =

    
 − −

      
 p p

p p p p
, 

 

then we will see from (20) that the coefficient of 
p in Qs will generally be zero only when we 

have  = s, or that Qs is a linear function of: 

 

1
p , …, 1s−

p , 1s+
p , …, 

p . 

 

However, it already follows from this that Qs cannot be put into the Lagrangian form with a first-

order kinetic potential, as it should, since it cannot include third-order derivatives. [Whether 

kinetic potentials of order higher than one can occur will first be implied by a later investigation 

(*).] 

 
 (*) In order to examine whether Qs possesses a second-order kinetic potential, so it can be represented in the form: 

 

Qs = 

2

1 1 1

2

s s s

d d

dt dt

  
− +

   

H H H

p p p
, 

 

it should be remarked that since Qs is linear in 
1
p , …, 


p  from (21), H1 can also include the derivatives 

1
p , …, 


p  

only linearly. Now in order to be able to satisfy that equation, from Lemma 4, the quantities Qs , which do not include 

1
p , …, 

s
p , must satisfy the equations: 

 

()   

2 3

3

1 2 3( ) ( 1) 2 ( 2) 3
( 1)( 1) ( 2) (3 )

Q d Q d Q d Q

p dt p dt p dt p



   

   

   

  

−

−

+ + −
+ + −

   
− + + −

   
 = 

( )
( 1)

Q

p

 






−


 

 

identically, in which  = 0, 1, 2, 3, and ,  assume the values 1, 2, …, . 

  For  = s,  = s,  = 0, that equation will go to: 

 

2

2

s s s

s s s

d Q d Q d Q

dt dt dt
− +

  

    

 
 
 p p p

 = 0 . 

However, since: 

1 1

( ) ( )r r
s r r

r rs s

d
Q p p

dt

  

= =

 
 = −

 
 

p p
, 
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 Under the assumption that the functions 1, …, r,  that are included in the kinetic potential 

(13) are subject to no restrictions, it is only in the case when  = 1 (so only one Lagrange equation 

to be transformed comes under consideration) that equation (21) can go to an expression that is 

free of third derivatives, in which one can now drop the index s : 

 

Q = 
2 2

2
1 1 1

( ) ( )
( ) ( ) ( )r r r r r r r

r r r

r r r

p p
p p p

      

= = =

          
    − + − +   

              
  p p

p p p p p p p p
 

= 
1 1

( ) ( )r r
r r

r r

d
p p

dt

  

= =

 
 −

 
 

p p
. 

 

The question of whether that expression can be converted into Lagrangian form obviously needs 

to be addressed for only even , since for odd , the determinant of the left-hand side of 

equations (16), when they are differentiated with respect to t, is known to vanish. 

 If one now sets: 

 
it is easy to see, by means of (2) and (3) in § 2 that: 

 

2

2

s s s

s s s

d Q d Q d Q

dt dt dt
− +

  

    

 
 
 p p p

 

 
2 2 2

2
1 1 1 1

( ) ( ) ( )
( ) ( ) ( )r r r r r r r r r

r r r

r r r rs s s s s s s s s s s

p p pd
p p p

dt

        

= = = =

           
  = + − + − + 

                  
   

p p p p p p p p p p p
 

 

2 2

2 2
1 1 1 1

( ) ( ) ( ) ( )
( )r r r r r r r r r

r

r r r rs s s s s s s s s

p p p pd d d
p

dt dt dt

       

= = = =

            
− − − + − 

                 
   

p p p p p p p p p
 

1 1

( ) ( ) ( )r r r r r r

r rs s s s s s

p p pd

dt

   

= =

        
= − − 

        
 

p p p p p p
. 

 

Now, the expressions for 
1

p , …, p

  that are obtained from the system of equations (16) by differentiating them with 

respect to t are substituted in that equation in order to see whether that expression will vanish identically. For the sake 

of simplicity, let  = 2. That will yield the values: 

 

2 2
1

1

s s

s s s

p
  

=

  
  = + 

  
 p p

p p
 ,  1 1

2

1

s s

s s s

p
  

=

  
  = − + 

  
 p p

p p
 , 

 

and upon substituting that in the last expression: 

 
2

2

s s s

s s s

Q d Q d Q

dt dt
− +

  

    p p p
 = 

2 2 2 2
1 22 2 2 1 1 1 1 2 2 1

2 2s s s s

s s s s s s s s s s s s
s s

d

dt

                        
   + + − + + −                               

 
−

 
p p p p

p p p p p p p p p p p pp p
 = 0 . 

 

The identity is proved similarly for the other equations that are included in (), which we will come back to later. 
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1

( ) r
r

r

p
 

=







p
 = K , 

1

( ) r
r

r

p
 

=







p
 = L , 

such that one will have: 

(22)  Q = K − 
dL

dt
, 

 

then since Q does not include the third-order derivative of p, L must also be free of p, since the 

( )rp  depend upon only p, p, and p, and equation (19) will assume the form: 

 

(23)     p K + pL = −
1 1( ) ( )P p P p 

 − − , 

in the present case. 

 However, from Lemma 4, the necessary and sufficient condition for a function Q that depends 

upon t, p, p, p to possess a first-order kinetic potential is that: 

 

(24) 
Q d Q

dt

 
−

  p p
 = 0 , 

 

and when one considers the fact that L does not include p, it will then follow from equation (22) 

that: 

(25) 
Q d Q

dt

 
−

  p p
 = 

K d K L

dt

  
− −

   p p p
. 

Furthermore, when one sets: 

(26) 1 1

1
( ( ) ( ))P p P p 

 + +
p

 = N , 

 

in which N depends upon p, p, p, and indeed linearly in the last quantity, equation (23) will yield 

the value: 

K = − L N


−


p

p
, 

 

so the substitution of that expression in (25) will give: 

 

(27) 
Q d Q

dt

 
−

  p p
 = − 

N d N

dt

 
+

  p p
. 

 

Equation (24) will then be fulfilled, so Q will possess a first-order kinetic potential when the 

external forces P1, …, Pr are all zero, since it will also follow from (26) that N = 0 in this case. 

However, if the external forces do not vanish then it will suffice to examine the case of  = 2, in 

which differentiating equations (16) with respect to t will yield: 
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1p  = 2 2
2P

  
 + +

 
p p

p p
, 2p  = − 1 1

1P
  

 − −
 

p p
p p

, 

and (26) will give: 

N = 1 2 2 1P d P d

dt dt

 
−

 p p
. 

 

From that, as one can see immediately, it will follow by means of (2) and (3) in § 2. that: 

 

− 
N d N

dt

 
+

  p p
 = 2 1

1 2

1
P P

   
 − 

    p p p
 , 

 

and it can then be concluded from (27) that equation (24) can only be fulfilled when the external 

forces are all constant. 

 If we summarize the results that we have obtained then that will give the following theorem: 

 

 The necessary and sufficient condition for the  Lagrange equations: 

 

  
r r

H d H

dt

 
−

 p p
 = Pr   (r = 1, 2, …, ) 

 

to go to complete differential quotients with respect to time of functions of the coordinates p1, …, 

p, p1, …, p, and their derivatives (which are, however, independent of 1p , …, p
 ) is that the 

kinetic potential must have the form: 

 

H =  , 1 1 , 2 2

1

(r r r r r r r r r

r

p C p C p C p


   + + + +

=

 + + + + +  , 

 

in which Cr,r+1, …, Cr are arbitrary constants, and 1, …, ,  represent arbitrary functions of 

p1, …, p, 1
p , …, 

p . In that case, if the functions that enter into H are subject to no further 

conditions then eliminating the coordinates p1, …, p, and their derivatives from the  equations 

and the  Lagrange equations 

  
s s

H d H

dt

 
−

 p p
 = Ps   (s = 1, 2, …, ) 

 

will again lead to Lagrange equations of the form: 

 

  
s s

d

dt

 
−

 

H H

p p
 = Ps   (s = 1, 2, …, ), 
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in which H represents a first-order kinetic potential in p1, …, p, 1
p , …, 

p , if and only if  = 1. 

Thus,  + 1 equations of motion will be included in the system, in total, and the external forces P1, 

…, P will be either zero or constant. 

 

 If  > 1 then equations (20) must be fulfilled, and when one sets: 

 

1

( ) r
r

r s

p
 

=







p
 = Ks , 

1

( ) r
r

r s

p
 

=







p
 = Ls , 

the quantity: 

(28)  Qs = Ks – sdL

dt
  

 

will not include the third derivatives of p1, …, ps, so Ls must be independent of the second 

derivatives of those quantities, while Ks must include the second derivatives linearly. Now, if one 

combines that equation with the relations that (19) will imply under the assumption that the forces 

P1, …, P are zero, namely: 

1 1

s s s s

s s

K L
 

= =

 + p p  = 0 , 

 

then when one multiplies the equation: 

 

Qs = Ks – sdL

dt
 = 1 1

s s

d

dt

 
−

 

H H

p p
 

 

by s
p  and sums over s from 1 to , the demand that it must be true will lead to: 

 

1 1

1 1

s s

s ss s

d

dt

 

= =

 
 −

 
 

H H
p p

p p
 = 

1 1

s
s s s

s s

dL
K

dt

 

= =

 + p p  = − 
1

s s

s

d
L

dt



=

 p , 

or since: 

1 1

1 1

s s

s ss s

d

dt

 

= =

 
 −

 
 

H H
p p

p p
 = 1

1

1

s

s s

d

dt



=

 
− 

 


H
H p

p
 , 

that will lead to: 

(29)  1

1

s

s s



=







H
p

p
 = 1

1

s s

s

L


=

+ H p  

 

upon integration. Integrating that partial differential equation will yield H as a function of ps and 

s
p , since L does not include the second derivatives. The details of the conditions that the 1, …, 
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 must fulfill in order for equations (20) to be satisfied identically are not very interesting, but for 

 = 2, it might suffice to give the condition in the form: 

 

1 2 1 2

1 2 2 1

      
−

      p p p p
 = 0 . 

 

 If we set  = 1 in that then, from (29), the first-order kinetic potential that was proved to always 

exist in the theorem that was stated above will be given by the equation: 

 

1




H
p

p
 − H1 = p L  or H1 = ( )

L
d   +

p p p p
p

, 

 

in which  (p) means an arbitrary function of p, so, e.g., for  = 2, since in that case, it would 

emerge immediately upon differentiating equations (16) with respect to t that: 

 

L = 1 2 1 2       
 − 

     
p

p p p p
 . 

 

Thus, for the case in which P1 = P2 = 0, the kinetic potential H will be given by: 

 

H = 1 2 1 2 ( ) ( , )d
   

 
    

   − + + 
     

p p p p p p
p p p p

, 

according to equation (18). 

 Once the assumption has been made that the first  Lagrange equations are represented as 

complete differential quotients with respect to time, the only two cases in which an elimination of 

the coordinates is still possible that shall be brought under consideration are defined by either the 

case in which the quantities p1, …, p, 1p , …, p
  are not included explicitly in the first  

equations. One then determines the values of 1p , …, p
  from them and substitutes the latter in 

the other  equations of motion, or the case in which the second derivatives of p1, …, p do not 

enter into the first  equations, in which one agrees that the new kinetic potential should once more 

be of order one, while the elimination of an arbitrary number of coordinates (which is always 

possible in the absence of conditions) will lead to completely-different forms for the results of the 

elimination, as we will see later on. Thus: 

 

 1) If the equations: 

r r

H d H

p dt p

 
−

 
 = Pr , 

in which Pr are given functions of t, or: 
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(30)  
2 2 2 2

1 1 1 1

s s

s sr r r r s r s

H H H H H
p p

p p p p p p p

   

 
  = = = =

    
   − − − −

             
   p p

p p
 = Pr 

 

are free of the coordinates p1, …, p, and their first derivatives then obviously the same thing must 

be true of the quantities: 
2

r

H

p p



  
 and 

2

r s

H

p



  p
. 

They must then have the forms: 

 
2

r

H

p p



  
 = 1 1( , , , , , )r    p p p p  , 

  
2

r s

H

p



  p
 = 1 1( , , , , , )rs  

  p p p p . 

Thus, since: 
3

r s

H

p p



    p
 = r

s



p
 = rs

p

 


 = 0 , 

 

r will be independent of s
p , and therefore: 

 

(31)      
2

r

H

p p



  
= r (p1, …, p) . 

 

However, since the remaining part of (30) must be free of the derivatives of the  coordinates, so 

for  = 1, 2, …, , the differential quotient with respect to p
 : 

 
2 2 3 3

1 1

s

sr r r s r s

H H H H
p

p p p p p p p

 


   = =

   
 − − −

                
  p

p p p
 = 0 

 

must be satisfied identically, it will follow that: 

 
2 2

1

r
s

sr r s

H H

p p p p




 



=

 
− −

     
 p

p
 = 0 . 

 

From that, one will have r = 2 cr , in which cr = cr means a constant, such that (31) will give 

the kinetic potential as: 

 

(33)   H = 
1 1 1 1 1 1

, 1 1

( , , , , , ) ( , , , , , )r r

r

c p p p p N p
 

   
 


= =

    + +  p p p p , 
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in which the functions  satisfy the condition: 

 

(34)  
rp




 = r

p




, 

 

according to the first of equations (32), and the first  equations of motion will assume the form: 

 

(35)  − 
1 1 1

2 r r
r

r

N
c p

p

  

   
   

 

= = =

 
  + − −

  
  p p

p p
 = Pr , 

 

but they are still not free of p1, …, p . In order for that to be the case, the coefficients of 
p  would 

have to be independent of those quantities, and therefore: 

 

(36)     r = 1 1 1 1( , , , ) ( , , , )r rR Q p +p p p , 

 

in which the functions Qr are subject to the condition: 

 

(37)  1

2

r

r

Q

p




 = 2

1

r

r

Q

p




, 

 

as a result of equation (34). If that is fulfilled then the middle two terms in equation (35) must be 

free of p1, …, p , and therefore with the use of (36): 

 

1

r

r

QN

p




 =


−

 
 p

p
 = 1 1( , , , )rT p p  

or 

(38)   N = 1
1 1 1 1 1

1

( , , , )
QQ

dp dp p T p T U




   
  =

 
 + + + + + +    

 p p p
p p

 , 

 

in which a complete differential in the variables p1, …, p is under the integral, due to (37). If we 

substitute the values of r and N from (36) and (38) in (33) then that will give the necessary 

condition for the first  Lagrange equations to be free of the quantities p1, …, 1p , … in the form 

of saying that the kinetic potential must have the following form: 

 

H = 1
1

, 1 1 1 1

( )r r r r

r r

QQ
c p p p R Q p dp dp p T U

  


      
    = = = =

 
   + + + + + + +    

    p p
, 
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in which all functions are arbitrary, but subject to only the condition (37), or since one again has 

that: 

1
1

1 1

QQ
p Q p dp dp

 


   
   = =

 
 + + +    

   p p
 

 

is a complete differential quotient with respect to t: 

 

(39)  H = 
, 1 1 1

r r r r

r r

c p p p R p T U
  

   
 = = =

  + + +   . 

 

Conversely, as is immediately obvious from (39), the first  equations of motion will assume the 

form: 

(40)  −
, 1 1 1

r r
r s s r

r s ss s

R R
c p T

  

 
 = = =

 
  − + +

 
  p p

p p
 = Pr , 

 

from which p1, …, 1p , … are missing, and we will then find that: 

 

 The necessary and sufficient condition for the first  Lagrange equations to be free of the 

coordinates p1, …, p, and their first derivatives is that the kinetic potential must have the form 

that is represented in (39). 

 

 If one substitutes the form that was found for H in the second set of  Lagrange equations 

then that will give immediately: 

 

(41)   −
1 1 1 1

r r r r
r r

r rs s s s s s s s

R RR T T Td d U d U
p p p p

dt dt dt

   
 

 
 = = = =

         
  + − + + − + −   

             
   

p p p p p p p p
 = Ps , 

 

in which the values of 1p , …, p
  that are obtained from (40) have been substituted. However, 

since that substitution does not once more introduce the quantities p and p , and the second set of 

Lagrange equations should include only the coordinates p1, …, ps, and their derivatives, the 

quantities p1, …, 1p , … will not occur in (41) at all, and therefore the relations: 

 

(42) r r

s s

T Td

dt

 
−

 p p
 = 0 

and 

(43)     r

s s s

R R Td

dt

   
− −

   p p p
 = 0 
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must be satisfied identically. However, from Lemma 3, equation (42) demands that Tr must have 

the form: 

 

(44)    − Tr = 1 1 1 1( , ) ( , )r r rT T c 
 + + +p p p p , 

 

in which cr is a constant, and: 

1s r

s

T

p
 = 

1

s r

s

T

p
, 

from which, (43) will go to: 

r

s

Rd

dt



p
 = r

sr

s

R
T


+

p
, 

which will therefore imply that: 

 

(45)   Rr = 
1 1 1 1 1( , ) ( , ) ( , )r r rR R R 

 + + +p p p p p , 

 

in which: 

(46)    1s r

s

R

p
 = 

1

s r

s

R

p
,  r

sr

s

R
T


+

p
 = 0 . 

 

The equations of motion (41) will then assume the form: 

 

(47)    − 
1

s

s s

U d U
p R

dt



 
 =

 
 + −

 


p p
 = Ps , 

 

while the kinetic potential (39) will go to: 

 

H = 1 1 1

, 1 1 1 1

( ) r r
r r r r r

r r

R R
c p p p R R R p c U

  

       
  = = =

  
      + + + + + + + + + 

  
  p p p p

p p
, 

 

or once more, after substituting the complete differential quotient with respect to t : 

 

1

r r

r

d
p R

dt



=

 , 

it will go to: 

H = 
1 1

, 1 1 1

( )r r r r r r r

r r r

c p p c p p R R U
  

   
 = = =

    + + + + +   p p . 

