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 In an earlier paper (1), certain stationary acceleration states of a reference body were treated 

when it moved in such a way that a comoving observer did not need to be aware of them.  Those 

motions, which are called, briefly, “relatively-accelerated” motions, possess the trajectories of a 

one-parameter orthogonal transformation group of Minkowski space S4 for their worldlines.  The 

comoving observer found a light velocity field that varied from place to place, and in general also 

from direction to direction, so it was tensorial.  The case of a scalar light velocity field (so one that 

is merely a function of position) was present only for hyperbolic motion, which was investigated 

in a second paper (2).  In the sense of the known Einstein equivalence hypothesis, which one can 

express as: “stationary acceleration states are equivalent to stationary force fields” (which is 

understood to mean spatially and temporally stationary), one can (heuristically) infer the existence 

of a homogeneous electrostatic or gravitational field for the processes that take place in the fields 

equivalent to hyperbolic motion, and in that fact one gets a glimpse of Byk’s theory of matter and 

quanta. 

 Of the remaining types of motion, the orthogonal group represents, for example, the uniform 

rotation of a magnetostatic field.  The application to the theory of matter is included in that as long 

as one regards the atomic forces as central forces.  Up to now, an exception to that picture is found 

merely in a known hypothesis that Ritz assumed in order to explain the Zeeman effect. 

 
 (1) F. Kottler, “Relativitätsprinzip und beschleunigte Bewegung,” Ann. Phys. (Leipzig) 44 (1914), pp. 701 (cited 

as I). 

 (2) F. Kottler, “Fallende Bezugssysteme vom Standpunkte des Relativitätsprinzips,” Ann. Phys. (Leipzig) 45 

(1914), pp. 481 (cited as II). 

 



Kottler – Relatively-accelerated motions and the conformal group of Minkowski space. 2 

 

 One can now ask whether hyperbolic motion is the only case that is equivalent to a static field 

of attraction.  Are there not still other relatively-accelerated motions of that nature? Ehrenfest and 

van Os have answered that question in the affirmative for a certain class of motions. 

 In the present article, that question will be examined from the group-theoretic viewpoint, and 

that will show: The trajectories of a one-parameter orthogonal group are the only relatively-

accelerated motions of Minkowski space, as long as one makes the assumption: The Lorentz 

transformations are valid at infinity; i.e., the yardsticks and clocks of the instantaneously resting 

accelerated observer and those of the continually-resting one coincide. 

 However, that assumption, which is also at the basis of the proper finite Lorentz transformation 

(for a translating observer, in that case), is not necessary.  In fact, all that is necessary is that the 

law of propagation of light is the same for both observers; indeed, that is at the foundations of 

Minkowski space.  However, it is known that the form of Maxwell’s equations also remains the 

same for a much broader class of transformations than the (orthogonal) Lorentz ones, namely, for 

the conformal transformations, as H. Bateman first showed.  A special case of the Bateman 

transformation was already available to Lorentz (Bucherer-Langevin electron). 

 That viewpoint is also natural, since the yardsticks and clocks of the moving observer are not 

given a priori but inferred from experiments.  For example, the length is defined as the distance 

between two points of the reference body and must therefore not coincide with that of the 

continually-resting observer.  Indeed, it must not appear to be a line for one when it is curved for 

the other.  Only the law of propagation of light is established a priori.  That must remain true of 

the metric of the moving observer in his immediate neighborhood. 

 If one allows the Bateman transformation then one will find that the possible relatively-

accelerating motions include the trajectories of a one-parameter group of conformal 

transformations in which the orthogonal one is naturally included as a subgroup.  The curves that 

were found by Ehrenfest and van Os then prove to be special cases of the conformal group. 

 Another natural question to ask is how those kinematically-defined motions are dynamically 

possible.  In the first paper, the constant electromagnetic field was given as the dynamical cause 

of the orthogonal group, and according to Einstein, they are equivalent, in their own right.  That 

question will not be investigated here for the conformal group. 

 

Notations. 

 

(Cf., I) 

 

 Upper indices: coordinate indices (contravariant) 

 Lower indices: covariant (hyperplane coordinates) 
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§ 1. – Relatively-accelerated motions. 

