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 In my previous articles (1), I have discussed the question of the relativity of acceleration or the 

possibility of an accelerated motion remaining hidden. Since that possibility is based upon 

Einstein’s known equivalence hypothesis, his line of reasoning yielded an application to 

gravitation, but generally a very restricted one, since my aforementioned papers implied the 

admissibility of the relativity of acceleration for only one special accelerated motion if one wished 

to derive a gravitational field from it, namely, for falling motion. 

 Since then, Einstein abandoned the equivalence hypothesis. The reason for that was essentially 

based upon a special conception of his results that he formulated, which followed from giving the 

forces of the gravitational field an autonomous character, while here motion in a gravitational field 

shall be regarded as force-free, so the law of inertia will be altered, and gravitation will be 

interpreted as a pure inertial phenomenon. That conception of things seems to me to be a rigorous 

consequence of the equivalence hypothesis and is therefore objectionable only simultaneously with 

it. 

 Now, that is not to say that the equivalence hypothesis must remain true. Other theoretical or 

experimental objections against it can be raised. For the time being, they do not seem to exist to 

me, and therefore the attempt to once more take up and investigate the equivalence hypothesis is 

justified, even if its capacity to imply a theory of gravitation has shown to be quite limited. 

 The provisional results restrict to the case of the field of a mass point. On the surface of things, 

they differ from Einstein’s new theory only inessentially, besides having greater simplicity. The 

essential difference is fundamental, namely, the aforementioned kinematic, not dynamical, 

conception of gravitation. 

 Pursuing that investigation any further is not possible for the author at the moment, due to 

military service. Because of that, the character of this publication is also provisional. 

_______ 

 
 (1) F. Kottler, “Über die Raumzeitlinien der Minkowskischen Welt,” Sitzber. Wiener Akad. 121 (1912), pp. 1659, 

et seq. 

 “Relativitätsprinzip und beschleunigte Bewegung,” Ann. Phys. (Leipzig) 44 (1914), pp. 701 (cited as I) 

 “Fallende Bezugssysteme vom Standpunkte des Relativitätsprinzips,” Ann. Phys. (Leipzig) 45 (1914), pp. 481 

(cited as II) 

 “Beschleunigungsrelative Bewegungen und die konforme Gruppe der Minkowskischen Welt,” Sitzber. Wiener 

Akad. (1916) (cited as III). 
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 1. – In the previous-cited articles by the author, the following question was treated: How must 

an accelerated motion be formulated from the standpoint of the Einstein-Minkowski principle of 

relativity in order for a comoving observer to be able to believe that they are at rest? 

 The answered that was found was: When “rest” is interpreted to mean the constancy of the 

proper coordinates of all points of the accelerated reference body as viewed from the (arbitrary) 

viewpoint of the observers, on kinematical grounds, that can mean only those motions for which 

the reference body behaves like a (quasi-) rigid body, not only at each of its points, but in each 

position of those points. However, the associated world-lines are the trajectories of a one-

parameter orthogonal group for Minkowskian S4 . The associated mechanical trajectories are, up 

to second order, the ones with constant Newtonian acceleration, so the cases of falling, uniform 

rotation, and their combinations. The dynamical basis (if one is required) for the observer to not 

recognize accelerating forces that act upon him also follows, namely, that this force should be 

constant, so it should not be subjected to any variation that would once more lead to the orthogonal 

group of S4 . 

 A generalization is conceivable only when one understands rest to merely mean the constancy 

of the line-of-sight angle of the accelerated reference body as seen from the comoving observer. 
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One then obtains the world-lines of a one-parameter conformal group of Minkowskian S4 . That 

case was not subject to any dynamical considerations. 

 

 

 2. – That theory of “the relativity of acceleration” can be applied to Einstein’s equivalence 

hypothesis (1).  Under the assumption that an observer on an accelerated reference body cannot 

prove that he is moving, so he will believe that his vicinity is (absolutely) at rest under the action 

of an accelerating field, Einstein proposed the hypothesis: An actual force field and such an 

apparent acceleration field are physically (so also electromagnetically) completely equivalent. 

