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Foreword

Seldom has a new idea been so fruitful in its conseqaaax¢he discovery of G. I.
Taylor, E. Orowan, and M. Polanyi in the year 1934 thatglastic forming of metals
resulted with the help of dislocations. This ground-hrepknsight has been common
knowledge for a long time in mechanics and physics, and essntsolid-body
phenomena that were completely puzzling before can nosxplained with the help of
dislocations.

Already in his first work on dislocations, Taylor @lsecognized that dislocations
always give rise to proper stresses, and that by this enarfrrepresentation, one can
give an explanation for the observed hardening of formethimthat is still true today.
In the course of developing a continuum theory, orledsto an extended view of the
notion of dislocation, and today one has the law: dis®cation is the elementary source
of proper stresses. The task of establishing and elalpratinthis law assumes an
important place in this report.

The appearance of individual dislocations is a physisahpmenon that can only be
understood in terms of the atomic structure of the sadlyb The collective action of
many dislocations yields the macroscopically-observedtiplachanges of form and
proper stresses. One must describe this situation by iwomt theory. We would like
to call it the “continuum theory of dislocations.”

In Chapters I. and Il, the standpoint of the idealtioomm will be taken. From this
standpoint, the continuum theory of dislocations igxarct theory.

Real bodies are hardly ideal continua. The most itapbmaterials — e.g., all metals
— are, at least in a small domain, crystalline in stmec In Chapter Ill, the body
considered is therefore a crystal. The applicatiooositinuum-theoretical methods to
real bodies always means a loss of precision. Thaafmental flaws that thus appear in
the majority of cases always exist essentially ia fice of uncertainties that always
appear on physical grounds.

Many problems of solid-body physics relate to the befaand properties of the
individual dislocation. Often, such questions may alsdréated with the methods of
continuum theory. Therefore, Chapters Il and Il taom much about the singular
dislocation.

One can associate a body with dislocations witlatarral state in a non-Riemannian
space with torsion and take advantage of the extensive tddifferential geometry.
This procedure seems, above all, appropriate when one l@nger concerned with a
linear theory. The non-Riemannian geometry of dislonatwill be discussed in Chapter
IVV. Finally, Chapter V gives some applications.

In this report, dynamical problems will only be touched ujigitly. Likewise, we
shall do without a treatment of the thoroughly-examinedciapeproblems of
phenomenological elasticity theory, as was giverig,, the recent textbooks of Hill [65]
or Prager and Hodge [119].

Today, there are already many excellent papers oocdigbns in crystals, and we
cite the following works: The presentation of Read [12Ht tbrecedes all geometric
guestions, the more mathematical presentation of Naljadr0], and the particularly
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physical questions that were treated in the works ofr€bf21], Seeger [134, 135],
Friedel [55], Seitz, Koehler, and Orowan [144], Haasen laxbfried [62]. All of the
presentations start from the atomic standpoint. Irtrasnto them, the continuum aspect
of dislocations will be put forth here. Many importaesults of atomic dislocation
theory will thus be passed over or only touched uponvefitleeless, we cannot, and
would not like to, avoid speaking of atoms. The definitadrthe dislocation thus gains
much from intuition. Above all, however, one also eaftcannot approach the
consideration of atomic processes without the methbdsrainuum theory.

We believe that of the new results in solid-body Ina@ics precisely the continuum
version of dislocations takes on a special meaningedtesents a bridge between the
results of the atomic and phenomenological resaarplasticity. It can therefore be the
connecting link that brings together the two great comties that both endeavor to
bring about progress in mechanics: On the one hand, thehameians and
mathematicians, and, on the other, the solid-body pbisic R. Grammel [60] was
recently responsible for bringing about a close cooardietween these two groups. |
would also like to continue in that spirit in the presemort.

Much support has been afforded me, of which I will onlyntiee the most important
examples: In the first place, Herrn Prof. U. Dehlingerst be graciously thanked for his
ongoing help and his part in it; in particular, for thecdissions of the systematics of the
construction of this report. For some conversationstimglato, inter alia, the
understandability of the presentation, | am deeply gratef Herrn Prof. R. Grammel.
Furthermore, | would like to warmly thank Herrn Prof. [Eues for his interest and
inspiring criticism, Herrn Dr. A. Seeger for the falsat he placed his rich experience in
dislocation theory at my disposal, my collaboratoerrid Dr. G. Rieder, who played an
essential part in the development of the theory,ni@merous discussions and careful
checking of the manuscript, and Herrn Dr. P. Haagmnreading the corrections and
some important suggestions. Furthermore, | would like aomly thank Herrn Prof.
Losch for making this report possible for and his help withediting. The writing of the
report was supported by der Deutschen Forschungsgemeinaodathe Max-Planck-
Institut fur Metallforschung in Stuttgart. Finally, hauld mention the good cooperation
with the publisher and printer.

Stuttgart, in December, 1957.

E. Kroner
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Introduction

Originally, continuum mechanics, as it was developed byiedaCauchy, Poisson,
Stokes, et al., existed as the subdomains of elasti@tyry and hydrodynamics. In the
former, one was interested in the reactiens particular, the stressesthat would be
provoked in a solid body that was “externally” endowedatrces — and possibly also
rotational moments. In the latter, one examined, aladly the motion of fluids.

Relatively early on, Duhamel and Neumann also includ@dperature stresses in
elasticity theory. Thus, they always occupied a ighgmsition, since they were not
subject to the Kirchhoff uniqueness theorem, which stduasin the domain of linear
elasticity theory the stresses of a simply connebtety are uniquely determined by the
external forces that act on it. The Kirchhoff theoris valid only under the assumption
that the St. Venant compatibility conditions for thlastic deformations are fulfilled in
the entire body. In the case of temperature stredsse conditions are not actually
valid, which clarifies the nature of their special posit

In the second half of the $&Century, plastic behavior in continua was examined by
Tresca, de St. Venant, Levy, et al. This “phenomegicdd’ plasticity theory, which was
further developed by v. Mises, Prandtl, Reuss, Prager,kyeiNadai, et al. later on,
stood, to a certain extent, between elasticity theonwy Aydrodynamics. Thus, the
resulting deformation (we also call it the total defation £°) of the plastic body
includes an elastic pa# that gives rise to stresses as it would in ordinargtielty
theory, along with a second part that we refer tohaspiastic deformatios”, which
certainly changes the form of the body, but producestresses. One has such
deformations in a pure form in fluids. All togethergdhen has:

EL=¢g+é. 1)

Since at least one part of the stresses remains @#stic forming with no external
forces, the elastic deformatio@sobviously do not fulfill the compatibility conditions.
Here, one sees a commonality between temperatussesrand the proper stresses after
plastic forming.

It is essentially possible to single out a volumerednt (perhaps on the outer surface
of the body) before the plastic forming and to measheedeformation that it suffers
when compared to the initial state; this would be therdedtion®. If one now cuts out
the volume element and lets it relax then it willuase its original form, but will have
preserved the plastic deformation. Now, just aseabtiset, one again finds this element
in its “natural” state, which has be employed since CauGgen, et al., in elasticity
theory. The element has changed its form, but nostiage®. A function that says
something about the body in question shall then bedcallestate function” or a “state
guantity” if one can measure it uniquely at a certairetimthout having to know the
history of the body. The pa& of the total deformation is therefore not a statefion,
but the elastic deformationis. The difference between state functions and the sfa
unchanged functions is of deep significance and will teuef interest to us very often.

! This statement is then strictly valid only when ftistic forming takes place without (plastic) change
in volume; cf., § 2.
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Fig. 1. The symboi- stands for the edge dislocations; it will first show g 23.

It first became obvious in recent years that continuunchamn@cs, with its three
branches of elasticity theory, plasticity theorgdaydrodynamics, has netat least, in
its present scope — succeeded in describing all macrosibppreasurable mechanical
proper stresses of a body. A simple example maifycthis: Let a beam be attached to
rigid walls, and then let it bent elastically os@lpiecewise plastically into the shape in
Fig. 1. The two walls shall, moreover, remain in thiame and the beam warmed up.
During the warming, the critical shear stress will bduced (defined to be the shear
stress at which a noticeable flow of the materiad 8®t i.e., a flow can take place inside
of the beam, during which the elastic deformations willgedly be replaced with plastic
ones. After sustaining the higher temperature for acsefffily long time, the beam is
again cooled to room temperature and the clamps are remo@e@. then observes
practically no bending of the beam back to its origstate, and the change of form will
remain. One can cut out volume elements and establEghno (macroscopic) proper
stresses are presentNevertheless, the beam reacts to, e.g., a rehelange of form in
a different way from a beam of the same form “withaemory.” One can now excise
an individual volume element of the beam and measurgiiisal shear stress. One will
thus establish that the body is found in a compledetgrmined state of hardening. One
can thus characterize the change of state that pdées in another way that can be easily
represented in continuum terms. Namely, if one irradighe beam with Rdntgen rays,
or, in the event that it also transparent, with \Vesiight, then one establishes diffraction
(Beugung) effects that have their origins in a curvatdirén@ original atomic lattice of
the beam. An interpretation of the experiment yi¢f@dg one can measure this curvature
uniquely as a function of position, and thus characte¢heestress-free curvature of the
lattice planes (Netzebenen) for the state of thenbeblp to now, such curvatures were
never described in continuum mechanics.

In order to grasp such geometric changes in the body,narst extend the three
deformation tensors of eq. (1) by the addition of rotatemsorses, @ & to general
asymmetric tensors of second rafk, B, £, which we will refer to throughout as
“distortion tensors.”

Hardening can still not be correctly treated in contmumnechanics to this day.
Moreover, the research of the last twenty yearsstmasvn that it has its origin in the

2 That which are called lattice curvatures much latediaked with the proper stresses that change their
signs in the microscopic realm, and thus cannot babkstted by the excision experiment that was
described. These proper stresses, just like the mapiosmes, lead to hardening (cf., infra).
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proper stresses that come about during the plasticrigrafithe material. In principle, a
precise knowledge of the proper stresses shall permibaradculate the hardening of the
material. Furthermore, it has shown that one clterall of the proper stresses, as well
as the lattice plane curvatures (and thus also hardenitigg &ame physical quantity: the
dislocation. It is, moreover, not only definitivé the change of state of the body, but
also the part of its total form that does not charigies This obviously permits one to
arrive at a continuum theory of dislocations thatsel one of the yawning gaps in
continuum mechanics. This continuum theory of disloaatshall, above all, include a
theory of proper stresses, and furthermore, a theostre$s-free lattice curvatures, as
was first presented by Nye [113]. Moreover, it must toeee also describe the
connection between the motion of dislocations andtipldsrming. Thus, it already
reverts to the phenomenological theory of plasticit9yne then obtains separately and
collectively the theories of elasticity, dislocatiosd plasticity as part of a continuum
mechanics of solid bodies that encompasses all meethamenomena in solid bodies.

It still remains to be said how one can incorporatepegature stresses and other
stresses that go back to either external forcedastip forming. (As a result, we call the
stresses magnetostriction and electrostriction.)oné uniformly heats a body to high
temperature then its points suffer displacementsowttivhich restoring forces would be
aroused; the same is also characteristic of plagtimihg. This then suggests that we
may regard the case of forming by means of temperatuds faes a type of plastic
forming; we would like to call it “quasi-plastic.” Oneur then further attribute the
temperature stresses to certain “quasi-dislocationd’thus obtain, with Kroner [82], a
theory of temperature stresses that is, to a ceeteignt, a continuum theory of quasi-
dislocations. This agreement is not only formally weilided, but also physically, and
it thus seems entirely natural to include the temperaesses (and the other stresses
mentioned above) in the continuum theory of dislocetio The treatment of the
especially interesting problem in which one simultaneohal; e.g., temperature stresses
and proper stresses after plastic forming will be sinepliessentially in this way.

All of the continuum mechanics of solid bodies is nowluded in just a few
equations. For the stationary state these equatioris are

Divo+g =0, RotB=a, (2)

whereo (B, resp.)is the stress tensor (elastic distortion tens@p.)eands (a, resp.) is

the density of external forces (dislocation densitgpre- excluding quasi-dislocations).
To these, we add the equation for the elastic energy gérgitistortion energy function
or elastic potentialf:

1
e= - Gj & 3
5 G & (3)

% We think of the boundary surface conditions as contdam#tese equations when we all@wanda to

degenerate to superficial objects (and also linear ort{ike ones). In the event that one allows external
rotational moments, still more equations come about.

* We employ the summation convention throughout: Doubly-appeidices will be summed from 1
to 3. The tensor symbolism that is employed is clarifiethe Appendix.
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and the material equation, which is generally taken to bekels law for small
deformations. The uniqueness theorem for the continuuchanés of solid bodies may
be proved for this case: The stresses and elastmrtdiss of a body are determined
uniquely when one given the external for§eand dislocationg. From this, it follows

immediately: All proper stresses originate in dislaos. In the case of large distortions,
this is, however, not true, as the example of thetestehemispherical membrane shows
[160].

For the first twenty years, solid-body physicistsn@entrated their interest on
crystalline structures, which most of our materials exhibiparticular, metals do. In the
realm of media that are at least6m thick (corresponding to, say,2@toms!) they
are crystalline (“polycrystalline”) in their composition.With methods that were
developed at that time and have been greatly improved #ien, it is now possible to
grow almost arbitrarily large “unit crystals” of many tmaals. They are of great
significance in experimental and theoretical reseaaril have thus found important
application in technology — e.g., in the transistoret&do mmunications.

The concept of dislocation was first invoked — althongd vague form — in 1928 by
von Prandtl [108] for the clarification of inelastic ggfomena in metals. By 1929,
Dehlinger [29] could show, in the examination of the ngstallization — i.e., the grain
reconstruction (Kornneubilding) — that one observestrongly plastic forming, which
has its origin in the strong proper stresses that thusgppat these proper stresses lead
back to certain defective domains insider the othervagelar distribution of atoms in
crystals, and that these domains can be (meta-) stBlablinger called his proper stress
sources “hooks” (Verhakungen); they are nothing but two eblaseighboring
dislocations of opposite signs. The manner in which prsjpesses are possible at all in
a crystalline medium was thus explained. Throughouetkgaminations, the attention
was directed to the perturbation of regular atomiarggements, especially. One calls
such perturbations “lattice defects;” they play a deeisole in contemporary solid body
physics.

Fig. 2. Ideal crystal, cubic primitive lattice.
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Fig. 4. The edge dislocation of Fig. 3 has migrated througlrifstal in they direction.

In 1934, a lattice defect was described independently by Or¢idat), Polanyi
[118], and Taylor [149] that we will explain by means of F@sand 3. Fig. 2 shows a
completely regularly formed crystal called an “ideafstal.” Fig. 3 shows the same
crystal after the immigration of a perturbation alongx; direction. The perturbation is
characterized by saying that a lattice plane has adihesel® the crystal. One calls the
boundary line of such an “extra lattice plane” an “edgdation line” or simply “edge
dislocation.” Fig. 4 shows the same crystal afterglrturbation has migrated to the left.
By means of the one-time drift of the dislocatiorotigh the crystal the upper and lower
halves of the crystal will be displaced with respeceach other by an atomic distance.
We call the vector that gives the relative displacamia the glide plane the “glide
vector” ag; it is perpendicular to the edge dislocation line.hé trystal had a shear stress
031 imposed on it then work would be done during the migratids. a consequence,
such a shear stress means a driving force for the disinocaThe cited authors now
remarked that the drift of an edge dislocation must bsilplesfor comparatively small
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stresses. Fig. 3 gives a certain optical impresdidheoidea that the atoms bounding the
dislocation shall move more easily that the remaioings.

Already in 1926, Frenkel [54], with the help of an atommded, had calculated that
gliding, such as the transition from the crystal . to that of Fig. 4 represents, then
requires a shear stress of order of magnitude of tlee shedulusG when the two lattice
planes in question glide over each other rigidly throwmh atomic distance.
Experimentally, a more than thousand-fold smalleroaitshear stress was measured.
The plasticity mechanism that was proposed by Orowalgnifip and Taylor shall
actually lead to a smaller critical shear stress

Fig. 5. The upper lattice planes of the crystal in Figft@ the migration of a screw dislocation alang

In 1939, Burgers [12] had described another lattice defecthwiad the effect of
saying that the original lattice planes are now conueicte a type of screw surface (Fig.
5). The screw axis is now called the “screw dislacgti(s-line). One sees that this
screw dislocation can move relatively easily. ©@ae think that it migrates along — say —
thex; direction, as is Fig. 5. Fig. 6 and 7 show the crydtaf the migration of the screw
dislocation of Fig. 5 in the % (X3, resp.) direction. Ultimately, certain parts of the
crystal have glided over each other. Here, howewer gtide vector is parallel to the
screw dislocation line. Burgers has shown further tinate are also dislocations whose
glide vector is diagonal to the direction of the dialian line. One often suitably regards

® For Dehlinger [31], these purely mechanical considerati@rs not sufficient for him to prove that a
rigid gliding between two lattice planes could not actuallycuoc One must apply statistical
thermodynamical considerations, in addition — in paldic the theorem that in solid bodies only
transitions of the lowest order of reaction can taleegl Applied to our case, this says: It is extremely
improbable that by temperature fluctuations alone thmsitof a lattice plane would simultaneously have
such an elevated energy that they then simultaneoudlg tha glide step that a rigid gliding of the lattice
plane in question would amount to. Such considerationéhdigpensable when one would now like to
compute the critical shear stress theoretically unterssumption of the dislocation mechanism. Seeger
[137] has shown that by ignoring the temperature fluctusitibe critical shear stress that one would
compute purely mechanically often comes out to be niare 100% too large.

Due to its importance in such problems, let us furthention a new paper of Donth [164], which
showed that by a statistical treatment of dislocatiams would come to the Kolmogoroff equations for
statistical processes since the assumptions foagpécation of an Arrhenius equation are not true in the
case of dislocations.
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such dislocations as the combination of a screw and andisigeation along the same
line, such that dislocations of this type imply nothingdamentally new.

Fig. 6. The screw dislocation of Fig. 5 has migdat Fig. 7. The screw dislocation of Fig. 5 has migdat
through the crystal in thex; direction. through the crystal in the direction

However, the possibility of motion for dislocatiohas still not been completely
discussed. There still remains the essential posgilmfi considering a motion of the
dislocation in Fig. 3 in thes direction. This means an enlargement of the exttidat
plane, which is only so imaginable in practice, such #tams in the vicinity of the
dislocation will come back to it by diffusion. Theattge in position of an atom in a
crystal always leads to an energy threshold witbraer of magnitude of 1 eV (= 1.63
10*® mkg) that cannot be overcome by means of externallyezbgiresseS Moreover,
the temperature fluctuations must first have at thapasal the required “activation
energy.” As a result, such diffusion can first occir,a large extent, only at high
temperatures. The dislocation motions that playimuhis way are called “climbs,” as
opposed to the aforementioned “glides.” Any atom tiest on the extra lattice plane
leaves behind a so-called “lattice gap.” One must accoamntthiese lattice gaps
macroscopically in the volume being measured; i.e.,viileme of the body changes
while the dislocation climbs. This type of motion whss called “non-conservative”
(relative to the volume) by Nabarro [108], while the migd motion was also called
“conservative.”

If a dislocation climbs in — e.g. — the direction completely through the crystal of
Fig. 2 then this means that a new lattice plane is ddriand thus the crystal will be
lengthened in they direction. Thus, a pure tension (Zugspannumg) ¢ 0) exerts a
pressure on the dislocation to climb in #aalirection. On the other hand, a compression
(Druckspannung) might break down the extra lattice plautéch is, however, possible
only as long as all of the lattice gaps are filled upha vicinity of the dislocation with
atoms of the extra lattice plane. One sees tlavdlume of a body can also be changed
plastically; the theory to be developed in Chapter | ireduithis possibility.

® Macroscopically, 1 eV is a minute energy. However, ittrhadocalized in a space of only somé®t0
cm, and this is obviously not possible with externally epip$tresses.
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Certainly, for many solid-body phenomena, the climbifithe dislocations plays an
important role for temperatures that are not too muchtlesn the melting temperature,
and we cite re-crystallization and the existence sficg stresses.

A glance at Figs. 2 to 7 shows that one should expegter stresses in the states of
Figs. 3 and 5, while the crystal is found in the natuetksin the remaining figures In
8 1, we will show the close relationship between the®mer stresses and those of
Volterra distortions. Building on the work of Volteria 1939 Burgers [12] had created
an elasticity theory of singular dislocations in which pineper stresses, which originate
in the dislocations, can be calculated. The numerouscylar elasticity-theoretic
calculations for dislocations have been based on thdafmental work.

Therefore, the following picture of the sequence @y in the plastic forming of
metal can be given: Under the influence of externafiplied stresses, the dislocations
that are already present in the crystal define an iaddltlarge set of new dislocations.
They correspondingly migrate around under the forcegezkewhile they provoke the
macroscopically observed changes of form. Thus, duéeio increasing number, the
dislocations bring about proper stresses of increasingumeetsat endeavor to inhibit the
motion of the dislocations, as was first suggested byof §¥#9]; this effect leads to the
hardening of materials.

" One distinguishes — e.g. — the states in Figs. 2 and #sgleby saying that as a result of the
formation of edges the crystal of Fig. 3 has an altergdr surface stress. For our purposes, we do not
need to address this; one can confer, e.g., the diseusdiabarro [110], pp. 332.
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Dislocations in a continuum: geometry

8 1. Dislocations and Volterra distortions

At the beginning of this chapter the close connectietwéen dislocations and
Volterra distortions will be clarified.

Let f be a surface that is at least piecewise planar the interior of a simply
connected medium with the (dimensionless) unit normalovedx) at the positiorx.
Let t(x) be the unit tangent vector of the boundary ling @afhich is oriented by the right-
hand screw rule. One thinks of the body in the stiressinitial state as being cut along
the surfacef such that the positive edge of the cut defined Iy bestowed with the
infinitesimal plastic displacemer(x) relative to the negative one. We would like to
carry out the displacemeidy(x) in two steps by decomposing it into two components:
(@'5, which is parallel td, and ¢g~), which is perpendicular to it. After the parallel
displacementy' both sides of the surfadevill have no gap between them.

For the displacemenfy” that now follows, one must distinguish two casesTHe
two sides off are displaced with respect to each other. For this, a@s have at our
disposal the possibility that the resulting cavity imthided with matter of the same type
and density as the original body. 2. In the case ficlwdy” means a displacement of
the two edges of the cut with respect to each othectlg>@nough matter from one of the
two edges shall be carried along that this displaceragrissible. After carrying out this
operation, we think of everything as being deformed and tleedothat produced the
displacement are removed in such a way that once meréave a unitary, simply
connected body in which proper stresses naturally remEey are determined by not
only the material and form of the body, but also thsitpm of the surfacé— i.e., byn —
as well as the resulting “impressed” or “plastic” teda displacemendy.

We further remark that from a well-known theoremCaflonetti [18] the volume of
the body in the final state differs from that of théial state by the volume of the new

compressed (removed, resp.) matter, hencel\by Hn@gdf . This theorem is valid
f

only in the realm of linear elasticity theory, and there only for homogeneous bodies,
as well (hence, e.g., not for bodies that consistvofhomogeneous parts with different
elastic constants).

In general, along the surfatéhe deformations and rotations of the volume elements
of the body change discontinuously, which was firsth@rad by Weingarten [157], and
later more thoroughly by Somigliana [147] Thus, if both cut edges due to a piat®f
a surfacef are merely impressed with a rigid displacement tlendeformations are

! The restriction to planar surfaces simplifies thesgnéation, although it is not necessary. One easily
sees that the essential results of this paragraiphparticular, the definition of the dislocatienare also
valid in the case of curved surfades

2 The older results of proper stress theory were mfectby Nemenyi [111]. This paper also contains
much that is still worth reading today.
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continuous acrosAf. That the rotations are also continuous ac/fss, in addition,
necessary in order to hadg = const acrosaf.

Should the body be again simply connected at the erideobperations- hence,
nowhere exhibiting a tear then the cut edges of the entire surfacannot be rigidly
displaced with respect to each other. One comesetaliglocations by the following
prescription: Letdg be almost constant across the entire surfa@xcept that on the
boundary of it goes quickly to zero. Fig. 8 shows the vanishingdof||over a (planar)
surfacef, which, for the sake of simplicity, is assumed tweha circular boundary. We
now define the dislocation line to be the boundary linethef surfacef, or, more
precisely, the dyadic product t-&g = — (ti dg;), where &y shall mean the constant
displacement over the greater part of the surface

Still more precisely, one must say: Here, thereos axsingular line + &g, but a
quasi-singular strip of very small widtkf2Fig. 8). We thus extend the above definition
by adding that this shall be valid in the limit@s. 02

) e ——

Fig. 8. The production of a dislocation in a continuum.

| ag |

X1

A second prescription leads to the Volterra distorti@se establishes that from now
on (or, at the latest, after making the cut alénhthe boundary line of is given by a
hollow torus of radiug’ > 0. The body is then generally no longer simply cotes; and
the surfacd has its entire boundary in the bounding surface of tldy.bd hus, a rigid
displacement of the cut edges of the entire surffaggossible. If one setd = const.
then one obtains a so-called Volterra distortionestdtthe first kind, which, upon the
bulk removal of the hollow torus, one obviously canndattidguish from the state
produced by a dislocation (principle of St. Venant). Bwgers elasticity-theoretic
treatment of dislocations is based upon this knowledge.

We will come to speak of the Volterra distortiontstaf the second kind, for which
the rigid relative displacement is a rigid rotationtbé cut edge, in 8 7. From our
standpoint, it does not have the same meaning as thelstateterized byg = 0.

From the definition of dislocation, it follows that

1. The dislocation, as the boundary line of a surfeae,end only on the bounding
surface of the body.

2. Since the deformation and the rotation of the surfféegpen continuously, they
can no longer be experimentally determined, from thanitieh of the dislocation lines.
All surfaces that are bounded byan therefore serve as cut surfaces to produce the
dislocation (distortion, resp.) state. That is, thislready completely determined by the
boundary ling and the relative displacemedy.

! The minus sign is chosen by convention, in order tanbagreement with the most-used sign
convention of Frank [47] (8§ 21).
2 The functiondy then takes on the character of a Heaviside step functitre iplane in whichlies.



8 1. Dislocation and Volterra distortion 11

Assume that during the operation of relative displaogma stress that arises from an
external force was imposed upon the body. This straslsl tben do work under the
displacement. As a result, stresses exert a for¢eeohody, in the sense of the creation
and spreading out of dislocations. In particularhére is a transverse stress in a plane
then there exists a tendency towards the conservatmeation and spreading out of a
dislocation (i.e.,d || to the surface), while a normal stress that is pdipalar to the
plane means a tendency towards non-conservative fematd spreading out of a
dislocation @g [ the surface). Whether such behavior would actually béachpy the
application of external stresses on the body aloma@ldvdepend on the cohesive forces of
the matter. In particular, a diffusion of matter ulb be necessary under the non-
conservative formation and spreading out of a dislocatibnthe introduction it was
described how this behavior was the basic mechanismh&plastic forming of real
bodies. We therefore also assume this for our idegira.

ey

—>

X2
B A
N
20 N\

A X1
'

a b

Fig. 9. On the production of a straight edge dislocatiom medium. One thinks of the sliténas arising
from the removal of matter from a solid cylinder.

In imitation of the introduction, we call the congmtive spreading out of a
dislocation aglide and the associated plariethe glide plane We call the non-
conservative spreading outchmb and the
associated planef the climb plane
Collectively, we speak of thealrift of a
dislocation along itsdrift surface We
further say that a dislocation has adge I
character wheret [0 d and a screw
character whert|| &g. Figs. 9 and 10 show
the production of pure edge and screw N a
dislocations. Obviously, the purely non-
conservatively formed dislocation is an edge _
dislocation. ~ This corresponds to the F9-10. On the production of a screw

. . dislocation in a continuum
assertion that we encountered in the
introduction that in a crystal only edge dislocationmbl The conservatively formed
dislocation has, in general, a mixed character. Thigeesponds to the finding that in a
crystal screw dislocations, as well as edge dislooatiglide. These processes show
clearly that the notion of dislocation that is usegehis nothing but a conversion of the
notion of dislocation from crystals to continua.
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8§ 2. Plastic and elastic distortion

First, a remark on the ideal continuum: For the s#Eka&mplicity, let it be assumed
that in the initial state it is homogeneous. By cast it would be a reduction of the
fundamental significance if it were also assumed ith&t isotropic. Here, we do not
mean the elastic isotropy; that would be completel\sseatial for the geometrical
examination of this chapter. One must, moreover, densthe possibility that the
medium is geometrically anisotropic. This means thataah point of the medium three
linearly independent distinguished directions exist for whicls assumed that their
angles with respect to any three normal directionp&te can be measured. This sort of
geometrical structure must be required because reat¢djod which the continuum
theory will be applied later on, have this structure. e Gmows this from- e.g. -
Rontgenography.

We assume that this structure is a property of thevictheal volume elements in the
continuum. The initial state will be defined to be steess-free state of the medium, in
which the distinguished directions of all volume elaetseare parallel to each other. In
the final state, one then has a certain orientatistribution, which is evidenced by the
rotation of volume elements (cfipfra) that occurs. For the sake of simplicity, we
assume that the distinguished directions are orthogoredch other in the initial state.
The reader who wishes to think in terms of crystals m@gine the continuum to be,
perhaps, a cubic primitive crystal with vanishing latticestants.

X2
dX]_
Xo ; /
i dX3
. y
. d
: 4 oo | g
; i
| |
/,'- ----------------- — T (5(2
a X1 b X1
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O

(22

X3 X3

Fig. 11. On the definition of the macroscopic tensglastic distortions.

One can now find the operations described in the lasgpph taking place on very
many surfaces$. If they are infinitely dense and the associated xelatisplacementy
is distributed continuously then one can, in this waglize continuously-distributed
purely plastic— or also mixed plastic-elastic changes of form of the body. The first
process may be envisioned as in Fig. 11. This shows aredolatume elemerdV in
the initial state . It shall be cut from the surfacef at a distancedx, that is
perpendicular to thg.-direction, and then each two neighboring layers véligven the
relative displacemendg. One imagines that the passage to the mit- 0,3 — 0 has
been carried out while keepirdy / o, constant. In the case of Fig. 11b, the gaps are
filled with matter of the same type as the volumenelst in such a way that the density
distribution remains homogeneous in this way. At the ehthis, everything is again
deformed. In total, the volume element is then dtextchomogeneously and plastically
in Fig. 11b (and thus “thinned”), and sheared homogeneouslylasiically in Fig. 11c
and d.

We generally letdg denote the (plastic) relative displacement of thendang
surfaces of the volume element on th&-face with respect to the one on the-face

and define the asymmetric tensor of plastic distortﬁ’rs(ﬂif) by the relation:

dg = £ dx, (1.1)

wheredx characterizes the relative distance of the boundimfases in question, and
will relate to the initial state. The plastic a@igions, which correspond to Fig. 11b to d,

are then denoted 8L, 55, B5,. The diagonal components of the plastic distortion
tensogﬁijP are then plastic dilatations and the remaining compsnem plastic shears,
where the first index gives the glide plane and thersone, the glide direction.
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It is now particularly important to remark that undéaspic distortion the volume
element does not change. One concludes this from tii@nmahich the distortions in

Fig. 11 come about. Thus, the difference between the shegfs and 3, is not,

perhaps, a rigid rotation, but a “plastic rotation” lod¢ ¥olume element, with preservation
of its orientation (Fig. 12a, b). This statement is tfoe small distortions. The

symmetric part 01‘,8”P then describes a pure plastic deformatiqj?l, and the anti-
symmetric part, a pure plastic rotat'tqﬁ, both of which preserve the orientation. The
decomposition of the distortions into deformation and rméti

Br=c" +af (1.2)

is also true for large distortions. Here, one mhstyever, understandju.P to mean the

well-known asymmetric tensor for large rotations (ver$34] >.

The forming of the volume element that was considapetll now comes about in a
stress-free way. We then come to the case ofielfmsiming. Letda be the elastic
relative displacement of the bounding surfaces as beiMe then define the asymmetric

tensor of elastic distortion8= (4;) by the equation:

dg = 4 dx . (1.3)

P
ﬁlZ P
21

! One thinks of the volume element in Fig. 11a as — sayirfiaitely densely-packed family of material
lines that run in the,-direction. The operations that lead from Fig. 11b to donlsly do not change the
direction of this line. One also simply postulates pheservation of orientation, because real bodies, to
which the theory will later be applied, exhibit thioperty.

2 The additive combination of deformation and rotat®ralid for large distortions only whetx in eq.

(1.1) relates to the initial state. cf., § 10.

® Bd. I, pp. 78.



8 2. Plastic and elastic distortion 15
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Fig. 12. Under plastic distortion, the orientation agms preserveda( b).
Under elastic distortions, it will generally be distartend rotatedc( d).

c

The S; describe the same changes of form and the positioreofdlume element as the
,Bijp, although there exists an essential difference: Unldsti@ shears, the original right

angle between the preferred directions in question wilhgaanto the shear angle. As a
result, the difference betwegh; and 5, for small distortions is now a rigid rotation of
the volume element (Fig. 12c, d). If one again decompGsedgo symmetric and anti-
symmetric parts:

Gi=&+a, (1.4)

then g; is the ordinary deformation tensor of elasticitydtyeand «y is the tensor that
describes the (rigid) rotation of the volume elementthé case of large distortions, they
are the same as before.

It creates no fundamental difficulty to measure e¢lsstic deformation of a volume
element in the final state if one cuts it out and letelax. The preferred directions are
thus again orthogonal to each other, and one can, iticagjdneasure the orientation of
the element with respect to a normal orientatidihone does this for all elements then
one can give the rotations that occur in them theeseonstant rotation with respect to
one of them. This means that the elastic deformagiarstate function, while the same is
not true for the rotations, but only for their positiom#rivatives. This obviously
describes a curvature of the structure. Since the eldsformations and structure
curvatures follow uniquely from the elastic distorti@mgor, this characterizes the state
of the medium after forming uniquely. By contrast, inipossible to measure the plastic
distortions, deformations, or rotations that occuteirms of just the final state. This is
due to the fact that the state of a volume elementnetl change under a pure plastic
distortion as in Fig. 11. One can also confer the@chiction.

In the general case, a volume element will be gsanebusly plastically and
elastically distorted. Let:

ds’= da +dg (1.5)
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be the total relative displacement of the boundingased of the volume element, as
before. We then define the tensor of total distortﬁ?“ls (,8”.6) by the equation:

dsJ.G= ,Bijedx. (1.6)
It is sufficiently characterized by the relation:
lgijG:ﬁj + ijP' (1.7)

Eq. (1.7) is also correct in the case of large distogiif one always referdx to the
initial state (8§ 10).

8 3. The fundamental geometric equation of
continuum mechanics for solid bodies

We describe a Gedanken experiment that must serves dms$ic experiment of the
continuum theory of dislocatioris

If one externally imposes a sufficiently large stremn a plastic medium then
dislocations can be created and drift, and thus producecpdastortions of the volume
element of the body. These dislocations can come @ug., on the bounding surface of
the body — while there can also be dislocations obthosite sign inside the body that
are annihilated, as well as dislocations that remaiplane in the medium during their
resulting drift and define a “dislocation density.” \A&sume that these dislocations stay
in place between the volume elements, not inside .th&mce the magnitude of the
volume element shall go to zero, we also then obtaimany case, macroscopically
continuous distribution functions of the dislocationthd externally imposed stresses are
continuous. As one also assumes in continuum mechahisdistortions shall be
noticeably homogeneous in the domain of many volume eksrd¥nhwhich means that
the dislocations inside of such domains move rectiligearl

After imposing the stresses upon the body, each vokisraent will now suffer a
completely determined dislocation drift, and one carcriles this, at least numerically,
as a function of the position of the volume elemegigtive to — say — the initial state (8
4). From now on, we imagine that the body is inntsal state and has been cut up into
its volume elements so that each element is indepérafethe other elements in the
dislocation drift that follows for it. In other word$Ve imprint each element with a
plastic distortionﬁ"(x). Then the elements are, in any case, free o$ssse and their
orientations remain preserved. There are now two pbssgi

1. The volume elements fit together with no gaps uttieiplastic distortion; there
is no rip anywhere. One can then think of them adedirming again without pressure
and obtain the body in the state that it was alsergin, if one did not cut them apart

! Experiments of this type, in which the deformations al@me not the rotations) are considered, are
described many times in the literature. Cf. Foppl [44]s&er [122], v. Laue [87].
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before the dislocation drift. In particular, the od also free of proper stresses and
structure curvatures. Thus, the state of the body tiashanged during the dislocation
drift, but only the form.

2. The volume elements no longer fit together afteming. Fig. 13 shows an
example in which the connection of the elements was peduitb such a way that

dislocations that stay in place between the

volume elements are extended/ / / j
//
//

perpendicular to the plane of the pape
and migrate from above and left, such
that the upper elements meet up with
more dislocations and would thus be
sheared more strongly than the lowe
ones, while, on the same grounds, th

elements to the left would be more%%
/

strongly stretched than the ones to th
right. If one would unite the elements
into a compact whole then one would

have to distort it elastically in such a way L— ——

that they again fit together without gaps.

In general, elastic deformations and

rotations are necessary for this. Unde S X1

the former, stresses build up, while thq:ig. 13. A plastic distortion that does not unaerg

Iat_ter g_lve rise to rOtatlonS_ of thesimultaneous elastic distortion generally disturbs
orientation. One now thinks of the connectivity of the body.

everything as again deforming and the

forces that have brought about the elastic deformnatowa taken away. A relaxation of
the body into a state of lowest possible elastic gnetith then occur, in general. Thus,
the stresses can vanish completely when nothing but ra@g®&tions of the volume
elements have sufficed to again produce the connecidmts disturbed by the plastic
distortion. At the end of it, one naturally has\ad at the same state as one also obtains
when one does not cut the body apart before the digladdrift.

This Gedanken experiment must now be evaluated quargitatiBoth possibilities
have in common that the body shall be compact and sleorips in its final state. This
means that in any case the total distortifhis a function of position such that the
connectivity of the volume elements is preserved. Tédasiirement means a restriction
for the additional functiong® that the functiongg” are not, however, subject to, at least
in case 1, but not case 2. We now show that:

(qjki[aﬁjERotﬁG:O (1.8)

axj

is a necessary condition for the connectivity retatiops between the volume elements
to be unchanged. Fig. 14a shows two elements in thalistiate. The connection
between the two then remains preserved when the-higd boundary surface of the
left-hand one and the left-hand boundary surface ofifie-hand one suffer precisely
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the same displacement. This means that the comm)ﬁéjnland ,ij in both elements

must be the same, while the componepﬁl‘% may
vary. As an example, Fig. 14b and ¢ show how it
appears when the elements suffer a different distortion
Bs, (B, resp.). Thus, it follows th@t3, / 0x1 = 03y

/ 0x1 = 0 is necessary for the preservation of the
a connectivity 1. One immediately concludes the
necessary condition (1.8) from this. This’in eq.
(1.8) is then obviously a complete differential; i.e.,
there exists a functiors® that measures the total

displacement of the points of the body (up to a rigid
translation). One then has:

B = 0s7 19%= (Grads®); . (1.9)
In the case 1 described above, sifce0, one has
B = [F; hence, thedg in eq. (1.1) will become a
complete integral and:
c B = Gradg = Grads’. (1.10)

Fig. 14. (Coordinate system as In this case, one thus obtains a pure plastic
in Fig. 13.) displacemensp of the points of the continuum under
which this state will not be changed. This case is of
considerable practical meaning for plastic forming; wel slzathe back to it later.
Henceforth, we heuristically define the asymmeteiosbr densitya = (a;) by the
expression:

=-Rotf, (1.11)

and then show, first of all, that this definition is
consistent with that of the individual dislocation
in81.

