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Foreword 

 

 Seldom has a new idea been so fruitful in its consequences as the discovery of G. I. 
Taylor, E. Orowan, and M. Polanyi in the year 1934 that the plastic forming of metals 
resulted with the help of dislocations.  This ground-breaking insight has been common 
knowledge for a long time in mechanics and physics, and countless solid-body 
phenomena that were completely puzzling before can now be explained with the help of 
dislocations. 
 Already in his first work on dislocations, Taylor also recognized that dislocations 
always give rise to proper stresses, and that by this manner of representation, one can 
give an explanation for the observed hardening of formed metals that is still true today.  
In the course of developing a continuum theory, one is led to an extended view of the 
notion of dislocation, and today one has the law: The dislocation is the elementary source 
of proper stresses.  The task of establishing and elaborating on this law assumes an 
important place in this report. 
 The appearance of individual dislocations is a physical phenomenon that can only be 
understood in terms of the atomic structure of the solid body.  The collective action of 
many dislocations yields the macroscopically-observed plastic changes of form and 
proper stresses.  One must describe this situation by a continuum theory.  We would like 
to call it the “continuum theory of dislocations.” 
 In Chapters I. and II, the standpoint of the ideal continuum will be taken.  From this 
standpoint, the continuum theory of dislocations is an exact theory. 
 Real bodies are hardly ideal continua.  The most important materials – e.g., all metals 
– are, at least in a small domain, crystalline in structure.  In Chapter III, the body 
considered is therefore a crystal.  The application of continuum-theoretical methods to 
real bodies always means a loss of precision.  The fundamental flaws that thus appear in 
the majority of cases always exist essentially in the face of uncertainties that always 
appear on physical grounds. 
 Many problems of solid-body physics relate to the behavior and properties of the 
individual dislocation.  Often, such questions may also be treated with the methods of 
continuum theory.  Therefore, Chapters II and III contain much about the singular 
dislocation. 
 One can associate a body with dislocations with a natural state in a non-Riemannian 
space with torsion and take advantage of the extensive tools of differential geometry.  
This procedure seems, above all, appropriate when one is no longer concerned with a 
linear theory.  The non-Riemannian geometry of dislocations will be discussed in Chapter 
IV.  Finally, Chapter V gives some applications. 
 In this report, dynamical problems will only be touched upon lightly.  Likewise, we 
shall do without a treatment of the thoroughly-examined special problems of 
phenomenological elasticity theory, as was given in, e.g., the recent textbooks of Hill [65] 
or Prager and Hodge [119]. 
 Today, there are already many excellent papers on dislocations in crystals, and we 
cite the following works: The presentation of Read [121] that precedes all geometric 
questions, the more mathematical presentation of Nabarro [110], and the particularly 
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physical questions that were treated in the works of Cottrell [21], Seeger [134, 135], 
Friedel [55], Seitz, Koehler, and Orowan [144], Haasen and Leibfried [62].  All of the 
presentations start from the atomic standpoint.  In contrast to them, the continuum aspect 
of dislocations will be put forth here.  Many important results of atomic dislocation 
theory will thus be passed over or only touched upon.  Nevertheless, we cannot, and 
would not like to, avoid speaking of atoms.  The definition of the dislocation thus gains 
much from intuition.  Above all, however, one also often cannot approach the 
consideration of atomic processes without the methods of continuum theory. 
 We believe that of the new results in solid-body mechanics precisely the continuum 
version of dislocations takes on a special meaning: It represents a bridge between the 
results of the atomic and phenomenological research in plasticity.  It can therefore be the 
connecting link that brings together the two great communities that both endeavor to 
bring about progress in mechanics: On the one hand, the mechanicians and 
mathematicians, and, on the other, the solid-body physicists.  R. Grammel [60] was 
recently responsible for bringing about a close cooperation between these two groups.  I 
would also like to continue in that spirit in the present report. 
 Much support has been afforded me, of which I will only mention the most important 
examples: In the first place, Herrn Prof. U. Dehlinger must be graciously thanked for his 
ongoing help and his part in it; in particular, for the discussions of the systematics of the 
construction of this report.  For some conversations relating to, inter alia, the 
understandability of the presentation, I am deeply grateful to Herrn Prof. R. Grammel.  
Furthermore, I would like to warmly thank Herrn Prof. E. Fues for his interest and 
inspiring criticism, Herrn Dr. A. Seeger for the fact that he placed his rich experience in 
dislocation theory at my disposal, my collaborator, Herrn Dr. G. Rieder, who played an 
essential part in the development of the theory, for numerous discussions and careful 
checking of the manuscript, and Herrn Dr. P. Haasen, for reading the corrections and 
some important suggestions.  Furthermore, I would like to warmly thank Herrn Prof. 
Lösch for making this report possible for and his help with the editing.  The writing of the 
report was supported by der Deutschen Forschungsgemeinschaft and the Max-Planck-
Institut für Metallforschung in Stuttgart.  Finally, I should mention the good cooperation 
with the publisher and printer. 
 
 Stuttgart, in December, 1957. 
 
           E. Kröner  
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Introduction  
 

 Originally, continuum mechanics, as it was developed by Navier, Cauchy, Poisson, 
Stokes, et al., existed as the subdomains of elasticity theory and hydrodynamics.  In the 
former, one was interested in the reactions − in particular, the stresses − that would be 
provoked in a solid body that was “externally” endowed with forces – and possibly also 
rotational moments.  In the latter, one examined, above all, the motion of fluids. 
 Relatively early on, Duhamel and Neumann also included temperature stresses in 
elasticity theory.  Thus, they always occupied a special position, since they were not 
subject to the Kirchhoff uniqueness theorem, which states that in the domain of linear 
elasticity theory the stresses of a simply connected body are uniquely determined by the 
external forces that act on it.  The Kirchhoff theorem is valid only under the assumption 
that the St. Venant compatibility conditions for the elastic deformations are fulfilled in 
the entire body.  In the case of temperature stresses these conditions are not actually 
valid, which clarifies the nature of their special position. 
 In the second half of the 19th Century, plastic behavior in continua was examined by 
Tresca, de St. Venant, Levy, et al.  This “phenomenological” plasticity theory, which was 
further developed by v. Mises, Prandtl, Reuss, Prager, Hencky, Nadai, et al. later on, 
stood, to a certain extent, between elasticity theory and hydrodynamics.  Thus, the 
resulting deformation (we also call it the total deformation εεεεG) of the plastic body 
includes an elastic part εεεε that gives rise to stresses as it would in ordinary elasticity 
theory, along with a second part that we refer to as the plastic deformation εεεεP, which 
certainly changes the form of the body, but produces no stresses.  One has such 
deformations in a pure form in fluids.  All together, one then has: 
 

εεεεG = εεεε + εεεεP.     (1) 
 

Since at least one part of the stresses remains after plastic forming with no external 
forces, the elastic deformations εεεε obviously do not fulfill the compatibility conditions.  
Here, one sees a commonality between temperature stresses and the proper stresses after 
plastic forming. 
 It is essentially possible to single out a volume element (perhaps on the outer surface 
of the body) before the plastic forming and to measure the deformation that it suffers 
when compared to the initial state; this would be the deformation εεεεG.  If one now cuts out 
the volume element and lets it relax then it will assume its original form, but will have 
preserved the plastic deformation.  Now, just as at the onset, one again finds this element 
in its “natural” state, which has be employed since Cauchy, Green, et al., in elasticity 
theory.  The element has changed its form, but not its state 1.  A function that says 
something about the body in question shall then be called a “state function” or a “state 
quantity” if one can measure it uniquely at a certain time without having to know the 
history of the body.  The part εεεεP of the total deformation is therefore not a state function, 
but the elastic deformation εεεε is.  The difference between state functions and the state of 
unchanged functions is of deep significance and will thus be of interest to us very often. 

                                                
 1 This statement is then strictly valid only when the plastic forming takes place without (plastic) change 
in volume; cf., § 2. 
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Fig. 1. The symbol ┬ stands for the edge dislocations; it will first show up in § 23.   

 
 It first became obvious in recent years that continuum mechanics, with its three 
branches of elasticity theory, plasticity theory, and hydrodynamics, has not − at least, in 
its present scope – succeeded in describing all macroscopically measurable mechanical 
proper stresses of a body.  A simple example may clarify this:  Let a beam be attached to 
rigid walls, and then let it bent elastically or also piecewise plastically into the shape in 
Fig. 1.  The two walls shall, moreover, remain in this shape and the beam warmed up.  
During the warming, the critical shear stress will be reduced (defined to be the shear 
stress at which a noticeable flow of the material sets in); i.e., a flow can take place inside 
of the beam, during which the elastic deformations will gradually be replaced with plastic 
ones.  After sustaining the higher temperature for a sufficiently long time, the beam is 
again cooled to room temperature and the clamps are removed.  One then observes 
practically no bending of the beam back to its original state, and the change of form will 
remain.  One can cut out volume elements and establish that no (macroscopic) proper 
stresses are present 2.  Nevertheless, the beam reacts to, e.g., a renewed change of form in 
a different way from a beam of the same form “without memory.”  One can now excise 
an individual volume element of the beam and measure its critical shear stress.  One will 
thus establish that the body is found in a completely determined state of hardening.  One 
can thus characterize the change of state that takes place in another way that can be easily 
represented in continuum terms.  Namely, if one irradiates the beam with Röntgen rays, 
or, in the event that it also transparent, with visible light, then one establishes diffraction 
(Beugung) effects that have their origins in a curvature of the original atomic lattice of 
the beam.  An interpretation of the experiment yields that one can measure this curvature 
uniquely as a function of position, and thus characterize the stress-free curvature of the 
lattice planes (Netzebenen) for the state of the beam.  Up to now, such curvatures were 
never described in continuum mechanics. 
 In order to grasp such geometric changes in the body, one must extend the three 
deformation tensors of eq. (1) by the addition of rotation tensors ωωωωG, ωωωω, ωωωωP to general 
asymmetric tensors of second rank ββββG, ββββ, ββββP, which we will refer to throughout as 
“distortion tensors.” 
 Hardening can still not be correctly treated in continuum mechanics to this day.  
Moreover, the research of the last twenty years has shown that it has its origin in the 

                                                
 2 That which are called lattice curvatures much later are linked with the proper stresses that change their 
signs in the microscopic realm, and thus cannot be established by the excision experiment that was 
described.  These proper stresses, just like the macroscopic ones, lead to hardening (cf., infra). 
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proper stresses that come about during the plastic forming of the material.  In principle, a 
precise knowledge of the proper stresses shall permit one to calculate the hardening of the 
material.  Furthermore, it has shown that one can relate all of the proper stresses, as well 
as the lattice plane curvatures (and thus also hardening) to the same physical quantity: the 
dislocation.  It is, moreover, not only definitive of the change of state of the body, but 
also the part of its total form that does not change state.  This obviously permits one to 
arrive at a continuum theory of dislocations that closes one of the yawning gaps in 
continuum mechanics.  This continuum theory of dislocations shall, above all, include a 
theory of proper stresses, and furthermore, a theory of stress-free lattice curvatures, as 
was first presented by Nye [113].  Moreover, it must therefore also describe the 
connection between the motion of dislocations and plastic forming.  Thus, it already 
reverts to the phenomenological theory of plasticity.  One then obtains separately and 
collectively the theories of elasticity, dislocations, and plasticity as part of a continuum 
mechanics of solid bodies that encompasses all mechanical phenomena in solid bodies. 
 It still remains to be said how one can incorporate temperature stresses and other 
stresses that go back to either external forces or plastic forming. (As a result, we call the 
stresses magnetostriction and electrostriction.)  If one uniformly heats a body to high 
temperature then its points suffer displacements, without which restoring forces would be 
aroused; the same is also characteristic of plastic forming.  This then suggests that we 
may regard the case of forming by means of temperature fields as a type of plastic 
forming; we would like to call it “quasi-plastic.”  One can then further attribute the 
temperature stresses to certain “quasi-dislocations” and thus obtain, with Kröner [82], a 
theory of temperature stresses that is, to a certain extent, a continuum theory of quasi-
dislocations.  This agreement is not only formally well-founded, but also physically, and 
it thus seems entirely natural to include the temperature stresses (and the other stresses 
mentioned above) in the continuum theory of dislocations.  The treatment of the 
especially interesting problem in which one simultaneously has, e.g., temperature stresses 
and proper stresses after plastic forming will be simplified essentially in this way. 
 All of the continuum mechanics of solid bodies is now included in just a few 
equations.  For the stationary state these equations are 3: 
 

Div σσσσ + F = 0,  Rot ββββ = αααα,    (2) 

 
where σσσσ  (ββββ, resp.) is the stress tensor (elastic distortion tensor, resp.), and F (αααα, resp.) is 

the density of external forces (dislocation density, resp. – excluding quasi-dislocations).  
To these, we add the equation for the elastic energy density (= distortion energy function 
or elastic potential) 4: 

e = 
1

2
σij εij      (3) 

 

                                                
 3 We think of the boundary surface conditions as contained in these equations when we allow F and αααα to 
degenerate to superficial objects (and also linear or point-like ones).  In the event that one allows external 
rotational moments, still more equations come about. 
 4 We employ the summation convention throughout: Doubly-appearing indices will be summed from 1 
to 3.  The tensor symbolism that is employed is clarified in the Appendix.  
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and the material equation, which is generally taken to be Hooke’s law for small 
deformations.  The uniqueness theorem for the continuum mechanics of solid bodies may 
be proved for this case:  The stresses and elastic distortions of a body are determined 
uniquely when one given the external forces F and dislocations αααα.  From this, it follows 

immediately: All proper stresses originate in dislocations.  In the case of large distortions, 
this is, however, not true, as the example of the everted hemispherical membrane shows 
[160]. 
 For the first twenty years, solid-body physicists concentrated their interest on 
crystalline structures, which most of our materials exhibit; in particular, metals do.  In the 
realm of media that are at least 10−3 cm thick (corresponding to, say, 1015 atoms!) they 
are crystalline (“polycrystalline”) in their composition.  With methods that were 
developed at that time and have been greatly improved since then, it is now possible to 
grow almost arbitrarily large “unit crystals” of many materials.  They are of great 
significance in experimental and theoretical research, and have thus found important 
application in technology – e.g., in the transistors of telecommunications. 
 The concept of dislocation was first invoked  – although in a vague form – in 1928 by 
von Prandtl [108] for the clarification of inelastic phenomena in metals.  By 1929, 
Dehlinger [29] could show, in the examination of the re-crystallization – i.e., the grain 
reconstruction (Kornneubilding) – that one observes in strongly plastic forming, which 
has its origin in the strong proper stresses that thus appear, that these proper stresses lead 
back to certain defective domains insider the otherwise regular distribution of atoms in 
crystals, and that these domains can be (meta-) stable.  Dehlinger called his proper stress 
sources “hooks” (Verhakungen); they are nothing but two closely-neighboring 
dislocations of opposite signs.  The manner in which proper stresses are possible at all in 
a crystalline medium was thus explained.  Throughout these examinations, the attention 
was directed to the perturbation of regular atomic arrangements, especially.  One calls 
such perturbations “lattice defects;” they play a decisive role in contemporary solid body 
physics. 

 

x3 
x1 

x2 

 
Fig. 2.  Ideal crystal, cubic primitive lattice. 
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Fig. 3.  Crystal of Fig. 2 after the immigration of an edge dislocation along the x1 direction. 

 
 

δg 

 
Fig. 4.  The edge dislocation of Fig. 3 has migrated through the crystal in the x1 direction. 

 
 In 1934, a lattice defect was described independently by Orowan [114], Polanyi 
[118], and Taylor [149] that we will explain by means of Figs. 2 and 3.  Fig. 2 shows a 
completely regularly formed crystal called an “ideal crystal.”  Fig. 3 shows the same 
crystal after the immigration of a perturbation along the x1 direction.  The perturbation is 
characterized by saying that a lattice plane has adhered inside the crystal.  One calls the 
boundary line of such an “extra lattice plane” an “edge dislocation line” or simply “edge 
dislocation.”  Fig. 4 shows the same crystal after the perturbation has migrated to the left.  
By means of the one-time drift of the dislocation through the crystal the upper and lower 
halves of the crystal will be displaced with respect to each other by an atomic distance.  
We call the vector that gives the relative displacement in the glide plane the “glide 
vector” δg; it is perpendicular to the edge dislocation line.  If the crystal had a shear stress 
σ31 imposed on it then work would be done during the migration.  As a consequence, 
such a shear stress means a driving force for the dislocation.  The cited authors now 
remarked that the drift of an edge dislocation must be possible for comparatively small 



6 Table of contents 

stresses.  Fig. 3 gives a certain optical impression of the idea that the atoms bounding the 
dislocation shall move more easily that the remaining ones. 
 Already in 1926, Frenkel [54], with the help of an atomic model, had calculated that 
gliding, such as the transition from the crystal of Fig. 2 to that of Fig. 4 represents, then 
requires a shear stress of order of magnitude of the shear modulus G when the two lattice 
planes in question glide over each other rigidly through an atomic distance.  
Experimentally, a more than thousand-fold smaller critical shear stress was measured.  
The plasticity mechanism that was proposed by Orowan, Polanyi, and Taylor shall 
actually lead to a smaller critical shear stress 5. 

 

x1 x3 

x2 

δb δg 

t 

 
Fig. 5.  The upper lattice planes of the crystal in Fig. 2 after the migration of a screw dislocation along x1 . 

 
 In 1939, Burgers [12] had described another lattice defect, which had the effect of 
saying that the original lattice planes are now connected into a type of screw surface (Fig. 
5).  The screw axis is now called the “screw dislocation” (s-line).  One sees that this 
screw dislocation can move relatively easily.  One can think that it migrates along – say – 
the x1 direction, as is Fig. 5.  Fig. 6 and 7 show the crystal after the migration of the screw 
dislocation of Fig. 5 in the – x1 (x3, resp.) direction.  Ultimately, certain parts of the 
crystal have glided over each other.  Here, however, the glide vector is parallel to the 
screw dislocation line.  Burgers has shown further that there are also dislocations whose 
glide vector is diagonal to the direction of the dislocation line.  One often suitably regards 

                                                
 5 For Dehlinger [31], these purely mechanical considerations were not sufficient for him to prove that a 
rigid gliding between two lattice planes could not actually occur.  One must apply statistical 
thermodynamical considerations, in addition – in particular, the theorem that in solid bodies only 
transitions of the lowest order of reaction can take place.  Applied to our case, this says: It is extremely 
improbable that by temperature fluctuations alone the atoms of a lattice plane would simultaneously have 
such an elevated energy that they then simultaneously make the glide step that a rigid gliding of the lattice 
plane in question would amount to.  Such considerations are indispensable when one would now like to 
compute the critical shear stress theoretically under the assumption of the dislocation mechanism.  Seeger 
[137] has shown that by ignoring the temperature fluctuations the critical shear stress that one would 
compute purely mechanically often comes out to be more than 100% too large. 
 Due to its importance in such problems, let us further mention a new paper of Donth [164], which 
showed that by a statistical treatment of dislocations one would come to the Kolmogoroff equations for 
statistical processes since the assumptions for the application of an Arrhenius equation are not true in the 
case of dislocations. 
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such dislocations as the combination of a screw and an edge dislocation along the same 
line, such that dislocations of this type imply nothing fundamentally new. 

 

δg 

Fig. 6.  The screw dislocation of Fig. 5 has migrated 
through the crystal in the – x1 direction. 

 

δg 

Fig. 7.  The screw dislocation of Fig. 5 has migrated 
through the crystal in the x3 direction 

 
 
 However, the possibility of motion for dislocations has still not been completely 
discussed.  There still remains the essential possibility of considering a motion of the 
dislocation in Fig. 3 in the x3 direction.  This means an enlargement of the extra lattice 
plane, which is only so imaginable in practice, such that atoms in the vicinity of the 
dislocation will come back to it by diffusion.  The change in position of an atom in a 
crystal always leads to an energy threshold with an order of magnitude of 1 eV (= 1.63 × 
10−18 mkg) that cannot be overcome by means of externally applied stresses 6.  Moreover, 
the temperature fluctuations must first have at their disposal the required “activation 
energy.” As a result, such diffusion can first occur, to a large extent, only at high 
temperatures.  The dislocation motions that play out in this way are called “climbs,” as 
opposed to the aforementioned “glides.”  Any atom that lies on the extra lattice plane 
leaves behind a so-called “lattice gap.”  One must account for these lattice gaps 
macroscopically in the volume being measured; i.e., the volume of the body changes 
while the dislocation climbs.  This type of motion was thus called “non-conservative” 
(relative to the volume) by Nabarro [108], while the gliding motion was also called 
“conservative.” 
 If a dislocation climbs in – e.g. – the x3 direction completely through the crystal of 
Fig. 2 then this means that a new lattice plane is formed and thus the crystal will be 
lengthened in the x1 direction.  Thus, a pure tension (Zugspannung) (σ11 > 0) exerts a 
pressure on the dislocation to climb in the x3 direction.  On the other hand, a compression 
(Druckspannung) might break down the extra lattice plane, which is, however, possible 
only as long as all of the lattice gaps are filled up in the vicinity of the dislocation with 
atoms of the extra lattice plane.  One sees that the volume of a body can also be changed 
plastically; the theory to be developed in Chapter I includes this possibility. 

                                                
 6 Macroscopically, 1 eV is a minute energy.  However, it must be localized in a space of only some 10−24 
cm, and this is obviously not possible with externally applied stresses. 
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 Certainly, for many solid-body phenomena, the climbing of the dislocations plays an 
important role for temperatures that are not too much less than the melting temperature, 
and we cite re-crystallization and the existence of casting stresses. 
 A glance at Figs. 2 to 7 shows that one should expect proper stresses in the states of 
Figs. 3 and 5, while the crystal is found in the natural state in the remaining figures 7.  In 
§ 1, we will show the close relationship between these proper stresses and those of 
Volterra distortions.  Building on the work of Volterra, in 1939 Burgers [12] had created 
an elasticity theory of singular dislocations in which the proper stresses, which originate 
in the dislocations, can be calculated.  The numerous particular elasticity-theoretic 
calculations for dislocations have been based on this fundamental work. 
 Therefore, the following picture of the sequence of events in the plastic forming of 
metal can be given: Under the influence of externally applied stresses, the dislocations 
that are already present in the crystal define an additional large set of new dislocations.  
They correspondingly migrate around under the forces exerted, while they provoke the 
macroscopically observed changes of form.  Thus, due to their increasing number, the 
dislocations bring about proper stresses of increasing measure that endeavor to inhibit the 
motion of the dislocations, as was first suggested by Taylor [149]; this effect leads to the 
hardening of materials. 
 

                                                
 7 One distinguishes – e.g. – the states in Figs. 2 and 4 precisely by saying that as a result of the 
formation of edges the crystal of Fig. 3 has an altered outer surface stress.  For our purposes, we do not 
need to address this; one can confer, e.g., the discussion in Nabarro [110], pp. 332. 



 

Chapter I 
 

Dislocations in a continuum: geometry 
 

§ 1.  Dislocations and Volterra distortions 
 

 At the beginning of this chapter the close connection between dislocations and 
Volterra distortions will be clarified. 
 Let f be a surface that is at least piecewise planar 1 in the interior of a simply 
connected medium with the (dimensionless) unit normal vector n(x) at the position x.  
Let t(x) be the unit tangent vector of the boundary line of f, which is oriented by the right-
hand screw rule.  One thinks of the body in the stress-free initial state as being cut along 
the surface f such that the positive edge of the cut defined by f is bestowed with the 
infinitesimal plastic displacement δg(x) relative to the negative one.  We would like to 
carry out the displacement δg(x) in two steps by decomposing it into two components: 
(δg||), which is parallel to f, and (δg⊥), which is perpendicular to it.  After the parallel 
displacement δg|| both sides of the surface f will have no gap between them. 
 For the displacement δg⊥ that now follows, one must distinguish two cases: 1. The 
two sides of f are displaced with respect to each other.  For this case, we have at our 
disposal the possibility that the resulting cavity is then filled with matter of the same type 
and density as the original body.  2. In the case for which δg⊥ means a displacement of 
the two edges of the cut with respect to each other, exactly enough matter from one of the 
two edges shall be carried along that this displacement is possible.  After carrying out this 
operation, we think of everything as being deformed and the forces that produced the 
displacement are removed in such a way that once more we have a unitary, simply 
connected body in which proper stresses naturally remain.  They are determined by not 
only the material and form of the body, but also the position of the surface f – i.e., by n – 
as well as the resulting “impressed” or “plastic” relative displacement δg. 
 We further remark that from a well-known theorem of Colonetti [18] the volume of 
the body in the final state differs from that of the initial state by the volume of the new 

compressed (removed, resp.) matter, hence, by δV = 
f

dfδ⋅∫∫ n g .  This theorem is valid 

only in the realm of linear elasticity theory, and therefore only for homogeneous bodies, 
as well (hence, e.g., not for bodies that consist of two homogeneous parts with different 
elastic constants). 
 In general, along the surface f the deformations and rotations of the volume elements 
of the body change discontinuously, which was first examined by Weingarten [157], and 
later more thoroughly by Somigliana [147] 2.  Thus, if both cut edges due to a piece ∆f of 
a surface f are merely impressed with a rigid displacement then the deformations are 

                                                
 1  The restriction to planar surfaces simplifies the presentation, although it is not necessary.  One easily 
sees that the essential results of this paragraph − in particular, the definition of the dislocation − are also 
valid in the case of curved surfaces f. 
 2  The older results of proper stress theory were referenced by Nemenyi [111].  This paper also contains 
much that is still worth reading today. 
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continuous across ∆f.  That the rotations are also continuous across ∆f is, in addition, 
necessary in order to have δg = const across ∆f. 
 Should the body be again simply connected at the end of the operations − hence, 
nowhere exhibiting a tear − then the cut edges of the entire surface f cannot be rigidly 
displaced with respect to each other.  One comes to the dislocations by the following 
prescription: Let δg be almost constant across the entire surface f, except that on the 
boundary of f it goes quickly to zero.  Fig. 8 shows the vanishing of | δg | over a (planar) 
surface f, which, for the sake of simplicity, is assumed to have a circular boundary.  We 
now define the dislocation line to be the boundary line of the surface f, or, more 
precisely, the dyadic product – t δg ≡ − (ti δgj), where δg shall mean the constant 
displacement over the greater part of the surface 1. 
 Still more precisely, one must say: Here, there is not a singular line – t δg, but a 
quasi-singular strip of very small width 2ζ (Fig. 8).  We thus extend the above definition 
by adding that this shall be valid in the limit as ζ → 0 2. 
 

 
2ζ 2ζ 

| δg | 

x1 

 
Fig. 8.  The production of a dislocation in a continuum. 

 
 A second prescription leads to the Volterra distortions: One establishes that from now 
on (or, at the latest, after making the cut along f) the boundary line of f is given by a 
hollow torus of radius ζ > 0.  The body is then generally no longer simply connected, and 
the surface f has its entire boundary in the bounding surface of the body.  Thus, a rigid 
displacement of the cut edges of the entire surface f is possible.  If one sets δg = const. 
then one obtains a so-called Volterra distortion state of the first kind, which, upon the 
bulk removal of the hollow torus, one obviously cannot distinguish from the state 
produced by a dislocation (principle of St. Venant).  The Burgers elasticity-theoretic 
treatment of dislocations is based upon this knowledge. 
 We will come to speak of the Volterra distortion state of the second kind, for which 
the rigid relative displacement is a rigid rotation of the cut edge, in § 7.  From our 
standpoint, it does not have the same meaning as the state characterized by δg = 0. 
 From the definition of dislocation, it follows that: 
 1. The dislocation, as the boundary line of a surface, can end only on the bounding 
surface of the body. 
 2. Since the deformation and the rotation of the surface f happen continuously, they 
can no longer be experimentally determined, from the definition of the dislocation lines.  
All surfaces that are bounded by t can therefore serve as cut surfaces to produce the 
dislocation (distortion, resp.) state.  That is, this is already completely determined by the 
boundary line t and the relative displacement δg. 
                                                
 1 The minus sign is chosen by convention, in order to be in agreement with the most-used sign 
convention of Frank [47] (§ 21).  
 2 The function δg then takes on the character of a Heaviside step function in the plane in which f lies. 
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 Assume that during the operation of relative displacement a stress that arises from an 
external force was imposed upon the body.  This stress could then do work under the 
displacement.  As a result, stresses exert a force on the body, in the sense of the creation 
and spreading out of dislocations.  In particular, if there is a transverse stress in a plane 
then there exists a tendency towards the conservative formation and spreading out of a 
dislocation (i.e., δg || to the surface), while a normal stress that is perpendicular to the 
plane means a tendency towards non-conservative formation and spreading out of a 
dislocation (δg ⊥ the surface).  Whether such behavior would actually be implied by the 
application of external stresses on the body alone would depend on the cohesive forces of 
the matter.  In particular, a diffusion of matter would be necessary under the non-
conservative formation and spreading out of a dislocation.  In the introduction it was 
described how this behavior was the basic mechanism for the plastic forming of real 
bodies.  We therefore also assume this for our ideal continua. 

 

a b 

δg 

x2 

x1 

A B 

2ζ 

f 

 
Fig. 9.  On the production of a straight edge dislocation in a medium.  One thinks of the slit in a as arising 
from the removal of matter from a solid cylinder. 
 
 In imitation of the introduction, we call the conservative spreading out of a 
dislocation a glide and the associated plane f the glide plane.  We call the non-
conservative spreading out a climb and the 
associated plane f the climb plane.  
Collectively, we speak of the drift of a 
dislocation along its drift surface.  We 
further say that a dislocation has an edge 
character where t ⊥ δg and a screw 
character where t || δg.  Figs. 9 and 10 show 
the production of pure edge and screw 
dislocations.  Obviously, the purely non-
conservatively formed dislocation is an edge 
dislocation.  This corresponds to the 
assertion that we encountered in the 
introduction that in a crystal only edge dislocations climb.  The conservatively formed 
dislocation has, in general, a mixed character.  This corresponds to the finding that in a 
crystal screw dislocations, as well as edge dislocations, glide.  These processes show 
clearly that the notion of dislocation that is used here is nothing but a conversion of the 
notion of dislocation from crystals to continua. 

