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On Dirac’s theory of the electron
IV. Relations between the reality relations.
By W. Kofink

Translated by D. H. Delphenich

Introduction and summary

In Part Ill, four scalar and six vector relations wdegived from the reality of the
electromagnetic potentials f@irac’s theory of the electron. We shall now show tihat
six vectorial relations can be constructed from the foalasones. After the splitting of
the two simpler scalar relations [Part lll, egs. @nd (VII)] that was carried out already
in 1ll, 8 3, and which was contained in the remaining refetiin an easily-recognizable
form, that problem reduced fwoving that the six vector relatiorjRart Ill, egs. (19a)-
(D] can be constructed from the other two scalar relations withiadat structure]lll,
egs. (17) and (18)].

One would also expect the reducibilityalf reality relations tdour of themwould be
exist in the present treatment with no specializatibthe Dirac matrices, so in the case
of a special representation (cf., elgg. cit. [1]), the fourDirac differential equations
will by doubled by going to the complex conjugates, such that fwtential-free
relations must remain after eliminating the four potéstia

Nevertheless, the six vector relations that our iggieeatment will yield are also not
without interest.  Their appearance is connected with ¢heination of the
uninterpretable quantities, and their reducibility to the sealar relations is not trivial,
such that knowing that will be of value, despite theirosegosability. In order to
decompose them, one must make extensive use setmndPauli bilinear equation [,
(10)] between the matrix elements of the Dirac masiic One will then find (8 1) a
complex scalar [Definition eq. (9)], by which one can reduce the six vectlations
with the help of three complex vectogs, ", T'" [defined in eqgs. (2), (. In that

formulation, the six vector relations will read [I(L,9a-f)]:

a) ITr+3r =0, c) F'r+%"r =0, e) I"r+I"r =0,
by <r-%"r =0, d S'7r-%"r =0, f) T - r = 0.

They can be satisfied then Ioy= 0 (r* = 0, resp.), or also by:

r+r =0,
i(r-7)=0.
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The agreement of the last two equations with the twindait scalar relations [lll, (17)
and (18)] can be proved (8 2), and will thus lead to thestcoction of the six vector
equations from the two scalar ones.

One can combine the two scalar relations into comlex:f

- = 6_4[/ _ > « 0y
r [w’Tcatj ;{z/l Ta anj 0,

which is equivalent to [lll, egs. (17) and (18)] or [IV, e§%6) and (17)]. Like the
simpler scalar relation$ € k+ 1, m=k + 2 mod 3):

0 : R 3
Srrdve= 2 9= 3@y =0
k=1
ﬁ iV & — 2mc x — _i * [123 [Im] 2mC _
cat+d'v h Q = Cat(lﬂ, ¢')+2 (¢/ a"y)+ =", a’y) =

they will be linear expressions, but will contam interpretable quantities.
For the meaning of all symbols that occur, cf§ 1.

8 1. Application of the second Pauli bilinear equation to thdecomposition of the
six vector relations

1. In Part I, we mentioned a matiixthat took the system gf” to the transposed
onesy” (exchange of rows of columns) by a similarity sfammation. Analogously, we
define a matrixT for the system ofr“ that does the same thing to that system:

1) a' =Ta*T!

From [I, (10)], its matrix elements will fulfill th secondPauli bilinear equation:

oT T =

(***) vo -~ pu ( ,utr pv) ( po ,uv pa pv)
+ ( (a,[123 123]_0,[12310,[123).

oo llV llU pv)

The six matriced, Ta* (u =1, 2, 3, 4, 5) are antisymmetric, so the inmedpcts (¢,
Ty) and @, Ta* ¢) (u =1, 2, 3, 4, 5) will vanish. By contrast, the t@atricesTa ¥,
Ta™ are symmetric, and we call the corresponding ipneducts:

(2) Tik = (l//,Ta“k]z//), 1}(0 = (l/’,TO'[k‘”l/l), 'l; = (w’ Ta{ Im4]¢/), -g: @/, W123]¢/),
(i,k =1,2,3), k= 1,2,3),k | m= 1,2,3cyclically mod 3).
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The inner products differ from the ones that were canstd previously by the fact that

the factor on the left also reags instead ofy/", as before. We symbolically combine
the nine quantities into three complex vectors:

(2) T =(Tos Tay, T12), " = (Tio, T2o, Tao), T = (Ty, T2, Ta).
2. With the help of those quantities, the six vectortiate [lll, egs. (18 to f)] can

be reduced to the two scalar ones [lll, (17) and (18gmaly ([...]* means the complex
conjugate of thelirectly relevant square bracket in this):

3) %s T{—(%,T‘lwmj+2(%—i,akT’lejHﬂ...]D:O,
g | b ] (007 o) o397 e
(@) o= IT{[cat’T ‘”};(fm T ijﬂ P=0,

A. Proof of (3). We select the first componeat of a and arrange it into parts
according to the derivativas/ 0xi1, @ / 9%z, 0 / 0x3, 0 / c dt. We must then prove:

2 0% _ §+A6_§_A6_§+A ag_A6§+A6§_A6§
Sbax1 S’axi §6x1 §axl §’a_xl §a_>g 35(9_)5 %_>g