Fig. 15 shows a body in which a small
number of dislocations drift about, of which, we
assume that they move perpendicular to the
plane of the paper. The drift surface of the Fig. 15
dislocations is drawn, and indeed, removed
(ausziehen), if the dislocation that sits at the ehéach drift surface runs through the
surfaceF with the arbitrarily-oriented boundary lir®g in the other cases, it is sketched

! 1t is then sufficient when one assumes continuous disalacements; we will not go further into this.

One can refer to a non-vanishing function Bdts a “rip density.” One obtains such a thing, e.gindur
the rolling of a sample of metal when it was choserbig.
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with dashed lines. The drift surface is oriented in suebag that it will point in the
positive direction of®. Now, we go around once and add to each drift surface the

relative displacemerdg of its positive side with respect to its negative tha originates
in the dislocation drift. For the sake of simplictye assume thal is equal for all drift

surfaces. One immediately sees that the dashed surface goesmiribute to the sum,
since it produces two equal and opposite contributionsa r&sult:

=- Y dg (1.12)

is a direct measure of the number and type of thea#iibns that run through the surface
F. We refer tb as the “total Burgers vector” of these dislocatinsn the case where
the circuit € encircles only one dislocation = — Jg is the Burgers vector of this
individual dislocation.

We showed in 8§ 1 that the state of a medium with @iscation is determined
completely by being given the line of motiband the glide vectodg. We now see that
one can also give the Burgers vector in place of thee glettor. One observes the
essential difference between these two vectdysassumes that for a dislocation that
drifts along a surface the positive side of that surfaitebe displaced relative to the
negative one byg. When no dislocations are drifting one has, by cettég = 0. & is
then a vector that is bound to the drift surface ofdiséocation, and, in particular, also
preserves its meaning when the dislocation leavem#ugum, hence, no longer exists, at
all. On the contraryb is defined only in conjunction with the circut (the surface~
encircled, resp.) and thus says something about the digirilbof the dislocations in the
body.

In the case of sufficiently densely distributed dialimns, one can replace the sum in
eg. (1.12) by an integral:

=- (f)é‘g_ (1.13)

If we are dealing with an infinitesimal surfagt® ° then we call the resulting Burgers
vectordb. If one knows this for each arbitrary oriented surfaleenentdF at each point
of the medium then one obviously knows how many disioea of each type run
through each point of the medium. The expression:

ai = Abj /AFi (|.14)
shall thus be defined as the “tensor of dislocation dénsitpriefly, as the “dislocation

tensor.” Since the dislocation density is a tensdd fit is sufficient to know the Burgers
vector at each point for three surface elements thatoaiented perpendicular the

! This implies no restriction of generality in our cilesations, as the following calculation confirms.

2 In honor of J. M. Burgers, who introduced the circuitteeb to characterize a dislocation in the
groundbreaking paper [12].

3 AF must be essentially larger than thaéfain order for a dislocation density to be definedsy If
one first letddF go to zero then one can, in addition, also take thé¢ Aifi— O.
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Cartesian coordinate axes. If one measures a Burges vee.g., for the surfactf; —
and it has the single componedi8;, while AF, and 4F; give no contribution, then one
obviously has the Burgers vector parallel to the lineation, and from § 1 the diagonal
components ofa; thus represent screw dislocations in the(= j) direction.
Correspondingly, one recognizes that the remaining caeme of a; mean edge
dislocations in the-direction with their Burgers vector in thelirection. In total, the
first index of a;; gives the direction of the line and the second onediteetion of the
Burgers vector. We also call the total Burgers vectoalbthe dislocations that go
through an arbitrary surfa¢ethe “dislocation flux” througlf; it obviously results from
eg. (1.14) that:

b= [[dF . (1.15)

On the other hand, we compute it from eq. (1.13) to be:

b:—gﬁag:—gﬁdg:—gﬁdxwpz—jde [Rotg" . (1.16)

In this, we have used the fact thaly, when integrated over a patl, naturally yields
dg (Fig. 11); this is substituted in eq. (1.1) andafly Stokes’s theorem is applied. Since
the surfacé= was arbitrary, one concludes the comparison wath(lel5) directly from
eq. (1.11).

From eq. (1.7), (1.8), and (I.11), what immedigtébllows is the “basic geometric
equation of continuum mechanics”

RotB=a. (1.17)

From the previous statements, this is to be unoedsas follows: If a dislocation drift
(plastic distortionﬁP , resp.) takes place in such a way that the distmts remain in
place with a densityr in the medium then the distorti(ﬁ’f, when it happens by itself,
will disturb the connectivity of the body. The @sive forces of the medium oppose this
and simultaneously build up a elastic distort®m such a way that the body remains
compact. Eg. (1.17) is also true for large disto$, as long as one refegsand S to the
initial state, as well as performing the differations in the initial state. Cf., § 10.

From eq. (1.17), what follows immediately is tleation that first given by Nye [13]:

(0aj 1 0ox) =Div a=0. (1.18)

! Eq. (1.17) or, equivalent formulations, were given indepetigl by Kondo [73, 74], Bilby, Bullough,
and Smith [3, 4, 5], and Kréner [81, 82, 84]. The first-noer@d author gave formulations that were also
valid for large distortions from the outset (cf., § 2628), while, for the present author such distortions
were included later on. The derivation of eq. (1.17) thes given here is due to Kréner and Rieder, which
reads, in Cartesian Coordinates:

6,331 / 6X2 - 6,321 / 6X3 =01, 6,33,2 / 6X2 - 6,322 / 6X3 =017, 6,33,3 / 6X2 - 6,823 / 6X3 =3, etc.
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Since the first index ofr; gives the direction of the line, this equation obviousans
nothing but the statement that the dislocations cammbireside of a medium. We have
already brought this up in § 1.

From eq. (1.5), it follows thatis® is a complete differential, as well as the refatio

<J5da= - cﬁdg for an arbitrary closed circuit. Thus, it also foliwom eq. (1.13) that:
b=¢da= §dxB. (1.19)
¢ C

Burgers [12] introduced the circuit vectom this form.

Finally, we further mention the far-reaching analogy twsts with the theory of
magnetic fields of stationary currents, and which haesnbof valuable service to the
discovery of the basic geometric equation [81]. Thdogiaais quantities are:

Electric current strengthand Burgers vectds,

Current density and dislocation densitgy,

Magnetic fieldH and distortion fielgs.

For later purposes, we add:
Magnetic inductiorB and stress fieldr.

The equations that are analogous to eq. (I.15), (1.17),ld8) @rei = J]dF 0, rotH =
i, divj=0.

8 4. Dislocation drift and plastic distortion

The basic geometrical equation (1.17) includes only siatmtities and is therefore
suitable for the description of the state after pdafstiming. Thus, what is still missing is
a quantitative description of the connection between disdocation drift and the
aforementioned plastic distortion. Obviously, no statentities will appear in the
equation that defines this.

One can think of the distortions of Fig. 11 as beinglpced by dislocations whose
line direction was thes-direction, and which drift in th&-direction. The direction of
the associated Burgers vector in Fig. 11b, ¢, d wasxhes x;. (We ignore the sign, for
the moment). A complete examination must considernine independent dislocation
components and the three independent drift directionsus,Ttinere are 27 different
dislocation drifts to examine.

We describe a general dislocation drift by giving 27 quastiig at each positior,
which means the number @ifi-dislocations atx that drift in thei-direction (per unit
length perpendicular to the line and measured in the dhafttebn). Thus, for the sake of
simplicity, we assume that all of the dislocatiorss/én the same magnitudefor the
Burgers vectob, although it is not more difficult to treat the cadfediffering Burgers
vectors.

The indices oNx thus mean:
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1. Index of the drift direction
2.Index of the line direction for thesfibcations
3. Index of the Burgers vector directipn

] =k are screw dislocationg# k are edge dislocations. Then, as would follow from the
considerations at the end of § 1, one also has thespomdences:

1. i#j=k the glides of the screw dislocations
2. k=i=j the glides of the edge dislocations
3. i2jzk k#i the climbs of the edge dislocations.

i =] is a drift of the dislocations in the direction oéithlines and yields no distortion.
We thus do not need to consider this drift.

Thereby, all 27 components Wi are accounted for. From the vector property of the
drift direction and the tensor property of the dislaoa, it follows that théNy are the
components of a tensor of rank three: It shall bieddhe “dislocation drift tensor.”

Furthermore, we write £ — 1, etc. Then, e.g., a3 drift yields the same distortion
as aN-., N, N, drift. The free choice of the positive sides ofdné surface leads
us to make them thex+sides in this paragraph. The drifts that the plasstodions
provoked in Fig. 11b to d are then:

b: Np, (Ng,,, resp.) or als®si2 (N, resp.)
C: Npg; (N5, resp.) or als®aiz (N, resp.)
d: Np (N, resp.) or als®aiz (N5, , resp.).

The givens are complete, and the reader is encouragéeck them on the basis of the
sign conventiort of § 1. If one gives the edge of the volume elementiehgth 1 then
Niix a9 is numerically equal to the value of the total glidetwe that is provoked by the
dislocations that drift through the volume element dm also numerically equal to the
distortion that the drifiNix provokes. Henceforth, we would like to denote this disto

by ﬂijpk -

One removes our examples of dislocation drifts thataauti-symmetric with respect
to the first two indices and yield the same distorti@ince, as we remarked before, no
distortion belongs to the drilj, one now obtains (Kroner and Rieder [84]) € — b):

B = = (Nik —Njx) b (1.20)

as an invariantly formulated connection between dalon drift and plastic distortion.
As an anti-symmetric tensor of rank thra@jﬁ: has none independent components and

thus may be replaced by a tensor of rank two in the wsaal

! Line direction of the dislocation || right-hand setsundary line of the drift surface (after the grift
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'BiiFlz = ijk:qf’ Ba = %‘gijk:g.j?- (1.22)

One easily shows the validity of this notation wioee substituteﬁji from eq. (1.20) in
the second of eq. (1.21), and applies the resulting equation:

Bq =— &Ny b (1.22)
to the exampleb to d.

We now assume that a dislocation dNff varies in such a way that it remains in
place with a constant dislocation density. The decr@ase e.g. — a widthdx, for
dislocations drifting in theg-direction through a distana#x; is naturally equal to the
number of dislocations that pass through a surface atedfe= dx; dx as a result of the
drift. I. e., it is [84]:

ON;,
0%

b = O , (1.23)

and sinceNix / 9x = 0 (i.e., the drifting dislocations do not also stagide the body), it
follows from eq. (1.20) that:
o8>
P Qi . (1.24)
0%

In words: The plastic distortion varies in the driftedition when the family of drifting
dislocations remains in place with a densty; Fig. 13 was an example of this. If one
replacesf;, in eq. (1.24) with/3 then this immediately yields eq. (1.11).

The dislocation drift tensor is more closely linked wiitle actual process of plastic
forming than the previously-appearing quantities; thereis &8 of its fundamental
significance. One can, perhaps, differentiate it imetand thus define a dislocation
velocity vector, which might possibly represent a sudtabarting point for a later theory
of dislocation dynamics. E. g., it is closely rethte the problem of defining a law of
friction for the dislocation drift such that the éerof friction (which ultimately amounts
to the driving force of equilibrium and thus bring about @nstant velocity) is
proportional to the dislocation velocity tensor.

8 5. The invariant components of the distortion field

In this paragraph, we will assume an infinitely extehdeedium. Let the distortions
be continuous and twice-differentiably distributed, arel/ttnay vanish at infinity. The
decompositions:

B = Grads + Rot{’, (1.25)
B = Grads + Rot{ (1.26)

are unique.¢’ = (¢) and{’= (¢j) are asymmetric tensors.
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From § 3, a distortion, whether plastic or elastikesaa compact body into another
compact body when it is derivable from a displacemesitl fby a gradient map. A
plastic distortion Grad” then requires no additional elastic distortion in otdemaintain
the connectivity of the body and it results thatsitsiress-free, while the orientation
remains preserved.

The total torsiorﬁ‘3 =p+ ,BP must fundamentally be a gradient tensor (eq. (1.9)infro
which it follows that:

Rot{=- Rot{". (1.27)

This means that the perturbation of the connectivity ¢cbanes about by way of a plastic
distortion Rot¢” will be again canceled precisely by the elastic distofRot ¢,

Therefores seems to be completely independent of the func4bng s. However,
this comes from the fact that our considerationsstilenot complete. In reality, there
exists a coupling betweeh and¢” — at least, in real bodies, and thus we also asshime t
for our continuum; perhaps the coupling is of a sort tirtnumber of dislocations that
remain in place under the dislocation drift is a fumctiof the number of drifting
dislocations, which can naturally be independent of pasitiduch a relation betweer
andN; means a reduction of the additional dislocation drgta function of position and
comes about from the part (Grsidl of the total distortion:

[ = Grad6+9) (1.28)

that splits off with no change of state. The meanifigs ois naturally the plastic
displacement of the point of the medium that belongbé part Grad” of £

The tensorg and¢” were not given an intuitive interpretation, up to nolhey are a
type of potential from which the distortions can be derivBg.contrasts is naturally an
elastic displacement field. Namely, if one canthés plastic distortion Ro§” with the
elastic one by eq. (1.27), and then takes away the fohe¢she latter have produced then
one finds a piecewise relaxation in the state of lowedsstic energy, under which the
points suffer the displacemenst Thus, one shows the manner in which the total
displacemens® is composed of an elastic displacement and a plastic

In an Appendix, it is shown that by a further decompasitibRot { one obtains the
formula:

Bi = s, = ik §mnlk Om fn + (1.29)

for 8. Inthis, s; =5+ u;, wherey; is a vector field with diw = 0; 4 is a symmetric
tensor field and$; is an anti-symmetric one. Indeed, when one definesebtor field
% by the equations:
Jj = ik & S=1ak S, (1.30)
one has:
I = tfijkDi u + 0iA, (|.31)

whereA is a scalar field. We now generally define the incaibpiy (Ink) of a tensor
field of rank two by the identity:
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Ink §= (—&k §mnlk Um &n) = 0% X0, (1.32)
The name is thus derived [77] from the fact that:
Ink €=0 (1.33)
is the compatibility condition for the (small) elastieformationse [86, 34]. (The
deformations are compatible when their incompatibility shes.) One then easily
computes that the incompatibility of a symmetric tengelds another such tensor, and
correspondingly for the asymmetric tensor.
Thus, one can also write eg. (1.29) as:
B =Grads + Ink7+ 3, (1.34)
and one may naturally also wrjtﬁ in the same form:
g =Grads® +Ink/"+ . (1.35)
Now, in order for the total distortigf® = 8 + £ to be a gradient tensor, one must have:
Ink 7 =—Ink /", 9=-. (1.36)
If one equates this with eq. (1.27) then one must obgbate
Rot ¢ = Ink /” + & + Gradu®. (1.37)
It thus suffices to just cancel the part Whk+ ° of Rot ¢, since the tensor Grad is of
no importance for the connectivity phenomena.
If we write ([52], v. I, pp. 97):
Defs =1(0s +0, §) (1.38)

(read: “deformation of’) then the symmetric part of @g34) can be represented in the
form*:

& = Defs+u) + Ink (1.39)
and the anti-symmetric part in the form:

wi = 3 [Oi(s+u) - s+ u)] + 5, (1.40)

which, from eq. (1.30, 31) may also be written:

! There is the theorem that in an infinite space cae uniquely decompose any tensor field that
vanishes at infinity by an equation like (1.39).
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ai = $[O(s—u)—Oj(s—u)i] + &k i 4. (1.41)

From the easily-verified identity relations:

(1.42)
Ink Def=0

DivInk =0 }
it follows that (1.39) represents the decompositionhef¢lastic deformation field into its
compatible and incompatible part. Correspondingly, if 41) is the decomposition of
the rotation field into a compatible and incompatiblet plaen one knows that only the
part with A remains when one replacés with «j in eq. (1.32)1. The incompatible
rotation field thus has the form™ = (gradA)c >. One especially notes: The compatible

deformations and rotations are no longer coupled as isicdh&lasticity theory, so there
are possibly states in which+ s is equal to an arbitrary vectprandu — s is equal to an
almost® arbitrary vecton.

One may, in no event, interpnetas a displacement fields is, precisely likel, a type
of potential from which the rotations are derived, whishnot easy to understand
intuitively. One also observes that by means of e4l1) it is not the rotation of the
individual volume elements, but the rotation field;,i.eq. (1.41) includes statements
about the manner in which the rotations of elementsthier elements proceeds. At the
locationx, «j is defined to be a rigid rotation of the volume elentbffk), as in § 2.

Eq. (1.34) is important here for the decomposition ofdistortion that is responsible
for the restoration of connectivity into its symmetmdanti-symmetric parts in a simple
manner. If one substitutes tfigof eq. (1.34) in eq. (1.17) then one obtains:

Rot(Ink/+ 9 =a (1.43)

as the basic equation in the form that was first édrlyy the author [81].

We shall treat the phenomena that are connectedtiatdistortions Ink and # in
the next two paragraphs. Here, we would like to onlyr@rate the number of degrees
of freedom that the plastic and elastic distortiores associated with. In all, there are
twelve of them, namely: three in Grddand Grads, and six in Rot" (Rot &, resp.). Of
the latter six, three of them go to the incompatibliemeations Ink/” (Ink /*, resp.) and
three of the go to the rotatios (9, resp.).

1 Any tensor of the forng; A may be written as an anti-symmetric incompatibilitystar (Appendix).

2 Another standpoint is: The rotationg — 4 in eq. (1.40) are “agreeable” with the deformations(®ef
u) in eq. (1.39), so one can also refer to #)&s incompatible rotations [81].

% Since divu = 0, one cannot simultaneously prescribe the gradiets pep andq arbitrarily. The
gradient part off does not contribute t@; , anyway.
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8 6. The geometric origin of the temperature stresses,
magnetic stresses, and concentration stresses

The essentials of plastic forming, from the macrpgretandpoint, can be once more
briefly summarized: One thinks of the body as being cuttap@ its volume elements
and each element as being imprinted with the desiredip(@stess-free) distortiof”
with the help of a dislocation drift. The volumeratnts then no longer fit together with
no gaps, so elastic distortions (Ink §) are necessary in order to once more make them
fit together. One then thinks of everything as deformaind the forces that produced the
elastic deformation are removed. A relaxation (Badnto the state of lowest energy
then occurs. At the conclusion, one establishes acdibn densityr = — Rot 5.

One can alter the examination in such a way thatdhene elements that have been
cut away from each other are stamped, not with &ipldstortion through dislocation
drift, but a “quasi-plastic” distortion — e.g., by ragithe temperature. It is well-known
that for the volume element at the positiothis is [79]:

P=yaT, (1.44)

if yis the thermal expansion coefficient and the redattamperature is set to zero. Along
with T(x), ,BQ(X) Is also a continuous function of the position of tlldume element.
Furthermore, as a spherical tens@?,is naturally symmetrie- hence, a pure deformation
— such that we can also wrig? instead off°. We call 8 quasi-plastic because such a
distortion will arouse no restoring forces. Now, #agiation:

O P=AD = yT (1.45)

always has a solution. Therefore, we can, with the dieeq. (A.2), also writed? in the
form:
B2 = &0 @ =il @ = Gem §mO @, (1.46)

or, fromeq. (1.32)I[ = ()]
B = Def(grad®) + Ink(® 1), (1.47)

where Def can also be replaced with Grad. The sesomanand has the effect that the
distortionﬁQ results under perturbation of the connectivity, whheedonnectivity can be
reproduced by an elastic distortion of the form Ink— Ink(® 1). One can now define a
guasi-dislocation density by the equation:

a?=-Rotf. (1.48)

The elastic state of distortion that belongsafbis then the same as the one that was
produced by the dislocation drift, by which the dislocaiamre stuck with a density=
a@”. In a continuum that is endowed with positional terapee fluctuations the
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associated elastic distortions can thus be eliminatedn they are associated with
dislocations in it that has a density:
a=-a=yRot(T ). (1.49)

This process certainly plays an important role forrgjrtemperature stresses, as would
exist in — e.g. — cast metals when they are cooling. edlse by which the association of
dislocations described here can be computed is an impressaveple of the practical
use of the conception of temperature stresses as being pdooldislocations.

If one brings a completely demagnetized probe of a rf@gmetic material into a
sufficiently strong magnetic field then all of thewlentary magnetic dipoles point in the
field direction. Thus, in many cases, a quasi-plasktatdion of the probe comes about
in the direction of the magnetization field, where tlolume element remains piecewise
conserved. If the magnetization direction rotataténbody from point to point then one
can again employ the Gedanken experiment above, and theptpsigi-distortion of the
volume element will then be a (symmetric) deviator, tlueonservation of volume.
Likewise, one can, with the help of eq. (1.48), definguasi-dislocation density and
deduce how the dislocations will be distributed in a medgstrictively tensed medium in
order for the elastic energy to a small as possiflach examinations play an essential
role in the currently ongoing attempts to understandeatienical magnetization curves of
ferromagnetic metals. On this, cf. [11, 155, 124].

To this also belongs the case of a crystal of atohtgpeA being dissolved in atoms
of type B in a macroscopically fluctuating concentratig(x). One thinks of the pure
crystal as being cut into its volume elements, and itheach of them a set & atoms is
dissolved, which amounts to a quasi-plastic distort®ralaove. Everything after that
takes place as in the last two examples.

It scarcely needs to be remarked that the methodse(joshfied in Chapter 1) for
computing the stresses that are produced by a dislocatisityde are also valid for the
aforementioned cases with a quasi-dislocation demSity For the computation of these
stresses, one is well-served to work with a furthemggric quantity that we shall now
treat. It is the so-called incompatibility tenddr= (H;) which, in many ways, plays a
similar role to that ofr. We define it by:

=- Ink &3, (1.50)

H=axU= (fijk Uy ai,-). (1.51)

so dueto (I.11) it is:

If one substitutegrin eq. (1.17) then one obtains:
Ink S=H, (1.52)
and the symmetric part of this tensor equations reads /pwtsymmetric part offf =

Ink £ =n. (1.53)

! We temporarily assume small distortions.
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For n = 0, these are the compatibility conditions of de\&nant. For the case of the
temperature fields, one obtains — e.qg., from eq. (1.54 ) a#9) [79]:

n=yink (T1); (1.52)

i.e., the incompatibility fieldn that belongs to a temperature field is very simple to
compute. However, with the knowledge pf the associated stresses are ascertained
relatively well (§ 13).

The meaning of eq. (1.52) in elasticity theory may perHap®est characterized as
follows: Since it arises from eq. (1.17) by taking thet Rod symmetrizing, it must still
include one part of the statement of this equation, wirltgther part must go away.
From the relation Ink De¥ 0, one deduces the statement that in the cage-00 the
deformatione can be derived from an elastic displacement feldf, as has always been
done in elasticity theory up to now, one simultaneoletly:? go to zero in eq. (1.40)
then the elastic rotations(Us — s[) follow from the same displacement field. They are

then, as is well known, determined up to a rigid rotatibtihe entire body. In this case,
the equations (1.52) are equivalent to the equationsRo0. The latter automatically
include the statement th&= const., as will be shown in the next paragraph. Oses
the validity of this statement precisely when onewsrithe equation Ink = 0 from the
equation RojB = 0. The classical elasticity theory is then todeéned by the equation
Rot 8= 0, or, equivalently, by Ink= 0, #= 0.

For  # 0, the plastic deformation field has the form Bef Ink /. The last part
always has the consequence that the plastic or quasiepdzstortion does not maintain
the connectivity of the body and thus gives rise tatielagformations and then to proper
stresses. The existence of an incompatibility fieldhsrefore (at least, for simply
connected bodies) an assumption for the appearance of gtoggges. It may easily be
shown that in the realm of linear elasticity thetig totality of possible stresses in a
body are uniquely determined by the given of an externakfacting on it and the
incompatibilities (8§ 14).

8§ 7. The stress-free structural curvatures.

The fact that dislocations suffer rotations while ytherift has served as the
clarification of important phenomena in metal physiciud, Burgers [12] and Bragg
[10] first found that the grain boundaries between two tatjtes (grains) whose
orientations do not differ all that much will be definbg surface associations of
dislocations in these grain boundaries.

We consider, say, the volumes in Fig. 16a. A familyrgfedge dislocations might
move along theg-direction and be stuck with a constant density alomegstirfaces in
guestion. Had one previously cut apart these surfaces tkeemauid produce the plastic
distortion of Fig. 16b. If one rotated the individuabsérthrough the angléd then one
could again produce the perturbed connectivity. Between any twaita shat are

! with 8= 0, from eq. (1.31), one has= const. (since diu = 0).
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separated by a dislocation drift then there exists an anglifference ofd@ in the
orientation. Fig. 16¢c shows this for a drift of es{ + as3)-screw dislocations in the-

direction whenm, = a33 . The problem is now to relate the rotations toddesity of the
dislocations that they are stuck with.

Oy

—_ |

Fig. 16. Inb andc one has a dislocation drift of constant strength betvesny two stratéx, .
The dislocation drifts proceed from right to left

We can first restrict ourselves to the case in whiwh dislocation distribution is
homogeneous. From eq. (1.51), the incompatibility tertbe@n vanishes, and if no
external forces act upon the volume either then itcasnpletely free of elastic
deformations; in § 14, this will established exactly. Thaseshent is valid only for small
distortions (dislocation densities, resp.), to whigh shall first restrict ourselves. Thus,
in our case one hgs; = &; , whered; are the elastic (= rigid) rotations of the volume
elementdV, through which the disturbed connectivity of Fig. 16b, cl wdain be
produced. For the Burgers circuit, one thus first obféais eq. (1.15) and (1.19)]:

$da =fdxa = [[dRay, (1.54)

and for the other one, however, one has:

$dxB =fdxs =~ fxds (1.55)
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sincecﬁd(xﬂij )= 0% If we setdd; = gx ds then we obtain for the right-hand of eq.
(1.55):

{—e“kcﬁxdzzjj = pxxdd, (1.56)

where ddk is the rotation angle between two neighboring reduelements. We now
define, like Nye [113], the (macroscopic) curvatwemsorK = (K;) by way of the
equation:

dz9k =Ky dX . (|.57)

The diagonal components Kf are twists (screwing motions) of thesurfaces, while
the remaining components refer to bends of xksurfaces in thé&-direction, as one
easily clarifies; e.g., with Fig. 16. If one suhges eq. (1.57) in (1.56) then one obtains
(Stokes’s theorem):

- 5iik<ﬁ)§ K dx = - ‘giikg'mn.”dFmD (%K)
¢ F

=~ &b '”dFm Ky (1.58)
e

the latter is true because for constant dislocadiemsityKy, is also constant and, x =
ai . By comparing with eq. (1.54), and with the dewmsition formula (A.2), what
results is the relation between dislocation dersitgt structural curvature that was first
derived by Nye [113] in another way:

aij = g Kk —Kij (1.59)
with the inverse:

Kij = %d] Ok — Gij . (|60)

This equation is then valid for small dislocatioandities (curvatures, resp.); i.e., the
change in orientatiodk in the directiordx must be small compared to 1.

For the further considerations, we assume a Mariiblocation density and now call
the relative rotation angle between two volume eleis, on the same obvious grounds,
dok .

If one now, in analogy to the Burgers circuit, @alka closed circuff around which

one picks up the rotatior®; (do;, resp.) then one obtains:

Di = [do, = [dx K, (1.61)

and with Stokes’s theorem:
D:—jj(Kxﬂ)EdF. (1.62)
F

! For the proof, one assumes tifats a linear function af; .
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On the other hand, it follows from eqgs. (1.60), (1.18)d g1.51), which shall not be
justified in detail here, that:
Kx [J= (& Lk Ky) == 1. (1.63)

Thus, one has for infinitesimal surfaces:
AD; = i AFJ' , (|.64)

an equation that we can also regard, as the analogue (b14), as the defining equation
for n.

From eq. (1.63), thes in eq. (1.57) is a total differential only when= 0, while for
dg the condition reada = 0. In the casg = O there thus exists a continuous vector field
9; that describes the portion of the structural rotat{marticle boundary contribution®)

that are in the immediate vicinity of the dislocasocand (forn = 0) is identical with the
g in eq. (1.31). One recognizes the latter in our fonegdreatment of the problerds
were rotations that were further produced by the the patiarbof the connectivity due
to the dislocation drift. The same is truedor. The associated structural curvatures are
stress-free (8 14), due to the absence of externaksfarwk incompatibilities.

The tensorK obviously does not include the curvatures described by trsticela
rotations (fs —Zjs)/2. One can describe the effectively observed stralcturvatures
with a further curvature tensor that is defined by:

da = xij dx (1.65)

instead of eq. (1.57). Now, for continuously varying @isition densities, as well ag3,
and thereforew are continuous functions of position (becayse at least, in simply-
connected bodies must be single-valued), henaky is a complete differential. Thus,
this is true only for small rotations; on this, cf.,[Biland Smith [5]. In the absence of
elastic deformationkj becomes identical wit§; (indeed, one then has —Ljs = 0).

Eqg. (1.64) says: That which was the Burgers vettdor the dislocations is the
rotation vectorD for the incompatibilities; one once more confers BRig.. That which
were originally the drift planes of the dislocationsynmw be the dislocation walls of
constant surface density of the sort one finds in Fig.ader a circuit of the boundary
¢ of the surfacd- that is run through by the dislocation walls one tHusgs adds the
relative rotation of the two volume elements. Tleghboring dislocation walls then
obviously contribute nothing, since they will be run throtgice, and in the opposite
directions. Were one to cut out the surface, regartésblation, along the dislocation
walls then the two edges of the cut would, at that pgmpe apart by the rotation angle
doi . In this way, one comes directly to a prescripfmmmeasuring the incompatibility

of a stress state: One cuts out a closed ring at thigoposthat is as thin as possible, and
which defines the boundary of a (macroscopic) surfaceeriedr; . One then removes

! For this terminology, see also § 23.
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this ring and measures the resulting rigid relative ratabd the cut surfaces after
relaxation. The rotation vector4; , from which, with eq. (1.64)s; follows.

The ring that one thus removes must be thin, on acaduhe fact that only then is
the associated surfaet; defined with sufficient precision. For thick rings, thésean
additional deformation of the cut edges that corruptsriiéasurement. In practical cases,
one would scarcely ever measure a body in this mamyecomparison, one can provide
an overview of the “cut incompatibilities,” and therefats state of proper stress (see
Chapter Ill), when one carries out the previous measutermarsome small macroscopic
surfaceF ~.

a b

Fig. 17. On the production of a Volterra distortioriled second kind

With these considerations, we come very close toMobkerra distortions of the
second kind (8 1). Fig. 17a shows a cylinder in which only asiecdtion wall has been
cut, as in Fig. 15. Around the boundary line of this wall,d hollow torus be spared.
One then finds the hollow cylinder in a Volterra distortstate of the second kind, and
by cutting along the dislocation wall, or also along atheo surface, the two cut edges
suffer the well-known rotation jump. l.e., the stat&ig. 17a can be generated from that
of Fig. 17b without stresses by bending together and weldmgontrast to the previous
view, the singular surface of the rotation jump canxygeementally determined, in any
event. In case the body)(is a unit crystal, it is evident that naturally onenc
immediately (and often more simply) establish the daBon jump in a
Rontgenographically. One also succeeds in doing thispédycrystals, but with
somewhat more troubfe

A complete description of the Volterra distortioatstof the second kind is obtained
from being given a singular surface, which one can vexpesmentally, anyhow. The
oft-used term “elementary distortion” thus relates dalyhe state of the first kind in our
way of looking at things, which then agrees with the that one can produce any state
of the second kind by certain accumulations of diglona® *

! The problem of measuring the proper stresses in thdointer a body has not yet been solved
satisfactorily. It is worth mentioning that in mamgses one can apply the magnetic method; on this, cf.
Reimer [175].

2 On this, also confer the discussion of Nabarro [11Q]3gp.

% As is well-known, Volterra used the word “distortion’a somewhat different sense from ours. In our
language, the statement above would read: The elemetdteyis the one created by a single dislocation.

* The results of this paragraph that are concernediméttmpatibilities were discovered independently
of the author, first by Moriguti [103], and later by Edhe]41].
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8 8. The boundary surface conditions for the distortions.

Up to now, no sort of boundary surfaces for the lvesty have been considered, and
we shall now rectify that. One naturally obtains #g@ropriate boundary surface
conditions immediately when one uses the surfaceioatat place of the Rot operation
in eq. (I.11) and (1.17) and takes the surface dislocatrsity & instead of the spatial
dislocation densitya. If one denotes the two sides of the boundary surfadeabd II,
and ifn = () is the (dimensionless) unit normal vector of the bampdurface in the
direction from | to Il then from egs. (1.11) and (I.He has:

nxfBli-nxfli=-a (1.66)
nxBi-nxpi=a, (1.67)

where one can, if one desires, consider the first equéti be the defining equation for
a, as before. For many purposes, it is thus advantageodsfitee the dislocation
surface densitya; in the sense of the Schwartz distributional calcull&l] by the

equation:
aj = @o(n), (1.68)

where the parameter characterizes a family of surfaces in such a way that O
becomes the boundary surfacg&n) is everywhere 0 except for= 0, where it becomes

infinite in such a way thalj' o(n)dn= 1;a; no longer depends upon From eq. (1.68),

it follows that:

[aydn =[a,é(nydn=a; . (1.69)

Henceforth, we consider an infinitely extended badw istress-free initial state. By
means of suitable external forces, dislocations might in it and drift. Thus, three
groups shall be distinguished:

The first group of dislocations shall, at the endhef continuously distributed) drift,
no longer be there, thus, they shall be somehow arteitifa The second group shall
likewise remain in place as the superficial dergifyby means of which, two regions |
and 1l of the body will be bounded, moreover.

At the conclusion, the connectivity of the body &le$éo be preserved along the
boundary surface. This implies the boundary condition:

SG||| —SG|| =0; (1.70)

! Eq. (1.67) was first of all derived by Bilby, Bullough, aBthith [3]. These authors regarded multiple
superficial dislocation distributions as totalities ahent spoke of “surface dislocations,” in contrast to the
ordinary line dislocations. In later papers, which eted on pp. ? (113 in the present reference), these
authors gave various applications of the theory of serfélocations.

2 |n infinite bodies, this annihilation can come abouydiy the combination of dislocations of opposite
signs.
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the s® are the total displacements, as in § 2. One carreliffiate these equations at the
boundary surface and thus lose only an uninteresting cionskae equation:

nx /&y -nx /&%, =0 (1.72)
are thus practically equivalent to eq. (1.70). Insteafl.@1), if we write, from eq. (1.9);
e.g.:

nxfly-nxg=0 (1.72)

then we find that at a place wherepoints in thex-direction thess,, 55, Bs, and 5,

B5, 55 must be equal on both sides of the boundary sutadgg. (1.72) is the sum of

eg. (1.66) and (1.67); formally, it also follows natuyafiom eq. (1.8).
We once more consider the three groups of dislocaiodsassume that they drift

apart from each other. The first group has naturally pediagplastic distortion Gras
that is continuous over the entire body, while theosdcgroup likewise produces a
distortion Grads; + Rot ¢ that is continuous over the entire body (the fact éhpart

Grad s} is present follows from the fact that distortions gated by the second group

depend upon the drift path of the dislocations).

The distortions described by group 3 are discontinuousebdbndary surface, but
continuous in the sub-bodies | and II. Which form do/thave? These dislocations are
either annihilated in the body, or remain in place. ®@ilehus be reminded of the well-
known fact that the decomposition of the tensor field:

Br = Grads] + Rot ¢/ (1.73)

in a medium with one or more boundary surfaces is nefuenibut there is a distortion
that can be represented as a vector gradient, assvalt@or tensor. If one writes it as

st then it follows, since it shall likewise be a rotanger, that:
Div Grads] =4s{ =0. (1.74)

Conversely, any gradient of a harmonic vector field mBp be represented as a rotor
tensor.

From these considerations, one can suspéhat the boundary conditions can be
written in the form:

nxg%'”‘” —nxgsg‘lz—c?, (1.75)
or, when one sensibly writes:
9= S‘l”:‘u _%P‘I ! (|'76)

! The same considerations had previously led us to 8. (1.
2 A stronger proof may be obtained in connection with § 4ayes.
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for the jump in the plastic displacement at the boundarface, also in the form:
nxg=-a. (1.77)

This equation says how dislocations must be distributeddurface that exhibits a non-
constant displacement jung it has great significance in the applications. Like eq.
(1.17), it is also true for large distortions, as losgoae refers all quantities to the initial
state (§ 10).

The boundary conditions (1.66) and (1.67) become espgdatiple when one of the
two sub-bodies becomes infinitely soft (air) or infitlyteard (rigid). In the first case, the
boundary conditions are satisfied identically, as orst t@Eognizes from their form itself
(1.70). In the second case, one of the two summandgq.ifl.66) or eq. (1.67) drops out
since the distortion is null in a rigid medium (natlyaho dislocations can drift in rigid
media, either). Physically, there is indeed no such thsg rigid medium, but it often
happens that — e.g. — a metal contains an inclusion tlaah&d metal whose forming
cannot be neglected. In this case, the boundary-validepndo be solved is simplified
considerably. One observes that the behavior of tk#-kmown boundary-value
conditions for the stresses is precisely the oppo@iteey are fulfilled identically at a
boundary surface with a rigid body.)

8 9. The boundary surface conditions for the deformations,
superficial incompatibility distributions

In 8§ 8, it was assumed that the spatial dengitf dislocations embedded in it was a
continuous function over the entire body. We shall/ift this restriction, by allowing
an additional jump irr across the boundary surface. One easily sees thatl$bi leads
to a jump in the plastic displacement. For exampid, iedge dislocations can climb
under an enlargement of the volume of I, while in lliglodation drift without volume
change takes place. The associated displacement juaig besensibly denoted by:

92 = S;‘” _S;‘I ' (1.78)

In 8 7, the importance of the incompatibilities in dtate of proper stresses was
emphasized. One may thus expect that superficiallisivns of incompatibilities might
also play a role. Not only do the surface dislocatiomstribute to them, but also the

jump ina.

In order to study this, we consider the case in whiclptastic distortiong” andB;
are continuously distributed, but the transition frota Il can remain discontinuous. We
think of the function@” as continuous and twice differentiable in 11, and likenfisr the

B inl. We write the distortions collectively forelwhole region I and II:

B=8+B -B)7, (1.79)
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where#(n) shall be the Heaviside step function; i(n) = 0in I and 1 in Il. We shall
employ the following rules of calculation [131];—”50(n): o(n), %Jl(n)z &(n),

where &' is the Dirac delta function and is the distribution that describes a double
covering. Since all of thds depend only upon, one has, moreovef/# = nd* and 70
=nd. Ultimately, wherf is a continuous function of and— should the occasion arise

two more coordinates, one hagﬁ(fél): f&. Thus, we define the asymmetric

incompatibility:
Hz=-0x & x 00 (1.80)
One then hak

—a=-Ox F=0xf7+0x(B{- BN +nx(G7- AN, (1.81)

The first two summands represent the spatial densitytlaadast one, from 8§ 8, the
surface density of dislocations. For the further diffiéiegion of the last summand, we
employ the decomposition into pieces that are diffeated perpendicular and parallel to
the surfacen:
[J= nai+ﬂn, UnE—nX(n x/[])). (1.82)
u
One thus obtains:

H=ax(J=47xB"x0J-0x(B - B") x5’

1 1 ! 1 1 n (|83)
—[Ix (B =B )xn+nx(B7- B7)x018 -nx (R~ ) xn "

The first two summands represent the spatial incompayibiénsity and the next two, a
simple superficial one, and indeed, the first part oflaeer describes the jump in the
dislocation densityr, while the second one follows from the surface dergityFinally,
the last summand corresponds to a superficial double cgvefihe incompatibilities.