 

Finally, if one substitutes in equations (47) the values of 1p , …, p
  that are obtained from 

equation (40), when it is converted with the aid of (44), (45), (46): 
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− 
1 1

2 r sr s r

s

d
c p R c

dt

 

 
 = =

 − −  p  = Pr , 

 

then an easy calculation will show that when one sets: 

 

W = 1
11 1 1 1 1 12

, 1

{( ) ( ) }C R C R R C R C R R


          
 =

  + + + + + + p p  

− 
1 1

1 1

( )s s

s

C C P R d R d
 

    
= =

 
+ + + 

 
   p p , 

 

in which the quantities Crs = Csr are all constants, and complete differential expressions are under 

the integral sign due to (46), one will have: 

 

− 
1

sp R


 
 =

  = 
s s

W d W

dt

 
−

 p p
. 

When one sets: 

U + W = H , 

 

the second set of Lagrange equations will then go to: 

 

  
s s

d

dt

 
−

 

H H

p p
 = Ps   (s = 1, 2, …, ). 

 

If we combine the results that we obtained then that will give the following theorem: 

 

 The necessary and sufficient condition for the first  Lagrange equations to be free of the 

coordinates p1, …, p, and their first derivatives is that the kinetic potential must have the form: 

 

H = 
, 1 1 1

r r r r r r

r r r

c p p p R p T U
  

 
 = = =

  + + +   , 

 

in which R, T, U are arbitrary functions of p1, …, 1
p , …, and cr = cr . 

 If one further adds the requirement that the other Lagrange equations must also be 

independent of p1, …, p, 1p , …, p
  then the necessary and sufficient condition for that is that the 

kinetic potential must take the form: 

 

H = 
1 1

, 1 1 1

( )r r r r r r r

r r r

c p p c p p R R U
  

   
 = = =

    + + + + +   p p , 

 



§ 15. – Helmholtz’s theory for first-order kinetic potentials. 135 
 

in which cr means constants, Rsr mean functions of p1, …, ps that are subject to only the condition 

that: 

 1s r

s

R

p
 = 

1

s r

s

R

p
, 

 

and U represents an arbitrary function of p1, …, 1
p , … In that case, eliminating the quantities 

from all of the equations of motion will yield the last  of those equations in the coordinates 1p , 

…, p
 , and the derivatives, which will be, in turn, equations in the Lagrangian form: 

 

  
s s

d

dt

 
−

 

H H

p p
 = Ps   (s = 1, 2, …, ), 

 

in which the kinetic potential has the form: 

 

H = 1
11 1 1 1 1 12

, 1

{( ) ( ) }U C R C R R C R C R R


          
 =

 + + + + + + + p p  

− 
1 1

1 1

( )C C P R d R d
 

     
 = =

 
+ + + 

 
   p p , 

 

in which Cmn = Cnm and C represent arbitrary constants. 

 

 In so doing, it is essential to point out that this case also finds application in the mechanics of 

ponderable masses, since H includes terms of degree two in the derivatives 1p , …, p
 , and will 

therefore be either itself the kinetic potential of a problem in mechanics when the linear terms in 

those quantities do not occur in it, since the equations of motion should not include time explicitly, 

or when they do occur, it can be the kinetic potential of a problem with hidden motion, in the 

Helmholtz sense, when the coefficients of the linear terms are constants (*). 

 
 (*) For the sake of the later investigations, one might put forth an example of the case that was treated above that 

takes the form of a system of only two Lagrange equations of motion in p and p whose kinetic potential is then 

represented in the form: 

H = 
2

1
c p R p k p U  + + +p , 

 

which was found to be necessary and sufficient above, and in which c and k are arbitrary constants, R1 is an arbitrary 

function of p, and U an arbitrary function of p and p. The elimination of p, p , p  from the two equations of motion 

will, in turn, produce a Lagrange equation whose potential has order one, and indeed when P is zero, if and only if 

that potential is represented by: 

H = 
2 2

11

1

4 2

k
R R d

c c
U  − − p p  . 
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 2) If the first  Lagrange equations are free of the quantities 1p , …, p
  then under the 

assumption that (with the exception of the integrability of those equations) the only allowable 

assumption is that those equations are independent of either the  coordinates or their first 

derivatives, in addition. 

 

 The independence of the  equations of motion of the second derivatives next demands that 

since the second partial derivatives of the kinetic potential with respect to 1p , …, p
  must vanish, 

it must have the form: 

 

(48) H = 
1 1 1 1 1 1 1 1 1 1 1( , , , , , ) ( , , , , , ) ( , , , , , )p p p p p       + + +p p p p p p , 

 

and that will take the first  equations of motion to: 

 

(49)  1
1 1 1

1 1 1

r r r r

r r r

p p
p p p p p







          
   − + + − + − − − −              

p p
p p

 = Pr . 

 
  For the mechanics of ponderable masses, H must include only terms of degree two in p and p, and when one 

sets: 

U = U0 (p) + U1 (p) p + U2 (p) p2, 

 

one must have U1 (p) = 0 . The original and transformed kinetic potentials will then assume the forms: 

 

H = 
2 2

1 2 0
( ) ( ) ( )c p R p U k p U   + + + +p p p p p  

and 

H = 
2 2

2 1 10

1
( ) ( ) ( )

24
( )

k
U R R d

cc
U

 
−  

 
 + −p p p pp p , 

 

resp. It will then follow that this case does not represent a hidden motion in the Helmholtz sense, since H does not 

include terms that are linear in p. For the value of H that was found, the two equations of motion will read: 

 
2

1 1
2 ( ) ( )c p R R k   + + −p p p p  = 0 

and 
2

1 2 2 0
( ) 2 ( ) ( ) ( )R U U U    + + −p p p p p p p  = P, 

 

resp. Eliminating p  will produce the equation: 

 

22

2 1 2 1 1 1 0

1 1
2 ( ) ( ) ( ) ( ) ( )

2 2

1
( ) ( )

2
U R U R R

c c
R U

c

   
 − − +   

   
  + −p p p p pp p p p  = P , 

 

which can also be represented in the form: 

d

dt

 
−

 

H H

p p
 = P . 
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Now, should those equations: 

 

 a) be independent of the coordinates p1, …, p, then that would also have to be true for the 

coefficients of s
p , and r would then have the form: 

 

(50) r = 1 1 1 1( , , , ) ( , , , )r r p  + p p p . 

 

The equations of motion (49) would go to: 

 

1
1 1 1 1

1 1 1 1

r r r r r

r r r

p p
p p p p p







        
    − + + − + − − − − − −               

p p p
p p p

 = Pr . 

 

However, since the coefficients of 1p , …, p
  must be independent of the first  coordinates, just 

like the remaining part of the equation, when one sets: 

 

(51)     1

1

r r

r rp p

   
−

 
 = 

1 1( , , )r r  p p  

and 

(52)     1

1

r r

rp




  
 − − −

  
p p

p p
 = 

1 1( , , , )r
 p p , 

so: 

(53)    = 1 1 1

1 1

r rdp dp dp dp
 

  

 

    
 + + + + + +  

      
 p p

p p p p
 

+ 
1 1 1 1( , , , )p p    + +  + p p , 

 

and simultaneously considers the fact that from (52): 

 

1

2

r

s r

 

 p p
 = 1

2

r

s r

 

 p p
, 

so from (51): 

1r r = 
1r rc , 

 

in which 
1r rc  = −

1r rc  means a constant, and rrc  = 0, the equation above will go to: 

 

(54)  1 1 1 1

1 1

r r
r r rc p c p 

  
   + + +  − − − −

 
p p

p p
 = Pr , 
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which is now, in fact, free of p1, …, p . 

 Now, since the introduction of just those quantities will make the kinetic potential assume the 

form: 

H = 1
1 1 1 1 1 1

1

( ) ( )p p dp dp p p




      
  

  
=

 
  +  + + +  + + + +  + +  + 

  
 p

p p
 

 

by means of (48), or since 
1r r = 

1r rc , by means of equation (51), based upon the argument that 

was given in the derivation of (5), it will assume the form: 

 

(55)   H = , 1 1 , 2 2 1 1

1

{ }r r r r r r r r r

r

p C p C p C p p p


    + + + +

=

 + + + + +  + +  + , 

 

in which Cr,r+1, …, Cr mean arbitrary constants. As one sees immediately, that is not only the 

necessary, but also the sufficient, condition for the first  Lagrange equations to be independent 

of the coordinates p1, …, p, and their second derivatives. The other  equations of motion will 

go to: 

 

(56) 
1 1 1 1

r r r r r r
r r r r

r r r rs s s s s s s s

d d d
p p p p

dt dt dt

       

= = = =

             
  − − + − − + −   

              
   

p p p p p p p p
 

= Ps . 

 

Now, should it be possible to eliminate the quantities p1, …, p, and their derivatives from (54) 

then (56) would itself have to be free of p1, …, p, so: 

 

r r

s s

d

dt

 
−

 p p
 = 0 

 

would be fulfilled identically. Thus, it would follow from Lemma 3 that: 

 

r  = 1 1 1 1( , ) ( , )r r rC 
  + +  +p p p p , 

 

in which Cr is a constant, while: 

(57)      

1

s r

s

 

p
 = 1s r

s

 

p
, 

 

and the two equations (54) and (56) would go to: 

 

(58)  
1 1 2 2 1, 1 , 1 1 , 2 2r r r r r r r r r r r r rC p C p C p C p C p C p C − − + + + +

     + + + − − − − +  
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− 1 1 1

1 1

r r r r
r r  

 

        
   −  − − −  − − −  

       
p p p p

p p p p
 = Pr 

and 

(59)  − 1 1 1
1 1 1 1s s

s s s s s s

d d
p p

dt dt

 

   

           
     − − + − + + − +  + +    

           
p p p p

p p p p p p
 

+ 
s s

d

dt

   
− 

  p p
 = Ps , 

 

while, from (55), the kinetic potential H would assume the form: 

 

(60) H = , 1 1 , 2 2

1

{ }r r r r r r r r r

r

p C p C p C p


  + + + +

=

 + + + +  

+ 
1 11 1 1 1 1 1( ) ( )p C p C           + + + + +  + + + +p p p p . 

 

If one now substitutes the values of 1p , …, p
 , and the values of 1p , …, p

  that one derives 

from them using (58) in the  equations (59) then one must examine whether those equations once 

more assume the Lagrangian form, and what their kinetic potential would be. In order to get the 

lowest number of arbitrary functions in the last three equations, one sets: 

 

1 1( )r rd d  + +  p p  = r (p1, …, ps) , 

 

which is allowed, as a result of equation (57), and the  equations (58) will go to: 

 

(61)   
1 1 2 2 1, 1 , 1 1 , 2 2r r r r r r r r r r r r rC p C p C p C p C p C p C − − + + + +

     + + + − − − − +  

= 
( )r r

r

d
P

dt

 − 
+  . 

Moreover, equations (59) will go to: 

 

(62) 
1 1 1 1 1

1

( ) ( )

s s s s s s

p p p pd d
p p

dt dt

    



         + +  + +   
 − − + + + + −

      p p p p p p
 

= Ps , 

 

while the kinetic potential will assume the form: 

 

(63)   1
, 1 1 , 2 2 1 1

1

{ }r r r r r r r r r

r

dd
H p C p C p C p p C p C

dt dt




    + + + +

=

  
= + + + + + + + + + +  

   
 . 

 

 However, since equation (61) can be put into the form: 
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1 1 2 2 1, 1 , 1 1 , 2 2{ }r r r r r r r r r r r r r r

d
C p C p C p C p C p C p

dt
  − − + + + +

     + + + − − − − − +   = Pr – Cr , 

 

in which r is a function of p1, …, ps, and r is a function of p1, …, ps, 1
p , …, 

p , we will be led 

to the case that was treated above in which the left-hand sides of the first  Lagrange equations 

can be represented as complete differential quotients with respect to t, in which the basis for the 

differentials is independent of 1p , …, p
 . It was shown that for those forms, for arbitrary  and  

= 1, when the external forces P are zero or constant, the last equation of motion will again assume 

the Lagrangian form, while that is not permissible for  > 1, in general, since that would require 

certain relations to exist between the functions that are included in the kinetic potential. 

 We will then find that: 

 

 The necessary and sufficient condition for the  Lagrange equations to be independent of the 

second derivatives of the coordinates p1, …, p, as well as the coordinates themselves, is that none 

of the other equations of motion can include the coordinates p1, …, p, either. That is, the kinetic 

potential must possess the form: 

 

1
, 1 1 , 2 2 1 1

1

{ }r r r r r r r r r

r

dd
H p C p C p C p p C p C

dt dt




    + + + +

=

  
= + + + + + + + + + +  

   
 , 

 

in which C1, …, C, Cr,r+1, …, Cr are constants, 1, …, , and  are functions of p1, …, 1
p , …, 

and 1, …,  mean functions of p1, …, p, 

 

or, as is obvious when one adds a complete differential quotient with respect to t, 

 

the equivalent form: 

 

, 1 1 , 2 2

1 1

{ }r r r r r r r r r r r

r r

H p C p C p C p C p
 

  + + + +

= =

= + + + +  + +  , 

 

in which r and  represent arbitrary functions of p1, …, p, 1
p , …, 

p . In that case, the first  

Lagrange equations will go to the complete differential expressions: 

 

1 1 2 2 1, 1 , 1 1 , 2 2[ ]r r r r r r r r r r r r r

d
C p C p C p C p C p C p

dt
 − − + + + ++ + + − − − − −   = Pr + Cr , 

 

while the following set of equations of motion will assume the form: 
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1 1

r r r
r r

r rs s s s s

d d
p p

dt dt

   

= =

     
 − − + − 

       
 

p p p p p
 = Ps . 

 

For arbitrary  and  = 1, when P1, …, P are zero or constant, those equations can be reduced 

to the Lagrangian normal form: 

1 1

d

dt

 
−

 

H H

p p
 = P1 , 

 

with the first-order potential H, while for  > 1, conditions must exist between the functions that 

are included in the kinetic potential. 

 

 Once more, that case is therefore excluded from the mechanics of ponderable masses, as would 

emerge from the form of the kinetical potential H. 

 The independence of the  Lagrange functions of the quantities 1p , …, p
  requires the form 

(48) for the kinetic potential, so the only case that remains to be considered is the one for which: 

 

 b) those very equations are independent of the quantities 1p , …, p
 , and the elimination of the 

values of the coordinates p1, …, p, and the derivatives that emerge from the following set of 

equations of motion can be performed. 

 

 It follows from the form (49) of the first  equations of motion that their independence from 

the quantities 1p , …, p
  will imply the conditions: 

 

(64)    
1

r

p




 = 

1

rp




, …, r

p




 = 

rp




. 

 

Therefore, those equations themselves will assume the form: 

 

(65)   1 1

1 1

r r r r

rp
 

 

       
   − − − − − −

     
p p p p

p p p p
 = Pr , 

 

in which 1, …, ,  depend upon p1, …, p1, …, 1
p , …, and the kinetic potential will possess the 

form: 

 

(66) H = 1 1p p    + + +  . 

 

 Now, should the  equations (65) give the values: 
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(67) pr = 1 1( , , , , , , )r t   p p p , 

 

then it will follow that: 

 

(68) rp  = 
1 1 1

r r r r

t

  

  
    

   

= = =

   
  + + +

    
  p p p

p p p
, 

 

(69) rp  = 
2 2 2 2

2
1

2r r r r

t t t t



  
   

   

=

    
  + + + 

        
 p p p

p p p
 

 + 
2 2 2

1

1 1

r r r


  
     

  

=

   
   + + + + + 

       
p p p p

p p p p p p
 

 + 
2 2 2

1

1 1 1

r r r r
 

   
      

   

= =

    
    + + + + + + 

           
 p p p p p

p p p p p p p
 

 + 
2 2 2

1

1 1 11

r r r r r
  

    
        

    

= = =

     
     + + + + + + + 

              
  p p p p p p

p p p p p p p p
. 

 

If one substitutes those values in the system of equations: 

 

s s

H d H

dt

 
−

 p p
 = Ps 

or 

 

(70) 1 1
1 1

s s s s

d
p p

dt

    
 + + − − −

    p p p p
 

 −
2 2 2

1 1 1
1 1 1 1

1 1 1s s s

p p
p

     
   + + + + + 

         
p p

p p p p p
 

−
2 2 2

2 2 2
2 1 1 1

1 1 1s s s

p p
p

     
   + + + + + − 

         
p p

p p p p p
 = Ps , 

 

then under the assumption that the  equations should, in turn, have a first-order kinetic potential, 

it will then follow that the coefficients of p  and p  must vanish. However, as is easy to see, 

that will then imply that the equations: 

 

(71) 1 1 2 2

s s s

 

  

              
+ + +     

               p p p p p p
 = 0 (s,  = 1, 2, …, ) 
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must be true identically, in which the quantities in parentheses should once more denote their 

values after the substitution. Therefore, when we again exclude the cases in which special relations 

are required between the functions 1, …, , we will have: 

 

(72)   1

s

 
 

 p
 = 0 , 2

s

 
 

 p
 = 0 , …, 

s

 
 

 p
 = 0 . 

 

However, it will follow from the identity (65): 

 

(73)  
1

1

r r

rp




       
 − − −     

       
p p

p p
 = Pr 

 

that the pr cannot include the s
p , such that one will have: 

 

(74)  pr = 1( , , , , )r t  p p   or r

s

 
 

 p
 = 0 . 