(aa) 0
= 2{@3 (‘w ,alT‘lwﬂﬂ +[- .]D},
0%,

6M3°—M306—Q+M126—Q—§26M“+§ 652_5 05 ,~95_ 9%

0X, 0X%, 0X, 0%,

= 2{1’23 (a_wm ,aZT_ll/IDH +[-°%,
0X,

v, 02 M My 00 05 35, . 08 0%

0%, 0% 0% 0% o0x 0% 0% 0X%

(1) .
= 2{1-23 (ai 'aST_leH +[- .]D},
0%,

Q

(5)
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Mzga—Q—QaM23+MmaQ _§6M10+§1650_ 0s N
cot cot cot cot ot ot

— al/’D -1,,,0 N
—2{33[ o Y HH ] }

Proof of (@z): Multiplying 2T, T_} by a2 a7, and summing over the indicgs, &
yields:

05  _0%
ot 201

So S

(%)

[23] 1-1 — (5 ~4 _ 4 o5 [14]., [234] _ ., [234]., [14]
2Ma™),, (@'T™), —|(apgaw ayay, +allal-al bﬂv)

[123] _ [123] [23],1 _ A1 ~[23]
+a,,; Jpgaw +a,,7a,=0,,0,."
]

0
Multiplying by ¢, ¢, aw” wf and summing over the indicgsv, p, oleads to:
X

O ~ ~
i (aai ,alT-lél'Dj =i (-*QQ + QQ + "Mi0 Mas + "Mzs Mio)
%

-5t g8t s s,
so, from [ll, egs. (2) and (50, that:

='5§-'§ 5+ s s 85,8 587,55 ;¢ (notation 1),

and from [ll, egs. (24 and (41)], that:
= 2 (- *QQ + M1 Maz + M1z Mag + "Ma; Mao) (notation 2).
One will get @,) when one adds the first notation to its complexjegate.

. . . -1 [23] 2 - - . — p—
Proof of (3): Multiplying 2T, T_ by a;;" a,, and summing over the indicgs, o
yields:
23 2T-1 — 34] o4 124] ~,5 31,1 2 23
20-0'[ ])VU' (a T )pp - aLa]apv _ach ]a,uv _a;[w ]a,ua _apva;EJ ]
. [24] ~,[234] 3 [12] ,,[123] __ . [314] ., [14]
+i (a'pv Ay T80, 0,0, —0,, 0, )

O

0
Multiplying by ¢, ¢, aw” wf and summing over the indicgsv, p, oleads to:
XZ

D ~
st[%ixzﬂzrléﬂmj: M3oQ ~*Mso Q +25,5+° 85
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+i {*M20 M23 — °Ma; M1g—2s,5 +2 5 5},
so, from [lI, eq. (20 and (42)], that:

=2 M3 Q -M1, Q +255-°%9) (notation 1)
=2 (*Mao M23—*M31 Mig-2s,5+2% ")  (notation 2).

One will get ) when one adds the first notation to its complerjegate and employs
[I, (34)] to symmetrize it.

Proof of (4): Multiplying 2T,, T} by a2 a’, and summing over the indices, &
yields:

[23] 31-1 —_ 2814 _ 31415 _ 3 ~[23] [12] 1
2(Ta*),, (a'T )pﬂ =-a,q,-a,"a,-a,0,.7+a;7a,,

. [34] - [234] _ ~[124] -,[14] _ -2 [31]  [123]
+|(apv Q. —0, A, —0,,0,+0,.0,; )
. . aws O . . .
Multiplying by ¢, %a_w" and summing over the indicgsv, p, oleads to:
X3

D ~

+i {*M3o Moz = *M1, M1 +%s,§ -2 3 5},
so, from [ll, egs. (20 and (41)], that:
= QM =M Q +°M31 Q - QM3 +35, 5§25 §+° 552" ) (notation 1),
and from [ll, egs. (3 and (39)], that:
=2 {*M3zo Mz —*M12 Mo +3s, § %5 75) (notation 2).

One will get 4 when one adds the first notation to its complexjaegate.

[23]

Proof of @,): Multiplying 2T T[;ﬂl by a.;' and summing over the index yields:

[23] -1 — _ 23] _ [23] [234] 4 _ 4 [234]
2(Ta*),, T Pl 2 o 5W 5pvaw ta,, a, —a,d,

+a° g4 - g4l

5 [123],1 _ ~1 ,[123]
oA o pgaﬂv+apv aw a. a .

o v

a O
Multiplying by ¢, ¢ 4;;’ wf and summing over the indicgsv, p, oleads to:
c
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a‘/’D -1,,,0 1 os o 07,0 A0
2T, H,Tl/’ —E(%% § $T M23Q —Q "M23

+Mi Q - Q Mio-°55+°% 9), (notation 1),

so, from [lII, egs. (49 and (46)], that:

_ %{ 95,5575 + Ma1 M1z + "Mao M) (notation 2).

One will get @) then one adds the first notation to its complerjegate. With that, the
validity of the given construction of the componanof the vector relatiom is proved.
Cyclic permutation will extend the proof to the @@mng two components, ap.