 

 1. – In Newtonian mechanics (c = ). every motion can be regarded as relatively-accelerated; 

i.e., it will remain hidden from the comoving observer as long as the reference system is given by 

a Newtonian rigid body.  This, the possibility of mutual relative motion of two parts of the body 

is excluded.  In the well-known example of the train car, its rattling will be consistent with the 

intuition of the naïve observer that it proves the existence of motion, so that rattling will be 
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excluded by the above postulate of a rigid body.  By contrast, e.g., rotation of the Earth and the 

Ptolemaic viewpoint will be regarded as admissible relatively-accelerated motions (1). 

 

 2. – Now, Minkowskian mechanics (c finite) does not know of any rigid bodies; i.e., a system 

of mass-points whose mutual distances remains constant forever.  In fact, that is implied 

dynamically by the finite propagation speed c of the force effects.  The particles of a body on which 

a force begins to act experience relative displacements corresponding to whether the force wave 

affected them earlier or later.  A quasi-rigid body is then realized only it is under the influence of 

no forces at all (uniform rectilinear translation) or constant forces when the stationary state has 

been established, so when the waves that are produced by variations of the force no longer perturb 

the body (worldlines of an orthogonal transformation, I, § 3). 

 

 3. – Correspondingly, one would expect the relativity of acceleration in Minkowskian 

mechanics only for the worldlines of a motion of S4 .  The following kinematical considerations 

confirm that: 

 The assumption that is made about that: The Lorentz transformation is valid infinitesimally; 

i.e., the motion of an infinitely-small piece of the body – e.g., from the viewpoint of a comoving 

observer – can always be regarded as a uniform translation during an infinitely-small time, such 

that all processes in the immediate vicinity of the comoving observer are identical to the rest 

processes in a system in which the location considered is precisely at rest for an infinitely-small 

time.  In particular, it follows from this that the yardsticks and clocks of the observer that is 

instantaneously at rest will provide the same information as those of an observer that is constantly 

at rest at the time and place where they coincide.  Expressed differently: In the immediate vicinity 

of the comoving observer, the Minkowski arc-length element: 

 

dS2 = dx2 + dy2 + dz2 – c2 dt2 

 

is always valid, in which x, y, z, t are referred to an ordinary Lorentz system. 

 

 4. – We support that hypothesis with this remark: The law of propagation of light is 

independent of one’s fundamental conception of the universe (cf., II, § 5, 1).  One must then be 

able to put it into the form: 

dx2 + dy2 + dz2 – c2 dt2 = 0 

 

for every world-point as long as the observe restricts himself to his immediate vicinity.  It still does 

not follow from this that the law possesses the Minkowski arc-length as a metric at infinitely-close 

points. 

 Rather, it can also possess an arc-length: 

 

dS2 = 2 (dx2 + dy2 + dz2 – c2 dt2) . 

 
 (1) The difference between those two cases (train car and Earth rotation) was discussed before by H.  

Poincaré, La Science et l’Hypothesé, chap. VII, pp. 138.  
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However, the  in this is restricted by the condition (cf., infra, § 2) that the map that we have here 

is conformal.  Indeed, we have: 

 
 

where 𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅ are referred to a reference system of the accelerated observer, because that observer 

will also clearly be working with Euclidian geometry.  It will then be possible that the metric of 

the observer that is continually at rest and that of the observer that is instantaneously at rest are 

not identical, but are connected by a conformal transformation, such that, e.g., the one perceives 

something to be a circle that exists as a straight line to the other.  As is known, that is an extension 

of the Lorentz transformation that H. Bateman had already made (1), when he showed that under 

the assumption of invariance of charge, Maxwell’s equations also keep the same form under that 

transformation, which he called a spherical wave transformation, that they has in a system at rest. 

 We next overlook the Bateman transformation and demand the validity of Maxwell’s equations 

under just the proper Lorentz transformation.  The metric of the observer that is instantaneously at 

rest and the metric of the one that is continually at rest will then be completely identical. 