 

Now since the parentheses that are multiplied by p
  in the expression (69) vanishes, after one 

substitutes the values (67), (68), (69) in (70), since rp  will also no longer include p
 , due to (74), 

the coefficient of p
  will be zero because of (72), so neither 

p  nor p
  will be included in the  

Lagrange equations. 

 However, if we preserve the meaning of the parentheses, then: 

 

r

s

s

 
  

 



p

p
 = 0 = 

2 2

1

1

r r

s s p 

       
+ +   

        p p p p
, 

r

s

s

 
  

 



p

p
 = 0 = 

2 2

1

1

r r

s s p 

       
+ +   

          p p p p
 

 

When we assume, for brevity, that the r are independent of t, so the Pr are zero or constant, 

multiplying the latter equations by 
p , 


p , adding them, and summing over  will give: 

 

 

2 2

1

r r

s s



 
  

 

=

      
 +    

          
 p p

p p p p
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 = − 
2 2

1 1 2 2

1 11 2

r r

s sp p

 

   
    

     

= =

            
   + − + −       

                 
 p p p p

p p p p p p
 

 = − 
2 2

1 2

1 2

r r

s s

p p
p p

     
 − −   

       p p
, 

 

so the parentheses in equation (70) that are multiplied by 
1p , 2p , … will vanish, and after the 

substitution, the  Lagrange equations will then assume the form: 

 

(75)   1
1( ) ( )

s s s s

d
p p

dt





           
 + + + −       

          p p p p
 = Ps 

or 

 

1 1 1
1 1 1 1

1 1 1 1s s s s

d

dt

                        
   + + + + + + + + + −          

                   
p p p p

p p p p p p p p
 

 

= Ps . 

 However, since: 

 

( )

s



p
= 1

s s sp

      
+ +   

     p p
, 

( )

s



p
= 1

s s sp

      
+ +   

      p p
, 

 

that will make: 

 

s s

d

dt

     
−   

    p p
 = 

1 1

( ) ( ) r r

r rs s r s r s

d d

dt p dt p

     

= =

       
− − +   

         
 

p p p p
. 

 

Therefore, in order to investigate whether equations (75) can once more be put into Lagrangian 

form, one only needs to establish whether the identity: 

 

(76) 
1 1

1 1 11 1

r r r r r

r r rs r s r s

d

p dt p

       

= = =

            
 + + + − +       

             
  p p

p p p p p
 = 

s s

K d K

dt

 
−

 p p
 

 

can be fulfilled with the use of equation (73) when K is supposed to be a function of p1, …, 1
p , … 

If one now sets: 

− 
1

r

rs s r

K

p

  

=

  
−  

    


p p
 = L , 

such that (76) will go to: 
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(77)  
dL

dt
 = 

1 1

1 11 1

r r r r

r rs r s s

K

p

    

= =

         
 + + + − −     

         
 p p

p p p p p
, 

 

then when one considers the values of 
rp

 
 

 
 that equation (73) implies, it will follow that the 

coefficients of 
p  and s

p  on the two sides of equation (77) will yield the relations: 

 

L





p
 = 

1

r r

r s





 

=

  
 

  


p p
, 

s

L

p
 = 

1

r r

r s s

  

=

  
 

  


p p
, 

 

from which, it will again follow that: 

 

(78)  
1

r r

r s s





 

=

   
  

     


p p p
 = 

1

r r

r s s





 

=

   
  

     


p p p
 . 

 

For  > 1, that equation will once more require a relation between the functions 1, …, r, which 

was excluded from the investigation from the outset. However, if  is arbitrary and  = 1 then the 

left-hand side of equation (76) will go to: 

 

1 1 1

r r r r r r r
r r

r r r

d
P P

dt

        

= = =

                
   + − + + +          

                 
  p p p p

p p p p p p p
 

 

by means of (73), or under the assumption that the Pr are zero or constants, when one sets: 

 

(79)    K = − 
1 1

r r
r r

r r

d P
  


= =

  
  − 

  
 p p

p p
, 

it will go to the desired form (*): 

 
 (*) For example, let: 

H = 2 2 2 2
( ) 2 1p p p p p p    + + + + − − +p p p pp p . 

 

When the external force is zero, the first Lagrange equation will read: 

 

2 p p + 1 = 0 , 

 

so it will be free of p  and p , and that will yield p = − 1/ 2 p . If one substitutes that value in the second equation 

of motion: 

− 2
2 2 2 2p p p p p p p p       − − − +p p p  = P 

then that will give: 

− 
32





p

p
 = P . 
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K d K

dt

 
−

 p p
, 

and we will then find that: 

 

 The necessary and sufficient condition for the first  Lagrange equations to be independent of 

the first and second derivatives of the coordinates p1, …, p is that the kinetic potential must have 

the form: 

 

H = 1 1 1 1 1 1 1 1 1 1 1( , , , , , ) ( , , , , , ) ( , , , , , )p p p p p       + + +p p p p p p  . 

 

 Now should the elimination of p1, …, p again yield equations in Lagrangian form with a first-

order kinetic potential, then if no special relations exist between the -functions, it would be 

necessary and sufficient that  =1 and the forces P1, …, P are zero or constants. Indeed, that 

differential equation will then assume the form: 

 

d

dt

 
−

 

H H

p p
 = P , 

 

in which the first-order kinetic potential is: 

 

H = () − 
1 1

r r
r r

r r

d P
  


= =

  
  − 

  
 p p

p p
, 

 

and the expressions in parentheses mean the values after substituting the expressions for p1, …, 

p as functions of p and p that are derived by the first  equations of motion. 

 

 
 However, since: 

 = 2
1p p p p   − − +p p  

in the present case, so: 

() = − 
1

1
4

+


+
p

p , 

and furthermore: 

1 
 

 p
 = 2 p , 

1

p
 = 2

1

2 p
, 

one will then have: 

H = 
1

1
4

+
p

, 

for which one will, in fact, have: 

d

dt

 
−

 

H H

p p
 = P . 
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 That case cannot occur in the mechanics of ponderable masses either, which should be clear 

from the form of H. 

 With that, all of the cases have been examined in which the behavior of a set of equations of a 

system with a first-order kinetic potential will permit the elimination of coordinates without 

performing possible integrations, and in turn lead to Lagrange equations with a first-order kinetic 

potential. Thus, all cases of the extended hidden equations have also been ascertained that assume 

kinetic potentials that depend upon only the coordinates and their first derivatives, and indeed that 

will imply the following five forms that are necessary and sufficient for that elimination to be 

possible: 

 

 1) When the left-hand sides of the Lagrange equations of motion that correspond to the 

coordinates p1, …, p for a kinetic potential that is free of t are complete derivatives with respect 

to time of functions of all coordinates and their first derivatives but does not, however, include the 

p1, …, p themselves: 

H = 1 1 1( , , , , , , , , )p p  
    p p p p  , 

 

in which  represents an arbitrary function of the included quantities. 

 

 2) When one makes the same assumption that the left-hand sides of the  Lagrange equations 

can be represented as complete differential quotients and assumes that the basic function for the 

differential quotients is independent of 1p , …, p
 , for  + 1 Lagrange equations, one has: 

H = , 1 1 , 2 2

1

( )r r r r r r r r r

r

p C p C p C p


   + + + +

=

 + + + + + , 

 

in which Cr,r+1, …, Cr are arbitrary constants, and 1, …, ,  mean arbitrary functions of p and 

p. 

 3) When the first  +  Lagrange equations are free of p1, …, p, 1p , …, p
 : 

 

H = 1 1 2 2

, 1 1 1

( )r r r r r r r r

r r r

c p p p R R R c p U
  

   
 = = =

     + + + + + +  p p p , 

 

in which cr and cr = c r mean arbitrary constants, Rsr are arbitrary functions of p1, …, p that are 

subject to the condition that: 

1s r

s

R

p
 = 

1

s r

s

R

p
, 

 

and U represents an arbitrary function of p1, …, p , 1
p , …, 

p . 
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 4) When all  +  equations of motion are free of p1, …, p, and the first  equations are free 

of 1p , …, p
 , in addition. For  = 1, one has: 

 

H = , 1 1 , 2 2

1 1

{ }r r r r r r r r r r r

r r

p C p C p C p C p
 

  + + + +

= =

 + + + +  + +  , 

 

in which C1, …, C, Cr,r+1, …, Cr mean arbitrary constants, and r, as well as , are arbitrary 

functions of p and p. 

 

 5) When the first  Lagrange equations are independent of the first and second derivatives of 

the coordinates p1, …, p, and only  + 1 equations of motion are present, one will have: 

 

H = 1 1 1 1 1( , , , , ) ( , , , , ) ( , , , , )p p p p p p p p          + + +p p p p p p , 

 

in which 1, …, ,  represent arbitrary functions of their arguments. 

 

 In all of that, one overlooks a complete differential quotient with respect to t of an arbitrary 

function. 

 

 The foregoing treatment of the problem itself shows how the investigation of kinetic potentials 

must be extended when they include derivatives of the coordinates of arbitrarily-high order, which 

has been the basis for our investigations up to now. 

 

 

__________ 

 



§ 16. – Helmholtz’s case of incomplete problems. 
 

 

 The treatment of incomplete problems that Helmholtz gave for the mechanics of ponderable 

masses can be adapted directly to the case in which the kinetic potential H is an arbitrary function 

of t, p1, …, p, p1, …, p, and their first derivatives. 

 One assumes that: 

p1 = c1 , p2 = c2 , …, p = c , 

 

in which the cr mean constants, are possible solutions of the problem, and one further assumes that 

the terms in H in which 
1p , 2p , …, p

  occur linearly possess coefficients that depend upon only 

p1, p2, …, p, but not upon t, p1, …, p, 1
p , …, 

p . In the mechanics of ponderable masses, H 

includes only terms of degree two in 1p , …, p
 , 1

p , …, 
p , and one will then need only to add the 

condition that Helmholtz exhibited: 

 
2

r s

H

p



  p
 = 0 . 

 

The first  Lagrange equations will then become: 

 

r r

H d H

p dt p

 
−

 
 = Pr  

or 

 
2 2 2 2 2 2

1 1 1 1 1

s s

s sr r r r r r s r s

H H H H H H H
p p p

p p t p p p p p p p p

    

  
    = = = = =

      
    − − − − − −

                   
    p p

p p
  

= Pr , 

 

since under the assumption that the values satisfy: 

 

1p  = 2p  = … = p
  = 0 

they will go to: 

  

1 0r p p

H

p
 = = =

 
 

 
 = Pr   (r = 1, 2, …, ). 

If one uses those equations to calculate: 

 

  p1 = 1 1 1( , , , , , , )t    p p p p , …, 
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  p = 1 1( , , , , , , )t    p p p p , …, 

 

and substitutes those values in the other  Lagrange equations then if one preserves the previous 

meaning for the parentheses, one will get: 

 

(1)   
s s

d

dt

    
−   

    

H H

p p
= Ps . 

 However, since one further has: 

 

( )

s

H

p
 = 

1

r

rs r s

H H

p

 

=

     
+   

    


p p
 = 

1

r
r

rs s

H
P

 

=

  
+ 

  


p p
, 

( )

s

H

p
 = 

1

r

rs r s

H H

p

 

=

     
+   

     


p p
 = 

1

r
r

rs s

H
P

 

=

  
+ 

   


p p
, 

 

it will follow from (1) that for the case in which the Pr are given as functions of t, one will have: 

 

1 1

( ) ( )
r r r r

r rs s s s

H d H d
P P

dt dt

 

 
= =

    
− − − 

     
 

p p p p
 = Ps , 

and when one sets: 

(H) − 
1

r r

r

P



=

 = H , 

 

those  equations of motion will then have the Lagrangian form: 

 

  
s s

d

dt

 
−

 

H H

p p
 = Ps    (s = 1, 2, …, ), 

 

in which H is, in turn, a first-order kinetic potential. 

 

 Therefore, if it is possible to have motions in a system that is defined by  +  Lagrange 

equations for which p1, p2, …, p are constants, and if the kinetic potential H possesses the property 

that the terms in which 1p , …, p
  occur linearly possess coefficients that depend upon only p1, p2, 

…, p, but not upon t, p1, …, p, 1
p , …, 

p , then when one sets 1p  = 2p  = … = p
  = 0 in the first 

 equations and expresses the p1, …, p in terms of t, p1, …, p, 1
p , …, 

p  by using those equations 

and substitutes the values obtained in the other  equations of motion, one will, in turn, get  

Lagrange equations with a first-order kinetic potential that is represented by: 
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H = (H) − 
1

r r

r

P



=

 , 

when 1, …,  are the substituted values. 

 That case includes the conditions for extended monocyclic systems. 

 We shall not go into a more detailed examination of the other cases in which other possible 

solutions to the problem are also known at this point. 

 

_____________ 



§ 17. – Lowering the number of coordinates in the Lagrange 

equations of motion by raising the order of the kinetic potential. 
 

 

 Once the investigation has been carried out of the necessary and sufficient conditions for the 

form of a first-order kinetic potential in order for the elimination of a number of coordinates from 

the system of Lagrange equations of motion to lead to a smaller number of Lagrange equations 

that will be, in turn, based upon a first-order kinetic potential (which is an investigation that came 

under consideration for the mechanics of ponderable masses only for the special form of the 

separation of the kinetic potential into current and potential energy), the essential and interesting 

question in our investigations that will come to the foreground is the question of whether it is 

possible to reduce the number of equations in a system of Lagrange equations of motion with a 

kinetic potential or forces of a certain order when the new system, in turn, is to be represented by 

Lagrange equations, but for a kinetic potential or forces of higher order. More briefly, whether 

some of points in the motion of a system of points under the influence of forces of a certain order 

can be described by the action of forces of higher order. 

 We would first like to consider the case of two Lagrange equations with the coordinates p and 

p, and which belong a first-order kinetic potential H that can also include t explicitly: 

 

(1)  
H d H

p dt p

 
−

 
 = P , 

(2)  
H d H

dt

 
−

 p p
 = P , 

 

and assume that the first of those equations does not include p , so we will have: 

 

(3)  
2

2

H

p




 = 0 . 

 

It will then follow immediately that they must also be free of p , since the partial differential 

quotient with respect to p  of its left-hand side: 

 
2 2 2

2

H d H H

p p dt p p p

  
− −

      
 

 

will vanish identically because of (3). H will then have the form: 

 

(4)  H = 1( , , , ) ( , , , )f t p p f t p  +p p p p , 

 

which is then necessary and sufficient for the Lagrange equation to be independent of p  and .p  
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 Now in order to eliminate the coordinate p and its derivatives from (1) and (2), it will follow 

from (1) that: 

 

(5)  p = ( , , , )t  p p p , 

 

so 

  p  = 
t

      
  + + +

    
p p p

p p p
, 

  p  = 
2 2

2
2

t t

    
 + + +

   
p p

p p
, 

 

and if one substitutes those values for p, p , p  in the second Lagrange equation then one will 

get: 

(6)  
H d H

dt

    
−   

    p p
 = P . 

 

 However, when one substitutes those values in H, (H) will become a function of t, p, p, p, p 

that includes p only linearly, such that the following relations will exist: 

 

  
( )H

p
 = 

H H p H p

p p

         
+ +     

         p p p
, 

 

  
( )H

p
 = 

H H p H p

p p

         
+ +     

            p p p
, 

 

( )H

p
 = 

H p H p

p p

      
+   

        p p
, 

( )H

p
 = 

H p

p

  
 

    p
, 

or since one has: 

p

p
 = 

d p

dt



p
,  

p

p
 = 

d p p

dt

 
+

 p p
, 

p

p
 = 

d p p

dt

 
+

  p p
,  

p

p
 = 

p

p
, 

 

from the auxiliary formulas of § 2, that will make: 

 

  
( )H

p
 = 

H H p H d p

p p dt

         
+ +     

         p p p
, 
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( )H

p
 = 

H H p H d p p

p p dt

            
+ + +                      p p p p

, 

 

( )H

p
 = 

H p H d p p

p p dt

         
+ +                 p p p

,  
( )H

p
 = 

H p

p

  
 

    p
. 

 

 However, it follows immediately from the identity that: 

 
2 3

2 3

( ) ( ) ( ) ( )H d H d H d H

dt dt dt

   
− + −

     p p p p
 = 

H d H

dt

    
−   

    p p
 , 

 

and the second equation of motion (6) will then assume the form: 

 

(7)  
2 3

2 3

( ) ( ) ( ) ( )H d H d H d H

dt dt dt

   
− + −

     p p p p
 = P . 

 

That will then describe the motion of the coordinate p with the help of the kinetic potential (H), 

which has order three, but is linear in p. From Hamilton’s principle in § 6, the equation of motion 

(6), which is a fourth-order differential equation, will be equivalent to the variational equation: 

 

(8)      
1

0

(( ) )

t

t

H dt − Pp  = 0 , 

 

which can be excluded from the outset when we do not give preference to the deduction above, in 

light of the previous discussion. However, it is also easy to show that a third-order kinetic potential 

can be replaced with a second-order one, because since (H) is linear in p, so it will have the form: 

 

(9)     (H) = 1( , , , ) ( , , , )F t F t    +p p p p p p p  , 

 

when one sets: 

 = ( , , , )F t d   p p p p  

and determines: 

 

(10)  K = 
d

dt


 = ( , , , )

F F F
d d d F t

t

  
       + + +

    p p p p p p p p p
p p

, 

 

since K is a complete differential quotient with respect to t, one will have: 
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1

0

t

t

K dt   = 0 , 

 

from Lemma 3. When that equation is subtracted from (8), one will get: 

 
1

0

(( ) )

t

t

H dt − Pp  = 
1

0

( )

t

t

dt − H Pp , 

in which: 

(H) – K = H 

 

represents a second-order kinetic potential by means of (9) and (10) (*). 