B. Proof of (4): The first component of the vector relatimgan be constructed with

the help of the second notation m)to (&). We arrangé; according to the derivatives
0 /0%y, 0 /0%, 0/ 0xs, 0 / c ot and must then prove that:

oM oM oM oM
M23 6)(110 _Mlo 6)(123+ M 20 axlgl_M 31 6)(120
oM oM., ~0Q _aQ
a My—2-M,;,—2+Q—=--Q—-
() Pox, o 0% 0x

ZZ{_WZ{W,alT-lwa}[.--ﬂ},
0%,

0 0s .05 . 0"
50508 0% . 0%

ox, Yox, Yox, ox
(,30) +M316M10_M10%+M23M_M 206M 2
0X, 0%, 0%, 0%,

= 2{_%3 (a_‘/’m ,azT‘lt//Dj +[-- .]D}},
0X,
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95, _ 0%,
SO@XS %axg
oM
(W) +M126—X:)

_Mlo

2{ |T23[aafs Ty j+[...]ﬂ}},

o
%a—z
oM oM
12 + M 30 __ M 23
6)(3 23 a)% 20 axs

aMlZ oM, oM, oM
-M +M -M
% coat © 2 cat 2 ot
0s, ds, . 05 . 0%
(%) % cot 3 cot cot 3 cot

Ty j[]}}

We multiply the expression in A that is referrecatothe second notation hyadd it to its
complex conjugate, and apply the symmetrizatiothefidentities [I, (22), (23), (40)] in
order to construct the first component of the veottationb from the second notation of

that expression.

3. Furthermore, the following conversion of the veatations [I, egs. (1®andd)]

is true:

C__ " 61// 1 al// -1 O—
& | o= s{ 2w 3 ey jH+[.-.] -0
6 9=_' " al/l al/l kT4 P =
©) 2__.1{ [Cat j+z( L wJHH "=,

A. Proof of (5): We arrange the first componenitof c in parts that involve the
derivatives with respect tq, X2, X3, ct, and then have to prove that:

10& S, 6)(1
(ac)

05 _ OMy .00 205  OMy 05, ¢Mso_

o Cax Tax  Mmax' Yoy

= 2{%(640 ,alT‘lz//Dj +[- -]D}};
0%,

Mso
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05, . 0Q 0s, oM, 0s _0M,, ds, _O0M,
Q-3-§"+M,—2-5—O+ M —t-5—20+ M 02—
ox, Ssaxz 106)(2 Séaxz 206)(2 %axz 126)% S)a)&

(&) .
= 2{|:T10 (ai ,O'ZT_ll//Dj +[- .]D:|};
0X,

L0095 ds, oM, ds _OM, . OM, .. s,
S + My -5, 04 M oL - + - My
ok % 0% Tax  Pox Yoy  Pax y

()) 0
= 2{|:T10 (ai ’a3T_1¢/Dj +[- .]D:|};
0%,

oM, 0s, ds, _OM, .0Q - 0% ds, _OM,
-M + - + -Q + Mi—- 55—
>TCot oot cat Dt Yot ot Yot Y at

- O g |
et

Proof of @): Multiply 2T, T} by al'a,, and sum over the indiceg, &. That

vo lpu

(&)

will give:
[14] 11 — 5 A[123] _ ~[123].,5 14]y1 _ 1 - [14]
20", @'TH), = aal?®-alPal +af ]aw a,,a.y;

H 4 _ 4 [23] o, [234] _ ~,[234],,[23]
+|(ap05ﬂv 0,0, +0a,,7a,,, —0,"a,,; )

a |
Taking the inner product witly, z//a%z//f will give:
X

ol _ Aa A A
2T10( 64)0(1 a'T 1¢’Dj :lQSo_l%Q _1M1051+151 Mo

i (lQ H-0Q+ lé0 Mza_l M,;S),
so, from [lI, egs. (J and (29)], that:

=10 $ - S Q + lsl Mio — lMlO S+ lMZO S— lSQ Mo + l|\/|3o S - 153 Mso (notation 1),
=i{'Q 5 - 9 'Q +'§ Moz — 'M23§ + M31 §, -8, May + "Mz §, —'§, My} (notation 2).

(ac) will arise from the first notation when one add®iits complex conjugate.

Proof of (&): We multiply 2T
That will give:

[14] 2-1 — Al12] 4 [24] 1 _ o [124] 2 4 [14]
2(Ta"™™), (@°T )pﬂ =a,,a,, +va,,a,,~0, 5W a,a,.,

T, by a5'a?, and sum over the indiceg, 7.
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[31] - [234] _ [34] ,[123] 3 5 _ - [314], [23]
(apﬂ o Do aﬂV Tl Ty bﬂﬂ )

a O
Taking the inner product witly, ¢, —= Yo z// will give:
0X.

2

0 -
2Tlo[ 64)[(1 a’Ty j =250 — Mz s — M2 % + °5 Muo
2

+i (28, My, +2M,, 8, - %53 Q- M §),
so, from [lI, egs. (17 and (36)], that:

=2 (*8,Q -’ My S — M2 S+ %S Myo) (notation 1),
= 2{ 28, Moz + °Mao§, —°:Q -*Mz§}  (notation 2).