 

 5. – One now imagines (cf., II, § 6) that the accelerated observer has constructed a type of polar 

coordinate system whose radii are light rays that emanate from the mass-points of his reference 

body.  When will the observer that can choose his viewpoint on the body completely arbitrarily 

come to believe that the body is at rest? For that to be true, obviously the polar coordinates of the 

different mass-points must remain constant.  Those coordinates are the distance and the polar 

angles.  The preservation of the latter demands that all points that lie along a light ray must remain 

along it.  The light path must then be preserved. (A) The preservation of the former demands that 

the length of the light ray must be preserved (B).  In the terminology of I, those postulates read: 

Constancy of the effective position, and in II, the constancy of apparent coordinates. 

 

 6. – If one now represents the motion in the system that is continually at rest in the known 

Minkowski form as a spacetime curve: 

 

x(h) = x(h) (a, b, c, u),  h = 1, 2, 3, 4, 

 

in which the u establishes the connectedness of a configuration (e.g., for true or apparent 

coordinates, as in II), no matter how one agrees upon the suggested conception of the accelerated 

observer: 

 
 

will be the infinitesimal transformation that generates the spacetime curve. 

 
 (1) H. Bateman, Proceedings of the London Mathematical Society (2) 8 (1910), pp. 224, et seq.  A special case of 

the Bateman transformation already appeared in the work of Lorentz as the factor k (Bucherer-Langevin!). 

2 2 2 2 2 2 ,dS dx dy dz c dt= + + −

( ) ( )

( )
h hdx dx

u
du du

=
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 Naturally, since the law of propagation of light is indeed absolute, the world-points that the 

accelerated observer sees along a light ray will also lie along a light ray in the system at rest – i.e., 

a minimal line in S4 .  The postulate (A) in 5 then demands that: 

 The transformation that defines the time evolution of the spacetime curve takes every minimal 

light to another one.  It is therefore conformal. 

 The postulate (B) in 5 requires that: 

 This transformation must preserve certain lengths.  It is then orthogonal, moreover. 

 It then follows that: In order for the observer on the reference body to appear to be at rest, it is 

necessary that the spacetime curves of the body consist of trajectories of an one-parameter group 

of orthogonal transformations of S4 .  They are once more the relatively-accelerated motions that 

were treated in I. (One recognizes the constancy of not only the effective positions, but also the 

“simultaneous” ones, so the true coordinates, such that above assertion of the observer, which was 

merely based upon his sense of sight, will also stand up to measurements.) 

 

 7. – In that way, the assumption that was made in 3 of the agreement between the measurements 

of the observer at rest and the accelerated one is justified at any moment.  If we now drop that 

assumption and perform a Bateman transformation then it will still not follow from the 

preservation of lengths in accelerated systems that it is preserved in the system at rest, since both 

systems are conformally related.  Therefore, it will follow only that the infinitesimal 

transformation is conformal.  We will then obtain a trajectory of a one-parameter conformal group 

of S4, and we will now have to establish whether the preservation of lengths in the accelerated 

system can be realized by means of a suitable metric.  We shall address that problem once we have 

exhibited the equations of those motions (§ 3). 

 

 8. – In connection with that, two papers of Ehrenfest (1) and van Os (2) should be mentioned.  

Starting from the assumption that the light rays in a stationary static field are curved, Ehrenfest 

demanded: (A), the preservation and (B), the reversibility of the light ray.  Because of Einstein’s 

equivalence principle, the field should be replaceable with an accelerated state of a reference 

system, and therefore the accelerated motions that satisfy the postulates (A) and (B) will be 

examined.  Now, the postulate (A) is precisely our postulate (A).  The cases that Ehrenfest 

obtained must then be the trajectories of a one-parameter conformal group.  It then follows from 

(B) that they must be sections of hyperspheres, so circles (hyperbolas in the real representation, 

respectively), through every two of which there passes one sphere (light hyperboloid, resp.).  In 

what follows, with Ehrenfest, loc. cit., we will restrict ourselves to such paths of a conformal 

group, although naturally Ehrenfest’s postulate (B) is not by any means required by the relativity 

of acceleration, but merely by the scalar, non-tensorial nature of the light velocity field. 

 

 
 (1) P. Ehrenfest, “On Einstein’s theory of the stationary gravitational field,” Kon. Ned. Akad. Wet. 15 (1913), 

1187-1191. 