Had we, instead of eq. (1.81), first carried out the omerabn the right then this
would yield as a factor o#* in eq. (1.83):

nx(BF—~ B°)x(T ~Ix (B~ B7) XN (1.84)

otherwise, eq. (1.83) would remain the same. Oae show that this expression is
identical with the stated one of (1.83), as it alsbould be. (Namely, one has

1 n n 1 n
nxBx/] =[x xn, as one easily shows, in which one writés= vo/ov + wo/ow,

perhaps, where w are the principal curvatures. One thendr@8v ~ v, on/ow ~w.)
For the part oH that lies on the boundary surface, we further ialitee expression:

1 In the doubtful cases an arrow is used to denote theatiffation.
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H o'+ H J2, (1.85)
with:

A=-nk(B8"-8"), H=-Ink(a"-8"), (1.86)
where the operationsk andInk are defined by:

Nk B =7 x Bxn+nx B[] (1.87)
Ink B=nxbxn. (1.88)

Thus, it is very plausible (cf., eq. (1.51)) that:

H=axn|,—-axn]| +ax0, ﬁ:ﬁxn. (1.88a)

Naturally, if W(ﬁf—ﬁe): 0 and ﬁ(ﬁfﬁ—ﬁe) = 0 then the boundary surface
conditions for the elastic distortions may be eritthus:

Ink (B —B) =H , Ink (B —B) =H . (1.88b)

One can easily show that:

(ink B)°=ink £&°, (ﬁﬁ)sz Ink B°. (1.88¢)

With = gandH®= 5 one then has:

nk(g, -£)=17. Ink(s, -§)=17. (1.89)

These are the boundary surface conditions for gierchations. From eq. (1.88a), one
deduces the following relations:

n=(@xn|,—ax n||)3+(ﬁ><5nj , /=7:(c7xn)s, (1.90)

which are of practical importance.

Egs. (1.90) and (1.51) allow one to recognize wWieeta body does or does not have
proper stresses for given conditions (e.g., givesiodation densities or impressed
distortions) with the help of simple calculatior®ne can easily show that in the realm of

linear elasticity the proper stresses are detemnimgquely for givens, /_7 andn (8

14). In particular, the proper stresses vanistukaneously with the vanishing af , /_7



§ 9. The boundary surface conditions for the deformatio 39

and . It is relatively likely that in the future one witle able to compute the proper

stresses associated with given incompatibilifies;, andn (8 13-15). For that reason,
here we shall only mention that it is quite simplgtb the first boundary value problem

of elasticity (given boundary value displacements) the form “given7 , n.” One then
proposes that the boundary displacements will be aiagd in such a way that the body
is attached to a rigid neighborhood and one can thupietahe boundary displacement
s as a jump displacementg-as in 8§ 8. Frong, what then results in a simple way is
something that one thinks of as a surface dislocatiorityenn x/g, and, from (1.90),

the associategg ands . For the solution of the problem “given, n7,” cf., 8§ 15.

As the only application, we consider the case in whiwh temperature of two
substances undergoes a judip = T, — T; along the planar boundary surface between
them, and we assume that the temperature is consteatlnof them. One then only has
to substitute th(;'ﬁQ of eq. (1.44) in eq. (1.86) and obtain, by a simple catoaha(due to

the symmetry oﬁQ) the surface compatibilitieE , While 77 vanishes from the constancy

of £. An intuitive interpretation for the double coverimg:dmpatibilitylzyfoIIows in 8
23.

8 10. Some comments on large distortions

We already emphasized that the derivation of the lggometric equation was valid
for arbitrarily large distortions when one referrgdand; to the initial state. One then
perhaps thinks of there being some sort of inhibition finsit prevents the body from
being distorted by the formation of dislocations cdesed and their drift. One can
naturally refer the distortions that the volume edaimthen undergoes after the removal
of the inhibition to the initial state entirely. Onlyhen it is thus interpreted does the
basic geometric equation have the simple form (.17)ne @nmediately sees that
distortions are additive when taken in the initial estaind perhaps defined by the
equation:

dg = B'dx (1.91)

(but not their deformations and rotations). Namelypne sums over a number of
successive distortions; then one obtains:

dA= Y da = > (Bdy )= [zﬁ;jdx, (1.92)

where the latter equation is valid only when one alwayderstandslx to mean the
(constant) distance between the points consideredeimnttial state. In this case, one
also composes the distortions additively from the eheédions and rotations; i.e.:

Gi=& +ay, (1.93)
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wherea; has the well-known form [34][86]:
@ = (1 —cog) (k k= &) + sing &i ke, (1.94)

whenk; is a unit vector in the direction of the rotationaisaandq is the magnitude of the
rotation angle. Since; is symmetric andw, is already completely determined by its
anti-symmetric part a given distortion can be vernylgakcomposed using eq. (1.93).
Eq. (1.93) is thus not a division of the tenggrinto its symmetric and anti-symmetric
parts. It is thus clear that all equations in whighs assumed to be the symmetric part of
BGj or a is assumed to be the anti-symmetric part are valigl fuml small distortions.

Thus, in particular, the symmetric incompatibility equatians concerned withy , /_7

and 7, while the asymmetric compatibility equations, like, e(§51), are also true for
large distortions; its meaning is generally still notfattorily clarified. If one refers all
guantities to the final state then the basic geometpimtion assumes a complicated form
that was derived in Chapter IV. Now, on the other hahe,basic static equation (=
equilibrium conditions for the forces) in its welldwwn form is simple in the final state,
while it becomes complicated in the initial statéhisTmeans that, in general, one cannot
simultaneously employ the simple form of the basioggtoic and static equations.

There is an important exception: The rotatiegs(and indeed, its grain boundary
piece ;) are large, but the deformatianis small. For that reason, this case is of such
great practical meaning, because the rotati@nsome about without stress&shence,
they consume no energy, and dislocations in crystalshas preferentially distributed in
such a manner thaj is as small as possible, whitg can, by all means, become large.

Now, in the case of pure rotatios the total distortiond;’ + J; = 0 (cf., § 5); i.e., all

of the volume elements remain in place, while onlyl#iiece orientation will be rotated
3. If small deformationsg; are simultaneously present then the volume elenaats
experience only small shifts, and one does not need togiigh the positions in the
initial and final states; i.e., the equilibrium condliits also retain their simple form when
they are expressed in the coordinates of the initigd.stin the next paragraphs it will be
shown how one can divide the total dislocation density one part that is responsible
for the rotationsd; and one that is responsible for the deformatignsby which one
calculates the lattice rotations. The determinatioth@felastic deformations (the proper
stresses, resp.) is then only a problem in linear elydtieory.

! Bd., pp. 78.

2 The statement is valid in crystals only locall2@®, in contrast to the continuum.

% This case corresponds to the one Fig. 16c, but noflBig.where the layerd, have experienced no
pure (plastic) rotation, but were likewise deformed pla#l§icwhich gives rise to a total displacement of
the layers. Thus, if one again produces the conngcthvibugh elastic rotations then the body appears to
be bent, although (in the case of small plastic distos)iit is still stress-free.
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8 11. Determination of the distortions of a body with disleations

One of the most important problems in the theoryisibdations is to compute the
elastic distortions, proper stresses, and lattice romtizurvatures, resp.) that are
associated with a given distribution of dislocatiamsa . a, @ are not completely
arbitrary functions of position, but they must satidfg condition that dislocations can
not stop in the interior of a body or its boundaryface. Thus, a dislocati@n that runs
around the boundary surface can leave it and thus cometribgpatial densitg. Eq.
(1.18):

0 aj=0 (1.95)

was necessary and sufficient for the dislocatignie not stop. Thus, for each boundary
surface one has an equation

Oia,+n (g, -a | )=0, (1.96)

which says that anywhere the dislocations have diveegethe dislocationg run into
the boundary surface and bend around it. If one@etsn x (8, —3) anda = [7x Bin
this equation then it is fulfilled identically, whicme can regard as the proof of eq.
(1.96). The given dislocation distribution shall thaisvays fulfill the conditions (1.95)
and (1.96).

The simplest problem in whiclr and @ play a role is that of a rigid neighborhood
stuck to a body; we would like to first restrict ouvss to it. (For a free boundary, one
will have @ =0.)

At this time, the aforementioned problem can be solvedrmall distortions at best
when one first computes the stresses (and thus thenggfons) and then the rotations.

Thus, one must compute the incompatibilitieg ,/_7from a, a, which, from 8 9, is very

simple. After computing the stresses that belong, tgq , /_7 (8 13, 15), one obtains the
elastic deformationg by means of Hooke’s law. If one now writes the basjoation
(1.17) in the form:

Rot w= a — Roteg, (1.97)

theg the right-hand is now known. From eq. (1.97)erafin easy calculation, one now
has”:
X L n = i = (@ — Roté&y , (1.98)
and by contraction:
2 = (@ — ROtEmm. (1.99)

Substituting this in eq. (1.98), one obtains:

n
! For the definition of 7 , cf., eq. (1.82).
2 For Rotaw one writesgg L a = &; &mf wn . With the decomposition formula (A 2), (1.98) follows.



42 I. Dislocations in a continuum: geometry

0 ax = 1 da (@ — Rot&mm — (@ — Roté) , (1.100)

where the right-hand side is still a known functidrhe structure curvatures follow from
this by an ordinary integration, up to a constant.
It is particularly noteworthy that the boundary valuehtem to be solved for the

determination of the stresses appears in the formrigjvgy ” from the outset; cf., 8 9.
Now, let us describe a method of calculating the stractuotations before the
determination of the stresses, which, at present, &as Wworked out only for infinitely
extended media [81], but which can be extended to finiteaaneith none of the all-to-
great difficulties of finite media. The starting poistthe basic equation in the form
(1.43):
Rot(Ink7 + ) = a. (1.101)

One easily shows that (Rot Ink; vanishes identically, because Imks a symmetric
tensor. Thus, similar to the above, it follows that:

(Rot Ink f) =4 &k = au — % Qrm X - (1.102)

The left-hand side is (for small distortion), from. €1.60), equal to minus the curvature
tensorKy . By applying the rotation on the left, we previously gptcf., eq. (1.63).
Now, we apply the divergence on the right, so the f@sh drops out (since Ink=/7x 1

xﬂ);
A8 =17, (%@la’mm _aklj . (1.103)

Here, the right-hand side is knowrk follows by integration, although it is determined
only up to a harmonic vector. The indeterminacyresponds to the fact that the
decomposition ofg into Grads + Rot { is not unique in a finite medium, and that one
can, if one desires, write the part of the distortihat is described by one of the surface
densitiesa in the form Grads or Rot{. On the other hand, in an infinite mediudtnis
determined uniquely by eq. (1.103) (assuming thatainishes at infinity).

As we already remarked in connection with eq.4(l.% rotation tensor is already
determined by its anti-symmetric part. The intéigraof eq. (1.103) thus delivers, after a
brief additional calculation, the rotation tensathag as the anti-symmetric part; we call

it #. This gives the grain boundary part of the stmadtrotations. Now:
£%=Ink/-9 -3, (1.104)

where£™ is obviously the incompatible part of the deforimat The basic equation thus
takes on the form:

Rot£™ = a — Rot#J, (1.105)
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where the right-hand side is known. By further applyimg iotor map on the right, one
can thus calculate the incompatibility tengpthat belongs to the elastic deformatign
and which, in the case of small gives the determination of the stresses in a relgtiv
simple way. This method allows one to calculate tifiem the dislocation density, at
least in the case of infinite media, and for largetimta and small deformations. In
these calculations, one no longer needs to distingutsieba initial and final state.

The case of large rotations and small deformationsnba®een treated by the first
method up to now. Namely, the symmetric part of thetiootaensor contributes to the

quantitiesn, 77, n that are calculated from, @ by means of the formulas of § 9, and
one cannot neglect that part for rotations that agelaompared to the deformations. In
eg. (1.105), however, the mostly worked out (primér awsgerete) part of the rotation
tensor will be considered exactly.

The special case that was just treated is certairlgaat as important as the case that
has not been treated at all up to now, that of stsaessonjunction with large distortions.
Indeed, in metalworking one frequently has plastic formirtgvéen 10 and 100%, but it
must have the form Grad’, for the most part, since the forming Rt means a
simultaneous elastic distortion Rgtwhose symmetric part gives rise to stresses. With
the relatively weak forces with which one forms plzsty, however, elastic formings of
10 and 100% can never be produced; i.e., one can at most tiegaeformation part of
Rot { as small and thus also thogp¢f 5.



Chapter I

Dislocations in a continuum; statics

Preliminary remarks

Statics is the study of the forces that act onena#tind the problems that are treated
in it include, in particular, the computation of interfaices (stresses) in a body that will
be aroused by any external influences. For us, thdkesrices will be, above all,
dislocations, as well as quasi-dislocations, as in f1Ghe literature up to now one finds
almost only computations involving singular dislocation liregshest, also computations
involving surface distributions of dislocations. One daeat this problem quite
thoroughly by the methods of classical elasticity theofyhis is due to the fact that
outside of dislocations the elastic deformation f&itl has the simple forng; = (Ui s +
0j s)/2 that it has in classical elasticity theory. hetcase of dislocations that are
distributed over the entire body, by comparison, thst& deformation can no longer be
derived from a displacement field, and a fundamenta&ily method is necessary if one is
to — e.g. — compute the proper stresggshat belong to a dislocation distributiar) .
Now, the equilibrium conditions for elastostatics maisb be naturally fulfilled in a body
with dislocations, which can be written in the form:

Div o=0 (I1.1)

in the absence of external forces. These equatiatestsiat the proper stress tensaos a
special tensor, namely, an incompatibility tensor:

o= Inky, (1.2)

which follows immediately from eq. (1.42) The symmetric tensq = () is called the
“second order tensor of stress functions,” since ispmnents are the Maxwell and
Morera stress functions In contrast to the previous observations, the sftesgions
are also suitable tools for spatial problems in elagtitieory. In the case of three-
dimensional distributions of dislocations, where thethod of the displacement field
breaks down, the stress functions are indeed indispengiisie.must then regard them as
not only convenient aids to computation since their placéhé continuum theory of
dislocations is of fundamental significance. This Wwal best illuminated by the remark
that the tensor of stress functions represents theogmalof the much-used vector
potential A of electrodynamics, with whose help the Maxwell equatdiv B = 0 is
satisfied identically in a manner that corresponds toethelibrium conditions (11.1) in
terms of the stress function tensor.

! Eq. (1.2) was first written out by Beltrami [161], butt pursued further. Cf., also Finzi [43] on eq.
(1.2).

2 The additional phrase “second order” shall imply that st differentiate the stress functions twice
in order to obtain the stresses. One uses it oftelistmguish these stress functions from each otleer; s
below.
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8 12. The stress function tensor

We define the stress tensgin the usual way by the differential form:
dp = g; dF, (1.3)

wheredp is the force applied to a surface slitfe when no displacement of the points of
the body comes about as a result of the Slice

As far as the state of the body is concerned, itme-independent continuum
mechanics of solid bodies will now be controlled byé¢heations:

RotB = a (I1.4)
Div o = -3, (11.5)

to which the equation for energy density:

e=

N

Gij &j (11.6)
must be added. By comparison, the plastic forming Gradhich does not change the
state of the body, will not be fixed by these equatiolnsthis section, we are interested

only in the state of the body after forming. Along watluations (11.4) to (1.6), comes
the material equation, which we will always assumeetblboke’s law:

Gj = Cijl & . (1.7)
As remarked in 8 11, one may, in general, compute withr itafge plastic formings on

the basis of its validity for metals.
Cija IS the Hooke tensor of elastic moduli with the symgnptoperties:

Ciki = Gjiki = Cijik = Cxiij - (1.8)
In the case of elastic isotropy, it is:
Ci =A G A+ (A g + A ), (1.9)

whereA, i are the Lamé constants. We define the teggaof elastic coefficientshat is
reciprocal tocj by:

Ciki Sik = 3 (A G + A ) (1.10)

! In contrast to isotropic bodies, asymmetric stressdrs also play a certain role in crystals, whieh w
will consider only in § 19. In the remaining paragrapleswill assume that the stress tensor is symmetric
in order to not complicate the presentation unneaggssarhus, it is good to also establish the index
notation that appeared in eq. (11.3). (The first indexsptharacterizes the surface element, and the second
index, the applied force.)
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For isotropy, one then has:

S =A" q i+ U+ ) (1.11)
with:
UG _
r=-2= U/ = 1/4G, (1.12)

where G = u is the shear modulus angh is the transverse contraction number
(Querkontraktionszahl). Hooke’s law then takes on thedorm

1 1
ZG&jZOIj—makkdj : OQZZG(:E}I-‘F—ZEkk(ZI-j. (1.13)

In 8 6, it was shown that the incompatibility tensssociated with a distribution of
dislocations can be calculated in a simple wayr tRat reason, instead of eq. (11.4) we
shall consider equation (1.52):

Ink £= 7, (1.14)

from which, as in 8§ 6, the structure rotations exeluded. The equilibrium conditions
will now be satisfied identically with the stressttion Ansatz (11.2), and no longer need
to be considered in further investigations. Int€sian coordinates, eq. (11.2) is written:

_62X22 _62X33 +2 62X23
oG 0% 0x0X%
_i(_ 0N , s, axalj 49X
o0\ 0% 0x 0% ) 0X9%

Ull =
(11.15)

12—

from which four more equations follow by cyclic partation of the indices. If one sets
Xi1 = Y22 = X33 = 0 then one has the well-known Ansatz of Moréf@2] before one, and
with Y12 = 23 = x31 = 0, obtains the Maxwell Ansatz [99]. If one as&s$ that/dx; = 0
—i.e., a state of planar stress — then what rev@fiegs. (11.15) are:

62)(33 62)(33 62)(33
iy = — , =2 As Oi»> = .16
1 —6X§ 022 6Xf 2 %, 0%, ( )
— a a)(23 a)(3l _ a a)(23 a)(3l U
- _ _ + , = - + .16
oz 0X, ( ox, 0X, - oX,\ 0%, 0X, ( )
2 2 2
0@3:_6X11_6X22+26X12. (11.18")
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Here, eq. (11.16) represent precisely the Airy stresgtion Ansatz for the planar stress
problem®. If one sets the bracketed expressions in eq. (Jlebfual to a functio® then

it is the well-known stress function of torsibnOne observes that each stress fungion
appears in only one of the three rows in (I1.16), whickans that the associated stress
states are independent of each other, at least as fdreaequilibrium conditions are
concerned.

Maxwell [99] and Morera [102] have shown that one canrdese@ach stress state
with Div o = 0 using their three functions. The fact that trsetric tensory then
includes only three degrees of freedom thus rests on thehat, from eq. (1.42), an
expressior)() = Defqg does not contribute to. A stress function tensor of the form Ref
is thus also called a “tensor of null stress fundiofi26]. For that reason, one can
subject the tensgy to certain supplementary conditions; the Maxwell car@syi» = x23
= xs1 = 0, and the Morera ones gya = x»2 = X33 = 0. In all cases, however, one must
prove that these supplementary conditions are actislpplementary.” We say that the
supplementary conditions are extra when one can desamiparbitrary stress state that
satisfies the equation Digr= 0 with the totality of all stress functions tha¢ aestricted
by the supplementary conditions.

The equilibrium conditions are fulfilled by the strégaction Ansatz. The extended
compatibility conditions (l1.14) impose additional redidas on the stress functions.
One arrives at them when one introducesdttd eq. (I1.2) into eq. (11.14) with the help
of Hooke’s law (I1.7):

Ink [sja (INK )] =17 (1.17)
It is not worthwhile to write out these equations coatglly. They are already very
complicated in the Maxwell and Morera cases, and Hat teason these functions are

practically never used.
For the further treatment of eq. (11.17) we define — wihee restrict ourselves to

elastic isotropy — the symmetric tensgfs /7; by the equations:

' 1 _ ] 1 I}
26); = Xi~ m+2 Xk Oj » Xi= ZG()(“ +kak5”j (11.18)
LA 1 —_ [ 1 [
77; ‘ZG(’Z] + m__lﬂkkcyijj , 2517 = 17 — m+2’7kk5ii ' (1.18)

With the supplementary conditions:
Ox =0 (1.19)

eg. (11.17) then assumes the simpler form [77]:

DAY, = 1 (11.20)
or, at the same time:

! Mostly, y = - xs3is defined to be the Airy stress function.
2 See, e.g., Love [95] or Biezeno-Grammel [1].
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My =n;, (11.20)
as we will now show.
First, with the decomposition formula (A.1) one has:

nij = (lnk f)u ik Emn Ok &n
= Ag — (D Ok & + 0,0k &) + 00 & + 00, &k — A& 4 (1.21)

and with Hooke’s law (11.13) and the equilibrium conditiddg; = O it easily follows
that:

Ag; +

i L Okk—AOde_j)ZZG i (||.22)

In the case ofy; = 0 (from which, it follows thafAci = 0) these equations are known as
Beltrami’'s equations. We now sef = (Ink x); , think of these equations as being
written in the form corresponding to eq. (I1.21) and idtroey; into eq. (11.22). It then

results, upon consideration of (11.19), that:
gil2G=Ax; + (DD X ~DXu ;) - (1.23)

When this is substituted in eq. (11.22) it yields eq.20). directly, as one easily confirms.

The supplementary conditions (11.19) are sufficient, fmit necessary, so eq. (11.17)
goes over to eg. (I11.20). One obtains the necessalsatfficient conditions when one
introduces theg; into eq. (11.22) without the assumption (11.19). Qhen has:

1 '
MY, =N x +0,000) + 1DD 00X + +1ADkD|)(k|éj =ni, (.29
and the necessary and sufficient conditions obviowsig:r

~AO0X, +0,0x0) + 1D 0.0.0,x, + m{LlADkDIX;,d =0, (11.25)

1j
which is identical with:

Def[((m+ 1)Ap-mO0 ] -AOCp1 =0, p=00). (11.25)

They are fulfilled identically by the stronger condiso(l1.19). For the proof that the
conditions (11.19) are extra, which naturally includest tbhthe conditions (11.25), we
refer to the original work [77], in which the authostiposed the conditions (11.19); they
were also found independently by Marguerre [98].
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8§ 13. Solution of the summation problem for proper strees

The first problem that was solved by the three-dimeradistress functions related to
infinitely extended bodies. Let the volume Y¥e One then has a summation problem
before one, but not a boundary value problem.

The stress function tensgrof the problem in question must fulfill the necessany an
sufficient conditions (I11.7). We had replaced themhvthe sufficient conditions (11.20)
[(11.20", resp.] and (I11.19). The former of these equationd bal satisfied by the
expressions:

2009 == =[] () [x = |av (1.26)

)(i'j(x):—S%T'[”/]”(x’)|x—x’|dV', (11.26)

as is known from the theory of the bipotential égpura  That the supplementary
conditions (11.19) are also fulfilled by these etjaas follows easily from the identity;
ni; = 0.

J In the examples of the Maxwell and Morera funcdiave have seen that the tensor
Inky has, in reality, three degrees of freedom and swt That is true for any
incompatibility tensor, hence, also fey and /7. Thus, the six integrations may be
reduced to three as follows:

As remarked above, the of eq. (11.26) is an incompatibility tensor (Diyy = 0)
becausern is one. Likewise, one easily shows that phen eq. (11.26) becomes a
deformator when one substitutes such a tensorpfor However, sinceg = Ink y,
according to eq. (1.42), a deformator does not rdoute to the stresses. We thus
obviously obtain the same stresses when we addbénagy deformator to the actugl
and substitute the resulting tensgt)(in place ofry in (11.26). However, we can choose
n' such that, e.g.;;, = n5,= na= 0 or n, = = na,= 0. We thus obtain a
representation in the Morera (Maxwell, resp.) fiores, which proves to be a particularly
convenient tool for ascertaining the proper stetstes.

The computation off" is now quite simple. If we set:

n' =Defa+un (1.27)
then we shall have, e.g.:

day |0x =— 1,4, 0ay | 0% == 17,,, 0a3 | 0X3 = — 5, (11.28)

! If one substitutes eq. (11.26) in (11.2) then, after parfing the differentiations one obtains the stresses
as functions of the incompatibility distribution. Thdsemulas were first given by Moriguti [103] (without
the use of the stress function tensor) and proved by dieeification. | warmly thank Herrn Dr. J. D.
Eshelby for the fact that he brought the works of Matiito my attention (in March 1957).



50 Il. Dislocations in a continuum: static

from which one obtains suitable functioag a,, az by ordinary integration. If one
substitutes them in eq. (11.27) then one obtaghs= (7;) withi #j. The Morera stress

functions of the proper stress state follow from this:
—_— 1 n ] 1 1 . .
MK@-=-§;Lﬂnﬂx)|x—x|dv, i #]. (11.29)

The simple Morera formulas are then valid for ttresses:

2
1= 2 0 Xz ,etc.
0X, 0%,
(11.30)
23__1 _6X23+6X31+6X12 etc.
ox\ 0% 0% 0%
It is only somewhat simpler for one to establistuga fora;, a,, as such that:
1( da, . 0da, '
—|—=2+—=|=-7n,,, etc. .31
Y(ma0m). ws

and obtain the Maxwell stress functions of the pragiress states with eq. (11.27):
— 1 /] 12 ’ L
mj(x)-—S—ﬂijmj(xnx—x v, i =]. (11.32)

The stresses follow from this according to:

_ 0o _ O
BT ol o
_ X
0X, 0%,

etc.
(11.33)

O,s etc.

For finite media, the summation problem is theamkéd with a boundary value
problem. Before we treat it, we must first see thhewe can also apply to finite media
the method of determining the particular integcdlghe differential equations (11.17) that
we worked out for infinite media.

One easily shows that in finite media tfleof eq. (11.26) does not generally fulfill
the required supplementary condition Dy = 0. Thus, it is not clear at this point
whether thisy represents a solution of eq. (11.17). Since Riv= 0 was, however, a
supplementary condition, it must give solution\dfy = 7 for which Div ¥ = 0, hence,
the eq. (11.17) are also fulfilled.
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In order to obtain such a solution one seeks an egtewsithe functioryy’ into the
exterior of the medium such that across the boundarfacgiryy is continuous and
differentiable and vanishes at infinity sufficientlystgly. Such an extension is not
difficult to obtain. We call the function thus dstiahed that agrees withf in the body
n; . We substitute this function fay in eq. (11.26) and integrate over the infinite space.

We thus obtain a stress function field that fulfilte differential equations (I1.20and
the supplementary conditions (I111.19) everywhere in bloely and thus represents the
desired particular solution of eq. (11.17).

We would now like to add tey; , as above, a deformator Deebuch that we come to

either the Maxwell or the Morera functions. If theethrod is successful then this
deformator might contribute nothing to the stressdsat This is also the case is relatively
simple to show, so we skip the proof. Therefore, ose edbmputes a tensgr, = 7, +

Defa, wherey; has only three components different from zero. hee haddAy = 7n; ,
so eq. (1.29) and (11.32), withp; instead ofn’, give particular integrals to these

equations that likewise satisfy eq. (11.17).

It must be remarked that in the case of a given chsion (incompatibility
distribution, resp.) the methods given in this paragraplpeactically the only ones for
the solution of summation problemn In the case of quasi-dislocations (§ 6), where
primarily the impressed deformatios” is given, there are, however, well-known
methods in the older theory of temperature stressesilodidel [33] and Neumann [112]

for computing the associated “quasi-forcgg® with the help of the expression:
Diqj'mgk? =37, (1.34)

as well as the displacement field associated witimtkieat is calculated by the usual
methods, from which, the total deformatiafi then follows by definition of the
deformator. The elastic deformation is thea & - €2, from which the stresses follow
by Hooke’s law. These methods may not differ esséntialtheir use from those of
stress functions.

Finally, we introduce another method that is, at presglicable only to infinite
media. In place of (11.2), one sets:

o= Rotg, (11.35)

where ¢ = (¢;) is the asymmetric stress function tensor of ordex (because it is
differentiated only once in order to arrive at thesstes). One thus obviously has y
x [, from which it follows that:

$i =0, 0j ¢ = 0. (11.36)

1 Cf., on this, also Eshelby [41], pp. 91 et seq.
2 Gunther [61] and Schaefer [126] employ a stress functiwsot ) = & @ for a different purpose.
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Taking the rotation on the right further converts the &mpntary conditions (11.19),
when written in terms gf with the help of (11.18), into:

Ui ¢y =0, (1.37)
as one easily checks. Singewith the restriction (11.19), has three degrees eédiom,

@, when restricted by the conditions (11.36) and (I1.3KeWwise has three. With Hooke’s
law, it follows from eq. (11.35) that:

& = Siki &mn Um @i, (11.38)

and taking the rotation on the left gives:
Ehi Un & = Ay = Si &hi &mn Oh Om @i, (1.39)
which in the case of elastic isotropy will becomenireq. (11.11):
ay = A Eni &mnOh Om @i + 1 (Eghk &mn O Om @nj + &t §mn On Om o). (11.40)
Multiplication by &qg; gives, with eq. (A.2, 3) and (I1.36):
Eigp Oy == 20X + 1) &mn On O @i (1.41)

We substitute this in eq. (11.40) after replacing the iedfc g, j with h, p, g and finally
obtain, when we apply the decomposition formula (Ar?) eonsider (11.36, 37y

Ay =- % (ma, ~a)). (11.42)

What is a; then? We assume the decomposition:

£=Defs+ Ink, (1.43)

which is unique in an infinite medium, and express the eguéliv o= 0 with the help
of Hooke’s law in terms o ands % With (1.42), one easily obtains:

As + mZDiDjsJ — 50 (inko); =0 (11.44)
m- m-
and by taking the rotation, it follows that:
Arots=0. (11.45)

! Dueto (.36, 37), one hagn §mn Un Um @ = — Agy; , which follows easily from (A.1).
2 We thus restrict ourselves to small deformations atations.
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In infinite media, one thus has & const. It then follows that:

Rot Defs=10 x (Os+sJ) =3 (rots) O = 0. (11.46)
and one has:
a = Rote=Rot Ink/. (1.47)

That is,a is, from 8§ 5, that part of the total dislocation dgn#iiat is responsible for the
stresses. In the case of quasi-dislocatihsf § 6, o if often directly equal t@>. In §
11, we showed that, above all, one can computehen one computes the rotatioms (
is equal to the right-hand side of eq. (1.105)). Therefeeecan henceforth regard the
as given functions. From eq. (11.47), it easily followsttlw submits to the same
conditions (11.36) and (11.37) ag. This means that the particular integral of eq. (11.42):

#i(x )—ﬁﬂj[ma.,( NV Ix-X]dv  (1L48)

also fulfills these conditions, and thus gives tiogrect stress function tensor that goes
with a; , from which, eq. (I1.35) gives the stresses.

One can easily reduce the nine integrations ir(led8) to six, and one can similarly
reduce the six integrations (11.26) to three. \Meetthe integrations (11.48) can generally
be reduced to three must remain open. Up to riosvstress functiong; have not been
explored at all, so we believe, on deeper groutits, such an exploration would be
worthwhile. Namely, if we heuristically write x £ = —@' for the body bounded by a
rigid neighborhood then, from Dig= 0, the elastic energy of this body is represtinte
the form:

=%IIMMV+%H%’¢% dF, (11.49)
or also: ’ F

E:%w%%dv%gq% dF, (11.50)

as will be shown in the next paragragh.is then expressed by means of the dislocations
that generate the proper stresses.

If, e.g., #; and ¢ is the stress function field that is produced i tisolated
dislocationsaijl and ai].z in an infinite medium then the energy may be @nit

e=lllaigavJlllaaavsj[lfaw+lllgpiav.  msn

Obviously, the third and fourth integrals mean plogential energy of the dislocation 1 in
the field of the dislocation 2, and conversely. e@nus arrives at an interpretation for the
stress functionsg;: They represent a potential for the dislocatiofi$e situation is
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analogous to that of electrodynamics, where one hasengyeE = %J'Hpu dv, if pis
\Y

the charge densityJ will then denote a potential (for charges)).
The stress functions of second order are correBpgly an elastic potential for
incompatibilities.

8 14. Elastic energy and the variational problem for a medium
with proper stresses

We would now like to compute the expression fag #astic energy of a medium
with proper stresses, as expressed in terms asstwactions and incompatibilities. The
starting point is the formula:

=1{[[o,gav, (11.51)
2 \%
which, from eq. (11.2), can be written:

E= 18.,k .mnmf 0,0, XedV - (11.52)

Partial integration gives:
1
E == = Eyfim Dﬁ n& O XeF = [[[ (D .l)Dm)(kndV} (11.53)
v v

which is identical to eq. (11.49). Since one can write the distortiofsin place of the
deformations in the starting equation (11.51) (daeghe symmetry oty), eq. (11.50) is
thus also proved.

After partial integration of the volume integral(ill.53) this yields:

E uk Imn |:.Un] il kandF_'U(DJ |I)r}n)(knd|:} 'U Xkrﬂkndvi (”54)

where the relation (11.21) was used. Here, we dguuse theél, in the first integral, with
the help of eq. (A.2), into the easily verifiedrfarla:

! !
Un=nU, nt+e € Ny, (11.55)

' One hasim On Y=~ A, G 0 & =—a,, &N & = @,
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where the arrow shall mean that in addition to thetion upon whichd, acts,n, will
also be differentiated. The integral defined in theosdcsummand of (11.55) will be
once again partially integrated by applying Stokes’s theorehie associated line

n
integral vanishes sindeé is a closed surface. With the abbreviatiGR= &npq &sq Ns Mo
O of eq. (11.82), what remains is:

E=- %‘gijk‘glmn .[Jnjgil n‘nDp(nDan) dF_'[J)(kn[ nnD fgi|+|5m( rEtgil)} dF}

. Ml xmv. (11.56)

Comparison with egs. (1.87) and (1.90) gives, ia ttase of a body that is attached to a
rigid neighborhood:

E:%I{U}(ﬁmjdv+—;|!)(ij/7j dF+_;ijE¢(M)77” dF. (1.57)

In this equation, they are the Cartesian components of the unit normetioven of the
family of surfaces (8 8), one of which is the boundary surf&ceThis interpretation of
the ng is necessary in order to be able to carry outifierentiationsCx nx according to
the rules ifn also has meaning outsidegfas well (it is enough that be defined in an
infinitesimal neighborhood d¥).

Eqg. (11.57) says that in the absence of volumedsrin a body that is fixed in a rigid
neighborhood the elastic energy, and therefore piogper stresses, vanish when the
incompatibility vanishes.

We now treat bodies bounded by air. From a wedivkn theorem of Colonetti [17],
the elastic energy of a body that is subject td letternal forces and proper stresses is
additively composed of the elastic energies ottty parts; in our expression:

E(n. 5) = E(n) + E®) (11.58)

where§ shall stand for volume and boundary foresThe transition from eq. (11.51) to
(1.52) is valid in the absence of volume forcéldus, egs. (11.52), et seq., include a part

! The theorem is also true for the medium embeddedigidaregion (one can then include the surface
incompatibilities ing, as well). Namely, if one sets= d" + o, £= & + &, whereL suggests the load
stresses, anH, the proper stresses, then one distinguishe&(ecomputed in eq. (11.51) frori(d") +
E(dF) by the interaction tern:m ot g-dV (Betti’s theorem), and sincg, g = 0 it may be brought into

\%

the form that corresponds to (11.57):

B = [[[xfn'av + [ x7-dF+ [0 (px )7, dF.
Y F F
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due to the boundary forces. On the other hand, agglreanarked in 8§ 8, the surface
incompatibilities are null on a free outer surface. ®ar now show that the outer
surface integral in eq. (11.54) vanishes in the absent®whdary forces whem 7; = 0,
such that all that remains is:

E= %J'\J;J')(u/]ij dv.  when ni 77; = 0. (1.59)

This equation includes the theorem that in simplgnected bodies, and in the regime of
linear elasticity theory all proper stresses vald back to incompatibilities. Eq. (11.57)
includes the same theorem for bodies that are edeloeith a rigid region. However, it is
also still true when one creates new boundary sesfan which one allowsy; to
degenerate to surface quantities (or even lineantifies) in the interior of the body.
Thus, the theorem that all proper stresses willpbeduced by incompatibilities is
obviously valid in complete generality in the domaif the linear elasticity theory.
Furthermore, the converse is true that all (symig)eincompatibilities provoke proper
stresses, which is self-explanatory from the meganaf the incompatibilities as
derivatives of elastic deformations.

Finally, the question of the uniqueness of thetsmhs is still important. Thank to the
Kirchhoff uniqueness theorem of classical elastittieory and the theorem of Colonetti,
it suffices to assert that in the absence of ealdorces the proper stresses (that follow
from the stress functions) are uniquely determibgdhe givens of the incompatibilities.
The proof is adapted to the infinite media immeeligtsince in that case eq. (11.26) is the
unique solution to eq. (11.20) and (11.19) as laagno incompatibilities lie at infinity. By
contrast, in a finite medium it must be shown ttle# boundary value problem that
emerges is uniquely soluble. In the next paragraghmust show that both of the well-
known boundary-value problems of elasticity for @fhthe uniqueness proof is indeed in
the literature also yield proper stresses. Thusg, @stablishes in the regime of linear
elasticity that the stresses in a body are uniquetyermined by external forces and
incompatibilities that act on them. In particulal, stress causes will lead back to these
two influences.

The bodies considered up to now were simply caraecAll of the theorems of this
paragraph are also valid for multiply connected i®®dwhen one allows the
incompatibilities that are found there to also denid outside the body. (This situation is
well-known from hydrodynamics. For the current @ a body, one can think of
sources or vortices as being present in the body'fhe regime of nonlinear elasticity
theory, by comparison, not all stresses can leal tmaexternal forces or proper stresses,
as the example of the everted hemispherical shels [160].

That variational problem of proper stresses weesadly formulated by Colonetti [19].
In our notation, the variation of the energy expi@s:

Since7", ,:7”L and,;iijanish,ELE =0.
! Cf., Southwell [177] and Eshelby [41], pp. 93.
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IH[%% g +§G jdV, (11.60)

where eijp Is the impressed (plastic or quasi-plastic) deformati@olonetti called the
second summation of eq. (11.60) the “potential of thpressed deformation.” If we set

£ = 5” & in eq. (11.60), as in eq. (1), pp. ?, then it goes owver t
1 11.61
_Eg £,0,dV (1.61)
since:
[[[eadv=n0, (11.62)

which was first found for the case of a body bouhldg air by Rieder [125]. In this case,
one has:

[eraav = [[fOsHeav
—Hr;sa dF- J” stig dv=0 (11.63)

sincen; g andl; g vanish in the absence of external forces. FronddRi¢l25], egs.
(11.17) are, moreover, the Euler-Lagrange equatmfrithie variational problem associated
with (11.61) (in the absence of being given extéifaces — i.e., incompatibilities).