(&) will arise from the first notation when one adtgo its complex conjugate and
considers the identity [I, (31)] for symmetrization

Proof of (): We multiply 2T,, T} by a%.'a>, and sum over the indicgg, &. That

vo ﬂ/l
will give:
14 3T1-1 — 34] A1 31 314 14]
20, (@1, =ada), -ala;, +aM0,, —-aal?
_ [124] [23] [24]  1123] 12] [234]
(apgaw a,, a,, +0,,0,7”"+a; a )
. . . aws O . .
Taking the inner product witly, ¢, 3 ¢, will give:
X

0 _ A
211{ 64)[(/3 a’*Ty j =—3Mz305 -3, Q + *Ma3; 5 + 3 Myg
+i {332 é_3M12§1_ 3Mzo §0+ 3:°‘2 Mzs}’
so, from [lI, egs. (17 and (39)], that:

=2 {- M35 -8 Q +°Mz1 5+’ My}  (notation 1),
= 2{%;, Q- *M12 § - *Mg0o§, +°8,M23) (notation 2).

() will arise from the first notation when one adtido its complex conjugate and
considers the identity [I, (31)] for symmetrization
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Proof of &): We multiply 2T, 7 by a%. and sum over the inde&. That will
give:
[14] -1 — 5 [23] _ ~I[23] 45 [14] _ [14]
2(Ma™ ™), T, =aya, -a,,a,+a,'90,-0,0a,

4 1 1 4 [124]., [234] _ . [234],, [123
+|(apvafw aa,, +akalB-a Bl ’)

a O
Taking the inner product witly, z//a%z//f will give:
c

a‘/’D -1,,,0 _1 0laA_0~A=~,0 _0
2T, ot T Y _E{ §Q-"Q5+ MioS~ "o Mio

+i (OSlQ _OQ S+ 0M23§0_ OASO Mzs)}i

so, from [ll, egs. (§ and (24)], that:

:%{ °§ Q-"°Q 5+ M0 55— %59 M1 + "M12 5 — %5, Mo+ %53 M3 — Mg sg}(notation 1),
and from [ll, eq. (13]:

:i—C (°§, My, = "M, 5,+ "My 5 U Myt O Q- Q s+ ° M, 5 T § M)(notation 2).

(&) will arise from the first notation when one adtwiits complex conjugate.

With that, the proof for the entire expression (5) tle first component; of ¢ is
complete. The proof can be extended to the two rengatomponents;, c3 by cyclic
permutation.

B. Proof of (6): The second notation in 3A allows one to construet first
component ofl. We arrange it in derivatives with respectxipx,, X3, ct, and have to
show:

. OM,, 0§ 0s, 0Q 05 . 0M, 0s, . 0M,
B oM, 2+ Q-2 -g—+ M, —2-5—L+ M 3-"s
3 0X, 236)(j 0X 0% 31axl 0Xx 126>g 0%

(ad) O
g orvies]
0%
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05 Mas ~ O0M,,

f)g_ @_w%_m 98, +50Mar M, S
&) 0x, " 0x 0x, axz % 9 Xz Pox T ax
= Z{iTlo @% ,azT‘lz,z/Dj +[-- .]D}};
2
@ A 652 23 M, 653 “ aMlZ_ M,, 6§ 20 M 0%

"o Con 6><3 axt Tox, Moy 6>s %0 %

(Ja) 5
= 2{|:iT10 (i ’a'3T_1¢/Dj + [ . .]D}};
o%,

35, . OM, . OM,, 95, 05 _0Q . M,
-§ + - M +Q—1 - + -
¥cot ¢ cot cot At oDt Slczat % Dt

(&) 0
= —Z{iTlo (ac% ,T_ll/lmj +[- -]D}}

If we multiply the second notation bysymmetrize that expression with the help of
the identity [I, (30)], and add it to its complegrgugate then we will getag) to ().
With that, the proof is complete for the first coomentd; of d. Cyclic permutation will
extend it to the remaining two componedisd. .

9%
@

4. Furthermore, the following conversion of the veatelations [lII, egs. (18 and

f)] is valid:

o | 3 H S e JH”O
8 [=_- w|_| ¢ Sl L/ — =
®) 2__.1{ [Cat j+z( T ijﬂ F=0.