 (2) C. H. van Os, “On a system of curves occurring in Einstein’s theory of gravitation,” Kon. Ned. Akad. Wet. 16 

(1913), pp. 40, et seq.. 
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§ 2. – The conformal group of S4 . 

 

 1. – Darboux (1) showed that the conformal group of an Sn (n > 2) is composed of reflections, 

displacements, rotations, similarity transformations (stretchings), and transformations through 

reciprocal radii (inversions) (2). 

 For the sake of exhibiting the most general infinitesimal transformation, one must exclude the 

transfers (Umlegungstransformations) (negative functional determinant!).  The reflections drop 

out, and in place of the inversion, one finds a double inversion; e.g., through two hyperspheres that 

are displaced from each other by infinitely little. 

 One gets the formulas: 

 

 

 

 

 (1) 

 

 

 

 

 

 The first two rows contain the translation (rotation, resp.) that is known from the orthogonal 

group (I, § 1), the third row contains the stretching, and the fourth contains the double inversion 

(which is coupled with a translation).  In regard to the applications to Minkowski S4, one must 

assume that the coefficients that carry the index 4 are pure imaginary, while the others are real. 

 

 2. – As for the classification of (1), it is most convenient for one to start from Lie’s theorem 

(3): 

 

 The general conformal group Sn is isomorphic to the general projective group of a manifold of 

degree two in Sn+1 . 

 

 
 (1) G. Darboux, Systèmes orthogonaux, Paris, 1910, pp. 166, et seq. Darboux’s proof rests upon Lamé’s method 

for curvilinear orthogonal coordinates.  It can be given more simply by the methods of the absolute differential 

calculus, which have the advantage that they are true for arbitrary oblique coordinates.  In order to do that one must 

perform a transformation: 

 

and exhibit Christoffel’s differential equations for the 
𝜕2𝑥̅

𝜕𝑥 𝜕𝑥
  In order for them to be integrable, it is necessary and 

sufficient that the Riemann symbol of the quadratic differential form  
1

ℎ2
∑ 𝑑𝑥̅  must vanish; that immediately implies 

that h = 𝑎 ∑ 𝑥̅2, etc. 

 (2) In that way, one will get the most general finite Bateman transformations; cf., H. R. Hassé, Proc. Lond. Math. 

Soc. 12 (1913), pp. 181, et seq.  In contrast to the rest system, the relevant reference system has an accelerated motion 

whose paths are conic sections that extend to infinity. 

 (3) S. Lie, Theorie der Transformationsgruppen, v. III, Leipzig, 1893, pp. 281 and 357. 

2 2

2

1
dx dx

h
= 

(1)
(1)

(1) (2) (1) (3) (1) (4)
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2 ,

h k

k h

dx

du
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  

 

 


= 


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= 
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 One arrives at the map of Minkowski S4 to a four-fold extended hypersurface of degree two 

𝑀4
𝐼𝐼 in a five-dimensional space 5 , namely, the so-called Klein hypersurface in Kleinian (1) 5 , 

that is required for this. 

 The conformal group of S4 takes hyperspheres to hyperspheres.  The equation of a hypersphere 

is: 

5  x2 + 2 (1 x
(1) + 2 x

(2) + 3 x
(3) + 4 x

(4)) + 6 =   

 

It will reduce to a point (i.e., a null hypersphere) when: 

 

 
 

One will then achieve a map of the conformal group to the projective group of an 𝑀4
𝐼𝐼 when one 

maps the hyperspheres to the hyperplanes (4) in a 5 whose six homogeneous coordinates are 1, 

2, 3, 4, 5, 6 .  The null hyperspheres are then, in particular, the tangential hyperplanes (4) to 

the desired 𝑀4
𝐼𝐼, whose equation reads: 

                (2) 

 

in hyperplane coordinates. One must next introduce the homogeneous coordinates: 

 

 
 

for the points in Minkowski S4 and then set: 

 

  (1) =  (1)  (5),   (2) =  (2)  (5),   (3) =  (3)  (5),   (4) =  (4)  (5), 

(3) 

 
 

in which the  (1),  (2),  (3),  (4),  (5),  (6) are the homogeneous coordinates of 5 , but they must 

fulfill the relation: 