 Einstein was mainly thinking of Galileo’s discovery, which has since been confirmed many 

times, that the acceleration of the homogeneous gravity field of the Earth is the same for all bodies. 

However, if the homogeneous field of gravity is equivalent to an acceleration field, from the above, 

then Galilieo’s law is not only self-explanatory, but also fundamental for a deeper understanding 

of gravitation, which has remained enigmatic up to now. 

 However, from what was said in § 1, the assumption that is fundamental to Einstein’s 

equivalence hypothesis that the observer would not confirm their accelerated motion is not sound 

on the basis of the Einstein-Minkowski principle of relativity. Whereas every relativity of 

accelerated would be permissible on the basis of Newton’s principle of relativity because 

Newtonian mechanics has rigid bodies, that would no longer be permissible here for the quasi-

rigid motions that were considered in § 1. Thus, in particular, that would include free fall or its 

relativistic analogue, namely, Born’s hyperbolic motion, which is, in fact, identical to it up to 

second-order quantities. 

 Since Einstein restricted his consideration to free fall, which was taken to mean hyperbolic 

motion precisely (2), whereby he generally neglected second-order quantities, those considerations 

that are known to have led him to the curvature of light rays in a gravity field will also remain 

unimpeachable from the Minkowskian standpoint. The only thing that is not allowed is Einstein’s 

implicitly-postulated relativity of acceleration for other accelerated motions, which is an assertion 

that was repeated in his later work, without, of course, making any applications of it. 

 

 

 3. – Since the relativity of acceleration is valid exactly for at least hyperbolic motion, due to 

their fundamental significance, the exact results are also of interest to the restricted equivalence 

hypothesis for a theory of gravitation. They were given by the author in article II, and are briefly 

the following: 

 Let  be the (Minkowskian) acceleration of the accelerated reference body along the positive 

Z-axis, let x, y, z, t be the coordinates and time of the comoving observer, and let x, y, z, t be 

those of the observer at rest. One then has the following equations, which correspond to the Lorentz 

transformation here: 

 

 
 (1) A. Einstein, Ann. Phys. (Leipzig) 35 (1911), pp. 898.  

 (2) A. Einstein, Ann. Phys. (Leipzig) 38 (1912), pp. 355. In particular, cf. § 1, Einleitung. 
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 If one neglects ( t )2 here in comparison to c2 then one will again find Einstein’s formulas 

(1). 

 It further follows exactly that in place of the arc-length element: 

 

ds2 = dx2 + dy2 + dz2 – c2 dt2 

of Minkowski space, one has: 

 

(2a) 2ds = 
2 2 2 2 2dx dy dz c dt    + + −  

 

here, where: 

 

(2b)     c = c +  / c  z 

 

and 

ds = ds . 

 

Hence, the “speed of light” c in the comoving system is no longer invariant. 

 It ultimately follows that when: 

 
2d  = − 

2ds  = − 
2ds  = 

2 2 2 2 2c dt dx dy dz    − − −  

 

is the time-like arc-length along the world-line of the point, the equations of motion of force-free 

material point in the rest system whose rest energy is E0 will be: 

 

 
 (1) Loc. cit., pp. 359. Equations (4).  
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from which, it follows naturally that the path in the primed system is not a line, but as a result of 

the apparent acceleration – , it will be the path of a falling or thrown body (up to second-order 

quantities). 

 Einstein also found that result before. However, Einstein gave a different form and a different 

interpretation to equations (3). 

 

 A different form (1): Einstein introduced the mass m0 instead of the energy E0 and the proper 

time  in place of the arc-length . Since the mass depends upon the speed of light c, it is not, 

however, an invariant or covariant, nor is the proper time , since one has d = c d. However, 

if Minkowskian mechanics is to take on any physical meaning only in relation to constructions 

that are invariant (covariant, resp.) with respect to 
2ds  then we must also demand that in the 

generalized mechanics that we aspire to here, as well. Mass no longer exists as a fundamental 

physical constant then since it depends upon the field. By contrast, when it is at rest in a space that 

is free from any field, the rest energy E0 (i.e., the internal energy of the mass-point) will persist as 

a physical constant. 