A. Proof of (7): We arrange the first componetit of ¢ in parts that have the
derivatives with respect tq, X2, X3, ct, and then have to prove that:

oM., 0s 405 _ . 0Q 0s oM, ds, O0M,
—=2-M Q —so—+ M,—2—-s—3t+ M —-
0X, 236)(j 0X 0% 31axl > 0Xx 126>g %64

(ae) au°
[rgerv)or)
0%
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0S, _,0Q _0M,; M316_§+%6M23_ Mzsa_s2+ as, _
X, 0%, 0X, 0X%, 0% 0% 0% 0%

(B o
(g
0%,

Aaﬁ_é§+ My \y 95, OMy_ 05,

0Q 0s, 0s, oM, c’)_s1
526X3 0)(3 6)(3 236)% %a)% 206)(3+§6—)g Mza)g

(o) .
[ rv]
0%

oM, ds, ds, _OM, . 03 .0Q _0OM, 95,
-M + -s +Q—-— + - My—
%cat Pcat Pcat C cdt Dt Slczat % Dt 2o

(@)
—_ _ alﬂD -1,,,0 _._D
= 2{ T{ ot Ty j+[ ]}}

Proof of @e): Multiply 2T, T_; by a2 a7, sum over the indicep, &, and get:

[234] -1 — AM12314 _ 4 o [123] [234],1 _ A1 . [234
20a®M), (@1, = atPay, —a, alP+al krw a,a,”

. [14] A 123] _ A[23] o [14] 5 _ 5
+ |{apv a,, —a,, 0, +a,,0, 5pgafw}.

a O
Taking the inner product witly, z//a%z//f will give:
X

O

ZT{aal’f; ,alT_lt//Dj =108 '3 Q +'sy Mazs— Moz s
(M8 -5 M= Q 5+ 753

so, from [lI, egs. (§ and (27)], that:

='Q $ - $Q + lsl M3 — lM23 S+ lM31 S— lSQ Mz + lMlz S - 153 Mi,  (notation 1),

and from [ll, egs. (1% and (30)], that:

—:r1 A 1A 1 1 1 1 1 1 .

=i{"s0 Q-"Qs + St M2z — "M23S1 + " Ma1 S~ " M1 + "Mz S3 — "5 M1} (notation 2).

We add the first notation to its complex conjugatd get £1)-times @x).
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. i -1 [234] = =
Proof of (3): We multiply 2T, T by a;,; apﬁ, sum over the indice®, g, and
get:

234 2T1-1 12 314] A1 34 [234]
20?4, (@’ T, = abla’, +al %, +alo,, -alal’

{ a,pg a,w + a,[24] a,[23] a,[124]a,[123] a, 3110, 14]} .

0
Taking the inner product witly, ¢, —= w” z// will give:
0X

2

D ~
ZT{%Z ,GZT_lél/Dj =—-28,Q —*Maz1 51 + *M3p S — S Ma3

+j {— 253 Q+ 2M20§1+ 2M12 s) - 2’\% MlO },
so, from [lI, egs. (13 and (31)], that:

=2{-?§ Q —Ma1 5 +°M3p S+ 25 Mg} (notation 1),
= 2A{-%5Q + M § + °M12§-°§ M1}  (notation 2).

Adding the first notation to its complex conjugate, andsa®sring the identity [I, (29)]
for symmetrization, one will get-L)-times (5.).

o by a2 a? . sum over the indice®, &, and

Proof of (&): We multiply 2T
get:

vo pﬂ

[234] 3T-1 — [124 [31] [24] [234]
2(Ta=™),, (@°T ) =a, aﬂg apgaw 5 pv a,,

[34] ,[23] _ [314] [123] 12] [14]
+|{apvaﬂ —aa,, +a e P -al ) }

0
Taking the inner product witly, ¢, —= w” z// will give:
0%,

D ~
ZT{ZZ ,asT_lél/Dj =—3Mi25 +3°8 Q — Mo S0 + 33 Mas

+i {3M30§1 +SSZQ - 3M31§o_ gAss) MlO}’

so, from [lI, egs. (13 and (32)], that:

=2{- Mz st +3%5 Q — Mo+ M,s}  (notation 1),
= 2{*M30 8§ +°%Q - °M3; § —*§ Mig}  (notation 2).
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After adding first notation to its complex conjugate andsiders the identity [, (29)] for
symmetrization, one will get-Q)-times (4).

Proof of (¥): We multiply 2T _ T-* by a?*! and sum over the index, and get:

vo ﬂ/l

234] 1 23 23 234 _ [234]
2(Ta )WTW aﬁ,g]aw apva}w] a[ ]5 o, a

_ 4], [123] [123 [14]
(a'pgaw aa,, —alal®+al@o) )

0
Taking the inner product witly, z/la w” z// will give:

oy o 1,2 0~ = L 0 0
2T, == Q-"Qs+M - M
[Cat l//j C{ S S 23S — So M23

+i (Oésl_oslé+0§0 MlO_ OMloASo)}H

so, from [ll, egs. (§ and (18)], that:

:E{ °§ Q- Q3 +°Mas 5 — %0 M2g +°5 Mao — "Mzo S + “Mao 55 — %53 Mog}(notation 1),
o

and from [ll, eq. (19 and (17)]:

:—'E(Oqﬁ—°f2§+°MoAso—°A%M °M,'s~ s M T Mp ° M ¥

(notation 2).
After adding the first notation to its complex coggte, we will get<{1)-times @).

With that, the proof for the entire expression 1a1) the first componeng; of e is
complete. The proof can be extended to the twa@ng components;,, e; by cyclic
permutation.