( (1))2 + ( (2))2 + ( (3))2 + ( (4))2 – 4  (5)  (6) = 0 ,   (4) 

 

if they are to represent a point in Minkowski S4 .  S4 is then, in fact, mapped to an 𝑀4
𝐼𝐼, whose 

equation is (2) in hyperplane coordinates and (4) in point coordinates, and the equation of a 

hypersphere actually assumes the form: 

 

1  (1) + 2  (2) + 3  (3) + 4  (4) + 5  (5) + 6  (6) = 0 , 

 

 
 (1) F. Klein, Math. Ann. 5 (1871), employed that map, whereby the 4 lines in S3 appear in place of the 4 points 

of S4 .  The six Kleinian (i.e., generalized Plücker) coordinates of that space indeed fulfill a quadratic equation of the 

form (4) [(6) in the text, resp.]. 

2 2 2 2

1 2 3 4 5 6 0.     + + + − =

(1) (2) (3) (4)
(1) (2) (3) (4)

(5) (5) (5) (5)
, , ,x x x x

   

   
= = = =

(5) (5) 2 (6) (1) 2 (2) 2 (3) 2 (4) 21 1
2 2
( ) , [( ) ( ) ( ) ( ) ],      = = + + +

2 2 2 2

1 2 3 4 5 6 0     + + + − =
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which is the equation of a hyperplane (4) in 5 , although the relation (4) must be appended to it.  

The 3 points of a Minkowski hypersphere will then be mapped to the section of a hyperplane (4) 

in Kleinian 5 with the Klein hypersurface 𝑀4
𝐼𝐼; i.e., to the 3 points of a triply-extended quadratic 

manifold 𝑀4
𝐼𝐼, etc. 

 

 3. – (3) then implies the following correspondences (1): 

 

A point in Minkowski S4 that is not at infinity A point of the Klein 𝑀4
𝐼𝐼 in Kleinian 5 

All 3 points at infinity that do not lie on the 

absolute null-sphere [i.e.,  (5) = 0], but: 

 

A point O in 𝑀4
𝐼𝐼 with the coordinates (0, 0, 0, 

0, 0, 1); every “direction” in S4 corresponds to 

a tangent in 𝑀4
𝐼𝐼 

( (1))2 + ( (2))2 + ( (3))2 + ( (4))2  0  

A point on the absolute null-sphere: A line through O that belongs to 

𝑀4
𝐼𝐼completely 

 (5) = 0, 

( (1))2 + ( (2))2 + ( (3))2 + ( (4))2 = 0 

 

Hypersphere Section of a 4 with 𝑀4
𝐼𝐼 ; i.e., a 𝑀3

𝐼𝐼 

Sphere Section of a  with 𝑀4
𝐼𝐼; i.e., a surface of 

degree two 𝑀2
𝐼𝐼 

Circle Section of a  with 𝑀4
𝐼𝐼 ; i.e., a conic section 

𝑀1
𝐼𝐼 

Minimal line Line that belongs to 𝑀4
𝐼𝐼 completely 

Line Conic section in 𝑀4
𝐼𝐼 that goes through O and 

contacts the tangent to 𝑀4
𝐼𝐼 at O, which 

represents the “direction” of the line in S4 . 

 

 With this table, it is easy to show that the conformal group is mapped, without exception, to 

the group that transforms 𝑀4
𝐼𝐼 into itself, namely, the projective group of 𝑀4

𝐼𝐼 .  Namely, as long as 

the points at infinity remain at rest – i.e., it is affine – that will be clear a priori.  However, only 

the inversion in the conformal group is not affine.  Nonetheless, one shows that the points at 

infinity transform the point O and the triply-extended hyper-cone Γ3
𝐼𝐼 of lines in 𝑀4

𝐼𝐼 precisely like 

the projective group of 𝑀4
𝐼𝐼 . 