 
 (*) It emerges from the presentation above that a kinetic potential in one variable and arbitrary order that includes 

the highest derivative of the coordinate only linearly can always be replaced with a kinetic potential with order one 

less, but we can make that remark more generally, such that it yields an extension of Lemma 4, which we added at 

that point in order to make its applicability emerge more clearly. The necessary and sufficient conditions were 

presented above for a function N that depends upon t, p, p , …, 
( 2 )

p


 to possess a kinetic potential M, or for a function 

M of t, p, p , …, 
( )

p


 to exist that has the property that: 

 

()  
1 1

0 0

.

t t

t t

M dt N p dt =   

 

However, if one drops the condition that the kinetic potential has order  and asks what the existence condition would 

be for a kinetic potential M of higher order , such that: 

 

N = 

1

1

1 ( 1) ( )
( 1) ( 1)

M d M d M d M

p dt p dt p dt p

 

 

   

−

−

− −
+ + − + −

   
−

   
, 

 

in which  > , then it will be easy to see that 
( )

M

p





 must be independent of 

( )
p


, because otherwise the right-hand 

side would have to include the derivative 
( 2 )

p


, while the left-hand side has order only 2. However, if M has the 

form: 

M = 
( 1) ( ) ( 1)

( , , , , ) ( , , , , )t p p p p t p p p
  

 
− −

 + , 

and one defines the function: 

 = ( 1) ( 1)( , , , , )t p p p dp  − − , 

then one will have: 

K = 
d

dt


 = 

( 1) ( 1) ( 1) ( 1) ( )

( 2)
dp p dp p dp p

t p p

    



  


− − − −

−

  
+ + + + 

  
   . 

 

Since K is a complete differential quotient with respect to t, so: 

 

()  
1

0

0,

t

t

K dt =  

the difference of equations () and () will yield: 
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 We then find that: 

 

 When one of two Lagrange equations is independent of the second derivatives of the associated 

coordinate, the elimination of that coordinate and its derivatives from the two equations will lead 

to a fourth-order differential equation that possesses a second-order kinetic potential (*). 

 
1 1 1

0 0 0

1( ) ,

t t t

t t t

M K dt M dt N p dt  − = =  
 

 

in which M1 is thus a kinetic potential for N, but due to its value, M – K will no longer include the derivative 
( )

p


. On 

the same grounds, when  − 1 > , M1 must be linear in 
( 1)

p
−

. As a consequence of that, one can derive a new kinetic 

potential M2 that includes only 
( 2)

p
−

, etc., such that one will have the theorem: 

 

  If a function N that includes the derivatives up to order 2 possesses a kinetic potential with  >  then it must 

include the derivative 
( )

p


 linearly. One frees it of 
( )

p


 in the way that was given, such that the new kinetic potential 

that arises, which has order  – 1, will includes 
( 1)

p
−

 only linearly, etc., and one sees from those successive reductions 

that when a function N of order 2  possesses a kinetic potential of any order at all, it must possess a kinetic potential 

of order v. The necessary and sufficient conditions for the existence of a kinetic potential that were given above will 

then characterize a kinetic potential completely. 

 

 The extension of that theorem to kinetic potentials in several variables is immediately clear. 

 

 (*) For example, suppose the first-order kinetic potential: 

 

H = 
21

2
p p  +pp  

 

is given, and let P = 0, such that the two Lagrange equations will read: 

 
2

p − + p pp  = 0  and − pp  = P . 

 

Eliminating p and p  from the equation will produce: 

 

−
2

(3 4 )   + +p p p p pp  = P . 

  However, if one forms: 

(H) = 
2 2 4 2 21 1

2 2
4      + + −pp p p p p p p p  

then the equation: 
2 3

2 3

( ) ( ) ( ) ( )H d H d H d H

dt dt dt
+ −

   
−

     p p p p
 = P 

 

will go to the second transformed equation of motion that was obtained above when one sets: 

 

 = 
2

 p p p , so K = 
2 2 2 2

2    + +p p p p p p p p . 

 

The kinetic potential (H) can then be replaced with: 

 

H = (H) – K = 
2 4 2 21 1

2 2
2    + -pp p p p p , 
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 The motion of the second coordinate can then be described by the effect of a force of the next-

higher order. 

 However, it is also easy to see that not only the sufficient, but also the necessary, condition for 

a third-order kinetic potential to lead to a fourth-order differential equation is that it must be 

linear in the third derivative. 

 That is because if the p(VI) is to be absent from the expression: 

 
2 3

2 3

d d d

dt dt dt

   
− + −

     

H H H H

p p p p
 

then one must have: 

 
2

2





H

p
 = 0 or H =  (t, p, p, p) p +  (t, p, p, p) . 

 

If that is the case then since the coefficient p(V) of arises only from the last two terms in the 

expression, and obviously it will vanish, p(V) will not be included in the differential equation either. 

 However, if p  is missing from not only the first of the two Lagrange equations, but also the 

second one, then the following conditions must be fulfilled: 

 
2

2

H

p




 = 0 and 

2H

p



  p
 = 0 . 

 

Therefore, H will have the form: 

 

H = f1 (t, p) p + f2 (t, p, p) , 

 

such that the two differential equations will read: 

 

− 1 1 2f f f

t p

  
 − +
  

p
p

 = P , 

 

− 
2 2 2 2

2 2 2 2 2 1

2

f f f f f f
p p

p t

     
   − − − + +

           
p p

p p p p p p p
 = P . 

 

If one now substitutes the value: 

 
with which the same equation can be represented in the form: 

 
2

2

d d

dt dt
+

  
−

   

H H H

p p p
 = P . 
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p = F (t, p, p) 

 

that one gets from first of those two equations in the second equation then that will give only one 

second-order differential equation in p, and since: 

 

H = 
1 2( , , ) ( , , , )

F F F
f t F f t F

t

   
  + + + 

   
p p p p p

p p
 

 

is linear in p, there will always be a first-order kinetic potential in this case (*). 

 If equation (2) does not include the derivatives p  and p  then the following conditions must 

be fulfilled: 
2H

p



  p
 = 0 , 

2H

p



 p
 = 

2H

p



 p
, 

and therefore: 

 

(11) H = 1 2( , , , ) ( , , , )t p p t p  +p p p , 

 

in which: 
2

1

p



 p
 = 

2

1

p



 p
 =  (t, p, p) , 

Thus, as is easy to see: 

 

(12)  H = 1 2 3 4 5( , , ) ( , , ) ( , , ) ( , , ) ( , , )p t p t p t p t p t p     + + + +p p p p p p , 

 

in which on must have: 

(13) 1

p
 = 2

p




 . 

 

However, it will then follow immediately that the two Lagrange equations read: 

 
 (*) If one sets, e.g.: 

f1 =
2

p p+ p , f2 =
2

p pp , 

then the Lagrange equations will read: 

 

− p + p p = 0 , −
2 2

2 2p p p p p    − − +pp pp p  = 0 , 

 

and the result of elimination will be: 
3 2

2 3  +pp p p p  = 0 . 

The kinetic potential will then have the form: 

H = − 
2 31

2
p p . 
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(14)   

2 22

3 5 3 31 4

2

22 2

5 34 2 4 4

2

,p p P
p p t p t p p p

t t

    

    

     
 + − − − − =          


      + − − − − =

          
p p P.

p p p p p p

 

 

Therefore, the first one is independent of p and p, while the second one is independent of p  and 

p . 

 If one now infers the value: 

p = f (t, p, p, p) 

 

from the second equation, in which one considers the external forces P and P to be given functions 

of t, and substitutes those values, along with their derivatives, in the first differential equation then 

one will get a fourth-order differential equation in p for which the kinetic potential H will go to a 

function that generally includes the quantity p not just linearly, and for which a second-order 

kinetic potential will also not exist, in general. Now, in order to examine the conditions under 

which the result of the elimination: 

 

Q = 
2

3 5 3 3( , , ) ( , , ) ( , , ) ( , , )t p p t p t p t p p

p p t p t

            
+ − −                  

p p
 

− 
2 2

3 3

2

( , , ) ( , , )
( ) ( )

t p p t p p
p p

p p p

      
 −   

      
 − P = 0 

 

will possess a second-order kinetic potential, one forms: 

 

Q

p
 = − 

3 3 3 22

3 3 3 3

2 2 2 3 2
2

f df f d f f d f f

p t dt p p dt p p dt

                  
− − − +        

                          p p p p p
 , 

 

 
Q

p
 = − 

2

3

2

f

p

  
 

    p
. 

 

From equation (24) of § 3, one must then have: 

 

(15)  2
Q d Q

dt

 
−

  p p
 = 

3 3 3 22

3 3 3 3

2 2 2 3 2

f df f d f f f

p t dt p p dt p p

                
+ + −       

                       p p p p
 = 0 . 

 

However, it follows from that equation that the coefficient p must satisfy: 
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3

3

3

f

p

   
  

    p
 = 0 , so 

3

3

3p




= 0 

 

must be fulfilled identically, so: 

 

3 ( , , )t p p   = 
2

1 2 3( , ) ( , ) ( , )t p p t p p t p + +  , 

 

while the remaining part of equation (15) prescribes the condition that must be satisfied identically: 

 

1 1
1

f df f f

t dt p

   
+ − 

      p p p
 = 0 . 

 

Now, since the coefficient of p: 

 

1

p

 


 = 0 , so 1 = 1 (t) , 

and therefore, we must have: 

( ) ( )
f f

t t
 

 − 
  p p

 = 0 , 

 

when we now assume, for simplicity, that t is not included in the kinetic potential explicitly, it will 

follow that: 

 (t) = a and 
f

p
 = 0 . 

 

However, if f is not supposed to contain the derivative then the left-hand side of the second 

Lagrange equation (14), which will assume the form: 

 
2 2

3 5 4 4

2

( , ) ( , ) ( , ) ( , )p        
 + − −

     

p p p p p p p
p p

p p p p p
 = P , 

 

under the assumptions that were just made, will be independent of p, then we will have: 

 
3 3

4 4

2 3

( , ) ( , )   
 +

   

p p p p
p p

p p p
 = 0 

 

identically. It will then follow from this that: 
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2

4

2

( , ) 



p p

p
 = c or 4 (p, p) = c p2 + 1 (p) p + 2 (p) . 

 

Therefore, from equation (12), the kinetic potential will assume the form: 

 

H = 
2 2

1 2 2 3 1 2 5( , ) ( , ) ( ) ( ) ( ) ( ) ( , )p p p a p p p p c p         + + + + + + + +p p p p p p p p , 

 

or when one drops the complete differential quotient with respect to t, while recalling the relation 

(13): 

 

(16)  H = 
2 2

3 2 5( ) ( ) ( , )a p p c p  + + + +p p p  , 

 

from which the Lagrange equations will read: 

 

(17)     

3 5

3 5

2 ,

2 .

a p P
p

c p



 

 
− + + =  


  − + + =

  

p

P
p p

 

 

 However, the result of eliminating Q, in which one substitutes: 

 

(18)  p = f (t, p, p) , 

 

will go to: 

Q = 
2

3 5

2

( ) ( , )
2

p f p f

p p d f
a P

p p dt



= =

     
+ − −   

    

p
 = 0 , 

 

and as one can see immediately, from the relations (2) and (3) of § 2, one will have 

 

Q

p
 = − 4

d f
a

dt



p
, 

 

Q

p
 = 

2 2 2

3 5

2 2 2
2

f f d f f
a

p p dt

          
+ − +                p p p p

, 

 

Q

p
 = − 4

d f
a

dt



p
, 

Q

p
 = − 2

f
a



p
. 
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The condition equation (23) of § 3 that must be fulfilled in order for a second-order kinetic 

potential to exist will imply that the equation to be satisfied is: 

 

2 2

3 5

2 2
2

d f d f
a

dt dt p p

         
+ +     

         p p
 = 0 

or 

(19)     

2 2

3 5

2 2
2

f f
a

p p

       
+ +    

       p p
 = c , 

 

in which c means an arbitrary constant. However, since the expression (18) must satisfy the second 

of equations (17) identically, one must have: 

 

(20)     52
( , )( )

2
p

c
  

+ − 
  

pp
p

p p
 = 0 . 

 

Differentiating the identity (20) with respect to p and p will give: 

 
2 2 2

5 5 2

2 2

( )f

p

       
+ +   

       

p

p p p p
 = 0 ,  

2

5 2
f

c
p

  
− 

   p p
 = 0 . 

 

Upon substituting the values of 
f

p
 and 

f

p
 that follow from that in (19), the equation will emerge: 

 

(21)  − 
2 22 2

5 52 2

2 2 2 2

( ) ( , )( ) ( ) pp
a c

p p

       
+ + +   

      

p pp

p p
 = 

2

5( , )p
C

p



 

p

p
, 

 

which must be fulfilled identically by p and p, so also p and p. 

 If one sets: 

 

(22)    5 (p, p) + 2 (p) + 3 (p) = F (p, p) 

 

in that then the equation (21) to be satisfied identically will go to: 

 
2 2 2

2 2

F F F
a C c

p p

  
+ −

   p p
 = 0 . 

When one sets: 

1 = 

2 4

2

C C a c

a

− + +
, 2 = 

2 4

2

C C a c

a

− − +
, 
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its general integral will be represented by: 

 

F (p, p) =  (p – 1 p) +  (p – 2 p) , 

 

in which  and  mean arbitrary functions, such that from (22) and (16), H will assume the form: 

 

H = 
2 2a p c + p +  (p – 1 p) +  (p – 2 p) . 

 

We will then get the following theorem: 

 

 The necessary and sufficient condition for the Lagrange equation (2) to not include p  and 

p , and for the kinetic potential to not include time explicitly, as well as for the elimination of p 

from the Lagrange equations to produce a differential equation that possesses a second-order 

kinetic potential is that the original kinetic potential (except for a complete differential quotient 

with respect to t of an arbitrary function of the coordinates, as always) must have the form: 

 

H = 
2 2a p c + p +  (p – 1 p) +  (p – 2 p) . 

 

Therefore, the Lagrange equations will read: 

 

  0 = 1 12 ( ) ( )a p p p     − − − −p p , 

  0 = 1 1 2 22 ( ) ( )a p p       − − − −p p p , 

 

in which a and c mean constants, 1  2 = − c / a, and , as well as , mean arbitrary functions 

of their arguments. 

  

 However, if the Lagrange equation (1) includes p , but not p , and p  is also missing from 

equation (2), such that after eliminating p , p can also be expressed in terms of t, p, p, p, here as 

well, then following conditions must be satisfied: 

 
2

2

d H

dt p




 = 0  and 

2 2 2H d H H

p dt p p

  
− −

        p p p
 = 0 , 

 

and it will easily follow that: 

 

 The necessary and sufficient condition for the two Lagrange equations to not include p  is 

that the kinetic potential must take the form: 
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(23) H = 
2 2 1

1 2 3 4( , ) ( , ) ( , , ) ( , , )a p p t p t dp p t t p
t

 
   

 
      + + + − + +

 p p p p p p p p
p

 , 

 

in which a means a constant, and 1, 2, 3, 4 mean arbitrary functions of their arguments, such 

that the two Lagrange equations will read: 

 

(24)  − 
2 1 1 2 4

12 2a p
t t p

   


   
   − − − +

   
p -p p

p
= P , 

 

(25) − 
2 2 22 2

3 3 3 31 1 4
1 2 2

dp p
t t t

     


     
  − − + − + +

            p - p p
p p p p p p p

 = P . 

 

 If t is not included in the kinetic potential explicitly, so 1, 2, 3, 4 are independent of t, 

then the two equations of motion will not include p at all when 4 = 0, and eliminating p  will 

produce a second-order differential equation in p, which is the case that was treated above in the 

theory of hidden motion. However, if t is included in H or 4 is non-zero then one can eliminate 

p  from those two equations. The result of that elimination will then yield the expression: 

 

p =  (t, p, p, p) . 

 

When that is substituted in one of the two equations, that will in turn yield a fourth-order 

differential equation for which (H) nonetheless includes the term that is quadratic in p : 

 
2

2a
 

 
 

p
p

. 

 

In that case, the fourth-order differential equation will not possess a second-order potential, in 

general (*). 

 
(*) For example, let: 

1 = p ,    2 = t p ,    3 = 0 ,    4 = 0 ,    a = 1 . 

 

The kinetic potential will then read: 

H = 2
p p t p t p    + + +p p p p  

or 

H = 2
p p p  + −p p p , 

 

and for vanishing external forces, the associated Lagrange equations will read: 

 
2

2 p  + + +pp p p  = 0 and p p +p  = 0 , 

 

such that eliminating p will make the fourth-order differential equation: 
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 We now raise the question of when the fourth-order differential equation that is obtained by 

eliminating p and p  from the last two Lagrange equations (24) and (25) will possess a second-

order kinetic potential, under the assumption that the external forces P1 and P2 are zero, and the 

functions included in H do not include t explicitly, so that kinetic potential will take the form: 

 

H = 
2 2

1 2 3 4( ) ( , ) ( , ) ( , )a p p p p dp p p


   


     + + + + +
p p p p p p
p

, 

 

or when we drop the complete differential quotient with respect to t : 

 

2
2 ( , )p p





 +

p p
p

 = 
2( , )

d
p dp

dt
 p , 

 

so that the kinetic potential will have the form: 

 

(26) H = 
2

1 3 4( ) ( , ) ( , )a p p p p     + + +p p p p . 