In the case of rigid neighborhoods the left-haig ®f eq. (11.62), when multiplied

by 1/2, goes over to the expression (I1.57), whegg 7, /_7“. are now the
incompatibilities that belong teif. They vanish from the physical me::lningfiﬁn‘(e'G IS
a deformator, hence'yif: 0, and furthermores®is null on the boundary of a body

embedded in a rigid neighborhood, and thereforxiarez?ijG /=7,‘]3 cf., egs. (1.87) to (1.90)).

The variational problem that is associated with ¢énergy expression (11.61) ((11.57),
resp.) shall be derived from not only the differ@niequations (11.17), but also the
boundary conditions (1.89), when expressed in tevfr)g;, which was not verified up to
now.

For the solution of the variational problem foe thody bounded by air with the aid of
direct methods, one must observe that there agessfunctions for which the associated
7 vanishes, but not, however, the associated bowridaresn;gj. Such stress functions
contribute nothing to the integral (11.59), but wrib the integral (11.61). In order to
obtain the correct solution one must therefore mideeintegral (11.57) an extremum
while 7 is held fixed ! For the case of a body embedded in a rigid reghy

! The fact that (11.61) shall be an extremum already apgearEoppl [44]. The advance here consists
in the additional condition “while is held fixed.”
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comparison, the integral (11.57) is equivalent to thaflb61). One of these two will be
made an extremum while keeping 7, , /_7ij constant.

We now briefly consider the case of the two boundalye problems for the body
bounded by air (suppose the summation problem has already dsalt with). The
problem of “given boundary displacement” is, from § 8niiml with the problem of

“givensy,, n7;" for the bodies embedded in rigid regions (cf., the rngattagraphs, as

well).
If one makes the Ansatz that was first proposed byeSehfl27]"

Xi=aw—akd+ Q4 (11.64)

with Aay = 0 then, in addition to the equilibrium conditioeguation (11.17), withy = 0,
is automatically fulfilled, only if:

AQ=——00aq ; [1.65
m-1 (' ( )

aj like i, is a symmetric tensor of rank two. If we take ouusoh of (11.65) to be:

m/2

Q=—x Djajj+a}<k+v (”66)
m-1
then this gives:
Xi=a +Hg;, (11.67)
with:
m/2( odw ow. ow,
H=v+ 14 22 4 3 . 11.68
m_l[xl o % % X axsj ( )

Thus,Av = 0. One can show [77] that one may\setw, = a3 = a1 = 0. With:
Xi = @ +H3 i =], (11.69)

the Maxwell functions fory = 0 then come down to three harmonic functions. Osgyea
shows that the conditions (11.25), but not (I1.19), auffilfed identically. For the
functionsay one perhaps assumes them to be a series developn@nimanic functions
and determines the coefficients by the usual methodsch a& way that the boundary
conditions, when expressed in terms of heare fulfilled as much as is possible. If one
adds, should the occasion arise, the stress functlus dbtained to the particular
Maxwell functions obtained in § 13 then one obtains thsulting Maxwell stress
functions of the stress state in question.

! Naturally, thesey, have nothing to do with the ones that were previous @rag!



§ 15. The boundary-value problems that occur for propessss 59

8 15. The boundary-value problems that occur for proper sésses and
their treatment by means of stress functions

The particular integrals (11.29) and (11.32) of the diffetial equations (11.17) that are
definitive for proper stresses do not, in general, futhle boundary conditions for
stressesn; g; = 0 in bodies bounded by air, whereas the boundary eomslifor
deformations (1.89) are not fulfilled in bodies embeddedigid regions. Thus, in the
former case there remains a boundary-value problem ddtire

nig=A, (11.70)

and in the latter case, one of the form:

Inke=n, Inke=n (1.71)

that remains to be solved. In both cases, the stmessidns that are used in them must
satisfy eq. (11.17) withp = 0. From 8§ 12, we replace them with the equation

AAY =0, Oy =0. (11.72)

In practice, problems appear in which, say, twb-mgions in a body that are
separated by a dislocation wall have differenttelasoduli. In such cases, boundary
surface conditions must be considered for stremsesleformations simultaneously. The
two boundary cases (elastic moduli =®, resp., in the sub-volumes IlI) of these
problems are characterized by (11.70) and (ll.7&)which one is also always led back
ultimately. These remarks shall clarify why wegaauch value on the bodies embedded
in rigid regions.

We now show that one can always replace the boywddue problem (11.71) with
the problem “given boundary displacements.” Letnthbe prescribed, perhaps, hy

ny /_7ij . One then collects the elastic deformation imo parts: The particular solution
5”9 and a second paz[;* , Which satisfies the homogeneous equations:

Ink £=0, Divo=0, & =Cj & - (1.73)

For €2, as well as€”, one can formally associate surface incompaiislig®, 7° and

7", n" according to eq. (I1.71). Therefore, singk= £ — &, one also hag” = 7 -
7°, etc. The problem is thus to determine the dedtions that satisfy eq. (11.72), as

well as the boundary conditions (lI.71), when verittwith the indexd. For sake of
simplicity, we henceforth omit the indék(in 7= 0, one hag' = & anyway).
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Due to the first eq. (I.73) has the form De$. One can easily show, although we
shall not do so here, that one can integrate the boyrmaditions in the boundary
surface and bring them into the form:

S=0, (1.74)

whereg follows from 77 and /=7 g is that displacement that the outer surface of the

medium would undergo if one suddenly removed the pressurbeoside of the rigid
neighborhood.

Thus, it is clear that one also can also addresbdhadary-value problems that are
known up to now by means of proper stresses. For themg &xést numerous well-
known methods of solution, so for that reason we willy speak briefly about the
possible application of the three-dimensional stresstiturs to the solutions of these
problems.

The stress function tensor does not represent a smfgled system of functions, and thus includes a
much larger manifold than perhaps the displacement veatoich is expressed in the additional
supplementary conditions. One thus has the possibilidapting given problems by a particular choice
of supplementary conditions. Furthermore, the Airysstrieinction has proved itself so well for two-
dimensional problems that one would like to arrive, atl#ast, at a similar method for three-dimensional
problems, as well.

This objective has still not been achieved. Meafteyltihe simple form of the energy equation (11.57)
leads one to expect that the boundary-value problem definest|.b{ll.71) ((11.74), resp.) can also be
treated by stress functions successfully. Namely,dftmegins with the classical method of Green then one
must start with the Betti theorem, which, by comparigeth eq. (11.57), is written in terms of stress
functions as:

X v+ 7 aF+[[0 (o x)q dF
- Iﬂfﬂi dV*IIXiZ; ’711 dF+{[0 (p )(;2)/=7i,»l dF. (11.75)

In it, one then identifiesyij?, /7”1 /=7ﬁ with the given incompatibilities angi(ijl with the desired stress

function tensor, while one has substituted the fundamenrttdral (principal solution) of the differential
equations (11.17) foy; for )(UZ Naturally, one would therefore like to expect thasthequations go over

to the corresponding supplementary conditions in the falyyy = 0, since the fundamental integral of this
equation is well-known to be given in the form+ x' |/ 8z One can thus hope that the entire boundary-
value problem somehow comes down to the determinatiarbdfarmonic Green function in the domain in
qguestion. The difficulty isinter alia, that one presently does not know how one can prdeidé¢he
fulfillment of the supplementary conditions, which indeist fguarantee the satisfaction of the differential
equations (11.17).

The situation for the second boundary-value problesmmgar. Written in terms of;;, the boundary
conditions (11.70) read:

Eik Emn N 0 Om Yin = A, (1.76)

which one must simultaneously fulfill along with eq.XW). If one substitutes them in eq. (11.72) then one
must somehow guarantee the fulfillment |f)(i; = 0. One can do this in such a way that perhaps one

prescribes:
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Di)(“f =0, %(Di)ﬁ;)z 0 on the boundary, (I.77)

in addition to the boundary conditions (11.76). Thenpglaith (11.72), one also has:
AA(O x;) =0, (1.78)

from which it is well-known that it follows that wittihe boundary values (II.7U1)(iJf likewise vanishes in

the entire volume. The biharmonic problem that isndefiby the boundary conditions (11.76) and (11.77)
has still not been treated up to now.

On the other hand, one finds a figidthat satisfies the boundary conditions (I.76) and thereifial
equationAAy; = O relatively easily. For this, one again needy ¢m construct the biharmonic Green
function. It does not seem out of the question that afiefimd completely, without the all-too-great
difficulties, the field that one must add to thggeso that, in addition, the supplementary conditieresid
thus, also the differential equations (Il.X7are fulfilled.

8 16. Extension to elastic anisotropy, force couples

The metallic crystals, to which dislocation theoryl\g applied, are, in many cases,
strongly anisotropic elastically, a fact that one maistays keep in mind. For that
reason, Burgers [13] has already applied anisotropidaigsheory to dislocations. We
now summarize the most important formulas that atbow to not only treat dislocations
by means of elastic anisotropy, but also to lay the faiowfor the treatment of other
important elastic singularities.

In the region outside the singularities, first dgt= 1 (0 5 + [; ). If we substitute

this into the equilibrium conditions (I1.5), with thelaf Hooke’s law, then we obtain:
Dis+3=0, Di(0) = cija Ly Dk . (1.79)

Let f(IJ) be the determinant Dy |, and let DijD(D) be the symmetric tensor of sub-
determinants of; i.e., D, D, =f g . With:

s=D/h, (11.80)
from eq. (11.79), one will have:
f hj +35; = 0. (1.81)

For the case of an isolated fofgeat the positiorx', if we write:
5 =P Ax-X), Ax-X)=dxa-X) A~ %) X~ X) (11.82)
then we have:

fh+P(X)dx-x)=0. (11.83)
By means of the equation:
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fU+dx) =0, (11.84)

one defines the fundamental integral (principal solutld(X) of the linear, sixth-order,
homogeneous, differential equatibn = 0 in an infinite medium (and thus, it is unique
up to an uninteresting entire function of degree five)imfhe knowledge oU likewise
implies that of the particular integral of (11.81):

hi(x) = mu (X)S, (x)dV', X=|x-X |, (11.86)

and thus for the isolated force in an infinite mediune bas:
hi(x) = U(X) P(X’). (11.86)

The associated displacement field results from (11.80):
5(x) = Si(x) P(x), S =DU. (11.87)

The symmetric tensadg; is the fundamental integral of the elastic difféei@requations
(11.79) for the displacements. With its help, the jgatar solution of eq. (11.79) reads:

50 =[[[ S (%5 () AV (11.88)

The physical meaning of the componentsSpfollows easily from eq. (11.87) when one
assumes thatd | = 1. §; is then thg-component of the associated displacement.
One says, let:

s(X) = Pi(X") Oi Sk(¥) (11.89)

be the displacement at the positiothat is provoked by a force coug at the position
X'.  We also call the not-necessarily-symmetric terf3othe “force dipole.” Its first
index gives the direction in which the two equal and opgasiblated forces, whose
points of application li¢ from each other and whose direction is described byeitens
index, point when they come together; i.e.:

Pi= lm IP. (11.90)

li 0P -

The diagonal components Bf are force couples without moments, and the remaining
components have moments about an axis that is perp&ndiouthei andj direction.
The total rotational moment is included in the anti-symimgtart of P; . For further
information on force couples, cf., Love [95].

The displacement:

S(x) = Pix(X") i O Sa(X) (11.91)
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will be provoked by a force quadrupd®y , and one can define higher multipoles in a
corresponding way.
In the case of elastic isotropy, one computes, fron{le9):

Di = (A + )0 O + 4AG, (11.92)
D= [~ (A + @0 O + (A + 20) AG]A (1.93)
f= 1A + 21) DA, U= 9671112(:;‘*‘2#))(3; (11.94)
hence, withAx = 12
sjzgéa(—jjégmﬁqaqﬁij. (11.95)

Here, the components &f thus become elementary functionsxofThe same is still true
only for hexagonal symmetry [76, 180].

We now briefly describe the method of stress fiomst for anisotropy [80], which
again has the advantage of being applicable tareanisly distributed dislocations. One
sets:

Xi = Xij Oi ¢4 =0, (11.96)

whereXj. is a second-order differential operator that, apdw, has been given only for
isotropy and cubic symmetry. It has the same symyres the Hooke tensor of the
crystal in question, and is written in the caseofropy:

Xia = 1P [24 & du+ (A + 20)(d § + & JI] A (1.97)

The y; satisfy the differential equation:

f o =ni (11.98)
which is solved by:

() == [[[2; )V () dV". (11.99)
v
For the stress functiong one then has:
,ma):—[ﬂmngxMU(@dv. (1.100)
v
For isotropy, with (11.97) and (11.94), one has:
M~U=£{f%g%%+%%+4@}x (11.101)

from which, eq. (11.100) goes to eq. (I1.26).
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For the application to straight dislocation linese wre also interested in the
representation of the planar problem. Let, sd§xs = 0. We then characterize the
resulting functions by a prime. It is easy to shoat the sixth-degree functioh can be
decomposed into a triple product of expressions that anedeneous of degree two (for
isotropic and hexagonal crystals this is already poskibldree-dimensiond). For that
reason, however, the characteristic equation of desixehat is associated witli has

elementary roots, and the associated (two-dimensionadafoental integral will be
an elementary function that can be presented relgtwasily in all cases. We then
assume that is known. This yields:

U(xX) = I:U(x) dx , (1.102)

which is sufficiently well-known from the theory diifferential equations. Thus, we
have laid the foundations for the static treatmendlislocations and other singularities
rather completely.

8 17. The elasticity-theoretic treatment of singular disloations

The isolated dislocations play a very great role iniegpbns. In Fig. 9a, b the
production of edge dislocations was made intuitive. Om&shof the cylinder in Fig. 9a
that was cut out as being pressed together with the cylridég. 9b in such a way that
the relative displacementof the surfacé\ compared td has only ang-component, so
A and B shall deform into a surfacé Fig. 10 shows the production of a screw
dislocation: One thinks of the cylinder in Fig. 10 as bgngduced from a defect-free
cylinder by cutting and a relative displacement of thelipst in the direction of the
cylinder axis.

In the general case, a dislocation will run along réitrary space curve with a unit
tangent vectot, to which the generating surfate affixed with a unit normal vector.

Let g be the unit vecton x t. We assume thafis so small that one can locally regard
the “dislocation strips” of width 2as planar. Let| then be the shortest distance from a
point lying onf in the vicinity of the lind to it.

The dislocation density inside the strip is, from ed.4),— n x [0g, which is equal to
t dg/dq, sinceg varies only in the-direction. The distribution ad(g) naturally remains
open to us; in Fig. 9, 10 it is depicted as linear. In gdndjrg |/0q can be any curve,
which we write as 4(q) | d° |, if g° is the constant displacement over the greater part of
the surfacé. From § 1, 2b = - ¢° is then the Burgers vector of the dislocation. Wgsth
obtain a surface dislocation density:

a, =tib K0). (1.103)
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With these preparations, we now come to the actualiledion. The starting point is
eq. (11.28), in which one has introduceg according to eq. (1.519

i = (g§a Ok an)®. (11.104)

By partial integration this yields, since the boundaryamgfintegral vanishes, and with
O, =0/0x,:

S
I 1 I ! ! !
X, :—8—[gjk,ma” (X)Dkxdvj , X=|x-X|. (11.105)
T \Y

Here, one obviously has to sgt dV = &, dq dL', wheredL' is the contribution of the
line elementdl;” to the lineL. With (11.103), one then obtains:

a dV =t b (q) dd dL' = b dL () dd. (11.106)

If one substitutes this in eq. (11.105), and thets$(q') equal to the delta functioq')
then one can carry out the integration ayesnd obtain the singular dislocation line:

S

L1 S 1 Y
X, _—8_n£gjk,q<f_jimkxdg5(q) dqj g{gjk,pfmkxdgj . (11.106)

If we then bring thell, out of the integral, while switching the sign, cgnwe are now

differentiating byx;, we ultimately obtain the formula that was firstem by the author
[78]:

1 N
X _S_IT[gjk,pmk?Sxdgj | (11.107)

With this, the stress state, which originates m dhislocation that runs along the libg
will come down to the relatively simple integrélde’. It will be shown that the

stresses diverge along the line itself, which rallyioriginates in the fact that one takes
the limit q) — A&Q). Thus, if one is interested in the state initheediate vicinity of
the lineL then one may not take that limit, but one mustgraite the left-hand equation
(11.106') over Kq) 2

In the event that the dislocation is straight artbnds along thes-axis,dL; becomes
dxs . One easily verifies the formula:

! Smeans “symmetric part of.”
2 At some distance frorh the principle of St. Venant applies; it no longer appi@she distribution
function q) precisely.
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L/2

j xdxX = - 2 In(alL) + L4, =X+, (11.108)

-L/2

which is true everywhere that x; <L . L is, accordingly, the length of the dislocation,
which shall now go tee. According to eq. (11.107) and (11.2), the expressidri(8) will
then be differentiated three times until one obt#liesstresses. Thug’ In L does not
contribute to this, and we write, when we substitUté@8) into (11.107):

.12
Xy == g (8 + & G) b Ok Inp. (11.109)

From the superficial agreement of eq. (I1)2é6nd (11.99), one immediately concludes
with the corresponding formulas for anisotropy, namedy,(11.107) corresponds to:

W = [‘Sjkl b DKIU(X) dl-r'j (1.110)
and eq. (11.109) to: L
Y =— %(ﬁkl + & %) b Ok U (X) (1.111)

from which, the stress functions can be computawhuesq. (11.96).

The computation oKy that is necessary only once for each crystal dideem very substantial in the
two-dimensional case, but in three dimensions it is anbal [80]. One sees that in the case of straight
dislocation lines the stresses always yield to eléamgriunctions for anisotropy, as well (singg from §

16, is an elementary function). Eshelby [36] has showndravcan also obtain them in the complex plane
X; +1 Xz, starting from a complex displacement fisjd- i s, . Burgers [13] has already established that the
anisotropic formulas in cubic crystals simplify consaldy when the dislocation extends along a

distinguished crystallographic direction. In particular, ob&ins the same displacements as for isotropy
for a screw dislocation in the <001>-direction.

We now distinguish two cases:

1. Straight edge dislocation in tkedirection. One then hds = ; = 0, and in eq.
(11.109) one will havg = 3, i.e., only x,, is different from zero. If one chooses, saj|
b (i.e.,l = 1) then one has:

1

] a 2
= =2 (0’Ino). 11.112
Xzs 8ﬂbl ox, (0°Inp) ( )

! The exact expression for (I1.108) reads:

e Ce i L Rz )
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From eq. (11.16) and (11.18), the connection betweenAting stress functiony andy;, is

given by - ZG—T)(;g = x 1, from which, we can also write eq. (1.112):
m_

Ao b mG
== ——(0%In A=z 21—
X 2 0%, (¢*Inp)., 2rm-1

(11.113)
This equation was first given by Koehler [111].0frthe usual rules of elasticity theory,
the stresses result from this:

X 34 +%

0,=0°x10x; :—A? Fa

2

=92y Oxx, = pixf % (1.114)

Re )

X —
0, = 0%y 10X2 = Ap—22 xfp2

along with the displacemerfts

s

2m1,0

___ b APy %
S, = 4ﬂ(m—1){(m 2)InZ+ m,?}

(11.115)

The calculation of the displacement requires spemasideration, since, diverges
logarithmically withp [71].
2. Screw dislocation in the-direction. Eqg. (11.109) will then become:

, 1/2 , _1/2, 0
XSl___b3_(p In ), A3z :aga(pzlnp). (1.116)

After multiplication by Z5, these are likewise thg values. From eq. (11.16), the stress
function of torsion is then:

! One finds from eq. (I1.18) thak; and x,, are different from zero. With the help of (II.16)eceasily
shows that the relatiom a3 = 011 + &, which is known from the theory of planar distortioatss,
follows from this [1]. 011, 022, andoss are determined by alone, so we do not need to consigigrand

22
X 2 These equations were first derived by Burgers [12] in @nathy. Taylor [149] was the first to apply
elasticity theory to crystal dislocations and, intjgatar, presented the connection with Volterra, in which
the detailed calculations were not completely correct.
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Gh,( 8> 0% ) , Gh,
b =- + o°'lnp =——2(np+1), 1.117
8 (axf axgj 271( ) ( )
the stresses are:
Gb, x, Gb, x
- , = , 11.118
031 5 > 032 5 > ( )

and the displacements are:

5=%=0, s=24, $=arctg2. (1.119)
21T X

Here, the representation in terms of displacementsspecially instructive since one
reads olff the transition from the-plane into screw surfaces immediately from eq.
(1.129) .

Although the integral (11.107) appears very simpdae arrives at that integration in
closed form only in the simplest cases. This happer dislocations that consist of
piecewise straight lines, and also for dislocatitihat define plane curves of degree two.
In the latter case, one obtains elliptic integrals.

Originally (by Burgers [12]), in place of formu(@.107), the displacement field of
the general dislocation line was represented asriace integral. By application of
Green’s method in the cage= 0, one can express the dislocations in a bodyhby
volume and boundary surface forces that producasityvell as the boundary surface
displacement. One obtaifgfor the detailed calculation, cf., perhaps, Se¢t@4]):

Si(X)
:ijSh(%i(x’) dV+ij FOX(x) dnij & injgx')% 2% )x d. (1.120)

One can apply this formula to, e.qg., the incisdthdegr in Fig. 9a, when one now bends it
together (Fig. 9b) in order to next weld it. Omen has, in any ever; = 0, but the

second integral of eq. (11.120) also vanishes,esiie boundary surface forces that bring
about the bending together AfandB are equal and opposite at the same points of them.

Thus, what remains of eq. (11.120), when we segsieinote the displacement sourge
- 5° bygi (8 8), is:

$(X) = IfIC.m ng &w ¥ df+ [ injs(x')i Sx d, o (11.121)

! Sinces, =5, = 0, it is also very convenient to derive these eqoatity starting from the displacements
S, as Burgers [12] originally did, and can be looked up in any boakislocations today.
2 These formulas were first given by Fredholm [57] anddhghly discussed by Gebbia [58].
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wheref is the fused surfac&B, with A as the positive side arkg the boundary surface
of the body after welding. If one now foregoes a meaescription in the immediate
vicinity of the dislocation, which comes down to asswgrthatg is constant orf up to
the lineL, and one likewise restricts oneself to an infinite megithen one obtains:

d
$(X) = - bjjqujkl "o S (¥ df. (11.122)

From Burgers, this is a good approximation to the dispiace field that arises from a
dislocation that runs along an arbitrary line In the next approximation, it is precisely
as small as eq. (11.107). In eq. (ll.122), the glide ve@aeplaced with the Burgers
vector.

Upon comparison with eq. (11.89), one concludes thaj;—+; by is a surface density
of force dipoles. They have obviously taken over the odlthe external forces that one
has bent the cylinder together with after welding. pbssibility that a field produced by
a dislocation can be thought of as either produced bgtisth@cation line (eq. (11.110)) or
a surface density of force dipoles corresponds precigelthé well-known fact of
magnetic field theory of the equivalence of currentsiaad magnetic double lay€ersin
general, the direct proof of the equivalence of eq. (1.E@) (11.122) is very tedious
and, up to now, it has only been carried out for isotr8gy. [

For isotropy, the integral (11.122) includes the part:

By oxy= P 1
2090 = Ejfjnkmk;df , (1.123)

as one easily verifies by, e.g., substitution in eg@)knd (11.95). Q(x) is then the spatial
angle of vision (Sehwinkel), with which the dislocatiore will be seen from the point
This part introduces a multi-valuedness into the disioss?. The remaining part can be
represented as a line integral, as in Burgers [12]. PeatiKaehler [115] have also
represented as a line integral and thus obtained the total displaneiireld as a line
integral, so their formulas do not have the simpliafyour line integral (11.107). For
anisotropy, the displacement field was first given bybfried [90] as a line integral.
This representation has a definite meaning since theedinlity of eq. (11.122) into a
line integral represents the mathematical proof of #oe that the position of surfaée
upon which one thinks of the force dipoles as being disgdus arbitrary, except that
its boundary is the dislocation line. Naturally, thiegdfralso follows from eq. (11.107).
The second integral in eq. (11.121) represents the displant that one must add to
that of (11.122) in order to fulfill the boundary condits. Incidentally, eq. (11.122) is
also true wherg is an arbitrary function on the surfate This is the case of the

! On this, see also Nabarro [109].

2 That the displacement field is many-valued in thegues of a dislocation follows from the existence
of the Burgers vectob, which says that the displacement increased lwhen one goes around the
dislocation once. The dipole surfdas the branching surface. The corresponding behatitre electric
potential around a linear electric current is indeed-tusdiwn.
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“Somigliana dislocation.” In recent times, it wasated by Mann [97] and Bogdanoff

[9].
8 18. The elastic energy of the singular dislocation

We define the elastic (self-) energy of a dislogatio be the increase in internal
energy in a medium that was originally found in the natstate that it experiences as a
result of the immigration or formation of a dislocati If the dislocation immigrates
from the outside then one often has an edge in the bousdaigce (Fig. 10) across
which the boundary surface stress of the continuurhvary locally. This part of the
change in internal energy is, for most purposes,alrivand will thus no longer be
considered. (Cf., Nabarro [110], pp. 332.)

We restrict ourselves to the infinitely extended medivhthe center of the singular
dislocation the stresses will be, from eq. (11.114),ninéi. Therefore, the energy of the
dislocation per unit length (linear energy) diverges. Thithe great difficulty for all
energetic questions about dislocations. Real-world distowatll have a certain finite
“width” 2 ¢, and for that reason, a finite self-energy. Fortupatéenters into energy the
formula only logarithmically, so for practical purposex axactly all of the exterdg(q)
of the plastic displacement enters the dislocatoip 2. From now on, we will speak of
the dislocation “line” and emphasize this fact espBciahenever its finite extent is of
issue.

With Cottrell [22], we think of a dislocation as runningrajoa lineL® in an infinite
medium in the absence of external forces, and furthieneda second dislocation that
intersects a surfadewith a boundary line”, while the two lips of the cut are plastically

displaced with the glide vectas® = - b*. The work done by this is
A= bIA.U(aijB+%aﬁAjd§ , (1.124)
f

if o is the stress function, which originates on the dision L®, while g is the

additional stress field that comes about during thega®¢and thus, the factor of 1/2)
and originates on the ling*. If we substitute the stresses in eq. (11.2) by mexribe
stress functions and apply Stokes’s theorem then vanobt

1
A==, $0, [Xk? +§ka*jdtr’*, (11.125)
LA

or, from eq. (11.96), when expressed in termgpf

! In a finite medium, for Bilby [2], a summarﬁ's [JJ-B .,_EU_J_AJ d|,-: appears in eq. (11.124) that means
1] 2 1]
F

the same thing as the second integral in eq. (11.121).
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A B, 1 A A
A=-h ‘gijkCﬁDj Kidmn (‘/’m +§¢’k|jd|-r : (1.126)

Here, we substitute/> from eq. (11.110) and obtain:
= bf‘tf M@B (11.227)

M2 = =g, £, $P 0,0, XU (¥ dIE, dLf,
@ T pq(ﬁ(ﬁ ‘ ' (1.127)

EIX - x|

as the part of the work done by the formation of tisodation lineL” that is attributed
to the presence of the dislocatiatfi. One calls it the “interaction energy” of the
dislocationsL® andL®. One hasE”"® = EPA In the case of elastic isotropy, with eq.
(11.94) and eq. (11.97), one gets for eq. (1.127

MA® = - 877 ExcEnap$ (0,0 x)[—dLnde+ diEdi2+ di8 dgank} (11.128)

LA LB

The generally asymmetric tensMif;B defines the analogue of the well-known counter-

inductivity in the theory of linear currents
Now, one cannot also substitute: from eq. (11.110) since one would then obtain a

double line integral over the same line that divergese @us obtains no simple formula
like (11.127) for the self-energy of the dislocation. Startmwgh this one can thus
approach the problem as follows: One now regards thhacdison strip Z as consisting
of nothing but infinitely dense “dislocation threads” withe infinitesimal glide vector
dg(g) = - b* Kq) on them (cf., § 17) and computes the interaction enefgyl of these
threads by means of eq. (11.127). One thus obtains &imikritten for isotropyY:

E* = by M (11.129)

m__ G G
M@ = =18 nqudqy(aojdqy(q)ngS(DD X

=
m-1

! Blin [7] has given a formulation that is completely emlent to (11.128), and Stroh [148] gave a
further expression for the case in which the two dislona lie in a plane. Eq. (Il.127was first given by
the author. The formula (1.128) that was given in e work contains a mistake in calculation. For
special arrangements of dislocations the dislocatiamteo-inductivity can be directly equal to the
magnetic inductivity that corresponds to the currersregement, as Hart [170] has found.

2 The notatiorA is omitted on the right-hand side of eq. (11.129). iﬁlegrationsq';q'; extend over two

}. (11.129)

dislocation threads.
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Here, the interaction energy between each line elear&hall of the elements of all other
threads is considered, but not, however, the interaetrergy between the elements of
those threads and the proper energy of the thread mtier®®e recognizes in this that for
an increasing number of dislocation threads the lattémpdonger enters into the former
one, and for infinitely dense threads it will be infintedmall when compared to the
former. Thus, eq. (11.129) does, in fact, correctlygile self-energy of the dislocation

strip, and the symmetric tenstsvriqAA Is the analogue of self-inductivity.

With the help of the self-inductivity and counter-inductivityhe energy of an
arrangement of many dislocations may be written irfaha:

E= Zb’*q Mi®, (11.130)

whereA andB each run over each dislocation line.

We now present an application for the very imporéputation (11.128). One extends,
e.g., a straight dislocation lin€® in the xs-direction. The integration over® in eq.
(11.128) then becomes elementary. We employ eq. (Il.408)write:

[(O00deE =00, [ xdl® =- Dijpzlnfis. (11.131)
L® L®

With this, one has:

we-2a £ 0.0 (P02 e, edi,ati, ). (1132

One easily verifies the validity of the relation:

J

P _ P % -
DijpzlnI_ KInL+2j5p })} i»p=1,2. (11.133)

We further restrict ourselves to the case in whichdiblcationL” also runs in the plane

X2 = 0, and then obtaid{(ln%+%)5jp +5jlp} for the right-hand side of eq. (11.133),

wherej, p=1, 2 anda'jlpz 1 forj = p = 1, but vanishes otherwise. We substitute this in

eg. (11.132) and likewise consider that one musi.selx =i, = i3 there, and thatlly, = 0,
moreover. Foj =p =1, one obtains the part:

G

4 3
877[ —— fusfan + 261 * 256 iJj(lnﬁl_+—2jdxs (1.134)

LA

of M*®, and forj = p = 2, the part:



§ 18. The elastic energy of the singular dislocation 73

G[ 4 X . 3 G x . 1
Sl . R +2£i2§k2q} (In—+—jdx3+—£ikeka (In—+—j dx, (11.135)
8| m-1 d i[ L 2 4T j L 2

From this, it easily follows that:

MSB__EL |nﬁ+£ dx,
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For the further integrations, one must substitute ¢bheve equationx;(xs) of the
dislocation lineL” whereverx; appears in the logarithm. In the event tHais likewise

a straight line and parallel 10, one next hasvi ;2= M /%= 0, sincedx, = 0. Thus, all
that remain are the diagonal componentsM)lgB. That is, parallel dislocation lines

whose Burgers vectors are perpendicular to each otherrmeffect in isotropic media
(this conclusion follows from eq. (11.127)). We thenter down the components cMiQB

for x, = d (= parallel dislocations at a distard)e

M 22 :_ELL(ML&)
2

2mrm-1 L
M-S M L'(In9+§j, (1.137)
2mrm-1 L 2

Ms’*gB :—E L’(Ingﬂj.
217 L

We have performed the second integration with itinéd — L'/2 ... L'/2, whereL' <L is
assumed, since only then is the assumption fo(le$36) valid (viz., the validity of eq.
(11.108)). In that regard, we shall show laterthat eq. (11.137) will be modified only
inessentially for exact computations for— L as long ag >d.

The interaction of second-degree parallel dislocat@ng distanced, from which, the force of
attraction §*, b® anti-parallel) or repulsioraf, b® parallel) follow by differentiation, was treated by \oa$
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authors, where the formulas for the interaction endrgy follow from eq. (11.137) by multiplication with
b* b® were obtained in a maybe somewhat simpler way thamspgince one employs the simplifications
that enter into the present special case throughouthale arrived at our derivation, above all, in order to
present eq. (11.136), which is relatively simple, but theeaaly gives rise to a host of problems that are
significant in practicé. We will describe an application of these equations i9.§ 2

Our formulas (11.137) differ from those of the usualhaus in two wayg: Cottrell [22], who started
with eq. (11.124), did not convert the surface integné a line integral, and thus in the logarithm in his
final formulas there was not our dislocation lengthbut the dimensiorR of the medium that is
perpendicular to the dislocation line, and which likewisesgtme. Eshelby (cf., [110], pp. 305-306)
obtained the same result by approaching the problem inugam@ys; e.g., with the use of bipolar
coordinates. In all cases, one obtains a logaritllinErgence of the interaction energy per unit length for
parallel straight line dislocations, such that one tgadly compelled to compute in finite bodies. We will
see that the same is true for the self-energy obaghtrline dislocation. These complications will oftem
circumvented by replacing (L, resp.) with the approximate value of the mean distahtteedlislocations
with opposite signs (“dislocation networks,” § 29)(e.g.;*10n in unformed metal). This procedure is,
moreover, not completely adequate. In practice, thielgmts are often given (8 29) in such a way that
(R, resp.) is either taken out (sich heraushebt) or mvknfrom the outset, where due to the only
logarithmic dependency of the energyand R the approximate values of these quantities are mostly
satisfied.

Secondly, our formulas differ from those of the cideghors in the summands that enter intol/ln
By assumption d < L), this is small compared to b(); the difference originates in the different
treatments of the dislocation centers. Whether as®lor L in the logarithm also plays a role.

Next, we apply eq. (11.128) to two
straight dislocations running parallel to the
xs-direction at a distance 3, both of
which have the finite length (Fig. 18),
and indeed, one shall hapex L. Before
/ X3 the integrations, we carry out the
/ differentiations; Op, x and then neglect

X2

all terms in this expression that have a
B 4

Fig. 18 factor of X" = x7 or x;' = %7 “. One easily
sees that then only the differentiations
0%/0x’ and 8*/0x> give any contribution, while all others vanish. Furthemn we
assume that the Burgers vectors of the two dislocagiongqual and lie in the plare=
0. Let its angle with the line direction be so the components bfin the x;-direction

and xs-direction are therb sin S (b cos £, resp.) Then, one easily computes the
interaction energf® from egs. (11.127) and (11.128):

A X1

\L

/e

! One also immediately finds in eq. (11.136) an esseptal of the results on dislocations whose lines
run perpendicular to each other that were discussed by Ngtair pp. 3091 thus has they-direction.
Eqg. (11.136) is therdx; = 0, and interaction exists only in the cd‘quB (L* andL® screw dislocations) and
in the casev /° (L* andL® edge dislocations with Burger vectors currently paradi¢he other line).

2 Koehler [71] was the first to compute the energytiafight line dislocations and the interaction energy
of two dislocations.

% This will lead us to a method that substantially atiates the computation of the self-energy.

* These terms are smaller than the remaining onaddmtorglL, as a closer examination shows.
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gre = OO (—msm B+ co§/3jﬂ@ . (11.138)

ar

We calculate the integral in a manner that is sohnawnore general than is required
here, namely, with the bounds:

L/2 X3—& L/2
[a| [ df+ [ af-- (11.139)
-L/2 -L/2 Xg+€&

and obtain exactly:

jjdxsd’f PR s LA NP Y P TN (11.140)
£+«/,0 +£?

With &= 0 this then yields, when we further neglgttith respect td.? and divide by.:

B = sz(—msm ,[>’+co§,[>’j( p" 9 (11.141)

iyrs

This is the interaction energy per unit length loé dislocation lines. It differs only
slightly from the results of egs. (11.137) for lary, as one knows, when one sets In
2L/p) =In(L/p) +In 2 ineq. (11.141).

From now on, we assume that the two dislocatiogastlreads of a dislocation line
whose self-energy we would like to compute from @g129). We can then introduce
the result we just obtained directly in eq. (1.12®8ith q = xy):

o GO (M G 7 SV G
T = o [m_lsm /3+co§/3j_j(d><lyé<12j(d>g1/(>§[Inlxl_—x1| 9 (11.142)

The simplest case ig= const. = 1/2¢, which corresponds to a linear increase of the
relative dislocation in strips ofFig. 9). The integrations (l1.14) are then elemagy to
carry out, and one obtains:

e ()’
ar

m ., L 1
[m—_lsm L+ co§ﬁj[ InZ+—2j, (1.143)

or also:

s = GO0 (m—m_lsin2 B+ cog ﬁj[ I (1.144)

ar

n L -
Z/e";/Z !

as the linear energy of the dislocation. This folanis exact fol. — oo, as long as
Hooke’s law is also valid in the stripg,2vhich happens for sufficiently smét. From
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the logarithmic dependency ¢fone can conclude that the energy is not very sensiive
small changes ig and )(x1).

One can now obtain precisely the same formula (11.24d¢n one substitutes the
integral (11.140) in eq. (11.138) witlp = 0 ande = ¢/ €*? and multiplies the result by 1/2.
That is, when one now substitutes:

M = %euksnpqqu?(m 00| 25t d s ddl s d dig, | (1.145)

in eq. (11.129) in place of (11.128 whereL, means that the piece-¢ ... x + £is to be

removed from the integral in question, one obtains tneect self-energy, at least in the
case of the straight dislocation line. One canbdistathat this is also valid to a close
approximation for curved dislocatior's However, in many cases the integral (11.145)
cannot be evaluated, in which one can no longer cotfette integrations in (11.129
with a reasonable expenditure of effort. Therein lies practical meaning of the
calculations that were carried out here.

One more remark on eq. (11.144): The energy per unit lefigtiof the dislocation
line depends upob only logarithmically. In many problems, one must considey., the
bending of an originally straight dislocation line,den which, the length of the
dislocation does not change very appreciably. One loam ignore the dependency of
T onL and B to a good approximation and find that the energy of ikleahtion is
proportional to its length. One thus often caf¥ the “linear stress” of the dislocation,
in analogy with the behavior of stressed strings. Cang e.g., present a differential
equation for the oscillations of such a dislocaticat tias precisely the form of a string-
oscillation equation. On this, cf., perhaps the workstielby [35] and Koehler [72].

In the last two paragraphs, we considered dislocationsfinite media. In practice,
one always has a bounded body before one, and in ra@eg the result for the infinitely
extended medium certainly represents no good approximabioredlity. (This is
especially true for problems with rectilinearly moving désltions.) One then must solve
a boundary-value problem, in addition. Such problems weaget by Dietze [163] and
Liebfried and Dietze [171] with noteworthy success. Seegported on them in an
appendix; see [134], pp. 560. It dealt with dislocationsadies that were bounded by
planar or circular cylindrical outer surfaces. In ttese, one obtains solutions in closed
form in general. Thus, the reflection process that agsdied by Liebfried and Dietze
[171] is especially interesting. Furthermore, cf., &sbelby and Stroh [167].

! The most important argument is: The main contributiba line element lies in its far-reaching stress
field. In (11.1245), however, all of the interactionezgy parts of an element are correctly included along
with the not very close ones. The local part ofdlton, however, does not “notice” the curvature of the
dislocation when the radius of curvature is large compared For straight dislocations, however, (11.145)
is exact.
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8 19. The forces on dislocations and other elastic singuiges. The
dislocation as elementary source of proper stress.