 

 A different interpretation: Einstein posed the quantity: 

 

− 

2
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E c z
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using the Lagrange process, and as a result of the fourth equation in (3) (viz., the so-called 

conservation of energy) (2), with A as an integration constant (dimension = gr cm3 sec−3), it can be 

written: 

− 
2

3

0

1A c

E c z



 
 , 

 

 
 (1) Einstein’s change of dimension by c will not be discussed here since it is inessential.  

 (2)  Strictly speaking, such a thing will not be spoken of here. It is not the energy E = mc 2 that is conserved, but 

A = mc 3. 
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so it is equal to a “force” that the apparent field exerts on the mass-point. Here, that quantity will 

be regarded as an apparent force, in the sense of d’Alembert’s supplementary forces, such as the 

guiding acceleration, the centrifugal forces, the Coriolis forces, etc., of classical mechanics (i.e., 

a purely kinematical one), but it does not possess an autonomous dynamical existence. The left-

hand sides of the equations of motion are incompletely lacking in those quantities. It then follows 

that (3) are the equations of motion for the force-free mass-point in the moving system. 

 

 

 4. – In order to apply the results that were set down in § 3 to the theory of the homogeneous 

field of gravity, one then agrees to accept Einstein’s equivalence hypothesis. According to (2b), 

since: 

 =  z, 

 

where  is the Newtonian potential of the field, one can write the curvature of light in the field of 

gravity as: 

(4)      c = c + z
c


  = c + 

c


, 

 

in which c is perhaps the value 0( )zc =
  . 

 The difference from the interpretation that was given by Einstein that was mentioned in § 3 

then has a kinematical conception of gravity, rather than a dynamical one, as a consequence, i.e., 

an alteration of Galileo’s law of inertia enters in place of the force field. The force-free point no 

longer moves uniformly and rectilinearly according to (3), but curvilinearly and non-uniformly. It 

seems quite paradoxical that this initially seems to be the consistent version of Einstein’s 

equivalence! In fact, if the source of the equality in the gravitational acceleration is kinematical 

for all masses then gravity itself must have a kinematical origin, i.e., it must be an inertial 

phenomenon! Experiments suggest that intuition: The lack of dispersion, propagation phenomena, 

etc., under gravitation, one might say the lack of energy in it (When has one seen any gravitational 

energy converted into any other forms of energy?), all of that only loses its mysterious character 

in that way. 

 However, the concepts of the potential, stresses, force, etc., of the field of gravity then lose any 

physical meaning, and that also comes to light in the non-covariant form of the expressions that 

Einstein postulated for them. At the same time, the difficulty that Einstein (1) raised in regard to 

his own equivalence hypothesis vanishes, since it arose from his dynamical conception of things. 

 

 

 5. – It is known that as a result of that dynamical conception, Einstein abandoned the 

equivalence hypothesis, and in particular, the consequence (4) and arrived at a theory of gravitation 

in which merely the change in the Minkowski 
2ds  by the field of gravity was preserved, but was 

simultaneously raised to its most general form. The covariance that he postulated in that way 

relative to the new: 

 
 (1) A. Einstein, Ann. Phys. (Leipzig) 38 (1912), pp. 452, et seq. 
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(5)      2ds  = 
4

, 1

ik i k

i k

g dx dx
=

  

 

shall be connected with the relativity of acceleration. From a Minkowskian standpoint, that is 

initially possible only when 2ds  is Euclidian, i.e., it can be transformed into the form: 

 
2 2 2 2 2dx dy dz c dt+ + −  

 

with constant c, i.e., when all of its Riemann symbols vanish. If that is fulfilled then we can infer 

only hyperbolic motion from § 1, which defines Einstein’s relativity of acceleration. Therefore, 

there is no general relativity of acceleration, at least from a Minkowskian standpoint. It also seems 

that Einstein’s covariance of the physical quantities relative to (5) has nothing to do with a 

relativity of acceleration, but with the older Lorentzian relativity of velocity, insofar as a 

translation (that varies from position to position and time to time) must have no effect on the laws 

of physics (1). 