 

δg 

Fig. 10.  On the production of a screw 
dislocation in a continuum 
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§ 2.  Plastic and elastic distortion 
 

 First, a remark on the ideal continuum: For the sake of simplicity, let it be assumed 
that in the initial state it is homogeneous.  By contrast, it would be a reduction of the 
fundamental significance if it were also assumed that it is isotropic.  Here, we do not 
mean the elastic isotropy; that would be completely inessential for the geometrical 
examination of this chapter.  One must, moreover, consider the possibility that the 
medium is geometrically anisotropic.  This means that at each point of the medium three 
linearly independent distinguished directions exist for which it is assumed that their 
angles with respect to any three normal directions in space can be measured.  This sort of 
geometrical structure must be required because real bodies, to which the continuum 
theory will be applied later on, have this structure.  One knows this from − e.g. − 
Röntgenography. 
 We assume that this structure is a property of the individual volume elements in the 
continuum.  The initial state will be defined to be the stress-free state of the medium, in 
which the distinguished directions of all volume elements are parallel to each other.  In 
the final state, one then has a certain orientation distribution, which is evidenced by the 
rotation of volume elements (cf., infra) that occurs.  For the sake of simplicity, we 
assume that the distinguished directions are orthogonal to each other in the initial state.  
The reader who wishes to think in terms of crystals may imagine the continuum to be, 
perhaps, a cubic primitive crystal with vanishing lattice constants. 
 

x3 

x1 

x2 
dx1 

dx2 
dx3 

a 

x2 

x3 

x1 b 

δx2 

| δg | 
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δx2 

x1 
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x2 

d 

| δg | 

 
 

Fig. 11.  On the definition of the macroscopic tensor of plastic distortions. 
 
 One can now find the operations described in the last paragraph taking place on very 
many surfaces f.  If they are infinitely dense and the associated relative displacement δg 
is distributed continuously then one can, in this way, realize continuously-distributed 
purely plastic − or also mixed plastic-elastic − changes of form of the body.  The first 
process may be envisioned as in Fig. 11.  This shows an isolated volume element dV in 
the initial state (a).  It shall be cut from the surfaces df at a distance δx2 that is 
perpendicular to the x2-direction, and then each two neighboring layers will be given the 
relative displacement δg.  One imagines that the passage to the limit δx2 → 0, δg → 0 has 
been carried out while keeping δg / δx2 constant.  In the case of Fig. 11b, the gaps are 
filled with matter of the same type as the volume element in such a way that the density 
distribution remains homogeneous in this way.  At the end of this, everything is again 
deformed.  In total, the volume element is then stretched homogeneously and plastically 
in Fig. 11b (and thus “thinned”), and sheared homogeneously and plastically in Fig. 11c 
and d. 
 We generally let dgj denote the (plastic) relative displacement of the bounding 
surfaces of the volume element on the + xi-face with respect to the one on the – xi-face 
and define the asymmetric tensor of plastic distortions ββββP ≡ ( )P

ijβ  by the relation: 

 
dgj = P

ijβ dxi ,      (I.1) 

 
where dxi characterizes the relative distance of the bounding surfaces in question, and 
will relate to the initial state.  The plastic distortions, which correspond to Fig. 11b to d, 
are then denoted by22

Pβ , 23
Pβ , 21

Pβ .  The diagonal components of the plastic distortion 

tensor P
ijβ  are then plastic dilatations and the remaining components are plastic shears, 

where the first index gives the glide plane and the second one, the glide direction. 
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 It is now particularly important to remark that under plastic distortion the volume 
element does not change.  One concludes this from the way in which the distortions in 
Fig. 11 come about 1.  Thus, the difference between the shears 21

Pβ  and 12
Pβ  is not, 

perhaps, a rigid rotation, but a “plastic rotation” of the volume element, with preservation 
of its orientation (Fig. 12a, b).  This statement is true for small distortions.  The 
symmetric part of P

ijβ  then describes a pure plastic deformation P
ijε , and the anti-

symmetric part, a pure plastic rotationPijω , both of which preserve the orientation.  The 

decomposition of the distortions into deformation and rotation 2: 
 

P
ijβ = P P

ij ijε ω+      (I.2) 

 
is also true for large distortions.  Here, one must, however, understand Pijω  to mean the 

well-known asymmetric tensor for large rotations (versor) [34] 3. 
 The forming of the volume element that was considered up till now comes about in a 
stress-free way.  We then come to the case of elastic forming.  Let dai be the elastic 
relative displacement of the bounding surfaces as before.  We then define the asymmetric 
tensor of elastic distortions ββββ ≡ (βij) by the equation: 
 

daj = βij dxi .     (I.3) 
 

 

12
Pβ  

a 

x1 

x2 

21
Pβ  

b 

 

                                                
 1 One thinks of the volume element in Fig. 11a as – say – an infinitely densely-packed family of material 
lines that run in the x2-direction.  The operations that lead from Fig. 11b to d obviously do not change the 
direction of this line.  One also simply postulates the preservation of orientation, because real bodies, to 
which the theory will later be applied, exhibit this property. 
 2 The additive combination of deformation and rotation is valid for large distortions only when dxi in eq. 
(I.1) relates to the initial state.  cf., § 10.  
 3 Bd. I, pp. 78.  
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β12 
 
c 

β21 
 

d  
Fig. 12.  Under plastic distortion, the orientation remains preserved (a, b).   
Under elastic distortions, it will generally be distorted and rotated (c, d). 

 

The βij describe the same changes of form and the position of the volume element as the 
P

ijβ , although there exists an essential difference: Under elastic shears, the original right 

angle between the preferred directions in question will change into the shear angle.  As a 
result, the difference between β21 and β12 for small distortions is now a rigid rotation of 
the volume element (Fig. 12c, d).  If one again decomposes βij into symmetric and anti-
symmetric parts: 

βij = εij + ωij ,     (I.4) 
 

then εij is the ordinary deformation tensor of elasticity theory and ωij is the tensor that 
describes the (rigid) rotation of the volume element.  In the case of large distortions, they 
are the same as before. 
 It creates no fundamental difficulty to measure the elastic deformation of a volume 
element in the final state if one cuts it out and lets it relax.  The preferred directions are 
thus again orthogonal to each other, and one can, in addition, measure the orientation of 
the element with respect to a normal orientation.  If one does this for all elements then 
one can give the rotations that occur in them the same constant rotation with respect to 
one of them.  This means that the elastic deformation is a state function, while the same is 
not true for the rotations, but only for their positional derivatives.  This obviously 
describes a curvature of the structure.  Since the elastic deformations and structure 
curvatures follow uniquely from the elastic distortion tensor, this characterizes the state 
of the medium after forming uniquely.  By contrast, it is impossible to measure the plastic 
distortions, deformations, or rotations that occur in terms of just the final state.  This is 
due to the fact that the state of a volume element will not change under a pure plastic 
distortion as in Fig. 11.  One can also confer the introduction. 
 In the general case, a volume element will be simultaneously plastically and 
elastically distorted.  Let: 

G
jds = daj + dgj     (I.5) 
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be the total relative displacement of the bounding surfaces of the volume element, as 
before.  We then define the tensor of total distortions ββββG ≡ ( )G

ijβ  by the equation: 

 
G
jds = G

ij idxβ .     (I.6) 

 
It is sufficiently characterized by the relation: 
 

G
ijβ = βij +

P
ijβ .     (I.7) 

 
Eq. (I.7) is also correct in the case of large distortions if one always refers dxi to the 
initial state (§ 10). 
 
 

§ 3.  The fundamental geometric equation of 
continuum mechanics for solid bodies 

 
 We describe a Gedanken experiment that must serve as the basic experiment of the 
continuum theory of dislocations 1. 
 
 If one externally imposes a sufficiently large stress on a plastic medium then 
dislocations can be created and drift, and thus produce plastic distortions of the volume 
element of the body.  These dislocations can come out – e.g., on the bounding surface of 
the body – while there can also be dislocations of the opposite sign inside the body that 
are annihilated, as well as dislocations that remain in place in the medium during their 
resulting drift and define a “dislocation density.”  We assume that these dislocations stay 
in place between the volume elements, not inside them.  Since the magnitude of the 
volume element shall go to zero, we also then obtain, in any case, macroscopically 
continuous distribution functions of the dislocations if the externally imposed stresses are 
continuous.  As one also assumes in continuum mechanics, the distortions shall be 
noticeably homogeneous in the domain of many volume elements dV, which means that 
the dislocations inside of such domains move rectilinearly. 
 After imposing the stresses upon the body, each volume element will now suffer a 
completely determined dislocation drift, and one can describe this, at least numerically, 
as a function of the position of the volume element, relative to – say – the initial state (§ 
4).  From now on, we imagine that the body is in its initial state and has been cut up into 
its volume elements so that each element is independent of the other elements in the 
dislocation drift that follows for it.  In other words: We imprint each element with a 
plastic distortion ββββP(x).  Then the elements are, in any case, free of stresses, and their 
orientations remain preserved.  There are now two possibilities: 
 1. The volume elements fit together with no gaps under the plastic distortion; there 
is no rip anywhere.  One can then think of them as all deforming again without pressure 
and obtain the body in the state that it was also given in, if one did not cut them apart 

                                                
 1 Experiments of this type, in which the deformations alone (but not the rotations) are considered, are 
described many times in the literature.  Cf. Föppl [44], Reissner [122], v. Laue [87].  
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before the dislocation drift.  In particular, the body is also free of proper stresses and 
structure curvatures.  Thus, the state of the body has not changed during the dislocation 
drift, but only the form. 
 2. The volume elements no longer fit together after forming.  Fig. 13 shows an 
example in which the connection of the elements was perturbed in such a way that 
dislocations that stay in place between the 
volume elements are extended 
perpendicular to the plane of the paper 
and migrate from above and left, such 
that the upper elements meet up with 
more dislocations and would thus be 
sheared more strongly than the lower 
ones, while, on the same grounds, the 
elements to the left would be more 
strongly stretched than the ones to the 
right.  If one would unite the elements 
into a compact whole then one would 
have to distort it elastically in such a way 
that they again fit together without gaps.  
In general, elastic deformations and 
rotations are necessary for this.  Under 
the former, stresses build up, while the 
latter give rise to rotations of the 
orientation.  One now thinks of 
everything as again deforming and the 
forces that have brought about the elastic deformations are taken away.  A relaxation of 
the body into a state of lowest possible elastic energy will then occur, in general.  Thus, 
the stresses can vanish completely when nothing but rigid rotations of the volume 
elements have sufficed to again produce the connection that was disturbed by the plastic 
distortion.  At the end of it, one naturally has arrived at the same state as one also obtains 
when one does not cut the body apart before the dislocation drift. 
 This Gedanken experiment must now be evaluated quantitatively.  Both possibilities 
have in common that the body shall be compact and show no rips in its final state.  This 
means that in any case the total distortion ββββG is a function of position such that the 
connectivity of the volume elements is preserved.  This requirement means a restriction 
for the additional functions ββββG that the functions ββββP are not, however, subject to, at least 
in case 1, but not case 2.  We now show that: 
 

G
ijk kl

jx
ε β
 ∂
  ∂ 

≡ Rot ββββG = 0    (I.8) 

 
is a necessary condition for the connectivity relationships between the volume elements 
to be unchanged.  Fig. 14a shows two elements in the initial state.  The connection 
between the two then remains preserved when the right-hand boundary surface of the 
left-hand one and the left-hand boundary surface of the right-hand one suffer precisely 

 

x1 

x2 

Fig. 13.  A plastic distort ion that does not undergo 
simultaneous elastic distortion generally disturbs 
the connectivi ty of the body.  
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the same displacement.  This means that the components 2
G

jβ  and 3
G
jβ  in both elements 

must be the same, while the components 1
G
jβ  may 

vary.  As an example, Fig. 14b and c show how it 
appears when the elements suffer a different distortion 

21
Gβ  ( 12

Gβ , resp.).  Thus, it follows that ∂β2j / ∂x1 = ∂β3j 

/ ∂x1 = 0 is necessary for the preservation of the 
connectivity 1.  One immediately concludes the 
necessary condition (I.8) from this.  The Gjds in eq. 

(I.8) is then obviously a complete differential; i.e., 
there exists a function sG that measures the total 
displacement of the points of the body (up to a rigid 
translation).  One then has: 

 
G
ijβ = /G

j is x∂ ∂ ≡ (Grad sG)ij .  (I.9) 

 
 In the case 1 described above, since ββββ = 0, one has 
ββββP = ββββG; hence, the dgj in eq. (I.1) will become a 
complete integral and: 
 

ββββP = Grad g ≡ Grad sP.  (I.10) 
 

In this case, one thus obtains a pure plastic 
displacement sP of the points of the continuum under 
which this state will not be changed.  This case is of 

considerable practical meaning for plastic forming; we shall come back to it later. 
 Henceforth, we heuristically define the asymmetric tensor density αααα ≡ (αij) by the 
expression: 

αααα  ≡ − Rot ββββP,   (I.11) 
 
and then show, first of all, that this definition is 
consistent with that of the individual dislocation 
in § 1. 

 
 Fig. 15 shows a body in which a small 
number of dislocations drift about, of which, we 
assume that they move perpendicular to the 
plane of the paper.  The drift surface of the 
dislocations is drawn, and indeed, removed 
(ausziehen), if the dislocation that sits at the end of each drift surface runs through the 
surface F with the arbitrarily-oriented boundary line C; in the other cases, it is sketched 

                                                
 1 It is then sufficient when one assumes continuous total displacements; we will not go further into this.  
One can refer to a non-vanishing function Rot ββββG as a “rip density.”  One obtains such a thing, e.g., during 
the rolling of a sample of metal when it was chosen too big. 

 

a 

b 

c 

Fig. 14. (Coordinate system as 
in Fig. 13.) 

 

F 

C 

Fig. 15 
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with dashed lines.  The drift surface is oriented in such a way that it will point in the 
positive direction of C.  Now, we go around C once and add to each drift surface the 

relative displacement δg of its positive side with respect to its negative one that originates 
in the dislocation drift.  For the sake of simplicity, we assume that δg is equal for all drift 
surfaces 1.  One immediately sees that the dashed surface does not contribute to the sum, 
since it produces two equal and opposite contributions.  As a result: 
 

b ≡ − δ∑
C

g      (I.12) 

 
is a direct measure of the number and type of the dislocations that run through the surface 
F.  We refer to b as the “total Burgers vector” of these dislocations 2.  In the case where 
the circuit C encircles only one dislocation b = − δg is the Burgers vector of this 

individual dislocation. 
 We showed in § 1 that the state of a medium with one dislocation is determined 
completely by being given the line of motion t and the glide vector δg.  We now see that 
one can also give the Burgers vector in place of the glide vector.  One observes the 
essential difference between these two vectors: δg assumes that for a dislocation that 
drifts along a surface the positive side of that surface will be displaced relative to the 
negative one by δg.  When no dislocations are drifting one has, by contrast, δg = 0.  δg is 
then a vector that is bound to the drift surface of the dislocation, and, in particular, also 
preserves its meaning when the dislocation leaves the medium, hence, no longer exists, at 
all.  On the contrary, b is defined only in conjunction with the circuit C (the surface F 

encircled, resp.) and thus says something about the distribution of the dislocations in the 
body. 
 In the case of sufficiently densely distributed dislocations, one can replace the sum in 
eq. (I.12) by an integral: 

b ≡ − δ∫�
C

g .      (I.13) 

 
If we are dealing with an infinitesimal surface ∆F 3 then we call the resulting Burgers 
vector ∆b.  If one knows this for each arbitrary oriented surface element ∆F at each point 
of the medium then one obviously knows how many dislocations of each type run 
through each point of the medium.  The expression: 
 

αij = ∆bj / ∆Fi     (I.14) 
 

shall thus be defined as the “tensor of dislocation density” or briefly, as the “dislocation 
tensor.”  Since the dislocation density is a tensor field, it is sufficient to know the Burgers 
vector at each point for three surface elements that are oriented perpendicular the 
                                                
 1 This implies no restriction of generality in our considerations, as the following calculation confirms.  
 2 In honor of J. M. Burgers, who introduced the circuit vector b to characterize a dislocation in the 
groundbreaking paper [12]. 
 3 ∆F must be essentially larger than than dF in order for a dislocation density to be defined by ∆F.  If 
one first lets dF go to zero then one can, in addition, also take the limit ∆F → 0. 
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Cartesian coordinate axes.  If one measures a Burgers vector – e.g., for the surface ∆F1 – 
and it has the single component ∆B1, while ∆F2 and ∆F3 give no contribution, then one 
obviously has the Burgers vector parallel to the line direction, and from § 1 the diagonal 
components of αij thus represent screw dislocations in the i (= j) direction.  
Correspondingly, one recognizes that the remaining components of αij mean edge 
dislocations in the i-direction with their Burgers vector in the j-direction.  In total, the 
first index of αij gives the direction of the line and the second one, the direction of the 
Burgers vector.  We also call the total Burgers vector of all the dislocations that go 
through an arbitrary surface F the “dislocation flux” through F; it obviously results from 
eq. (I.14) that: 

b = 
F

d ⋅∫∫ F αααα .     (I.15) 

 
On the other hand, we compute it from eq. (I.13) to be: 
 

b = − δ∫�
C

g = − d∫�
C

g = − Pd ⋅∫�
C

x ββββ = − Rot P

F

d ⋅∫∫ F ββββ .   (I.16) 

 
In this, we have used the fact that ∫ δg, when integrated over a path dxi, naturally yields 
dg (Fig. 11); this is substituted in eq. (I.1) and finally Stokes’s theorem is applied.  Since 
the surface F was arbitrary, one concludes the comparison with eq. (I.15) directly from 
eq. (I.11). 
 From eq. (I.7), (I.8), and (I.11), what immediately follows is the “basic geometric 
equation of continuum mechanics” 1: 
 

Rot ββββ = αααα.     (I.17) 
 

From the previous statements, this is to be understood as follows: If a dislocation drift 
(plastic distortion ββββP, resp.) takes place in such a way that the dislocations remain in 
place with a density αααα in the medium then the distortion ββββP, when it happens by itself, 
will disturb the connectivity of the body.  The cohesive forces of the medium oppose this 
and simultaneously build up a elastic distortion ββββ in such a way that the body remains 
compact.  Eq. (I.17) is also true for large distortions, as long as one refers αααα and ββββ to the 
initial state, as well as performing the differentiations in the initial state.  Cf., § 10. 
 From eq. (I.17), what follows immediately is the relation that first given by Nye [13]: 
 

(∂αij / ∂xi) ≡ Div αααα = 0.    (I.18) 
 

                                                
 1 Eq. (I.17) or, equivalent formulations, were given independently by Kondo [73, 74], Bilby, Bullough, 
and Smith [3, 4, 5], and Kröner [81, 82, 84].  The first-mentioned author gave formulations that were also 
valid for large distortions from the outset (cf., § 26 to 28), while, for the present author such distortions 
were included later on.  The derivation of eq. (I.17) that was given here is due to Kröner and Rieder, which 
reads, in Cartesian Coordinates: 
 
   ∂β31 / ∂x2 − ∂β21 / ∂x3 = α11 ,  ∂β32 / ∂x2 − ∂β22 / ∂x3 = α12 ,  ∂β33 / ∂x2 − ∂β23 / ∂x3 = α13 , etc. 
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Since the first index of αij gives the direction of the line, this equation obviously means 
nothing but the statement that the dislocations cannot end inside of a medium.  We have 
already brought this up in § 1. 
 From eq. (I.5), it follows that dsG is a complete differential, as well as the relation 

d∫� a = − d∫� g for an arbitrary closed circuit.  Thus, it also follows from eq. (I.13) that: 

 

b = d∫�
C

a = 
C

d ⋅∫� x ββββ .    (I.19) 

 
Burgers [12] introduced the circuit vector b in this form. 
 Finally, we further mention the far-reaching analogy that exists with the theory of 
magnetic fields of stationary currents, and which has been of valuable service to the 
discovery of the basic geometric equation [81].  The analogous quantities are: 
 Electric current strength i and Burgers vector b, 
 Current density j and dislocation density αααα, 
 Magnetic field H and distortion field ββββ. 
 
For later purposes, we add: 
 Magnetic induction B and stress field σσσσ. 
 

The equations that are analogous to eq. (I.15), (I.17), and (I.18) are i = d ⋅∫∫ F j , rot H = 

j, div j = 0. 

§ 4.  Dislocation drift and plastic distortion 
 

 The basic geometrical equation (I.17) includes only state quantities and is therefore 
suitable for the description of the state after plastic forming.  Thus, what is still missing is 
a quantitative description of the connection between the dislocation drift and the 
aforementioned plastic distortion.  Obviously, no state quantities will appear in the 
equation that defines this. 
 One can think of the distortions of Fig. 11 as being produced by dislocations whose 
line direction was the x3-direction, and which drift in the x1-direction.  The direction of 
the associated Burgers vector in Fig. 11b, c, d was then x2, x3, x1. (We ignore the sign, for 
the moment).  A complete examination must consider the nine independent dislocation 
components and the three independent drift directions.  Thus, there are 27 different 
dislocation drifts to examine. 
 We describe a general dislocation drift by giving 27 quantities Nijk at each position x, 
which means the number of αjk-dislocations at x that drift in the i-direction (per unit 
length perpendicular to the line and measured in the drift direction).  Thus, for the sake of 
simplicity, we assume that all of the dislocations have the same magnitude b for the 
Burgers vector b, although it is not more difficult to treat the case of differing Burgers 
vectors. 
 The indices of Nijk thus mean: 
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1. Index of  the drift direction

2. Index of  the line direction  for the dislocations.

3. Index of the Burgers vector direction







 

 
j = k are screw dislocations, j ≠ k are edge dislocations.  Then, as would follow from the 
considerations at the end of § 1, one also has the correspondences: 
 
 1. i ≠ j = k  the glides of the screw dislocations 
 2. k = i = j  the glides of the edge dislocations 
 3. i ≠ j ≠ k, k ≠ i the climbs of the edge dislocations. 
 
i = j is a drift of the dislocations in the direction of their lines and yields no distortion.  
We thus do not need to consider this drift. 
 Thereby, all 27 components of Nijk are accounted for.  From the vector property of the 
drift direction and the tensor property of the dislocations, it follows that the Nijk are the 
components of a tensor of rank three: It shall be called the “dislocation drift tensor.” 
 Furthermore, we write 1 ≡ − 1, etc.  Then, e.g., an N123 drift yields the same distortion 
as an

123
N , 

123
N , 123N  drift.  The free choice of the positive sides of the drift surface leads 

us to make them the +xi-sides in this paragraph.  The drifts that the plastic distortions 
provoked in Fig. 11b to d are then: 
 
 b: 132N  ( 132N , resp.) or also N312 ( 312N , resp.) 

 c: 133N  ( 133N , resp.) or also N313 ( 313N , resp.) 

 d: 131N  ( 131N , resp.) or also N311 ( 311N , resp.). 

 
The givens are complete, and the reader is encouraged to check them on the basis of the 
sign convention 1 of § 1.  If one gives the edge of the volume element the length 1 then 
Nijk δg is numerically equal to the value of the total glide vector that is provoked by the 
dislocations that drift through the volume element and thus also numerically equal to the 
distortion that the drift Nijk provokes.  Henceforth, we would like to denote this distortion 
by P

ijkβ . 

 One removes our examples of dislocation drifts that are anti-symmetric with respect 
to the first two indices and yield the same distortion.  Since, as we remarked before, no 
distortion belongs to the drift Nijk, one now obtains (Kröner and Rieder [84]) (δg = − b): 
 

P
ijkβ = − (Nijk – Njik) b      (I.20) 

 
as an invariantly formulated connection between dislocation drift and plastic distortion.  
As an anti-symmetric tensor of rank three, P

ijkβ has none independent components and 

thus may be replaced by a tensor of rank two in the usual way: 
 
                                                
 1 Line direction of the dislocation || right-hand screw boundary line of the drift surface (after the drift).  
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P
ijkβ = P

ijk lkε β , P
klβ  = 1

2
P

ijk ijlε β .    (I.21) 

 
One easily shows the validity of this notation when one substitutes P

ijkβ  from eq. (I.20) in 

the second of eq. (I.21), and applies the resulting equation: 
 

P
klβ  = − εijk Nijl  b     (I.22) 

to the examples b to d. 
 We now assume that a dislocation drift Nijk varies in such a way that it remains in 
place with a constant dislocation density.  The decrease in – e.g. – a width dx2 for 
dislocations drifting in the x1-direction through a distance dx1 is naturally equal to the 
number of dislocations that pass through a surface element dF = dx1 dx2 as a result of the 
drift.  I. e., it is [84]: 

ijk

i

N
b

x

∂
∂

= αjk ,     (I.23) 

 
and since ∂Nijk / ∂xi = 0 (i.e., the drifting dislocations do not also stop inside the body), it 
follows from eq. (I.20) that: 

P
ijk

ix

β∂
∂

= αjk .     (I.24) 

 
In words: The plastic distortion varies in the drift direction when the family of drifting 
dislocations remains in place with a density αjk ; Fig. 13 was an example of this.  If one 
replaces P

ijkβ  in eq. (I.24) with P
ijβ  then this immediately yields eq. (I.11). 

 The dislocation drift tensor is more closely linked with the actual process of plastic 
forming than the previously-appearing quantities; therein lies all of its fundamental 
significance.  One can, perhaps, differentiate it by time and thus define a dislocation 
velocity vector, which might possibly represent a suitable starting point for a later theory 
of dislocation dynamics.  E. g., it is closely related to the problem of defining a law of 
friction for the dislocation drift such that the force of friction (which ultimately amounts 
to the driving force of equilibrium and thus bring about a constant velocity) is 
proportional to the dislocation velocity tensor. 
 
 

§ 5.  The invariant components of the distortion field 
 

 In this paragraph, we will assume an infinitely extended medium.  Let the distortions 
be continuous and twice-differentiably distributed, and they may vanish at infinity.  The 
decompositions: 

ββββP = Grad sP + Rot ζζζζP,      (I.25) 
    ββββ  = Grad s + Rot ζζζζ      (I.26) 

 
are unique.  ζζζζP ≡ ( )P

ijζ and ζζζζ ≡ (ζij) are asymmetric tensors. 
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 From § 3, a distortion, whether plastic or elastic, takes a compact body into another 
compact body when it is derivable from a displacement field by a gradient map.  A 
plastic distortion Grad sP then requires no additional elastic distortion in order to maintain 
the connectivity of the body and it results that it is stress-free, while the orientation 
remains preserved. 
 The total torsion ββββG = ββββ + ββββP must fundamentally be a gradient tensor (eq. (I.9)), from 
which it follows that: 

Rot ζζζζ = − Rot ζζζζP.    (I.27) 
 

This means that the perturbation of the connectivity that comes about by way of a plastic 
distortion Rot ζζζζP will be again canceled precisely by the elastic distortion Rot ζζζζ. 
 Therefore, sP seems to be completely independent of the functions ζζζζP, ζζζζ, s.  However, 
this comes from the fact that our considerations are still not complete.  In reality, there 
exists a coupling between sP and ζζζζP – at least, in real bodies, and thus we also assume this 
for our continuum; perhaps the coupling is of a sort that the number of dislocations that 
remain in place under the dislocation drift is a function of the number of drifting 
dislocations, which can naturally be independent of position.  Such a relation between αij 
and Nijk means a reduction of the additional dislocation drifts as a function of position and 
comes about from the part (Grad sP) of the total distortion: 
 

ββββG = Grad(s + sP)     (I.28) 
 

that splits off with no change of state.  The meaning of sP is naturally the plastic 
displacement of the point of the medium that belongs to the part Grad sP of ββββP. 
 The tensors ζζζζ and ζζζζP were not given an intuitive interpretation, up to now.  They are a 
type of potential from which the distortions can be derived.  By contrast, s is naturally an 
elastic displacement field.  Namely, if one cancels the plastic distortion Rot ζζζζP with the 
elastic one by eq. (I.27), and then takes away the forces that the latter have produced then 
one finds a piecewise relaxation in the state of lowest elastic energy, under which the 
points suffer the displacement s.  Thus, one shows the manner in which the total 
displacement sG is composed of an elastic displacement and a plastic one. 
 In an Appendix, it is shown that by a further decomposition of Rot ζζζζ one obtains the 
formula: 

βij = i js′∇ − εijk εjmn∇k ∇m ιln + ϑij    (I.29) 

 
for ββββ.  In this, js′  ≡ sj + uj , where uj is a vector field with div u = 0;  ιln is a symmetric 

tensor field and ϑij is an anti-symmetric one.  Indeed, when one defines the vector field 
ϑk by the equations: 

ϑij = εijk ϑk,  ϑk = 1
2 εijk ϑij ,    (I.30) 

one has: 
ϑk = εijk∇i uj + ∇iλ,     (I.31) 

 
where λ is a scalar field.  We now generally define the incompatibility (Ink) of a tensor 
field of rank two by the identity: 
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Ink ξξξξ ≡ (−εikl εjmn∇k ∇m ξln) ≡ ∇× ξξξξ ×∇.   (I.32) 
 

The name is thus derived [77] from the fact that: 
 

Ink εεεε = 0     (I.33) 
 

is the compatibility condition for the (small) elastic deformations εεεε [86, 34].  (The 
deformations are compatible when their incompatibility vanishes.)  One then easily 
computes that the incompatibility of a symmetric tensor yields another such tensor, and 
correspondingly for the asymmetric tensor. 
 Thus, one can also write eq. (I.29) as: 
 

ββββ = Grad s′ + Ink ιιιι + ϑϑϑϑ,    (I.34) 
 

and one may naturally also write ββββP in the same form: 
 

ββββP = Grad s′P  + Ink ιιιιP + ϑϑϑϑP.    (I.35) 
 

Now, in order for the total distortion ββββG = ββββ  + ββββP to be a gradient tensor, one must have: 
 

Ink ιιιι = − Ink ιιιιP, ϑϑϑϑ = − ϑϑϑϑP.   (I.36) 
 

If one equates this with eq. (I.27) then one must observe that: 
 

Rot ζζζζP = Ink ιιιιP + ϑϑϑϑP + Grad uP.   (I.37) 
 

It thus suffices to just cancel the part Ink ιιιιP + ϑϑϑϑP of Rot ζζζζP, since the tensor Grad uP is of 
no importance for the connectivity phenomena. 
 If we write ([52], v. I, pp. 97): 
 

Def s′ ≡ 1
2 ( )i j j is s′ ′∇ + ∇     (I.38) 

 
(read: “deformation of”) then the symmetric part of eq. (I.34) can be represented in the 
form 1: 

εεεε  = Def(s + u) + Ink ιιιι,    (I.39) 
 

and the anti-symmetric part in the form: 
 

ωij = 1
2 [∇i(s + u)j − ∇j(s + u)i] + ϑij ,    (I.40) 

 
which, from eq. (I.30, 31) may also be written: 
 

                                                
 1 There is the theorem that in an infinite space one can uniquely decompose any tensor field that 
vanishes at infinity by an equation like (I.39). 
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ωij = 1
2 [∇i(s − u)j − ∇j(s − u)i] + εijk ∇i λ .   (I.41) 

 
From the easily-verified identity relations: 
 

Div Ink 0

Ink Def  0

≡ 
≡ 

    (I.42) 

 
it follows that (I.39) represents the decomposition of the elastic deformation field into its 
compatible and incompatible part.  Correspondingly, if eq. (I.41) is the decomposition of 
the rotation field into a compatible and incompatible part then one knows that only the 
part with λ remains when one replaces ξij with ωij in eq. (I.32) 1.  The incompatible 
rotation field thus has the form ink

kω  = (grad λ)k 
2.  One especially notes: The compatible 

deformations and rotations are no longer coupled as in classical elasticity theory, so there 
are possibly states in which u + s is equal to an arbitrary vector p and u – s is equal to an 
almost 3 arbitrary vector q. 
 One may, in no event, interpret u as a displacement field.  u is, precisely like λ, a type 
of potential from which the rotations are derived, which is not easy to understand 
intuitively.  One also observes that by means of eq. (I.41) it is not the rotation of the 
individual volume elements, but the rotation field; i.e., eq. (I.41) includes statements 
about the manner in which the rotations of elements to other elements proceeds.  At the 
location x, ωij is defined to be a rigid rotation of the volume element dV(x), as in § 2. 
 Eq. (I.34) is important here for the decomposition of the distortion that is responsible 
for the restoration of connectivity into its symmetric and anti-symmetric parts in a simple 
manner.  If one substitutes the βij of eq. (I.34) in eq. (I.17) then one obtains: 
 

Rot(Ink ιιιι + ϑϑϑϑ) = αααα      (I.43) 
 
as the basic equation in the form that was first derived by the author [81]. 
 We shall treat the phenomena that are connected with the distortions Ink ιιιι and ϑϑϑϑ in 
the next two paragraphs.  Here, we would like to only enumerate the number of degrees 
of freedom that the plastic and elastic distortions are associated with.  In all, there are 
twelve of them, namely: three in Grad sP and Grad s, and six in Rot ζζζζP (Rot ζζζζ1, resp.).  Of 
the latter six, three of them go to the incompatible deformations Ink ιιιιP (Ink ιιιι1, resp.) and 
three of the go to the rotations ϑϑϑϑP (ϑϑϑϑ, resp.). 
 