The problem of the forces that a stress field exertselastic singularities- in
particular, dislocations is completely unknown in classical elasticity thedsut again
has an analogy with electrodynamics, where one knowdes formulas for the forces on
linear currents, magnetic dipoles, etc. Only slighas elementary are the formulas that
we will derive below.

The great significance of such consequences for thecdigbns lies in the fact that,
on the one hand, the motion of dislocations, and thesplastic forming of materials,
comes about as a result of the externally appliegsss#is. This influence must attain a
certain measure in order to first make the formationd@locations possible and
secondly, to facilitate their migration.

After the early work of Mott and Nabarro [105] and Led [88], Peach and
Koehler [115] succeeded in presenting the general expressidhef force that the line
element of a dislocation at the positioexperiences in the stress fiekk). This much-
used formula must represent a fundamental equation otdign theory. It is, to some
extent, analogous to the formula for the Lorentzdarn an electric current line element
in a magnetic field.

One defines the foradK = (dK;) on a line elemerdL; of a dislocation with a Burgers
vectorb; as follows: Let W be the work that the external forces do under a shifteo
dislocation line element througt , and letdW be the simultaneous increase in the
elastic energy content of the bodielK will then be defined by the equation:

- (dWP + dW) = dK [Hix. (11.146)

We now think of the progress of the dislocationdbfas taking place as follows: The
surface piece that will be swept outdlyis df =dx x dL (dL is then the right-hand screw
boundary line ofif after the motion). We cut alorj and, as long as no dislocation is
present, affix the forcdf Uo (- df Oo; resp.) to the two lips of the cut. We now consider
the two lips of the cut as parts of the outer surfacthe body. (The rest of it is the
original outer surface; i.e., the body is now doubly cotegk so the internal forces will
now be external.)

Now, the relative shift of the two lips of the cubrad dL shall result in a glide vector
g = — b, which then means precisely the migratiordbfthroughdx. Insofar as we can
regard this shift as infinitesimal and virtual, in the seofthe principle of virtual shifts,
it will exert no work in total, since the body is foumdequilibrium; i.e.:

dW? + dW + df Co'[b = 0. (11.147)

From a comparison with eq. (11.146) it follows, whea then consider thatlX x dL) Uo
=dx HdL x g), that:
dK =dL x glb, (11.148)
or:
dKe = g dLi b g . (11.149)
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This is the formula of Peach and Koehler. The siag&imption that have used was that
one may regard the shift throughb-as infinitesimal and virtual in the sense of the
principle of virtual shifts. For finite p | this assumption is not strictly fulfilled, which
shows that one must consider eq. (11.148) as an appatigim(which generally suffices).
g; is the stress that one measures at the positiointhe line element when one makes
the known cut there. Thug includes, not only the external forces and other stsabse
come from proper stress sources, but also those strdssteall of the remaining line
elements of the dislocation provoke at the posikipand indeed the part of the stresses
that the line element — perhaps, on the outer surfac¢her boundary surfaces in the
body — exerts upon itself. Furthermore, eq. (11.148)ue for arbitrary inhomogeneity in
the elastic constants of the body. Rieder [124] haseoner, shown, by a method that is
similar to that of Eshelby (cfinfra), that eq. (11.148) is also valid for quasi-dislocations

The far-reaching validity of eq. (I1.148) resides in tfaet that it alone is a
consequence of the very general principle of virtual shiflany times [134, 108], eq.
(11.148) has been connected with the theorem of Colotieitiwas mentioned in § 14,
which says for this case that under special conditibla®ke’s Law, no further sources
of proper stresses than the dislocation in question,ielastmogeneity)dW = 0.
However, one thus overlooks the fact that the validit Colonetti's theorem for the
medium in question does not belong to the assumptioag. ¢fl.148).

The derivation of eq. (11.148) does not assume the symnoétthe stress tensor. We show an
important consequence of this fact. We ask: What satre$ses can set in motion a planar distribution of
crossed screw dislocatiohss in Fig. 16c such that they are all perpendicular io plene (e.g.x, = 0)?

In this case, the dislocation tensthr b = g in eq. (11.148) has only the component$,= a3,= a. One

thus obtains:
dKl = a;z O3 — 0';3 O3 = Op (Oéz - 0'23) (”149)

That is, the migration of dislocations that correspdodsg. 16¢ can only come about from the asymmetry
of the stress tensor. We now cite some examples farthvasymmetric stress tensors actually appear in
crystals.

In ferromagnetic crystals one has a spontaneous tizgjien that lies in a preferred crystallographic
direction because then the free energy of the crystadspecially low. An external magnetic field can
rotate this magnetization into an energetically unfabler direction. One of the magnetically preferred
directions of the crystal may then rotate into the neagnetization direction, so the external magrfiid
must exert a rotational moment on the volume elemvamth has asymmetric stresses as a consequence.
From a remark of Rieder [124], it would be imaginable thd&wuorable cases the force that thus arises can
actually bring about the migration of a grain boundaryefdtated type.

Through current flux in a crystal, one may, for stronge@tnopy of the conductance, likewise produce
such rotational moments, which are also small. Howewverwould like to believe that through a strong
difference in the free energy of the two crystalliseparated by the grain boundary — as with, e.g., re-
crystallization — phase drifts and similar processes appear such that strongly asymmetric stresses will
be generated, while the grain boundary in the crytaltifts into the crystallite with the greatereegy.
Rieder [124] has briefly described how one can treat ssgmraetric stresses by means of elasticity
theory. Meanwhile, we would like to assume that the @assdeformation moment [20] that Rieder
neglected can essentially influence such behaviorcin fimtroducing their research into the context of the
aforementioned processes in crystals seems to loethwiile problem.

! Such assignments of dislocations have, in practiceat gstability since they imply a complete
elimination of their far-reaching stress fields foe tfistributed dislocations (8 23).
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We now describe another important application of th&cR-Koehler formula. Let
be a small, planar, dislocation loop with Burgers vebtanot necessarily circular. In the
domain of the loop let there be no volume forceslis@;; = 0. One obtains the total
force on this loop in the stress fietg by integrating eq. (11.148) along. One then
applies Stokes’s theorem, develagsaround the midpoint = 0 ofL in a Taylor series,
and easily obtains:

K= Oy, 0y| +[[nb df+0,0, 0] [[ x,n df+-. (11.150)
f f

We now letf — 0 while by increases in such a way that the integral in (11.150) resna
finite. Thus,f will be practically pointlike, andy by df means that the two points on the
positive and negative sides blindergo the relative displacemenb—= g, . We thus
define the “displacement dipol€}; by:

Q= lim [[ng df (1.151)

and correspondingly, the displacement quadrufaje, by:

Qmji = mjfjxnnjg df. (1.152)

The sign in eq. (11.151) is established such that, e.qg., iaveodipole Q:1 corresponds to
a drawing apart of the cut lips. Symbolically,J [0 -. Previously, we called a force
dipole P13 positive when it emerges from two isolated foree$§] [ - upon passing to
the limit.

We would now like to compare eq. (I1.151) with eq. (Il.122here, we recognized
the expression Cj N by df as an infinitesimal force dipole. From eq. (I11.151), an
infinitesimal dislocation dipole can be writtemn; by df. That is, between force dipoles
and dislocation dipoles there exists the relation

Pi = G Qi - (11.153)

Thus, one should note that this is true only when thstielaonstants of the body are
homogeneous in the neighborhood of the dipoles and diratcily position; this was an
assumption in eq. (11.122).

From now on, we write the total force on a dislamaibop (I1.150)

! Collectively, one can refer ®; andQ; as “elastic dipoles.”
2 The form for this equation that was given by the alithte original paper [82]:

K=gradbj| Q|+Dm0j'| Qmjl+ )

was, to some extent, an unfortunate choice, as oneaddsh that paper that the differentiation gradsof
must be carried out before carrying out the multiplicegion the bracket. Also, this form for eq. (11.154)
can lead to false conclusions about the physical mgafithe bracket expression (dhfra).
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Kk:Qij Dk0ﬂ+Qmj| Lk DmOJ] + ... (||.154)

We would like to no longer consider quadrupoles. The forte dislocation dipole
alone will thus be:
Kk = Qij Dk OJ'| . (||.155)

Such a force then also acts on anti-symmetric distotdipoles. We would thus like to

no longer consider this, since it does not have thenimgaof a symmetric dislocation
dipole [82]. Furthermore, |1€); be a symmetric tensor then. When one now substitutes
g with & in eq. (11.155) by means of Hooke’s law and considers (II.268h one
obtains for the force on a force dipole:

K¢ = Pij Lk &j - (||.156)

This equation is also valid only under the homogeneityhefelastic constants inside the
domain of the dislocation loop that is equivalent todimle®. An example makes this
Clearer:

In a body Il, let a small region | of another niakbe forced in such that one can
associate the boundary surfaicevith unit normal vectom between | and Il with a
dislocation jumpg using eq. (1.77). In this cass, g is the associated density of the

dislocation dipole in the boundary surface aﬁh g; df= Q; represents the total
f

dislocation dipole. We let the volume of the inadunsgo to O with a decrease Insuch
that Q; remains finite. The associated force dipole (we rassthat the higher poles
vanish) gives the forces that the included region Itexan its surroundings. For a given
dislocation dipole this will be greater for harder usibns. Indeed, one can now write
down an eq. (11.153), but thg in it may be identified with the elastic moduli of either
or I, while first there is an elastic boundary-valuelgem relative to the boundary
surfacef in order to obtain the correct values for the.

In the practical applications of these consequences (®84)is especially interested
in the case in which elastic homogeneity is not preattihe location of the inclusion.
Eqg. (11.156) then remains valid, but not eqg. (l11.155). Oneogaizes this best In
connection with a method by which Eshelby [38] determinael force on elastic
singularities in an elastic field.

Let a body with outer surfac® be endowed with outer surface forcag; that
provoke dislocations® and stresseg; in it. Furthermore, it includes a singularftyat

the locationx' that gives rise to additional dislocatiogs and stresses;, and a second

! The homogeneity is not guaranteed when the relativecditibng goes to infinity, since it corresponds
to taking the limit (11.151). That is, eq. (11.156) is, fast, only true for dipoles of infinitesimal strength.
Indeed, it is only for this case that the Peach-Kerefdrmula is also exact. The conclusion of the vBlidi
of eq. (11.156) follows for finite dipole strength (dinfra).

2 The notion of “singularity” is used rather broadly hese one can also treat, e.g., a collection of
singularities, or at least arbitrary currents that ecallzed to a sub-region of the body.
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singularity with the corresponding quantitigs and a'i‘]. . The force on the singularity
will be defined by the relation:

Ki=— (dW?/ d¥+ dW/ dy = KF +K+K], (11.157)

which is equivalent to eq. (11.146), and in whidkV' / dX consists of two pieces:K°=
dW"/ dx is the so-called “image force (Bildkraft)” —i.e., tfgce that the singularity on

the outer surface exerts on itself — whil= dW' / dx is the force that results from the

change in interaction energy of the two singularitigaurthermore, the validity of the
last-mentioned theorem of Colonetti for the mediangquestion will be assumed. Next,
one obviously has:

dW? = dxjjaif‘a—sf ds (11.158)

jj 63 ds, (11.159)

What is definitive for this part is those additionallatsitions that the outer surface of the
body will experience under a shift of the singularityotigh dx . The corresponding

expression folK” was derived by Eshelby to be:

ﬂ o gs (11.160)

This form is plausible since the image force does indeedrathe outer surface. Since
the expressions (11.159) and (11.160) are completely indeperafethe existence of the
second singularity, one can, without changing the valtigniegral, contract the

integration surfaceS, to a closed surfacé& that now encloses only the moving
singularities. After some conversions, one obtaihsngans differentiation by):

K +KS= jj[(s +9) a5 ~(g*+g") $1 dS, (1.161)

where s”, o7’ means the dislocations and stresses that the singsavibuld have in an

infinite medium. Eshelby could now confirm that fbece K can be represented in the
same form such that it ultimately yields the totatér

K= jj(s " -g ) dS, (1.162)
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wheres = s+ ¢ + ¢, corresponding tai . Eq. (11.162), with further conversions, may
be written in the form:

1
Ki= [[m; ds, M == 0 i+ 2 O d (1.163)

In analogy with the situation in electrodynamics, Hsphealls the asymmetric tensbf;
the “Maxwell tensor of elasticity.”

Egs. (11.162) and (11.163) are valid quite generally. Esplgciatportant is their
application to pointlike singularities. By contraste line element of the dislocation will
not be included, since one can draw a small closed suBaamund it that lies
completely within a region with no sources of intersi@esses. For our purposes, the
meaning of the Eshelby equations rests upon the fact ehatrigularity required in them
is, to a certain extent, not defined at its position,dbome distance from it (through the
dislocations that it provokes there when the mediumnfisitely extended), where the
same sort of behavior rules as at the center dSittgularity. It thus makes no difference
whether, e.g., the force dipole arises from a weakrong inclusion (from eq. (11.89),
this is indeed definitive for the displacemesi). All that matters is the magnitude of the

displacement that it produces on the surf&ce However, this is, from eq. (11.89),

proportional to the force dipole. From this, one imiaesly concludes from the general
validity of eq. (11.156) that when it is true for onesea(no inhomogeneity at the location
of the inclusion) it must also be true for arbitraromogeneities.

One can now further develap ands in eq. (11.162) in a Taylor series and come to
our formula (l1.156), after some conversions in the caflséhe dipole [83]. This is
likewise the proof that eq. (11.156) is also valid foritendipole strengths. Eshelby [38]
carried this computation for the special case of theadled dilatation center (cf., Love
[95]) P; = Pii > 0, which is particularly interesting, since an atointype B in a lattice of
type A can often be described as such a center (§ 31).

One can now calculate the work that the fokgein eq. (11.156) will do under a
change of position for the dipole from a point withlrddformation to a point with the
deformations; and obtain:

I K, dx =[Py O¢ & dxc =Py ] Ok & dx =Py & . (1.164)

& =0
This work is obviously independent of the path. Thus,cameinterpret the expression:
Uu=- Pij &ij (||.165)

as the potential energy of the dip#igin the deformation field; . In the case where no
other proper stress sources besiBgsire present?; & is equal to change in potential
energy of the boundary force plus the change in tliiesergy of the dipole as a result of
the changing reaction with itself that goes over therosurface. The sign in eq. (11.165)
says sensibly that, e.g., a compressive inclustrr (0) in a compressed part of the body
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(& < 0) yields a positive energy. One sees furtheriththhe case of volume forces no
such simple formula like (11.156) can exist since sucghde have no potential in general,
and thus can yield no path-independent intelgfaldx .

From eq. (11.165), the formula for the rotational momknbn a symmetric force
dipole P; follows easily. If we write this a8; = I; P;, corresponding to eq. (11.90), then

the change d; under a rotation through an anghe , is, sincedl = do x|, dP = do xP
1.

dRy =dli P+ |; dB = (& || P + & |i Pr) do
= (& Py + &ga Py) dok . (11.166)

On the other hand, the change in potential energy oflij@le under an infinitesimal
rotation is:
dU=-Lydox=- &j dP.j ==& (& Py + &ga Pi) dok . (1.167)

Due to the symmetry &f andP; , we thus immediately conclude that:
Lx = 2&n Py &; . (11.168)

The domain of validity of this formula is the samdaseq. (11.156).

In the case of a homogeneous inclusion (this shall rniestrelastic homogeneity is
disturbed at the location of the inclusion), a furthBea comes about that was first
precisely examined by Eshelby [38] and Crussard [27], namelyptharization” of the
singularity?. The simplest case is a stress-free body witlhelnsion of another material
that fits precisely into a cavity in Il without pressur&ow, if the body were, e.g.,

endowed with outer surface forces, then a force dimjﬂ% would be induced into the

inclusion, where eq. (11.156) is likewise to be applied] &shelby can then show that
one again obtains an expression like (11.163). One thgproariately defines a
polarizability Ry by the equation:

P™ = Ry &, (11.169)

whose determination is fundamentally, and also forsthallest inclusions, a boundary-
value problem relative to the boundary surface to beedoFor the case of a spherical
inclusion with elastic isotropy one obtains elemensanytions after Eshelby [38], [46]

It is now clear that one can represent the elagmatement of an arbitrary pointlike
proper stress source in an infinite medium by the equation

§ =Py 0j Si + P 0 Ok S + ..., (11.170)

! Here, it is assumed that the self-energy of the digimés not change during the rotation.

2 See also, the further work of Crussard [28], Eshelby, ] Teltow [151].

3 Eshelby [165] could recently show that the stress fielfided in an ellipsoidal inclusion is
homogeneous when the induced stress field is homogenealsrgé distance from the inclusion (which is
also true for elastic anisotropy). A corresponding tdsulthe polarization of an ellipsoidal dielectric is
indeed well-known.
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from which the proper stresses can be calculated insi&l way. Now, a quadrupole is
nothing but two juxtaposed dipoles, and analogously for theehigoles. That is, one
can describe each such proper stress source by a ceralrination of force dipoles.
They are, in their own right, again nothing but dislaratioops of infinite extension.
Thus, one has the theorem that was already citdeifrdreword: All proper stresses in a
continuum will be provoked by dislocations. In 8§ 14, thiadreAll proper stresses
originate from incompatibilities. This is still true npwnd is in harmony with the
theorem above. Then, from (II.51), the incompatilesitiowe their origin to the
dislocations. One can thus refer to the dislocabiothe incompatibilities as elementary
proper stress sources. However, a consequence isatBmesht, which is identical with
eg. (11.17): The dislocations are the roots of thetealstortions, just as the forces are
the sources of stresses.

On the other hand, one can also describe continuouguligins of proper stress
sources- hence, dislocations by a spatial distribution of such pointlike sources.eOn
can thus, with equal right, declare the force dipolebe elementary in proper stress
theory. The situation is the same as in the (staypnilaxwell theory. There,
infinitesimal current loops and magnetic dipoles aravadgnt. Nevertheless, one gives
preference to the electric current. They alone anterthe actual Maxwell equations. In
this sense, we have also the given preference to shecaiion and thus, as we believe,
obtained an impressive representation of the continuuchamécs of solid bodies.



Chapter Il
Dislocations in crystals

8§ 20. Generalities

This chapter presents applications of the continuum yhebdislocations to real
bodies, the most important of which are crystallinaicttres. Heretofore, physical
problems of this type related primarily to individual stigls, while the carry-over of the
results obtained to the polycrystals that are geneealyilable in technology has still
come only so far. Thus, we will first restrict olvss almost completely to treating the
problems of the unit crystal, but let it be expressiyarked that nothing fundamental
stands in the way of an application of continuum thedrgislocations to polycrystalline
bodies, so we shall likewise return to them once more.

An essential difference between a continuum anddy bimat consists of individual
mass points — like crystals, for instance — is th#thénlatter no volume element is defined
initially.  In a continuum, the distortion of the volenelement is the distinguished
geometrical quantity, while relatively little is saidcaib dislocations. However, in a
point system one has primarily a displacement of pa@intsseeks to construct everything
from that. Moreover, that quickly shows that one galhedoes not succeed in this way,
since the required number of degrees of freedom is n@nedt Rather, one has to
consider the relative displacement of any two neighbaatogns. From the conclusions
of 8 21, it easily follows that a distribution of suclat&ve displacements has three times
too many degrees of freedom, like a distribution of daions. One can then develop a
theory of dislocations in crystals with complete ps&ai (8 21), where one generally
does not obtain differential equations, but difference émpusmt Moreover, since the
number of points (atoms) in a crystal is outrageously largecan, for many purposes,
write these difference equations to a best approximasatifferential equations, and one
must also do this, in general, since otherwise the profght no longer be numerically
tractable.

This process is particularly sensible for the numermuisroscopic” problems of
crystal physics in which one is perhaps interested inb#tevior and properties of
individual dislocations. However, for the macroscqpicblems one must deal with the
collective effects of very many dislocations, so iattlease it is natural to introduce
certain “physical” volume elements whose propertiestrenserge from the following
considerations:

The assumption of the applicability of continuum medt&to real bodies is, on the
one hand, that the forming of the volume element aammieasured as a continuous
function of the position. Thus, the volume elemdralisbe sufficiently small compared
to the external dimensions of the body, since otherase could no longer formulate
differential equations. On the other hand, actual @ide climb planes are discrete and
microscopically fairly far apart from each other,ash their distance and the content of
the glide (climb, resp.) that follows from them angbject to statistical fluctuations.
Should such a distortion change continuously from volefeenent to volume element,
then one can only speak of a mean distortion; thisalgth vary continuously only when
each volume element is endowed with sufficiently mdisjocations. If the glide plane
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separation is, e.g., I0cm, and one regards 1000 glide planes as necessary &araah
the fluctuations then a physical volume element must haleear extension of at least
10° cm. In general, one can regard this as sufficiesthall compared to the body
dimensions. For essentially larger glide plane se¢jpasa as one finds in many special
cases, and for likewise small test bodies, the volatesnents computed with the
previous prescription might also then be no longer smaihpared to the body
dimensions, in which case, the application of continme@chanics is no longer sensible.
We see that the theory of dislocations in crystalsindamentally “less precise” than the
continuum theory of dislocations, but still sufficirprecise to justify and suggest their
use. The inexactitude of these calculations naturallgistsin the fact that one then
assumes the physical volume element to be mathenhatichitesimal, which means
that one henceforth regards all formulas of continulkeorty as also being applicable to
real bodies.

This process is very simple and corresponds to the ptocef this book. Another
standpoint is that one constructs the macroscopic egsabbtained in continuum
mechanics from the equations of the microscopic problehen one adds the mutual
interaction of very many dislocations and takes theesgary means. During this
process, one continually remains in crystals. Solidyhadysics is achieved when one
thinks in terms of crystals, and in it the crystal isimaginary body, to a large degree.
Thus, the transition from microscopic quantities tamacopic ones will also be briefly
presented (§ 22).

In polycrystals the deformations of one crystallite @nother generally change
discontinuously, in one case, due to elastic anisotropgnother, due to the plastic
anisotropy of the crystallite, which originates in faet that in each crystallite there is
only one discrete glide system (= glide plane familyspghe associated possible glide
directions), which then comes into play for a defisibear stress If one would like to
have a deformation change continuously from volume eiértmevolume element then
one can again treat only a mean deformation, so ones reepthysical volume element
that consists of many crystallites.

More difficult to resolve is the question of the stuwme curvatures. Naturally, one
can define the rigid (elastic) rotation of a volumaredat compared to the initial state of
an “ideal crystal,” so the concept of orientation tims polycrystal is no longer
meaningful. The problem is now whether the rigid rotatiohshe volume elements
(e.g., in the absence of elastic deformations) tleapegsent in a polycrystal changes the
state of the body. One must then verify this experiaignand macroscopically. The
investigation of this question yields (8§ 23) that, in fatycture curvatures can also be
confirmed in polycrystals. Thus, the continuum thewofrgislocations, in its previously
developed form, can obviously be applied to polycrystals

! This leads to the fact that in general not all tetfises being to flow simultaneously. Greenough
[168], among others, has successfully treated the intergstibems that come about from this.
2 Herr Prof. U. Dehlinger brought this to my attention.
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8 21. The geometrical foundations in crystals: the microscoptheory

We begin with a definition of a dislocation in a stig) that goes back to Frank [47].
Fig. 19a shows a lattice plane of the ideal crystalign Z and Fig. 19b shows the same
thing for the “perturbed” or “real crystal” of Fig. 3. tLéhe difference between the
position vectors of two neighboring atoms in Fig. 19a aheé & (', resp.). One now

forms the sumz ox' along an arbitrary closed pathin the real crystal. One thus starts
¢

from, perhaps, the poif, goes from atom to atom seven steps inxghéirection, then
four steps in theg-direction, etc., along an arbitrary path backPto One then repeats
the same program (hence, seven steps ixsta@ection, four steps in the-direction,
etc.) starting from the poim in the ideal crystal that corresponddtdcircuit €). Along

¢, when the circuit goes around a dislocation linehwvifte step by which one again
arrives atP' along the circui€’, one does not also come backR@orrespondingly, as
the figures show. We now determine that the @atshall encircle the dislocation line in

the right-hand screw sense. The ved@ = ¢b from the endpoin@ of the path¢ that
corresponds t@’ to its starting point is then characteristic of thiocation that encircles
¢'. One can thus define the dislocation with the help of“friank-Burgers circuit™.

& will be called the Burgers vector of the crystal dialimn. Further considerations will
yield that it corresponds to the Burgers vector in dicoam.

We can think of the dislocation in Fig. 19b as migratirgmf the right into the
crystal. Thus, any two neighboring atoms, between whiehdislocation wanders,
experience a plastic relative displacemént= — & 2. If we then form the circuit sum

> 39 we obtain:
¢

> dg=-0. (111.1)

This equation corresponds to eq. (1.12) of § 3 exactly. ,Téws must now observe the
following: As long as the circuit was definedy will henceforth be a so-called lattice
vector; i.e., a vector that points from one atorartother atom (in an ideal crystal). This
is a physical requirement: The plastic relative @dispment of the atoms under the
migration must result in such a way that the reguiemgement of the atoms, except for
the center of the dislocation, remains the same yed®@mre; an irregular atomic

arrangement over surface-like or even three-dimensioegions would imply an

! In the literature up to now, the Burgers vector of tutaited dislocation was mostly denotedok{glso
in Fig. 19a). From the continuum standpoint, the ratadb (cf., infra) is more recommended. One
should look for no deeper significance in this notation.

2 |t is not unnecessary to add that for all of the reingipairs of atoms one must demand @it 0.
The minus sign corresponds to the convention thah@we hand, the directional sense of the dislocation

line is chosen such thdt(¢’, resp.) will be a right-hand screw circuit, while, the other handgg shall be
the relative displacement of the atom on the positde ef¢ compared to that on the negative side.
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extraordinarily large increase in the internal energythef crystal, and is therefore
“forbidden.”

B35
seese
100,00

3K
)6

Fig. 19. On the explanation for the Fr-Burgers circuit. The
symbolP in a refers to an atom that is further to the right.

On the other hand, one cannot exclude a certatiasgxtension of the especially
strongly perturbed region in the immediate neighbod of the dislocation from the
outset. That is, one can indeed assume thataae tlistance from the dislocation center
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the atoms affected by the dislocation have already rexqped the entire relative
displacementdy, although for the atoms that are found close to théecame cannot
necessarily say this; i.e., the transitiondgfbetween the values b (in Fig. 19b) to the
right of the dislocation and zero (to the left oé tHislocation) does not need to result
abruptly from one atom to another, but it can take ptac a region of, e.g., two or
three atomic spacings. This would correspond to our prsviconception of a
“dislocation width” 2. In order to include this possibility we would again likeassert
that the dislocation is composed of superficially distieéd threads of infinitesimal
strengthdb, where one must hay@b = J for the dislocation. Each thread then gives a
relative displacement throughdb * of the atoms between which it migrates.

Now, suppose we have a crystal in the ideal initiakstafet its atoms be numbered,
say, consecutively, and let the relative position of tany neighboring atoms be denoted
by ox . We letdy; denote an, at first, only imaginary relative disglaent of the atom
on the positive side alx compared to that of the negative one. ThusdUgk) be given
in the entire crystal, where is the location of the atom that lies on the negaside of
o in the initial state. We would like to allody; to be arbitrarily discontinuous, such
that, in particular, after performing the relativepdegement the crystal no longer needs
to be connected. Only the possibility that two or maiems might fall upon the same
point afterwards shall be excluded.

The question is now: Is it possible at all to bring thystal into such a state that, in
fact, two atoms have always experienced the prescdispiacement difference @ty ?
The answer reads: In general, this is not possiblee deady sees the essence of this in
a planar “crystal” that consists of only four atom1,

3, 4. Namely, if one prescribe¥; for the atom pairs

12, 23, 34 then the mutual configuration of the four

e e atoms is already completely determined, and a possible
choice for the last atom pair 41 is no longer arbitrary,

but must depend upon the first three choices (Fig. 20).

X2

_Xl) The next question is: What are the restricted
conditions that théu; must be subject to in order for the
o e production of a state described by theto be possible?
One immediately sees that the sum of the taken
Fig. 20. Plane ‘crystal’ along an arbitrary path from an atanto an atonb

consisting of four atoms.  must be independent of the path; i.e.:
The atom pairs 13 and 24

are not neighboring atoms.

> =0 (I11.2)

for an arbitrary closed path that is carried out ind®al crystal. From eq. (11l.2), there
follows the existence of a functiom(x;) that can be arbitrarily discontinuousy; is
naturally the displacement of the atom, which is letvglued up to a rigid displacement
of the crystal.

Let the “microscopic” distortion tensgr= ();) be defined by the equation:

! For Frank, the circui¢’ is to be completed at a sufficient distance from tistocation center, such
that all dislocation threads lie inside of the circi¢e will not insist upon this in our investigations.
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A = ) K . (11.3)

We explain this as follows: A certain atom can be tbanhthe positiong; . Its three
neighbor atoms in the direction of the positieaxis have the positions (in an ideal
crystal)x; + & . These four atoms, which define the basic triadHerattice, succeed in
sensibly defining and clarifying a distortion at the poéint From eq. (lll.3), e.g., the
appearance of a distortiop; means that the two successive points separatedkiby
experience a relative displacemeXt in thex;-direction, i.e., a positivg4; is a rotation
of the triad in theg-direction (Fig. 21b). Correspondingly, one sees, that., )51, means
a shear of the triad as in Fig. 21c. In the case aflsfistortions the symmetric part gf
is a pure deformation and the anti-symmetric part is aqotagon of the triad.

X3

Fig. 21. On the definition of the microscopic dision tensor.

) If we substitute eq. (111.3) into eq. (lll.2) thenfdllows, with Stokes’s theorem, that

(‘Rot pi = ijk% =0. (111.4)

Our distortions, which satisfy eq. (111.4), are actugissible in our Euclidian spaée

The application of Stokes'’s theorem is also meaningfiihé case of discretely distributed points and
arbitrary discontinuous relative displacemeftis as one can already show in the example of four atoms i
Fig. 20. All points shall remain in the plarg= 0. The following distortions are then defined adow to

eq. (II1.3). For point 1811, Bi2, Bo1, Bo2; for point 2: 5, [ ; for point 3: none; for point 46,1, [ .
Formally, one has:

_ 0B, 9B, _0B, A&
Rot = T2 T Rot = 22 T2 I.5
(Rot B)a1 5% ox, (RotB)szz " (111.5)

as both being non-zero, or, when written as a diffezeequation:

! By °Raot, it shall be implied that one is dealing with eliince equations in atomic space.
2 However, to each arbitrary distributialy; there is a non-Euclidian space in which this is fbbssi
Thex are then the coordinates of this space; e.g., acgugace in the case of a two-dimensional crystal.
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— ,321(2) - :321(1) _ :311(4)_ :311(1);

(Rotﬁ)31 5X1 5X2
(Rotmsz — ,322(2) _:322(1) _ :812(4)_ :312(1). (|||.6)
0%, 0%,

The same thing happens as before for the distortion coamp® that were established by definition. After
multiplication bydx; &, , one obtaing ox §; . Thus, in total, when we writd-, for o Jx , we have:

i (Rot By =2 & G, (111.7)

i.e., Stokes’s theorem.

The previous considerations were of a purely geocae nature. Whether the
relative displacement of two atoms implied reactifmrces was not mentioned.
Henceforth, we consider the process of the immignadf a dislocation into the ideal
crystal of Fig. 2, which will be then brought intee state of Fig. 3 or 5. If one makes a

circuit ¢ in an ideal crystal and one meanwhile sums theeafentioned relative
displacementy; between two atoms then one will have:

> g, =~ dy, (111.8)

if the circuit &' that corresponds té after the migration of the dislocation encirclas t

dislocation; in the other case, one Rasgy; = 0% From eq. (111.8), it follows that the
plastic relative displacemed®; in does not fulfill the conditions (111.2) in a cstal with
dislocations. Now, Fig. 3 and 5 show intuitivehat a dislocation in a crystal is always
surrounded by a region of elastic deformation. \d&note the elastic relative
displacement of two neighbor atoms & . We would now like to call the total relative
displacement®® and combine the elastic and plastic displacements:

Js’ =g+ &y, (111.9)
SO one has:
D.9s°=0 (111.10)

for each arbitrary closed path. From this, thetl®Ws the existence of a functimﬁ(x)

that gives the difference in position of a certatom in the ideal state and the
“dislocated” state up to a constant displacemenat th common to all atoms. The
existence of this function, which does not needbeocontinuous, is a result of the fact
that the operation that takes the crystal from, ¢hg state of Fig. 2 into that of Fig. 3 or
5 is possible in Euclidian space.

! One can, in place of the ideal plus real crystals) etsisider only one ideal crystal in which the
dislocation migrates, as a result of the inhibitiont tagfirst no distortion is present. In this sense,
dislocations can also be brought into ideal crystalshem\tegarded in this way, one also easily obtains
equations for arbitrarily large distortions. Cf., § e beginning.
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Furthermore, we define the generally asymmetric tensérémicroscopic) total
distortionﬁ‘3 = (,8”.6), elastic distortiong = (5;), and plastic distortio;tiiP = (,Bijp) by the
equations:

s’ = [ oX,, & = &, &y = Brox, . (I11.11)

We must then first explain to what extent one sdwydibks the elastic and plastic
distortion at all, since this, just liké; and dg; , naturally represents precisely the same
operations that are not, in and of themselves, possibEuclidian space. One now
remarks that any such operatidn, which only relates to a triad, can be performed in
Euclidian space, so only after one adds more aterasy., constructed from a cube of
eight atoms — will the restriction (l11.2) be effasti Obviously, this connected with the
fact that a triad, to a certain extent, can have slhtion in its interior, while, e.g., the
aforementioned cube can (ahfra).

If we substitute the third of eq. (111.11) in eq. (I)l.&hen it follows with Stokes’s
theorem that:

> OR(°RotB") =~ &y, (1.12)

whereF is a surface that spads This result is then sensible when the circuittaots
only four atoms. One then writes eq. (111.12):

(Rot ) =- &y 1 &Fi, (111.13)

in the event that one assumes that all threadseotlislocation run through the surface
elementdF; that is spanned by the four atorhs & | JF is then obviously a mean
surface density of the dislocation thread in thendim of &~ . This statement is then also
valid when some of the threads of the dislocatienoutside ofd~ , as long as one
understandsh; to simply mean the total Burgers vector of the adsethat run through
& 2. In other wordsdb; / & is the (microscopic) dislocation density, so w ita;
and write eq. (I11.13) as:

Rotf =-a. (111.14)
In the case where many dislocations run throughsthiéaceF of eq. (l11.12), it is the
total Burgers vector of all dislocations that riinoughF that appears on the right-hand

of this equation.
Due to eq. (111.10), one naturally has for theatatistortion that:

fF=p+18, (111.15)
Rot =0, (11.16)

and:

! In the sense of footnotef pp. 2.

2 In § 25 it will be shown that one can calculate tgtritiution of dislocation threads in a dislocation
approximately, the result being that by far most ofttireads of a dislocation lie inside a cross-section of
magnitude pF |.
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and we thus obtain the (microscopic) fundamental gemrexuation of the crystal as:
RotfB=a. (11.17)

This equation states that the presence of dislocatioosystals is always linked with
elastic distortions, since the plastic distortionst tbnter into migration or formation of
dislocations are, by definition, in themselves not fmssh Euclidian space

§ 22. The fundamental geometric equation in a crystal:
transition to the macroscopic theory

In this paragraph we would like to make the transition fromeroscopic to
macroscopic quantities. Thus, we first define the maogms (= physical) volume
elementAV, which shall be the minimum of the quantities requireg 20 for the initial
state of an ideal crystal. The term “element” expgeshe idea that, on the other hand,
the test body shall contain a very large number of sattime elements.

Here, we come to the dislocation tensor. It iackat we now no longer need to
concern ourselves with the thread structure of individiglbcations, since we can, as
before, describe them by their unit tangent vector and Bsikgeetor; i.e., through J&; .
Due to the enormous number of dislocations that appeal @énystals, one can naturally
no longer give the trace and Burgers vector for eaeh |

We now ask ourselves how a state with very many ehsions running very close to
each other can be described most simply and complet@lyviously, such a mean is
sensible when we give at each poinof the crystal, the numbers®) of dislocations
with the directiont® and Burgers vectah® go through each directed surface elendemt
at x, where the surface element shall indeed be so larget thdk be filled with many
dislocations; in other words, the numbif8 change from one surface element to another
only slightly. One can then say that the dislocatioun through the surface elements
with a certain density.

We letAb denote the total Burgers vector of all of the dislocatithat run through
AF. ltis:

Ab =% N*db". (111.18)
a,b

One observes thatb does not change when one, e.g., doubles the nurhB&rand
simultaneously halves the associated Burgers vectoe trahnsition from a continuous
distribution is now to be performed in such a way that @lways simultaneously lets the
numbersN® increase while the Burgers vectors go to zero, such hbatotal Burgers
vectorAb remains constanit

In a macroscopic theory, one now no longer envisgodscrete distribution, as will
indeed be represented by the numiéfs That is, one must restrict oneself to regarding
the total Burgers vectadkb as given. For crystals this is an actual loss, whererally

1| thank Herrn Prof. E. Fues for his critical remarks my earlier work, which gave rise to the
presentation that was given above.
2 This passage to the limit was first carried out by [yi3].
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can again be corrected only by some additional crygtalfthic consideration. That
comes from the fact that the Burgers vectors can assunty discrete values, and for that
reason the dislocations actually take on an isolatedacter'. As a result, for many
purposes we are also interested here in precisely gromegements of dislocation lines
of the particular type that was described in eq. (111.18).

When we know the total Burgers vectors of all ofdisocation lines that go through
each surface elemeff, we are then oriented towards the dislocation stateprevious
restrictions. We are, moreover, in a position toindefthe macroscopic tensor of
dislocation densityr = (a;) with the help of the equation:

Abj = qij AF; . (|||.19)

Since, by assumption, the path of the dislocation ssertially homogeneous in a
neighborhood of the surface element, we can assumeéstbeations to be straight inside
the volume elememV. In addition, we would like to assume that the digtonsa;
intersect the surfac&F; perpendicularly. Indeed, real dislocation lines do noegsly

do this, so we have indeed passed over from the distnibafitotal Burgers vectors to
the individual dislocation lines of different types acling to eq. (I111.18) from
crystallography. Our macroscopic dislocation limgghus run in the-direction and all

of their Burgers vectors are in thedirection. As a consequence, the diagonal
components ofrj(x) at the positiorx represent the previous screw dislocations, while the
remaining components represent edge dislocations.

The macroscopic dislocation density in a crystal gy intuitive quantity, so it
indeed directly represents a family of lines, as in Bigand 5. Its flux through an
arbitrary surfacd- — i.e., the dislocation flux — is equal to the t&®atgers vector of all
dislocation lines that run through and from eq. (111.19):

b= ”AF [ar . (111.20)

We come, moreover, to the connection between theostopic and macroscopic
distortions. For this, each pair of neighbor atomshi crystal in the initial state can
again be first thought of as having been subjected tativeedislocationdy;, as before.
Now, let & be homogeneously distributed inside of a volume ele@mposed of very
many atoms, which we would like to calV (in order to distinguish it from the
previously employed volume elemeAY; cf., infra), so it may change discontinuously
from one element to another. Fig. 22 shows a sim@eple.