 

The Lagrange equations will then read: 

 

(27)  −
2 1 4

1

( , )
2

p
a p

p

 


 
  − +

 

p
p -p

p
 = 0 , 

(28)  −
2 2

3 3 3 4
1 2

( , ) ( , ) ( , ) ( , )p p p p   


     
  − + +

     

p p p p
p p p

p p p p p
= 0 , 

 

and eliminating p  will next yield: 

 

(29)  
2 2

2 23 31 4 4
1 1 12

2 2 2a a a
p

   
  

    
  − + − + − 

       
p p p

p p p p p
 = 0 . 

 
 

p2 pIV + 6 p p p + 4 p p 2 + 7 p 2 p + 3 p p + 3 p 2 + p = 0 . 

 

The fact that this does not possess a second-order kinetic potential emerges from the fact that when its left-hand side 

is denoted by Q, the equation that must necessarily be satisfied, according to Lemma 4: 

 

2
Q d Q

dt

 
−

  p p
 = 0 

 

is not fulfilled. The kinetic potential H will then go to: 

 

(H) = 
2 3 2 2 3 2 2 21 1 1( 4 2 ) ( 4 2 ) ( )

2 2 2
            + + + + + + + − +p p pp p p pp pp p p pp p p pp p p p pp +p  . 
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 If that equation implies that: 

 

(30)     p = F (p, p, p) , 

 

so (H) goes to a function that is quadratic in p, then substituting the values (30) in (27) will put 

the result of the elimination into the form: 

 

N = − 
2

2 1 4
12

( )
2 ( )

p F

d F
a

dt p

 


=

  
 − − +  

  

p
p p p

p
 = 0 . 

 

One must address the question of whether the expression N, which has order four in the derivative 

of p, possesses a second-order kinetic potential. It will then follow from the second of the two 

conditions (23) and (24) in § 3 that are necessary and sufficient for the existence of a second-order 

kinetic potential that because the auxiliary formulas (2) and (3) of § 3 say that: 

 

N

p
 = − 2

d F F
a

dt

  
+ 

   p p
 and 

N

p
 = − 2

F
a



p
, 

 

the previous equation will be fulfilled if and only if: 

 

F

p
 = 0 . 

 

Thus, F must be independent of p, or the left-hand side of (29) must not include p. It will then 

follow immediately that one must have: 

 
3

3

3



p
 = 0 or 3 (p, p) = 1 (p) p2 + 2 (p) p + 3 (p) , 

and 
2

1 14a −   = c , 

 

in which c means a constant. The kinetic potential will then go to: 

 

(31)    H = 

2
2 21

1 3 4
4

c
a p p

a


 

−
   + + +  +p p , 

and the Lagrange equations will go to: 
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(32)   

2 1 4
1

2
2 31 1 1 4

1

2 0,

0,
2 2

a p
p

c
p

a a p

 


   


 
  − − − + =  


−     − − − + + =

   

p p
p

p p
p p

 

 

so upon eliminating p : 

(33)    3 4 4
12c a

p

 


  
 + + −

  
p

p p
 = 0 . 

 If one calculates: 

p = f (p, p) 

 

and substitutes that value in the first of equations (32) then the result of an elimination will be: 

 

(34)   Q = −
2

2 1 4
12

2
p f

d f
a

dt p

 


=

  
 − − +  

  
p p

p
= 0 , 

 

and equation (24) of § 3 will be fulfilled by the left-hand side of that equation. 

 Now since the existence of a second-order potential must also satisfy equation (23) of § 3, and 

in turn, from the auxiliary formulas (2) and (3) of § 2: 

 

Q

p
 = − 14 2

d f
a

dt



 −


p

p
, 

Q

p
 = −

22

4
12 2

2 2
d f f f

a a
dt p




   
− − +  

     p p p
, 

Q

p
 = − 4

d f
a

dt



p
, 

Q

p
 = − 2

f
a



p
, 

the equation: 

(35)    

2

4
1 2

2
d f f

a
dt p




   
+ +  

    p p
 = 0 

 

must then be fulfilled identically. However, if one remarks that due to (33), the equation: 

 

(36)   3 4 4
12 2

p f p f

c a a
p

 


= =

      
 + + −   

     
p

p p
 = 0 

 

must be an identity then the differential quotients with respect to p and p will yield the following 

relations: 
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2 2

4 4
1 2

2

p f p f

f
c a

p p

 


= =

       
+ −    

        
p p

 = 0 , 

 

2 2 2 2 2

3 4 4 4 4 1 4
1 12 2 2

( )
2 2 2

p fp f p f p f p f

f
a a a

p p p p

     
 

== = = =

                  
+ − + − −          

                   

p

p p p p p p
= 0 , 

 

which are likewise identities. Thus, it is easy to see that substituting the values they imply for 
f

p

and 
f

p
 in the integrated equation (35) will give the necessary and sufficient condition for a 

second-order potential to give the result of elimination in the form of the equation: 

 

(37)  
2 2 2 2

2 23 4 4 1 4 4
12 2 2

( )
4 4 2 2a a a a c

p p p

    


      
+ − − +

      

p

p p p p
  

= 
2 2

4 4
1 1 2

( ) 2C a
p p

 
 

  
+ − 

   p
, 

 

which must be fulfilled identically in p and p, and in which C must mean an arbitrary constant. 

Therefore, differentiating with respect to p will give the partial differential equation for 4 and 1: 

 

(38)  
3 3 2 3

2 4 4 1 4 4
12 2 2 3

4 2 2a a a c
p p p p

    


    
− − +

      p p p
  

= 
3 3

4 4
1 12 3

( ) 2C a
p p

 
 

  
+ − 

   p
 . 

 

 If one sets 1 = , a constant, and sets: 

 

2

2

C

a

 +
 = 2 ,  

2

( )

4

c C

a

 + +
 =  

 

then one will get the following partial differential equation for 1 : 

 
3 3 3

4 4 4

2 2 3
2

p p p

  
 

  
− +

    p p
 = 0 . 

When one sets: 

1, 2 = 2   −  = 
2(2 ) 4

4

C C c

a

 +  −
, 
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its general integral will be represented by: 

 

4 =  (p – 1 p) +  (p – 2 p) + X (p) , 

 

when , , X represent arbitrary functions of their arguments. Since it follows from (37) that: 

 

3 (p) = − X (p) + C1 , 

 

in which C1 means an integration constant, the kinetic potential (31) will go to: 

 

(39)   H = 

2
2 2

1 2( ) ( )
4

c
a p p p p

a


  

−
   + + +  − +  −p p p p  , 

 

in which a, , c, C mean arbitrary constants. The two Lagrange equations will then assume the 

form: 

− 1 22 ( ) ( )a p p p     − +  − +  −p p p  = 0 , 

−

2

1 1 2 2( ) ( )
2

c
p p

a


    

−
   − −  − −  −p p p p  = 0 . 

 

 That will then imply that: 

 

 If p  is not included in two Lagrange equations, for which the kinetic potential does not 

include time t explicitly and the external forces are zero, and the elimination of p from them 

produces a differential equation in p that possesses a second-order kinetic potential, then the 

necessary and sufficient condition for that is that the original kinetic potential must take the form: 

 

H = 

2
2 21

1 3 1( ) ( ) ( , )
4

c
a p p p

a


 

−
   + + +  +p p p p p . 

 

The condition is then expressed by the associated Lagrange equations: 

 

−
2 1 4

12a p
p

 


 
  − − +

 
p p

p
 = 0 , 

− 

2
2 31 1 1 4

1
2 2

c
p

a a

   


−  
  − − + +

  
p p

p p p
 = 0 , 

 

in which 1, 4,  are coupled with each other by the differential equation (37). If 1 is a constant, 

so p will also be missing from the two equations, then it will be obvious that one now has 

expressions that are analogous to the ones in the previous case. 
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 The only possible case in which one coordinate – e.g., p – is missing from the two Lagrange 

equations can lead back to the investigations in the previous section, but it is also easy to deal with 

directly. Namely, if the first Lagrange equation is to be free of p then it will follow immediately 

that: 

(40) 
H

p




= ( , , ) ( , , , )t p p t p  +p p p , 

in which: 

(41)     
p t

    
− −

  
p

p
 = 0 . 

 

However, the independence of the second Lagrange equation of p will imply the further condition: 

 

(42)   
2 2 2 2

2
p p

t p

          
   + − − − −

           
p p

p p p p p p p
 = 0 . 

 

Since it must be an identity, that will give: 

 
2

2



p
 = 0 , 

so 

 = p  (t, p, p) +  (t, p, p) . 

 

However, it will follow from (41) and (42) that one must have: 

 

(43) 
p




 = 



p
,  

p




 = 

t




, 



p
= 

t




. 

 

Therefore, from (40), the expression for the kinetic potential will be: 

 

H = ( , , ) ( , , ) ( , , ) ( , , , )p t p dp t p dp t p dp F t p     + + +  p p p p p p  . 

 

Since (43) says that the expression: 

 

p dp dp dp   + +  p  

 

is a complete differential quotient with respect to t, that expression will go to: 

 

H = ( , , , )F t p p p . 
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Now, the two Lagrange equations that emerge from that: 

 

d F

dt p




 = 0 , 

F d F

dt

 
−

 p p
 = 0 

 

are, in fact, independent of p, and the first of them implies that: 

 

F

p




 = h or p  = ( , , )t  p p , 

 

in which h means the integration constant. Thus, substituting that value of p  in the second 

equation will produce the relation: 

F d F

dt

    
−   

    p p
 = 0 , 

 

with the well-known notation. Therefore, since: 

 

( )F

p
 = 

F F p

p

     
+   

     p p
 = 

F
h

   
+ 

  p p
, 

( )F

p
 = 

F F p

p

     
+   

       p p
 = 

F
h

   
+ 

   p p
, 

 

that equation will assume the form: 

 

[( ) ] [( ) ]
d

F h F h
dt

 
−  − − 

 p p
 = 0 . 

 

Hence, the kinetic potential of the elimination equation: 

 

H = (F) – h  

 

will, in turn, have order one, which should have already been clear from the previous 

investigations. 

 We once more summarize the results that we obtained here in order for the elimination of one 

coordinate between two Lagrange equations with a first-order kinetic potential to imply that the 

resulting differential equation possesses a second-order kinetic potential: 

 

 1) When the Lagrange equation for p is independent of p , so the kinetic potential has the 

form: 
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H = 1( , , , ) ( , , , )f t p p f t p  +p p p p , 

 

the fourth-order differential equation in p that emerges by eliminating p and its derivatives will 

possess a second-order kinetic potential. For the case in which p  is not included in the second 

Lagrange equation either, so one has: 

 

H = 1( , , ) ( , , , )f t p p f t p +p p p , 

 

the resulting second-order differential equation in p will, in turn, possess a first-order kinetic 

potential. 

 

 2) When the Lagrange equation that belongs to p does not include p  or p , and the kinetic 

potential does not include time t explicitly, the necessary and sufficient condition for the result of 

the elimination of p to possess a second-order kinetic potential is that H must have the form: 

 

H = 
2 2

1 2( ) ( )a p c p p    + + − + −p p p , 

 

in which a and c are arbitrary constants, 1  2 = − c / a, and , as well as , mean arbitrary 

functions of their arguments. 

 

 3) When p  is missing from both Lagrange equations, the kinetic potential does not include 

time t explicitly, and the external forces are zero, the necessary and sufficient condition for the 

existence of a second-order kinetic potential for the fourth-order differential equation in p is that 

the form of the original kinetic potential must have been: 

 

H = 

2
2 21

1 3 4( ) ( ) ( , )
4

c
a p p p

a


 

−
   + + +  +p p p p p , 

 

in which a and c are arbitrary constants, and 1, 4,  are coupled to each other by the differential 

equation: 

 
2 2 2 2

2 23 4 4 1 4 4
12 2 2

( )
4 4 2 2a a a a c

p p p

    


      
+ − − +

      

p

p p p p
  = 

2 2

4 4
1 1 2

( ) 2C a
p p

 
 

  
+ − 

   p
, 

 

in which C means an arbitrary constant. 

 

 4) Finally, when p is not contained in either Lagrange equation, so one has: 
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H = ( , , , )F t p p p , 

 

the kinetic potential of the elimination equation will, in turn, have order one. 

 In all of the above, a complete differential quotient with respect to t of an arbitrary function of 

the coordinates p and p has been ignored. 

 

 The fact that for two Lagrange equations of motion in the mechanics of ponderable masses, 

the elimination of one coordinate will not always lead to a Lagrange equation in one variable and 

a second-order kinetic potential already emerges in the simple case of a free point that moves in a 

plane and is subject to a force function. Its kinetic potential is: 

 

H = − 
2 21

2
( ) ( , )m x y U x y + − , 

 

and its equations of motion will then be: 

 

U
m x

x


 −


= 0 , 

U
m y

y


 −


 = 0 . 

 

As is clear from the third case that was treated in this section, eliminating x from the two equations 

of motion will yield a condition equation for the force function if the resulting fourth-order 

differential equation in y is to possess a second-order kinetic potential. With the introduction of 

complex variables, by which the kinetic potential for the two variables p and p in the mechanics 

of ponderable masses can always be put into the form: 

 

H = ( , ) ( , )p p p   + p p p  , 

 

the Lagrange equations will then assume the form: 

 

2

p




  
 + +

 
p p

p
 = 0 , 

2p p
p




  
 + +

 p
 = 0 , 

 

so the present situation will then belong to the case that was treated in this section in which the 

result of the elimination always possessed a second-order kinetic potential. We shall not go into 

the details of that here. 

 However, we can also exhibit the general conditions that a first-order kinetic potential H must 

be subject to in order for the elimination of the coordinate p from the two Lagrange equations: 

 

(44)     
H d H

p dt p

 
−

 
 = 0 , 
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(45)     
H d H

dt

 
−

 p p
 = 0 

 

to lead to a fourth-order differential equation that possesses a second-order kinetic potential. 

 Namely, if one differentiates each of equations (44) and (45) twice with respect to t then, from 

(2) and (3) of § 2, the six equations that thus arise can be put into the form: 

 

(46)   

2 0, 2 0,

3 0, 3 0,

4 0, 4 0.

H H H H

p p

H H H H

p p

H H H H

p p

     
− = − =     


       

− = − =
    

       
− = − =

    

p p

p p

p p

 

 

If the result of eliminating the five quantities p, p , p , p , 
IVp  from the six equations is 

represented by Q = 0 then the necessary and sufficient condition for there to exist a second-order 

kinetic potential H, or that: 

Q = 
2

2

d d

dt dt

  
− +

   

H H H

p p p
 , 

is known to have the form: 
2

2
2 2

Q d Q d Q

dt dt

  
− +

    p p p
 = 0 , 

2
Q d Q

dt

 
−

  p p
 = 0 , 

 

or in turn, with the help of (2) and (3) in § 2: 

 

5 4
Q Q Q   

− +
    p p p

 = 0 , 

3 2
Q Q 

−
  p p

 = 0 . 

 

The representation of those conditions for the kinetic potential H with the help of equations (46) 

will imply the necessary and sufficient conditions for the result of the elimination to be a Lagrange 

equation for a second-order kinetic potential. 

 We conclude these studies with a general remark that might be based upon a kinetic potential 

H of order  in only two variables p and p, for brevity, but without altering the result. Under the 

assumption that the external forces are zero, the two Lagrange equations will read: 
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2

2 ( )
( 1)

H d H d H d H

p dt p dt p dt p




 

   
− + − + −

    
 = 0 , 

 
2

2 ( )
( 1)

H d H d H d H

dt dt dt




 

   
− + − + −

    p p p p
 = 0 . 

 

 In order to obtain the differential equation in the variable p that results from eliminating p and 

its derivatives from them, one differentiates each equation 2 times with respect to t and eliminates 

the 4 + 1 quantities p, p , p , …, 
(4 )p 

 from the 4 + 2 equations that thus arise. The result of 

that elimination will take the form: 

 

(47) 
(4 )( , , , , , )F t  p p p p  = 0 . 

 

 However, since the Lagrange equations make: 

 
1

0

t

t

H dt   = 0 , 

 

from Hamilton’s principle, when one substitutes the values of p, p , p , …, 
( )p 

 as functions of 

(4 ), , , , ,t  p p p p  that are derived from the system of differentiated Lagrange equations in the 

expression H and denotes the function of p and its derivatives up to order 4 that one obtains by 

H, one will have: 

1

0

t

t

dt H  = 0 . 

 

Therefore, one will have the differential equation (47) of order 4, although it will not possess a 

kinetic potential of order 2, in general, but an integral function of the differential equation of 

order 8 (*): 

 
 (*) For example, let: 

H = − 
2 2 31 ( )

2
p p p + − −p p , 

so the equations of motion read: 

p  = 2
3p + p , p  = p . 

 

The elimination equation in the variable p will then be: 

 

(6)      Q = 2
3

IV
− −p p p  = 0 , 

 

and since: 
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2 4

2 4 (4 )

d d d

dt dt dt



 

   
− + − +

    

H H H H

p p p p
 = 0 . 

 

___________ 

 

 
2 3

2 3

Q d Q d Q d Q

dt dt dt
+ −

   
−

      p p p p
 

 

is not identically zero, that will not have a second-order kinetic potential. If one substitutes p = p , p  = p  in H 

according to the second Lagrange equation then that will give: 
 

H = 

2 3

2 3

d d d

dt dt dt
+ −

   
−

     

H H H H

p p p p
 = ( ) 2 ( )

6 6
IV IV

  − − −p p p p p  = 0 , 

 

so the quantity Q will be an integral function. 