 If the relativity of acceleration ultimately seems to be ruined and lacking in physical 

significance then there is nonetheless an aspect of the situation that the complete breakdown of the 

equivalence hypothesis [i.e., more precisely, equations (1) to (3) for hyperbolic motion] has yet to 

point out. It is nothing but the attempt to extend the Lorentz transformation to accelerated systems 

and the fact that this was quite fruitful in the study of translatory moving systems in the way that 

it reveals, e.g., the peculiar connection between stresses, energy, impulse, and energy current (i.e., 

the general inertia of energy and the like), so one might expect that a relativity of acceleration that 

is supported by experiments would reveal something similar for accelerated systems and therefore 

for the gravitational field. The equivalence of inertial and gravitational mass does not generally 

emerge from the equivalence hypothesis alone. As a result of § 4, it is the result of an alteration of 

the law of inertia in which the Minkowskian 
2ds  is replaced with something like (5). The 

conception of gravitation as an inertial phenomenon is not connected with the equivalence 

hypothesis either. Rather, what is singles out is the fact that it has heuristic value and opens up an 

exact (if also less than humble) path to the theory of gravitation, while Einstein’s more recent 

theory must depend upon other, less obvious, hypotheses. 

 Since the equivalence hypothesis has not been contradicted by either theory or experiment up 

to now, while the evidence for it and its heuristic value is indisputable, it would not seem 

uninteresting to pursue it further in the direction that Einstein’s investigations have now embarked 

upon (2). The question is now: How do the masses of the fields determine the coefficients of the 
2ds ? 

 

 

 
 (1) In order to see that, one makes the local transformation: 

 

(ds2)0 = 
0 0 0( ) ( ) ( )ik i kg dx dx  = 2 2 2 2 2

0 0 0 0dx dy dz c dt+ + −  . 

 

 (2) A. Einstein, Ann. Phys. (Leipzig) 49 (1916), pp. 769. 
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 6. – We shall first use that viewpoint to examine the isolated field that makes the equivalence 

hypothesis accessible to us, i.e., the static homogeneous field, which corresponds to the arc-length 

element: 

 

(6a)    
2ds  = 2 2 2 2 2dx dy dz c dt+ + − , 

 

with 

(6b)     c = 0

0

c z
c


+ . 

 

As is well-known from the theory of differential invariants, for: 

 

2ds  = 
4

,

ik i k

i k

g dx dx  

 

one generally has the Christoffel three-index symbols: 

 

i k

h

 
 
 

 = 
1

2

ih hk ik

k i h

g g g

x x x

   
+ − 

   
, 

 

as well as the Riemann four-index symbols: 

 

(i k m n) = 
2 2 2 2 4

( )

, 1

1

2

rsin km im kn
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i n k m i m k ng g g g
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in which g(rs) is the reciprocal form to grs , so it is equal to the subdeterminant that is adjoint to grs 

in the determinant: 

g | gik |  i, k = 1, 2, 3, 4, 

divided by g. 

 Now, the Riemann four-index symbols, whose vanishing establishes the Euclidian nature of 
2ds , are fourth-order covariants (1), which are composed of the gik and their first (second, resp) 

differential quotients. 

 With Einstein (2), we construct a second-order covariant from that fourth-order one: 

 

Bik = 
4

( )

, 1

( )rs

r s

g i r s k
=

  . 

One has: 

Bik = Bki , 

 
 (1) Cf., F. Kottler, “Raumzeitlinien der Minkowskian Welt,” Sitzungsber. Wiener Akad. d. Wiss. (1912).  

 (2) A. Einstein, loc. cit., pp. 801.  
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due to the known properties of the Riemann symbols (i r s k) = (k s r i) and g(rs) = g(sr). 

 When that is applied to the field of the speed of light c, which might be a function of only z, 

so: 
2ds  = 2 2 2 2 2( )dx dy dz c z dt+ + − , 

 

and one takes x1 = x, x2 = y, x3 = z, x4 = i t, that will imply that: 

 

  
(1212) (1313) (2323) 0,

(1213) (1223) (1323) 0,

= = = 
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= = = 
 

 

  (1214) = (1224) = (1234) = (1314) = (1324) = (1334) = (2324) = (2334) = 0, 
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2 4
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 The demand that 
2ds  should be Minkowskian, hence Euclidian, then further implies that: 

 
2

2

d c

dz
 = 0 

or 

c = 0

0

c z
c


+ , 

 

which is form that the equivalence hypothesis is known to imply. 