! with fewer assumptions, one has the theorem thatuhgeBs vector must be not only a lattice vector
(8 21), but the smallest possible lattice vector, in rofolethe perturbation at the dislocation center tb no
require too much energy (this is certainly true idr § 18). Three discrete Burgers vectors are then
possible in a primitive cubic lattice; in a cubic fammtered lattice, there are six.
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Fig. 22

We can characterize the geometric state of all atomFig. 22b by giving the
(microscopic)y; that were defined by eq. (111.3) as functions of theifpons of the atoms
in the initial state. One then obtaips and )41 non-zero, whergs; depends only upox,
while J4; is non-zero only for atoms that bound the elenddhbn the ;-side, and there
it depends only uporx; . The conditions (Ill.4), which naturally must be filied
everywhere, are then written:

Vo _Nu_ (111.20)
0%, 0%

The functiony; can be obtained from eq. (l11.3) for a knoynup to a rigid displacement
of the crystal.

Another description of the state of Fig. 22b would [z time now always gives the
distortion for the entire volume elemed¥, since, by assumption, it is constant inside of
it. We can consider this to be a definition of thecraacopic distortion. The diagonal
components will be functions of the position in theiahistate that measure the dilatation
ratio of the elements in the initial state, while tieenaining components measure the
tangents of the shear angles. In the interior ofomdgeneously distorted volume
element, each atomic triad naturally has numerialynany (microscopic) distortions as
the element (macroscopically). For an element of Z2ip, only)s; is (macroscopically)
non-zero. Letlx =n J; be, e.qg., the distance from two neighboring elemé¥its the
initial state to the center of masslys; is then numerically equal to valu®s; in the
boundary surface, thudys: / dx is numerically equal to the valu®s: / n o = dpi1/ n
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o, in the boundary surface. For given macroscogi:), one can thus microscopically
regain y4i; on the boundary surface, up to a constant. It likeviadlews that for
macroscopigs , in general, the statement:

(Rot pi = &, % £0 (111.22)

J

is valid, in contradiction to the microscogic. The condition for Roy = 0 to be true
obviously readsdyi / ox: in the previous example; in other words, there can be no
variable source in the boundary surface of the volunmezie We shall come back to
this.

The previously assumed homogeneity of the distortiaders volume element that is
composed of very many atoms is not given for real peasesf plastic forming. One can
thus assume, for a sufficient larg¥, that at least a mean homogeneity exists, which
might perhaps be known empirically, and that after beurttgout the outer surface of a
distinguished volume elememtV is not noticeably deformed under forming or also
relaxation (in the other case, the assumptions Her applicability of the continuum
theory stated in § 20 are not fulfilled).

Thus, we can identify the physical volume elenditvith the mathematical volume
elementdV that was used in 8§ 3, in which there is now preciselyrigractitude that we
described in 8 20. For these elements, we define, as befdge2, the tensors of

macroscopic total distortion, as well as the elaatid plastic distortions3®, 45; , 5/ .
Previously, we found that the equation:

Rotf°=0 (11.23)

is necessary when the body shows no rip after forrhing/e see that this macroscopic
equation says something entirely different from the oasicopic equation (I11.16):

Rot = 0. (111.24)

This insures the possibility of the operation in Euclidsgace. One thus does not speak
of the formation of a rip, and in fact, the conceptrgd”’ is not even defined in a system
composed of discrete points. In contrast to thiswag in which the distortions of the
macroscopic theory were defined thenceforth insures thabplag of the operation in
Euclidian spacé, and indeed this true not only for the total distortiont, &iso for the
elastic and plastic distortions. Additionally, onemcomes to the restriction (111.23) that
hinders the formation of a rip.

! The function®, when restricted by eq. (111.23), is naturally alssoéh a type that one never expects
that parts of two neighboring elements will be foundhatdame place. If one refers to the piece of space in
which (as is only hypothetically possible) partswbtvolume elements are both found (i.e., they overlap)
as the “negative rip” then in this case one doesaivweys need to expressly mention the normal “positive
rip.”

2 Otherwise expressed: A forming that can be describéttié help of a macroscopic distortion tensor
field can be carried out primarily in Euclidian space.
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One observes that the macroscopic plastic distoif also an operation that can be
performed only in Euclidian space alone, so generallgdmaectivity of the space is not
disturbed, since Rgf” # 0. From the remarks connected with eq. (111.22), liofes that
wherever one has quf # 0 there exists a linearly varying plastic displacensentrce
between the volume elements, and from § 8 this is @@y case wherever dislocations
remain in place between volume elements in a constantyleffsone performs a circuit
around a surface elemeffF in the initial state that is composed of many elemdfts
then one obtains, as in 8§ 3, the total Burgers vectoeotdhserved dislocations:

b =- [dx g7 =~ [[dR (Rotg"), =~ AF(Rotfq, (111.25)

when one assumes a homogeneous distribution offRat the domain ofAF. After
comparing with eq. (I11.19), one again obtains:

Rotf =-a, (11.26)
and after combination with eq. (I11.23), the fundamtal macroscopic equation:
RotfB=a. (1.27)

Here, we calculated in such a way as to suggastlie dislocations remain in place
between volume elements. In reality, they remainplace spatially, as well as
superficially. If we then pass to the lind - O, the superficial arrangement between
the volume elements will indeed become a spatrahgement.

We spoke of the case of linearly varying plastgpthcement sources, but not of the
case of constant displacement sources. For suitlegnthe volume elements will be
macroscopically dislocated opposite to each oileer;the displacement of the points of
the medium will be macroscopically discontinuodsis case does not seem to suggest

any particular practical interpretation, so we wblike to consider it no further

8 23. Planar configurations of dislocations in crystals

In this paragraph, we treat an application ofibendary surface equations of § 8 and
9 to crystalline bodies. One calls the boundanyase between two crystallites, which
are distinguished only by their orientations, tgeain boundary.” Such grain boundaries
arise, e.g., during the growth of crystals from pinecess of melting. Growth is found to
come about from any statistically defined seedshelVtwo neighboring seeds have
different orientations and grow they ultimately gertogether, and along the boundary
surface there exists a region of atomic disordévhen the difference in orientation
amounts to no more than, say’,26ne can distinguish individual dislocations i tirain
boundary that mediate the transition from one adaigon to the other. A simple example
is shown in Fig. 23. The associated configuratmin dislocations is indicated
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schematically next to t. Here, one treats a wall of edge dislocations wiisgjers
vector is perpendicular to the plane of the wall. idoev, a wall of edge dislocations
with a Burgers vector in the wall gives no differengeorientation (Fig. 24, next page).
Such dislocation walls appear in phase boundaries (8 32)n@n-constant density as a
build-up in glide planes’ when an obstacle blocks the further migration of the
dislocations.

X1

Fig. 23. Grain boundary of the first type. Thdfatience in
orientation between the colliding grains ig||/ d, if d is the
distance between the dislocations. This followsrfteq. (111.32)

1 A straight edge dislocation that runs perpendicular tgkiee of the paper will often by denoted by
the symbol] .The two lines of the symbol give the glide plane andieddattice planes of the dislocation
in an easily understood way. The dislocation in Fig.\W8bld thus be denoted hy.

2 One calls them “glide zones.” The calculation of thslocation distribution in a glide zone is an
interesting mathematical problem that was solved undeous assumptions by Eshelby, Frank and
Nabarro [166], and Leibfried [89]. Leibfried showedter alia, that one can employ a continuous
distribution of dislocations in place of a discrete am@tgood approximation if the glide zone contains
only a few dislocations. One then obtains the equlibrdistribution of dislocations as it depends upon
the applied external stresses from a linear integral eguafihe closely connected problem of calculating
the proper stresses that belong to this equilibriumilligion could, for Haasen and Leibfried [169], be
solved in general by integration in the complex plane.e $tresses then come about essentially by
differentiation of the dislocation distribution. Leibfig¢172] has further treated the build-up of circular
screw dislocations in a glide plane. The applicatibthese computations involves the hardening of
metals.
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We next treat grain boundaries. From 8§ 7, we know tladis wf circular screw
dislocations can also serve as grain boundaries. Unéigiyn this is not shown very
well. Two problems appear in practice:

1. Given the orientation difference between two rggaifind the configuration of
dislocations that defines the grain boundary.

2. Given the dislocation wall, find the orientatiorffeience between the two

bounding grains.
X2
Fig. 24.

X1

We decompose these problems into a continuum-thepaatiand a crystallographic
part. In the former, one establishes the macroscagiocdtion densitya, and in the
latter, with the help of that density and the crysgphic condition, one establishes the
microscopic arrangement.

We can give the solution of the continuum-theoretgatt immediately. A grain
boundary is, from the above, defined by the orientatidierénce between the grains
alone. Arbitrary macroscopic deformations are thusimailved. (We do not need to
consider microscopic elastic deformations that stem fthe fact that the Burgers vectors
have finite strengths in crystals, at least in thetiooum part of the problem.) Thus, in
our case, the elastic distortigh is simply a rigid rotatiorzy, of the volume element, and
from eq. (1.67), one will have:

kil —axna|=a,. (111.28)

In the case of large orientation differences, one meglace thew with the rotation
tensor of eq. (1.94). For small orientation differesicits symmetric part is negligible,
and one can take, in place of the anti-symmetric gagtassociated rotation vector:
W = &k G W) = ik Ok - (11.29)
From eq. (111.28), one then has:
ik Em Ni & |1 = &k §m Ni n |1 = 4, (111.30)

and with the decomposition formula (A.2):

(&M an—n a)ln—(dan an—n @) =a,> (111.31)

! One thanks Frank [46] for the general solution of thesalges.
2 This is obviously the boundary surface form of el
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In Fig. 23, only the components and a» were non-zero. Thus, the associated
dislocation densityr; includes only the component; (= 1):

a, =—a|n+al; (111.32)

it is precisely the distinguished set of dislocatiolmscase there exists a rotation between
two crystallites around an axis perpendicular to the darynsurface (“twist boundary,”
in contrast to the “tilt boundary” that was treated \a)p one obtains circular screw
dislocations. If the rotation axis is along, e.g.,xfidirection (onlyn; and «a non-zero)
then from eq. (l11.31) alone, one gets that:

O=a33=a |1 — | (111.33)
are non-zero.

We now show that, in fact, these grain boundaries leatb macroscopic stresses.
For this, it is necessary and sufficient that theaa@fincompatibilities vanish. From eq.
(1.87), it follows immediately that due to the constanrface density of the dislocations
on the boundary surface one lias 0. For/_y, one has, from eq. (I.90/7],= (@ xn)> If
thei; are the basis vectors then one has for the graindaoles of Fig. 23, witlm =i; and
a = a,ij;:

(@i, xi)°=0; (111.34)

i.e., 7 =0, or no stresses. For the circular screw dagions one ha&r = axizi2 + a3
i3i3, thus, sincer: = a33= o :

[Ao(iz iz +i3is) X i1]°= ao(iz iz +i3i3) °= O; (111.35)
thus, one again hag = 0.
However, for the dislocation wall of Fig. 24, one l&as= a,,i 4 ,, and one calculates
from this that:
(Toidd X 11)°= —id g (111.36)

I.e., 1,= — O,,. Inthis case, macroscopic elastic deformationssénedses thus appear.

4 )
!
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Fig. 25. Dislocation wall as a superficial
incompatibility dipole.



§ 23. Planar configurations of dislocations in crystal 101

One can easily imagine the overlZ@ when one traces out the circuﬁtKij dx of §
7, which indeed yields the incompatibilities. Therefore,pwopose that the wall of Fig.
24 emerges from a series of grain boundaries of infim&@swidth by passing to the
limit (Fig. 25). The circuit€ obviously gives null, but not the two circuis and¢”,
which bring an equal and opposite rotation ariglemoreover. The shows that the

dislocation wall of Fig. 24 is nothing more than an cyeidf surface incompatibilities.
One can flip the sign of a family of circular screglocations in the grain boundary

and then obtain a surface incompatibiIiTz)g2 from eq. (lll.35). However, an isolated

family of parallel screw dislocations contributes dae half of/_7, to the other it
contributes an orientation difference. Thus allatiation walls of constant density are

accounted for.
We summarize these results for dislocation waflcanstant density once more:

There are essentially four different situations:

1. Edge dislocations - +— — - |
grain boundary of the first type (tilt)
no long - rangt
2. Circular screw dislocations, Burger veetod line proper stress
direction parallel or anti-parallel in both cases.
grain boundafythe second type (twist

3. Edge dislocations] [ [ [0 [0 [

4. Circular screw dislocations, source of long -range proper stres:

Burger vector and line direction( g orientation difference.
parallel in one family and anti-parallel
in the other.

For non-constant dislocation densities in a wallydase incompatibility7 appears
that is always linked with stresses

In conclusion, we would like to treat the questioatttivas posed in 8§ 20 on the
structure curvatures in polycrystals. One might have,gpsththe body of Fig. 14 in a
polycrystal that shall suffer the dislocation migoatthat brings it into the configuration
of Fig. 14b when one has first cut the layers apart feaoh other. In reality, it remains
connected and comes into the state of Fig. 1. The quoastnow whether the crystal in

! Let us mention the further work of Read and Shockley [1&&vell as that of van der Merwe [100],
in which the energy of a small-angle grain boundary easulated elasticity theoretically (as a sum of
proper and interaction energies of the dislocations furated the grain boundaries) as functions of the
orientation difference. For some interesting new apfbios of the theory of superficial configurations of
dislocations, cf., Bilby [3], Biloy and Christian [6], Baligh and Bilby [14]. The last two papers
mentioned include applications to the important phaggations of martensitic type.

Furthermore, Bullough [162], with the help of the aforatramed theory, has given an explanation for
the observed twinning structure in crystal lattices afrdbnd type.
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Fig. 1 is still an ideal polycrystal or not. In thétés case, one must be able to confirm
this Réntgenographicalfy

We have seen that one can regard grain boundaries asokalislocations. Now,
this is true for not only small orientation differencesich are special only in that one
can still distinguish the individual dislocations. Qi@ meanwhile propose that, e.g., in
Fig. 23, enough dislocations migrate and come to reshemgtain boundary that one
ultimately obtains arbitrarily large differences imiemtation. We thus employ the
theorem that grain boundaries are fundamentally supérficanfigurations of
dislocations. Then the phrase “ideal polycrystal” implies a veEined requirement for
the dislocations of the body in the stress-freeestatt can only be the following
requirement: The Burgers circuit around an arbitrary saridementAF that intersects
very many crystallites must give ndll The ideal polycrystal can be defined by this
prescription perfectly. From this, it immediately folle that the body in Fig. 1 is no
longer an ideal polycrystal, and this must verified, &gdntgenographicall§.

For strong bending, the thickness of the dislocatialt in Fig. 1 is smaller than the
mean linear dimension of a crystallte. Then, a nundfesuch dislocation walls run
through most crystallites, which leads to a mean curvaititbe lattice planes. This
manifests itself as an asterism in Rontgenographic ptisor Thus, it is sufficiently
explained how macroscopic structure curvature can @sobfirmed in polycrystals.

8 24. The dislocation types of face-centered cubic crystals

Up to now, we have always considered primitive cubistalg. One thus obtains a
simplified picture of actual phenomena that suffiaasrhany purposes. However, there
are, in fact, no metals that crystallize into prim@ticubic lattices. It is typical of metals
that they aspire to fill up a large space, so it néegpens that, e.g., neighboring lattice
planes stand in opposition to each other, as in primatiN®c lattices, but they organize
themselves into gaps, as Fig. 26 shows in the exampicefdentered cubic lattice. It
thus comes to pass that by far most metals crystatiineonly three different lattices: the
hexagonal closest packing of spheres, the face-centedeid lattice, and the body-
centered cubic lattice, of which the second occurs rfreguently. In all of these
crystals, one does not have such simple phenomemapasnitive cubic lattices, so we
shall briefly direct our attention to at least thee®f face-centered cubic lattices, since
they are connected with many important probléms

(Fig. 26 missing)

! On this, one also confers Seeger [139].

2 In crystal physics, one generally makes no use sfttfgorem, since the “coarse grain boundaries” are
often simpler to describe. However, many times its gasun as a surface distribution (pp. ?) is
convenient (Bullough [162]).

% One proposes, perhaps hypothetically, that the volumeealé¥ is an ideal crystal in an initial state,
which then will be brought into the state of a polgtay through the migration of the dislocations. The
Burgers circuit may then be performed in an ideal crystal.

* This conclusion is also true for amorphous bodiesiclwiwill thus be likewise included in the
continuum theory of dislocations.

®> The most important cubic face-centered metals am gitver, copper, aluminum, brass, and certain
iron alloys. However, at room temperature iron is cspigce-centered.
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For the description of the crystal lattice, one introduiteee Cartesian basis vectarswhich point
from, e.g., in Fig. 26, the lower left front cornerratto the lower rightd;) (upper left &), resp.) front

corner atom, and let; =a; X &, . In order to characterize a family of parallelit#tplanes, one gives, in
round brackets, the components of their normal vectdngsh one first rids of common factors, such that

they become relatively prime whole numbgrsThus, (100) are the plangsa; , (010)0 a,, (001)0 ag .
These families of lattice planes are crystallogragihicequivalent, so if one would like to characterize
them collectively the one might employ the curly braskg100} are all of the planes that are
crystallographically equivalent to the planes (100).

In order to characterize a direction, one gives tmaponents of one of the vectors that lie in this
direction, which will likewise be made relatively primole numbers. [100] is then the direction @,
etc. One characterizes all directions that are diygtaphically equivalent to this direction (hence, [Q10]

[001], and furthef100], [010], [001], wherel = — 1) by <100>.

The most important planes of the face-centered culicdadre the planes {111},
since they alone are possible as glide planes and cliameplnder normal conditions.
The {111}-planes are the closest-packed planes,
one of which is shown in Fig. 27. A second
plane can now fit into the locatiofsor C. A
stacking sequenceABABABAB..(“Two-layer
sequence”) yields the hexagonal closest packing
of spheres, and a sequené@BCABCABC..
(“Three-layer sequence”) yields the face-
centered cubic lattice.

For the internal energy of a crystal, the
forces between neighboring atoms are
predominant.  Now, if, e.g., the stacking

Fig. 27. Closest-packed lattice plane, sequence includes defects, in such way that one

from Seeger [134]. has, perhapsABCABABCABC., then each
atom nevertheless remains surrounded by twelve nearest-oeghbthe same way as
before, while the ordering between second-to-next nerghbmo longer the same. Due
to the short ranges of atomic forces, the thus-qualifiecease in the internal energy is
therefore relatively small, so that such “stackingjti& occur relatively often.

As we remarked in § 22, should the Burgers vector be a diglocof the smallest
possible lattice vector then in a face-centered cubticdait points in a <110>-direction,
as one easily infers. This direction is, moreoaéways the glide direction. Now, (110)
is the plane perpendicular to the [110]. Meanwhile, dgeedislocation with a Burgers
vector in the direction [110] is not the boundary of arserted plane (110), but two of
them, since the “thickness” of a (110)-plane is equalni-lmalf the atomic spacing, as
follows from, e.g., Fig. 26. This is represented scherallyiin Fig. 28a. In practice,
one now has the important process of the splittinguoh s “complete” dislocation into
two so-called “Shockley half-dislocations” (Fig. 28b) The notation shall thus suggest

! This simplified representation is valid only for culsitystals, where covariance and contravariance
must not be distinguished. For the somewhat complich&dthvior in the general case, see, e.g.,
Jagodzinski [68].

% The stacking fault and the split dislocations weré fiesscribed by Heidenreich and Shockley [64].
For a thorough presentation of this, ¢hter alia, Frank [45], Frank and Nicholas [50], Read [121],
Thompson [152], Seeger [134], [136], [140].
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that the Burger vector of the two half-dislocationsigslonger a complete lattice vector.
One writes this process of splitting as basicallyeattion equation”:

1 1 1. .=
5[110] = 6[211]+E[12 1], (11.37)

where [110]/2 stands for the Burgers vector of the compuletlocation, while the other
expressions on the right in eq. (I11.37) stand for therg8rs vectors of the half-
dislocations; eq. (ll1.37) is simply an addition equatfon these vectors. One easily
infers that a stacking fault survives in the plane betvibe half-dislocations, which now
raises the internal energy by the “stacking fault enésyich that an equilibrium spacing
of 27 now exists for the two half-dislocations. The Busgeector [211]/6 means that
(Fig. 27), e.g., an atom at the locat®Bmwill be displaced into the positiod when one
half-dislocation migrates in between it and the neigimigolattice planéA. If both half-
dislocations migrate in between then it is again in thationB. One can then no longer
distinguish whether the dislocation that has causeddlative displacement was split or
not. For many purposes — above all, macroscopic probleare can therefore ignore
the splitting of dislocations.

a b ab a b ab a bab abaob

a
a b a b a b a b ab a b

Fig. 28. Schematic representation of an edgeditilan in a face-centered cubic lattied. (This splits a
the formation of a stacking fault into two halfddisations in ). The notatiorababab.. means that the
indicated <110>-planes represent a double-layéseFrom Seeger [134].

In general, one has the theorem that each stackuigthat ends inside the interior of
the crystal is bounded by an incomplete dislocatianis hot necessary that complete
dislocations, and thus, half-dislocations, be straigiey can also define, e.g., closed
rings in the {111}-planes, hence, run piecewise as screlacdisons, in which case, the
splitting 27 is somewhat smaller at these places.

Thus, let us state without proof the following resoltsdislocations in face-centered
cubic metals in simplified representation:

1. Complete dislocations: These run almost excllsivie the {111}-plane and
therefore always split into Shockley half-dislocasdhere. Where they, e.g., cross over
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from a {111}-plane to a neighboring plane the splitting tnge back to zero; such a
location is called a “jog.” The complete dislocaoran now glide into their stacking
fault planes and climb nowhere at all. A pure scraslodation always runs in the
<110>-direction, since the line runs parallel to the Burgecdor. This direction is the
line of intersection of two {111}-planes. The screw disibon can split in both planes.
Under a corresponding pressure, it can therefore cnassfaom one glide plane into
another, so it has more possible motions than the aslgeation, which is always bound
into a glide plane.

2. Incomplete Frank dislocation [45]: This is the boundsre of an inserted (or
removed) lattice plane {111}, to its Burgers vector is <111>IBlikewise bounds a
stacking fault. This dislocation is always isolated,contrast to the Shockley half-
dislocations, which normally enter in pairs. It camblin its {111}-plane, but it has no
other possibility of motion. It is therefore geneyalbmplementary to the dislocations
that were mentioned in 1.

3. The combined Lomer-Cottrell dislocation [94], [24]: Ifaveplit dislocations
coincide along the line of intersection of two {111}-plarteen both of them can “react”
on the next-lying half-dislocation, such that one otst@ combined dislocation of greater
stability. One then has a stacking fault that beardsind from one {111}-plane to the
other. Such a Lomer-Cottrell dislocation can neitHetegnor climb, and is therefore
completely immobile. It represents an extremely ¢ifecobstacle to the migration of
more dislocations into the glide planes in questiod, therefore plays a big role in the
theory of hardening.

The things that are possible for dislocations in feemetered cubic crystals, play a
subordinate role in regard to the dislocations desciibédo 3.

8 25. The nonlinear treatment of the singular dislocation b¥Peierls

A glimpse at the dislocations in Fig. 3 and 5 showg thathe center of the
dislocation the elastic deformations are certainly miochlarge for one to be able to
calculate them with a linear theofy In fact, up to the present, they have still notnbee
calculated exactly. At the outset, one has, aboyemd clue for the extensio ®f the
dislocation center, which indeed enters definitively ift® equation for the energy of the
dislocation (8 18). Peierls succeeded in calculatingthension of the dislocation center
by means of an interesting combination of microscopitraacroscopic methods, at least
approximately.

The basic idea of Peierls [1$6]s that the nonlinearity in the phenomena is
meaningful at least in the glide plane. One thinks efdtystal as being separated into

! Cf., on this, the papers of Mott [104], Leibfried and Hag8&], Cottrell and Stokes [26], Friedel [56],
Seeger, Diehl, Mader, and Rebstock [143].

2 The same is also true in the case of the splittingadition.

? Nabarro [106] especially developed the rather brief papeeiefls. Therefore, many authors speak of
the Peierls-Nabarro model.
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two halves by a cut into the glide plane, which will bgarded as the elastic half-spaces
A: xo > al2 andB: x; < — a/2 (Fig. 29). Additionally, a nonlinear elasticity lawlwhbe
employed that prevails between the two half-spaceshus,T the special atomic
arrangement will be considered in the glide plane. (naires the simplest relationship
in a primitive cubic lattice with {100}-glide planes, which svéhe case treated by
Peierlsl. Thus, Leibfried and Dietze [91] have also dedl the face-centered cubic
crystal™.

A
AT—. ° ° ° ° ° ° ° o — "
a-———f—f—"—"—"—"—"—-"—-" """ —"—"—"—"—"—"—"—"—————— — X1
BLO ° ° ° l ° ° ° o — - °
B

Fig. 29. The explanation for the Peierls modehe Tattice planeé andB
(perpendicular to the plane of the paper) boundhétespace#\ andB.

The notations are explained in Fig. 29. Let us stat afit ideal (primitive cubic)
crystal. We denote the tangential displacement @ihatthat are in opposition in the
lattice planes\ andB by u” (u®, resp.), and their relative displacement by:

UB(xe) = U (%) — UB(xy), (11.38)

wherex; means the starting point. Let the crystal be itdigiextended in all directions,
so d/dxs = 0. The elasticity-theoretic calculation showstte extent that it is correct,
that x, = O for the edge dislocation in the glide plane, attleasthe vicinity of the
dislocation center; of the stresses, owmbi is non-zero (eq. (11.114)). Even at the
dislocation center the other stresses may be snthdlai;. They will thus be set equal
to zero in the entire glide plane. One refers tadlaes “Peierls assumptions,” where we
would like to also include the elasticity law that waspéoyed by Peierls, and which is
valid between the plangsandB. One comes to it by the following reasoning:

If one displaces the aforementioned half-space taiadjgnivith respect to the lower
one through an atomic spaciaghen one again finds the entire crystal in equilibrium;
i.e., there are no more opposing forces there. Fhmnit follows that the reaction to a
relative displacement™® — viz., the stressz; — must be a periodic function af® with
perioda. The simplest Ansatz is the law employed by Peierls:

AB
o= 2 gin (%) (111.39)
21T a

! Nabarro [106] has treated the interaction of two disiosa in primitive cubic crystals, and van der
Merwe [100] treated planar arrangements of many dislotatidcSeeger and Schéck [141], et al., could
compute the energy increase of a dislocation due tptling into half-dislocations in Peierls. One finds
a thorough summary of all of these results in Seeger.[134]
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where the free constant is chosen such that fotl shsplacements one comes back to
Hooke’s law.

By cutting along the glide plane in the state witbislocation, we must, when no
shift of the atoms in the planésandB is present, introduce the superficial force density
o»1 for the lattice plané and —o»1 for B. The deformation state that belongs to these
“outer surface forces” of the half-spaéein the interior of the half-space is already
known in elasticity theory since Boussinesq, et al. kaw for the plana (cf., Leibfried
and Lucke [93], eq. (12)):

du*(x) _ T,(X)
™ an j - d>q (111.40)

and a corresponding equation with a change of sign erside is true foB; i.e.™:

AB
dx
On the right-hand side, one substitutes eq. (I11.39):
AB _a® B/a
du™(x) _ m 1J» sin(2mu® )d>{, (111.42)
dx, TG, x-X

and from the Hilbert integral theoref one obtains the so-called Peierls integral
equation:

o0 AB _ AB
J»du (){)/d)gd){ m-1n 2 %) (111.43)
b X m a

which is capable of delivering the displacementandu® in the plane#\ andB.

As Eshelby [37] has shown, one can derive a vienifas equation:

00 B B
J»dvv‘\ (){)/d)gdK o ZITWA 2w (%) (111.44)
W XNTX a

for a screw dislocation in the-direction withx, = 0 as the glide plane by means of a
corresponding Ansatz, whevé® is the relative displacement of the atoms as abmvg
in thexs-direction, instead of the-direction.

For Peierls, eq. (111.43) has, as one easily chetlie rigorous solution (cf., footnote
1):

! One then had(uA +u®)/dx, = 0, so we set the free integration constant to zerpg = — (P,

2 This read$(é) = = J g(x)dx g(x) = J f(f)dg [128].

—oo
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u=— ia\rctan% , 7

2

am 3, (111.45)
2m-1 4

which corresponds to a static edge dislocation Bithgers vector of magnitude=a in
thex-direction (cf.,infra). From eq. (111.39), with/* (U*®, resp.) one likewise knowss:

for the atomic plane# and B; i.e., the outer surface forces of the half-spaceor
Leibfried and Licke [93], the classical problemttisaconnected with this of finding the
Airy stress function that is associated with th&sees in the entire half-space has the
solution:

_G&

=" on

(xz—gjln[xf +(x- a2+, (111.46)

Compared to the previous solution (11.113), thisi@en includes the additional term —
a2 (- al2 + { = al4, resp.), and thus shows that less atoms ared@tance from the
dislocation center, so the Peierls solution dogdiffer from that of (11.113) in practical
terms.

As Eshelby [37] has emphasized, and as wouldvioflom our eq. (I.77), one can
interpret:

AB ]
u”_a_¢ (111.47)
dx 7mx+{
as the superficial dislocation distribution in tlele plane, where:
aoo
— | dx{ (X +{7?) =a; 111.48
p j X' I(X +¢"7) (111.48)

i.e., the total Burgers vector of the surface digtons is naturally of magnitudge The
Peierls calculation thus delivers the followinguksThe edge dislocation in a primitive
cubic crystal has a superficial extension, so are as before, regard it as composed of
threads of strengttiu®. The distribution function of the threads is tel curve (111.47)
.27 is its half-width®.

For Eshelby [37], the solution of eq. (lll.44), wh describes the static screw
dislocation in a primitive cubic lattice, coincidesactly with the elasticity-theoretic
solution.  Obviously, in this case the Peierls mdthachieves less for the edge
dislocation, so one does not come to a finite sedrgy for the dislocation.

We now report briefly on the most important reswlf Leibfried and Dietze [91] for
dislocations that lie in the closest-packed plarfate face-centered cubic and hexagonal
crystals. Here, the simple Ansatz (111.39) is mmder applicable, so one needs an
elasticity law that givess; and o3 as periodic functions af*® andw®. With it, one

! The fact that the extension of the dislocation tumisto be two, but not three, dimensional comes
from the nature of the calculations. Whether aodefion cannot have a three-dimensional extension in
reality can still not be stated with certainty. In aage, the two-dimensional extension already leads to a
finite self-energy.

2 |n the literature mostly refers to the dislocation width.
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obtains two simultaneous integral equations of Petgds, which we shall not write
down. These equations no longer have elementary swdutibor Leibfried and Dietze,
one obtains simple and useful approximate solutionshiohwone makes the total elastic
energy per unity length:

T=T"+T+T® (11.49)

a minimum, wher@” andT® relate to the two half-spaces, aftf is the mutual potential
energy per unit length in the perturbed state. Leibfriedl&atze could prove that the
displacements™ andw" that make this energy expression a minimum satisfyPdierls
integral equation, such that the stated variationalhotktactually represents an
approximation method as a consequence. Leibfried andeDietize given the solutions
for several special types of dislocations; in partiguiar the important half-dislocations,
as well.

We likewise give the most general (approximate) soluberihe half-dislocations in
the closest-packed planes [83]: Let the glide plane dgaimn= 0, and the Burgers vector
likewise lies in this plane (8 24). Lé& be its angle with the line direction. With the
Ansatz that corresponds to (111.45):

ut=- £sin,[? arctar’ wh=— £cos,[? arctant (111.50)
2m { 2m ¢

whered is a free parameter, one finds the minimal enpegyunit length:

_ Gk m R
= (—sm B+ co§ﬁj( In?+ 9 (111.51)
with:
7= % (m—sm L+ co§,3j (11.52)

Thus, R is the linear dimension of the medium in thedirection that goes to infinity.
The formula that was given by Leibfried and Dietae half-dislocations follows from
this by specializing the ang/e

Eqg. (111.51) is not suitable for the comparisontlwithe previously-obtained eq.
(11.144), since the in the latter has no relation to tRein the former. However, we can
easily compute a superficial dislocation distribaton the glide plane that corresponds to
eq. (I1.47). If we identify 2" and 2" with the componentg; andgs of the dislocation
source in eq. (1.77) then we easily obtain theodmslion densitya :

Z’
+7'%

a-= (d“ |+ﬂi3j —is (sin By + COSBis) — _ (111.53)
dx dx 27T X
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Here,is gives the line direction, while the bracketed expresgiwes the direction of the
Burgers vector of the half-dislocation. Thus, we rdgtre density (I111.53) as an
arrangement of nothing but dislocation threads with it@gimal strengths:

db:E 2Z 12
X +{

= by(x)) dx . (I11.54)

Thus, we obtain from eq. (11.142):

T:E(Llsmzwcog,gj T ( n 2k —9. (111.55)

4\ m- I>§+Z’ZI>§+Z’2 | %= %I
We satisfy ourselves with an estimate of this integnaivhich we now setlb equal to:

db= L,dxl for — Es X si, 0 otherwise, (111.56)
V4 2 2

in place of (111.54), which, like (111.54), satisfies tlw®ndition jdbz b. (111.53) implies

a constant distribution of dislocation threads inghen region. b/7 { is the height of
the maximum of the bell curve )i(x1). We have already calculated the integral given
this way in 8 18, when one replaces thihere with/z{’/ 2. This then gives the energy
per unit length as:

G’ m 2L
T= ar (—sm L+ co§,[>’j[ W—g . (111.57)

This formula follows from eq. (11.145), from which onarcestablish that it is also
valid in the case of curved dislocation lines, as longrescorrectly substitutes the length
g of the cut. In § 18, we calculated the value ¢ € for & With = 7¢’/ 2 and eq.
(11.52), one then obtains:

elb= e 3/2( sin® B+ co§,[>’j (111.58)

where the factor in front of the bracket is almpstcisely 0.3. Therefore, we are in a
position to also calculate the energy of curved-tislocations in the closest-packed
planes of the face-centered cubic and hexagonatatsyto what is certainly not a bad
approximatior.

! The calculations indeed include one approximation (tie, Peierls assumptions), but on the other
hand, the energy is not sensitive to changes ihat are not too large, since it depends ugamly
logarithmically. One can still refine the calculatimhen one evaluates the integral (111.55) exactly, and
further considers the elastic anisotropy in the BpHee®\ andB, as well. Such computations were carried
out by Seeger and Schock [141] with success in the cataighs dislocations.
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In these calculations, we have restricted ourselvale Shockley half-dislocations.
They play the principal role in face-centered cubic ardabonal crystals at room
temperature. In other crystals — e.g., body-centered culoine—has other types of
dislocations and must carry out a specific Peierls ttiom for each type.

In summation, the Peierls method may be assesskdass: It delivers a measure
for the extension of the dislocation center by wathefdislocation width{’, from whose
magnitude it follows that the elasticity-theoretic atdhtion already delivers reliable
results at a distance of a few atomic spacings frieendislocation line. The Peierls
calculation thus gives a clue as to the cases in whichwondd expect an elasticity-
theoretic treatment of dislocations to give sensiBiults, and indeed this also gives a
clue as to when it is no longer applicable, due to greaiplications, since the treatment
of the dislocation center itself (e.g., the calaolatof its energy) delivers the Peierls
calculation in the first approximation.



Chapter IV

Non-Riemannian geometry of dislocations

Kondo, as well as Bilby, Bullough, and Smith, havdependently recognized the
close relationship between the geometric problems oftigtgsand those of non-
Euclidian geometry. One can then employ the highly-adpesl methods of differential
geometry for the treatment of such problems; in partictiee concept of torsion. This
goes back to Cartan, whose work has found a very bedaapfilication to real bodies.
The connection between the dislocation tengBrand the torsion tensdrt,, is given
by equation:

a¥ = My (IV.1)

The difference between the theory of Kondo and dfdilby, Bullough, and Smith is
similar to the difference between our Chapters | andTlhe theory of Kondo is a
continuum theory, while Bilby, Bullough, and Smith dexeltheir theory in a crystal.
Further distinctions between the two theories wélldiscussed § 28.

§ 26. The theory of Kondo and co-worker$

We next recall some facts that are connected wétptasentation of Kondo [74]. In
a purely elastic theory one is interested in rotat@mms$he boundary only as long as they
awaken no elastic forces. The definitive quantity entthe elastic deformation. By the
natural state of a volume element, one understandsteasg-dree state that it assumes
when it experiences either external forces or a pressam its neighboring element.
Under the presence of proper stresses, the volume rtleyae assume its natural state
after being cut apart from the others, because it is dinkéth Euclidian space.
Meanwhile, one can imagine oneself placed in a non-dianlispace in which it can also
relax without being cut apart if the pressure that wasemtein Euclidian space were
suddenly removed. We can also define such an imaginary B&esstate in a non-
Euclidian space as the natural state. One can thédeoriee volume elements in the
natural state that were cut apart from each othémaserial) Euclidian spaces that are
tangent to the (material) non-Euclidian space at thet po question. Ultimately, let the
final state be defined as the (Euclidian) state of thdybin the condition under
investigation that is marked with stresses.

In 88§ 26 to 28, we distinguish between covariance and c@nizace. Ifds is the
square of the distance between two arbitrary pointsvofieme element in the final state
and ds; is the square of the distance between the same poitie inatural state then
one has:

1| am very thankful to Herren Prof. K. Kondo and Dr./B.Bilby for discussions on this theme. |
thank Herrn Dr. J. D. Eshelby for the fact that he kingdaced the book of Kondo [74] at my disposal,
which was the first time the work of Kondo was madevwmeo me (Dec., 1956).

2 The results reported here are all summarized in thie [fdd. The greater part of them was presented
by Kondo for the first time to the Second National Gesg for Applied Mechanics in Japan 1952 [73].
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dg - d§ = (9, —9g,,)dX dX, (IV.2)

wherex are the (spatially fixed) Cartesian orthogonal coordmatehe point in the final
state. g, (>d')=gNji (X) is the metric tensor of the natural state. The imefrthe final

state is obviously completely determined by the quantities:

& = (4 —9y)/2, (IV.3)

where the subscripts andN have been dropped, since there is absolutely no danger of
confusion. From the theory of large deformations, knewn that in the case of small
compatible deformations thg of eq. (IV.3) assume the form:

_(9s; 05 ) /.
& = (axj‘+a><ij/2’ (IV.4)

thusg; is identical with the deformation tensor used up to now.
The vanishing of the Riemannian curvature tenBgy that is defined by the

Christoffel symbol:
i _ 1 agm +agli agjk
=— . - V.5
{jk} 2g (axJ ax<  ox (V:5)

that belongs tog; is well-known to mean the same thing as the fulfillmehtthe
compatibility conditions for the deformations. By mesaf:

R = a%{;l}_aix{Jlk}+{rr:kHrﬂ}_{rrln|H:1} -0 e

the classical theory of elasticity is then distirgi@d from the theory of proper stresses.
This statement is also true for large deformations, evttie forms7™ = 0 for the
compatibility conditions is only true for small deformogis. The totally covariant
curvature tensor:

Ri = gin R (IV.7)

is anti-symmetric in the first and last two pairs ofices and symmetric in the paijs
andkl. For small deformations one has (cf., McConnell [173]):

Riki = &ij &m 77", ™= 4 &Ry, (1V.8)

as one easily verifies, when one introducesghef (1V.4) with the help of (1V.5) and
(IV.6) into (IV.7). One then obtains:
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2
0%,

m_ Aij Kim
=

(IV.9)

and with (1V.4) it follows from this thag™™ = 0. _

In a theory of elasticity that also considers prapersse®jq # 0 and the description
of the deformations becomes a problem in Riemannian gepm8ince the problems to
be dealt with in such a theory are essentially of argdoc type, one can, with Kondo
and co-workers [74], say outright: “Elasticity theory Riemannian geometry and
conversely.”