                                                
 1 Any tensor of the form εijk ∇kλ may be written as an anti-symmetric incompatibility tensor (Appendix).  
 2 Another standpoint is: The rotations ωij – ϑj in eq. (I.40) are “agreeable” with the deformations Def(s + 
u) in eq. (I.39), so one can also refer to the ϑij as incompatible rotations [81]. 
 3 Since div u = 0, one cannot simultaneously prescribe the gradient parts of p and q arbitrarily.   The 
gradient part of q does not contribute to ωij , anyway. 
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§ 6.  The geometric origin of the temperature stresses, 
magnetic stresses, and concentration stresses 

 
 The essentials of plastic forming, from the macroscopic standpoint, can be once more 
briefly summarized: One thinks of the body as being cut apart into its volume elements 
and each element as being imprinted with the desired plastic (stress-free) distortion ββββP 
with the help of a dislocation drift.  The volume elements then no longer fit together with 
no gaps, so elastic distortions (Ink ιιιι + ϑϑϑϑ) are necessary in order to once more make them 
fit together.  One then thinks of everything as deforming and the forces that produced the 
elastic deformation are removed.  A relaxation (Grad s′) into the state of lowest energy 
then occurs.  At the conclusion, one establishes a dislocation density αααα ≡ − Rot ββββP. 
 One can alter the examination in such a way that the volume elements that have been 
cut away from each other are stamped, not with a plastic distortion through dislocation 
drift, but a “quasi-plastic” distortion – e.g., by raising the temperature.  It is well-known 
that for the volume element at the position x this is [79]: 
 

Q
ijβ = γ δij T,     (I.44) 

 
if γ is the thermal expansion coefficient and the relative temperature is set to zero.  Along 
with T(x), ββββQ(x) is also a continuous function of the position of the volume element.  
Furthermore, as a spherical tensor, ββββQ is naturally symmetric − hence, a pure deformation 
− such that we can also write εεεεQ instead of ββββQ.  We call ββββQ quasi-plastic because such a 
distortion will arouse no restoring forces.  Now, the equation: 
 

δkl∇k∇l Φ ≡ ∆Φ = γ T     (I.45) 
 
always has a solution.  Therefore, we can, with the help of eq. (A.2), also write ββββQ in the 
form: 

Q
ijβ = δij δkl∇k∇l Φ = ∇i∇j Φ − εikm εjlm∇k∇l Φ,   (I.46) 

 
or, from eq. (I.32) [I ≡ (δij)]: 

ββββQ = Def(grad Φ) + Ink(Φ I),     (I.47) 
 

where Def can also be replaced with Grad.  The second summand has the effect that the 
distortion ββββQ results under perturbation of the connectivity, where the connectivity can be 
reproduced by an elastic distortion of the form Ink ιιιι = − Ink(Φ I).  One can now define a 
quasi-dislocation density by the equation: 
 

ααααQ ≡ − Rot ββββQ.     (I.48) 
 

The elastic state of distortion that belongs to ααααQ is then the same as the one that was 
produced by the dislocation drift, by which the dislocations were stuck with a density αααα = 
ααααQ.  In a continuum that is endowed with positional temperature fluctuations the 
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associated elastic distortions can thus be eliminated when they are associated with 
dislocations in it that has a density: 

αααα = − ααααQ = γ Rot(T I).    (I.49) 
 

This process certainly plays an important role for strong temperature stresses, as would 
exist in – e.g. – cast metals when they are cooling.  The ease by which the association of 
dislocations described here can be computed is an impressive example of the practical 
use of the conception of temperature stresses as being produced by dislocations. 
 If one brings a completely demagnetized probe of a ferromagnetic material into a 
sufficiently strong magnetic field then all of the elementary magnetic dipoles point in the 
field direction.  Thus, in many cases, a quasi-plastic dilatation of the probe comes about 
in the direction of the magnetization field, where the volume element remains piecewise 
conserved.  If the magnetization direction rotates in the body from point to point then one 
can again employ the Gedanken experiment above, and the quasi-plastic distortion of the 
volume element will then be a (symmetric) deviator, due to conservation of volume.  
Likewise, one can, with the help of eq. (I.48), define a quasi-dislocation density and 
deduce how the dislocations will be distributed in a magnetostrictively tensed medium in 
order for the elastic energy to a small as possible.  Such examinations play an essential 
role in the currently ongoing attempts to understand the technical magnetization curves of 
ferromagnetic metals.  On this, cf. [11, 155, 124]. 
 To this also belongs the case of a crystal of atoms of type A being dissolved in atoms 
of type B in a macroscopically fluctuating concentration C(x).  One thinks of the pure 
crystal as being cut into its volume elements, and then in each of them a set of B atoms is 
dissolved, which amounts to a quasi-plastic distortion as above.  Everything after that 
takes place as in the last two examples. 
 It scarcely needs to be remarked that the methods (to be justified in Chapter II) for 
computing the stresses that are produced by a dislocation density αααα are also valid for the 
aforementioned cases with a quasi-dislocation density ααααQ.  For the computation of these 
stresses, one is well-served to work with a further geometric quantity that we shall now 
treat.  It is the so-called incompatibility tensor H = (Hij) which, in many ways, plays a 
similar role to that of αααα.  We define it by: 
 

H ≡ − Ink ββββQ,     (I.50) 
so due to (I.11) it is: 

H = αααα × ∇ ≡ (εijk ∇k αij).    (I.51) 
 
If one substitutes αααα in eq. (I.17) then one obtains: 
 

Ink ββββ = H,     (I.52) 
 
and the symmetric part of this tensor equations reads, with ηηηη = symmetric part of H 1: 
 

Ink εεεε = ηηηη.     (I.53) 
 

                                                
 1 We temporarily assume small distortions. 
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For ηηηη = 0, these are the compatibility conditions of de St. Venant.  For the case of the 
temperature fields, one obtains – e.g., from eq. (I.51) and (I.49) [79]: 
 

ηηηη = γ Ink (T I);    (I.52) 
 

i.e., the incompatibility field ηηηη that belongs to a temperature field is very simple to 
compute.  However, with the knowledge of ηηηη, the associated stresses are ascertained 
relatively well (§ 13). 
 The meaning of eq. (I.52) in elasticity theory may perhaps be best characterized as 
follows: Since it arises from eq. (I.17) by taking the Rot and symmetrizing, it must still 
include one part of the statement of this equation, while another part must go away.  
From the relation Ink Def ≡ 0, one deduces the statement that in the case of ηηηη = 0 the 
deformation εεεε can be derived from an elastic displacement field s.  If, as has always been 
done in elasticity theory up to now, one simultaneously lets ϑϑϑϑ  go to zero in eq. (I.40) 1, 
then the elastic rotations 1

2 (∇s − s∇) follow from the same displacement field.  They are 

then, as is well known, determined up to a rigid rotation of the entire body.  In this case, 
the equations (I.52) are equivalent to the equations Rot ββββ = 0.  The latter automatically 
include the statement that ϑϑϑϑ = const., as will be shown in the next paragraph.  One loses 
the validity of this statement precisely when one derives the equation Ink εεεε = 0 from the 
equation Rot ββββ = 0.  The classical elasticity theory is then to be defined by the equation 
Rot ββββ = 0, or, equivalently, by Ink εεεε = 0, ϑϑϑϑ = 0. 
 For ηηηη ≠ 0, the plastic deformation field has the form Def sP + Ink ιιιιP.  The last part 
always has the consequence that the plastic or quasi-plastic distortion does not maintain 
the connectivity of the body and thus gives rise to elastic deformations and then to proper 
stresses.  The existence of an incompatibility field is therefore (at least, for simply 
connected bodies) an assumption for the appearance of proper stresses.  It may easily be 
shown that in the realm of linear elasticity theory the totality of possible stresses in a 
body are uniquely determined by the given of an external force acting on it and the 
incompatibilities (§ 14). 
 
 

§ 7.  The stress-free structural curvatures. 
 

 The fact that dislocations suffer rotations while they drift has served as the 
clarification of important phenomena in metal physics.  Thus, Burgers [12] and Bragg 
[10] first found that the grain boundaries between two crystallites (grains) whose 
orientations do not differ all that much will be defined by surface associations of 
dislocations in these grain boundaries. 
 We consider, say, the volumes in Fig. 16a.  A family of α31-edge dislocations might 
move along the x1-direction and be stuck with a constant density along the surfaces in 
question.  Had one previously cut apart these surfaces then one would produce the plastic 
distortion of Fig. 16b.  If one rotated the individual strata through the angle δθ then one 
could again produce the perturbed connectivity.  Between any two strata that are 

                                                
 1 With θθθθ = 0, from eq. (I.31), one has u = const. (since div u = 0). 
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separated by a dislocation drift then there exists an angular difference of δθ in the 
orientation.  Fig. 16c shows this for a drift of – (α22 + α33)-screw dislocations in the x1-
direction when α22 = α33 .  The problem is now to relate the rotations to the density of the 
dislocations that they are stuck with. 
 

a 

x3 

x1 
x3 

x2 

b 

δx1 

 
 

δx1 

c 
 

Fig. 16.  In b and c one has a dislocation drift of constant strength between any two strata δx1 .  
The dislocation drifts proceed from right to left 

 
 We can first restrict ourselves to the case in which the dislocation distribution is 
homogeneous.  From eq. (I.51), the incompatibility tensor then vanishes, and if no 
external forces act upon the volume either then it is completely free of elastic 
deformations; in § 14, this will established exactly.  This statement is valid only for small 
distortions (dislocation densities, resp.), to which we shall first restrict ourselves.  Thus, 
in our case one has βij = ϑij , where ϑij are the elastic (= rigid) rotations of the volume 
element dV, through which the disturbed connectivity of Fig. 16b, c will again be 
produced.  For the Burgers circuit, one thus first obtains [(cf., eq. (I.15) and (I.19)]: 
 

jda∫�
C

= i idxβ∫�
C

= k kj

F

dFα∫∫ ,     (I.54) 

 
and for the other one, however, one has: 
 

i ijdxβ∫�
C

= i ijdxϑ∫�
C

= − i ijx dϑ∫�
C

   (I.55) 
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since ( )i ijd xϑ∫� = 0 1.  If we set dϑij = εijk dϑk then we obtain for the right-hand of eq. 

(I.55): 

ijk i ijx dε ϑ
 

− 
 

∫�
C

 ≡ d×∫�
C

x ϑϑϑϑ ,    (I.56) 

 
where dϑk is the rotation angle between two neighboring volume elements.  We now 
define, like Nye [113], the (macroscopic) curvature tensor K ≡ (Kij) by way of the 
equation: 

dϑk = Kkl dxl .     (I.57) 
 

The diagonal components of Kkl are twists (screwing motions) of the xl-surfaces, while 
the remaining components refer to bends of the xl-surfaces in the k-direction, as one 
easily clarifies; e.g., with Fig. 16.  If one substitutes eq. (I.57) in (I.56) then one obtains 
(Stokes’s theorem): 

  − ijk i kl lx K dxε ∫�
C

 = − ( )ijk lmn m n i kl

F

dF x Kε ε ∇∫∫  

   = − ijk lmi m kl

F

dF Kε ε ∫∫ ;    (I.58) 

 
the latter is true because for constant dislocation density Kkl is also constant and ∇n xi = 
δni .  By comparing with eq. (I.54), and with the decomposition formula (A.2), what 
results is the relation between dislocation density and structural curvature that was first 
derived by Nye [113] in another way: 

αij = δij Kkk – Kij    (I.59) 
with the inverse: 

Kij = 1
2 δij αkk − αij .    (I.60) 

 
This equation is then valid for small dislocation densities (curvatures, resp.); i.e., the 
change in orientation dϑk in the direction dxl must be small compared to 1. 
 For the further considerations, we assume a variable dislocation density and now call 
the relative rotation angle between two volume elements, on the same obvious grounds, 
ddk . 

 If one now, in analogy to the Burgers circuit, makes a closed circuit C around which 

one picks up the rotations δdi (ddi , resp.) then one obtains: 

 

Di = id∫
C

d = j ijdx K∫
C

,    (I.61) 

and with Stokes’s theorem: 

D = − ( )
F

d∇× ⋅∫∫ K F .    (I.62) 

                                                
 1 For the proof, one assumes that ϑij is a linear function of xl .  
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On the other hand, it follows from eqs. (I.60), (I.18), and (I.51), which shall not be 
justified in detail here, that: 

K × ∇ ≡ (εijk ∇k Kij) = − ηηηη.   (I.63) 
 

Thus, one has for infinitesimal surfaces: 
 

∆Di = ηij ∆Fj ,     (I.64) 
 

an equation that we can also regard, as the analogue to eq. (I.14), as the defining equation 
for ηηηη. 
 From eq. (I.63), the dϑi in eq. (I.57) is a total differential only when ηηηη = 0, while for 
dgi the condition reads αααα = 0.  In the case ηηηη = 0 there thus exists a continuous vector field 
di that describes the portion of the structural rotations (“particle boundary contribution”)1 

that are in the immediate vicinity of the dislocations and (for ηηηη = 0) is identical with the 
ϑi in eq. (I.31).  One recognizes the latter in our foregoing treatment of the problem: dϑi 
were rotations that were further produced by the the perturbation of the connectivity due 
to the dislocation drift.  The same is true for ddi .  The associated structural curvatures are 

stress-free (§ 14), due to the absence of external forces and incompatibilities. 
 The tensor K obviously does not include the curvatures described by the elastic 
rotations (∇isj −∇jsi)/2.  One can describe the effectively observed structural curvatures 
with a further curvature tensor that is defined by: 
 

dωi = χij dxj     (I.65) 
 
instead of eq. (I.57).  Now, for continuously varying dislocation densities αααα, as well as ββββ, 
and therefore ωωωω, are continuous functions of position (because ββββ − at least, in simply-
connected bodies − must be single-valued), hence, dωi is a complete differential.  Thus, 
this is true only for small rotations; on this, cf., Bilby and Smith [5].  In the absence of 
elastic deformations Kij becomes identical with ξij (indeed, one then has∇isj −∇jsi = 0). 
 Eq. (I.64) says: That which was the Burgers vector b for the dislocations is the 
rotation vector D for the incompatibilities; one once more confers Fig. 15.  That which 
were originally the drift planes of the dislocations may now be the dislocation walls of 
constant surface density of the sort one finds in Fig. 16.  Under a circuit of the boundary 
C of the surface F that is run through by the dislocation walls one thus always adds the 

relative rotation of the two volume elements.  The neighboring dislocation walls then 
obviously contribute nothing, since they will be run through twice, and in the opposite 
directions.  Were one to cut out the surface, regarded in isolation, along the dislocation 
walls then the two edges of the cut would, at that point, gape apart by the rotation angle 
ddi .  In this way, one comes directly to a prescription for measuring the incompatibility 

of a stress state: One cuts out a closed ring at the position x that is as thin as possible, and 
which defines the boundary of a (macroscopic) surface element ∆Fj .  One then removes 

                                                
 1  For this terminology, see also § 23. 
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this ring and measures the resulting rigid relative rotation of the cut surfaces after 
relaxation.  The rotation vector is ∆Di , from which, with eq. (I.64), ηij follows. 
 The ring that one thus removes must be thin, on account of the fact that only then is 
the associated surface ∆Fj defined with sufficient precision.  For thick rings, there is an 
additional deformation of the cut edges that corrupts the measurement.  In practical cases, 
one would scarcely ever measure a body in this manner.  By comparison, one can provide 
an overview of the “cut incompatibilities,” and therefore its state of proper stress (see 
Chapter II), when one carries out the previous measurements on some small macroscopic 
surface F 1. 

 

a b 
 

Fig. 17.  On the production of a Volterra distortion of the second kind 
 

 With these considerations, we come very close to the Volterra distortions of the 
second kind (§ 1).  Fig. 17a shows a cylinder in which only one dislocation wall has been 
cut, as in Fig. 15.  Around the boundary line of this wall, let a hollow torus be spared.  
One then finds the hollow cylinder in a Volterra distortion state of the second kind, and 
by cutting along the dislocation wall, or also along any other surface, the two cut edges 
suffer the well-known rotation jump.  I.e., the state in Fig. 17a can be generated from that 
of Fig. 17b without stresses by bending together and welding.  In contrast to the previous 
view, the singular surface of the rotation jump can be experimentally determined, in any 
event.  In case the body (b) is a unit crystal, it is evident that naturally one can 
immediately (and often more simply) establish the orientation jump in a 
Röntgenographically.  One also succeeds in doing this for polycrystals, but with 
somewhat more trouble 2. 
 A complete description of the Volterra distortion state of the second kind is obtained 
from being given a singular surface, which one can verify experimentally, anyhow.  The 
oft-used term “elementary distortion” thus relates only to the state of the first kind in our 
way of looking at things, which then agrees with the fact that one can produce any state 
of the second kind by certain accumulations of dislocations 3, 4. 

                                                
 1 The problem of measuring the proper stresses in the interior of a body has not yet been solved 
satisfactorily.  It is worth mentioning that in many cases one can apply the magnetic method; on this, cf. 
Reimer [175]. 
 2 On this, also confer the discussion of Nabarro [110], pp. 349. 
 3 As is well-known, Volterra used the word “distortion” in a somewhat different sense from ours.  In our 
language, the statement above would read: The elementary state is the one created by a single dislocation. 
 4 The results of this paragraph that are concerned with incompatibilities were discovered independently 
of the author, first by Moriguti [103], and later by Eshelby [41].  
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§ 8.  The boundary surface conditions for the distortions. 
 

 Up to now, no sort of boundary surfaces for the test body have been considered, and 
we shall now rectify that.  One naturally obtains the appropriate boundary surface 
conditions immediately when one uses the surface rotation in place of the Rot operation 
in eq. (I.11) and (I.17) and takes the surface dislocation density αααα  instead of the spatial 
dislocation density αααα. If one denotes the two sides of the boundary surface by I and II, 
and if n ≡ (ni) is the (dimensionless) unit normal vector of the boundary surface in the 
direction from I to II then from eqs. (I.11) and (I.17) one has 1: 
 

n × ββββP|II – n × ββββP|I = − αααα      (I.66) 
n × ββββ|II – n × ββββ|I = αααα ,     (I.67) 

 
where one can, if one desires, consider the first equation to be the defining equation for 
αααα , as before.  For many purposes, it is thus advantageous to define the dislocation 
surface density ijα  in the sense of the Schwartz distributional calculus [131] by the 

equation: 
αij = ( )ij nα δ ,     (I.68) 

 
where the parameter n characterizes a family of surfaces in such a way that n = 0 
becomes the boundary surface.  δ(n) is everywhere 0 except for n = 0, where it becomes 

infinite in such a way that ( )n dnδ
∞

−∞
∫ = 1; ijα  no longer depends upon n.  From eq. (I.68), 

it follows that: 

ij dnα
∞

−∞
∫  = ( )ij n dnα δ

∞

−∞
∫ = ijα  .    (I.69) 

 
 Henceforth, we consider an infinitely extended body in a stress-free initial state.  By 
means of suitable external forces, dislocations might form in it and drift.  Thus, three 
groups shall be distinguished: 
 The first group of dislocations shall, at the end of the (continuously distributed) drift, 
no longer be there, thus, they shall be somehow annihilated 2.  The second group shall 
likewise remain in place as the superficial densityαααα , by means of which, two regions I 
and II of the body will be bounded, moreover. 
 At the conclusion, the connectivity of the body shall also be preserved along the 
boundary surface.  This implies the boundary condition: 
 

sG|II – sG|I = 0;     .(I.70) 

                                                
 1 Eq. (I.67) was first of all derived by Bilby, Bullough, and Smith [3].  These authors regarded multiple 
superficial dislocation distributions as totalities and then spoke of “surface dislocations,” in contrast to the 
ordinary line dislocations.  In later papers, which are cited on pp. ? (113 in the present reference), these 
authors gave various applications of the theory of surface dislocations.   
 2 In infinite bodies, this annihilation can come about only by the combination of dislocations of opposite 
signs. 
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the sG are the total displacements, as in § 2.  One can differentiate these equations at the 
boundary surface and thus lose only an uninteresting constant.  The equation: 
 

n × ∇sG| II − n × ∇sG| I = 0    (I.71) 
 

are thus practically equivalent to eq. (I.70).  Instead of (I.71), if we write, from eq. (I.9); 
e.g.: 

n × ββββG| II − n × ββββG| I = 0    (I.72) 
 

then we find that at a place where n points in the x1-direction the 21
Gβ , 22

Gβ , 23
Gβ , and 31

Gβ , 

32
Gβ , 33

Gβ  must be equal on both sides of the boundary surface 1.  Eq. (I.72) is the sum of 

eq. (I.66) and (I.67); formally, it also follows naturally from eq. (I.8). 
 We once more consider the three groups of dislocations and assume that they drift 
apart from each other.  The first group has naturally produced a plastic distortion Grad 1

Ps  

that is continuous over the entire body, while the second group likewise produces a 
distortion Grad 2

Ps  + Rot 2
Pζζζζ that is continuous over the entire body (the fact that a part 

Grad 2
Ps is present follows from the fact that distortions generated by the second group 

depend upon the drift path of the dislocations). 
 The distortions described by group 3 are discontinuous on the boundary surface, but 
continuous in the sub-bodies I and II.  Which form do they have?  These dislocations are 
either annihilated in the body, or remain in place.  One will thus be reminded of the well-
known fact that the decomposition of the tensor field: 
 

3
Pββββ = Grad 3

Ps  + Rot 3
Pζζζζ     (I.73) 

 
in a medium with one or more boundary surfaces is not unique, but there is a distortion 
that can be represented as a vector gradient, as well as a rotor tensor.  If one writes it as 

3
Ps  then it follows, since it shall likewise be a rotor tensor, that: 

 
Div Grad 3

Ps  ≡ ∆ 3
Ps  = 0.    (I.74) 

 
Conversely, any gradient of a harmonic vector field may also be represented as a rotor 
tensor. 
 From these considerations, one can suspect 2 that the boundary conditions can be 
written in the form: 

3 3II I

P P∇ ∇× − ×n s n s = −αααα ,    (I.75) 

or, when one sensibly writes: 

g ≡ 3 3II I

P P−s s ,    (I.76) 

 

                                                
 1 The same considerations had previously led us to eq. (I.8).  
 2 A stronger proof may be obtained in connection with § 4, perhaps.  
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for the jump in the plastic displacement at the boundary surface, also in the form: 
 

n × ∇g = − αααα .     (I.77) 
 

This equation says how dislocations must be distributed in a surface that exhibits a non-
constant displacement jump g; it has great significance in the applications.  Like eq. 
(I.17), it is also true for large distortions, as long as one refers all quantities to the initial 
state (§ 10). 
 The boundary conditions (I.66) and (I.67) become especially simple when one of the 
two sub-bodies becomes infinitely soft (air) or infinitely hard (rigid).  In the first case, the 
boundary conditions are satisfied identically, as one best recognizes from their form itself 
(I.70).  In the second case, one of the two summands in eq. (I.66) or eq. (I.67) drops out 
since the distortion is null in a rigid medium (naturally, no dislocations can drift in rigid 
media, either).  Physically, there is indeed no such thing as a rigid medium, but it often 
happens that – e.g. – a metal contains an inclusion that is a hard metal whose forming 
cannot be neglected.  In this case, the boundary-value problem to be solved is simplified 
considerably.  One observes that the behavior of the well-known boundary-value 
conditions for the stresses is precisely the opposite. (They are fulfilled identically at a 
boundary surface with a rigid body.) 
 

 
§ 9.  The boundary surface conditions for the deformations,  

superficial incompatibility distributions  
 

 In § 8, it was assumed that the spatial density αααα of dislocations embedded in it was a 
continuous function over the entire body.  We shall now lift this restriction, by allowing 
an additional jump in αααα across the boundary surface.  One easily sees that this also leads 
to a jump in the plastic displacement.  For example, in I, edge dislocations can climb 
under an enlargement of the volume of I, while in II a dislocation drift without volume 
change takes place.  The associated displacement jump would be sensibly denoted by: 
 

g2 ≡ 2 2II I

P P−s s .     (I.78) 

 
 In § 7, the importance of the incompatibilities in the state of proper stresses was 
emphasized.  One may thus expect that superficial distributions of incompatibilities might 
also play a role.  Not only do the surface dislocations contribute to them, but also the 
jump in αααα. 
 In order to study this, we consider the case in which the plastic distortions I

Pββββ and II
Pββββ  

are continuously distributed, but the transition from I to II can remain discontinuous.  We 
think of the functions I

Pββββ  as continuous and twice differentiable in II, and likewise for the 

II
Pββββ  in I.  We write the distortions collectively for the whole region I and II: 

 
ββββP = I

Pββββ + ( II
Pββββ  − I

Pββββ ) δ0 ,    (I.79) 
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where δ0(n) shall be the Heaviside step function; i.e., δ0(n) = 0 in I and 1 in II.  We shall 

employ the following rules of calculation [131]: 0( )n
n

δ∂
∂

= δ1(n), 1( )n
n

δ∂
∂

= δ2(n), 

where δ1 is the Dirac delta function and δ2 is the distribution that describes a double 
covering.  Since all of the δ’s depend only upon n, one has, moreover, ∇δ0 = nδ1 and ∇δ1 
= nδ2.  Ultimately, when f is a continuous function of n and − should the occasion arise − 

two more coordinates, one has 1( )f
n

δ∂
∂

= fδ2.  Thus, we define the asymmetric 

incompatibility: 
H ≡ −∇ × ββββP × ∇.     (I.80) 

One then has 1: 

− αααα = −∇ × ββββP = 0 1
I II I II I( ) ( )P P P P P∇ ∇ δ δ

↓ ↓
× + × − + × −β β β β ββ β β β ββ β β β ββ β β β βn . (I.81) 

 
The first two summands represent the spatial density and the last one, from § 8, the 
surface density of dislocations.  For the further differentiation of the last summand, we 
employ the decomposition into pieces that are differentiated perpendicular and parallel to 
the surface n: 

∇ = 
n

u
∇∂ +

∂
n ,  

n

∇ ≡ − n × (n ×∇).   (I.82) 

One thus obtains: 
 

I II I

1 2
II I II I II I

( )

( ) ( ) ] ( ) .