A. Proof of (8): The second notation in 4A allows us to constrilng first
componenf; of f. We arrange it in parts that have the derivatwiéh respect to, X,
X3, ct, and then have to prove that:

g Ma_\y 08 ) 0§ My, 00 505, - 0My_\, 05

ox % % 6>a Ox 9% 9x  ox

— 2{”_1[6[//5 ’al-l-—lwmj + []D:|}’
0%,

()
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0% %6_9 Mloa_SZ_A My, Mzoa_ﬁ_A OMzo, . 9% _~9M,
6x 0%, 0%, X, 0%, 0%

(3) 0
(o]
0x,

a_Q_QGSZ+M106_%_§36M10+Mgoa_q_A§6M30+A oM, 1aj,
0%, 0% 0% 0% 0% 0% 0 % 0 %

1 o)

08 . oM., . oM 03 0Q -0
120321:_ 3 12+ 31_M 3+ Q %

03 _~ 0My
cot cot oot 51oat oat locﬁtso@t

Atz o]

We multiply the second notation byand add it to its complex conjugate and consider the
expression in the identity [I, (32)] for symmetrizatio In that way, we will getd) to

(&), whose sum will yield the first componeft of f. We will get the remaining
componentsy, fs, in turn, by cyclic permutation.

()

5. Looking back at paragrapBs4, we see from the form of eqgs. (3)-(8) that our six
vector equations contain only two scalar equationses thcleus under the assumption
that not all three complex vectogs, T, " vanish simultaneously. In the general case,
they will be non-zero, and our six vector equations adint be fulfilled in such a way
that the real part, as well as the imaginary of tadas:

__[oy oy
0 [
will vanish:
(10) r+1°=0,
(11) i(r—-1") =0.

As a glance back at [lll, eqs. @9to (f)] will show, it is not simple to see the
decomposability of the vector relation in that forrwith the help of the secorfauli
bilinear equation, we have now been led back to €3 and (11), and in the next
paragraph, we will prove the agreement of thoseatops with the two scalar reality
relations [lll, egs. (17) and (18)].
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8 2. Conversion of the complex scalar

In order to express egs. (10) and (11) in the running quarm'tief), % §, 8, M,

9t , and their derivatives, each of the six vectoragiqus (3)-(8) can be selected, and
the corresponding vecta®’, ", " can be separated from the scataby using the
algebraic tools of Part Il. We choose eq. (3) aady out certain conversions on the
expressions d)-(d,) that will allow the complex vectof' to emerge from those
expressions.

In order to do that, we introduce the solutions figs. (61) and (65)] fofs, ,

‘s, &, °5 into those expressions:

O
aal,)l/(l ,alT_ll/’Dj :lSO§0 _ léoso"'lslél _ lélsl"'lsz’\% _ 1%32

(O'a) 2T23 [

=—j lB{3)2'*"\%2_’\%2_’\%2_&)2_312+322+S32}
+1E(§+8m -5 - 50) - (0 + 90— 2%~ S 0).

With consideration given to the identities [I, (1&)d (16)] and egs. [ll, (63a) and (b)],
that will become:

=2{~i'B(§2-s2-0Q%- 0% +1¢§ - sy},
from which, with [lI, eq. (71)], it will emerge tha
=2q{i'B(§’-§-Q°- Q) p+'¢8 - s
When one eliminateds, andM;, from:

] -~
(B) 2T (aa%,azrlwmj =2(M30Q -*M1, Q +°5, § - 2§ 5))
2

by using [lI, eq. (3], that will become:
=i Coss-"s0)+’ 28 - %5 9,
and with consideration given to the identities §dis. (63a), (72), (75)], that will become:

=2 {i B (2°-§2-0Q%- Q*) ;, +2€ §, -5},
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When one eliminated,o and*Mz; from:

O

()8 2123 [6[/1

3 ,O'ST_ll//Dj :SQ Moo —3M20 é +3M3lé - Sé Ma1
X3

+353 él _ 3a 3o & 3a
by using [lI, eq. (3) and (1), that will become:

=ifeo-"22+ %539 +28- 4 s+’us -5 s
=2B{(05 -5 ti(Ga-§+ i (o -2+ (@65 +aud)}
n{i(@&%-8)+ @S+ B},

and with consideration given to the identities fgs. (63c and d), (72), (75)], that will
become:

=2q {(22-§-Q%*- Q%) iBm+3¢ 8 - *ns).

When one eliminaté®,; and’M, from:

awD -1,,,0 — 0Oa 0 a 0 o 0~
(0) 2Tz cat’T Y |= S S~ 5% % $

M3 Q —°Q Mas + My Q - °Q My
by using [lI, eq. (43) and (44, that will become:

= % 9-"98§+% 5-"5§ +i s+ °%55-°%7)
=2B{(25 -5 - (a-§IN+2%{i(@B-s®) - (0§ +5)}
+o7{i (2§ - B5) + (s + W},

and with consideration given to the identities [d#igs. (63e and d), (64)], that will
become:

:2q]_{_iOB(&)2_§02_QZ_ éZ)_ %05+&)3,7}.