Meanwhile, in the considerations up to now, we succeededaltirty the geometric
guestions satisfactorily — at least, for small distogie- without needing Riemannian
geometry, and for that reason we would like to regardhierem above, not as a rule for
the elasticity theoretician, but as perhaps a uséhel for the especially geometrically
proficient reader. Undoubtedly, the study of Riemanniadh, @as we will see, non-
Riemannian geometry might bring more insights into thengery of the forming of
solid bodies.

Kondo now associated each (Euclidian) volume elenmetite natural state with its
own local Cartesian coordinate system with basisovee); (A = 1, 2, 3), which shall be
subject to no restriction. One then has:

dx = e, dd/, (IV.10)
def =AY dX, dX =A,' dof, (IV.11)
e =Alij, ij=AYe,, (IV.12)
dey =g, ), ddf, (IV.13)
AV A =al AV AN =S (IV.14)

wheredx = dX i; is the difference in position between two mattentmin the final state
and daJ” are the components of the corresponding vector (whikteseto the same
matter point) in the natural state. We regaqrdA,,', A#, ), as functions ok. For the
natural system, we employ Greek indices, and for tletéSian) final system, Latin
ones. To abbreviate, we set:

9 = 0/0X, d,=A, 0/0X. (IV.15)
Now, the first integrability conditions:
(0j0i—0i0)) x=0 (IV.16)

must naturally be fulfilled. One hasx = e, A%, 9 x = e, A, so:
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0,0,x=A'0 e, +e,0; AT =g, ("), A" A+3 N)} (IV.17)
— — A '
0,0,x = =e (M, ,A"A*+0, A")
hence:
Mu (A" A# =N AF) +0; AX - 0i A¥=0, (IV.18)

from which, upon multiplying byA,' A’ and using eq. (IV.14), it easily follows that:
1 i
Mg = > AVAL O AT -0 AY. (1V.19)

Square brackets will always signify that the anti-synmimgtart relative to the indices in
guestion is to be taken. After Cartan [15], one refferthe anti-symmetric part of an
affine connection as the torsion. Whenever it doesvanish, one finds oneself in the
realm of non-Riemannian geometry. As is well-knoWhy,,; is a tensor of rank three,
whose Cartesian components read:

M et = Ay A At T g, (IV.20)

and with the relations (1V.14), it follows that ([74], p{©1):
i 1,
Mo =2 Ay (Om AKX = 0k An). (IV.21)

Eqg. (IV.10) and (IV.11), which define the coordinate system are generally
Pfaffian differential forms; i.e.:
(0i0,-0;0:) e, % 0. (IvV.22)

The left-hand side of this equation delivers, after singpleulations involving th€~*,,, ,
the Riemann-Christoffel curvature tensor that reladdbe natural state, which we would
not like to write down explicitly, namely:

One can now parallel displace (relative to the ectionl*,,) a vectorc” around an

infinitesimal surface elememF*’ = &“? AF, according to the rules of differential
geometry', and thus form the integral:

- pr,,c'der, (IV.24)

and obtain (cf., Kondo) the changeciin this way:

! See, e.g., Schouten [130].
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At = (E RY
2

Alwv]

+I jA o8 (IV.25)

Now, Kondo compared the circuit above with the keaBurgers circuit (8 21). The
torsionl ¥, gives rise to a translation:

AbY = M, AF? = o™ AF, (IV.26)

wherel [, is expressed by the associated tensor of rank tmn comparison with eq.
(1.14), one sees that(,,; is connected with our previous dislocation tengdry way of:

1
M= > o o, a = M Ty, (IV.27)

insofar as\b¥ is actually the Burgers vector. This question Wéldiscussed in § 28.

The other contribution in eq. (1V.25) is more aiflt to discuss; on this, one confers
Kondo [74], pp. 466 et seq. First, let it be rekeak, in addition: The tensd®, v = 9,y
R (0 = € - &) associated witlRY,,, is anti-symmetric only with respect to the last

A
two indices, sinc€”,, no longer has the forr{u)(
U

of R that has the symmetry above, and obtain:

}. One can, however, split off a part

AC, = % R[//l][,uv] CA AFH. (Iv.28)

WhenR .. IS substituted in eq. (1V.8), one obtains:

AC, = £,,n" C* AF,, (IV.29)
or, in vector notation:
AC=Cxn-AF. (IvV.30)

Thus, AC O C, i.e., the vector experiences (in the case of Istiatortions) a pure
rotation:
AD =-n-AF. (IV.31)

This result shows (cf., eq. (1.64)) that, with thep of non-Riemannian geometry one not
only arrives at our previous results concernindpdegtions (cf.jnfra), but also the results
relating to incompatibilitie$.

Besides Cartan torsion and Riemannian curvatuetis yet another quantity that is
important in this connection that we will now dissu One sees the essentials most
conveniently for two-dimensional matter; thus, @g$ for curved membranes. In
general, one can stretch them between two rigidgpldoundaries, and they are thus

! The difference in sign is purely conventional.
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forced into a two-dimensional Euclidian space in which thiegn exhibit “proper
stresses.” However, if the membrane forms, e.¢hjra circular, hollow, cylinder then
this is no longer true, unless one first makes a cut. tfi®membrane, the Riemannian
curvature is zero, regardless of whether it is curvesl.ejtrinsic curvature in the three-
dimensional Euclidian space in which it is embedded will Iserieed byd*X / ax oxX

if, for the momentX is the position in three-dimensional space drate the coordinates
in the surface.

One can now propose that our three-dimensional nasteid represents a “three-
dimensional membrane” in a six-dimensional Euclidian spaoetX" (A = 1...6) be its
Cartesian coordinates. The “Euler-Schouten curvatusstehwill then be defined by
[130]:

2 N
Ay = 9 X0 (IV.32)

0Xx' X
wherex once again has its previous meaning. The connection befRyeemdH"; is
given by ([74], pp. 468):

6
Riu = Z(HAikHAjI -HY, HAik ). (IV.33)
A=l

in which one assumes that although wkty = 0, Ry always vanishes, the converse is
not true. One must also include the latter casedomplete theory.
Moreover, Kondo classified the lattice defectd #Hygpear in crystals as follows:

1. Lattice defects with incompatible metrics, whiare characterized by a non-
vanishing Riemannian curvature tensor in the nattiade (“‘curvature defects”).

2. “Non-Riemannian” lattice defects, which are reltéerized by a non-vanishing
torsion tensor in the natural state (“torsion defgc

3. Lattice defects that are linked with a non-ghimg Euler-Schouten tensor.

After Kondo, it is, on the one hand, possible thiathe three quantitiej,.;, R ,
andH"; , only I} is non-zero, but one can also have drfy non-zero, and one can
havel'[jy = 0, but Ry # 0. From the fact that the part &¢" that corresponds to the
curvature tensor, according to eq. (IV.25), is prtipnal to the vectoc” that is being
displaced, Kondo concludes that the curvature tealso describes defect locations that
extend over a large volume, while the torsion tens@ppropriate for dislocations at a
smaller (more microscopic) scale. As defect lacwtithat are described with the help of
the curvature tensor, one has, above all, the Jupldf dislocations in a glide plane that
is provoked by foreign atoms distributed in a vodumnd lattice distortions through
temperature fluctuations. By means of eq. (IV.&8)curvature defect locations are also
described by the Euler-Schouten tensor.

If we compare these statements with our previogasgmtation then we see that two
points still need clarification.

! In regard to this terminology, cf., [130], pp. 256.
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a) The Riemannian curvature can also be finite inatteence of torsion — i.e., of
dislocations. One can show that this is not compatible with coli(V.46) of BBS,
which states that?s, has the form (1V.37). In fact, Kondo also permitted gahforms
for the connection. The case considered here thusoyeeso the theory of BBS, as well
as our theory, in which everything comes down to the diswta It will be a problem
for future research to specify more precisely which phenaman be attributed to such a
curvature tensor with vanishing torsion.

b) If Ry vanishes then no elastic deformation is present inltberge of external
forces— at least, in the case of small distortienso the crystal is free of proper stresses.
In addition, letlyq = 0. Then, from our previous presentation the only peessi
distortion that leaves the body compact is the iolagistortion Grads’, by which
dislocations form in the body, but at the end of tlecess they are no longer in the body.
It now seems necessary to link this distortion with téresorH”; , in the cas®y = 0,
g = 0, whenever (in analogy with the cylinder examplevabeuts on the surface are
necessary in order to bring the body from the Eulewe8@n curvature state that it is
found in into the three-dimensional Euclidian stad&y cut corresponds to the migration
of a dislocation through the body

Certainly, the ultimate clarification of the aforentioned two points will round off
the picture that we have drawn up here, such that ito@ilh complete harmony with our
previous results. Even now, the agreement is very cangindVe further point out that
eqg. (IV.17) is nothing but our basic geometric equation wihés now written in the
(spatially fixed) Cartesian coordinates of the finalestatVe will confirm this in the next
paragraph.

8 27. The theory of Bilby, Bullough, and Smith [3, 4, 5]

The states considered in the theory of Bilby and odkers are referred to the state of
the ideal crystal, the lattice vectors shall be dbsdri(8 21) by a Cartesian coordinate
system with the basis vectags, and the final state was referred to by the authotbeas
“discolated state.” In order to describe it, one c®sothree independent basis vectors
e,(P) at each point that shall be the same lattice veatwerywheré®. These can be
regarded as the basis vectors of the reference lattdergoing a distortion:

ea = Daa ia y |ﬂ = Eﬁa ea y (IV34)

where D,? is the associated tensor of the affine transformatiod Es® is the tensor
reciprocal to it, so:

! The following two theorems are necessary for § 27.

2 A two-dimensional membrane can, by definition, adimly two-axis stresses. It can thus be bent into
the aforementioned cylinder without stresses.

% For real plastic forming, the small regions thattaended by the glide and climb planes will only be
elastically formed, and neighboring atoms in them reithain neighboring during the entire process. Since
these “elementary regions” are very small compareddghysical volume element (§ 20), one can regard
their elastic distortions as homogeneous. One can dirently define the atomic triads under tae
(perhaps at the center of mass of the elementary regiaoh that thes, describe the lattice in the
dislocated state directly.

* We now employ, with BBS, Greek indices for the Gsietie relative system.
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D.7E,% =&, E.,2D. =~ (IV.35)

BBS now define a new law of parallel displacement urclilian space, by establishing
that vectors at different points shall be parallel wheey have the same components in
the e,-system. The actual differen€ebetween two parallel vectors at two neighboring
points P andQ will be defined as a vector attached to the pBintThe authors obtain,

after a simple calculation:
a aD 8 A
d¢’ = E,*—2-C"d¥, (IV.36)
ox”

and further consider a Euclidian space with the lineanection:

oD # oE;?
L%, =-E°—2 =p7—~ V.37
/By /4 axy a axy ( )

(the parallel displacement law (IV.36) that belongsitforesp.). The torsion tensor
follows from:

1 0E? OEZ?
L% ==D — -7 |, V.38
o1 = 5 Da (axy axﬂj ( )

which corresponds to the eq. (IV.21) of Kondo. Nowe carries out the Franks-Burgers
circuit. The typical element of this circuit inethlislocated crystal is

d¢i, =dx¥ E e, . (IV.39)

The corresponding step in the reference lattice fiasn 8 21, numerically the same
components in thg-system as the step (IV.39) in thgsystem, and can thus be written:

dX'E;%i.  for a=a (IV.40)

From 8§ 21, the circuit around a surfdegvith boundarye delivers the associated Burgers
vector (= dislocation flux):

B=- cﬁdx” El, for a=a (IV.41)
¢

Due to the sign= (cf., infra), an application of Stokes’s theorem, and goingato
infinitesimal surface gives:

! In the sense of footnote 2, pp ?, one may assumerikadoes not go from one atom to another, but
from one elementary domain to another. This cormdpdo the fact that in the case of macroscopic
continuous dislocation distributions the dislocatiores arranged between the elementary domains. For a
thorough discussion of the generalization of the Burgémsuit of § 21 to continuous dislocation
distributions, see the work of BBS [3], [4].
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n OE @ a
a7 = - 1 £ _B | g a=a (IV.42)
2| ox ox*

In eq. (IV.41),dx' means the difference between two points in thal fatate, and,?
shall also be taken in the final state. Hencefdhé entire right-hand side of eq. (1V.42)
is referred to the final state. Therefore, eq-4R) (and also the equation just before it) is

no ordinary vector equation, since the says, moreover, that numerically the
components on both sides of eq. (1V.42) are theesiana = a. Due to (IV.34), the
right-hand side of eq. (IV.42) is then equal to tleetor in the final state, which one
obtains when one construaB” in the final state, so:

dL? = D,” dB? (IV.43)
or:
0E? OE?
do=Lpe| %5 95 yem (IV.44)
2 ox’  oxf

For BBS,dL? is called the “local Burgers vector,” whitt8® was referred to as the “true
Burgers vector.” One observes: From the standmdian invariant representation there
is naturally only one Burgers vectodB® and dL’ are merely two different
characterizations of these vectors. For smalbdisins,D,“ can be replaced wit8“ in
eg. (IV.44); one no longer needs to distinguishMeen local and true Burgers vectors.
From a comparison with eq. (1.14), one again fitlts connection between the torsion
tensor and the dislocation density as being giwen b

1
LA = > Euve o, a% = &P LN . (IV.45)

BBS speak of the local dislocation density.
The Riemann-Christoffel curvature tensor:

o, oy, . .
L = = L s = sl (IV.46)

for the connection (IV.37) vanishes identicallyorBBS, this is the condition for one to
be able to define the local basts everywhere and implies teleparallelism. This
corresponds to the fact that one finds both thereetce state and the final state in
Euclidian space. For Kondo, by contrast, the dumeatensor (IV.23) was taken in the
non-Riemannian (natural) state and thus did noistidn One obtains the same result in
the BBS theory when one takes the curvature teredative toe, - e, metric (called the

' The two definitive curvature tensors are, from owvjmus standpoint, to be defined nﬁfﬂz Lagys

AF”, AB.s= RypsAF, whereA has the same meaning as in eq. (IV.31).
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“local metric” by BBS). This is therefore not tharsacurvature tensor as (1V.46). The
vanishing of the curvature tensor that comes from thal loetric, as well, would mean
that the crystal is free of proper stresses.

It has shown that the theory we just reported orerg suitable for the investigation
of the pure rotation states of Nye (8 7), which, like shate of classical elasticity theory,
is characterized by the vanishing of the incompatibili{®3). We cannot reproduce in
detail the calculations in question, which are very istgng as applications of non-
Riemannian geometry to real bodies, but restrict ourselvea particularly important
point: the connection between the torsion tensottlaadNye curvature tensor.

The starting point is the law of parallel displacetr{&.36), which we write in form:

dC, = - Lapc C° dX. (IV.47)
We splitLapc into a symmetric pattnc and an anti-symmetric patfayc:
dCa = = (Labye + Ljajc) C° dX.. (1V.48)

If one thinks of theC® as being taken, in turn, from the lattice vectarthendGC, is the

change in them as they move to a neighboring porne sees immediately thBgp.c

therefore refers to a pure deformation, whilg,c is a pure rotation of the lattice (one
b .

perhaps set€” equal to the vectors , e in sequence). In the caselgfyc one then has

dC O C and the angle between, e remains conserved, whereas [ in general the

length and angle of they will be changed. If one then sets:

1
I—[ab]c = Eabd)(jc, )(jc = E éabd Labe (IV.49)

then the rotational part ofC is:
dCR% = — gipg ¥ C° d¥, (IV.50)

or, in vector notationdCR® = - C x y - dx, from which, one obtains the rotation of the
lattice under a motion from one point to another:

dé = x - dx. (IV.51)

By definition, y is then the Nye curvature tensor and (1V.49) is thaneoton between it
and the torsion. Thug is connected with the first two indices in a simikeay to the
way that the dislocation tensor relates to the last tIn the case of a pure rotational
state, one easily arrives at the Nye relation (I.5%dmparison with eq. (1V.45) [5] In
this case, the tensoxsandK of § 7 will also be identicél

BBS show further that the equations:

! One thus writes eq. (1V.49) with Greek indices.
2 For a discussion of the different curvature tensérsalso Eshelby [41].
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xXx=0, (IV.52)

which already appeared in Nye, are only valid for smalittons. These equations are
indeed the conditions for theéw of eq. (IV.51) to be a complete differential. Natyrall
this can, however, only be true for small rotation asgl

§ 28. Discussion

In the last two paragraphs, we reported on applicatbm®n-Riemannian geometry
to continuous distributions of dislocations. The citethars have continued to discuss in
detail the connection with known problems of differdrgi@ometry — let us mention, say,
Cartan’s holonomy groups and structure equations and Riotd#gon coefficients — and
have thus paved the way for the non-Riemannian conceptidislocations. In the book
of Kondo [74], an interesting possibility was describedreéting the same problems
with the help of pure Riemannian geometry in six dimarsiovhere one then no longer
starts with the (holonomic) coordinatésbut must employ the anholonomic coordinates
of the Riemannian space. In the opinion of this authwe, rhethod in question is
particularly suitable for the treatment of plastichdems, so he has based a new theory of
plasticity on it. Unfortunately, the papers of Korelal collaborators were made know to
this author just short of the completion of this repsotthe aforementioned papers can be
considered no further here.

In the opinion of the author, Riemannian and non-Riemanyémetry will, above
all, play a role for large elastic distortions. time first place, they are, in another
connection, extraordinarily well-developed geometried #re formulated for arbitrarily
large distortions from the outset. Secondly, the nmgatibility tensors; is uniquely
responsible for the proper stresses only for smalbdishs, while the Riemannian
curvature tensor is also responsible for large ones) tf@ other hand, one must
constantly contend with tensors of rank three and fotingories that one can, at least in
the case of small distortions, always replace witks of lower rank [cf., eq. (IV.9) and
(IV.27)]. As a result, the theory that was describeth@nfirst paragraph of this report in
the case of small distortions seems particulariyable when compared to one of the
other theories, especially since it is developed someglbstr to the physical processes
of plastic forming.

In the introductory remarks to this chapter, we haveestiat the differing viewpoints
of Kondo and BBS. Now, we shall briefly mention am&l difference between the two
theories that exists independently of the first one.

For a given reference state and final state of the ibefD.” andEz® in eq. (1V.34)
are uniquely determinet but not theA, andA ¥ in eq. (IV.12). Here, one still has a
free choice of coordinate system. We would now lidirtst have at our disposal the
freely-defined orientation of the elementary regiorhm natural state of Kondo, so it has
the same direction everywhere. Furthermore, we imeathe final state of a virtual,
ideal, point lattice, at best of the same form asréag atomic lattice in the ideal state,
impressed (aufgepragt) in such a way that, e.gi; éme the basis vectors of this lattice,

! By the convention in footnote 2, pp. ?
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just as the, are the basis vectors of the reference lattice B$.B If one could also
establish this virtual lattice in the natural state thhemould have suffered precisely the
opposite (reciprocal) deformations and rotations asatiteal atomic lattice under the
transition from the natural state to the final stalde virtual lattice can, in the natural
state (in which it is deformed), be completely describg a system of basis vectas.
Thus, if one chooses, like Kondo, the basis syseflom the present viewpoint then eq.
(IV.12) takes on the same significance for the virtutticka as eq. (IV.34) does for the
real one. That is, ang; X that take the virtual lattice from the natural state the final
state are numerically equal to tbg” that take the atomic lattice from the natural state
equivalently, the reference state, to the final stdtiee latter is true due to the definition
above of the orientation in the natural state. _

From this, it follows that the components [Bfi in eq. (IV.21) and“4; in eq.
(Iv.38), which indeed both refer to the Cartesian coordmatf the final state, do not
need to agree numerically, and it then follows thatdlslocation densitie@ computed
in eq. (IV.27) and (1V.45) will generally deviate from eadhay. One can refer to the
dislocation density calculated by Kondo as “virtual.” fihes no particular difficulty at
all in converting the real and virtual dislocation deasiinto each other.

Finally, this difference in results of the two theerie a matter of convention that one
should endow with no more significance than a sign autw@ In the case of small
distortions the difference between virtual, locakl arue dislocation densities vanishes,
and egs. (IV.21) and (1V.38) then go directly into the (1.dfAhe fundamental geometric
equation, as we now show:

As remarked above, Kondo%& * and theD,” of BBS are numerically equal. Their
meaning can be described are a distortion of the lattice the reference state to the
final state. This distortion has the folm+ S, whereg is identical with our previous
distortion tensor I( = identity tensor of rank two). For small distortiotisen the
reciprocal distortions, which are representedApy andEg ® are equal td — 8. If one
substitutes this in eqg. (IV.21) and (1V.38) and one negl@atsmpared td in the A,
(D47 resp.) that stands in front of the bracket the onaird

i 1 i i
r[km]:_E(amﬁK =0k fn), (IV.53)
resp.:
1 aﬁa aﬁa
L1 == | =5~ |- V.54
1o 2( X o j (Iv.54)

These equations are identical (the fact that Latdices appear in one, while Greek
indices appear in the other likewise arises, like difference in sign, only from the
difference between the conventions used by KondbBBS). Likewise, one sees upon
consideration of eq. (1V.45) that eq. (IV.54) iemdical with our fundamental geometrical
equation (1.17) in the case of small distortionSsurthermore, one can make a proper
vector equation out of eq. (IV.42) when one refdrguantities on the right-hand side to
the reference state, as in § 10. One then obtaftes, comparing with eq. (1.14), the
fundamental geometric equation with the interpretathat is valid for large distortions.
In the general case of large distortions (cf., § the needs to refer the fundamental
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equation to the coordinates of the points in the finalestbecause the equilibrium
conditions themselves likewise refer to these coorématOne then must employ the
fundamental equation in the form (1V.21) ((1V.38), resp.).



Chapter V

Applications

The continuum theory of dislocations has still notrbe&plored up to now in the
context of the continuum-mechanical problems that arellystreated in classical
elasticity theory, since the time since its formwathas been too short. Heretofore, the
problems that were treated continuum-theoretically wéeepredominately physical sort
and involved, above all, isolated dislocations and atom& essential ambition of
modern plasticity research is to understand the fundainginenomena by starting from
the microscopic picture. It has been shown thatcameapproximate the hardening of
metals only in this way. We first bring up a few poab®ut hardening in 8§ 29, because
we believe that the reader can be presumed to haveamndeterest in such matters, in
other words, to show the way in which difficult matheic® problems often come to the
surface as a result of such considerations. The phemn@ hardening is not purely
mechanical, but has a complex physical nature, and hecanvgive, at best, an entirely
brief insight into the way that such problems are tceédeay. For a presentation of the
current state of hardening theory, refer to the new biacid article oSeegef135.

In our opinion, the description of point-like lattice dsfe (foreign atoms, lattice
vacancies, etc.) as dipoles or polarization cenédwesston a fundamental meaning, so in 8
31 we will treat four problems that show, in an impnessvay, what sort of far-reaching
problems can be coped with using the simple formulas of oi9such elastic
singularities. It would certainly be a worthwhile problémn experimental research to
measure and tabulate the dipole strength and polarigalolit the largest possible
number of atom® embedded in a ground substargesince this has long since been
done for, e.g., electric and magnetic dipoles and palaitizes.

Finally, in 8 32, we shall give examples of the practgighificance of the stress
function tensor. We believe that the complete studthis tensor will bring to light
many results of practical significance, of which wd teat the examination of the three-
dimensional, and also rotationally-symmetric, boundaryergbroblem is especially
urgent. These are only problems of an essentially mmattieal nature, and § 32 may
thus be regarded as an impetus to the mathematicalsgincléhat sense. In addition, §
32 includes the most important results on circular dagloos, which are not yet to be
found in the literature.

8 29. The hardening of face-centered, cubic metals

One of the most interesting but, at the same time, most difficuit problems of
modern solid-body physics is the hardening of metals. B¥ig.shows the typical
hardening curve for a face-centered, cubic unit crystalnasvould establish in a tensile
test. One cannot derive this curve deductively from thlecheguations of continuum
mechanics or any laws of solid-body physics, sincaridly relies upon empiricism.
One makes certain assumptions about the procesdearéhat work inside the body
during plastic forming and then examines the circumstamogsr which they would lead
to hardening. One then performs the corresponding expdramentests the extent to
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which it is in agreement with the theoretical prediesi. In that way, one has learned to
distinguish the three clearly distinct hardening
domains I, I, Ill'in Fig. 30.

In 1934, Taylor [149 first came up with the idea
that proper stress fields were created under plastic
deformation by the migration and compression of
dislocations that tended to inhibit the further
migration of the dislocations. This qualitative picture
is still valid to this day.

The stress field in a crystal that originates in the

> applied external loads can be decomposed into its
y components along the glide plane and the glide
Figure 30. Typical hardening curve directions. The shearing stress will then be greatest
for a cubic face-centered metal gne of the glide systems; we callrit This so-called
(€.g., Cu). In the elastic domain, the i ina| glide systenwill be the first thing that we
curve 1()) will practically coincide . .
with the r-axis in our Units. occupy our_selves \_Nlth. In case the _ crygtal is
favorably oriented with respect to the strain axis, this
glide system will remain up to the greatest deformatibthe principal glide system,
which is, for the most part, due to the plastic charfgieron. Fig. 31a, b show how a
lengthening of the strain axis is produced by a glide in a& @idgtem. For theoretical
investigations, the external shear stressll, in general, be applied against the glide in
the principal glide system. This is defined to be thi rat the (mean) relative plastic
displacement of two lattice planes at a distancal &b d, which is then the plastic
distortion ”.P, if i characterizes the glide plane gncharacterizes the glide direction at
the point in question on the hardening curve. Furthermegesall this glidey. At the
same timez will have the meaning of a flow stress, since Fig. 30gjitie stress that one
requires in order to make a crystal that has perfornfedh@ng yflow further.
According to Seeger[137], one can split the flow
stress of a pure metal into two parts by to the formula:

T=1Is+ I;,

where 15 is the part that the dislocations in the princif
glide planes need in order to intersect the dislocatibat
traverse the other glide plane and pierce the prihc
glide plane (often referred to as a “forest of diattmmns”).
Ic Will be required to overcome the far-reaching stre
field of the dislocations in the principal glide systeRor
many questionszs will play no role in relation tors ,
which is why we would like to restrict ourselves to tl
consideration ofg.
a b
Frank and Read51] have given a mechanism by _
which one can define closed rings of dislocations by 'g“rsfrz’tléhi'\:oiﬁg%g'asnc
means of shearing stresses that are applied to the indgromSChmigt_50a$12'9]_
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system in question. For this, one requires a not-tod-glexe of a dislocatioA B (Fig.
32a), which fixed at its ends in some way, perhaps in sughyathat it defines a so-
calleddislocation nodehere with other dislocations (this is not indicatedhe figure),
which is often immobile then. The dislocation tharges under a suitable shearing
stress (Fig. 32b). From eq. (11.148), the force orsbdation in a stress field will always
be perpendicular to the dislocation line, so it wiitsessively bulge into the forms that
are indicated by Fig. ¢, d. The curve segmentS have the same Burgers vector, but
opposite line directions, so the dislocations will é@pposite signs, so, from § 18, they
will draw together until they might annihilate, such thdtimately a new ringd) is
formed, and the original lin& Bremains. The process can then start all over addirs
formation of a dislocation ring is completely analagdo the creation of soap bubbles, in
which the line stress takes on the role of the outeasadtress for the soap bubble. The
required starting line& B are also present in an undeformed crystal in sufficiantber,
since a “network” of dislocations is already construdtethe crystal by its growth').
For many metals, the number of dislocations thatcpidrcn is on the order of Tpand
under deformation, it will increase by several more arédémagnitude.

—D

X1

Fig. 32. Generating a dislocation ring with théphe
of the Frank-Read mechanism

In the hardening domain | — which is usually referred thaseasy-glide domain” —
the so-called hardening coefficieaht / dyis relative small, so the dislocations can form
and wander without much obstruction. From the lengtth@felectron-microscopically
visible glide lines on the outer surface of the crysidti¢ch was polarized before the
deformation), one can concludgldder [96]) that the dislocations define paths here that
are comparable to the cross-sectional dimensiongafristal (mm).

() Dislocations play a principal role in the theoryanf/stal growth. One might conférank [49],
Verma[154], DekeyseandAmerlinckx[32].
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The essentially stronger hardening coefficient in theddrang domain Il will be
attributed to the appearance ladmer-Cottrelldislocations (8 24) that shrink the glide
path of the dislocations noticeably. One of theodstions that emanate fromFaank-
Readsource might possibly coalesce with a dislocation thaves in a second glide
system, such thatlaomer-Cottrelldislocation reaction will take place. None of tiber
dislocations of the aforementioned source will get gastobstruction now, but they will
pile up against it and will perhaps define a dislocationl whthe kind in Fig. 24 (but
with variable distances between the dislocatiorSgeger, Diehl, Madeand Rebstock
[143 have investigated the processes in hardening domain |1l tlatlse and
experimentally by starting with this picture, and could akplthe linear rise in the
hardening curve in domain Il, at least quantitatively.

The hardening coefficient is even smaller in domain Iithef hardening curve. This
is currently explained by saying that now the possibilityeeyas of going around the
obstruction by the increased external shearing strasg @iled-up dislocations. In order
for that to happen, in any case, the breakdown of gleddition lines (8§ 24) in the glide
plane must decrease over a distance of several athstances. This cannot come about
by means of the stresses that originate at the locafithe dislocations alone, since that
would require an increase in the free energy on the ofd®r at the location in question
(cf., footnote 1 on pp. 7). The distance between tha-dmitocations will then be
reduced somewhat by the resulting external and interredsss at the location of the
dislocation, while the rest of the energy that oeeds in order to make the breakdown
decrease completely (viz., the so-callectivation energy @ must be produced by
temperature fluctuations. ObviousIy, will depend upon the stress, and it is only when
that is sufficiently large (s@ will be sufficiently small) that the activation eggrwill
actually result from temperature fluctuations.

For that reason, step dislocations will indeed sttl Ilmve more possible glides than
before, since, from § 24, onbneglide plane orientation will exist for them. By ¢oast,
screw dislocations that, from § 24, extend in the <110ectons, which always define
the line of intersection of two {111}-planes, can, aftee splitting dies out, split in the
other {111}-plane, which will be the so-called “transversel@lplane” for it. Fig. 33
illustrates this process. The newly-obtained degreeodibm for the screw dislocations
will lead to the observed reduction of the hardening rise.

Figure 33. Transverguiding in a screw dislocatic Hatched region: stackedefec,
Z=x3. FromSeegef134.
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Seeger, Diehl, Maderand Rebstoci{143 have verified the validity of this picture
conclusively by observing the outer surfaces of polarizedgtal with an electron
microscope. However, the complete rounding-off ofgluture of hardening in domain
lIl belongs to the treatment of a new problem statentieat still cannot presently be
resolved satisfactorily, due to great mathematical ditfies ¢).

A For the time being, we shall base our
2’ discussion upon that @dchoeckand Seeger
! [133 or Seegef134] (pp. 610,et seq), resp.
If the length 2 over which the splitting dies
off is very large compared to the widthye?
(Fig. 34) of the splitting then one will find
the dislocation to be almost in a state of
B R unstable equilibrium, since the probability of
I it splitting in the principal glide planes is not
Figure 34. Calculating the activation energy fopgsentially larger than the probability of it
?ﬁ transverse guiding in a screw dislocati - ojiiing in the transverse glide planes. The
e distance between the dashed linesrs .2
From Seegef134]. shorte_r th_e segr_nent B, the more preferable
the principal glide plane will generally be.
However, if a shearing stregg exists in the transverse glide plane then it will be
preferred, since the dislocation will then flatten agtide in it, so the shearing stress
can thus perform worl), From this, one can conclude that any such sheariesssiill
be associated with an equilibrium lengtl, Zor which, the splitting in the principal and
transverse glide planes will be equally probable. At teagth, the splitting of the
concentrated dislocations in the principal glide system ,natighe least, diminish when
the external pressure is produced by a jump in the trasesgdide system. The activation
energyQ of this process will be the energy that the tempeeatiuctuations must give
rise to in order to exhibit two parallel semi-dislacats at a distance ofs2in the
configuration of Fig. 34.

Ny

X1

7 b 11 xs
2l 210

Figure 35. A somewhat simpler model for the caltiah of the activation energy fi
transverse guiding.

One can deduce a value for the so-calpecific stacked defect enerdgyom
experiments, which is the energy that is requiredHerférmation of a stacked defect that
extends completely through the crystal, measured peptstacked defect surface. The

() This problem is currently being worked on.
(®) One observes: The resultant force on the concedtdittocations is approximately zero in the
principal glide plane, since otherwise it would, in fadige.
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activation energyQ then takes on the following parts: The (positive) ené&ig that one
needs in order to overcome the mutual repulsion of wee gemi-dislocations under
bending together and the (positive) enerdgigsandE,, that one needs in order to bring
the semi-dislocations alone into the position of Biy.(in which they will be longer than
before). Finally, the (negative) stacked defect enEBggthat one gets due to the fact that
the stacked defect surface will be reduced.

The exact calculation of the activation energgeagreat difficulties, since the form
of the curve for the dislocations is not known at billt will first be ascertained by the
calculus of variations. For this, only direct methadébe at issue in practice. Since the
asymmetry of the arrangement in Fig. 34 is not establiphgsically, we would like to
depict the foregoing in the somewhat simpler arrangemiRig. 35. We take the free
parameters to be, e.g., the transverse glide lemgthe?splitting width 2, and the rise in
the curve at the nodésandK’'. The calculation of the paHs; is trivial. The part;»,
which previously raised great difficulties, will followeky simply from formula (11.136).
The main work provokes the energy, . The line 2 consists of three pieeed, c. We
write Exz = Eaa + Epp + Eap + Eac + Enc . Thus,Epp iS very easy to obtain from eq. (11.144),
and likewise,E.a and Ay are relatively easy, since one of the two line irdégin eq.
(11.128) proves to be elementary in that case. Stge Epp, the main problem is then
the calculation oE;s andE,.. Meanwhile, the branch@sandc are relatively far apart,
such thate,. certainly makes a small contributionEg, that is not entirely precise. One
can then deal with this part with a simple approximateuégtion. Thus, what essentially
remains will be the energl., that one needs in order to bring the braacimto the
precise form that is given in Fig. 35. We will treat greblem of the self-energy of
curve dislocations in the next paragraph and will see dha can manage quite well
today with not-too-complicated curve forms.

One is then currently in a position to treat sucedlysthe activation energy problems
of the aforementioned kind that show up very often iilddmody physics with the
methods of the continuum theory and to confirm or @@htt by comparison with
experiment the conclusions about elementary procasssdid bodies that were deduced
in other ways.

In aluminum, in contrast to copper, the stacked defeaggnse relatively large, so
the splitting, and simultaneously the activation enengly be small, such that one should
expect that here hardening domain Il will begin with esatiy smaller stresses than it
does for copper. This is confirmed quite well by experimdhis very satisfying that
one can presently understand the differences in hardbalmyior of cubic face-centered
metals almost quantitatively that has been quite puziingome years. The hardening
of cubic space-centered metals is understood much less well.

8§ 30. An approximation method for the calculation of the selenergy of singular
dislocations

The self-energy of bent dislocations is important f@ny problems of solid-body
physics. Compared to the older methods, in which one evadtate, at the very least, a
line integral of a function that was given as a surfategral in order to obtain the self-
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energy of the dislocation, the reduction of the probierthe double line integral (11.145)
represents a great advance. Still, it may be evaluatactly only in the simplest cases.
FromKroner [83], one reaches one’s destination in the complicatedscasth the help
of the convergent approximation method that we will mt@scribe.

The starting point is eq. (I1.145), in which the cutoffgéns will have to be assumed
as given. For the semi-dislocations that appeared ifashgaragraph, one takess in
eg. (111.58). The integral in eq. (11.145) will have eithibe form:

(V.1)

or the forms that one obtains when one adds eithezxiiession(x, — X)(%— X)/ (X —

x')? or the expressior{x, — %,)*/ (x — x')? to the integrand of (V.1) as a factor. The
calculation of the latter integral is not essentigifferent from that of eq. (V.1), so we

would like to restrict ourselves here to the treatnoéi/.1). One will now have:
dL =dxi; +dxsis, dL' = dx i, + dXi,, (V.2)

such that one must compute integrals of the form:

jj dxd)é, . i,j=1,3. (V.3)
| x=x|
Thus, in the expression:

X=X 1 =04 =%)" + (%= %7, (V.4)

one must always replace one of the two quantitiess (X, X;, resp.) with the other one

according to the curve equatian= xi(xs). If the dislocation is piecewise straight then
the evaluation of the integral is elementary. €awes of degree two, one obtains elliptic
integrals; in other cases, one can evaluate tlegrat numerically. In the case of § 29,
where the curve equation includes free parameseid) a process would be much too
involved. The following method then leads to oestithation in many cases: We set:

-X'|= — 1 , = —Xl_%jz V.5
X~ | =[x, ~ ¥%|VI+ 5 S(xg—xg (V.5)

and develop the roat(s) in a Legendre polynomial i in the domain & s< S Since
w(s) is a parabola, one can compute with good conwergeas long as one take$o be
not much greater than, say, 3. Due to the simgri@ bfw(s), the estimation of the error
will involve no great effort. If the dislocationawes, e.g., in such a way that its tangent
vector never defines an angle < 3@th the+ x; direction then obviously 8 s< 3, and
the development ofv(s) will converge quite well along the entire disltoa. In the
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event that, by contrast, the dislocation includes apprataly vertical places, along with
the approximately horizontal ones, one will employ:

—x'|=|x - 1+1/s, E—Xl_xljz, V.6
X=X | =|% =X V175 S(xg—xg (v.6)

in addition to (V.5) and represem(1/s) as aLegendrepolynomial in 16. However, it
would be good to investigate whether one can, i@ thlevant case, avoid the
complication that is linked with it, namely, thateoadds higher terms in the development
of the development of(s), by which, the domain & s < S can be enlarged, in such a
way that one might perhaps no longer ne€tfs). The foregoing is recommended, e.g.,
for the calculation of the enerdy, .

The scope of the calculations will be, for the tywesrt, determined by the form of the
curve for the dislocation. M;(x3) is a polynomial then that will make the integoas
elementary. The same thing will be true for, d@lge, hyperbolag; + a=c/ (x3 + b), and
indeed this statement will also be true for fingegments of hyperbolas. One can
obviously describe the line segments in Fig. 35 with such a hyperbola and calculate
the energy in an elementary way, moreover. Thpesodthis calculation is tolerable.

Naturally, one can also apply the same processdbet calculation of interaction
energies of two bent dislocations using eq. (I1)12ZBhus, one can then also calculate the
activation energy that belongs to the arrangenmehtg. 34.

The 7z part of the flow stress will be required for trexiprocal intersecting of two
dislocations. According téleidenreichand Schockley[64], the splitting must die off
around the point of intersection of both dislocasio One will then obtain a so-called
constriction(Stroh[148), which will follow from Figs. 34 and 35 when osetsl = 0 in
them. Schéc132 and SchdckandSeegef133 calculated the activation energy for the
intersection of dislocations in some cases thaewersatisfactory agreement with the
experimentally-measured activation energies (tfg Seegef136]).