P P P

n
P P P P P P

0α ∇ ∇ ∇ ∇ ∇δ

− ∇ ∇ δ δ
↓ ↓ ↓ ↓↓

≡ × = − × × − × − × 

[ × − × + × − × − × − × 

β β ββ β ββ β ββ β β

β β β β β ββ β β β β ββ β β β β ββ β β β β β

H

n n n n
 (I.83) 

 
The first two summands represent the spatial incompatibility density and the next two, a 
simple superficial one, and indeed, the first part of the latter describes the jump in the 
dislocation density αααα, while the second one follows from the surface density αααα .  Finally, 
the last summand corresponds to a superficial double covering of the incompatibilities. 
 Had we, instead of eq. (I.81), first carried out the operation on the right then this 
would yield as a factor of δ1 in eq. (I.83): 
 

II I II I( ) ( )
n

P P P Pβ β ∇ ∇ β β
↓ ↓ ↓ ↓ ↓

× − × − × − ×n n ;    (I.84) 
 

otherwise, eq. (I.83) would remain the same.  One can show that this expression is 
identical with the stated one of (I.83), as it also should be.  (Namely, one has 

n

β ∇
↓

× ×n =
n

∇ β
↓

× × n , as one easily shows, in which one writes 
n

∇ = v∂/∂v + w∂/∂w, 
perhaps, where v, w are the principal curvatures.  One then has ∂n/∂v ~ v, ∂n/∂w ~ w.) 
 For the part of H that lies on the boundary surface, we further obtain the expression: 
 

                                                
 1 In the doubtful cases an arrow is used to denote the differentiation.  
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1 2δ δ+H H ,      (I.85) 
with: 

H ≡ − ( )II IInk P P−β ββ ββ ββ β , H ≡ − ( )II IInk P P−β ββ ββ ββ β ,  (I.86) 

 

where the operations Ink  and Ink  are defined by: 
 

Ink ββββ  ≡ 
n

∇ ∇
↓ ↓ ↓

× × + × ×β ββ ββ ββ βn n      (I.87) 

Ink ββββ ≡ n × b × n.       (I.88) 
 

Thus, it is very plausible (cf., eq. (I.51)) that: 
 

H = αααα × n | II − αααα × n | I + 
n

×∇αααα ,  H = ×αααα n .  (I.88a) 
 

Naturally, if ( )II IInk G G−β ββ ββ ββ β = 0 and ( )II IInk G G−β ββ ββ ββ β  = 0 then the boundary surface 

conditions for the elastic distortions may be written thus: 
 

Ink (ββββII – ββββI) =H ,  Ink  (ββββII – ββββI) =H .  (I.88b) 
 

One can easily show that: 
 

( )Ink
S

ββββ = Ink Sββββ ,  ( )Ink
S

ββββ = Ink Sββββ .  (I.88c) 

 
With ββββS ≡ εεεε and HS ≡ ηηηη  one then has: 
 

( )II IInk −ε εε εε εε ε = ηηηη ,  ( )II IInk −ε εε εε εε ε = ηηηη .  (I.89) 

 
These are the boundary surface conditions for the deformations.  From eq. (I.88a), one 
deduces the following relations: 
 

ηηηη = (αααα × n| II – αααα × n| I)
S + 

Sn

∇ × 
 
αααα , ηηηη = ( )S×αααα n ,  (I.90) 

 
which are of practical importance. 
 Eqs. (I.90) and (I.51) allow one to recognize whether a body does or does not have 
proper stresses for given conditions (e.g., given dislocation densities or impressed 
distortions) with the help of simple calculations.  One can easily show that in the realm of 

linear elasticity the proper stresses are determined uniquely for given ηηηη , ηηηη , and ηηηη (§ 

14).  In particular, the proper stresses vanish simultaneously with the vanishing of ηηηη , ηηηη , 
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and ηηηη.  It is relatively likely that in the future one will be able to compute the proper 

stresses associated with given incompatibilities ηηηη , ηηηη , and ηηηη (§ 13-15).  For that reason, 
here we shall only mention that it is quite simple to put the first boundary value problem 

of elasticity (given boundary value displacements) into the form “given ηηηη , ηηηη .” One then 
proposes that the boundary displacements will be maintained in such a way that the body 
is attached to a rigid neighborhood and one can thus interpret the boundary displacement 
s as a jump displacement – g as in § 8.  From g, what then results in a simple way is 
something that one thinks of as a surface dislocation density – n ×∇g, and, from (I.90), 

the associated ηηηη  and ηηηη .  For the solution of the problem “given ηηηη , ηηηη ,” cf., § 15. 
 As the only application, we consider the case in which the temperature of two 
substances undergoes a jump ∆T = T2 – T1 along the planar boundary surface between 
them, and we assume that the temperature is constant in each of them.  One then only has 
to substitute the ββββQ of eq. (I.44) in eq. (I.86) and obtain, by a simple calculation (due to 

the symmetry of ββββQ) the surface compatibilities ηηηη , while ηηηη  vanishes from the constancy 

of ββββQ.  An intuitive interpretation for the double covering incompatibility ηηηη follows in § 
23. 
 

§ 10.  Some comments on large distortions 
 

 We already emphasized that the derivation of the basic geometric equation was valid 
for arbitrarily large distortions when one referred αij and βij to the initial state.  One then 
perhaps thinks of there being some sort of inhibition that first prevents the body from 
being distorted by the formation of dislocations considered and their drift.  One can 
naturally refer the distortions that the volume element then undergoes after the removal 
of the inhibition to the initial state entirely.  Only when it is thus interpreted does the 
basic geometric equation have the simple form (I.17).  One immediately sees that 
distortions are additive when taken in the initial state and perhaps defined by the 
equation: 

daj = ij idxνβ      (I.91) 

 
(but not their deformations and rotations).  Namely, if one sums over a number of 
successive distortions βij then one obtains: 
 

dAj ≡ jdaν

ν
∑ = ( )ij idxν ν

ν
β∑ = v

ij i
v

dxβ 
 
 
∑ ,    (I.92) 

 
where the latter equation is valid only when one always understands dxi to mean the 
(constant) distance between the points considered in the initial state.  In this case, one 
also composes the distortions additively from the deformations and rotations; i.e.: 
 

βij = εij + ωij ,     (I.93) 
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where ωij has the well-known form [34]1, [86]: 
 

ωij = (1 – cos q) (ki kj − δij) + sin q εijk kk ,   (I.94) 
 

when ki is a unit vector in the direction of the rotational axis and q is the magnitude of the 
rotation angle.  Since εij is symmetric and ωij is already completely determined by its 
anti-symmetric part a given distortion can be very easily decomposed using eq. (I.93).  
Eq. (I.93) is thus not a division of the tensor βij into its symmetric and anti-symmetric 
parts.  It is thus clear that all equations in which εij  is assumed to be the symmetric part of 
βij or ωij is assumed to be the anti-symmetric part are valid only for small distortions.  

Thus, in particular, the symmetric incompatibility equations are concerned with ηηηη , ηηηη , 

and ηηηη, while the asymmetric compatibility equations, like, e.g., (I.51), are also true for 
large distortions; its meaning is generally still not satisfactorily clarified.  If one refers all 
quantities to the final state then the basic geometric equation assumes a complicated form 
that was derived in Chapter IV.  Now, on the other hand, the basic static equation (= 
equilibrium conditions for the forces) in its well-known form is simple in the final state, 
while it becomes complicated in the initial state.  This means that, in general, one cannot 
simultaneously employ the simple form of the basic geometric and static equations. 
 There is an important exception: The rotations ωij (and indeed, its grain boundary 
piece ϑij) are large, but the deformation εij is small.  For that reason, this case is of such 
great practical meaning, because the rotations ϑij come about without stresses 2, hence, 
they consume no energy, and dislocations in crystals are thus preferentially distributed in 
such a manner that εij is as small as possible, while ωij can, by all means, become large. 
 Now, in the case of pure rotations ϑij the total distortion P

ijϑ + ϑij = 0 (cf., § 5); i.e., all 

of the volume elements remain in place, while only the lattice orientation will be rotated 
3.  If small deformations εij are simultaneously present then the volume elements also 
experience only small shifts, and one does not need to distinguish the positions in the 
initial and final states; i.e., the equilibrium conditions also retain their simple form when 
they are expressed in the coordinates of the initial state.  In the next paragraphs it will be 
shown how one can divide the total dislocation density into one part that is responsible 
for the rotations ϑij and one that is responsible for the deformations εij , by which one 
calculates the lattice rotations.  The determination of the elastic deformations (the proper 
stresses, resp.) is then only a problem in linear elasticity theory. 

                                                
 1  Bd., pp. 78. 
 2  The statement is valid in crystals only locally (§ 23), in contrast to the continuum. 
 3 This case corresponds to the one Fig. 16c, but not Fig. 16b, where the layers δx1 have experienced no 
pure (plastic) rotation, but were likewise deformed plastically, which gives rise to a total displacement of 
the layers.  Thus, if one again produces the connectivity through elastic rotations then the body appears to 
be bent, although (in the case of small plastic distortions) it is still stress-free. 
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§ 11.  Determination of the distortions of a body with dislocations 
 

 One of the most important problems in the theory of dislocations is to compute the 
elastic distortions, proper stresses, and lattice rotations (curvatures, resp.) that are 
associated with a given distribution of dislocations αααα, αααα  . αααα, αααα  are not completely 
arbitrary functions of position, but they must satisfy the condition that dislocations can 
not stop in the interior of a body or its boundary surface.  Thus, a dislocationαααα  that runs 
around the boundary surface can leave it and thus contribute a spatial density αααα.  Eq. 
(I.18): 

∇i αij = 0     (I.95) 
 

was necessary and sufficient for the dislocations αααα to not stop.  Thus, for each boundary 
surface one has an equation 1: 

( )II I

n

i ij i ij ijn∇ α α α+ − = 0,    (I.96) 

 
which says that anywhere the dislocations have divergences the dislocations αααα run into 
the boundary surface and bend around it.  If one sets αααα  = n × (ββββII – ββββI) and αααα = ∇ × ββββ in 
this equation then it is fulfilled identically, which one can regard as the proof of eq. 
(I.96).  The given dislocation distribution shall thus always fulfill the conditions (I.95) 
and (I.96). 
 The simplest problem in which αααα and αααα  play a role is that of a rigid neighborhood 
stuck to a body; we would like to first restrict ourselves to it.  (For a free boundary, one 
will have αααα  = 0.) 
 At this time, the aforementioned problem can be solved for small distortions at best 
when one first computes the stresses (and thus the deformations) and then the rotations.  

Thus, one must compute the incompatibilities ηηηη,ηηηη ,ηηηη from αααα, αααα , which, from § 9, is very 

simple.  After computing the stresses that belong to ηηηη, ηηηη , ηηηη  (§ 13, 15), one obtains the 

elastic deformations εεεε by means of Hooke’s law.  If one now writes the basic equation 
(I.17) in the form: 

Rot ωωωω = αααα – Rot εεεε,    (I.97) 
 

then the right-hand is now known.  From eq. (I.97), after an easy calculation, one now 
has 2: 

δkl ∇m ωm −∇l ωk = (αααα  – Rot εεεε)kl ,   (I.98) 
and by contraction: 

2∇m ωm = (αααα  – Rot εεεε)mm .   (I.99) 
 

Substituting this in eq. (I.98), one obtains: 
 

                                                

 1 For the definition of 
n

∇ , cf., eq. (I.82). 
 2 For Rot ωωωω, one writes εkji∇j ωil = εkji εilm∇j ωm .  With the decomposition formula (A 2), (I.98) follows. 
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∇l ωk = 1
2 δkl (αααα  – Rot εεεε)mm  − (αααα  – Rot εεεε)kl ,  (I.100) 

 
where the right-hand side is still a known function.  The structure curvatures follow from 
this by an ordinary integration, up to a constant. 
 It is particularly noteworthy that the boundary value problem to be solved for the 

determination of the stresses appears in the form “given ηηηη ,ηηηη ” from the outset; cf., § 9. 
 Now, let us describe a method of calculating the structural rotations before the 
determination of the stresses, which, at present, has been worked out only for infinitely 
extended media [81], but which can be extended to finite media with none of the all-to-
great difficulties of finite media.  The starting point is the basic equation in the form 
(I.43): 

Rot(Ink ιιιι + ϑ) = αααα.    (I.101) 
 

One easily shows that (Rot Ink ιιιι)ii vanishes identically, because Ink ιιιι is a symmetric 
tensor.  Thus, similar to the above, it follows that: 
 

(Rot Ink ιιιι)kl −∇l ϑk = αkl – 1
2 αmm δkl .    (I.102)  

 
The left-hand side is (for small distortion), from eq. (I.60), equal to minus the curvature 
tensor Kkl .  By applying the rotation on the left, we previously got ηηηη; cf., eq. (I.63).  
Now, we apply the divergence on the right, so the first term drops out (since Ink ιιιι ≡∇ × ιιιι 
×∇): 

∆ϑk = 
1

2l kl mm kl∇ δ α α − 
 

.   (I.103) 

 
Here, the right-hand side is known.  ϑk follows by integration, although it is determined 
only up to a harmonic vector.  The indeterminacy corresponds to the fact that the 
decomposition of ββββ into Grad s + Rot ζζζζ  is not unique in a finite medium, and that one 
can, if one desires, write the part of the distortion that is described by one of the surface 
densities αααα  in the form Grad s or Rot ζζζζ.  On the other hand, in an infinite medium ϑk is 
determined uniquely by eq. (I.103) (assuming that αααα vanishes at infinity). 
 As we already remarked in connection with eq. (I.94), a rotation tensor is already 
determined by its anti-symmetric part.  The integration of eq. (I.103) thus delivers, after a 
brief additional calculation, the rotation tensor with ϑϑϑϑ as the anti-symmetric part; we call 

it ɶϑϑϑϑ .  This gives the grain boundary part of the structural rotations.  Now: 
 

εεεεink = Ink ιιιι − ϑϑϑϑ  − ɶϑϑϑϑ ,    (I.104) 
 

where εεεεink is obviously the incompatible part of the deformation.  The basic equation thus 
takes on the form: 

Rot εεεεink = αααα  – Rot ɶϑϑϑϑ ,    (I.105) 
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where the right-hand side is known.  By further applying the rotor map on the right, one 
can thus calculate the incompatibility tensor ηηηη that belongs to the elastic deformation εεεε, 
and which, in the case of small εεεε, gives the determination of the stresses in a relatively 
simple way.  This method allows one to calculate them from the dislocation density, at 
least in the case of infinite media, and for large rotations and small deformations.  In 
these calculations, one no longer needs to distinguish between initial and final state. 
 The case of large rotations and small deformations has not been treated by the first 
method up to now.  Namely, the symmetric part of the rotation tensor contributes to the 

quantities ηηηη, ηηηη , ηηηη  that are calculated from αααα, αααα  by means of the formulas of § 9, and 
one cannot neglect that part for rotations that are large compared to the deformations.  In 
eq. (I.105), however, the mostly worked out (primär ausgerechnete) part of the rotation 
tensor will be considered exactly. 
 The special case that was just treated is certainly at least as important as the case that 
has not been treated at all up to now, that of stresses in conjunction with large distortions.  
Indeed, in metalworking one frequently has plastic forming between 10 and 100%, but it 
must have the form Grad sP, for the most part, since the forming Rot ζζζζP means a 
simultaneous elastic distortion Rot ζζζζ, whose symmetric part gives rise to stresses.  With 
the relatively weak forces with which one forms plastically, however, elastic formings of 
10 and 100% can never be produced; i.e., one can at most regard the deformation part of 
Rot ζζζζ as small and thus also those (εεεε) of ββββ. 
 



 

Chapter II 
 

Dislocations in a continuum: statics 
 

Preliminary remarks 
 

 Statics is the study of the forces that act on matter, and the problems that are treated 
in it include, in particular, the computation of internal forces (stresses) in a body that will 
be aroused by any external influences.  For us, these influences will be, above all, 
dislocations, as well as quasi-dislocations, as in § 6.  In the literature up to now one finds 
almost only computations involving singular dislocation lines, at best, also computations 
involving surface distributions of dislocations.  One can treat this problem quite 
thoroughly by the methods of classical elasticity theory.  This is due to the fact that 
outside of dislocations the elastic deformation field still has the simple form εij = (∇i sj + 
∇j si)/2 that it has in classical elasticity theory.  In the case of dislocations that are 
distributed over the entire body, by comparison, the elastic deformation can no longer be 
derived from a displacement field, and a fundamentally new method is necessary if one is 
to – e.g. – compute the proper stresses σij that belong to a dislocation distribution αij .  
Now, the equilibrium conditions for elastostatics must also be naturally fulfilled in a body 
with dislocations, which can be written in the form: 
 

Div σσσσ = 0     (II.1) 
 
in the absence of external forces.  These equations state that the proper stress tensor σσσσ is a 
special tensor, namely, an incompatibility tensor: 
 

σσσσ = Ink χχχχ,     (II.2) 
 
which follows immediately from eq. (I.42) 1.  The symmetric tensor χχχχ ≡ (χij) is called the 
“second order tensor of stress functions,” since its components are the Maxwell and 
Morera stress functions 2.  In contrast to the previous observations, the stress functions 
are also suitable tools for spatial problems in elasticity theory.  In the case of three-
dimensional distributions of dislocations, where the method of the displacement field 
breaks down, the stress functions are indeed indispensible.  One must then regard them as 
not only convenient aids to computation since their place in the continuum theory of 
dislocations is of fundamental significance.  This will be best illuminated by the remark 
that the tensor of stress functions represents the analogue of the much-used vector 
potential A of electrodynamics, with whose help the Maxwell equation div B = 0 is 
satisfied identically in a manner that corresponds to the equilibrium conditions (II.1) in 
terms of the stress function tensor. 

                                                
 1  Eq. (II.2) was first written out by Beltrami [161], but not pursued further.  Cf., also Finzi [43] on eq. 
(II.2). 
 2 The additional phrase “second order” shall imply that one must differentiate the stress functions twice 
in order to obtain the stresses.  One uses it often to distinguish these stress functions from each other; see 
below.  
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We define the stress tensor σσσσ in the usual way by the differential form: 
 

dpj = σij dFi ,     (II.3) 
 

where dpj is the force applied to a surface slice dFi when no displacement of the points of 
the body comes about as a result of the slice 1. 
 
 As far as the state of the body is concerned, the time-independent continuum 
mechanics of solid bodies will now be controlled by the equations: 
 

Rot ββββ = αααα     (II.4) 
Div σσσσ = − F,     (II.5) 

 
to which the equation for energy density: 
 

e = 1
2 σij εij      (II.6) 

 
must be added.  By comparison, the plastic forming Grad sP, which does not change the 
state of the body, will not be fixed by these equations.  In this section, we are interested 
only in the state of the body after forming.  Along with equations (II.4) to (II.6), comes 
the material equation, which we will always assume to be Hooke’s law: 
 

σij = cijkl εkl .     (II.7) 
 

As remarked in § 11, one may, in general, compute with it for large plastic formings on 
the basis of its validity for metals. 
 cijkl is the Hooke tensor of elastic moduli with the symmetry properties: 
 

cijkl = cjikl = cijlk = cklij .    (II.8) 
 

In the case of elastic isotropy, it is: 
 

cijkl = λ δij δkl + µ (δik δjl + δil δjk),   (II.9) 
 

where λ, µ are the Lamé constants.  We define the tensor sijkl of elastic coefficients that is 
reciprocal to cijkl by: 
 

cijkl sijkl = 1
2 (δik δjl + δil δjk).   (II.10) 

                                                
 1 In contrast to isotropic bodies, asymmetric stress tensors also play a certain role in crystals, which we 
will consider only in § 19.  In the remaining paragraphs we will assume that the stress tensor is symmetric 
in order to not complicate the presentation unnecessarily.  Thus, it is good to also establish the index 
notation that appeared in eq. (II.3). (The first index of σij characterizes the surface element, and the second 
index, the applied force.) 
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For isotropy, one then has: 
 

sijkl = λ′ δij δkl + µ′(δik δjl + δil δjk)   (II.11) 
with: 

λ′ = − 
1/ 2

1

G

m+
,  µ′ = 1/4 G,   (II.12) 

 
where G = µ is the shear modulus and m is the transverse contraction number 
(Querkontraktionszahl).  Hooke’s law then takes on the forms: 
 

2 G εij = σij – 
1

1m+
σkk δij ,  σij = 2

1

2ij kk ijG
m

ε ε δ + − 
.  (II.13) 

 
 In § 6, it was shown that the incompatibility tensor associated with a distribution of 
dislocations can be calculated in a simple way.  For that reason, instead of eq. (II.4) we 
shall consider equation (I.52): 
 

Ink εεεε = ηηηη,      (II.14) 
 

from which, as in § 6, the structure rotations are excluded.  The equilibrium conditions 
will now be satisfied identically with the stress function Ansatz (II.2), and no longer need 
to be considered in further investigations.  In Cartesian coordinates, eq. (II.2) is written: 
 

2 22
33 2322

11 2 2
3 2 2 3

2
23 31 3312

12
3 3 1 2 1 2

2

,

x x x x

x x x x x x

χ χχσ

χ χ χχσ

∂ ∂∂= − − + ∂ ∂ ∂ ∂ 


 ∂ ∂ ∂∂∂ = − − + + +  ∂ ∂ ∂ ∂ ∂ ∂  

  (II.15) 

 
from which four more equations follow by cyclic permutation of the indices.  If one sets 
χ11 = χ22 = χ33 = 0 then one has the well-known Ansatz of Morera [102] before one, and 
with χ12 = χ23 = χ31 = 0, obtains the Maxwell Ansatz [99].  If one assumes that ∂/∂x3 = 0 
– i.e., a state of planar stress – then what remains of eqs. (II.15) are: 
 

σ11 = − 
2

33
2
2x

χ∂
∂

, σ22 = − 
2

33
2
1x

χ∂
∂

,  σ12 = 
2

33

1 2x x

χ∂
∂ ∂

   (II.16) 

σ23 = − 23 31

1 1 2x x x

χ χ ∂ ∂∂ − + ∂ ∂ ∂ 
,  σ31 = 23 31

2 1 2x x x

χ χ ∂ ∂∂ − + ∂ ∂ ∂ 
  (II.16′) 

σ33 = − 
2 2 2

11 22 12
2 2
2 1 1 2

2
x x x x

χ χ χ∂ ∂ ∂− +
∂ ∂ ∂ ∂

.      (II.16″) 
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Here, eq. (II.16) represent precisely the Airy stress function Ansatz for the planar stress 
problem 1.  If one sets the bracketed expressions in eq. (II.16′) equal to a function Φ then 
it is the well-known stress function of torsion 2.  One observes that each stress function χij 
appears in only one of the three rows in (II.16), which means that the associated stress 
states are independent of each other, at least as far as the equilibrium conditions are 
concerned. 
 Maxwell [99] and Morera [102] have shown that one can describe each stress state 
with Div σσσσ = 0 using their three functions.  The fact that the symmetric tensor χχχχ then 
includes only three degrees of freedom thus rests on the fact that, from eq. (I.42), an 
expression χχχχ0 = Def q does not contribute to σσσσ.  A stress function tensor of the form Def q 
is thus also called a “tensor of null stress functions” [126].  For that reason, one can 
subject the tensor χχχχ to certain supplementary conditions; the Maxwell ones are χ12 = χ23  
= χ31 = 0, and the Morera ones are χ11 = χ22  = χ33 = 0.  In all cases, however, one must 
prove that these supplementary conditions are actually “supplementary.”  We say that the 
supplementary conditions are extra when one can describe any arbitrary stress state that 
satisfies the equation Div σσσσ = 0 with the totality of all stress functions that are restricted 
by the supplementary conditions. 
 The equilibrium conditions are fulfilled by the stress function Ansatz.  The extended 
compatibility conditions (II.14) impose additional restrictions on the stress functions.  
One arrives at them when one introduces the σσσσ of eq. (II.2) into eq. (II.14) with the help 
of Hooke’s law (II.7): 

Ink [sijkl (Ink χχχχ)kl] = ηηηη .    (II.17) 
 

It is not worthwhile to write out these equations completely.  They are already very 
complicated in the Maxwell and Morera cases, and for that reason these functions are 
practically never used. 
 For the further treatment of eq. (II.17) we define – when we restrict ourselves to 
elastic isotropy – the symmetric tensorsijχ ′ , ijη ′  by the equations: 

 

2 ijGχ ′  = χij − 
1

2m+
 χkk δij ,  χij = 

1
2

1ij kk ijG
m

χ χ δ ′ ′+ − 
  (II.18) 

ijη ′  =
1

2
1ij kk ijG

m
η η δ + − 

 ,  2Gηij = 
1

2ij kk ijm
η η δ′ ′−

+
.   (II.18′) 

 
With the supplementary conditions: 

i ijχ ′∇ = 0     (II.19) 

 
eq. (II.17) then assumes the simpler form [77]: 
 

ijχ ′∆∆ = ηij      (II.20) 

or, at the same time: 

                                                
 1 Mostly, χ = − χ33 is defined to be the Airy stress function.  
 2 See, e.g., Love [95] or Biezeno-Grammel [1].  
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ijχ ′∆∆ = ijη ′ ,     (II.20′) 
as we will now show. 
 First, with the decomposition formula (A.1) one has: 
 
  ηij = (Ink ε)ij = − εijk εjmn ∇k∇m εln 

= ∆εij – (∇i∇k εkj + ∇j∇k εki) + ∇k∇l εij + ∇i∇j εkk − ∆εkk δij ,  (II.21) 
 

and with Hooke’s law (II.13) and the equilibrium conditions ∇iεij = 0 it easily follows 
that: 

∆σij + 
1

m

m+
(∇i∇j σkk − ∆σkk δij) = 2 G ηij .  (II.22) 

 
In the case of ηij = 0 (from which, it follows that ∆σkk = 0) these equations are known as 
Beltrami’s equations.  We now set σij = (Ink χχχχ)ij , think of these equations as being 
written in the form corresponding to eq. (II.21) and introduce ijχ ′  into eq. (II.22).  It then 

results, upon consideration of (II.19), that: 
 

σij /2 G = ( )
1ij i j kk kk ij

m

m
χ χ χ δ′ ′ ′∆ + ∇ ∇ − ∆

−
.  (II.23) 

 
When this is substituted in eq. (II.22) it yields eq. (II.20) directly, as one easily confirms. 
 The supplementary conditions (II.19) are sufficient, but not necessary, so eq. (II.17) 
goes over to eq. (II.20).  One obtains the necessary and sufficient conditions when one 
introduces the σij into eq. (II.22) without the assumption (II.19).  One then has: 
 

1
( )

1 1ij i k kj j k ki i j k l kl k l kl ij

m

m m
χ χ χ χ χ δ′ ′ ′ ′ ′∆∆ − ∆ ∇ ∇ + ∇ ∇ + ∇ ∇ ∇ ∇ + ∆∇ ∇

+ +
 = ηij , (II.24) 

 
and the necessary and sufficient conditions obviously read: 
 

1
( )

1 1i k kj j k ki i j k l kl k l kl ij

m

m m
χ χ χ χ δ′ ′ ′ ′−∆ ∇ ∇ + ∇ ∇ + ∇ ∇ ∇ ∇ + ∆∇ ∇

+ +
= 0, (II.25) 

 
which is identical with: 
 

Def[(m + 1)∆p – m ∇∇ ⋅ p] − ∆∇⋅ p I = 0, p ≡ ∇⋅ χχχχ′.  (II.25) 
 

 They are fulfilled identically by the stronger conditions (II.19).  For the proof that the 
conditions (II.19) are extra, which naturally includes that of the conditions (II.25), we 
refer to the original work [77], in which the author first posed the conditions (II.19); they 
were also found independently by Marguerre [98]. 
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§ 13.  Solution of the summation problem for proper stresses 
 

 The first problem that was solved by the three-dimensional stress functions related to 
infinitely extended bodies.  Let the volume be V.  One then has a summation problem 
before one, but not a boundary value problem. 
 The stress function tensor χχχχ of the problem in question must fulfill the necessary and 
sufficient conditions (II.7).  We had replaced them with the sufficient conditions (II.20) 
[(II.20′, resp.] and (II.19).  The former of these equations will be satisfied by the 
expressions 1: 

χij(x) = − 
1

( ) | |
8 ij

V

dVη
π

′ ′ ′ ′−∫∫∫ x x x    (II.26) 

( )ijχ ′ x = − 1
( ) | |

8 ij

V

dVη
π

′ ′ ′−∫∫∫ x x x ,   (II.26′) 

 
as is known from the theory of the bipotential equation.  That the supplementary 
conditions (II.19) are also fulfilled by these equations follows easily from the identity ∇i 
ηij = 0. 
 In the examples of the Maxwell and Morera functions we have seen that the tensor 
Inkχχχχ has, in reality, three degrees of freedom and not six.  That is true for any 
incompatibility tensor, hence, also for ηηηη and ηηηη′.  Thus, the six integrations may be 
reduced to three as follows: 
 As remarked above, the χχχχ′ of eq. (II.26′) is an incompatibility tensor (Div χχχχ′ = 0) 
because ηηηη is one.  Likewise, one easily shows that the χχχχ in eq. (II.26) becomes a 
deformator when one substitutes such a tensor for ηηηη′.  However, since σσσσ = Ink χχχχ, 
according to eq. (I.42), a deformator does not contribute to the stresses.  We thus 
obviously obtain the same stresses when we add an arbitrary deformator to the actual ηηηη′ 
and substitute the resulting tensor (ηηηη″) in place of ηηηη′ in (II.26).  However, we can choose 
ηηηη″ such that, e.g., 11η ′′  = 22η ′′ = 33η ′′ = 0 or 12η ′′  = 23η ′′ = 31η ′′ = 0.  We thus obtain a 

representation in the Morera (Maxwell, resp.) functions, which proves to be a particularly 
convenient tool for ascertaining the proper stress states. 
 The computation of ηηηη″ is now quite simple.  If we set: 
 

ηηηη″ = Def a + ηηηη′    (II.27) 
then we shall have, e.g.: 
 

∂a1 | ∂x1 = − 11η ′ , ∂a2 | ∂x2 = − 22η ′ , ∂a3 | ∂x3 = − 33η ′ , (II.28) 

 

                                                
 1 If one substitutes eq. (II.26) in (II.2) then, after performing the differentiations one obtains the stresses 
as functions of the incompatibility distribution.  These formulas were first given by Moriguti [103] (without 
the use of the stress function tensor) and proved by direct verification.  I warmly thank Herrn Dr. J. D. 
Eshelby for the fact that he brought the works of Moriguti to my attention (in March 1957). 
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from which one obtains suitable functions a1, a2, a3 by ordinary integration.  If one 
substitutes them in eq. (II.27) then one obtains ηηηη″ = ( )ijη′′  with i ≠ j.  The Morera stress 

functions of the proper stress state follow from this: 
 

χij(x) = − 
1

( ) | |
8 ij

V

dVη
π

′′ ′ ′ ′−∫∫∫ x x x ,  i ≠ j.  (II.29) 

 
The simple Morera formulas are then valid for the stresses: 
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   (II.30) 

 
It is only somewhat simpler for one to establish values for a1, a2, a3 such that: 
 

1 2

2 1

1

2

a a

x x

 ∂ ∂+ ∂ ∂ 
 = − 12η ′ , etc.    (II.31) 

 
and obtain the Maxwell stress functions of the proper stress states with eq. (II.27): 
 

χij(x) = − 
1

( ) | |
8 ij

V

dVη
π

′′ ′ ′−∫∫∫ x x x ,  i = j.  (II.32) 

 
The stresses follow from this according to: 
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     (II.33) 

 
 For finite media, the summation problem is then linked with a boundary value 
problem.  Before we treat it, we must first see whether we can also apply to finite media 
the method of determining the particular integrals of the differential equations (II.17) that 
we worked out for infinite media. 
 One easily shows that in finite media the χχχχ′ of eq. (II.26′) does not generally fulfill 
the required supplementary condition Div χχχχ′ = 0.  Thus, it is not clear at this point 
whether this χχχχ′ represents a solution of eq. (II.17).  Since Div χχχχ′ = 0 was, however, a 
supplementary condition, it must give solutions of ∆∆χχχχ′ = ηηηη for which Div χχχχ′ = 0, hence, 
the eq. (II.17) are also fulfilled. 
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 In order to obtain such a solution one seeks an extension of the function ηηηη′ into the 
exterior of the medium such that across the boundary surface ηηηη′ is continuous and 
differentiable and vanishes at infinity sufficiently strongly.  Such an extension is not 
difficult to obtain.  We call the function thus established that agrees with ηηηη′ in the body 

f
′ηηηη .  We substitute this function for ηηηη′ in eq. (II.26) and integrate over the infinite space.  