Upon comparing the four cases, one will see gh&nters into all of the expressions
multiplicatively:
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_ a_‘/’D -1,,0 S(0Y v
ZTB{ (cat Ty j+;[a)(k a“ Ty j}

:2q12{i(soz—§02—§22—522) “Bp +§é- sOn

#=0

(12)

(For the sake of symmetry, the tegm= O is carried along with the other ones, so the
upper indexv = 0 will then means differentiation with respecttoandp, = 1). The sum

in (12) will be preserved by cyclically permuting the indide<2, 3, whileT,z will run
through the components of the vectr andag: will run through those of the vectar

Those two vectors are connected by:

(13) T =-qT,,
and one will get:
3 ~
(14) r:—TiZ{i(soz—Sf—Qz—Qz) “Bp+gOé- sn
0 #=0

for the scalar that was mentioned in (9). In thdk = (¢, T a™*® ) is the last of the
guantities that were defined in (2).

In order to prove eq. (13), one makes use of geergdPauli bilinear equation § 1,
eq. (***). One will obtain:

a) TO-I-OD — (l//, -I—a[123] 4[/)(4[)], 0[123]1——1[/):5 — Sé—A%—QZ—f)z

from that equation when one forms &, (T T ¢/)? with it and observes the symmetry
behavior in the resulting summands. Moreover,wilidind the first component from:

b) TT  =—{s0s-§5 +i[s, 5]}

when one forms, T o @)y d**® T ¢H) with it. Combining both equations, in
conjunction with [ll, eq. (64)], will yield (13).
By the way, one will find the connections betwdles remaining two vectors” and

<" that were defined in (2) ari@ in a similar way; they read:

. _ [5,99%] i[5 1]

_ [5,9] +i[ s, 9] T
SOZ—A%Z—QZ—QZ

T SOZ—A%Z—QZ—QZ 0-

TO, (Z”I =

It follows from 7 (with go = 1) that:
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1

S {8 -8 -0 -Q) By + 1 - 50} .

#=0

(15) r=-

For the further conversion of (14) [(15), resp.g recall the meanings of the quantities
“B,“& Hn, pu[BY, EX, n#, qu, resp.] in Part Il and define:

g+ BH = 1A éaQ_Qaﬂ |
Q*+Q%| ox,  0x,
according to [ll, eq. (62)], define:
. 1 0§, 0s
i (“B-BY= 1= +| s, : =0,1,2,3,
( ) QZ+QZ{ Sbaxﬂ {5 axﬂj} H

according to [ll, egs. (62) and (68)], and define:

1 oA o
‘B p+B o= SOZ_%Z_QZ_QZ{(SOs—s,s)k(kB+ B)-[s, 5], 0 * B B)]

and
i (B p-Bq)= (5-%5) ("B~ B)+[s,5], [( B+ B)},

k=1,2,3,

SOZ—AS)Z—QZ—QZ{

according to [ll, egs. (62), (64), (68), (69)].

We convert the real and imaginary partrofith the help of those expressions. We
would not like to satisfy ourselves with a mere feomation that those quantities are
identical with the scalar reality relations [llige (17) and (18)], but, at the same time,
we would like to take the opportunity to write thema form [IV, eq. (16), {(17) and
(18), resp.}] in which they no longer contain tHeotric and magnetic moments. It will
then contain only quantities that also enter irte tontinuity equation and the anti-
continuity equation.

Due to the vanishing afand 7, one can drop the non-vanishing factors T4 [+ 1

I T, , resp.] inT[7", resp.]. One will then get:
a) The real parts:

I+ = (37-32-Q%-0) 0 (B-B) + § %+ &%) -5 Cn+ 19
3

FU(s2-3-Q-QY A "BR-B @ +¢ "¢+ - & +n' =0,

k=1
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and with consideration given to [ll, egs. (83) and (85)] asome calculations, it will go
to:

(Qz+f22){ soa—?t{ﬁ 5}(5 grads, )»- 6 ,gradg })

+(5,5-85QgradQ+Q grad )+@ 5 IQ gra@-Q gra@d )=¢

(16)

The fact that this form for the scalar relation agrevith that of [lll, eq. (17)] will
become clear when one considers the fact that shéwa terms are:

(5,5-%5QgradQ+Q grad) )+@§ 5 IQ gra@-Q grad
= (Q%+ Q%) {(9m, gradQ) + (M1, gradQ)}.

After dropping the non-zero fact@” + ﬁz, one will then obtain:

Sogzot (5 f_ajﬂﬁ gradg > 6 ,grads » Pt ,gra@ )9Ot ,grdd =0,

which is an equation that will go to the relatidil,[eq. (17)] when one applies the
identities [I, (17) and (35)].

b) The imaginary parts:
—i(r-1) = (87§ -Q*-Q)(B+B) - §0 C¢-¢) +20(n-1n")
+2A(8°-§7-0°-0)(“BR+ B @ -"s00 ¢-¢) + si -0 =0,

and with consideration given to [ll, egs. (81) 48d)] and some calculations, it will go
to:

cot ot
(17) +(sbﬁ—$)5 QgradQ-Q grad) )

[[ 8], SOE—SO—+ sgrady- s, rots - 6 grao&j

(87— %~ Q){ 00 Q‘mj{()ﬂs) 0}

That equation is equivalent to the scalar relafiineq. (18)].