 

 4. – On the other hand, exhibiting the projective group of 𝑀4
𝐼𝐼, which then leaves the equation: 

 

( (1))2 + ( (2))2 + ( (3))2 + ( (4))2 – 4  (5)  (6) = 0   (4) 

 

 
 (1) C. M. Jessop, Treatise on the Line Complex, Cambridge 1903, pp. 245, et seq.  
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invariant, is easy.  In order to do that, we introduce the so-called hexa-spherical coordinates (1): 

 

 (1) =  (1),  (2) =  (2),  (3) =  (3),  (4) =  (4), 

(5) 

 (5) =  (5) −  (6), i  (6) =  (5) +  (6), 

 

with which, (4) will assume the form: 

 

( (1))2 + ( (2))2 + ( (3))2 + ( (4))2 + ( (5))2 + ( (6))2 = 0 .   (6) 

 

In that form for 𝑀4
𝐼𝐼, the projective group can be written out directly.  One gets the infinitesimal 

transformation: 

 

     h = 1, 2, 3, 4, 5, 6,          (7) 

 

with the known condition: 

 
 

That gives the following infinitesimal transformation of the projective group of (4): 

 

 

 

 

 

 

 

(8) 

 

 

 
 

If one uses (3) to write: 

 

 (1) = x(1) ( (5))2,  (2) = x(2) ( (5))2,  (3) = x(3) ( (5))2,  (4) = x(4) ( (5))2, 

 

 (5) = ( (5))2,   (6) = ( (5))2  x2 

 

 
 (1) Jessop, loc. cit., pp. 255.  

( ) ( ).h k

k h = −

(5)
(1) (1) (1) (2) (2) (2) (3) (3) (3) (4) (4) (4) (5) (5)

5 6 5 6 5 6 5 6 62 ( ) ( ) ( ) ( ) 2 *,
d

i i i i i
du


             = − − + − − + − − + − − + +

(6)
(1) (1) (1) (2) (2) (2) (3) (3) (3) (4) (4) (4) (5) (6)

5 6 5 6 5 6 5 6 62 ( ) ( ) ( ) ( ) * 2 .
d

i i i i i
du


             = + − + + − + − + − + +

( ) 6
( ) ( )

1

,
h

h k

k

k

d

du


 

=

= 

(1)
(1) (2) (1) (3) (1) (1) (5) (1) (1) (6)

2 3 5 6 5 6* ( ) ( ) ,
d

i i
du


         = + + + − + − −

(2)
(2) (1) (2) (3) (2) (4) (2) (2) (5) (2) (2) (6)

1 3 4 5 6 5 6* ( ) ( ) ,
d

i i
du


           = + + + + + − + − −

(3)

,
d

du


=

(4)

,
d

du


=
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here then one will find that when  (5)  0, after calculating d (5) / du from the fifth equation in 

(8), substituting that in the first four of equations (8), and dividing by ( (5))2, one get precisely 

the formula (1) with: 

 
 

with which the complete correspondence between (1) and (7) [(8), respectively] is achieved (1).  

 

 

§ 3. – The curves of Ehrenfest and van Os. 

 

 1. – As we stated before, we now have to look for those curves (1) that are circles, and indeed 

with the property that any two of them lie on a sphere.  From the tables in §§ 2, 3, the map to the 

Klein 5 yields those transformations of 𝑀4
𝐼𝐼 to itself whose paths are planar, such that any two 

such planes lie in an S3 (which corresponds to the sphere).  As a result, two such planes intersect 

in a line g, and since the planes are transformed into themselves, the line g must be transformed 

into itself, so it is then common to all planes.  The paths of such a transformation of 𝑀4
𝐼𝐼 into itself 

then lie in the 3 planes through a line g in 5 and are conic sections.  Those conic sections, which 

lie on 𝑀4
𝐼𝐼, then correspond to the desired curves (1).  They are circles in S4 with the following 

property: The aforementioned line g in 5 generally intersects 𝑀4
𝐼𝐼 in two (real or conjugate 

imaginary) points.  In particular, they can also be a tangent to 𝑀4
𝐼𝐼 (when the two points coincide) 

or lie on 𝑀4
𝐼𝐼 completely (when they then correspond to a minimal line in S4).  The Ehrenfest-van 

Os result follows from that: The desired circles in S4 that can be linked pair-wise by a sphere 

generally all go through two points of S4 . 

 When one distinguishes the positions of the aforementioned lines g in 5 with respect to the 

distinguished point O in 𝑀4
𝐼𝐼, one will get the special cases of van Os. 