We thus obtain a stress function field that fulfills the differential equations (II.20′) and 
the supplementary conditions (III.19) everywhere in the body and thus represents the 
desired particular solution of eq. (II.17). 
 We would now like to add to f′ηηηη , as above, a deformator Def a such that we come to 

either the Maxwell or the Morera functions.  If the method is successful then this 
deformator might contribute nothing to the stresses.  That this is also the case is relatively 
simple to show, so we skip the proof.  Therefore, one also computes a tensor f′′ηηηη  = f

′ηηηη  + 

Def a, where f
′′ηηηη  has only three components different from zero.  One then has ∆∆χχχχ = f

′′ηηηη , 

so eq. (II.29) and (II.32), with f
′′ηηηη  instead of ηηηη″, give particular integrals to these 

equations that likewise satisfy eq. (II.17). 
 It must be remarked that in the case of a given dislocation (incompatibility 
distribution, resp.) the methods given in this paragraph are practically the only ones for 
the solution of summation problem 1.  In the case of quasi-dislocations (§ 6), where 
primarily the impressed deformation εεεεG is given, there are, however, well-known 
methods in the older theory of temperature stresses of Duhamel [33] and Neumann [112] 
for computing the associated “quasi-forces” Q

fF  with the help of the expression: 

 
Q

i ijkl klc ε∇  = Q
fF  ,    (II.34) 

 
as well as the displacement field associated with them that is calculated by the usual 
methods, from which, the total deformation εεεεG then follows by definition of the 
deformator.  The elastic deformation is then εεεε = εεεεG − εεεεQ, from which the stresses follow 
by Hooke’s law.  These methods may not differ essentially in their use from those of 
stress functions. 
 Finally, we introduce another method that is, at present, applicable only to infinite 
media.  In place of (II.2) 2, one sets: 

σσσσ = Rot ϕϕϕϕ,     (II.35) 
 
where ϕϕϕϕ  ≡ (ϕij) is the asymmetric stress function tensor of order one (because it is 
differentiated only once in order to arrive at the stresses).  One thus obviously has ϕϕϕϕ = χχχχ 
× ∇, from which it follows that: 
 

ϕii = 0,  ∇j ϕij = 0.    (II.36) 
 

                                                
 1  Cf., on this, also Eshelby [41], pp. 91 et seq. 
 2  Günther [61] and Schaefer [126] employ a stress function tensor γijk = εijl  ϕlk for a different purpose. 
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Taking the rotation on the right further converts the supplementary conditions (II.19), 
when written in terms of χ with the help of (II.18), into: 
 

∇i ϕij = 0,     (II.37) 
 

as one easily checks.  Since χχχχ, with the restriction (II.19), has three degrees of freedom, 
ϕϕϕϕ, when restricted by the conditions (II.36) and (II.37), likewise has three.  With Hooke’s 
law, it follows from eq. (II.35) that: 

εij = sijkl εkmn ∇m ϕnl ,    (II.38) 
 

and taking the rotation on the left gives: 
 

εghi ∇h εij ≡ gjα ′  = sijkl εghi εkmn ∇h ∇m ϕnl ,  (II.39) 

 
which in the case of elastic isotropy will become, from eq. (II.11): 
 

gjα ′  = λ′ εghi εkmn ∇h ∇m ϕnl  + µ′(εghk εkmn ∇h ∇m ϕnj + εghl εjmn ∇h ∇m ϕnl). (II.40) 

 
Multiplication by εfgj gives, with eq. (A.2, 3) and (II.36): 
 

εfgj gjα ′  = − 2(λ′ + µ′) εlmn ∇h ∇m ϕnl .   (II.41) 

 
We substitute this in eq. (II.40) after replacing the indices f, g, j with h, p, q and finally 
obtain, when we apply the decomposition formula (A.2) and consider (II.36, 37) 1: 
 

∆ϕij = − 
2

( )
1 ij ji

G
m

m
α α′ ′−

−
.    (II.42) 

 
What is ijα ′  then?  We assume the decomposition: 

 
εεεε = Def s + Ink ιιιι,     (II.43) 

 
which is unique in an infinite medium, and express the equation Div σσσσ = 0 with the help 
of Hooke’s law in terms of s and ιιιι 2.  With (I.42), one easily obtains: 
 

∆si + 
2

(Ink )
2 2i j j i jj

m
s

m m
∇ ∇ + ∇

− −
ιιιι  = 0   (II.44) 

 
and by taking the rotation, it follows that: 
 

∆ rot s = 0.     (II.45) 

                                                
 1  Due to (II.36, 37), one has εghl εjmn ∇h ∇m ϕnl = − ∆ϕgj , which follows easily from (A.1). 
 2 We thus restrict ourselves to small deformations and rotations.  
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In infinite media, one thus has rot s = const.  It then follows that: 
 

Rot Def s ≡ 1
2 ∇ × (∇s + s∇) = 1

2 (rot s) ∇ = 0.   (II.46) 

and one has: 
αααα′ ≡ Rot εεεε = Rot Ink ιιιι .    (II.47) 

 
That is, αααα′ is, from § 5, that part of the total dislocation density that is responsible for the 
stresses.  In the case of quasi-dislocations ααααQ of § 6, αααα′ if often directly equal to ααααQ.  In § 
11, we showed that, above all, one can compute αααα′ when one computes the rotations (αααα′ 
is equal to the right-hand side of eq. (I.105)).  Therefore, we can henceforth regard the αααα′ 
as given functions.  From eq. (II.47), it easily follows that αααα′ submits to the same 
conditions (II.36) and (II.37) as ϕϕϕϕ.  This means that the particular integral of eq. (II.42): 
 

ϕij(x) = 
/ 2

[ ( ) ( )] / | |
1 ij ji

V

G
m dV

m

π α α′ ′ ′ ′ ′ ′− −
− ∫∫∫ x x x x   (II.48) 

 
also fulfills these conditions, and thus gives the correct stress function tensor that goes 
with ijα ′ , from which, eq. (II.35) gives the stresses. 

 One can easily reduce the nine integrations in eq. (II.48) to six, and one can similarly 
reduce the six integrations (II.26) to three.  Whether the integrations (II.48) can generally 
be reduced to three must remain open.  Up to now, the stress functions ϕij have not been 
explored at all, so we believe, on deeper grounds, that such an exploration would be 
worthwhile.  Namely, if we heuristically write n × εεεε = − ′αααα  for the body bounded by a 
rigid neighborhood then, from Div σσσσ = 0, the elastic energy of this body is represented in 
the form: 

E = 
1 1

2 2ij ij ij ij

V F

dV dFα ϕ α ϕ′ ′+∫∫∫ ∫∫ ,   (II.49) 

or also: 

E = 
1 1

2 2ij ij ij ij

V F

dV dFα ϕ α ϕ+∫∫∫ ∫∫ ,   (II.50) 

 
as will be shown in the next paragraph.  E is then expressed by means of the dislocations 
that generate the proper stresses. 
 If, e.g., 1

ijϕ  and 2
ijϕ  is the stress function field that is produced by two isolated 

dislocations 1
ijα  and 2

ijα  in an infinite medium then the energy may be written: 

 

E = 1 1 2 2 1 2 2 11 1 1 1

2 2 2 2ij ij ij ij ij ij ij ij

V V V V

dV dV dVα ϕ α ϕ α ϕ α ϕ+ + +∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫ . (II.51) 

 
Obviously, the third and fourth integrals mean the potential energy of the dislocation 1 in 
the field of the dislocation 2, and conversely.  One thus arrives at an interpretation for the 
stress functions ϕij: They represent a potential for the dislocations. (The situation is 
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analogous to that of electrodynamics, where one has an energy E = 
1

2 V

U dVρ∫∫∫ , if ρ is 

the charge density.  U will then denote a potential (for charges)). 
 The stress functions of second order are correspondingly an elastic potential for 
incompatibilities. 
 

§ 14.  Elastic energy and the variational problem for a medium  
with proper stresses 

 
 We would now like to compute the expression for the elastic energy of a medium 
with proper stresses, as expressed in terms of stress functions and incompatibilities.  The 
starting point is the formula: 
 

E = 
1

2 ij ij

V

dVσ ε∫∫∫ ,     (II.51) 

 
which, from eq. (II.2), can be written: 
 

E = − 
1

2 ijk lmn ij j m kn

V

dVε ε ε χ∇ ∇∫∫∫ .    (II.52) 

Partial integration gives: 
 

E = − 1
( )

2 ijk lmn j il m kn j il m kn

V V

n dF dVε ε ε χ ε χ
 

∇ − ∇ ∇ 
 
∫∫∫ ∫∫∫ ,  (II.53) 

 
which is identical to eq. (II.49) 1.  Since one can write the distortions βij in place of the 
deformations in the starting equation (II.51) (due to the symmetry of σij), eq. (II.50) is 
thus also proved. 
 After partial integration of the volume integral in (II.53) this yields: 
 

E = − 
1 1

( )
2 2ijk lmn j il m kn j il m kn kn kn

F F V

n dF n dF dVε ε ε χ ε χ χ η
 

∇ − ∇ + 
 
∫∫ ∫∫ ∫∫∫ , (II.54) 

 
where the relation (II.21) was used.  Here, we decompose the ∇m in the first integral, with 
the help of eq. (A.2), into the easily verified formula: 
 

∇m = m p p mpq rsq r pn n nε ε
↓ ↓

∇ + ∇ ,    (II.55) 

 

                                                
 1 One has εlmn ∇m χkn = − ϕkl , εijk ∇j εil   = −

klα ′ ,  εijk nj εil  = 
klα ′ . 
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where the arrow shall mean that in addition to the function upon which ∇m acts, np will 
also be differentiated.  The integral defined in the second summand of (II.55) will be 
once again partially integrated by applying Stokes’s theorem.  The associated line 

integral vanishes since F is a closed surface.  With the abbreviation 
n

m∇ ≡ εmpq εrsq ns np 
∇m of eq. (II.82), what remains is: 
 

  E = − { }1
( ) ( )

2

n

mijk lmn j il m p p kn kn m j il j il

F F

n n n dF n n dFε ε ε χ χ ε ε
 

∇ − ∇ + ∇ 
 
∫∫ ∫∫  

+ 
1

2 kn kn

V

dVχ η∫∫∫ .     (II.56) 

 
Comparison with eqs. (I.87) and (I.90) gives, in the case of a body that is attached to a 
rigid neighborhood: 
 

E = 
1 1 1

( )
2 2 2 ijij ij ij ij k k ij

V F F

dV dF n dFχ η χ η χ η+ + ∇∫∫∫ ∫∫ ∫∫ .  (II.57) 

 
In this equation, the nk are the Cartesian components of the unit normal vectors n of the 
family of surfaces n (§ 8), one of which is the boundary surface F.  This interpretation of 
the nk is necessary in order to be able to carry out the differentiations ∇k nk according to 
the rules if n also has meaning outside of F, as well (it is enough that n be defined in an 
infinitesimal neighborhood of F). 
 Eq. (II.57) says that in the absence of volume forces in a body that is fixed in a rigid 
neighborhood the elastic energy, and therefore the proper stresses, vanish when the 
incompatibility vanishes. 
 We now treat bodies bounded by air.  From a well-known theorem of Colonetti [17], 
the elastic energy of a body that is subject to both external forces and proper stresses is 
additively composed of the elastic energies of the two parts; in our expression: 
 

E(ηηηη, F) = E(ηηηη) + E(F),    (II.58) 

 
where F shall stand for volume and boundary forces 1.  The transition from eq. (II.51) to 

(II.52) is valid in the absence of volume forces.  Thus, eqs. (II.52), et seq., include a part 

                                                
 1  The theorem is also true for the medium embedded in a rigid region (one can then include the surface 
incompatibilities in ηηηη, as well).  Namely, if one sets σσσσ = σσσσL + σσσσE, εεεε = εεεεL + εεεεE, where L suggests the load 
stresses, and E, the proper stresses, then one distinguishes the E(σσσσ) computed in eq. (II.51) from E(σσσσL) + 
E(σσσσE) by the interaction term E L

ij ij

V

dVσ ε∫∫∫ (Betti’s theorem), and since E
i ijσ∇  = 0 it may be brought into 

the form that corresponds to (II.57): 
 

ELE = ( )E L E L E L
ij ij ij ij k k ij ij

V F F

dV dF n dFχ η χ η χ η+ + ∇∫∫∫ ∫∫ ∫∫ . 
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due to the boundary forces.  On the other hand, as already remarked in § 8, the surface 
incompatibilities are null on a free outer surface.  One can now show 1 that the outer 
surface integral in eq. (II.54) vanishes in the absence of boundary forces when ni ηij = 0, 
such that all that remains is: 
 

E = 
1

2 ij ij

V

dVχ η∫∫∫  when  ni ηij = 0.  (II.59) 

 
This equation includes the theorem that in simply connected bodies, and in the regime of 
linear elasticity theory all proper stresses will lead back to incompatibilities.  Eq. (II.57) 
includes the same theorem for bodies that are embedded in a rigid region.  However, it is 
also still true when one creates new boundary surfaces in which one allows ηij to 
degenerate to surface quantities (or even linear quantities) in the interior of the body.  
Thus, the theorem that all proper stresses will be produced by incompatibilities is 
obviously valid in complete generality in the domain of the linear elasticity theory.  
Furthermore, the converse is true that all (symmetric) incompatibilities provoke proper 
stresses, which is self-explanatory from the meaning of the incompatibilities as 
derivatives of elastic deformations. 
 Finally, the question of the uniqueness of the solutions is still important.  Thank to the 
Kirchhoff uniqueness theorem of classical elasticity theory and the theorem of Colonetti, 
it suffices to assert that in the absence of external forces the proper stresses (that follow 
from the stress functions) are uniquely determined by the givens of the incompatibilities.  
The proof is adapted to the infinite media immediately, since in that case eq. (II.26) is the 
unique solution to eq. (II.20) and (II.19) as long as no incompatibilities lie at infinity.  By 
contrast, in a finite medium it must be shown that the boundary value problem that 
emerges is uniquely soluble.  In the next paragraph, we must show that both of the well-
known boundary-value problems of elasticity for which the uniqueness proof is indeed in 
the literature also yield proper stresses.  Thus, one establishes in the regime of linear 
elasticity that the stresses in a body are uniquely determined by external forces and 
incompatibilities that act on them.  In particular, all stress causes will lead back to these 
two influences. 
 The bodies considered up to now were simply connected.  All of the theorems of this 
paragraph are also valid for multiply connected bodies when one allows the 
incompatibilities that are found there to also be found outside the body.  (This situation is 
well-known from hydrodynamics.  For the current around a body, one can think of 
sources or vortices as being present in the body!)  In the regime of nonlinear elasticity 
theory, by comparison, not all stresses can lead back to external forces or proper stresses, 
as the example of the everted hemispherical shell shows [160]. 
 That variational problem of proper stresses was already formulated by Colonetti [19].  
In our notation, the variation of the energy expression: 
 

                                                                                                                                            
Since L

ijη , L
ijη , and L

ijη vanish, ELE = 0. 

 1  Cf., Southwell [177] and Eshelby [41], pp. 93. 
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1

2
P

ij ij ij ij

V

dVε σ ε σ + 
 

∫∫∫ ,    (II.60) 

 
where P

ijε  is the impressed (plastic or quasi-plastic) deformation.  Colonetti called the 

second summation of eq. (II.60) the “potential of the impressed deformation.”  If we set 
P
ijε = G

ijε  − εij in eq. (II.60), as in eq. (1), pp. ?, then it goes over to: 

 

− 
1

2 ij ij

V

dVε σ∫∫∫      (II.61) 

since: 
G
ij ij dVε σ∫∫∫ = 0,     (II.62) 

 
which was first found for the case of a body bounded by air by Rieder [125].  In this case, 
one has: 

  G
ij ij

V

dVε σ∫∫∫  = ( )G
i j ij

V

s dVσ∇∫∫∫  

     = G
i j ij j i ij

F V

n s dF s dVσ σ− ∇∫∫ ∫∫∫ = 0,   (II.63) 

 
since ni σij and ∇i σij vanish in the absence of external forces.  From Rieder [125], eqs. 
(II.17) are, moreover, the Euler-Lagrange equations of the variational problem associated 
with (II.61) (in the absence of being given external forces – i.e., incompatibilities). 
 In the case of rigid neighborhoods the left-hand side of eq. (II.62), when multiplied 

by 1/2, goes over to the expression (II.57), where ηij, ijη , ijη  are now the 

incompatibilities that belong to Gijε .  They vanish from the physical meaning ofG
ijε  (εεεεG is 

a deformator, hence, Gijη = 0, and furthermore, Gis is null on the boundary of a body 

embedded in a rigid neighborhood, and therefore so are G
ijη , G

ijη ; cf., eqs. (I.87) to (I.90)).  

The variational problem that is associated with the energy expression (II.61) ((II.57), 
resp.) shall be derived from not only the differential equations (II.17), but also the 
boundary conditions (I.89), when expressed in terms of χij, which was not verified up to 
now. 
 For the solution of the variational problem for the body bounded by air with the aid of 
direct methods, one must observe that there are stress functions for which the associated 
ηij vanishes, but not, however, the associated boundary forces njσij.  Such stress functions 
contribute nothing to the integral (II.59), but only to the integral (II.61).  In order to 
obtain the correct solution one must therefore make the integral (II.57) an extremum 
while ηηηη is held fixed 1.  For the case of a body embedded in a rigid region, by 

                                                
 1  The fact that (II.61) shall be an extremum already appeared in Föppl [44].  The advance here consists 
in the additional condition “while ηηηη is held fixed.” 
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comparison, the integral (II.57) is equivalent to that of (II.61).  One of these two will be 

made an extremum while keeping ηij, ijη , ijη  constant. 

 We now briefly consider the case of the two boundary-value problems for the body 
bounded by air (suppose the summation problem has already been dealt with).  The 
problem of “given boundary displacement” is, from § 8, identical with the problem of 

“given ijη , ijη ” for the bodies embedded in rigid regions (cf., the next paragraphs, as 

well). 
 If one makes the Ansatz that was first proposed by Schaefer [127] 1: 
 

χij = ωij – ωkk δij + Ω δij     (II.64) 
 

with ∆ωij = 0 then, in addition to the equilibrium conditions, equation (II.17), with ηηηη = 0, 
is automatically fulfilled, only if: 
 

∆Ω = 
1 i j ij

m

m
ω∇ ∇

−
;     (II.65) 

 
ωij like χij, is a symmetric tensor of rank two.  If we take our solution of (II.65) to be: 
 

Ω = 
/ 2

1

m

m−
xi ∇j ωij + ωkk + v      (II.66) 

then this gives: 
χij = ωij + Hδij ,     (II.67) 

with: 

H = 3311 22
1 2 3

1 2 3

/ 2

1

m
v x x x

m x x x

ωω ω ∂∂ ∂+ + + − ∂ ∂ ∂ 
.   (II.68) 

 
Thus, ∆v = 0.  One can show [77] that one may set v = ω12 = ω23 = ω31 = 0.  With: 
 

χij = ωij + Hδij   i = j,     (II.69) 
 

the Maxwell functions for ηηηη = 0 then come down to three harmonic functions.  One easily 
shows that the conditions (II.25), but not (II.19), are fulfilled identically.  For the 
functions ωij one perhaps assumes them to be a series development in harmonic functions 
and determines the coefficients by the usual methods in such a way that the boundary 
conditions, when expressed in terms of the χij, are fulfilled as much as is possible.  If one 
adds, should the occasion arise, the stress functions thus obtained to the particular 
Maxwell functions obtained in § 13 then one obtains the resulting Maxwell stress 
functions of the stress state in question. 

                                                
 1 Naturally, these ωij have nothing to do with the ones that were previous employed. 
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§ 15.  The boundary-value problems that occur for proper stresses and 
their treatment by means of stress functions 

 
 The particular integrals (II.29) and (II.32) of the differential equations (II.17) that are 
definitive for proper stresses do not, in general, fulfill the boundary conditions for 
stresses ni σιj = 0 in bodies bounded by air, whereas the boundary conditions for 
deformations (I.89) are not fulfilled in bodies embedded in rigid regions.  Thus, in the 
former case there remains a boundary-value problem of the form: 
 

ni σιj = Aj ,     (II.70) 
 
and in the latter case, one of the form: 
 

Ink εεεε = ηηηη , Ink εεεε  = ηηηη     (II.71) 
 

that remains to be solved.  In both cases, the stress functions that are used in them must 
satisfy eq. (II.17) with ηηηη = 0.  From § 12, we replace them with the equations: 
 

∆∆χχχχ′ = 0, i ijχ ′∇ = 0.    (II.72) 

 
 In practice, problems appear in which, say, two sub-regions in a body that are 
separated by a dislocation wall have different elastic moduli.  In such cases, boundary 
surface conditions must be considered for stresses and deformations simultaneously.  The 
two boundary cases (elastic moduli = 0, ∞, resp., in the sub-volumes II)  of these 
problems are characterized by (II.70) and (II.71), to which one is also always led back 
ultimately.  These remarks shall clarify why we place such value on the bodies embedded 
in rigid regions. 
 We now show that one can always replace the boundary-value problem (II.71) with 
the problem “given boundary displacements.”  Let them be prescribed, perhaps, by ηij, 

ijη , ijη .  One then collects the elastic deformation into two parts: The particular solution 
O
ijε  and a second part Hijε , which satisfies the homogeneous equations: 

 
Ink εεεε = 0, Div σσσσ = 0, σij = cijkl εkl .   (II.73) 

 

For εεεεO, as well as εεεεH, one can formally associate surface incompatibilities Οηηηη , Oηηηη  and 
Hηηηη , Hηηηη  according to eq. (II.71).  Therefore, since εεεεH = εεεε – εεεεO, one also has Ηηηηη = ηηηη − 
Οηηηη , etc.  The problem is thus to determine the deformations that satisfy eq. (II.72), as 

well as the boundary conditions (II.71), when written with the index H.  For sake of 
simplicity, we henceforth omit the index H (in ηηηη = 0, one has εεεεH = εεεε, anyway). 
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 Due to the first eq. (II.73), εεεε has the form Def s.  One can easily show, although we 
shall not do so here, that one can integrate the boundary conditions in the boundary 
surface and bring them into the form: 

s = g,      (II.74) 
 

where g follows from ηηηη  and ηηηη .  g is that displacement that the outer surface of the 
medium would undergo if one suddenly removed the pressure on the side of the rigid 
neighborhood. 
 Thus, it is clear that one also can also address the boundary-value problems that are 
known up to now by means of proper stresses.  For them, there exist numerous well-
known methods of solution, so for that reason we will only speak briefly about the 
possible application of the three-dimensional stress functions to the solutions of these 
problems. 
 
 The stress function tensor does not represent a single-valued system of functions, and thus includes a 
much larger manifold than perhaps the displacement vector, which is expressed in the additional 
supplementary conditions.  One thus has the possibility of adapting given problems by a particular choice 
of supplementary conditions.  Furthermore, the Airy stress function has proved itself so well for two-
dimensional problems that one would like to arrive, at the least, at a similar method for three-dimensional 
problems, as well. 
 This objective has still not been achieved.  Meanwhile, the simple form of the energy equation (II.57) 
leads one to expect that the boundary-value problem defined by eq. (II.71) ((II.74), resp.) can also be 
treated by stress functions successfully.  Namely, if one begins with the classical method of Green then one 
must start with the Betti theorem, which, by comparison with eq. (II.57), is written in terms of stress 
functions as: 
 

  
1 2 1 2 1 2

( )ij ij ij ij k k ij ij

V F F

dV dF n dFχ η χ η χ η+ + ∇∫∫∫ ∫∫ ∫∫  

  = 
1 1 2 1 2

1( )ij ij ij ij k k ij ij

V F F

dV dF n dFχ η χ η χ η+ + ∇∫∫∫ ∫∫ ∫∫ .   (II.75) 

 

In it, one then identifies 1
ijη , 1

ijη , 1
ijη  with the given incompatibilities and 1

ijχ  with the desired stress 

function tensor, while one has substituted the fundamental integral (principal solution) of the differential 
equations (II.17) for χij for 2

ijχ .  Naturally, one would therefore like to expect that these equations go over 

to the corresponding supplementary conditions in the form ∆∆χij = 0, since the fundamental integral of this 
equation is well-known to be given in the form | x − x′ |/ 8π.  One can thus hope that the entire boundary-
value problem somehow comes down to the determination of a biharmonic Green function in the domain in 
question.  The difficulty is, inter alia, that one presently does not know how one can provide for the 
fulfillment of the supplementary conditions, which indeed first guarantee the satisfaction of the differential 
equations (II.17). 
 The situation for the second boundary-value problem is similar.  Written in terms of χij, the boundary 
conditions (II.70) read: 

εijk εlmn nj ∇j ∇m χkn = Al ,    (II.76) 
 

which one must simultaneously fulfill along with eq. (II.17).  If one substitutes them in eq. (II.72) then one 
must somehow guarantee the fulfillment of 

i ijχ ′∇  = 0.  One can do this in such a way that perhaps one 

prescribes: 
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i ijχ ′∇  = 0, ( )i ijn
χ∂ ′∇

∂
= 0  on the boundary,   (II.77) 

 
in addition to the boundary conditions (II.76).  Then, along with (II.72), one also has: 
 

( )i ijχ ′∆∆ ∇  = 0,      (II.78) 

 
from which it is well-known that it follows that with the boundary values (II.77),

i ijχ ′∇  likewise vanishes in 

the entire volume.  The biharmonic problem that is defined by the boundary conditions (II.76) and (II.77) 
has still not been treated up to now. 
 On the other hand, one finds a field χij that satisfies the boundary conditions (II.76) and the differential 
equation ∆∆χij = 0 relatively easily.  For this, one again needs only to construct the biharmonic Green 
function.  It does not seem out of the question that one will find completely, without the all-too-great 
difficulties, the field that one must add to these χij so that, in addition, the supplementary conditions − and 
thus, also the differential equations (II.17) − are fulfilled. 

 
 

§ 16.  Extension to elastic anisotropy, force couples 
 

 The metallic crystals, to which dislocation theory will be applied, are, in many cases, 
strongly anisotropic elastically, a fact that one must always keep in mind.  For that 
reason, Burgers [13] has already applied anisotropic elasticity theory to dislocations.  We 
now summarize the most important formulas that allow one to not only treat dislocations 
by means of elastic anisotropy, but also to lay the foundations for the treatment of other 
important elastic singularities. 
 In the region outside the singularities, first let εij = 1

2 (∇i sj + ∇j si).  If we substitute 

this into the equilibrium conditions (II.5), with the aid of Hooke’s law, then we obtain: 
 

Djl sl + Fj = 0,  Djl(∇) ≡ cijkl ∇i ∇k .   (II.79) 

 
Let f(∇) be the determinant | Dik |, and let ( )ijD∗ ∇  be the symmetric tensor of sub-

determinants of f; i.e., jl lkD D∗  = f δjk .  With: 

 
sl = kl kD h∗ ,     (II.80) 

from eq. (II.79), one will have: 
f hj + Fj = 0.     (II.81) 

 
For the case of an isolated force Pj at the position x′, if we write: 
 

Fj(x) = Pj δ(x − x′), δ(x − x′) ≡ δ(x1 − 1x′ ) δ(x2 − 2x′ ) δ(x3 − 3x′ )  (II.82) 

 
then we have: 

f hj + Pj (x′) δ(x − x′) = 0.    (II.83) 
By means of the equation: 



62 II.  Dislocations in a continuum: statics 

f U + δ(x) = 0,     (II.84) 
 

one defines the fundamental integral (principal solution) U(x) of the linear, sixth-order, 
homogeneous, differential equation f u = 0 in an infinite medium (and thus, it is unique 
up to an uninteresting entire function of degree five in x).The knowledge of U likewise 
implies that of the particular integral of (II.81): 
 

hj(x) = ( ) ( )j

V

U x dV′ ′∫∫∫ F x ,  x ≡ | x − x′ |,  (II.86) 

 
and thus for the isolated force in an infinite medium, one has: 
 

hj(x) = U(x) Pj(x′).     (II.86) 
 

The associated displacement field results from (II.80): 
 

sj(x) = Sij(x) Pi(x′),  Sij = ijD U∗ .   (II.87) 

 
The symmetric tensor Sij is the fundamental integral of the elastic differential equations 
(II.79) for the displacements.  With its help, the particular solution of eq. (II.79) reads: 
 

sj(x) = ( ) ( )ij i

V

S x dV′ ′∫∫∫ F x .    (II.88) 

 
The physical meaning of the components of Sij follows easily from eq. (II.87) when one 
assumes that | Pi | = 1.  Sij is then the j-component of the associated displacement. 
 One says, let: 

sk(x) = Pi(x′) ∇i Sjk(x)     (II.89) 
 

be the displacement at the position x that is provoked by a force couple Pij at the position 
x′.  We also call the not-necessarily-symmetric tensor Pij the “force dipole.”  Its first 
index gives the direction in which the two equal and opposite isolated forces, whose 
points of application lie l i from each other and whose direction is described by the second 
index, point when they come together; i.e.: 
 

Pij = 
0,
lim

i j
i j

l P
l P

→ →∞
.     (II.90) 

 
The diagonal components of Pij are force couples without moments, and the remaining 
components have moments about an axis that is perpendicular to the i and j direction.  
The total rotational moment is included in the anti-symmetric part of Pij .  For further 
information on force couples, cf., Love [95]. 
 The displacement: 

s(x) = Pijk(x′) ∇i ∇j Skl(x)    (II.91) 
 



§ 16.  Extension to elastic anisotropy, force couples                                     63 

will be provoked by a force quadrupole Pijk , and one can define higher multipoles in a 
corresponding way. 
 In the case of elastic isotropy, one computes, from eq. (II.9): 
 

Dij = (λ + µ)∇i ∇j + µ ∆δij    (II.92) 

ijD∗ = [− µ(λ + µ)∇i ∇j + µ(λ + 2µ) ∆δij]∆   (II.93) 

f = µ2(l + 2µ) ∆∆∆,  U = 3
2

1

96 ( 2 )
x

πµ λ µ+
;  (II.94) 

 
hence, with ∆x3 = 12x: 

Sij = 
1

8 2 i j ij x
λ µ δ

πµ λ π
+ − ∇ ∇ + ∆ + 

.   (II.95) 

 
Here, the components of Sij thus become elementary functions of x.  The same is still true 
only for hexagonal symmetry [76, 180]. 
 We now briefly describe the method of stress functions for anisotropy [80], which 
again has the advantage of being applicable to continuously distributed dislocations.  One 
sets: 

χij = Xijkl ψkl  ∇i ψij = 0,   (II.96) 
 

where Xijkl is a second-order differential operator that, up to now, has been given only for 
isotropy and cubic symmetry.  It has the same symmetry as the Hooke tensor of the 
crystal in question, and is written in the case of isotropy: 
 

Xijkl = µ3 [2λ δij δkl + (λ + 2µ)(δik δjl + δil δjk)] ∆.  (II.97) 
 

The ψij satisfy the differential equation: 
 

f ψij = ηij ,     (II.98) 
which is solved by: 

ψij(x) = − ( ) ( )ij

V

U x dVη ′ ′∫∫∫ x .   (II.99) 

 
For the stress functions χij one then has: 
 

χij(x) = − ( ) ( )ij ijkl

V

X U x dVη ′ ′∫∫∫ x .   (II.100) 

 
For isotropy, with (II.97) and (II.94), one has: 
 

Xijkl U = 
2

8 2 ij kl ik jl il jk x
µ λ δ δ δ δ δ δ
π λ µ
 + + + 

,  (II.101) 

 
from which, eq. (II.100) goes to eq. (II.26). 
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 For the application to straight dislocation lines, we are also interested in the 
representation of the planar problem.  Let, say, ∂/∂x3 = 0.  We then characterize the 
resulting functions by a prime.  It is easy to show that the sixth-degree function f  can be 
decomposed into a triple product of expressions that are homogeneous of degree two (for 
isotropic and hexagonal crystals this is already possible for three-dimensional f).  For that 
reason, however, the characteristic equation of degree six that is associated with f  has 

elementary roots, and the associated (two-dimensional) fundamental integral U  will be 
an elementary function that can be presented relatively easily in all cases.  We then 
assume that is known.  This yields: 
 

( )U x = 3( )U x dx
∞

−∞∫ ,     (II.102) 

 
which is sufficiently well-known from the theory of differential equations.  Thus, we 
have laid the foundations for the static treatment of dislocations and other singularities 
rather completely. 
 