 

 



§ 18. – The extended Newtonian potential and the generalization  

of the Laplace-Poisson differential equation. 
 

 

 Let W be an entire function of the derivatives with respect to t, namely, r , r , …, ( )r  , in 

which: 
2r  = (x – a)2 + (y – b)2 + (z – c)2 . 

 

Assume that r itself might enter arbitrarily into that function, and that the function has even degree 

2k relative to ( )r  . If one denotes: 

 
2 2 2

( )2 ( )2 ( )2x y z  

  
+ +

  
 by  

then the relations: 
( )

( )

r

x








 = 

r

x




, 

( )

( )

r

y








 = 

r

y




, 

( )

( )

r

z








 = 

r

z




, 

will, since one has: 
22 2

r r r

x y z

      
+ +    

      
 = 1 , 

imply that: 

 = 
2

( )2

W

r 




, 

 

as is obvious. Thus, it has degree 2k – 2 relative to ( )r  , such that the k-times iterated expression: 

 
k W  = V 

 

will no longer include the quantity ( )r   at all, and therefore the coefficient of ( )2kr   in W will be 

multiplied by (2k)!. 

 By contrast, if W has odd degree 2k + 1 relative to ( )r   then: 

 
k W  = W1 

 

will still have degree one relative to ( )r  . One then denotes: 

 
2 2 2

( ) ( 1) ( ) ( 1) ( ) ( 1)x x y y z z     − − −

  
+ +

     
 by − 

 

and observes that when  > 1, the relation that follows from (2) and (3) in § 2: 
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( )

( 1)

r

x



 −




 = 

r

x





, 

and the relation: 

r r r r r r

x x y y z z

     
+ +

       
 = 0 

will imply that the expression: 

− W1 = 
2

1

( ) ( 1)

W

r r  −



 
 

 

is independent of ( )r  . That will then yield: 

 

1

k W −   = V , 

 

in which V depends upon only r, r , r , …, ( )r   and represents the partial differential quotients 

of the coefficients of ( )2 1kr  +  with respect to ( 1)r  − , multiplied by (2k + 1)!. For the case in which 

v = 1, it will follow from: 

11 W = W1 

and the relation: 
2 2 2

2 2 2

r r r

x y z

  
+ +

  
 = 

2

r
 

that: 

10 W1 = 
2

1 12W W

r r r r

 
+

   
, 

 

as is easy to see. Thus, it will once more follow that: 

 

10 11

k W  = V , 

 

in which V depends upon only r, and if the coefficient of 2 1kr +  in W is  (r) then W will have the 

value: 

2
(2 1)! ( ) ( )k r r

r
 

 
+ + 

 
 . 

 

 Since one can now apply the same argument to the functions V that include only r, r , …, 
( 1)r  − , it will follow that since only the terms in W that include the highest power of ( )r   will 

come under consideration in the formation of the equation for V above, the continuation of the 

process to the lower-order terms will again affect only those terms that include the highest power 
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of 
( 1) ,r  −

 etc. Moreover, it will then follow upon repeating that process when the only terms in W 

that come under consideration are denoted by: 

 
1

2 1( ) ( 1) ( )r r r r r
      

−−   , 

 

and one ultimately ignores a constant that will be specified later, one will be led to either: 

 

 (r) or 
( ) 2

( )
r

r
r r





+


, 

 

whose common form can be represented by: 

 

1

1
1

( ) 2
( )

r
r

r r






 


+


, 

 

when 1 = 0 or 1, resp. However, since one finally has that for any function V of r : 

 

00 V = 
2

2

2V V

r r r

 
+

 
, 

one will then have: 

 

1

1
00 1

( ) 2
( )

r
r

r r






 

 
 + 

 
 = 

1 1

1 1

2 12

12 12

( ) 2 ( ) 2 ( )r r r

r r r r r

 

 

  


+ +

+ +

  
+ +

  
 . 

 

One will then get the following extension of the known transformation of a function W that depends 

upon only r : 
2 2 2

2 2 2

W W W

x y z

  
+ +

  
 = 

2

2

2W W

r r r

 
+

 
. 

 

 Let W be an entire function in the quantities r, r , …, ( )r  , into which r itself can enter 

arbitrarily, and one selects those terms from it: 

 
1

2 1( ) ( 1) ( )r r r r r
      

−−    

 

that have the property that ( )r
  is the highest power of ( )r  that occurs in W, 

1( 1)r
 −−  is the 

highest power of ( 1)r  −  that occurs in conjunction with ( )r
 , 

2( 2)r
 −−  is the highest power of 

( 2)r  −  that occurs in conjunction with 
1

( ) ( 1)r r
    −

− , etc., and which shall be called the highest 

power of W. One then sets: 

 = 2 +   
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− −  = 2− + −  

− − − = 2− + −  

…………………………….. 

 −  = 2 +   

 −  = 2 +   

 

in which the quantities 1, 2, …,  mean the numbers 0 or 1. The transformation that is then 

analogous to the one above will then assume the form: 

 

1 11 1 2 2

00 10 11 21 22 1, 2 1, 1 , 1 W         

      
− −

− − − − −          

= 
1 1

1 1

2 12

1 2 1 12 12

( ) 2 ( ) 2 ( )
! ! ! !

r r r

r r r r r

 

   

  
    

+ +

− + +

   
+ + 

   
. 

 

 Now, in order to obtain the differential equation for a force function (in the sense that was 

defined in § 4) with a finite or infinite number of centers at a point that lies outside the masses in 

a form that is the same for all r and any number of them, the right-hand side of the equation above 

must vanish, and therefore  (r) will satisfy one of the following two differential equations: 

 
2

2

( ) 2 ( )r r

r r r

  
+

 
 = 0 

or 
3 2

3 2

( ) 4 ( )r r

r r r

  
+

 
 = 0 . 

It will then have the form: 

 (r) = 
c

r
 + c1      or       (r) = 

2

c

r
 + c1 r + c2 , 

and we will then find that: 

 

 The extended Laplace equation for all functions W that depend upon r and its derivatives with 

respect to t up to order  that are entire functions of those derivatives and whose highest term has 

the coefficient: 

c

r
 + c1      or      

2

c

r
 + c1 r + c2 

assumes the form: 

 

(1)    1 11 1 2 2

00 10 11 21 22 1, 2 1, 1 , 1 W         

      
− −

− − − − −          = 0 . 

 

 The assumption that W is an entire function of r, r , …, ( )r  , into which r itself should enter 

arbitrarily, excludes the possibility that W can become infinitely large for an arbitrary value of r 

and finite values of the derivatives. 
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 Suppose that: 
(2 )( , , , , )R r r r r    

 

is a force that depends upon the distance and its derivatives with respect to time up to order 2 

and satisfies the equations: 

 
2 2

2

1 2 2 2( ) ( 1) 2 ( 2) 2 (2 )
[1 ( 1) ] ( 1) ( 2) ( 1) (2 )

R d R d R d R

r dt r dt r dt r

 
  

     
  

−
−

−+ + −

   
− − − + + + − + −

   
 = 0 

 

identically for  = 1, 3, 5, …, 2 – 1 . We shall call a force function W that satisfies the equation: 

 

(2 )( , , , , )R r r r r    = ( )
( 1)

W d W d W

r dt r dt r




 

  
− + + −

  
 

 

a potential when the highest-order term (in the sense that was defined above) in that function that 

depends upon r and its  derivatives is expressed in the form: 

 

1
2 1( ) ( 1)

1

c
r r r r c

r

      −−  
  + 

 
 

or 

1
2 1( ) ( 1)

1 22

c
r r r r c r c

r

      −−  
  + + 

 
 , 

 

according to whether the quantities are determined by the equations: 

 

 = 2  +  ,    − −  = 2− + − ,    …,     −  = 2 +  ,     −  = 2 +  , 

 

in which the quantities  mean the numbers 0 or 1 with: 

 

 =  −  +  −  + … + (− 1)−1  (mod 2), 

 

have the value 0 or 1, resp. The extended Laplace equation for the generalized Newtonian 

potential will then read: 

 
1 11 1 2 2

00 10 11 21 22 1, 2 1, 1 , 1 W         

      
− −

− − − − −          = 0 . 

 

 For the force function of Weber’s law: 
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W = 
2

1

2
1

m m r

r k

 
+ 

 
, 

the highest-order term is: 
2

1

2

m m r

k r


 . 

 

Since  = 1, 1 = 2, so 1 = 1 and 1 = 0, W will have the desired form of an extended Newtonian 

potential and will satisfy the partial differential equation (*): 

 

(2)  00 11 W = 0 

 

or 

  
4 4 4

2 2 2 2 2 2

W W W

x x x y x z

  
+ +

       
 

  + 
4 4 4

2 2 2 2 2 2

W W W

y x y y y z

  
+ +

       
 

  + 
4 4 4

2 2 2 2 2 2

W W W

z x z y z z

  
+ +

       
 = 0 . 

 

 
 (*) Let a force function have the form: 

W = 
1

2
1

m m r

r k

 
+ 

 
 , 

 

for which  = 1, 1 = , so 1 will be zero or unity according to whether  is even or odd, resp., which will then be a 

potential in the sense that was defined above only for even . Since: 

 
2 2 2

2 2 2

r r r

x y z
+

    
+

  
 = − 

2
2

r

r


, 

when one sets: 
2 2 2

x y z  + +  = 
2

v , 

so 
22 2

r r r

x y z

        
+    

      
+  = 

2 2

2

v r

r

−
, 

the relation will follow: 

 

00 00 W =  ( – 1) ( – 2) ( – 3) 
4 4

5

r v

r

−


− 2 ( – 1) ( – 2) ( + 1) 
2 2

5

r v

r

−


−  ( + 1) ( – 2) ( + 3) 
5

r

r




, 

 

such that for  = 0 and  = 2, one will have: 

00 00 W = 0 

for the Newtonian and Weber potentials. 
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 In general, for any force function that depends upon only r and the first derivatives with respect 

to time (so the force is a function of r, r , r ), the existence of an extended Newtonian potential 

will require that it must take the form: 

W = 
2 2 1 2

0 1 2 2 1 1( ) ( ) ( ) ( )
c

r r r r r r r c r
r

 

    −

−

 
   + + + + + + 

 
 

or 

(4)   W = 
2 2 2 1

0 1 2 2 1 22
( ) ( ) ( ) ( )

c
r r r r r r r c r c r

r

 

    + 
   + + + + + + + 

 
, 

 

in which 0 (r), 1 (r), …, 2 (r) mean arbitrary functions of r, and the corresponding Laplace 

equations will read: 

 

(5)     00 11W   = 0 and 00 10 11W    = 0 . 

 

 In order to determine the extended Poisson differential equation for the potentials (3) and (4), 

as is known, it is sufficient to determine the potential of a homogeneous hollow sphere at a point 

that lies inside of it, and for that reason, we shall address the somewhat-more-general problem: 

 

 Calculate the potential of a spherical shell with concentric layers of homogeneous mass-

elements that act according to the potentials (3) or (4) at point that lies inside or outside of it. 

 

 If one puts the origin of a rectangular coordinate system at the center of the spherical shell, 

whose inner and outer radii might be denoted by R0 and R1, resp., and lays the YZ-plane along the 

direction in which the point moves at the moment in question with a velocity whose magnitude 

and direction are given then if its components are denoted by x , y , z , one will have: 

 

x  = 0 , 
2v  = 

2 2y z + . 

 

If one further denotes the coordinates of the spherical shell by a, b, c, and lets r be the distance 

from the attracted point to a point on the ring then it will follow from: 

 
2r  = (x – a)2 + (y – b)2 + (z – c)2 , 

 

in which one sets x = 0, y = 0, upon differentiating with respect to t and preserving the coordinates 

a, b, c, that: 

r r  = ( ) ( ) ( )x a x y b y z c z  − + − + − , 

 

or at the attracted point, which is characterized by x = 0, y = 0, x  = 0 : 

 

r r  = b y c z z z  − − + . 
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 If one introduces polar coordinates for the coordinates of the spherical shell then one will have: 

 

a =  sin  sin  , b =  sin  cos  , c =  cos  , 

 

with the well-known notations, and the relation above will go to: 

 

(6)     r  = 
1 cos sin cos

z z z y
r r r

    
  − − . 

 

Since the essentially-positive r is defined by: 

 

(7)  r = 2 2 2 cosz z  + − , 

 

when one recalls (3), (4), (6), (7), the potential of the spherical shell, which is constant in concentric 

layers, so its density, which varies only with , will be denoted by , will be given by the 

expression: 

 

(8)   W = 
( )1

0

2 2
2

2

2 2 1/2
10 0

2 cos
sin ( cos sin cos )

( 2 cos )

R
i

i

iR

z z
z z z y d d d

z z

      
          

  =

 + −
 

 − − 
+ − 

 

    , 

 

when we take the mass of the attracting point equal to unity. The potential W can be put into the 

form that is common to (3) and (4): 

 

W =  0 1( ) ( ) ( )m r r r r r 

   + + +  , 

 

in which m is the mass of the attracting point, and according to whether: 

 

   = 2 or  = 2 + 1, 

one sets: 

2 (r) = 
1

c
c

r
+   or 2+ (r) = 

1 22

c
c r c

r
+ + , 

respectively. 

 In order to simplify the integrations, we base our calculations upon Weber’s law, for which 

we have: 

 = 2 ,    0 (r) = 
1

r
,    1 (r) = 0 ,    2 (r) = 2

1

k r
. 

 

After performing the integration over , we will then have: 
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(9)   W = 
1 1

0 0

2 2 2 2 2
2

2 2 1/2 2 2 2 1/2

0 0

sin 2( cos ) sin
2 sin

( 2 cos ) ( 2 cos )

R R

R R

d d z z z y
d d

z z k z z

 
         

     
     

  − +
+

+ − + −    . 

 

 If we denote the integral  over the variable  between the limits 0 and  by a when it is 

taken for a point lies outside the spherical shell and by i for one that lies inside its interior then it 

is easy to see that: 

 

 for  = 
2 2 1/2

0

sin

( 2 cos )

d

z z


 

  + − , a = 
2

z
, i = 

2


, 

 

 for  = 
2 2 1/2

0

sin

( 2 cos )

d

z z


 

  + − , a = 2 2

2 1

z z −
, i = 

2 2

2 1

z z −
, 

 

 for  = 2 2 1/2

0

sin cos

( 2 cos )

d

z z


  

  + − , a = 
2 2 2

2

( )z z



−
, i = 

2 2 2

2

( )

z

z z −
, 

 

 for  = 

2

2 2 1/2

0

sin cos

( 2 cos )

d

z z


  

  + − , a = 
2 2

3 2 2

2 2

3

z

z z





+

−
, i = 

2 2

3 2 2

2 2

3

z

z



 

+

−
. 

 

If we also denote the corresponding values of the potential by Wa and Wi, resp., then the 

substitution of those values of the integral in the expression (9) will give: 

 

Wa = 
1

0

2 2 2
4

2 2 3

1 4 3

3

R

R

z z v
M d

z k z k z


  

   −
+ − 

 
  

and 

Wi  = 
1 1

0 0

2

2

4
4

3

R R

R R

d v d
k


      +  , 

 

after a simple calculation, when the total mass of the spherical shell is denoted by M. 

 

 Therefore, if a point that lies outside of a spherical shell that has concentric layers of constant 

density is at a distance l from the center of the sphere and possesses the velocity v, and l  is the 

projection of v onto the direction of l then the value of the potential will be given by the expressions: 

 

(10) Wa = 
1

0

2 2 2
4

2 2 3

1 4 3

3

R

R

z z v
M d

z k z k z


  

   −
+ − 

 
  

and 
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(11) Wi  = 
1 1

0 0

2

2

4
4

3

R R

R R

d v d
k


      +  . 

 

Thus (as should already be obvious from symmetry), the potential depends upon only the distance 

from the attracted point to the center, the magnitude of its velocity, and the direction of the latter 

with respect to the connecting line to the center. 

 

 The first term in the potential Wa is nothing but the value of the Weber potential when the total 

mass of the spherical ring is concentrated at the center, and that is also the total value of the 

potential when 2v  = 23l , or when the angle that the velocity makes with the connecting line to 

the center is 54o 44. 

 

 It is further obvious that for a point that lies in the interior space, the potential will be 

independent of the position of the point and the direction of the velocity. Therefore, it will have the 

form: 

Wi = 2a b v+ . 

 

 If the point lies in the concentrated spherical shell itself then the potential might be denoted by 

Wm . When one again denotes the distance from the point to the center of the sphere by l and 

composes the potential from the Wa of the spherical shell that belongs to l and R0 and the Wi of the 

spherical shell that belongs to R1 and l, then its value will be given by: 

 

(12) Wm = 

0 0

2 2 2
2 4

2 2 3

1 4 3
4

3

l l

R R

l l v
d d

l k l k l


      

   −
+ − 

 
  +

1 1

2

2

4
4

3

R R

l l

d v d
k


      +  . 

 

Once more, as for the Newtonian potential, the validity of the theorem will prove that the potential: 

 
2

2

1 r
dm

r k r

 
+ 

 
  

 

is finite and continuous for all of infinite space and for finite values of r , even for the case in 

which the point enters into the mass itself. However, that will follow immediately from the fact 

that when one lays the origin of the coordinates at the attracted point x, y, z and introduces polar 

coordinates by the relations: 

 

a – x = r sin  sin  ,  b – y = r sin  cos  ,  c – z = r cos  , 

 

the potential will assume the form: 
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2
2

2

1
sin

r
r dr d d

r k r
   

 
+ 

 
 , 

 

which is clear that from the fact that it must be finite even when r = 0 . Its continuity in regard to 

r and r  follows in a known, precisely-analogous way. 