 In that way, we know (1) that the masses are found to be at a great distance in the direction of 

negative z, and further that we must have: 

z > − 
2

0c


, 

 

which is a condition that excludes just the possibility of approaching the masses. 

 

 

 7. – We can then infer many worthwhile pointers for our problem from the equivalence 

hypothesis. First of all, the homogeneous field can be expressed in terms of a homogeneous light 

velocity field. Furthermore, upon approaching the masses, a certain barrier will be reached at 

which the speed of light vanishes. Finally, the speed of light satisfies certain covariant differential 

 
 (1) F. Kottler, II, pp. 490.  
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equations, and in that way, the demand of the principle of relativity that only covariants should 

have any physical meaning will be satisfied. 

 Before we undertake the obvious generalization to the field of a mass-point, we shall bring up 

two issues: 

 

 First: What are the remaining acceleration-relative fields? We infer from III that their 2ds  has 

the form: 

 

(7)   2ds = 2 2 2 2

14 24 34 442 2 2 ( )dx dy dz g dxdit g dydit g dz dit g dit+ + + + + + , 

 

whereby the following conditions are fulfilled: 

 

  1. g14 g24 g34 g44  is free of t (i.e., it is stationary), 

 

   

4 4

4 4
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  4. g  is linear in x, y, z, 

 

as one easily derives. The latter conditions are connected with the orthogonal character of the basic 

infinitesimal transformation of S4 . All of the Riemann symbols will vanish then. The arc-length 

element 
2ds  is therefore Minkowskian or Euclidian. 

 1. and 4. are familiar to us from the case of the field that corresponds to hyperbolic motion in 

§ 6. By contrast, 2. and 3. do not come about naturally, because g14 g24 g34 symbolizes the relative 

velocity compared to the observer, and no such thing exists in our falling reference system. That 

relative velocity, which originates in either a rotation or a ballistic motion or the like of the 

reference system according to I, also affects the field: The speed of light varies not only from place 

to place, but also with the direction at one and the same place: The field is anisotropic. 

 We have no reason to assume that the gravitational field is anisotropic, at least in the simplest 

cases. 

 We therefore exclude the cases g14  0, g24  0, g34  0 . 

 

 Second: The (three-dimensional) space of the observer is Euclidian because it corresponds to 

the arc-length: 
2 2 2dx dy dz+ + . 

 

 That is consistent with all remaining hypotheses of physics and a change in that assumption, 

so an effect of the field on the nature of space, would not seem obvious, for the time being, since 
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the field is expressed merely in terms of temporal variations, so it belongs to the realm of 

mechanics, not geometry. Consistent with the equivalence hypothesis, we then assume that: 

 

g11 = g22 = g33 = 1, g12 = g13 = g23 = 0 

 

in Cartesian coordinates and let only g44 depend upon the coordinates x, y, z . g11 will be free of t 

for a stationary field. 

 

 

 8. – We can now take the step that we had postponed, namely, generalizing the results of the 

equivalence hypothesis that are true for the homogeneous field to the radially-symmetric field of 

a mass-point. Following (7), we write: 

 

(7a)    
2ds  = 

2 2 2 2 2 2 2 2sin ( )dr r d r d c r dt  + + −  

 

in polar coordinates, or with: 

x1 = r,      x2 = ,      x3 = ,      x4 = i t, 

and 

g11 = 1,       g22 = r2 = 2

1x ,      g33 = r2 sin2  = 2

1x  sin2 x2 ,      g33 = c2 (x1) , 

 

in the form: 
2ds  = 2 2 2 2

11 1 22 2 33 3 44 4g dx g dx g dx g dx+ + +  . 

 

 Obviously, that 
2ds  can no longer be Minkowskian, so will not be Euclidian, either. Certainly, 

not all of the Riemann symbols vanish. We shall construct those twenty Riemann symbols. 

 The first group, which are six in number, do not include the index 4. They vanish since they 

are all identical to the Riemann symbols of the three-dimensional “space” of the observer here, 

due to the assumed Euclidian nature of the latter. 