8 31. Foreign atoms as elastic dipoles and polarization centers

One speaks of “foreign” atoms when one finds tsolaatoms of a second s&tn a
crystal that consists of atoms of one gartA foreign atom can either replace the regular
lattice site of an atorA (viz., a substitution) or it can occupy a so-a@hlimtermediate”
lattice site. This will happen especially when #temB is very small in comparison to
the atomsA. Very small sets of such foreign atoms can alreatluence the so-called
“structural sensitivity” properties of matter vesyongly Smekal[145]). It is known that
there are strong variations of the properties ifat exhibits when carborCj has been
dissolved in it in a dilute concentration. Hetee € atoms will sit on intermediate lattice
sites. FronCottrell [23] and Cottrell andBilby [25], the elastic interaction of the with
the dislocations in iron is responsible for, etige, known “yield-point effect” of steel.

Fig. 36a shows how suchGiatom is installed in the cubic space-centereddatif
iron. In order for it to have sufficient room,must push the neighboring atoms apart.
One will obviously obtain the same state of disbortof the lattice in the immediate



§ 31. Foreign atoms as elastic dipoles and polarizatoters. 133

vicinity when one applies any force of magnituéléo the location of th&€ atom that
pushes the one atom up and the other one dovanis lhe distance between atoms in the
normal state then one will have a force dipole hkat has one non-zero compon@g
=aP.

Fig. 36a) Intermediate lattice sites in cubic &-centered crystal as a model
carbon atoms in an iron lattice. For clarity, otthg required atoms are indicated in
their entire magnitude. Fait = a+/3/2, each atom will contact its eight nearest
neighbors.
b) The same thing, after switching the places efititermediate lattice atoms.
(Readx; for y andx, for z.)

The picture that was just described is a bit too simplistFor a more precise
discussion, one must examine which of these atoms dgddher; that will be determined
by the special type of electron distribution
that exists. One can show that with the
inclusion of theC atom, not only will the
force ratios between two neighboring
atoms change, but other neighboring
atoms will be drawn into the sphere of
influence. One must then reckon that
collectively theC atom does not act as
just an isolated dipol®,,, but that other
dipole components, as well as components
of higher poles will also play a role.
However, experience has shown that the
direct interaction between atoms already
dies off so quickly at a scale of one
atomic distance that one can indeed
describe theC in the situation of Fig. 36a Fig. 37. Subsitution of a foreign atom in closest
by its dipole componentB,,, as well as Packingplane. The atomic rows are bent slightly.

P11 andPs3, to good approximation.

An example of the substitution of a foreign atorshewn in Fig. 37. Here, one can
think of the foreign atom as being replaced by a numbé&roé dipoles that are rotated
through 60 from each other. One can show that the displanefiedd that is provoked
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by such a dipole arrangement will be that of a dilatatienterP; (%). In fact, in a
continuum a dilatation center will correspond to sroafistrained sphere.

For many problems, it is important to know the energi which a foreign atom is
bound to a dislocation. In general, a dislocation eslrt a force on a foreign atom by
means of its elastic deformation field according to #dL56). If one moves it from a
site with zero deformation to a site with a deformats; in the neighborhood of the
dislocation then one can arrive at an energy in thengcase that would follow from eq.
(1.165). The wandering of such an atom will first beeopossible with the aid of
temperature fluctuations. By imposing a shearing stré$sast, at room temperature), a
dislocation can now glide with an essentially largelocity than that of the foreign atom,
which the dislocation naturally strives to maintaimefie then exists a tendency for the
applied shearing stress to separate the dislocatiothanfdreign atom. However, extra
energy will be required for that, whose magnitude wileeal to the “binding energy”
of the foreign atom to the dislocation. AccordingQottrell, in the normal state, any
dislocation will be surrounded by an entire “cloud’@fatoms, such that collectively a
seemingly large extra energy will be necessary in dadeip the dislocation loose from
the cloud and help it gain its actual mobility. This leazshe well-known yield-point
effect f).

We would now like to examine the interaction of @atom with a screw dislocation
b3y appealing to the method of representatio@achardt Schock andWiedersich[16]
).

In iron, screw dislocations move in the <111> diracti®Ve next restrict ourselves to
calculating the interaction of a force dipdke; with a screw dislocation in the [111]
direction. The starting point is the two equations:

Kk =Py Vk &j, (V.7)
U=-P; g (V.8)

of 8 19. In polar coordinates, ¢, z, with [111] for thezdirection andg = O in the
[211]-direction, the deformation field that follows froimet stress field (11.118) will have
only the components:

b
& = Epz :E. (Vg)

() This statement is true in the case of a cubic fargeced lattice, but now, however, for the
hexagonal lattice, with no further assumptions, sindhé latter the elastic compliance that relateti¢o t
isolated dipoles will depend upon their direction, so one né#d differing dipole strengths in order to
displace opposing atoms from each other by the same amount.

() According to the most recent argumensekgef135, this basis must be modified.

() Cottrell and Bilby have described th€ atom as essentially a center of dilatatiep and thus
obtained no interaction with a screw dislocation, sigcevill vanish for a screw dislocation from eq.
(1.1118). As these authors themselves remarked, and ss€mphasized bgrussard[27] and Nabarro
[107] especially, this will follow from a consideration tife tetragonality of the distortions as a result of
the interactions of & atom with screw dislocations. This was first irtigeted quantitatively by
Cochardt SchockandWiedersict{16]. They employed no force dipole explicitly, but their metti®very
similar to our own.
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From eq. (V.8), a force will be exerted on a dipolehm field of such a screw dislocation
only when it likewise has ap (¢z resp.) component. As a tensor, the force dipole can
now be transformed into the ¢, z system by the usual rules, and one will get:

Pzp=Pgz= (g O1) (iz 01) Paz. (V.10)

If we setiy =i, cosp+i, sinp theni, will be the unit vector that is perpendicular to

the vectors; = | 3,\33| andiy = [\Z,~3~JE] (). i, =iz % iy, will have no

component in thex-direction, as one easily confirms, such that ond wltimately
obtain:

Pz¢ = P¢z = g P11 sin ¢ (Vll)

for eq. (V.10). Thus, from eq. (V.7), sineg, depends upon only, the dipole will
experience a force:

-b S|n2¢ Py (V12)

321 p

This will be a force of tension in the domain @< 18F, and a compression otherwise.
If one repeats the same argument Rag and P33 then one will obtain formulas that
follow from eq. (V.12) when one replacéswith ¢ + 180 (¢ + 240, resp.) in it. This
symmetry will be a natural consequence of the tiaat the [111] direction defines the
same angles with the-axes.

One obtains the energy of the dipBleg in the elastic field of the dislocation:

K,=

bR, sing

T

from eq. (V.8), along with (V. 9) and (V.11).

The application of these formulas to the casehefG atom is hindered by the fact
that the dipole strength is not known for tbeatom. At present, one can still supply it
only experimentally, which means that one needsearly of how to couple the dipole
strengths with the experimentally-measured valwdsch it admits. There is still no
process that is applicable in every case, as of yet

Eshelby[39] has given the following method for measuring thgole strengths of
dilatation centers: One dissolves a number of atohtgpeB in a pure metah (e.g., Al
in Cu) and measures the changes in the latticetanatssthat then appear. They will
depend upon the concentration of the aB®m A that is of issue and the strengths of the
dilatation centers Eshelbyhas given the necessary formulas for the detetimmaf P;
from the changes in the lattice constants.

U (V.13)

') One sees immediately thiaandi, are unit vectors in the [111] afid11] directions, resp.
#90



136 V. Applications

We would now like to say that this method is capableeirig extended to the case of
arbitrary force dipoles. If one distributes a numberfooce dipoles statistically in a
previously homogeneous pure bodlyhen that will change its external form and size, in
general. If one chooses certain physical volume efgsnthat contain very many such
dipoles (but are, on the other hand, very small compartte external dimensions of the
body) then one can say that every volume elemdhhawe been imprinted with a mean

(macroscopic) deformatiomijg (8 6) as a result of the dipole distribution. If vesame

that the concentration is constant as a function efvttlume element (which one can
generally achieve experimentally) then the connectivitthefbody will not be disturbed
by these imprinted deformations — i.e., no (macroscopastie deformations will be
necessary in order to keep the body compact. Theref@memprinted deformation will
already be the macroscopically-observed total deformatio The macroscopic stresses
will vanish.

Now, it is clear that one cannot distinguish macrp#aily whether one has, say,’10
dipoles of strengtid; or 10 dipoles of strengti; / 10 in a volume element; in other
words, one can think of thd dipoles of strengti®; as being replaced with a constant
dipole densityp; that is determined from the condition:

IJL p dV=p; V=NR;. (V.14)

Rieder[123 called such a dipole density, when taken to be negativéexdra stress,”
and the term “imprinted stress” was also meaningful.will be connected with the
imprinted deformation only by way of the equation (23, [122):

Pij = Cii &5 , (V.15)

as one easily seed).( Sincep; is known, one will likewise have the total deformatio
g5 =& of the body. Conversely, one will immediately dbtihe dipole strength:

Pj = (V/N) Gy & (V.16)

for a known concentratioN / V and total deformatiom;’ .

Due to the assumption bfooke’s law(V.15), the method will be true only for small
deformations. One can conveniently measure them asehamnthe lattice constanty.(
Once more, in general, one does not employ entirehple arguments in order to
convince oneself that the changes in the lattice comsstdmit one establishes
Rontgenographically will actually be directly equal to timacroscopic deformation.

() One imagines that outer surface forces that initilbduce no deformation are combined with the
dipole density at the same time. One can then extsesedlume element and measure the fopgets that
one must add if no distortions are to be present. Tfeerdation that is associated with the relaxation of
tension will naturally be coupled to these stresselddmke’s law. One likewise sees that one must work
with smallp; —i.e., small concentrations — since otherwise ed.5Mwould no longer be true.

() Since one must generally melt the probe in ordéntroduce the dipole, one can compare their
external dimensions with and without dipoles only very poorly
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Naturally, one will very well have microscopic stressand fields of elastic deformations
that change signs over distances whose order of magmiulde mean distance between
dipoles. The investigations diller andRussel[101], Huang [66], Teltow[150, and
Elshelby[39] regarding this subject seem to have answered this questitwe ipositive
).

In cubic, space-centered iron-carbon ¢hatoms are distributed statistically over the
three possible positions — we would like to call thematatis mutandisthe 1, 2, and 3
positions. One can establish only one uniform dilatatibthe lattice and obtain only
one intersection statement about tRe in this case. By contrast, the atoms in
martensite are arranged tetragonally (e.g., all efntliin the 1-position), so one would
expect a strong dipole;; and two weak dipoleB,, andPs3 .

Kurdjumovand Kaminski[85] obtained an increase in the lattice constamt the 1
direction from 2.86 to 2.96 A for 1 Gew.-% ©fin Fe (corresponding td / N = 2.5800
1022 cnf), while, at the same time, the ratid a rose from 1.0 to 1.04. a(= lattice

constant in the 2 or 3 direction, resp.) This meaas tthere are rotations’, = 0.035,
£2 = £S5 =-0.0048. Withcyg; = 2.37010% dyne/cm, ci120= 1.41010% dyne/cnd (), it
will follow easily that ¢):

P;1=11.2 eV, P, =P33=4.6 eV. (Vl?)

One will then obtain the energy of the total dipdlattrepresents th@ atom at a distance
of b from the screw displacement whén= 9¢° (where |U | is maximal) as 0.5 eVf)(
from eq. (V.13) and the corresponding formulasHgrandPss .

We shall briefly give an application to the import&mtoekeffect [L46 (°). If one
imposes a stresg; in the crystal of Fig. 36a such that it is extended @xtkdirection
then theC atoms would like to cross over to the 1-positions (B&p) since they would
have more room there. The total deformation will rmwcomposed of an elastic pgyt
= sj da and an additional quasi-plastic deformatiqjh = Sji pu [€0. (V.15)], whergy

is the change in the dipole density that appears as l oé$be transition oh dipoles
from 2 and 3 position into the 1 position. The total defttion will then be:

& = s (G + pu). (V.18)

() Cf., the discussion dshelby[39].

(2) One now has;111 = €222 = C3333 = C11, C1122 = C1133 = Cpo11 = (etC.)E C11, €11 andcy, are both taken
from Zener[15§, pp. 17.

(G) 1eV=16010"erg.

(") The discrepancy with the value of 0.75 that was obtabe€ochardt and collaborators then
originates in the fact that these authors employed ttieEcE modulus. This is a practically meaningful
and instructive example of how large the difference carwben one does not consider the elastic
anisotropy of the crystal.

() The Snoekeffect is much used for the determination of the smaflesontent in Feq5]. Zener
[158 has treated this effect theoretically in a verigséging way, so we shall use his presentation, in part.
What is new and different here is the fact that wiebei attributing the relaxation of the elastic cagénts
Sju to the force dipole that the atom represents.



138 V. Applications

In this, pu shall now be expressed in terms of known quantities. Bte R?, P° be the

dipoles in the three positions. Due to the fact #faand B’ have the same value, it will
then follow from eq. (V.14) that:

n
Pu = V(P"l' -R). (V.19)

According to Zener [158, one will obtainn in this very simply fromBoltzmann
statistics:
U, -u,

, for  YiUal g (V.20)
KT

KT

n:—EN
9

whereU; is the elastic energy of the dipole in the 1 positaord analogously fod, . It
follows from eq. (V.8) that:

U —U,=- (le— Fl?z) &j , (V.Zl)
from which, one will get:
2 N
P = gm(ﬁj -R(R'-P)g . (V.22)

We write & = Sjmn Imn in this, and then substitupg in eq. (V.18). That will then give:

& = (Sj +Asp) du, (V.23)
with
ASjkI = ZiQ Q( Qij = Sjmn (Pl - Pzn) . (V.24)
VKT I ij = Sj mn~ Fm

One callssy + Asj therelaxedelastic coefficients, and one measures them silgtica
as the ratio of the total deformation to the appliedsstr By contrast, one can measure
theunrelaxedelastic coefficientsiq in oscillating rods for which the period of oscillation
is short enough that the rearrangement of the diguies therelaxatior), which always
takes a finite length of time, cannot take placgener whose numerical results are
essentially the same as ours, has further descrileedéti in whichAsj is a measure of
the magnitude of the observed damping. CoB@rer[15§ for this and the comparison
with experimental results, which proves to be quitestaatiory.

In conclusion, we shall briefly go into polarizalili{§ 19). We assume that the
probe contain no dipoles, but only centers that capoterized. An important example
of this is the lattice vacancies in many face-cedtecabic crystals’]. One can refer to
such a material adia-elasti¢ in analogy with the behavior in electrodynamics, and by
contrast we would like to call a body with dipolesra-elastic The para-elastic bodies
always have a certain dia-elasticity.

() The fact that the dipole strength of these latticeamaies is approximately zero was recently
calculated byseegeandBross[147 using electron theory.
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If one imposes, e.g., a homogeneous stggssn a dia-elastic rod theﬁ’j‘”ddipoles
with a density ofpl™ will be induced in it. One will then get:
G + P = G & s (V.25)
in place of the usudookelaw:
G = Gijl & (V.26)

that one would have in the absence of dia-elasticigmbining the two equations will
yield:

P = (G — Gi) &, (V.27)
and

Cii = Cjq ~ Cij (Vv.28)

will be the elastic susceptibilityof the probe. Sincep= R™N / V, the elastic
polarizability of eq. (11.169) will be given by:

Rik =rija VI N. (V.29)

Ci andcj can be measured quite well in many cases as elasticlirgda probe with

and without polarization centers, such that polarizghilita defect site is often obtained
relatively simply §). The interaction of the dia-elastic lattice deéfsites is determined
essentially by the polarizability. This is a shortganintersection (the force is
proportional to the — 6 power of distance), since theefdretween dipoles goes with the
— 4 power.

§ 32. Applications of the stress function tensgy’to rotationally-symmetric and
three-dimensional problems

Let p, ¢, z be cylindrical coordinates, and gt iy, i,be the associated basis vectors
(with magnitude 1). The components of the stress funtéinsor y’ might not depend
upong. One can then write the auxiliary conditionsy; = 0 of 8 12, as one easily
verifies:

(LX) 0 X,

-y o+ =0, V.30
o0 Xos ¥ P, (V.30)

() The effective modulic,, of a probe with polarization centers appear to be redocéttreased in

ind

comparison with the moduli of the probe without cengasording to the sign ofy,” /¢, . According to

Zener[159, all proper stress sources produce yet another éffatalways diminishes the moduli. It goes
back to an increase in the entropy of oscillation eflibdy with increasing elastic deformation, which is
in contrast to our effect essentially temperature-dependent. Thus, it can laesobxperimentally.
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iza(PzX}w) LN _ 0
Jo 0p 0z
10(pXp) , 0,

p 0p 0z

(V.30)

= 0. (V.30)

If they are fulfilled then the stresses will follawost simply from eq. (11.23):

m
m-1

O'ZZG[A)('+ (DD—AI))({]
with

o+ T39) 126 = Ay~ a9 |,
T m-1 07

4 m (09> 120
Ow—0s3)12G = | A+— |y +— -——— X,
( PP ¢¢) ( pzj)(— m_l[apz papj)(l

m 9°
0,126 =AYy, ———| A—— | X,
Xzz m_l[ azzj)(l

m 9°
m-10p0z

1 ! !
Upz/ZG:[A_?jsz-*— X

1), 1),
Op:1 2G = (A_?j)(m’ Opp | 2G = [A_?j)(mﬁ'

Now, the Cartesian components xif satisfy eq. (11.20):

DAY, = 17 (V.31)
It will follow from this directly that:

MY, =1ns, DAY= Nz (V.32)

One derives the remaining equations somewhat redreusly:

ptfotlemr b o
P P P P

1 1), _ 1 1), _ :
O o L N O (- TR
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Sincelli 17; = 0, r; will naturally be subject to the restrictions thatrespond to (V.30).
One sees that initially the components yfare not coupled to each other by the
differential equations, althouglx,,,, X;4:X».)» (Xos:X5.)» @nd (x,,, ;) will be linked

with each other by the conditions (V.30). One caeroftay from the outset thay, =
Jyp =0, S0 one can ignorg;, and x,,. Now, in the event that one further hgs = 7,

= 0, one will require onlyy,, and y;, in order to arrive at the particular integral. Even

though we can still find no rigorous proof, it is very like¢hat all stress states in which
Div g, i, 042 0yp vanish can be expressed in termggfindy;,; alone. One will then

be dealing with the stress states for which one will gdigenae Love’s displacement
function in order to calculate them. We would likectnsider the case of;, = x,, =

Xoe = Xy, = 0 by itself later on.

Remarkably, from eq. (V.30)y,, can now be expressed in termsdf . One can
also write the conditions (V.30) in terms gf, and x, (., resp.), and correspondingly
for n:

,_10(p° )(pp) Y 0x,, 10(071,,) 01,,

L= L =-p22 ne=———""22  p.=p—2. (V.33
p op op p 0p op

Moreover, the stresses can be written:

12G =AY, m 0"\,
(0, +04)12G=Ax, ) A+6_22 Xos
4 m(d> 10
(g, -0 )/26=[A——j)(i+—[ j){i,
124 0 pZ ap pap
Xo=2X0, = X (V.34)
m 9°
12G6=-——| A== |y,
O m—l( azzj)ﬁ
2
0,126=—""1 O .
m-10zdp

By adding the egs. (V.32) and (V:32which refer ton. and 7-, one will obtain with
(V.33)

NN Xpp=1pp,  N=nA+ 2D (V.35)

pop
Now, is x. = 0 then it will follow from eq. (V.33) thapz)(;,p can only have the foriiz).

If one hasn = 0 thenf(2) can only be a polynomial of degree three [sintewise eq.
(V.35) would not be fulfilled]. The stresses thaiong tof(2) will follow easily from eq.
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(V.34) asgy, = —0p9 = (Co + C1 2) ! ¢, while all other components will vanish. Insofar as
this relatively trivial stress state is not presenthie body in questiont) (which will be
true for, e.g., convex bodies that are subject to cutdace forces), the functioxi. (and

therefore alsoy’) will have the same value g§,. One can then calculatesay,y, -
and then calculatg,, from that with the help of the formula:

S
Xow =7 [px.dp, (V.36)

which follows from eq. (V.33), and with that theestses will be obtained from eq. (V.34)
by differentiating it twice. Insofar as one cal@ls y,, from the outset, one needs to

differentiate it three times in order to get theesses. We shall not actually write down
eg. (V.34) in terms ofy,, .

Presently, the still-unsolved problem is that ofvhone can express the boundary
conditions advantageously in terms pf or .. Any bi-harmonic functiony, or x.
will yield a possible stress state, such that tbenblary-value problem will be doubly
harmonic. One must conclude from this that thelitgt of stress states that are
encompassed blove functions (with Divo = 0) are also actually encompassed by
X,, (X., resp.). Since one gets somewhat closer to thesgis with the latter function,
the solution of the boundary-value problem by thiesetions will have some practical
significance.

These considerations show the great variety o$ipiisies that the stress function
tensor implies, such one can adapt a given probtemgreat extent. This is especially
true for the use of components for the stress foimdensor that belong to curvilinear
coordinates. Here, we have chosen the auxiliangition [, y; = 0 from the outset, but
there are still numerous possibilities, about whamost nothing is known at present.

We would now like to give an application of theoab to circular dislocations. One
of will lie in the planez = 0 with its center at the origin and a radiusRof The stress
function field of this dislocation will be givens=ntially by eq. (11.107) as the integral:

<j>xdu , (V.37)
which one can easily show will have the form:
F(o,2iy. (V.38)

FromFranzandKrdner [53], one will then have:

() In the other case, one can probably also remdverit the total state somehow. One will find most
of the results in this § for the caserpf 0 inMarguerre[98].
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=S kK (2 -
F =g 2K =2 k%) E]. (V.39)

In this, K = K(k) andE = E(k) mean the complete elliptic integrals of genusnidl &,
respectively. Moreover, one has:

4pR

s?

k= f=Z+R+p>% k'?=1-KE (V.40)

As one easily verifies, the stress functions of(#dL07):

, _bF , _ b oF
Koo = a7 p Xop = A7 0p

(V.41)
will follow from F, while the remaining components pfwill vanish. This equation is
true for the case in which thgurgersvector (magnitudé) of the dislocation points in
the z-direction, and it only is in that case that thelgem will be rotationally-symmetric.

The author has treated an arrangement of paratjeidistant, circular dislocations by
starting from eq. (V.41)79]. This arrangement is very similar to the welbkm current
coil in electrical engineering. If one takes tlod to be very long in comparison with the
radiusR then one can employ the same approximation thatusas for the current coill,
so one will obtain:

O = Opp = r;—?l Vb, Osr= _nfc_;;n vb (V.42)
inside of the colil and:
-G R?
Upp == U¢¢ = m vV b F (V42)

outside of it ¢ = number of windings per unit length). All of themaining components
will vanish in this approximation. The externahtst is precisely the state that was
written above withy. = 0. The energy per unit of coil volume will thee:

e= — Vb (V.43)

There are no major difficulties associated wittatirgy this problem exactly with the use
of elliptic integrals {).

Calculations of this kind are significant for sop@blems in the physics of metals.
One sees the essence of them in the following enabln the cold hardening of the very

() One can attribute the stresses in the known problethe stretching of a hollow cylinder onto a
solid cylinder with a somewhat larger radius to an geament of dislocations in the boundary surface.
However, from eq. (1.77) these dislocations will movetia z-direction and have theBurgersvector in
the ¢-direction. Our problem will then correspond to thelding together of two cylinders, as above, but
where the inner one is elastically-extended in the todgial direction compared to the external one.
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important aluminum-copper alloy (Duraluminum), there arer alia, the two following
states: One has superficial accumulations of Cu aiantke {100} planes of the Al
lattice, and in fact, possible monoatomic layers oppsw. These are distributed
statistically in one state (which is then called @&anier-Preston zon8, and in the other
one they are arranged into a number of complexesthagiarallel to them (vizGuinier-
Preston zoneH) (}).

One can describe the process of Cu enrichment by sayh@ thartial net plane of
atoms is taken out of the Al lattice and replaced Withatoms. The Cu layer will now
be “thinner,” so, in effect, a layer is missing whose dgnisi equal to the difference
between the net plane separation in &!'Y and Cu ). Meanwhile, the connection
will be once more represented by the atomic forcembésion, so one will obtain elastic
reactions, and the Cu layer will act like a dislamatline with aBurgers vector of
magnitudeb = d* - d““ in the zdirection, if that direction is perpendicular to thger.
One now treats the “quasi-dislocation” (they are nobgete step dislocations, since the
net plane does not, in fact, belong to them) as beipgroaimately circular.
Experimentally, one will observe that (at leastc@ntain temperature regimes) they do, in
fact, arrange themselves into a “coil.” Since Bwrgers vectors of the individual
dislocations run parallel to each other, one shoueixthat the opposite situation will
be more likely, since dislocations of the same TZ
type with paralleBurgersvectors will repel each
other, according to § 18.

- -
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One can understand the converse effect, 77727777 e ooooo oo -
according toFranz and Kréner [53], by saying  ------—< XIIIIIIZI220T00 oo
that perhaps one of the intermediate Cu layers of -==---=777 777777777772~~~
the complex will be bounded by a complete -------=__ Il e
dislocation with an oppositBurgersvector; i.e., TTTTTTTTASToIIIIIIiIEIITTTTTTT
this layer will not advance like an Al net plane ~-2Z2IZ--d------z--obeso Il
from the outside. Since tHBurgers vector of ZIIZZI:::‘_'_::‘_'.'.Z'.'_?:-Z:_'.'_'_'_'_'_:
this dislocation will be essentially larger than that ... A-—-=7----B----t-~_ A
of the quasi-dislocation, it can attract a large .___...__ <+ ------ - -+ _IlIllI:
number of quasi-dislocations, until the sum of all -===--==-T227 7221110 commmnnes
Burgers vectors of the complex will be zero. zzzzzZ7lie-ooioootITTTTTC
Thus, the far-reaching, energy-consuming, stress ------—~-T.1117II11 T -
field will be formed. As a probable arrangement _______ZTTTTTTTTTTTIIIIT T
of the layers in th&uinier-Prestorzones Il, one et LTI I D
has today: Any fourth net plane is a copper-rich ~22IIZ771777777i7TTrtllllllll
one 6). This will yield six as the number of ‘"""_':_t::::::::::“*—------
layers in a complex 53], so the vertical A,Liiiii'j\::‘étt:::::{-::ZIIZZ:
arrangement of a zone is equal to 21 net plancejs',f"""“‘*‘ d P prT TS

corresponding to perhaps over 40A, which is. e boundart N

satisfactory agreement with the experiments thg{9: 38 Phase boundaries as superficial
. . arrangements of dislocations. Dashed

can, at present, be interpreted only with coar§ges: et planes. (Longitudinal section)

precision.

() Cf., e.g.Gerold[59] or Hardy andHeal [63).
() If only every second atom in a layer is a Cu atoentthat would roughly double the vertical
extension. Experimentally, this has still not been dedioeidte.
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One can also treat the phase boundaries between twonmialsA andB in an
analogous way. For the sake of simplicity, we asstnaethe lattice constants Afand
B differ only in thez-direction and define the phaBdnside ofA to be a circular cylinder
with its axis in thez-direction. If the aforementioned lattice constdfiof B is smaller
that that ofA then from time to time a net plane must belong,teince in the other case,
one would obtain the larger energy (V.43). One camaggiard each net plane®fis a
quasi-dislocation with 8urgersvector with magnitude” — . If, e.g.,d* -~ =d®/5
then a complete dislocation must always appear afterrfet planes. Thus, one can
describe this phase boundary by the arrangement of diglos and quasi-dislocations
that is indicated in Fig. 38. Whereas the dislocatamd quasi-dislocations are strong

sources of proper stresses (8 23) in their own right,

B both of them will act together essentially as a srfa

distribution  of  “dislocation  dipoles”  (or
o s “incompatibility quadrupoles,” § 23), so their elastic
: effects, and therefore their elastic energy, will be

small. If one would like to calculate them, then one
would have to solve a boundary-value problem that
relates to the boundary surface and then consider the
A different elastic constants inside and outside.
//_ﬂ In order to calculate the energy gain during the
R > transition from theGuinier-Prestonzones | to the
Y zone II, naturally, formula (V.43) will no longer
suffice. To that endKréner and Franz [53] have
calculated the interaction energy of two coaxial
circular dislocations withBurgers vectors that are
Fig. 39. The calculation of the  narpendicular to the dislocation planes exactly with
'meraCt:;).” energy ofcircular — pe"se of elliptic integrals using formula (11.128).
islocations. . . .
Pfleiderer [117] has treated the intersection of
circular dislocations somewhat more generally, akdwise started with eq. (11.128).
We summarize these results, which are presently sungdsisimple, as the following:
Let:

z

X

2
P (2,10 1);
0p> pop p

—_ k? 2 2 _ 2 (R_p)z
= 2,0\/&{2(,0 +R?)K {(p+R)+ = }E} (V.44)

o OF _ _IRI2(., 2 | 2[4, 2), KE
e e v

Thus, fromPfleiderer, one will have for two dislocations andB in the arrangement of
Fig. 39:

E*® = Hyy + Hpp + Has, (V.45)
where:
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GhbPpF'. (V.46)

Has =

G, Ak 3m-1_, j
Hi1=— ——F"+F
n=ghhe ( m-1 2(m-1)

H., follows from Hi; by the replacement ob®b® with b/'bP. One should now

understando to mean the radius of the dislocatiBn b* (b®, resp.) are the Cartesian

components of theéBurgers vectors of the linesA and B. The formulas simplify
essentially when both rings lie in the plang= x3) = 0, or when both of them have the
same radius. One will then have:

Gh*K°R :
Hul e = e il (L~ 4m)K +2(3m- DK ~ [ mi+ 23w DF}
H33|p:R:—_b1Abe|<[K—E],
_ 2m-1 k2 (V.47)
__m A 1B S
H33|z:o—m—_1@b1 bl(R+p)K ZJK E}

It follows from eq. (V.45, 46) that dislocationsh@se Burgers vectors are
perpendicular to each other do not affect eachrotidée already obtained this result in 8§
18 for straight dislocations. For the aforemergmrproblem, the energy of two
dislocations withp = R and aBurgersvector (magnitudd) in the z-direction will be
important. One refers then to:

M GRRK(K-E). (V.48)
m-1

For other purposes, the case in which both dislmeathave theiBurgersvectors in the
xi-direction is especially interesting and lie in glanez = O (this is then the glide plane,
so the relevant formulas can serve for the caloudadf the energy of concentrated
dislocations). One will then have the likewiseytemmple expression:

2m-1 _ , aps
Z(m_l)Gb(R+p)Kl ZJK E}. (V.49)

If one makes the distances between the dislocatiens small here — perhaps, equal to
twice the lengthe that was cut away in formula (11.145) — then oné also obtain the
self-energy of the dislocation in the approximatibat was described in § 18 and § 25.
This self-energy was first calculated Wgbaro[11Q for the dislocation that was implied
in (V.49) in a different way [starting with eq. AP2)]. One will havék = 1 in that case
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(when¢ < R), so one will get the approximation formulgs= 1, K = In (4k’) [69], and
will thus obtain:

2m-1 GbZR(InB—Zj (V.50)
2(m-1) £

for the self-energy of this dislocation, in agreameith Nabarro

All of these energy formulas were calculated uploe foundation of an infinitely-
extended medium. Such a dislocation loop willlket a force dipole at great distances;
i.e., the far-reaching displacement field of thelatiation will go like 1 £? (r = distance
from the origin), so the stress field will go lite' r*, and the energy densigy g / 2 will
go like 1 /r®. The component of the energy in the infinite medithat is localized
outside of a sphere of radiuswill then go like1/r}. Thus, when the dimensions of a

body are sufficiently large compared Rp which will be true in almost all applications,
one will not need to observe its outer surfacee= the formulas above will also give the
energy for the finite medium with practically thense approximation.

The stress function tensor was only indirectlyoined in these energy calculations
[indeed the basic formula (11.128) was derived wiith help]. In conclusion, we shall
give the formulas for the dislocation withBairgersvector in the circle plane (i.e., the
glide plane) that are derived from the stress fondield y’ (Keller, [70]). Let (X, Y, 2) =
(X1, X2, X3). One will then have [cf., (V.40)]:

o, =a— (3B-2C+ D¥)xz
m-1

022=a[20+ M (B-2c+ D)F)} Xz
m-1

m
(o :am(C'*' FZZ) XZ
(V.51)

O, a[—C+ m (B+ D)ﬁ)} LA
m-1

a[ B+ (B+ Ezz)} Xy

a{A+ Bf+ [A+ CZ+( B+ E) %]}
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1 1
A= 2E-(2-k*)K), B=- & C+3A,
pskz[ ( )K) 2pz( A
_ 1 1
C=————F, D=--—-(4B+C+ FZ),
ps kK yo, (V.571)
1 1
E=- a’F+5C), =- sk® A-2 KE),
2pz( ) p55K4('0 )
a =-RbG/ r, &= 72+ R-p°

One observes: The stresses are not rotationally-synemstrithe problem that is solved
here with the aid dkeller’s stress function tensor will be truly three-dimenslona
All that remains of these stresses at the origlhbet

gy = 2PEML 2 (V.52)



APPENDIX
The decomposition of a tensor field of rank 2

We apply the vector symbolism of Gibbpiecewise, so we mostly calculate in the
traditional index notation, including the Einstein sumnmationventiorf. |. e.:

ab orab is the dyadic
alb orah IS the scalar  product of two vectora andb.
axb org,ah isthe vectorigl

Therefore, one hasizs = &31 = 1, &32 = &21 = &13 = — 1, while all of the remaining
components of the totally anti-symmetgdensor vanish. The following formulas will
be used frequently ([34], Bd. |, pp. 74):

g J
gx €™ =10 O I (A1)
5 & &
From this, it follows fom = k that:
gk €M™= ad"-3md, (A.2)
and when one also has=j:
&y €™ = 24 (A3)

Let>:
Grada =0a = (g )
Divr =00 =(0r) (A.4)
Rotr =0xr1 = (g, U1, ).

(One reads “gradient ef” “divergence ofr,” and “rotation ofz.”)
One can uniguely decompose any tensor fielthat vanishes at infinity in an
infinitely-extended medium according to the formula
r=Ua+0xa, (A.5)

wherea = (a;). Likewise, for an arbitrary tensar, one has the unique decomposition:

a=b0 + B x0, (A.6)

This was briefly advocated by the International UnionFfare and Applied Physics [67].
One finds this notation publicized in the books of DuschekHwchrainer [34], especially.
We write the first symbols large in order to implytthwe are concerned with tensor fields.



150 Appendix

with = (5;). When this is substituted into eq. (A.5), one obtaiii [1x b =c (i.e., div
c=0):

r=[Ua+cl + Ox gx[, (A.7)
In this, one has:

(Ox Bx0)i = &k &mn U On B - (A.8)

Symbolically, we also then write
(Ink m” (A.9)
(read “the incompatibility of3’). In the event thaB is symmetric, one can switcland|
in (A.8), such that:
Ox f° x0 = ([OxBx0)°, (A.10)

whereS means that the symmetric part is to be take idfanti-symmetric then one can
switchi andl in (A.8) with a change of sign; i.e.:

Ox B x0 = (OxBx0)*, (A.11)

whereA means “the anti-symmetric part of.”
The symmetric part of eq. (A.7) then reads, when weeart c=g,a—c=h:

I’S:%(Dg+gD)+D><ﬁS><D, (A.12)
and the anti-symmetric part reads:
IA:%(Dh—hD) +Ox B x[0. (A.13)

We also write eq. (A.12) symbolically &s
= Defg + Ink §°. (A.14)

Since (A.5) and (A.6) were unigue decompositions, (A.14)usigue decomposition of
a symmetric tensor field. One easily verifies thentity relations:

(A.15)

Ink Def=0
Def Ink= 0.

! The notation shall thus recall the fact that nk O are the St. Venant compatibility conditions.

They are fulfilled when the “incompatibility & vanishes.
2 For Def, one reads “deformation of.” The notatibalsthen recall thag = Defs is the connection
between the deformatiafiand the displacement fietd[52], Bd. I, pp. 97).
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This says that a tensaf that is subject to the restriction Div = 0 is anincompatibility
tensor, while it is @eformator(and thus derived from a vector field) when one hastnk
= 0. The meaning of the operations Ink and Def for elagtiheory lies in the fact that
the state of an elastic body that is stressed ortlyeaboundary is completely determined
by the equations:

Ink £=0, Divo=0, (A.16)

in which the Hooke law and the equation for the elastargy density are assumed.
In eq. (A.13), one can replat;@A (like any anti-symmetric tensor [34]) by an
equivalent vector according to the formula:

lgijA: ijkﬂkA’ B :%SijkﬁuA' (A.17)

Thus, it follows from this by a routine calculatiorath

7’ = &k (S hm + Ok A) =-[, 0,8, (A.18)

ij
or, corresponding to eq. (A.17):
72 = &mi hm + Ok A = (roth + gradA)y . (A.19)

l.e., the decomposition of the anti-symmetric tensdd ft®rresponds to the well-known
decomposition of the associated vector field into a soeltkand a vortex field.

In eq. (A.5), one can add a gradient tensor @aowithout changing
Correspondingly, one can add a deformatgftm eq. (A.14) without changing®. As a
result, one must impose certain auxiliary conditionsaoin eq. (A.5) (65 in eq. (A.14),
resp.). E. g., Diww=0 (Div f° = 0, resp.) is always a “supplementary” condition; i.e
one can represent arg (7>, resp.) by eq. (A.5) ((A.14), resp.) whenand £ are
subjected to the stated restrictions [77]. ylandq are the incompatibilities (sources,
resp.) ofr° then in the case Dj§° = 0 one obtains from eq. (A.14), as one easily checks:

1

Ink °= Ink Ink £ =AM =y (A.20)
From this, the associatgﬁé follows uniquely from:

Vig :—Sinmmy(x'nx—xwdvz (A.21)

up to an uninteresting function that depends uplimearly 2.
On the other side, it follows from eq. (A.14):

Naturally, one has the identities Rot Gead, Div Rot= 0.

2 We recall:7° shall vanish at infinity. One easily verifies tijat21) fulfills the auxiliary condition.
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Div 7= (Ag + OOD)/2 =q. (A.22)
By repeated application of the divergence, one obtains:

A divg =divq, (A.23)
from which div g follows, up to a constant. Thus, one can easilyiolgafrom eq.
(A.22), up to an uninteresting constant. It is thus shibewm the decomposition (A.14) is
actually to be performed in an infinite space.

Addendum

We present two more theorems about a medium thatiesmaly proper stresses.

1. One has, for arbitrary elastic homogeneity and aoigwt

JIl,aav=0,

which is integrated over the entire volume (that #h&proper stress state).

2. The total change in volume of the medium for a neali law of elasticity is:

AV =t J'J]V 0, ¢, dV + terms of higher order

with the material constants:

_1 o0
ti = — :
200,00,

=0

Theorem 1 follows from equilibrium consideratiqdas9]. Theorem 2 follows from
Theorem 1 when one develops the differential chasfgeolume© in powers ofg; .
Theorem 2 would change somewhat in comparison thghparticular form that were
found and tested by the current experiments of ZE8] for elastic isotropy, extended
by Seeger [176] to cubic crystal symmetry, and iadpio dislocations. The tenstg
has the same symmetry and number of componentseasldsticity tensoci. for the
medium in question.

The “volume theorem” of Colonetti that was state@ 1 follows immediately from
Theorem 1 by applying Hooke’s law.
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