Proof: It will follow from the identities [I, (18) andlQ)], after differentiation byt
and consideration of some other identities [I, (22%), (26), (27), (28), (34), (35), (36)],
that the time-differentiated part of the scalaatieh [llI, eq. (18)] will be:
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L (zm azmj_(m azmj_é 0Q , 90

' cot " cot cot cot
1 . ~,(~00 90
= —12(s2-82-0%-Q3)| Q=2 - ==
QZ+QZ{ &% ){ cot catj

[1n8 Ssi-50 | 55w J1e |

Analogously, with consideration given to the id&es [I, (34) and (35)], the spatially-
differentiated part of that scalar relation thahteans9t and 9t will follow from [I,
(18) and (19)]:

1
Q?+Q?
+ ([s, s], rot [s, s] —so grad§, +§ gradso)

+ §°(s, rots) —s, ${( 5, rots) + (s, rots) + s,°(s, rots) }.

2. O, rotdn) + (931, rot93t) = {(-2@s-5§s, f)gradQ—Q gradf))

By substituting 1. and 2. in [lll, eq. (18)] andeafsome minor calculations, what will

arise is:
Sﬁ,@—rotiﬁt - zm,@ +rot
cot cot

—f)a—Q+Qa—Q—(5, rots)+ (s,rots)
cot cot

1 o A ~ 0Q 0Q
= —12(s2-%2-Q2-Q% Q—-Q—
(18) QZ+QZ{ ( 2 ){ cot catj

N 0s
+2[[s,sl,soc—§t—

+([s,5],5, grad§ -5 grads— rotf § Jr Q*+Q%*- & ¥ ,rok
+5, §((5,rots)+ (s,10t5))- Q2 +Q*+ %% )6, rots ) = 0.

%3—3}2(@5—}%,@ gradQ -Q grad) )

The left-hand side of that equation is our scaddation in the form [lll, eq. (18)], while
the right-hand side is a further representatiort tt@es not include the electric and
magnetic moment. However, (17) will also go totteéguation when one performs the
conversions:

([s, 5], [s, rot §]) = (00> — Q% - Q%)(§, rots) — (5, rots))
and
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([s, 5], (s grad)s) = 1{([s, s], rot[s, 5] + s grad§, + § gradsy)
+(Q%+ Q?-5?) (5, rots) +s, §((s, rot 5) — (5, rots))
+(Q2+ Q2+ §2)(s, rots)

on it and multiplies the entire equation by 2.
8 3. Reducing the six vector relations to the scalar

Sincer = 0 (r" = 0, resp.), one can drop the factorTe- (-T.", resp.) in the

construction of the vector relations, and the esgion (12), in conjunction with (14),
will give the representations:

%:q r+p7 =0  and —%: i(qr-p7r)=0, resp.

for the two vector relations (3) and (4), resp,,with consideration given to the values
for q andp [lI, egs. (64) and (69)], and dropping the nonishing factors,” — §2— Q2
-Q%:

(19a) (s,5-§8)(r+17) +[s, 8] Ar-1") =0, (I1-1V),

(1%) [s,8](r+79) —(s,5—§ 8) ((r-7) =0, (XXIII - XXV.B).

One can get back to the remaining four vector eégost(5)-(8) in the scalar along a
path that is precisely analogous to the calculatibat led to eq. (12) in 8 2, and obtain:

(19) ~[5,M)(r+7) + s, M G7-7) =0, | (XI-XIIL.A),
aad) —[s, M) +1%)-[6,M] K7 -7 =0, | (XVII-XIX.B),
(1%) —[8,M](r+19) [s M (7-7) =0, | (XI-XII.B),
(191) s, (T +1) 5 9 W7 -7 =0, | KVI-XIXA).

The Roman numerals on the right once more refethéoenumeration of the vector
relations in 1ll, 8 2, which will lead back to tlsealarr here, after eliminating some parts
of the continuity equation and anti-continuity ety [cf., III, egs. (19) to f)]. A
glance at those equations will show that the pdsgilof such a reduction there is not
entirely obvious, but ratheBirac’s theory will allow one the scalar relations- 7 = 0,

i (r—1") =0 to be expressed in many ways in the six veetations [ll, eq. (18) to
(H]. The form [IV, (19a)-(f)] that is obtained noalso allows to see, more easily than
before, that scalar multiplication of the vectolatiens bys, s, [s, s] must always lead

to a representation of one or the other scalatioaelaexcept for a factor that is non-
vanishing in the general case. When one scalaipies eq. (19a) bg or s, (b) by |s,
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5], (c) bys, (d) by 5, (€) bys, and (f) bys, in succession, one will ge§ or §, Q° +
0%, Q,Q,-Q,- Q, resp., timesg? - §°- Q% - Q?) times the one scalar relatior
r" =0, and when one scalar multiplies (a) ®y$], (b) bys or &, (c) by 5, (d) bys, (e)
by &, (f) by s, in turn, one will geR? + Q%, —s0or-§,, - Q, - Q, Q, resp., timess? -

52— Q2 - Q?) times the other scalar relatior — 7”) = 0.
| am deeply grateful to Herrn Professor . Madelung for many beneficial
discussions regarding this circle of problems.
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