 

 2. – We now choose a special case of (1), namely, the double inversion: 

 

             (9) 

 

Under the inversion: 

 
that will emerge from the displacement: 

 

 
 (1) The sixth equation in (7) [(8), respectively] is always a consequence of the first five.  Indeed, the homogeneous 

coordinates  determine a point of 5 only by way of their ratios. 

( ) ( ) ( )1
5 62

( ) ( )

( ) ( ) ( )1
5 62

(5)

6

( ),

,
, 1,2,3,4,

( )

,

h h h

h h

k k

h h h

i

h k
i

i

  

 

  

 

= −


= 
=

= − − 
= 

2 2
, ,

x x
x x

x x
= =

 

( )
( ) 2 ( )2 , 1,2,3,4.

h
h hdx

x x x h
du

 = − = 
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             (9.a) 

because: 

 
 

It is then clear from the outset that it belongs to the Ehrenfest-van Os curves, because the 

displacement has the 3 parallel lines in S4 as its trajectories, which map to 5 as the 3 conic 

sections in 𝑀4
𝐼𝐼 by way of the point O and a tangent to 𝑀4

𝐼𝐼 (which cannot be a generator, though), 

so it corresponds to the case “g is tangent.”  The inversion maps 𝑀4
𝐼𝐼 as a projective transformation 

(1), so the curves that correspond to the curves (9) in 5 are conic sections in 𝑀4
𝐼𝐼 that lie in the 3 

planes through a tangent g to 𝑀4
𝐼𝐼 ; i.e., the curves (9) are circles in S4 that have a pair of coincident 

points in common, so they have a common tangent.  1 circles in each plane of S4 go through that 

tangent that define a pencil of contact circles.  One likewise confirms that by integrating (9). (In 

order to do that, one chooses, e.g.: 

 

 (1) =  (2) =  (3) = 0,   (4)  0 

 

and pure imaginary, since that is the direction of the common tangent, and that must be timelike 

for worldlines!) 

 

 3. – If one now imagines that the arc-length element for an observer that is found in uniform 

translation (9.a) reads: 

dX 2 + dY 2 + dZ 2 – c2 dT 2 

 

then one will find for an observer that is accelerated according to (9) that: 

 

 
 

Since that is supposed to be a Minkowskian element of arc-length, the X, Y, Z, T are not Cartesian 

coordinates, but rather, they are curvilinear orthogonal coordinates in the Darboux-Lamé sense.  

The orthogonal system T = const. is composed of hyperspheres here, and its 3 orthogonal 

trajectories X = const., Y = const., Z = const. are just the circles (9) (2). 

 

 (1) Namely: The hypersphere of the inversion will be mapped as a hyperplane 4 . Relative to 𝑀4
𝐼𝐼, it will then 

belong to a point P that is its pole, and which does not lie on 𝑀4
𝐼𝐼.  One finds that the “inverse” of any point Q in 𝑀4

𝐼𝐼 

is the second point of intersection of the line PQ with 𝑀4
𝐼𝐼. Cf., Jessop, loc. cit., pp. 252. 

 (2) For a discussion of the orthogonal trajectories of a family of 1 hyperspheres as a generalization of Born’s 

rigid body of the first kind (orthogonal trajectories of 1 hyperplanes), see H. Bateman, Am. J. Math. 34 (1912), pp. 

346, et seq. 

( )

( ) ( )

( )
( )

2 2
2 .

h h

h
h

dx dx
x

dx du du x
du x x

= −


 

2 2 2 2 2

2

1
( ).dX dY dZ c dT

X
   + + −



( )
( ) , 1,2,3,4,

h
hdx

h
du

= =
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 The figure illustrates the two-dimensional analogue in the Euclidian plane, in which the circle 

is used as the basis for the metric as its gauge curve (Eichkurve) (II, § 1).  In that way the trajectory 

circles X = const., Y = const., Z = const. are distinguished lines that are shown as dashed in the 

figure in place of the circles that intersect the hyperspheres T = const. orthogonally. 