 The second group, which are eight in number, include the index 4 once. They all vanish, since 

g14 = g24 = g34 = 0, i.e., the field is isotropic. 

 The third group, which are six in number, include the index 4 twice. Three of them vanish, and 

what will remain are: 

   (1414) = − 

2
2 2 2

2 2
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2 4

c c
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 If one constructs the Bik then when one writes: 
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44

1
(1441)B

g
=  = 

1
c

c
 , 

 

 22

44

1
(2442)B

g
=  = 

r
c

c
 , 

 

 33

44

1
(3443)B

g
=  = 

2sinr
c

c


 , 

 

 B44 = 
11 22 44

1 1 1
(4114) (4224) (4334)

g g g
+ +  = 

2
c c c

r

 
 + 

 
 = c c, 

 

B12 = B13 = … = B34 = 0 . 

 

In those expressions,  is the three-dimensional Laplace operator for a function that depends upon 

merely r. 

 Finally, we form the invariant: 

 

B = 
( )

,

ik

ik

i k

g B  = 11 22 33 44

11 22 33 44

1 1 1 1
B B B B

g g g g
+ + +  = 

2
c

r
  . 

 

 We have now acquired the necessary apparatus. From the Ansatz (2b): 

 

c = 
z

c
c

 
+ , 

which can be written: 

c = c
c


+ , 

 

Einstein had already concluded at the time that the speed of light was proportional to the 

Newtonian potential, except for a constant, only to abandon that simple assumption in favor of his 

later theory. On the basis of the equivalence hypothesis, that is also the most obvious generalization 

that is consistent with (2b). We then add the differential equation: 
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(8)    B = 
( )

,

ik

ik

i k

g B  = 
( ) ( )

, , ,

( )ik rs

i k r s

g g i r s k  = 
2

c
c
  = 0, 

 

which has an invariant form. In fact, with the integration conditions: 

 

 1. c shall be a constant equal to c at infinity, 

 

 2. c has a pole at r = 0 (near r = 0, there is a “barrier” where c = 0), 

 

it yields the desired form for c: 

(7b) c = 1c
r




 
− 

 
, 

which is valid for r >  . 

 The fact that this form (7b) includes the form (2b) is easy to see. One sets r equal to something 

sufficiently large compared to  and writes: 

 

r = r0 + z , 

 

where z is a quantity that is small compared to r0 . That gives: 

 

c = 1c
r




 
− 

 
 = 

0

1c
r z




 
− 

+ 
 = 

2

0 0

1
z

c
r r

 


 
− + + 

 
 . 

Furthermore, one has: 

c0 = 
0

1c
r




 
− 

 
 

for r = r0 , so: 

c + 0 2

0

c
c

r

 + +  

However, since one can clearly set: 

(9)   = − 
2

0

c

r

  , 

and due to the fact that: 

  = 
d

dr


 = 

2

2

0

c

r

  , 

one will have the formula: 

c = 0

z
c

c





+ + , 

which can be written: 
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c = 0

z
c

c





+ , 

approximately, which has the desired form. 

 One can deduce the order of magnitude for  for the field of an atom from (9). Indeed, one 

also has: 

 = − 
k m

r
, 

 

in which k = 6.7  10−8 gr−1 cm3 sec−2 is Newton’s gravitational constant and m = 10−24 gr. With 

c = 3  1010 cm sec−1, it will follow that (1): 

 

 = 
2

k m

c
 = 7.4  10−53 cm. 

 

The “barrier” r =  is, in any event, an infinitely-small physical quantity (2). 

 In conclusion, we have highlighted the fact that the mass-point that corresponds to the 

kinematical-geometric foundation of our theory appears only mathematically as a pole, not 

physically as a mass, as in Einstein’s dynamical theory. On the basis of our theory that we derived 

from the equivalence hypothesis, mass seems to be a discontinuity in space and time. 

 Due to the barrier, it was reasonably for us to not go into the interior of the mass (3). The 

extensions of that theory must then assume the differential equation: 

 

B = 0, 

with the integration conditions: 

 

 1. c = const., 

 

 2. each mass-point is a pole of c, 

 

from which, the masses at the mass-points can be solved. 