 

§ 17.  The elasticity-theoretic treatment of singular dislocations 
 

 The isolated dislocations play a very great role in applications.  In Fig. 9a, b the 
production of edge dislocations was made intuitive.  One thinks of the cylinder in Fig. 9a 
that was cut out as being pressed together with the cylinder of Fig. 9b in such a way that 
the relative displacement g of the surface A compared to B has only an x1-component, so 
A and B shall deform into a surface f.  Fig. 10 shows the production of a screw 
dislocation: One thinks of the cylinder in Fig. 10 as being produced from a defect-free 
cylinder by cutting and a relative displacement of the cut lips in the direction of the 
cylinder axis. 
 In the general case, a dislocation will run along an arbitrary space curve L with a unit 
tangent vector t, to which the generating surface f is affixed with a unit normal vector n.  
Let q be the unit vector n × t.  We assume that ζ is so small that one can locally regard 
the “dislocation strips” of width 2ζ as planar.  Let q then be the shortest distance from a 
point lying on f in the vicinity of the line L to it. 
 The dislocation density inside the strip is, from eq. (I.77), − n × ∇g, which is equal to 
t ∂g/∂q, since g varies only in the q-direction.  The distribution of g(q) naturally remains 
open to us; in Fig. 9, 10 it is depicted as linear.  In general, ∂| g |/∂q can be any curve, 
which we write as – γ(q) | g0 |, if g0 is the constant displacement over the greater part of 
the surface f.  From § 1, 2, b = − g0 is then the Burgers vector of the dislocation.  We thus 
obtain a surface dislocation density: 
 

ilα  = ti bl γ(q).     (II.103) 
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 With these preparations, we now come to the actual calculation.  The starting point is 
eq. (II.26′), in which one has introduced ηij according to eq. (I.51) 1: 
 

ηij = − (εjkl ∇k αil)
S .    (II.104) 

 
By partial integration this yields, since the boundary surface integral vanishes, and with 

k
′∇  ≡ / kx′∂ ∂ : 

ijχ ′  = − 
1

( )
8

S

jkl il k

V

x x dVε α
π
 ′′ ′∇ 
 

∫∫∫ ,  x ≡ | x − x′ |.  (II.105) 

 
Here, one obviously has to set αil dV′ = il dq dLα ′ ′ , where dL′ is the contribution of the 

line element idL′  to the line L.  With (II.103), one then obtains: 

 
αil dV′ = ti bl γ(q′) dq′ dL′ = ( )l ib dL q dqγ′ ′ ′ .   (II.106) 

 
If one substitutes this in eq. (II.105), and then sets γ(q′) equal to the delta function δ(q′) 
then one can carry out the integration over q′ and obtain the singular dislocation line: 
 

ijχ ′  = − 
1

( )
8

S

jkl l k i

L

b x dL q dq
ζ

ζ

ε δ
π −

 
′ ′ ′ ′∇ 

 
 

∫ ∫� = − 
1

8

S

jkl l k i

L

b x dLε
π
 

′ ′∇ 
 

∫� . (II.106′) 

 
If we then bring the k

′∇  out of the integral, while switching the sign, since we are now 

differentiating by xi, we ultimately obtain the formula that was first given by the author 
[78]: 

ijχ ′  = 
1

8

S

jkl l k i

L

b x dLε
π
 

′∇ 
 

∫� .    (II.107) 

 
With this, the stress state, which originates in the dislocation that runs along the line L, 

will come down to the relatively simple integral xdL′∫� .  It will be shown that the 

stresses diverge along the line itself, which naturally originates in the fact that one takes 
the limit γ(q) → δ(q).  Thus, if one is interested in the state in the immediate vicinity of 
the line L then one may not take that limit, but one must integrate the left-hand equation 
(II.106′) over γ(q) 2. 
 In the event that the dislocation is straight and extends along the x3-axis, dL1 becomes 
dx3 .  One easily verifies the formula: 
 

                                                
 1 S means “symmetric part of.”  
 2 At some distance from L the principle of St. Venant applies; it no longer applies to the distribution 
function γ(q) precisely.  
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/ 2

3

/ 2

L

L

xdx
−

′∫ = − ρ2 ln(ρ/L) + L2/4, ρ2 ≡ 2 2
1 2x x+ ,  (II.108) 

 
which is true everywhere that ρ, x3 ≪L 1.  L is, accordingly, the length of the dislocation, 
which shall now go to ∞.  According to eq. (II.107) and (II.2), the expression (II.108) will 
then be differentiated three times until one obtains the stresses.  Thus, ρ2 ln L does not 
contribute to this, and we write, when we substitute (II.108) into (II.107): 
 

ijχ ′  = − 
1/ 2

8π
(εjkl + ε3kl δ3j) bl ∇k ρ2 ln ρ .   (II.109) 

 
From the superficial agreement of eq. (II.26′) and (II.99), one immediately concludes 
with the corresponding formulas for anisotropy, namely, eq. (II.107) corresponds to: 
 

ψij = ( )

S

jkl l k i

L

b U x dLε
 

′∇ 
 

∫     (II.110) 

and eq. (II.109) to: 

ψ3j = − 
1

2
(εjkl + ε3kl δ3j) bl ∇k ( )U x ,   (II.111) 

 
from which, the stress functions can be computed using eq. (II.96). 
 
 The computation of Xijkl  that is necessary only once for each crystal did not seem very substantial in the 
two-dimensional case, but in three dimensions it is substantial [80].  One sees that in the case of straight 
dislocation lines the stresses always yield to elementary functions for anisotropy, as well (since U , from § 
16, is an elementary function).  Eshelby [36] has shown how one can also obtain them in the complex plane 
x1 + i x2 , starting from a complex displacement field s1 + i s2 .  Burgers [13] has already established that the 
anisotropic formulas in cubic crystals simplify considerably when the dislocation extends along a 
distinguished crystallographic direction.  In particular, one obtains the same displacements as for isotropy 
for a screw dislocation in the <001>-direction. 
 
 We now distinguish two cases: 
 
 1.  Straight edge dislocation in the x3-direction.  One then has b3 = ∇3 = 0, and in eq. 
(II.109) one will have j = 3, i.e., only 33χ ′  is different from zero.  If one chooses, say, x1 || 

bl (i.e., l = 1) then one has: 

33χ ′  = 2
1

2

1
( ln )

8
b

x
ρ ρ

π
∂

∂
.    (II.112) 

 

                                                
 1 The exact expression for (II.108) reads:  
 

2
2

3 3 3 3

1 1
ln

22 2 2 2 2 2

L L LL
x x x x

ρ ρ       + + + − + − + + + + − −       
       

    ±  ≡ 
2

2
32

L
xρ  + ± 

 
. 
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From eq. (II.16) and (II.18), the connection between the Airy stress function χ and 33χ ′  is 

given by  − 33

2

1

Gm

m
χ ′

−
 = χ  1, from which, we can also write eq. (II.112): 

 

χ = − 2

2

( ln )
2

A

x
ρ ρ∂

∂
, A ≡ 1

2 1

b mG

mπ −
.   (II.113) 

 
This equation was first given by Koehler [111].  From the usual rules of elasticity theory, 
the stresses result from this: 
 

2 2
2 2 2 1 2

11 2 2 2

2 2
2 1 1 2

12 1 2 2 2

2 2
2 2 2 1 2

22 1 2 2

3
/ ,

/ ,

/ ,

x x x
x A

x x x
x x A

x x x
x A

σ χ
ρ ρ

σ χ
ρ ρ

σ χ
ρ ρ

+= ∂ ∂ = − 

− = ∂ ∂ ∂ = 

−= ∂ ∂ = 


    (II.114) 

 
along with the displacements 2: 
 

1 1 2 2
1 2

1

2
1 2

2 2

/ 2
, arc tg 

2 2 1

( 2) ln .
4 ( 1)

b x x xm
s

m x

b x
s m m

m

πϕ ϕ
π ρ

ρ
π ζ ρ

  = − + =   −   


  = − − +  −   

  (II.115) 

 
The calculation of the displacement requires special consideration, since s2 diverges 
logarithmically with ρ [71]. 
 2.  Screw dislocation in the x3-direction.  Eq. (II.109) will then become: 
 

31χ ′  = − 2
3

2

1/ 2
( ln )

8
b

x
ρ ρ

π
∂

∂
,  32χ ′  = 2

3
1

1/ 2
( ln )

8
b

x
ρ ρ

π
∂

∂
. (II.116) 

 
After multiplication by 2G, these are likewise the χij values.  From eq. (II.16), the stress 
function of torsion is then: 
 

                                                
 1 One finds from eq. (II.18) that χ11 and χ22 are different from zero.   With the help of (II.16), one easily 
shows that the relation m σ33 = σ11 + σ22 , which is known from the theory of planar distortion states, 
follows from this [1].   σ11 , σ22 , and σ33  are determined by χχχχ alone, so we do not need to consider χ11 and 
χ22 . 
 2 These equations were first derived by Burgers [12] in another way.  Taylor [149] was the first to apply 
elasticity theory to crystal dislocations and, in particular, presented the connection with Volterra, in which 
the detailed calculations were not completely correct. 
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Φ = − 
2 2

23
2 2
1 2

ln
8

Gb

x x
ρ ρ

π
 ∂ ∂+ ∂ ∂ 

 = − 3 (ln 1)
2

Gb ρ
π

+ ,  (II.117) 

the stresses are: 

σ31 = − 3 2
22

Gb x

π ρ
,  σ32 = 3 1

22

Gb x

π ρ
,   (II.118) 

 
and the displacements are: 
 

s1 = s2 = 0, s3 = 3

2

b ϕ
π

,  ϕ = arc tg 2

1

x

x
.  (II.119) 

 
Here, the representation in terms of displacements is especially instructive since one 
reads off the transition from the x3-plane into screw surfaces immediately from eq. 
(II.119) 1. 
 Although the integral (II.107) appears very simple, one arrives at that integration in 
closed form only in the simplest cases.  This happens for dislocations that consist of 
piecewise straight lines, and also for dislocations that define plane curves of degree two.  
In the latter case, one obtains elliptic integrals. 
 Originally (by Burgers [12]), in place of formula (II.107), the displacement field of 
the general dislocation line was represented as a surface integral.  By application of 
Green’s method in the case ηηηη = 0, one can express the dislocations in a body by the 
volume and boundary surface forces that produce it, as well as the boundary surface 
displacement.  One obtains 2 (for the detailed calculation, cf., perhaps, Seeger [134]): 
 
 sh(x)  

= ( ) ( ) ( ) ( ) ( ) ( )ih i ih i ijkl i j lh
kV F F

S x dV S x dF c n s S x dF
x

∂′ ′ ′ ′ ′+ +
∂∫∫∫ ∫∫ ∫∫F Fx x x . (II.120) 

 
One can apply this formula to, e.g., the incised cylinder in Fig. 9a, when one now bends it 
together (Fig. 9b) in order to next weld it.  One then has, in any event, Fi = 0, but the 

second integral of eq. (II.120) also vanishes, since the boundary surface forces that bring 
about the bending together of A and B are equal and opposite at the same points of them.  
Thus, what remains of eq. (II.120), when we sensibly denote the displacement source A

is  

− B
is  by gi (§ 8), is: 

 

sh(x) = ( ) ( ) ( )ijkl i j lh ijkl i j lh
k kf F

c n g S x df c n s S x dF
x x

∂ ∂′ ′ ′+
∂ ∂∫∫ ∫∫ x , (II.121) 

 

                                                
 1  Since s1 = s2 = 0, it is also very convenient to derive these equations by starting from the displacements 
s3 , as Burgers [12] originally did, and can be looked up in any book on dislocations today. 
 2 These formulas were first given by Fredholm [57] and thoroughly discussed by Gebbia [58].  
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where f  is the fused surface AB, with A as the positive side and F, the boundary surface 
of the body after welding.  If one now foregoes a precise description in the immediate 
vicinity of the dislocation, which comes down to assuming that g is constant on f up to 
the line L, and one likewise restricts oneself to an infinite medium, then one obtains: 
 

sh(x) = − ( )j ijkl i lh
kf

b c n S x df
x

∂ ′
∂∫∫ .   (II.122) 

 
From Burgers, this is a good approximation to the displacement field that arises from a 
dislocation that runs along an arbitrary line L.  In the next approximation, it is precisely 
as small as eq. (II.107).  In eq. (II.122), the glide vector is replaced with the Burgers 
vector. 
 Upon comparison with eq. (II.89), one concludes that – cijkl ni bj is a surface density 
of force dipoles.  They have obviously taken over the role of the external forces that one 
has bent the cylinder together with after welding.  The possibility that a field produced by 
a dislocation can be thought of as either produced by the dislocation line (eq. (II.110)) or 
a surface density of force dipoles corresponds precisely to the well-known fact of 
magnetic field theory of the equivalence of current lines and magnetic double layers 1.  In 
general, the direct proof of the equivalence of eq. (II.110) and (II.122) is very tedious 
and, up to now, it has only been carried out for isotropy [83]. 
 For isotropy, the integral (II.122) includes the part: 
 

( )
4

hb

π
Ω x = 

1

4
h

k k

f

b
n df

xπ
′∇∫∫ ,    (II.123) 

 
as one easily verifies by, e.g., substitution in eq. (II.9) and (II.95).  Ω(x) is then the spatial 
angle of vision (Sehwinkel), with which the dislocation line will be seen from the point x.  
This part introduces a multi-valuedness into the dislocations 2.  The remaining part can be 
represented as a line integral, as in Burgers [12].  Peach and Koehler [115] have also 
represented Ω as a line integral and thus obtained the total displacement field as a line 
integral, so their formulas do not have the simplicity of our line integral (II.107).  For 
anisotropy, the displacement field was first given by Liebfried [90] as a line integral.  
This representation has a definite meaning since the convertibility of eq. (II.122) into a 
line integral represents the mathematical proof of the fact that the position of surface f, 
upon which one thinks of the force dipoles as being distributed, is arbitrary, except that 
its boundary is the dislocation line.  Naturally, this proof also follows from eq. (II.107). 
 The second integral in eq. (II.121) represents the displacement that one must add to 
that of (II.122) in order to fulfill the boundary conditions.  Incidentally, eq. (II.122) is 
also true when g is an arbitrary function on the surface f.  This is the case of the 

                                                
 1 On this, see also Nabarro [109].  
 2 That the displacement field is many-valued in the presence of a dislocation follows from the existence 
of the Burgers vector b, which says that the displacement increases by b when one goes around the 
dislocation once.  The dipole surface f is the branching surface.  The corresponding behavior of the electric 
potential around a linear electric current is indeed well-known. 
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“Somigliana dislocation.”  In recent times, it was treated by Mann [97] and Bogdanoff 
[9]. 
 

§ 18.  The elastic energy of the singular dislocation 
 

 We define the elastic (self-) energy of a dislocation to be the increase in internal 
energy in a medium that was originally found in the natural state that it experiences as a 
result of the immigration or formation of a dislocation.  If the dislocation immigrates 
from the outside then one often has an edge in the boundary surface (Fig. 10) across 
which the boundary surface stress of the continuum will vary locally.  This part of the 
change in internal energy is, for most purposes, trivial, and will thus no longer be 
considered.  (Cf., Nabarro [110], pp. 332.) 
 We restrict ourselves to the infinitely extended medium.  At the center of the singular 
dislocation the stresses will be, from eq. (II.114), infinite.  Therefore, the energy of the 
dislocation per unit length (linear energy) diverges.  This is the great difficulty for all 
energetic questions about dislocations.  Real-world dislocations all have a certain finite 
“width” 2ζ, and for that reason, a finite self-energy.  Fortunately, ζ enters into energy the 
formula only logarithmically, so for practical purposes not exactly all of the extent g(q) 
of the plastic displacement enters the dislocation strip 2ζ.  From now on, we will speak of 
the dislocation “line” and emphasize this fact especially whenever its finite extent is of 
issue. 
 With Cottrell [22], we think of a dislocation as running along a line LB in an infinite 
medium in the absence of external forces, and further define a second dislocation that 
intersects a surface f with a boundary line LA, while the two lips of the cut are plastically 
displaced with the glide vector Aig  = − A

ib .  The work done by this is 1: 

 

A = 
1

2
A B A
i ij ij j

f

b dfσ σ + 
 

∫∫ ,    (II.124) 

 
if B

ijσ  is the stress function, which originates on the dislocation LB, while A
ijσ  is the 

additional stress field that comes about during the process (and thus, the factor of 1/2) 
and originates on the line LA.  If we substitute the stresses in eq. (II.2) by means of the 
stress functions and apply Stokes’s theorem then we obtain: 
 

A = − 
1

2A

A B A A
i ijk j kl kl l

L

b dLε χ χ ∇ + 
 

∫� ,   (II.125) 

 
or, from eq. (II.96), when expressed in terms of ψij : 
 

                                                

 1  In a finite medium, for Bilby [2], a summand 1

2
B A

i ij ij j

F

s dFσ σ + 
 

∫∫  appears in eq. (II.124) that means 

the same thing as the second integral in eq. (II.121). 
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A = − 
1

2A

A B A A
i ijk j klmn kl kl l

L

b X dLε ψ ψ ∇ + 
 

∫� .  (II.126) 

 
Here, we substitute B

mnψ  from eq. (II.110) and obtain: 

 
EAB = A B AB

i q iqb b M     (II.127) 

 

( ) ,

| |

A B

AB B A
iq ijk npq j p klmn m l

L L

A B

M X U x dL dL

x

ε ε = − ∇ ∇ 

≡ − 

∫ ∫� �

x x
  (II.127′) 

 
as the part of the work done by the formation of the dislocation line LA that is attributed 
to the presence of the dislocation LB.  One calls it the “interaction energy” of the 
dislocations LA and LB.  One has: EAB = EBA.  In the case of elastic isotropy, with eq. 
(II.94) and eq. (II.97), one gets for eq. (II.127′): 
 

AB
iqM  = − 

2
( )

8 1A B

B A B A B A
ijk npq j p n k k n l l nk

L L

G
x dL dL dL dL dL dL

m
ε ε δ

π
 ∇ ∇ + + − 

∫ ∫� � . (II.128) 

 
The generally asymmetric tensor AB

iqM  defines the analogue of the well-known counter-

inductivity in the theory of linear currents 1. 
 Now, one cannot also substitute Amnψ  from eq. (II.110) since one would then obtain a 

double line integral over the same line that diverges.  One thus obtains no simple formula 
like (II.127′) for the self-energy of the dislocation.  Starting with this one can thus 
approach the problem as follows: One now regards the dislocation strip 2ζ as consisting 
of nothing but infinitely dense “dislocation threads” with the infinitesimal glide vector 
dg(q) = − bA γ(q) on them (cf., § 17) and computes the interaction energy of all of these 
threads by means of eq. (II.127).  One thus obtains (similarly written for isotropy) 2: 
 

EAA = A A AA
i q iqb b M     (II.129) 

  AA
iqM  = − ( ) ( ) ( )

16 ijk npq i j
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dq q dq q x

ζ ζ
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π − −

′ ′ ∇ ∇∫ ∫ ∫ ∫� �  

× 2

1 n k k n l l nkdL dL dL dL dL dL
m

δ ′ ′ ′+ + − 
.   (II.129′) 

                                                
 1  Blin [7] has given a formulation that is completely equivalent to (II.128), and Stroh [148] gave a 
further expression for the case in which the two dislocations lie in a plane.  Eq. (II.127′) was first given by 
the author.  The formula (II.128) that was given in the same work contains a mistake in calculation.  For 
special arrangements of dislocations the dislocation counter-inductivity can be directly equal to the 
magnetic inductivity that corresponds to the current arrangement, as Hart [170] has found. 
 2  The notation A is omitted on the right-hand side of eq. (II.129).  The integrations ∫ ∫� � extend over two 

dislocation threads. 
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Here, the interaction energy between each line element and all of the elements of all other 
threads is considered, but not, however, the interaction energy between the elements of 
those threads and the proper energy of the thread element.  One recognizes in this that for 
an increasing number of dislocation threads the latter part no longer enters into the former 
one, and for infinitely dense threads it will be infinitely small when compared to the 
former.  Thus, eq. (II.129) does, in fact, correctly yield the self-energy of the dislocation 
strip, and the symmetric tensor AA

iqM  is the analogue of self-inductivity. 

 With the help of the self-inductivity and counter-inductivity, the energy of an 
arrangement of many dislocations may be written in the form: 
 

E = 
,

A B AB
i q iq

A B

b b M∑ ,    (II.130) 

 
where A and B each run over each dislocation line. 
 We now present an application for the very important equation (II.128).  One extends, 
e.g., a straight dislocation line LB in the x3-direction.  The integration over LB in eq. 
(II.128) then becomes elementary.  We employ eq. (II.108) and write: 
 

( )
B

B
j p s

L

x dL∇ ∇∫  = 
B

B
j p s

L

xdL∇ ∇ ∫  = − 2 lnj p siL

ρρ∇ ∇ .  (II.131) 

 
With this, one has: 
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One easily verifies the validity of the relation: 
 

2 lnj p L
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2

1
2 ln
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ρ δ
ρ
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,  j, p = 1, 2. (II.133) 

 
We further restrict ourselves to the case in which the dislocation LA also runs in the plane 

x2 = 0, and then obtain 11 1
2 ln

2 jp jp

x

L
δ δ  + +  

  
 for the right-hand side of eq. (II.133), 

where j, p = 1, 2 and 1
jpδ = 1 for j = p = 1, but vanishes otherwise.  We substitute this in 

eq. (II.132) and likewise consider that one must set in = ik = i l = i3 there, and that 2
AdL  = 0, 

moreover.  For j = p = 1, one obtains the part: 
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of MAB, and for j = p = 2, the part: 
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1 1
2 32 23 2 3 2 2 3
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2 ln ln
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From this, it easily follows that: 
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   (II.136) 

 
For the further integrations, one must substitute the curve equation x1(x3) of the 
dislocation line LA wherever dx3 appears in the logarithm.  In the event that LA is likewise 
a straight line and parallel to LB, one next has 31

ABM = 13
ABM = 0, since dx1 = 0.  Thus, all 

that remain are the diagonal components of AB
iqM .  That is, parallel dislocation lines 

whose Burgers vectors are perpendicular to each other have no effect in isotropic media 
(this conclusion follows from eq. (II.127)).  We then write down the components of AB

iqM  

for x1 = d (= parallel dislocations at a distance d): 
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   (II.137) 

 
We have performed the second integration with the limits − L′/2 … L′/2, where L′≪L is 
assumed, since only then is the assumption for eq. (II.136) valid (viz., the validity of eq. 
(II.108)).  In that regard, we shall show later on that eq. (II.137) will be modified only 
inessentially for exact computations for L′ → L as long as L ≫d. 
 
 The interaction of second-degree parallel dislocations at a distance d, from which, the force of 
attraction (bA, bB anti-parallel) or repulsion (bA, bB parallel) follow by differentiation, was treated by various 



74 II.  Dislocations in a continuum: statics 

authors, where the formulas for the interaction energy that follow from eq. (II.137) by multiplication with 
bA bB were obtained in a maybe somewhat simpler way than by us, since one employs the simplifications 
that enter into the present special case throughout.  We have arrived at our derivation, above all, in order to 
present eq. (II.136), which is relatively simple, but then already gives rise to a host of problems that are 
significant in practice 1.  We will describe an application of these equations in § 29. 
 Our formulas (II.137) differ from those of the usual authors in two ways 2: Cottrell [22], who started 
with eq. (II.124), did not convert the surface integral into a line integral, and thus in the logarithm in his 
final formulas there was not our dislocation length L, but the dimension R of the medium that is 
perpendicular to the dislocation line, and which likewise goes to ∞.  Eshelby (cf., [110], pp. 305-306) 
obtained the same result by approaching the problem in various ways; e.g., with the use of bipolar 
coordinates.  In all cases, one obtains a logarithmic divergence of the interaction energy per unit length for 
parallel straight line dislocations, such that one is actually compelled to compute in finite bodies.  We will 
see that the same is true for the self-energy of a straight-line dislocation.  These complications will often be 
circumvented by replacing R (L, resp.) with the approximate value of the mean distance of the dislocations 
with opposite signs (“dislocation networks,” § 29)(e.g., 10−4 cm in unformed metal).  This procedure is, 
moreover, not completely adequate.  In practice, the problems are often given (§ 29) in such a way that L 
(R, resp.) is either taken out (sich heraushebt) or is known from the outset, where due to the only 
logarithmic dependency of the energy L and R the approximate values of these quantities are mostly 
satisfied. 
 Secondly, our formulas differ from those of the cited authors in the summands that enter into ln(d/L).  
By assumption (d ≪  L), this is small compared to ln(d/L); the difference originates in the different 
treatments of the dislocation centers.  Whether one has R or L in the logarithm also plays a role. 

 
 Next, we apply eq. (II.128) to two 
straight dislocations running parallel to the 
x3-direction at a distance ρ 3, both of 
which have the finite length L (Fig. 18), 
and indeed, one shall have ρ ≪  L.  Before 
the integrations, we carry out the 
differentiations ∇j ∇p x and then neglect 
all terms in this expression that have a 
factor of 1 1

A Bx x−  or 2 2
A Bx x−  4.  One easily 

sees that then only the differentiations 
2 2

1/ x∂ ∂  and 2 2
2/ x∂ ∂  give any contribution, while all others vanish.  Furthermore, we 

assume that the Burgers vectors of the two dislocations are equal and lie in the plane x2 = 
0.  Let its angle with the line direction be b, so the components of b in the x1-direction 
and x3-direction are then b sin β (b cos β, resp.)  Then, one easily computes the 
interaction energy EAB from eqs. (II.127) and (II.128): 
 

                                                
 1 One also immediately finds in eq. (II.136) an essential part of the results on dislocations whose lines 
run perpendicular to each other that were discussed by Nabarro [11], pp. 309; LA thus has the x1-direction.  

Eq. (II.136) is then dx3 = 0, and interaction exists only in the case 1
ABM  (LA and LB screw dislocations) and 

in the case 
31
ABM  (LA and LB edge dislocations with Burger vectors currently parallel to the other line). 

 2  Koehler [71] was the first to compute the energy of straight line dislocations and the interaction energy 
of two dislocations. 
 3 This will lead us to a method that substantially abbreviates the computation of the self-energy.  
 4  These terms are smaller than the remaining ones by a factor ρ/L, as a closer examination shows. 
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We calculate the integral in a manner that is somewhat more general than is required 
here, namely, with the bounds: 
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and obtain exactly: 
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With ε = 0 this then yields, when we further neglect ρ2 with respect to L2 and divide by L: 
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This is the interaction energy per unit length of the dislocation lines.  It differs only 
slightly from the results of eqs. (II.137) for large L, as one knows, when one sets ln 
(2L/ρ) = ln (L/ρ) + ln 2 in eq. (II.141). 
 From now on, we assume that the two dislocations are threads of a dislocation line 
whose self-energy we would like to compute from eq. (II.129).  We can then introduce 
the result we just obtained directly in eq. (II.129) (with q = x1): 
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The simplest case is γ = const. = 1/2 ζ, which corresponds to a linear increase of the 
relative dislocation in strips of 2ζ (Fig. 9).  The integrations (II.14) are then elementary to 
carry out, and one obtains: 
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or also: 
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as the linear energy of the dislocation.  This formula is exact for L → ∞, as long as 
Hooke’s law is also valid in the strips 2ζ, which happens for sufficiently small bA.  From 
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the logarithmic dependency of ζ one can conclude that the energy is not very sensitive to 
small changes in ζ and γ(x1). 
 One can now obtain precisely the same formula (II.144) when one substitutes the 
integral (II.140) in eq. (II.138) with ρ = 0 and ε = ζ / e3/2 and multiplies the result by 1/2.  
That is, when one now substitutes: 
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∫ ∫� �  (II.145) 

 
in eq. (II.129) in place of (II.129′), where sL′  means that the piece x – ε … x + ε is to be 

removed from the integral in question, one obtains the correct self-energy, at least in the 
case of the straight dislocation line.  One can establish that this is also valid to a close 
approximation for curved dislocations 1.  However, in many cases the integral (II.145) 
cannot be evaluated, in which one can no longer cope with the integrations in (II.129′) 
with a reasonable expenditure of effort.  Therein lies the practical meaning of the 
calculations that were carried out here. 
 One more remark on eq. (II.144): The energy per unit length TAA of the dislocation 
line depends upon L only logarithmically.  In many problems, one must consider, e.g., the 
bending of an originally straight dislocation line, under which, the length of the 
dislocation does not change very appreciably.  One can then ignore the dependency of 
TAA on L and β to a good approximation and find that the energy of the dislocation is 
proportional to its length.  One thus often calls TAA the “linear stress” of the dislocation, 
in analogy with the behavior of stressed strings.  One can, e.g., present a differential 
equation for the oscillations of such a dislocation that has precisely the form of a string-
oscillation equation.  On this, cf., perhaps the work of Eshelby [35] and Koehler [72]. 
 In the last two paragraphs, we considered dislocations in infinite media.  In practice, 
one always has a bounded body before one, and in many cases the result for the infinitely 
extended medium certainly represents no good approximation to reality.  (This is 
especially true for problems with rectilinearly moving dislocations.)  One then must solve 
a boundary-value problem, in addition.  Such problems were treated by Dietze [163] and 
Liebfried and Dietze [171] with noteworthy success.  Seeger reported on them in an 
appendix; see [134], pp. 560.  It dealt with dislocations in bodies that were bounded by 
planar or circular cylindrical outer surfaces.  In this case, one obtains solutions in closed 
form in general.  Thus, the reflection process that was applied by Liebfried and Dietze 
[171] is especially interesting.  Furthermore, cf., also Eshelby and Stroh [167]. 
 