 The fact that the potentials Wa and Wi satisfy the extended Laplace differential equation is 

obvious, since: 

  aW

x




 = 

1

0

4

2 2 2 4

2 4 6 2

3

R

R

M l x l x x l
d

k l k l


  

  −
−  , 

  
2

2

aW

x




 = 

1

0

2 2 2
4

2 3 2 5

2 4 6

3

R

R

M x x l
d

k l k l


  

−
−  , 

so 

11 Wa = 
2

2M

k l
, 

and 

iW

x




 = 

1

0

2

8

3

R

R

x d
k


    , 

2

2

iW

x




 = 

1

0

2

8

3

R

R

d
k


   , 

so 

11 Wi = 
1

0

2

8

3

R

R

d
k


   , 

and therefore, one will have: 

00 11 Wa = 00 11 Wi = 0 . 

 

 We shall now examine the potential of a solid homogeneous ball at a point inside of it. From 

(12), it will assume the form: 

 

Wm = 
2

2 2 2 2 2 2 2

2 2 2

8 2 2
2

3 15 3 5

l
R l l R v l v

k k k

     
 

 
− + + − 

 
, 

 

in which R means the radius of the ball,  is the constant density, and l is the distance from the 

attracted point to the center. The equations: 

 

mW

x




 = 

2 2 2 2 2 2

2 2 2 2

16 8 2 2

15 15 3 5
l l x l l R v l v

k k k k

       
 + + − , 

 
2

2

mW

x




 = 

2 2

2 2 2

16 4 4

15 3 5
x R l

k k k

     
+ −  

will then imply that: 
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V = 11 W = − 
2 2

2 2

4 4

3
l R

k k

   
+ , 

and since one has: 

V

x




 = − 

2

8

3
x

k

 
, 

2

2

V

x




 = − 

2

8

3k

 
, 

it will follow that: 

00 11 Wi = − 
2

8

k


 . 

 

 If one employs the result that was just found by cutting out an infinitely-small ball in the mass 

that surrounds the attracted point in the mass and is assumed to be homogeneous then for the 

Weber potential, which is defined by the expression: 

 

W = 
2

2
1

m r

r k

 
− 

 
 , 

 

that will yield the extended Laplace-Poisson differential equation in the form of: 

 

00 11 Wi = − 
2

8

k


 , 

 

in which  means the density of the attracting mass at the location where one finds the attracted 

point. 

 One can also derive the constant in the Poisson equations for potentials of arbitrary order 

directly from the extended Laplace equation. However, we have likewise found the potential of a 

spherical shell for forces that act according to Weber’s law in that way, and we will then use its 

value in order to treat a problem of motion. 

 

___________ 



§ 19. – The motion of a point under the influence  

of a first-order force function. 
 

 

 If a point of mass m1 is subject to a force function: 

 

1 ( , )m m F r r  

 

that originates from a point of mass m, in which r means the distance between the two points, or a 

force that is given by the expression: 

 

then the kinetic potential will be defined by: 

 

H = − 2 21
1 12
( ) ( , )m x y mm F r r  + − , 

 

and the equations of motion will become: 

 

H d H

x dt x

 
−

 
 = 0 , 

H d H

y dt y

 
−

 
 = 0 , 

 

since the motion of the point m1 will proceed in a plane through its initial position and initial 

velocity. 

 Now since the conditions that were presented in §§ 7 and 10 for the principle of vis viva and 

the law of areas to be valid are fulfilled by the form of the force function that was assumed here, 

the first integrals of the equations of motion will read: 

 

H H
y x

x y

 
−

  
 =  

and 

H H
H x y

x y

 
 − −

  
 = h , 

 

in which the area constant and the constant of vis viva are determined from the initial position and 

velocity, or upon introducing polar coordinates, when one further sets m1 = 1: 

 

2 d
r

dt


 =  

and 

1 ,
F d F

m m
r dt r

  
− 

  
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2 2

21 ( , )
( , )

2

dr d F r r
r m F r r mr

dt dt r

     
 + − +    

     

 = h . 

 

 Upon eliminating d / dt, it will follow that: 

 

2r  = 
2

2

2 ( , )
2 ( , ) 2

m F r r
h F r r m r

r r

 
 − −


, 

 

and therefore, t can be represented as a function of r by a quadrature for all of these problems, as 

in Kepler’s problem. For the motion of a point that is attracted to a fixed center with the force 

function: 

( , )F r r  = 2

0 1 2( ) ( ) ( )r r r r r   + + , 

one will get: 

t = 

0

2

2 2 2

0

1 2 ( )

2 2 ( )r

r m r
dr

hr mr r



 

+

− +
 . 

 

If that force function is the Weber potential, so: 

 

( , )F r r  = 
2

2

1 1
r

r k r
+ , 

 

then time will follow by the elliptic integral: 

 

t = 

0

2

2

2 2 2

2

2

2
(2 2 )

r

m
r r

k dr
m

r r h r mr
k



+

 
+ + − 

 

 . 

 

 If we now exhibit the kinetic potential that acts upon a moving point in the more general form: 

 

H = ( , , )f r r v  , 

in which: 
2r  = 

2 2 2x y z+ + , 
2v  = 

2 2 2x y z  + + , 

 

then the three area theorems (9) will be true, according to (10) in § 10: 

 

H H
x y

y x

 
−

  
 = c1 , 

H H
y z

z y

 
−

  
 = c2 , 

H H
z x

x z

 
−

  
 = c3 

or 
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1
( )

H
x y y x

v v


 −


 = c1 , 

1
( )

H
y z z y

v v


 −


 = c2 , 

1
( )

H
z x x z

v v


 −


 = c3 , 

 

from which, upon introducing polar coordinates: 

 

x = r sin  cos  , y = r sin  sin  , z = r cos  , 

 

and when one sets, in addition: 

1 H

v v




 = 1 ( , , )H r r v  , 

 

to abbreviate, that will yield the three integral equations: 

 

(1)  

2 2 2 2 2 2 2 2

1 1

2 2 2 2 2 2 2

1 2

2 2 2 2 2 2 2

1 3

( , , sin ) sin ,

( , , sin ) ( sin sin cos cos ) ,

( , , sin ) ( cos sin cos sin ) .

H r r r r r r c

H r r r r r r c

H r r r r r r c

   

       

       

     + +  =



     + +  + =


     + +  − =

 

 

Eliminating   and   from them will give the equation: 

 

c1 cos  – c2 sin  cos  + c3 sin  sin  = 0 , 

or 

c1 z – c2 x + c3 y = 0 , 

 

which says that the point will then move in the plane that is thus defined. 

 However, since the energy principle will yield the equation: 

 

H H H
H x y z

x y z

  
  − − −

    
 = h , 

or since: 

 

H
x

x





 = 

2H x H x x

v v r r

  
+

 
, 

H
y

y





 = 

2H y H y y

v v r r

  
+

 
, 

H
z

z





 = 

2H y H z z

v v r r

  
+

 
, 

 

one will have: 

H H
H v r

v r

 
− −

 
 = h . 

In polar coordinates, when one sets: 

H
r

r





 = 2 ( , , )H r r v  , 

that will go to: 
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(2)  ( )2 2 2 2 2 2, , sinH r r r r r     + +  

 − ( )2 2 2 2 2 2 2 2 2 2 2 2

1( sin ) , , sinr r r H r r r r r           + + + +  

  − ( )2 2 2 2 2 2 2

2 , , sinr H r r r r r      + +  = h . 

 

One can then get back to the problem by quadratures easily with the help of the four first-order 

integral equations. Namely, if one sets: 

2

1

c

c
 = 1 

 

then it will follow from the first two equations in (1) that: 

 

(3)  sin
d

d





 + sin  cos  cos  = 1 sin2  , 

 

or when 2 means an integration constant: 

 

(4)  cot  = 1 sin  + 2 cos  , 

 

such that the first equation in (1) and (4) will give: 

 

(5)  

2

2sin
d

dt




 
 
 

= 

( )

2
21

2 1
4 2 2 2 2 2 2

1

[1 ( sin sin ) ]
, , ( sin )

c

r H r r r r
   

  
 + +

   + +
, 

 

while (5) and (4) will give: 

 

(6)  

2
d

dt

 
 
 

= 

( )

2
21

1 2
4 2 2 2 2 2 2

1

( sin sin )
, , ( sin )

c

r H r r r r
   

  
 −

   + +
, 

 

and (5) and (6) will give: 

 

(7)  
2 2 2sin   +  = 

( )

2 2 2

1 1 2

4 2 2 2 2 2 2

1

(1 )

, , ( sin )

c

r H r r r r

 

  

+ +

   + +
 . 

 

However, since the last equation gives 
2 2 2sin   +  as a function of r and r , it will follow from 

the vis viva equation (2) that there is a relation between r and r : 
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r  = 2 2 2

1 1 2( , (1 ), )r c h  + + . 

 

One can then represent t by a quadrature in r: 

 

t +  = 
2 2 2

1 1 2( , (1 ), )

dr

r c h  + +  

 or 

r = 2 2 2

1 1 2( , (1 ), )t c h   + + +  . 

 

If one further observes that r, r , 2 2 2sin   +  are known functions of t, moreover, and that 

from (4) one has: 

2

1 2( sin sin )   −  = 
2 2 2

1 2

2

(1 ) sin 1

sin

  



+ + −
, 

 

then equation (6) will assume the form: 

 

2 2 2

1 2

sin

(1 )sin 1

d 

  + + −
  = 

2 2 2

1 1 2( , (1 ), )t c h dt    + + + + . 

 

Thus,  will also be determined by quadratures, which will then give  immediately from equation 

(4). The expressions for r, ,  as functions of t will then include the six integration constants , 

1, 2, h, c1, , and: 

 

 The integration of all equations of motion that are based upon a first-order kinetic potential 

that depends upon the distance from the moving point to a fixed center, the derivative with respect 

to time of the distance, and the velocity of the moving point can always be reduced to simply a 

kinetic potential that is composed of quadratures. 

 

 We would now like to use that theorem to investigate the motion of a point that is attracted to 

a mass-element in a spherical shell with concentric homogeneous layers according to Weber’s law 

and discover what it will be outside of the ring or inside of the cavity. 

 Suppose that the spherical shell is bounded by two spheres of radii R0 and R1, resp., and that  

is the density of the spherical layer as a function of the distance  from the center, moreover. One 

sets: 

N = 
1

0

44

R

R

d    , 

 

while M denotes the mass of the spherical shell. If r denotes the distance from a point that is found 

outside the shell to the center of the latter, and r  denotes the derivative of r with respect to time, 
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while v denotes the velocity of the point then, according to (10) in § 18, the potential that the 

spherical shell exerts upon the point of mass 1 will be: 

 

Wa = 
2 2

2 2 3

1 3

3

r N r v
M

r k r k r

   −
+ − 

 
, 

and the kinetic potential: 

H = − T – Wa 

will then assume the form: 

H = − 
2 2

21
2 2 2 3

1 3

3

r N r v
v M

r k r k r

   −
− + − 

 
, 

 

in this case, which is included in the one that was treated above, in which one had: 

 

H = ( , , )f r r v  . 

 

 If one now remarks that from the definitions that were given above, one will have: 

 

  H1 = 
1 H

v v




 = − 

2 3

2 1
1

3

N

k r
−  , 

  H2 = 
1 H

r r



 
 = − 

2 2 3

2 1 2 1

3

M N

k r k r
+  

 

then equation (2), which represents the energy principle, will read: 

 

(8)  
2 2 2

21
2 2 2 3

1 3

3

r N v r
v M

r k r k r

   −
− − + 

 
 = h , 

 

while equation (7) will go to: 

(9)  
2v  = 

2 2 2 4
21 1 2

2

3

2

(1 )

2

3

c r
r

N
r

k

 + +
+

 
+ 

 

 

 

when one multiplies it by 2r  and adds 2r  to both sides. If one now substitutes the value of 
2v  

from (9) in (8) then that will give: 
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t +  = 

3 3 2

2 2 2

3 2 2 2 2

1 1 22

2 2 4

3 3

2
2 ( ) (1 )

3

N M N
r r r

k k k
dr

N
r r M h r c r

k
 

  
+ + −  

  

 
+ + − + + 

 

 , 

and (6) will give: 

 

2 2 2

1 2

sin

(1 )sin 1

d 

  + + −
   

= 

3 2

1 2 2

3 3 2 2 2 2

1 1 22 2

2 4

3

2 2
2 2 ( ) (1 )

3 3

M N
c r r

k k
dr

N N
r r M h r c r

k k



 

+ −

+
    

+ + + − + +    
    

 . 

 

All of the defining data have then been reduced to quadratures with that. 

 Finally, as far as the motion of a point that is found in the cavity is concerned, according to 

(11) of § 18, when one sets: 
1

0

4

R

R

d     = A , 

 

the potential of the spherical shell at an interior point will be: 

 

Wi = 
2

2
1

3

v
A

k

 
+ 

 
 , 

so the equation of motion: 
2

2

d x

dt
 = i iW Wd

x dt x

 
−

 
 

and its two analogues will go to: 

 

x= 
2

2

3

A
x

k
 , y = 

2

2

3

A
y

k
 , z  = 

2

2

3

A
z

k
 , 

 

from which it will follow that x= 0,  y = 0, z  = 0. We then find that a point inside the hollow 

part of a spherical shell whose mass-element attracts the point according to Weber’s law will move 

along a straight line with constant velocity. 

 

___________ 
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 In connection with the extension of the Laplace-Poisson differential equation for higher-order 

potentials that was derived in § 18, we shall ultimately examine the form of the extended Poisson 

discontinuity equation, along with some of its applications. It will suffice to apply those 

considerations to the Weber potential. 

 Let U denote the potential of a mass that fills up a space continually and attracts a point of 

mass 1 according to Weber’s potential: 

W = 
2

2
1

m r

r k

 
+ 

 
 . 

 

Let d be an element of that space, while  is the density of the mass in it, and let r be its distance 

from the attracted point x, y, z. It will then follow that: 

 

U = 
2

2
1

d r

r k

   
+ 

 
  = 

2

2
1

r
da db dc

r k

  
+ 

 
  

 

is finite and continuous for all points x, y, z of the space that is filled with mass. However, it will 

also follow, as the introduction of polar coordinates above shows, that the finitude and continuity 

of the potential will also persist inside of the mass for finite and continuous values of the derivative 

r . 

 Now, if the attracted point lies outside of the attracting mass then it will follow upon 

differentiating with respect to the coordinates and their first derivatives that: 

 

00 10

d
U U

dt
 −   = 00 10

d
W W da db dc

dt


 
 −  

 
 , 

 

in which the attracting mass is considered to be at rest. Now, since it will obviously follow from: 

 

   2r  = (x – a)2 + (y – b)2 + (z – c)2, 

r r = ( ) ( ) ( )x a x y b y z c z  − + − + −  

that: 
2

2

W

x




 = 

2 2 2 2 2

5 3 2 3 2 5 2 4 2 3

3( ) 1 3 15 ( ) 12 ( ) 2x a r r x a r x a x x

r r k r k r k r k r

    − − −
− − + − +  

and 
2W

x x



 
 = − 

2

2 4 2 2 2 3

6 ( ) 2 2 ( )r x a r x x a

k r k r k r

  − −
+ + , 

 

along with corresponding expressions in y and z. When one sets: 
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2 2 2x y z  + +  = 2v , 

it will then follow that: 

00 W = − 
2 2

2 3 2 3

6 2r v

k r k r


+ , 10 W = 

2 2

2 r

k r


, 

and from that: 

00 W −
d

dt
10 W = −

2 2

2 x a y b z c
x y z

k r r r r

− − − 
  + + 

 
 . 

We will then find that: 

00 U −
d

dt
10 U = 

2

2
( )x X y Y z Z

k
  + +  , 

 in which: 

  X = − 
3

( )x a
da dbdc

r

 −
 , 

  Y = − 
3

( )y b
da dbdc

r

 −
 , 

  Z = − 
3

( )z c
da db dc

r

 −
  

 

are the components of the force that the given mass-system exerts upon a point that is found outside 

of the mass according to Newton’s law. 

 

 In order to see what value that expression will assume for a point that lies inside the mass-

system, one forms the partial differential quotients of U with respect to the coordinate z. Due to 

the fact that: 

r

z




 = − 

r

c




, 

r

z




 = − 

r

c




, 

it will go to: 

 
U

z




 = − 

2

2

1
1

r
da dbdc

c r k


  
+  

   
  

= − 
2 2

2 2

1
1 1

r r
da dbdc da dbdc

c r k c r k

       
+ + +    

     
  , 

or to: 

U

z




 = −

2 2

2 2

1
1 cos ( ) 1

r r
n z ds da db dc

r k c r k

     
+ + +   

   
  , 

 

by a known conversion. The ds in that is the surface element for the space that is filled with mass, 

and n means the inward-pointing normal to ds, such that the first integral can be regarded as a 

surface potential with the mass  cos (n z), and the second one can be regarded as a spatial potential 

with a mass density of  / c . 
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 Now, in order to investigate the continuity of the expression U / z, it will be necessary to 

treat the continuity of a surface potential that acts according to Weber’s law: 

 

V = 
2

2
1

r
ds

r k

  
+ 

 
 , 

 

in which the density  is finite and should vary continuously on the surface, whose dimensions are 

finite, and which has a finite and continuous curvature. 