 Naturally, the concepts of mass, density, etc., can play no role in this purely-geometric theory. 

Indeed, density is not an invariant or covariant, moreover, so from the standpoint of the principle 

of relativity, it has no absolute physical meaning. We cannot therefore expect something that 

would correspond to Poisson’s theory here. 

 
 (1) Cf., H. Reissner, Ann. Phys. (Leipzig) 50 (1916), pp. 115.  

 (2) Naturally, the aforementioned barrier z > − 
2

0c

r
 = − 

2
r 



− 
 
 

 merely applies to the homogeneous field. 

 (3) The development that the author carried out at the conclusion of his article II, which led to Byk’s atomic model, 

breaks down with that.  
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 It is not the goal of this discussion to carry out the suggested extension of the theory, but only 

to postulate its possibility, especially since it has not been established to be a unique consequence 

of the equivalence hypothesis. Rather, perhaps all of that might be discussed in a later paper. 

 

 

 9. – Finally, it is incumbent upon us to compare our results with those of Einstein’s theory in 

its most recent conception. 

 One knows that Einstein placed the completely general: 

 

2ds  = 
4

, 1

ik i k

i k

g dx dx
=

  

at its pinnacle. “Space,” i.e.: 
3

, 1

ik i k

i k

g dx dx
=

 , 

 

is no longer Euclidian for him, but seems to vary throughout the field. The field is then expressed 

in terms of ten particular potentials g11, g12, …, g44. In matter-free space, they satisfy 

generalizations of the Laplace equation, namely, the ten differential equations: 

 

Bik = Bki = 
( )

,

( )rs

r s

g i r s k  = 0, i, k = 1, 2, 3, 4 . 

 

When Einstein multiplied that Bik by gik / xm and summed over i, k : 

 

,

ik
ik

i k m

g
B

x




 = 0, m = 1, 2, 3, 4, 

 

it yielded four equations that he interpreted as the law of impulse on formal grounds, and from 

which he obtained certain quantities for the “stresses” of the “gravitational field” that were 

quadratic in the differential quotients gik / xm , so they naturally could not be covariant. Einstein 

obtained the differential equations of the field for matter-filled spaces by introducing those field 

stresses and simply establishing on formal grounds that the stresses in the matter and the field do 

not superpose additively. 

 Finally, the case of the Einstein-Schwarzschild mass-point should be mentioned. One gets 

(1): 

2ds  = 

2

2 2 2 2 2 2 2 2sin
dh

dr h d h d c dt
dr

   

 
+ + −  

 
, 

in which: 

r = 
2 22 ln ( 2 )h h h h h   − + − + − , 

 
 (1) H. Reissner, loc. cit, pp. 120.  
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and  is the constant that was already mentioned above (cf., § 8): 

 

 = 
2

k m

c
. 

 

If one had  = 0 then would have h = r, and: 

 

c = 
dh

c
dr

  = 
2 2h h

c
h




−
 

 

would be constant. One would then have the gravitation-free field, i.e., the usual Minkowskian 

case. If one neglects 2  in comparison to h2 then one will have: 

 

 r = h –  +  ln 2h , 

 

 c = 1c
h




 
− + 

 
 = 1c

r




 
− + 

 
 

 

Our results differ from those of Einstein only by quantities or order 
2 2/ h , at least relative to the 

speed of light. By contrast, a difference of order  / h is present in the geometric nature of space. 

 The numerical differences are then physically vanishing. By contrast, there exists a 

fundamental difference. To summarize once more, one has: 

 

 1. The equivalence hypothesis requires a change in the law of inertia that involves certain 

apparent field forces. Einstein interpreted them as actual field forces and preserved Galileo’s law 

of inertia for them but had to dispense with the covariant form (hence, Minkowski’s principle of 

physics) in the expression of those “forces.” 

 

 2. For Einstein, it followed from the assumption that all Bik = 0 (while here we need one that  
( )ik

ikg B  = 0) that the equivalence hypothesis would no longer be true for him at all. 

 

 3. Einstein abandoned the Euclidian nature of space in the gravitational field. 

 

 4. For Einstein, the field would be anisotropic, in general. 

 
(Received on 17 July 1916) 
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