 

                                                
 1  The most important argument is: The main contribution of a line element lies in its far-reaching stress 
field.  In (II.145), however, all of the interaction energy parts of an element are correctly included along 
with the not very close ones.  The local part of the action, however, does not “notice” the curvature of the 
dislocation when the radius of curvature is large compared to ε.  For straight dislocations, however, (II.145) 
is exact. 
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§ 19.  The forces on dislocations and other elastic singularities.  The 
dislocation as elementary source of proper stress. 

 
 The problem of the forces that a stress field exerts on elastic singularities − in 
particular, dislocations − is completely unknown in classical elasticity theory, but again 
has an analogy with electrodynamics, where one knows simple formulas for the forces on 
linear currents, magnetic dipoles, etc.  Only slightly less elementary are the formulas that 
we will derive below. 
 The great significance of such consequences for the dislocations lies in the fact that, 
on the one hand, the motion of dislocations, and thus the plastic forming of materials, 
comes about as a result of the externally applied stresses.  This influence must attain a 
certain measure in order to first make the formation of dislocations possible and 
secondly, to facilitate their migration. 
 After the early work of Mott and Nabarro [105] and Leibfried [88], Peach and 
Koehler [115] succeeded in presenting the general expression for the force that the line 
element of a dislocation at the position x experiences in the stress field σσσσ(x).  This much-
used formula must represent a fundamental equation of dislocation theory.  It is, to some 
extent, analogous to the formula for the Lorentz force on an electric current line element 
in a magnetic field. 
 One defines the force dK ≡ (dKi) on a line element dLi of a dislocation with a Burgers 
vector bi as follows: Let – dWa be the work that the external forces do under a shift of the 
dislocation line element through dxi , and let dWi be the simultaneous increase in the 
elastic energy content of the bodies.  dK will then be defined by the equation: 
 

− (dWa + dWi) = dK ⋅ dx.    (II.146) 
 

We now think of the progress of the dislocation of dL as taking place as follows: The 
surface piece that will be swept out by dL is df = dx × dL (dL is then the right-hand screw 
boundary line of df after the motion).  We cut along df and, as long as no dislocation is 
present, affix the force df ⋅ σσσσ (− df ⋅ σσσσ, resp.) to the two lips of the cut.  We now consider 
the two lips of the cut as parts of the outer surface of the body. (The rest of it is the 
original outer surface; i.e., the body is now doubly connected so the internal forces will 
now be external.) 
 Now, the relative shift of the two lips of the cut along dL shall result in a glide vector 
g = − b, which then means precisely the migration of dL through dx.  Insofar as we can 
regard this shift as infinitesimal and virtual, in the sense of the principle of virtual shifts, 
it will exert no work in total, since the body is found in equilibrium; i.e.: 
 

dWa + dWi + df ⋅ σσσσ ⋅ b = 0.    (II.147) 
 

From a comparison with eq. (II.146) it follows, when we then consider that (dx × dL) ⋅ σσσσ 
= dx ⋅ (dL × σσσσ), that: 

dK = dL × σσσσ ⋅ b,      (II.148) 
or: 

dKk = εijk dLi bl σjl .    (II.149) 
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This is the formula of Peach and Koehler.  The single assumption that have used was that 
one may regard the shift through – b as infinitesimal and virtual in the sense of the 
principle of virtual shifts.  For finite | b | this assumption is not strictly fulfilled, which 
shows that one must consider eq. (II.148) as an approximation (which generally suffices).  
σjl is the stress that one measures at the position x of the line element when one makes 
the known cut there.  Thus σjl includes, not only the external forces and other stresses that 
come from proper stress sources, but also those stresses that all of the remaining line 
elements of the dislocation provoke at the position x, and indeed the part of the stresses 
that the line element – perhaps, on the outer surface or other boundary surfaces in the 
body – exerts upon itself.  Furthermore, eq. (II.148) is true for arbitrary inhomogeneity in 
the elastic constants of the body.  Rieder [124] has, moreover, shown, by a method that is 
similar to that of Eshelby (cf., infra), that eq. (II.148) is also valid for quasi-dislocations. 
 The far-reaching validity of eq. (II.148) resides in the fact that it alone is a 
consequence of the very general principle of virtual shifts.  Many times [134, 108], eq. 
(II.148) has been connected with the theorem of Colonetti that was mentioned in § 14, 
which says for this case that under special conditions (Hooke’s Law, no further sources 
of proper stresses than the dislocation in question, elastic homogeneity) dWi = 0.  
However, one thus overlooks the fact that the validity of Colonetti’s theorem for the 
medium in question does not belong to the assumptions of eq. (II.148). 
 
 The derivation of eq. (II.148) does not assume the symmetry of the stress tensor.  We show an 
important consequence of this fact.  We ask: What sort of stresses can set in motion a planar distribution of 
crossed screw dislocations 1 as in Fig. 16c such that they are all perpendicular to their plane (e.g., x1 = 0)? 
In this case, the dislocation tensor dLi bl ≡ o

ilα  in eq. (II.148) has only the components o
22α = o

33α ≡ αo.  One 

thus obtains: 
dK1 = o

22α  σ32 – o
33α  σ23 = αo  (σ32 – σ23).   (II.149) 

 
That is, the migration of dislocations that corresponds to Fig. 16c can only come about from the asymmetry 
of the stress tensor.  We now cite some examples for which asymmetric stress tensors actually appear in 
crystals. 
 In ferromagnetic crystals one has a spontaneous magnetization that lies in a preferred crystallographic 
direction because then the free energy of the crystals is especially low.  An external magnetic field can 
rotate this magnetization into an energetically unfavorable direction.  One of the magnetically preferred 
directions of the crystal may then rotate into the new magnetization direction, so the external magnetic field 
must exert a rotational moment on the volume element, which has asymmetric stresses as a consequence.  
From a remark of Rieder [124], it would be imaginable that in favorable cases the force that thus arises can 
actually bring about the migration of a grain boundary of the stated type. 
 Through current flux in a crystal, one may, for strong anisotropy of the conductance, likewise produce 
such rotational moments, which are also small.  However, we would like to believe that through a strong 
difference in the free energy of the two crystallites separated by the grain boundary – as with, e.g., re-
crystallization – phase drifts and similar processes can appear such that strongly asymmetric stresses will 
be generated, while the grain boundary in the crystallite drifts into the crystallite with the greater energy.  
Rieder [124] has briefly described how one can treat such asymmetric stresses by means of elasticity 
theory.  Meanwhile, we would like to assume that the Cosserat deformation moment [20] that Rieder 
neglected can essentially influence such behavior in fact.  Introducing their research into the context of the 
aforementioned processes in crystals seems to be a worthwhile problem. 
 

                                                
 1 Such assignments of dislocations have, in practice, great stability since they imply a complete 
elimination of their far-reaching stress fields for the distributed dislocations (§ 23).  
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 We now describe another important application of the Peach-Koehler formula.  Let L 
be a small, planar, dislocation loop with Burgers vector bi, not necessarily circular.  In the 
domain of the loop let there be no volume forces, so ∇i σij = 0.  One obtains the total 
force on this loop in the stress field σij by integrating eq. (II.148) along L.  One then 
applies Stokes’s theorem, develops σij around the midpoint x = 0 of L in a Taylor series, 
and easily obtains: 

Kk = 
0 0k jl j l k m jl m l

f f

n b df x n dfσ σ∇ + + ∇ ∇ +∫∫ ∫∫ ⋯   (II.150) 

 
We now let f → 0 while bl increases in such a way that the integral in (II.150) remains 
finite.  Thus, f will be practically pointlike, and nj bl df means that the two points on the 
positive and negative sides of f undergo the relative displacement – bl = gl .  We thus 
define the “displacement dipole” Qjl by: 

Qjl ≡ 
0

lim j l
f

f

n g df
→ ∫∫     (II.151) 

 
and correspondingly, the displacement quadrupole Qmjl , by: 
 

Qmjl ≡ 
0

lim m j l
f

f

x n g df
→ ∫∫ .   (II.152) 

 
The sign in eq. (II.151) is established such that, e.g., a positive dipole Q11 corresponds to 
a drawing apart of the cut lips.  Symbolically, ←   →.  Previously, we called a force 
dipole P11 positive when it emerges from two isolated forces ←   → upon passing to 
the limit. 
 We would now like to compare eq. (II.151) with eq. (II.122).  There, we recognized 
the expression − cijkl ni bj df as an infinitesimal force dipole.  From eq. (II.151), an 
infinitesimal dislocation dipole can be written − nj bl df.  That is, between force dipoles 
and dislocation dipoles there exists the relation 1: 
 

Pij = cijkl Qkl .     (II.153) 
 

Thus, one should note that this is true only when the elastic constants of the body are 
homogeneous in the neighborhood of the dipoles and directly at its position; this was an 
assumption in eq. (II.122). 
 From now on, we write the total force on a dislocation loop (II.150) 2: 
 

                                                
 1 Collectively, one can refer to Pij and Qij as “elastic dipoles.”  
 2  The form for this equation that was given by the author in the original paper [82]: 
 

K = grad (σjl  Qjl  + ∇m σjl  Qmjl + …) 
 

was, to some extent, an unfortunate choice, as one must add in that paper that the differentiation grad of σjl  
must be carried out before carrying out the multiplications in the bracket.  Also, this form for eq. (II.154) 
can lead to false conclusions about the physical meaning of the bracket expression (cf., infra). 
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Kk = Qij ∇k σjl + Qmjl ∇k ∇m σjl  + …   (II.154) 
 
 

We would like to no longer consider quadrupoles.  The force on a dislocation dipole 
alone will thus be: 

Kk = Qij ∇k σjl .    (II.155) 
 

Such a force then also acts on anti-symmetric dislocation dipoles.  We would thus like to 
no longer consider this, since it does not have the meaning of a symmetric dislocation 
dipole [82].   Furthermore, let Qjl be a symmetric tensor then.  When one now substitutes 
σjl with εij in eq. (II.155) by means of Hooke’s law and considers (II.153) then one 
obtains for the force on a force dipole: 
 

Kk = Pij ∇k εij .     (II.156) 
 

This equation is also valid only under the homogeneity of the elastic constants inside the 
domain of the dislocation loop that is equivalent to the dipole 1.  An example makes this 
clearer: 
 In a body II, let a small region I of another material be forced in such that one can 
associate the boundary surface f with unit normal vector n between I and II with a 
dislocation jump g using eq. (I.77).  In this case, ni gj is the associated density of the 

dislocation dipole in the boundary surface and i j

f

n g df∫∫ = Qij represents the total 

dislocation dipole.  We let the volume of the inclusion go to 0 with a decrease in bj such 
that Qij remains finite.  The associated force dipole (we assume that the higher poles 
vanish) gives the forces that the included region I exerts on its surroundings.  For a given 
dislocation dipole this will be greater for harder inclusions.  Indeed, one can now write 
down an eq. (II.153), but the cijkl  in it may be identified with the elastic moduli of either I 
or II, while first there is an elastic boundary-value problem relative to the boundary 
surface f in order to obtain the correct values for the cijkl . 
 In the practical applications of these consequences (§ 31), one is especially interested 
in the case in which elastic homogeneity is not present at the location of the inclusion.  
Eq. (II.156) then remains valid, but not eq. (II.155).  One recognizes this best in 
connection with a method by which Eshelby [38] determined the force on elastic 
singularities in an elastic field. 
 Let a body with outer surface S0 be endowed with outer surface forces a

i ijnσ  that 

provoke dislocations ais  and stresses aijσ  in it.  Furthermore, it includes a singularity 2 at 

the location x′ that gives rise to additional dislocations s
is  and stresses sijσ , and a second 

                                                
 1 The homogeneity is not guaranteed when the relative dislocation g goes to infinity, since it corresponds 
to taking the limit (II.151).  That is, eq. (II.156) is, at first, only true for dipoles of infinitesimal strength.  
Indeed, it is only for this case that the Peach-Koehler formula is also exact.  The conclusion of the validity 
of eq. (II.156) follows for finite dipole strength (cf., infra). 
 2  The notion of “singularity” is used rather broadly here, so one can also treat, e.g., a collection of 
singularities, or at least arbitrary currents that are localized to a sub-region of the body. 
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singularity with the corresponding quantities t
is  and t

ijσ .  The force on the singularity 

will be defined by the relation: 
 

Kl = − ( / / )a i
l ldW dx dW dx′ ′+  ≡ a b t

i l lK K K+ + ,  (II.157) 

 
which is equivalent to eq. (II.146), and in which /i

ldW dx′  consists of two pieces: − b
lK ≡ 

/b
ldW dx′  is the so-called “image force (Bildkraft)” – i.e., the force that the singularity on 

the outer surface exerts on itself – while − t
lK ≡ /t

ldW dx′  is the force that results from the 

change in interaction energy of the two singularities.  Furthermore, the validity of the 
last-mentioned theorem of Colonetti for the medium in question will be assumed.  Next, 
one obviously has: 

dWa = 
0

s
a i

l ij j
ls

s
dx dS

x
σ ∂′

′∂∫∫    (II.158) 

a
iK = 

0

s
a i
ij j

ls

s
dS

x
σ ∂

′∂∫∫  .    (II.159) 

 
What is definitive for this part is those additional dislocations that the outer surface of the 
body will experience under a shift of the singularity through ldx′ .  The corresponding 

expression for b
lK  was derived by Eshelby to be: 

 

b
lK  = 

0

s
b i
ij j

ls

s
dS

x
σ ∂

′∂∫∫ .    (II.160) 

 
This form is plausible since the image force does indeed act on the outer surface.  Since 
the expressions (II.159) and (II.160) are completely independent of the existence of the 
second singularity, one can, without changing the value of integral, contract the 
integration surface S0 to a closed surface S that now encloses only the moving 
singularities.  After some conversions, one obtains (, l means differentiation by xl): 
 

a b
l lK K+ = , ,[( ) ( ) ]a b a b

i i ij l ij ij i l j

s

s s s dSσ σ σ∞ ∞+ − +∫∫ ,  (II.161) 

 
where is

∞ , ijσ ∞  means the dislocations and stresses that the singularities would have in an 

infinite medium.  Eshelby could now confirm that the force t
lK  can be represented in the 

same form such that it ultimately yields the total force: 
 

Kl = , ,( )i ij l ij i l j

s

s s dSσ σ∞ ∞−∫∫ ,   (II.162) 
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where si ≡ a b t
i i is s s+ + , corresponding to σij .  Eq. (II.162), with further conversions, may 

be written in the form: 
 

Kl = jl j

s

M dS∫∫ , Mjl ≡ − σij si, l + 
1

2
σik εik δjl .  (II.163) 

 
In analogy with the situation in electrodynamics, Eshelby calls the asymmetric tensor Mjl  
the “Maxwell tensor of elasticity.” 
 Eqs. (II.162) and (II.163) are valid quite generally.  Especially important is their 
application to pointlike singularities.  By contrast, the line element of the dislocation will 
not be included, since one can draw a small closed surface S around it that lies 
completely within a region with no sources of internal stresses.  For our purposes, the 
meaning of the Eshelby equations rests upon the fact that the singularity required in them 
is, to a certain extent, not defined at its position, but at some distance from it (through the 
dislocations that it provokes there when the medium is infinitely extended), where the 
same sort of behavior rules as at the center of the singularity.  It thus makes no difference 
whether, e.g., the force dipole arises from a weak or strong inclusion (from eq. (II.89), 
this is indeed definitive for the displacement is

∞ ).  All that matters is the magnitude of the 

displacement that it produces on the surface S.  However, this is, from eq. (II.89), 
proportional to the force dipole.  From this, one immediately concludes from the general 
validity of eq. (II.156) that when it is true for one case (no inhomogeneity at the location 
of the inclusion) it must also be true for arbitrary inhomogeneities. 
 One can now further develop σij and si in eq. (II.162) in a Taylor series and come to 
our formula (II.156), after some conversions in the case of the dipole [83].  This is 
likewise the proof that eq. (II.156) is also valid for finite dipole strengths.  Eshelby [38] 
carried this computation for the special case of the so-called dilatation center (cf., Love 
[95]) Pij ≡ Pii > 0, which is particularly interesting, since an atom of type B in a lattice of 
type A can often be described as such a center (§ 31). 
 One can now calculate the work that the force Kk in eq. (II.156) will do under a 
change of position for the dipole from a point with null deformation to a point with the 
deformation εij and obtain: 
 

0

ij

ij

k kK dx
ε

ε =
∫ = ∫ Pij ∇k εij dxk = Pij ∫ ∇k εij dxk = Pij εij .  (II.164) 

 
This work is obviously independent of the path.  Thus, one can interpret the expression: 
 

U = − Pij εij      (II.165) 
 

as the potential energy of the dipole Pij in the deformation field εij .  In the case where no 
other proper stress sources besides Pij are present, Pij εij is equal to change in potential 
energy of the boundary force plus the change in the self-energy of the dipole as a result of 
the changing reaction with itself that goes over the outer surface.  The sign in eq. (II.165) 
says sensibly that, e.g., a compressive inclusion (Pii > 0) in a compressed part of the body 
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(εii < 0) yields a positive energy.  One sees further that in the case of volume forces no 
such simple formula like (II.156) can exist since such forces have no potential in general, 
and thus can yield no path-independent integral ∫ Kk dxk . 
 From eq. (II.165), the formula for the rotational moment L on a symmetric force 
dipole Pij follows easily.  If we write this as Pij = l i Pj , corresponding to eq. (II.90), then 

the change of Pij under a rotation through an angle ddk , is, since dl = dd × l, d
�
P = dd ×

�
P  

1: 
   dPij = dli Pj + l i dPj = (εikl ll Pj + εjkl li Pl) ddk 

= (εikl Plj + εjkl Pil) ddk .     (II.166) 

 
On the other hand, the change in potential energy of the dipole under an infinitesimal 
rotation is: 

dU = − Lk ddk = − εij dPij = − εij (εikl Plj + εjkl Pil) ddk .  (II.167) 

 
Due to the symmetry of εij and Pij , we thus immediately conclude that: 
 

Lk = 2 εikl Plj εij .     (II.168) 
 

The domain of validity of this formula is the same as for eq. (II.156). 
 In the case of a homogeneous inclusion (this shall mean that elastic homogeneity is 
disturbed at the location of the inclusion), a further effect comes about that was first 
precisely examined by Eshelby [38] and Crussard [27], namely, the “polarization” of the 
singularity 2.  The simplest case is a stress-free body with an inclusion of another material 
that fits precisely into a cavity in II without pressure.  Now, if the body were, e.g., 
endowed with outer surface forces, then a force dipole ind

ijP  would be induced into the 

inclusion, where eq. (II.156) is likewise to be applied, and Eshelby can then show that 
one again obtains an expression like (II.163).  One then appropriately defines a 
polarizability Rijkl by the equation: 

ind
ijP = Rijkl εkl ,     (II.169) 

 
whose determination is fundamentally, and also for the smallest inclusions, a boundary-
value problem relative to the boundary surface to be solved.  For the case of a spherical 
inclusion with elastic isotropy one obtains elementary solutions after Eshelby [38], [40] 3. 
 It is now clear that one can represent the elastic displacement of an arbitrary pointlike 
proper stress source in an infinite medium by the equation: 
 

si = Pjk ∇j Ski + Pjkl ∇j ∇k Ski + …,    (II.170) 
 

                                                
 1 Here, it is assumed that the self-energy of the dipole does not change during the rotation. 
 2 See also, the further work of Crussard [28], Eshelby [40], and Teltow [151].  
 3  Eshelby [165] could recently show that the stress field induced in an ellipsoidal inclusion is 
homogeneous when the induced stress field is homogeneous at a large distance from the inclusion (which is 
also true for elastic anisotropy).  A corresponding result for the polarization of an ellipsoidal dielectric is 
indeed well-known. 
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from which the proper stresses can be calculated in the usual way.  Now, a quadrupole is 
nothing but two juxtaposed dipoles, and analogously for the higher poles.  That is, one 
can describe each such proper stress source by a certain combination of force dipoles.  
They are, in their own right, again nothing but dislocation loops of infinite extension.  
Thus, one has the theorem that was already cited in the Foreword: All proper stresses in a 
continuum will be provoked by dislocations.  In § 14, this read: All proper stresses 
originate from incompatibilities.  This is still true now, and is in harmony with the 
theorem above.  Then, from (II.51), the incompatibilities owe their origin to the 
dislocations.  One can thus refer to the dislocation or the incompatibilities as elementary 
proper stress sources.  However, a consequence is the statement, which is identical with 
eq. (II.17): The dislocations are the roots of the elastic distortions, just as the forces are 
the sources of stresses. 
 On the other hand, one can also describe continuous distributions of proper stress 
sources − hence, dislocations − by a spatial distribution of such pointlike sources.  One 
can thus, with equal right, declare the force dipole to be elementary in proper stress 
theory.  The situation is the same as in the (stationary) Maxwell theory.  There, 
infinitesimal current loops and magnetic dipoles are equivalent.  Nevertheless, one gives 
preference to the electric current.  They alone enter into the actual Maxwell equations.  In 
this sense, we have also the given preference to the dislocation and thus, as we believe, 
obtained an impressive representation of the continuum mechanics of solid bodies. 



 

Chapter III 
 

Dislocations in crystals 
 

§ 20.  Generalities 
 

 This chapter presents applications of the continuum theory of dislocations to real 
bodies, the most important of which are crystalline structures.  Heretofore, physical 
problems of this type related primarily to individual crystals, while the carry-over of the 
results obtained to the polycrystals that are generally available in technology has still 
come only so far.  Thus, we will first restrict ourselves almost completely to treating the 
problems of the unit crystal, but let it be expressly remarked that nothing fundamental 
stands in the way of an application of continuum theory of dislocations to polycrystalline 
bodies, so we shall likewise return to them once more. 
 An essential difference between a continuum and a body that consists of individual 
mass points – like crystals, for instance – is that in the latter no volume element is defined 
initially.  In a continuum, the distortion of the volume element is the distinguished 
geometrical quantity, while relatively little is said about dislocations.  However, in a 
point system one has primarily a displacement of points and seeks to construct everything 
from that.  Moreover, that quickly shows that one generally does not succeed in this way, 
since the required number of degrees of freedom is not attained.  Rather, one has to 
consider the relative displacement of any two neighboring atoms.  From the conclusions 
of § 21, it easily follows that a distribution of such relative displacements has three times 
too many degrees of freedom, like a distribution of dislocations.  One can then develop a 
theory of dislocations in crystals with complete precision (§ 21), where one generally 
does not obtain differential equations, but difference equations.  Moreover, since the 
number of points (atoms) in a crystal is outrageously large one can, for many purposes, 
write these difference equations to a best approximation as differential equations, and one 
must also do this, in general, since otherwise the problem might no longer be numerically 
tractable. 
 This process is particularly sensible for the numerous “microscopic” problems of 
crystal physics in which one is perhaps interested in the behavior and properties of 
individual dislocations.  However, for the macroscopic problems one must deal with the 
collective effects of very many dislocations, so in that case it is natural to introduce 
certain “physical” volume elements whose properties must emerge from the following 
considerations: 
 The assumption of the applicability of continuum mechanics to real bodies is, on the 
one hand, that the forming of the volume element can be measured as a continuous 
function of the position.  Thus, the volume element shall be sufficiently small compared 
to the external dimensions of the body, since otherwise one could no longer formulate 
differential equations.  On the other hand, actual glide and climb planes are discrete and 
microscopically fairly far apart from each other, where their distance and the content of 
the glide (climb, resp.) that follows from them are subject to statistical fluctuations.  
Should such a distortion change continuously from volume element to volume element, 
then one can only speak of a mean distortion; this will also vary continuously only when 
each volume element is endowed with sufficiently many dislocations.  If the glide plane 
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separation is, e.g., 10−6 cm, and one regards 1000 glide planes as necessary for a mean of 
the fluctuations then a physical volume element must have a linear extension of at least 
10−3 cm.  In general, one can regard this as sufficiently small compared to the body 
dimensions.  For essentially larger glide plane separations, as one finds in many special 
cases, and for likewise small test bodies, the volume elements computed with the 
previous prescription might also then be no longer small compared to the body 
dimensions, in which case, the application of continuum mechanics is no longer sensible.  
We see that the theory of dislocations in crystals is fundamentally “less precise” than the 
continuum theory of dislocations, but still sufficiently precise to justify and suggest their 
use.  The inexactitude of these calculations naturally consists in the fact that one then 
assumes the physical volume element to be mathematically infinitesimal, which means 
that one henceforth regards all formulas of continuum theory as also being applicable to 
real bodies. 
 This process is very simple and corresponds to the conception of this book.  Another 
standpoint is that one constructs the macroscopic equations obtained in continuum 
mechanics from the equations of the microscopic problems when one adds the mutual 
interaction of very many dislocations and takes the necessary means.  During this 
process, one continually remains in crystals.  Solid-body physics is achieved when one 
thinks in terms of crystals, and in it the crystal is an imaginary body, to a large degree.  
Thus, the transition from microscopic quantities to macroscopic ones will also be briefly 
presented (§ 22). 
 In polycrystals the deformations of one crystallite to another generally change 
discontinuously, in one case, due to elastic anisotropy, in another, due to the plastic 
anisotropy of the crystallite, which originates in the fact that in each crystallite there is 
only one discrete glide system (= glide plane family plus the associated possible glide 
directions), which then comes into play for a definite shear stress 1.   If one would like to 
have a deformation change continuously from volume element to volume element then 
one can again treat only a mean deformation, so one needs a physical volume element 
that consists of many crystallites. 
 More difficult to resolve is the question of the structure curvatures.  Naturally, one 
can define the rigid (elastic) rotation of a volume element compared to the initial state of 
an “ideal crystal,” so the concept of orientation in this polycrystal is no longer 
meaningful.  The problem is now whether the rigid rotations of the volume elements 
(e.g., in the absence of elastic deformations) that are present in a polycrystal changes the 
state of the body.  One must then verify this experimentally and macroscopically.  The 
investigation of this question yields (§ 23) that, in fact, structure curvatures can also be 
confirmed in polycrystals.  Thus, the continuum theory of dislocations, in its previously 
developed form, can obviously be applied to polycrystals 2. 

                                                
 1  This leads to the fact that in general not all crystallites being to flow simultaneously.  Greenough 
[168], among others, has successfully treated the interesting problems that come about from this. 
 2 Herr Prof. U. Dehlinger brought this to my attention.  
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§ 21. The geometrical foundations in crystals: the microscopic theory 
 

 We begin with a definition of a dislocation in a crystal that goes back to Frank [47].  
Fig. 19a shows a lattice plane of the ideal crystal in Fig. 2, and Fig. 19b shows the same 
thing for the “perturbed” or “real crystal” of Fig. 3.  Let the difference between the 
position vectors of two neighboring atoms in Fig. 19a and b be δx (δx′, resp.).  One now 
forms the sum δ ′∑

C

x  along an arbitrary closed path C′ in the real crystal.  One thus starts 

from, perhaps, the point P′, goes from atom to atom seven steps in the x3-direction, then 
four steps in the x1-direction, etc., along an arbitrary path back to P′.  One then repeats 
the same program (hence, seven steps in the x3-direction, four steps in the x1-direction, 
etc.) starting from the point P in the ideal crystal that corresponds to P′ (circuit C).  Along 

C, when the circuit goes around a dislocation line, with the step by which one again 

arrives at P′ along the circuit C′, one does not also come back to P correspondingly, as 

the figures show.  We now determine that the path C′ shall encircle the dislocation line in 

the right-hand screw sense.  The vector QP
����

≡ δb from the endpoint Q of the path C that 

corresponds to C′ to its starting point is then characteristic of the dislocation that encircles 

C′.  One can thus define the dislocation with the help of this “Frank-Burgers circuit” 1.  

δb will be called the Burgers vector of the crystal dislocation.  Further considerations will 
yield that it corresponds to the Burgers vector in a continuum. 
 We can think of the dislocation in Fig. 19b as migrating from the right into the 
crystal.  Thus, any two neighboring atoms, between which the dislocation wanders, 
experience a plastic relative displacement δg = − δb 2.  If we then form the circuit sum 

δ∑
C

g  we obtain: 

δ∑
C

g  = − δb .    (III.1) 

 
This equation corresponds to eq. (I.12) of § 3 exactly.  Thus, one must now observe the 
following: As long as the circuit was defined, δb will henceforth be a so-called lattice 
vector; i.e., a vector that points from one atom to another atom (in an ideal crystal).  This 
is a physical requirement: The plastic relative displacement of the atoms under the 
migration must result in such a way that the regular arrangement of the atoms, except for 
the center of the dislocation, remains the same everywhere; an irregular atomic 
arrangement over surface-like or even three-dimensional regions would imply an 

                                                
 1 In the literature up to now, the Burgers vector of the isolated dislocation was mostly denoted by b (also 
in Fig. 19a).    From the continuum standpoint, the notation δb (cf., infra) is more recommended.  One 
should look for no deeper significance in this notation. 
 2 It is not unnecessary to add that for all of the remaining pairs of atoms one must demand that δg = 0.  
The minus sign corresponds to the convention that, on the one hand, the directional sense of the dislocation 
line is chosen such that C (C′, resp.) will be a right-hand screw circuit, while, on the other hand, δg shall be 

the relative displacement of the atom on the positive side of C compared to that on the negative side. 
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extraordinarily large increase in the internal energy of the crystal, and is therefore 
“forbidden.” 

 
 

P 

b 

x3 

x1 

a 

 
 
 

b 

Fig. 19.  On the explanation for the Frank-Burgers circuit. The 
symbol P in a refers to an atom that is further to the right. 