 It is obvious that the surface potential will still be finite and will suffer no jump for points that 

lie at a finite distance from the surface. Now, in order to see how it behaves when point is shifted 

infinitely close to the surface, we would like to use the method of proof that is ordinarily applied 

to the Newtonian surface potential and place the coordinate origin at the surface point that the 

attracted point approaches indefinitely and the z1-axis along the normal to the surface, so the x1 

and y1 axes are in the tangent plane. We now imagine cutting out an infinitely-small circle of radius 

R from the surface (the indicatrix, which can only be assumed to be a conic section as a result of 

the assumption that was made, will not introduce any consideration that deviates from the 

assumption of a circle), which is itself infinitely small, but infinitely large in comparison to the 

infinitely-small z1 and can be considered to be independent of the latter. Therefore, when the 

surface potential of the circle that is covered with mass of constant density is denoted by V1, while 

that of the rest of the surface is denoted by V2, V2 will also be finite and continuous when the point 

passes through the surface. Thus, we only need to examine the finitude and continuity of the 

potential V1. 

 Now since: 

V1 = 

2 2

1

2

10 0

1

R
rd d

r k


  


 

+ 
 

   , 

in which: 

  2

1r  = (x1 –  cos )2 + (y1 –  sin )2 + 2

1z , 

  1 1r r  = 1 1 1 1 1 1( cos ) ( sin )x x y y z z     − + − + , 

 

when the point whose velocity components are 1x , 1y , 1z  is found on the normal, so x1 = 0, y1 = 

0, that will give: 

 

V1 = 

2 2 2 2 2

1 1 1 1 1 1 1 1

2 2 22 2
10 0 1

2 ( cos sin ) ( cos sin )
1

( )

R
z z z z x y x yd d

k zz


       




      − + + +
+ 

++  
   , 

 

or upon integrating over  : 

 

V1 = 
2 2 2 2 21

1 1 1 12

2 2 22 2
10 1

( )
1

( )

R
z z x yd

k zz

 




   + +
+ 

++  
  . 
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Therefore, upon performing the integration over , one will have: 

 

V1 = 2 2 2 2 2

1 1 1 12 2 2 2

1 1

2 1 1
2 R z z z z

k R z z

 
 

 
    + − − −
   + 

 

+ 
2

2 2 2 2 2

1 1 1 12 2 2

1

( ) 2 2
R

x y R z z
k R z

   
   + − + + −

 + 

 , 

 

in which the roots are taken to have the positive sign. If one now lets z1 and R approach zero in 

such a way that one will also have z1 / R = 0 then one can see from the latter expression that V1 

will converge to zero, and therefore the total surface potential V will again be finite and continuous 

when the point cuts through the surface along the normal. However, as a simple calculation will 

show, one will also get the following expression from the value of V1 that was found above: 

 

1 1

1 1

V Vd

z dt z

 
−

 
 = 1 1 1 1

1 122 2 2 2 2 2

1 1 1 1

4
2

z z z z
z z

kR z z R z z

 
 

   
   − + −

   + +   

 

 

+ 
3 3

2 21 1 1 1
1 12 22 2 2 2 2 2 2 2 2

1 1 1 1 1 1

4 2

( )

z z z z
z z

k kR z z R z R z z z

      
    − + − +

   + + +   

 

 + 
2

2 2 1 1 1
1 12 2 2 2 2 2 2 2

1 1 1 1

2 2
( )

( )

R z z z
x y

k R z R z R z z

   
   + + −

 + + + 

. 

Since: 
2 2 2

1 1 1x y z  + +  = 
2v , 

 

for vanishing values of z, R, z1 / R, that will give: 

 

 for z1 > 0 : 1 1

1 1

V Vd

z dt z

 
−

 
 = − 

2

2
2 1

v

k
 

 
+ 

 
, 

 for z1 < 0 : 1 1

1 1

V Vd

z dt z

 
−

 
 = 

2

2
2 1

v

k
 

 
+ 

 
. 

 

Thus, there will be a jump with a magnitude of −
2

2
4 1

v

k
 

 
+ 

 
, and we will then get the extended 

Poisson discontinuity theorem: 
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1 1 1 1

1 1 a a

V V V Vd d

n dt n n dt n

     
− + −  

       
 = −

2

2
4 1

v

k
 

 
+ 

 
 . 

 

When the velocity of the point is directed along the normal, that will go to: 

 

1 1 1 1

1 1 a a

V V V Vd d

n dt n n dt n

     
− + −  

       
 = −

2

2
4 1

n

k
 

 
+ 

 
 . 

 

 In order to determine the jump in discontinuity in the corresponding expressions for the x1 and 

y1 coordinates, we must return to the value that was defined above by the double integral: 

 

 V1 = 

2

2 2 2
0 0 1 1 1( cos ) ( sin )

R
d d

x y z


  


   − + − +

   , 


2 2 2 2

1 1 1 1 1 1 1 1

2 2 2

1

2 ( cos sin ) ( cos sin )
1

( )

z z z z x y x y

k z

     



      − + + +
+ 

+ 
 . 

 

We then form: 

1

1

V

x




, 1

1

V

x




, 1

1

Vd

dt x




 

 

and set x1 = 0, y1 = 0. As a simple calculation will, in turn, show, upon performing the integration 

over  and then the one over r, we will get: 

 

 1 1

1 1

V Vd

x dt x

 
−

 
 = − 1 1

1 12 2 2 2

1 1

2 z z
x z

k R z z

  
   −

 + 

 

 + 
2

1 1 1

2 2 2 2 2 2 2 2

1 1 1 1

6 1 2 2

3 3 3( )

R z z z
x z

k R z R z R z z

  
   − + −

 + + + 

 

 − 
2

2 2 2

1 1 12 2 2

1

2
2 2

R
x R z z

k R z

  
  − + + −

 + 

 . 

 

In the infinitely-close neighborhood of the point on the surface, one will, in turn, have: 

 

 for z1 > 0 : 1 1

1 1

V Vd

x dt x

 
−

 
 = − 1 12

2
x z

k


  , 
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 for z1 < 0 : 1 1

1 1

V Vd

x dt x

 
−

 
 = 1 12

2
x z

k


   . 

Therefore, the expressions: 

1 1

1 1

V Vd

x dt x

 
−

 
,  1 1

1 1

V Vd

y dt y

 
−

 
 

will make the jumps: 

− 1 12

4
x z

k

 
   ,  − 1 12

4
y z

k

 
   , 

resp. 

 If we once more go back to the original coordinate system, whose coordinates have the 

following relationship to x1, y1, z1 : 

 

  x1 = x cos (x x1) + y cos (y x1) + z cos (z x1) , 

  y1 = x cos (x y1) + y cos (y y1) + z cos (z y1) , 

  z1 = x cos (x z1) + y cos (y z1)  + z cos (z z1) , 

 

then it will follow from Lemma 2 of § 2 that: 

 

V d V

x dt x

 
−

 
 = 1 1 1

1 1 1 1 1 1

cos ( ) cos ( ) cos ( )
V d V V d V V d V

x x y x z x
x dt x y dt y z dt z

          
− + − + −     

            
. 

 

The jumps in the expressions: 

 

V d V

x dt x

 
−

 
, 

V d V

y dt y

 
−

 
, 

V d V

z dt z

 
−

 
 

 

upon crossing the surface will be given in the form: 

 

− 
2 2

2 2

4
4 1 cos ( )

v n
n x n x

k k

 
 

 −
  − + 

 
 , 

− 
2 2

2 2

4
4 1 cos ( )

v n
n y n y

k k

 
 

 −
  − + 

 
 , 

− 
2 2

2 2

4
4 1 cos ( )

v n
n z n z

k k

 
 

 −
  − + 

 
 . 

 

 If we return to our consideration of the spatial potential U that we defined above then that will 

show that U is continuous at the surface of the space itself, and the same thing will be true for 

/U z  , since it is composed of a spatial potential and a surface potential, and V is continuous, as 

was proved above. It is obvious that upon switching z, c with x, a and y, b, we will then have that: 
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 The expressions 
U

x




, 

U

y




, 

U

z




are also continuous on the surface of the space. 

 

 However, it will further follow from the continuity jumps that were just found that for a surface 

potential with the densities: 

 cos (n x) ,  cos (n y) ,  cos (n z) , 

 

which define one component of the expressions 
U

x




, 

U

y




, 

U

z




, the expressions: 

 
2 2

2

U d U

x dt x x

 
−

  
,   

2 2

2

U d U

y dt y y

 
−

  
,  

2 2

2

U d U

z dt z z

 
−

  
 

 

will experience jump discontinuities of: 

 

− 
2 2

2

2 2

4
cos ( ) 4 1 cos ( )

v n
n x n x n x

k k

 
 

 −
  − + 

 
 , 

− 
2 2

2

2 2

4
cos ( ) 4 1 cos ( )

v n
n y n y n y

k k

 
 

 −
  − + 

 
 , 

− 
2 2

2

2 2

4
cos ( ) 4 1 cos ( )

v n
n z n z n z

k k

 
 

 −
  − + 

 
 , 

 

resp., upon passing through the point on the surface. Therefore, the expression: 

 

00 U − 
d

dt
 10 U 

will experience a jump of: 

 

− 
2 2

2 2

4
[ cos ( ) cos ( ) cos ( )] 4 1

v n
n x n x y n y z n z

k k

 
 

 −
   + + − + 

 
 

or 

− 
2

2
4 1

v

k
 

 
+ 

 
 . 

 

 If we combine that result with the one that was obtained above for the point that lies outside 

of the mass then we will find that we have: 
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00 U − 
d

dt
 10 U = 

2

2 2

2
( ) 4 1

v
x X y Y z Z

k k
 

 
  + + − + 

 
 

 

in the neighborhood of the surface. If the point is now found inside of the attracting mass and one 

lays a surface through the immediate neighborhood of that point then if the potential of the mass-

system that includes that point is denoted by U1, one will have: 

 

00 (U – U1) − 
d

dt
 10 (U – U1) = 2 2 22

2
( )x X y Y z Z

k
  + + , 

 

when X2, Y2, Z2 mean the force components, according to Newton’s law, of the mass-system in 

which the selected point does not lie. Since one has: 

 

00 U1 − 
d

dt
 10 U1 = 

2

1 1 12 2

2
( ) 4 1

v
x X y Y z Z

k k
 

 
  + + − + 

 
 , 

 

one will then find from the above that: 

 

 In general, for any spatial potential that acts according to Weber’s law: 

 

U = 
2

2
1

v
da db dc

r k

  
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 
 , 

one will have the relation: 

 

00 U − 
d

dt
 10 U = 

2

2 2

2
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k k
 

 
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 
 , 

 

in which  means the mass density at the point at which the attracting point is found, v is its 

velocity, x , y , z   are its accelerations, and X, Y, Z represent the force components of the total 

mass-system when it acts according to Newton’s law. 

 

 If one tests that relation for a homogeneous ball of density  and radius whose element will 

attract a point in its interior at a distance of l from the center, and which possesses a velocity of v, 

according to Weber’s law then the potential that was developed in § 18 will be: 

 

Wm = ( )2 2 2 2 2 2 2 21
3 2 2 2

8 2 2
2

15 3 5
R l l l R v l v

k k k

     
  − + + − . 

The relations: 
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will follow immediately from that, and thus, the relation: 

 

00 Wm − 
d

dt
10 Wm = −
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which agrees with the general relation that was found above when one observes that the 

components of the attraction of the ball can be represented by: 

 

X = − 4
3

x  ,  Y = − 4
3

y  ,  Z = − 4
3

z   

 

when its elements act upon a point in its interior whose coordinates are x, y, z according to 

Newton’s law. 

 Deriving the Poisson discontinuity equation, as well as the other relations that were developed 

above for the general extended Newtonian potential of arbitrary order, requires no further analysis, 

and entirely similar considerations can be applied when the attracting mass is not assumed to be at 

rest. 

 

____________ 



§ 21. – Review 
 

 

 The kinetic potential of a problem in the mechanics of ponderable masses has degree two 

relative to the derivatives of the mutually-independent coordinates, and linear terms enter into 

those quantities only when the constraint equations include time explicitly. In order to describe the 

motion that actually takes place in one part of that system separately from the others in terms of 

forces of a certain type and intensity, one must succeed in eliminating those coordinates and their 

first and second derivatives from the system of differential equations that should be dropped from 

the system. Moreover, one must investigate whether the differential equations of order two or 

higher that then appear in the coordinates under consideration will, in turn, possess a kinetic 

potential of order one or higher. However, such a process of elimination of variables between 

differential equations also requires the repeated differentiation of those differential equations that 

belong to the newly-formulated problem of motion, in general. As the investigations that were 

carried out above will show, the forces whose effect on a part of the system of points that is selected 

arbitrarily, but separate from the others, would produce the same motion that would be produced 

if the total system were subject to forces that belong to the mechanics of ponderable masses are 

generally higher-order forces, or the motion will be described by kinetic potentials of order higher 

than the one. The same thing will be true when one does not start from problems in the mechanics 

of ponderable masses, but from ones that are based upon general kinetic potentials of order one or 

arbitrarily higher, such that the question of the motion of the individual parts of a system when it 

is subjected to higher-order forces should be precisely the same as the question of when those parts 

that belong to a given system on which forces of any order act will lead to the study of higher-

order kinetic potentials that will, in turn, give rise to extended principles of mechanics. However, 

all of those investigations are linked with the completion of a process of eliminating a number of 

independent coordinates by differentiating the equations of motion. That differentiation cannot be 

avoided as long as we do not assume certain properties of the given equations of motion or the 

kinetic potential that determines them. For that reason, the necessary and sufficient conditions that 

were developed above for the form of the first-order kinetic potential, as well as the way that one 

exhibits just those conditions for kinetic potentials of arbitrary order, will be determined only when 

the motion that actually takes place in a subsystem that constants of fewer points can seen to be 

produced by the effect of forces with the same or next-higher order with the help of algebraic 

elimination processes. 

 For the problems of motion in the mechanics of ponderable masses in which eliminating a 

number of coordinates cannot be achieved without differentiation processes, it is clear from the 

analysis in § 15 that for the case in which the left-hand sides of a number of Lagrange equations 

for the problem of motion are complete differential quotients with respect to time or the kinetic 

potential is independent of a number of coordinates (which would then coincide with the latter 

case), the first differential quotients of the hidden coordinates will be linear functions of the first 

differential quotients of those coordinates that the reduced problem should not include. Therefore, 

the new first-order potential, like the given one, which nonetheless possesses the current and 

potential energy separately, and in which only the first derivatives of the coordinates occur, will 

also once more possess derivatives of the coordinates that remain after eliminating the hidden 
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coordinates only in the second degree, but one-dimensional terms will also enter, in general, and 

a separation of the current and potential energy will no longer be obvious. However, as a simple 

argument based upon the investigations that were carried out in §§ 15, 16, 17 will show, it will 

then follow that this case of hidden motion will only lead to kinetic potentials that include the first 

derivatives of the remaining coordinates to a degree that is no higher than two, and that for the 

case in which extended force function for the coordinates of the subsystem exists in the sense that 

was given above, it will also be only quadratic in the derivatives of those quantities. Hence, when 

includes the coordinates of the points only in the form of mutual distances, it must be an entire 

function of degree two in the first derivatives of the distances and into whose coefficients the 

distances themselves can enter arbitrarily. That was shown above for, e.g., Weber’s law, which 

can replace Newton’s when yet a third point can be coupled with the system of two points in a 

certain way that will then alter the effect of Newton’s law by its inertia in such a way that for the 

case in which the third point remains hidden, the motion of the two system points seems to be 

produced by the Weber force function. By contrast, as would emerge from, e.g., the same 

expressions that were presented above, it can be easily shown that the motion of a point that moves 

in a resisting medium whose resistance is a function of the coordinates and velocity of the point 

cannot be produced by coupling it with other hidden ponderable mass and the action of forces that 

depend upon only the coordinates. 

 However, the case of hidden masses that was pointed out above is also not the only one in the 

mechanics of ponderable masses for which the motion of a subsystem can be, in turn, described 

by a first-order kinetic potential, but the current and potential energy obviously cannot be once 

more be seen as separate. For every problem in the mechanics of ponderable masses whose kinetic 

potential then consists of the vis viva and the force function, in the case of holonomic constraint 

equations, it is obvious from their form that the kinetic potential, when expressed in terms of the 

free or independent coordinates, will not have degree higher than two in the derivatives of the 

latter, but since the coefficients of the squares of those derivatives consist of sums of squares of 

the partial derivatives with respect to the free coordinates of all of the coordinate of the system 

when it is subject to no constraints, it will have a form that is endowed with the squares of the first 

derivatives of all independent coordinates with essentially-positive, non-vanishing coefficients 

that are independent of the coordinates themselves, in general. As a result of that, of the only 

possible cases of hidden motion that one treats with the general first-order kinetic potential, it 

would emerge from the forms of the kinetic potentials that one finds there that in the mechanics of 

ponderable masses, the only cases that one can consider to be ones of hidden motion are the ones 

for which either the kinetic potential is independent of a number of free coordinates or a series of 

Lagrange equations of motion is independent of a number of free coordinates and their first 

derivatives. 

 It seems to me that the foregoing considerations imply the necessity of introducing not merely 

the general first-order kinetic potential into mechanics, but also ones of higher order, as well as 

examining the extension and validity of the known principles from the mechanics of ponderable 

masses, and under that most general assumption, and presenting them as mathematical theorems 

of a more general nature. At the same time, with the introduction of the extended Newtonian 

potential and the Laplace-Poisson differential equation, it should be shown that a potential theory 
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can also be developed in that extended theory of mechanics in a natural way, and that one can 

verify the applicability of those principles in some problems of motion. 

 

_____________ 

 

 