 
 If one admits the conformal (Bateman) transformation: 

 

   dX 2 + dY 2 + dZ 2 – c2 dT 2 =  

 

then the observer that participates in an Ehrenfest-van Os motion will have the arc-length element: 

 

dX 2 + dY 2 + dZ 2 – c2 dT 2, 

 

so his motion will appear to be a uniform translation or a state of rest to him.  The speed of light is 

constant. (One gets a motion with variable light speed, e.g., by inverting the hyperbolic motion.) 

For example, an observer that moves along the “worldline” b will observe a normal “equidistance” 

BP = BP in his metric for a second world-line from his reference body and can likewise indicate 

skew “equidistance.” 

 

 

§ 4. – Return to the trajectories of an orthogonal transformation group. 

 

 1. – Here, we would like to develop the arc-length element of an observer that corresponds to 

a general “motion” in S4 .  In order to do that, we recall the representation I, § 4: 

 

X = x + (1) c1 + (2) c2 + (3) c3 + (4) c4 . 

B1 P1 

 B P 

B1 

P1 
P 

B 
b 

p 

Derivation of the trajectories of a double inversion (pencil of contact circles) 

by an inversion of the trajectories of a translation (pencil of parallel rays). 

2 2 2 2 2

2

1
( )dX dY dZ c dT

X
   + + −





Kottler – Relatively-accelerated motions and the conformal group of Minkowski space. 14 

 

In order to show that a “motion” is actually defined in that way, so, e.g., when one assumes that: 

 

 
so it will also follow that: 

 
 

one recalls the representation of the direction cosines of the moving 4-frame that was given in 

Appendix 1 to I.  For that, one has to calculate (loc. cit., pp. 741) the differential quotients: 

 

 

 
 

and form the scalar products: 

 

 

 

 

 

Due to the skew symmetry of the 𝜀𝑘
(ℎ)

, all of the ones for which an odd number of  appear will 

vanish.  The ones with an even number of  are constant.  If will then follow from that and loc. 

cit., pp. 741, that the direction cosines c1, c2, c3, c4 can be represented as linear functions of the 
𝑑𝑥

𝑑𝑢
 , 

𝑑2𝑥

𝑑𝑢2 , 
𝑑3𝑥

𝑑𝑢3, 
𝑑4𝑥

𝑑𝑢4  thus: 

 
 

with which, the proof is complete.  Analogously, one will arrive at that proof when one assumes 

that: 

 
 

 2. – One can then give the “true” representation (II, § 1): 

 

 dX = c1 (1 –  / R1) d (i c ) 

  c2 (d  –  / R2) d (i c ) 

  c3 (d  +  / R2) d (i c ) −  / R3 d (i c ) 

( ) 4
( ) ( ) ( ) ( )
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du
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 
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= 
2

( ) ( ) ( ) ( ) ( )

2
0, etc.h h k k k

k k k

dx d x
x x

du du
  
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  c4 (d  +  / R3) d (i c ) . 

It then follows that: 

 

 dS 2 = d 2 + d 2 + d 2  

  − 2c d  d   i / R2  

  + 2c d  d  ( i / R2 −  i / R3) 

  + 2c d  d   i / R3 

 

 

in which one might recall that 1 / R2 and 1 / R3 are pure imaginary (I, Appendix 1, pp. 740). 

 The case of 1 / R2 = 0, 1 / R2 = 0 is the case of hyperbolic motion that was treated in II.  It is 

the only one that yields a light velocity field that is based upon a scalar function of position.  All 

others are based upon tensorial functions of position, which is why they seem to be unsuitable for 

the representation of potentials of central forces. 

 What is common to all of them is that the coefficients of dS2 are free of  .  That characterizes 

the static field!  In that way, Einstein’s equivalence hypothesis will become applicable as soon as 

one regards the latter as a heuristic tool (and not as the “reevaluation” of all mechanical “values”) 

that should then be expressed as: Stationary force fields behave like stationary states of 

acceleration.  In that, “stationary” is understood to mean spatially and temporally stationary.  The 

hypothesis is true for fields that are temporally-stationary, but spatially-variable, only 

infinitesimally, where the fields are homogeneous; Einstein already had that possibility in mind; 

cf., Ehrenfest, loc. cit. 

 

__________ 

 

2 2 2 2 2 2 2 2

1 2 3 2 3[(1 / ) / / ( / / ) ],c d R R R R R          − − + + + −