P′ 

 
 On the other hand, one cannot exclude a certain spatial extension of the especially 
strongly perturbed region in the immediate neighborhood of the dislocation from the 
outset.  That is, one can indeed assume that at a large distance from the dislocation center 
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the atoms affected by the dislocation have already experienced the entire relative 
displacement δg, although for the atoms that are found close to the center one cannot 
necessarily say this; i.e., the transition of δg between the values – δb (in Fig. 19b) to the 
right of the dislocation and zero (to the left of the dislocation) does not need to result 
abruptly from one atom to another, but it can take place over a region of, e.g., two or 
three atomic spacings.  This would correspond to our previous conception of a 
“dislocation width” 2ζ.  In order to include this possibility we would again like to assert 
that the dislocation is composed of superficially distributed threads of infinitesimal 
strength ∂b, where one must have ∫ ∂b = δg for the dislocation.  Each thread then gives a 
relative displacement through − ∂b 1 of the atoms between which it migrates. 
 Now, suppose we have a crystal in the ideal initial state.  Let its atoms be numbered, 
say, consecutively, and let the relative position of any two neighboring atoms be denoted 
by δxi .  We let δuj denote an, at first, only imaginary relative displacement of the atom 
on the positive side of δxi compared to that of the negative one.  Thus, let δuj(xi) be given 
in the entire crystal, where xi is the location of the atom that lies on the negative side of 
δxi in the initial state.  We would like to allow δuj to be arbitrarily discontinuous, such 
that, in particular, after performing the relative displacement the crystal no longer needs 
to be connected.  Only the possibility that two or more atoms might fall upon the same 
point afterwards shall be excluded. 
 The question is now: Is it possible at all to bring the crystal into such a state that, in 
fact, two atoms have always experienced the prescribed displacement difference of δuj ?  
The answer reads: In general, this is not possible.  One already sees the essence of this in 

a planar “crystal” that consists of only four atoms 1, 2, 
3, 4.  Namely, if one prescribes δuj for the atom pairs 
12, 23, 34 then the mutual configuration of the four 
atoms is already completely determined, and a possible 
choice for the last atom pair 41 is no longer arbitrary, 
but must depend upon the first three choices (Fig. 20). 
 The next question is: What are the restricted 
conditions that the δuj must be subject to in order for the 
production of a state described by the δuj to be possible?  
One immediately sees that the sum of the δuj taken 
along an arbitrary path from an atom a to an atom b 
must be independent of the path; i.e.: 
 

∑ δuj = 0   (III.2) 
 

for an arbitrary closed path that is carried out in an ideal crystal.  From eq. (III.2), there 
follows the existence of a function uj(xi) that can be arbitrarily discontinuous.  uj is 
naturally the displacement of the atom, which is single-valued up to a rigid displacement 
of the crystal. 
 Let the “microscopic” distortion tensor γγγγ ≡ (γij) be defined by the equation: 
 
                                                
 1  For Frank, the circuit C′ is to be completed at a sufficient distance from the dislocation center, such 
that all dislocation threads lie inside of the circuit.  We will not insist upon this in our investigations. 
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Fig. 20.  Plane “crystal”  
consisting of four atoms.  
The atom pairs 13 and 24 
are not neighboring atoms.   

x2 

x1 
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δuj = γij δxi .     (III.3) 
 
 We explain this as follows: A certain atom can be found at the positions xi .  Its three 
neighbor atoms in the direction of the positive xi-axis have the positions (in an ideal 
crystal) xi + δxi .  These four atoms, which define the basic triad for the lattice, succeed in 
sensibly defining and clarifying a distortion at the point xi .  From eq. (III.3), e.g., the 
appearance of a distortion γ11 means that the two successive points separated by δx1 
experience a relative displacement δu1 in the x1-direction, i.e., a positive γ11 is a rotation 
of the triad in the x1-direction (Fig. 21b).  Correspondingly, one sees that, e.g., γ21 means 
a shear of the triad as in Fig. 21c.  In the case of small distortions the symmetric part of γij 
is a pure deformation and the anti-symmetric part is a pure rotation of the triad. 
 

 

a 

x3 

x1 

x3 

b c 

90o 

90o 

Fig. 21.  On the definition of the microscopic distortion tensor. 
 

 
 If we substitute eq. (III.3) into eq. (III.2) then it follows, with Stokes’s theorem, that 
1: 

(δRot γγγγ)il ≡ kl
ijk

jx

δγε
δ

 = 0.    (III.4) 

 
Our distortions, which satisfy eq. (III.4), are actually possible in our Euclidian space 2. 
 
 The application of Stokes’s theorem is also meaningful in the case of discretely distributed points and 
arbitrary discontinuous relative displacements δuj , as one can already show in the example of four atoms in 
Fig. 20.  All points shall remain in the plane x3 = 0.  The following distortions are then defined according to 
eq. (III.3). For point 1: β11 , β12 , β21 , β22 ; for point 2: β21 , β22 ; for point 3: none; for point 4: β11 , β12 .  
Formally, one has: 
 

(Rot ββββ)31 = 21 11

1 2x x

δβ δβ
δ δ

− ,  (Rot ββββ)32 = 22 12

1 2x x

δβ δβ
δ δ

−  (III.5) 

 
as both being non-zero, or, when written as a difference equation: 
 

                                                
 1  By δRot, it shall be implied that one is dealing with difference equations in atomic space. 
 2  However, to each arbitrary distribution δuj there is a non-Euclidian space in which this is possible.  
The xi are then the coordinates of this space; e.g., a curved surface in the case of a two-dimensional crystal. 
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    (Rot ββββ)31 = 21 21 11 11

1 2

(2) (1) (4) (1)

x x

β β β β
δ δ

− −− ; 

  (Rot ββββ)32 = 22 22 12 12

1 2

(2) (1) (4) (1)

x x

β β β β
δ δ

− −− .   (III.6) 

 
The same thing happens as before for the distortion components that were established by definition.  After 
multiplication by δx1 δx2 , one obtains ∑ δxi βij .  Thus, in total, when we write δFk for δxi δxj  , we have: 
 

δFk (Rot ββββ)kj = ∑ δxi βij ,    (III.7) 
i.e., Stokes’s theorem. 
 
 The previous considerations were of a purely geometrical nature.  Whether the 
relative displacement of two atoms implied reaction forces was not mentioned.  
Henceforth, we consider the process of the immigration of a dislocation into the ideal 
crystal of Fig. 2, which will be then brought into the state of Fig. 3 or 5.  If one makes a 
circuit C in an ideal crystal and one meanwhile sums the aforementioned relative 

displacement δgj between two atoms then one will have: 
 

jgδ∑
C

= − δbj ,     (III.8) 

 
if the circuit C′ that corresponds to C after the migration of the dislocation encircles the 

dislocation; in the other case, one has ∑ δgj = 0 1.  From eq. (III.8), it follows that the 
plastic relative displacement δgj in does not fulfill the conditions (III.2) in a crystal with 
dislocations.  Now, Fig. 3 and 5 show intuitively that a dislocation in a crystal is always 
surrounded by a region of elastic deformation.  We denote the elastic relative 
displacement of two neighbor atoms by δaj .  We would now like to call the total relative 
displacement δsG and combine the elastic and plastic displacements: 
 

G
jsδ = δaj + δgj ,    (III.9) 

so one has: 
G
jsδ∑ = 0      (III.10) 

 
for each arbitrary closed path.  From this, there follows the existence of a function ( )G

j is x  

that gives the difference in position of a certain atom in the ideal state and the 
“dislocated” state up to a constant displacement that is common to all atoms.  The 
existence of this function, which does not need to be continuous, is a result of the fact 
that the operation that takes the crystal from, e.g., the state of Fig. 2 into that of Fig. 3 or 
5 is possible in Euclidian space. 

                                                
 1  One can, in place of the ideal plus real crystals, also consider only one ideal crystal in which the 
dislocation migrates, as a result of the inhibition that at first no distortion is present.  In this sense, 
dislocations can also be brought into ideal crystals.  When regarded in this way, one also easily obtains 
equations for arbitrarily large distortions.  Cf., § 10, the beginning. 
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 Furthermore, we define the generally asymmetric tensors of (microscopic) total 
distortion ββββG ≡ ( )G

ijβ , elastic distortions ββββ ≡ (βij), and plastic distortion ββββP ≡ ( )P
ijβ  by the 

equations: 
G
jsδ = G

ij ixβ δ ,  δaj = βij δxi,  δgj = P
ij ixβ δ .  (III.11) 

 
We must then first explain to what extent one sensibly links the elastic and plastic 
distortion at all, since this, just like δaj and δgj , naturally represents precisely the same 
operations that are not, in and of themselves, possible in Euclidian space.  One now 
remarks that any such operation δuj, which only relates to a triad, can be performed in 
Euclidian space, so only after one adds more atoms − e.g., constructed from a cube of 
eight atoms – will the restriction (III.2) be effective.  Obviously, this connected with the 
fact that a triad, to a certain extent, can have no dislocation in its interior, while, e.g., the 
aforementioned cube can (cf., infra). 
 If we substitute the third of eq. (III.11) in eq. (III.8) then it follows with Stokes’s 
theorem that: 

( Rot )P
i ij

F

F δδ∑ ββββ = − δbj ,    (III.12) 

 
where F is a surface that spans C.  This result is then sensible when the circuit contacts 

only four atoms.  One then writes eq. (III.12): 
 

(δRot ββββP)ij = − δbj / δFi ,    (III.13) 
 

in the event that one assumes that all threads of the dislocation run through the surface 
element δFi that is spanned by the four atoms 1.  δbj / δFi is then obviously a mean 
surface density of the dislocation thread in the domain of δFi .  This statement is then also 
valid when some of the threads of the dislocation lie outside of δFi , as long as one 
understands δbj to simply mean the total Burgers vector of the threads that run through 
δFi 

2.  In other words, δbj / δFi is the (microscopic) dislocation density, so we call it αij 
and write eq. (III.13) as: 

δRot ββββP = − αααα .     (III.14) 
 

In the case where many dislocations run through the surface F of eq. (III.12), it is the 
total Burgers vector of all dislocations that run through F that appears on the right-hand 
of this equation. 
 Due to eq. (III.10), one naturally has for the total distortion that: 
 

ββββG = ββββ + ββββP ,     (III.15) 
and: 

δRot ββββG = 0,     (III.16) 

                                                
 1  In the sense of footnote 1 of pp. ?. 
 2  In § 25 it will be shown that one can calculate the distribution of dislocation threads in a dislocation 
approximately, the result being that by far most of the threads of a dislocation lie inside a cross-section of 
magnitude | δF |. 
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and we thus obtain the (microscopic) fundamental geometric equation of the crystal as: 
 

δRot ββββ = αααα .     (III.17) 
 

This equation states that the presence of dislocations in crystals is always linked with 
elastic distortions, since the plastic distortions that enter into migration or formation of 
dislocations are, by definition, in themselves not possible in Euclidian space 1. 

 
§ 22.  The fundamental geometric equation in a crystal: 

transition to the macroscopic theory 
 
 In this paragraph we would like to make the transition from microscopic to 
macroscopic quantities.  Thus, we first define the macroscopic (= physical) volume 
element ∆V, which shall be the minimum of the quantities required in § 20 for the initial 
state of an ideal crystal.  The term “element” expresses the idea that, on the other hand, 
the test body shall contain a very large number of such volume elements. 
 Here, we come to the dislocation tensor.  It is clear that we now no longer need to 
concern ourselves with the thread structure of individual dislocations, since we can, as 
before, describe them by their unit tangent vector and Burgers vector; i.e., through ti δbj .  
Due to the enormous number of dislocations that appear in all crystals, one can naturally 
no longer give the trace and Burgers vector for each line. 
 We now ask ourselves how a state with very many dislocations running very close to 
each other can be described most simply and completely.  Obviously, such a mean is 
sensible when we give at each point x of the crystal, the numbers (Nab) of dislocations 
with the direction ta and Burgers vector δbb go through each directed surface element ∆F 
at x, where the surface element shall indeed be so large that it will be filled with many 
dislocations; in other words, the numbers Nab change from one surface element to another 
only slightly.  One can then say that the dislocations run through the surface elements 
with a certain density. 
 We let ∆b denote the total Burgers vector of all of the dislocations that run through 
∆F.  It is: 

∆b = 
,

ab b

a b

N δ∑ b .    (III.18) 

 
One observes that ∆b does not change when one, e.g., doubles the numbers Nab and 
simultaneously halves the associated Burgers vector.  The transition from a continuous 
distribution is now to be performed in such a way that one always simultaneously lets the 
numbers Nab increase while the Burgers vectors go to zero, such that the total Burgers 
vector ∆b remains constant 2. 
 In a macroscopic theory, one now no longer envisions a discrete distribution, as will 
indeed be represented by the numbers Nab.  That is, one must restrict oneself to regarding 
the total Burgers vector ∆b as given.  For crystals this is an actual loss, which generally 

                                                
 1 I thank Herrn Prof. E. Fues for his critical remarks on my earlier work, which gave rise to the 
presentation that was given above. 
 2 This passage to the limit was first carried out by Nye [113].  
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can again be corrected only by some additional crystallographic consideration.  That 
comes from the fact that the Burgers vectors can assume only discrete values, and for that 
reason the dislocations actually take on an isolated character 1.  As a result, for many 
purposes we are also interested here in precisely those arrangements of dislocation lines 
of the particular type that was described in eq. (III.18). 
 When we know the total Burgers vectors of all of the dislocation lines that go through 
each surface element ∆F, we are then oriented towards the dislocation state with previous 
restrictions.  We are, moreover, in a position to define the macroscopic tensor of 
dislocation density αααα = (αij) with the help of the equation: 
 

∆bj = αij ∆Fi .     (III.19) 
 

Since, by assumption, the path of the dislocation is essentially homogeneous in a 
neighborhood of the surface element, we can assume the dislocations to be straight inside 
the volume element ∆V.  In addition, we would like to assume that the dislocations αij 
intersect the surface ∆Fi perpendicularly.  Indeed, real dislocation lines do not generally 
do this, so we have indeed passed over from the distribution of total Burgers vectors to 
the individual dislocation lines of different types according to eq. (III.18) from 
crystallography.  Our macroscopic dislocation lines αij thus run in the i-direction and all 
of their Burgers vectors are in the j-direction.  As a consequence, the diagonal 
components of αij(x) at the position x represent the previous screw dislocations, while the 
remaining components represent edge dislocations. 
 The macroscopic dislocation density in a crystal is a very intuitive quantity, so it 
indeed directly represents a family of lines, as in Fig. 3 and 5.  Its flux through an 
arbitrary surface F – i.e., the dislocation flux – is equal to the total Burgers vector of all 
dislocation lines that run through F, and from eq. (III.19): 
 

b = 
F

∆ ⋅∫∫ F αααα  .     (III.20) 

 
 We come, moreover, to the connection between the microscopic and macroscopic 
distortions.  For this, each pair of neighbor atoms in the crystal in the initial state can 
again be first thought of as having been subjected to a relative dislocation δuj, as before.  
Now, let δuj be homogeneously distributed inside of a volume element composed of very 
many atoms, which we would like to call dV (in order to distinguish it from the 
previously employed volume element ∆V; cf., infra), so it may change discontinuously 
from one element to another.  Fig. 22 shows a simple example. 
 

                                                
 1 With fewer assumptions, one has the theorem that the Burgers vector must be not only a lattice vector 
(§ 21), but the smallest possible lattice vector, in order for the perturbation at the dislocation center to not 
require too much energy (this is certainly true for b2, § 18).  Three discrete Burgers vectors are then 
possible in a primitive cubic lattice; in a cubic face-centered lattice, there are six. 
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b 

Fig. 22  
 
 We can characterize the geometric state of all atoms in Fig. 22b by giving the 
(microscopic) γij that were defined by eq. (III.3) as functions of the positions of the atoms 
in the initial state.  One then obtains γ21 and γ11 non-zero, where γ21 depends only upon x1, 
while γ11 is non-zero only for atoms that bound the element dV on the +x1-side, and there 
it depends only upon x2 .  The conditions (III.4), which naturally must be fulfilled 
everywhere, are then written: 

21 11

1 2x x

δγ δγ
δ δ

− = 0.    (III.20) 

 
The function uj can be obtained from eq. (III.3) for a known γij, up to a rigid displacement 
of the crystal. 
 Another description of the state of Fig. 22b would be that one now always gives the 
distortion for the entire volume element dV, since, by assumption, it is constant inside of 
it.  We can consider this to be a definition of the macroscopic distortion.  The diagonal 
components will be functions of the position in the initial state that measure the dilatation 
ratio of the elements in the initial state, while the remaining components measure the 
tangents of the shear angles.  In the interior of a homogeneously distorted volume 
element, each atomic triad naturally has numerically as many (microscopic) distortions as 
the element (macroscopically).  For an element of Fig. 22b, only γ21 is (macroscopically) 
non-zero.  Let dxi = n δxi be, e.g., the distance from two neighboring elements dV in the 
initial state to the center of mass.  dγ21 is then numerically equal to value δγ21 in the 
boundary surface, thus dγ21 / dx1 is numerically equal to the value δγ21 / n δx1 = δγ11 / n 
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δx2 in the boundary surface.  For given macroscopic γ21(x1), one can thus microscopically 
regain γ11 on the boundary surface, up to a constant.  It likewise follows that for 
macroscopic γij , in general, the statement: 
 

(Rot γγγγ)il ≡ kl
ijk

jx

γε ∂
∂

 ≠ 0   (III.22) 

 
is valid, in contradiction to the microscopic γij .  The condition for Rot γγγγ = 0 to be true 
obviously reads δγ11 / δx2 in the previous example; in other words, there can be no 
variable source in the boundary surface of the volume element.  We shall come back to 
this. 
 The previously assumed homogeneity of the distortion inside a volume element that is 
composed of very many atoms is not given for real processes of plastic forming.  One can 
thus assume, for a sufficient large dV, that at least a mean homogeneity exists, which 
might perhaps be known empirically, and that after being cut out the outer surface of a 
distinguished volume element dV is not noticeably deformed under forming or also 
relaxation (in the other case, the assumptions for the applicability of the continuum 
theory stated in § 20 are not fulfilled). 
 Thus, we can identify the physical volume element dV with the mathematical volume 
element dV that was used in § 3, in which there is now precisely the inexactitude that we 
described in § 20.  For these elements, we define, as before in § 2, the tensors of 
macroscopic total distortion, as well as the elastic and plastic distortions G

ijβ , βij ,
P

ijβ .  

Previously, we found that the equation: 
 

Rot ββββG = 0     (III.23) 
 

is necessary when the body shows no rip after forming 1.  We see that this macroscopic 
equation says something entirely different from the microscopic equation (III.16): 
 

δRot ββββG = 0.     (III.24) 
 

This insures the possibility of the operation in Euclidian space.  One thus does not speak 
of the formation of a rip, and in fact, the concept of “rip” is not even defined in a system 
composed of discrete points.  In contrast to this, the way in which the distortions of the 
macroscopic theory were defined thenceforth insures the possibility of the operation in 
Euclidian space 2, and indeed this true not only for the total distortion, but also for the 
elastic and plastic distortions.  Additionally, one now comes to the restriction (III.23) that 
hinders the formation of a rip. 

                                                
 1 The function ββββG, when restricted by eq. (III.23), is naturally also of such a type that one never expects 
that parts of two neighboring elements will be found at the same place.  If one refers to the piece of space in 
which (as is only hypothetically possible) parts of two volume elements are both found (i.e., they overlap) 
as the “negative rip” then in this case one does not always need to expressly mention the normal “positive 
rip.” 
 2  Otherwise expressed: A forming that can be described with the help of a macroscopic distortion tensor 
field can be carried out primarily in Euclidian space. 
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 One observes that the macroscopic plastic distortion is also an operation that can be 
performed only in Euclidian space alone, so generally the connectivity of the space is not 
disturbed, since Rot ββββP ≠ 0.  From the remarks connected with eq. (III.22), it follows that 
wherever one has Rot ββββP ≠ 0 there exists a linearly varying plastic displacement source 
between the volume elements, and from § 8 this is always the case wherever dislocations 
remain in place between volume elements in a constant density.  If one performs a circuit 
around a surface element ∆F in the initial state that is composed of many elements dF 
then one obtains, as in § 3, the total Burgers vector of the conserved dislocations: 
 

∆bj = − P
i ijdx β∫

C

 = − (Rot )P
k kj

F

dF
∆
∫∫ ββββ  = − ∆Fk(Rot ββββP)kj ,  (III.25) 

 
when one assumes a homogeneous distribution of Rot ββββP in the domain of ∆F.  After 
comparing with eq. (III.19), one again obtains: 
 

Rot ββββP = − αααα,     (III.26) 
 

and after combination with eq. (III.23), the fundamental macroscopic equation: 
 

Rot ββββ = αααα    .     (III.27) 
 

 Here, we calculated in such a way as to suggest that the dislocations remain in place 
between volume elements.  In reality, they remain in place spatially, as well as 
superficially.  If we then pass to the limit dV → 0, the superficial arrangement between 
the volume elements will indeed become a spatial arrangement. 
 We spoke of the case of linearly varying plastic displacement sources, but not of the 
case of constant displacement sources.  For such entities, the volume elements will be 

macroscopically dislocated opposite to each other; i.e., the displacement of the points of 
the medium will be macroscopically discontinuous.  This case does not seem to suggest 

any particular practical interpretation, so we would like to consider it no further 
 
 

§ 23.  Planar configurations of dislocations in crystals 
 

 In this paragraph, we treat an application of the boundary surface equations of § 8 and 
9 to crystalline bodies.  One calls the boundary surface between two crystallites, which 
are distinguished only by their orientations, the “grain boundary.”  Such grain boundaries 
arise, e.g., during the growth of crystals from the process of melting.  Growth is found to 
come about from any statistically defined seeds.  When two neighboring seeds have 
different orientations and grow they ultimately merge together, and along the boundary 
surface there exists a region of atomic disorder.  When the difference in orientation 
amounts to no more than, say, 20o, one can distinguish individual dislocations in the grain 
boundary that mediate the transition from one orientation to the other.  A simple example 
is shown in Fig. 23.  The associated configuration of dislocations is indicated 
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schematically next to it 1.  Here, one treats a wall of edge dislocations whose Burgers 
vector is perpendicular to the plane of the wall.  However, a wall of edge dislocations 
with a Burgers vector in the wall gives no difference in orientation (Fig. 24, next page).  
Such dislocation walls appear in phase boundaries (§ 32) with non-constant density as a 
build-up in glide planes 2 when an obstacle blocks the further migration of the 
dislocations. 

 

Fig. 23.  Grain boundary of the first type.  The difference in 
orientation between the colliding grains is | g| / d, if d is the 
distance between the dislocations.  This follows from eq. (III.32) 

x1 

x2 

 

                                                
 1  A straight edge dislocation that runs perpendicular to the plane of the paper will often by denoted by 
the symbol ⊥ .The two lines of the symbol give the glide plane and inserted lattice planes of the dislocation 
in an easily understood way.  The dislocation in Fig. 19b would thus be denoted by ⊥ . 
 2 One calls them “glide zones.”  The calculation of the dislocation distribution in a glide zone is an 
interesting mathematical problem that was solved under various assumptions by Eshelby, Frank and 
Nabarro [166], and Leibfried [89].  Leibfried showed, inter alia, that one can employ a continuous 
distribution of dislocations in place of a discrete one to a good approximation if the glide zone contains 
only a few dislocations.  One then obtains the equilibrium distribution of dislocations as it depends upon 
the applied external stresses from a linear integral equation.  The closely connected problem of calculating 
the proper stresses that belong to this equilibrium distribution could, for Haasen and Leibfried [169], be 
solved in general by integration in the complex plane.  The stresses then come about essentially by 
differentiation of the dislocation distribution.  Leibfried [172] has further treated the build-up of circular 
screw dislocations in a glide plane.  The application of these computations involves the hardening of 
metals. 
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 We next treat grain boundaries.  From § 7, we know that walls of circular screw 
dislocations can also serve as grain boundaries.  Unfortunately, this is not shown very 
well.  Two problems appear in practice: 
 1. Given the orientation difference between two grains, find the configuration of 
dislocations that defines the grain boundary. 
 2. Given the dislocation wall, find the orientation difference between the two 
bounding grains 1. 

 

x1 

x2 

Fig. 24. 

 
 We decompose these problems into a continuum-theoretic part and a crystallographic 
part.  In the former, one establishes the macroscopic dislocation density αααα, and in the 
latter, with the help of that density and the crystallographic condition, one establishes the 
microscopic arrangement. 
 We can give the solution of the continuum-theoretical part immediately.  A grain 
boundary is, from the above, defined by the orientation difference between the grains 
alone.  Arbitrary macroscopic deformations are thus not involved.  (We do not need to 
consider microscopic elastic deformations that stem from the fact that the Burgers vectors 
have finite strengths in crystals, at least in the continuum part of the problem.)  Thus, in 
our case, the elastic distortion βij is simply a rigid rotation ωij of the volume element, and 
from eq. (I.67), one will have: 
 

εijk ni ωjl |II − εijk ni ωjl |I = klα .   (III.28) 

 
In the case of large orientation differences, one must replace the ωjl  with the rotation 
tensor of eq. (I.94).  For small orientation differences, its symmetric part is negligible, 
and one can take, in place of the anti-symmetric part, the associated rotation vector: 
 

ωi = εijk ωjk ,  ωij = εijk ωk .   (III.29) 
 

From eq. (III.28), one then has: 
 

εijk εjlm ni ωm | II − εijk εjlm ni ωm | I = klα ,   (III.30) 

 
and with the decomposition formula (A.2): 
 

(δkl ni ωm − nl ωk)| II − (δkl ni ωm − nl ωk)| I = klα 2.  (III.31) 

 

                                                
 1 One thanks Frank [46] for the general solution of these problems. 
 2  This is obviously the boundary surface form of eq. (I.59). 
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 In Fig. 23, only the components n1 and ω3 were non-zero.  Thus, the associated 
dislocation density ijα  includes only the component (n1 = 1): 

 

31α  = − ω3 | II + ω3 | I ;   (III.32) 

 
it is precisely the distinguished set of dislocations.  In case there exists a rotation between 
two crystallites around an axis perpendicular to the boundary surface (“twist boundary,” 
in contrast to the “tilt boundary” that was treated above), one obtains circular screw 
dislocations.  If the rotation axis is along, e.g., the x1-direction (only n1 and ω1 non-zero) 
then from eq. (III.31) alone, one gets that: 
 

α22 = α33 = ω1 | II − ω1 | I    (III.33) 
are non-zero. 
 We now show that, in fact, these grain boundaries lead to no macroscopic stresses.  
For this, it is necessary and sufficient that the surface incompatibilities vanish.  From eq. 
(I.87), it follows immediately that due to the constant surface density of the dislocations 

on the boundary surface one has ηηηη = 0.  For ηηηη , one has, from eq. (I.90), ηηηη = (αααα  × n)S.  If 
the ii are the basis vectors then one has for the grain boundaries of Fig. 23, with n = i1 and 
αααα  = 31 3 1α i i : 

31 3 1 1( )Sα ×i i i = 0;    (III.34) 

 
i.e., ηηηη  = 0, or no stresses.  For the circular screw dislocations one has αααα  = α22 i2 i2 + α33 

i3 i3 , thus, since α22 = α33 ≡ α0 : 
 

[α0(i2 i2 + i3 i3) × i1]
S = α0(i2 i2 + i3 i3)

 S = 0;  (III.35) 
thus, one again has ηηηη = 0. 

 However, for the dislocation wall of Fig. 24, one has αααα  = 32 3 2α i i , and one calculates 

from this that: 
( 32 3 2α i i × i1)

S =  − 32 3 3α i i ;   (III.36) 

 

i.e., 33η = − 32α .  In this case, macroscopic elastic deformations and stresses thus appear. 

 C 

C′ 

C″ 

Fig. 25.  Dislocation wall as a superficial 
incompatibility dipole. 
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 One can easily imagine the overlap 33η  when one traces out the circuit ij jK dx∫� of § 

7, which indeed yields the incompatibilities.  Therefore, we propose that the wall of Fig. 
24 emerges from a series of grain boundaries of infinitesimal width by passing to the 
limit (Fig. 25).  The circuit C obviously gives null, but not the two circuits C′ and C″, 
which bring an equal and opposite rotation angle D, moreover.  The shows that the 
dislocation wall of Fig. 24 is nothing more than an overlap of surface incompatibilities. 
 One can flip the sign of a family of circular screw dislocations in the grain boundary 

and then obtain a surface incompatibility 32η  from eq. (III.35).  However, an isolated 

family of parallel screw dislocations contributes to one half of ηηηη , to the other it 
contributes an orientation difference.  Thus all dislocation walls of constant density are 
accounted for. 
 We summarize these results for dislocation walls of constant density once more: 
There are essentially four different situations: 
 

 

     1.  Edge dislocations 
   grain boundary of the first type (tilt) 
 
    2.  Circular screw dislocations, Burger vector and line 
direction parallel or anti-parallel in both cases. 
                                    grain boundary of the second type (twist) 

no long - range

proper stresses









 

 
 
    3.  Edge dislocations  ⊥ ⊥ ⊥ ⊥ ⊥ ⊥  
 
    4.  Circular screw dislocations, 
Burger vector and line direction 
parallel in one family and anti-parallel 
in the other. 

source of  long - range proper stresses,

no orientation difference.









 

  
 
 For non-constant dislocation densities in a wall, a surface incompatibility ηηηη  appears 
that is always linked with stresses 1. 
 In conclusion, we would like to treat the question that was posed in § 20 on the 
structure curvatures in polycrystals.  One might have, perhaps, the body of Fig. 14 in a 
polycrystal that shall suffer the dislocation migration that brings it into the configuration 
of Fig. 14b when one has first cut the layers apart from each other.  In reality, it remains 
connected and comes into the state of Fig. 1.  The question is now whether the crystal in 

                                                
 1  Let us mention the further work of Read and Shockley [174], as well as that of van der Merwe [100], 
in which the energy of a small-angle grain boundary was calculated elasticity theoretically (as a sum of 
proper and interaction energies of the dislocations that formed the grain boundaries) as functions of the 
orientation difference.  For some interesting new applications of the theory of superficial configurations of 
dislocations, cf., Bilby [3], Bilby and Christian [6], Bullough and Bilby [14].  The last two papers 
mentioned include applications to the important phase migrations of martensitic type. 
 Furthermore, Bullough [162], with the help of the aforementioned theory, has given an explanation for 
the observed twinning structure in crystal lattices of diamond type. 
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Fig. 1 is still an ideal polycrystal or not.  In the latter case, one must be able to confirm 
this Röntgenographically 1. 
 We have seen that one can regard grain boundaries as walls of dislocations.  Now, 
this is true for not only small orientation differences, which are special only in that one 
can still distinguish the individual dislocations.  One can meanwhile propose that, e.g., in 
Fig. 23, enough dislocations migrate and come to rest on the grain boundary that one 
ultimately obtains arbitrarily large differences in orientation.  We thus employ the 
theorem that grain boundaries are fundamentally superficial configurations of 
dislocations 2.  Then the phrase “ideal polycrystal” implies a well-defined requirement for 
the dislocations of the body in the stress-free state.  It can only be the following 
requirement: The Burgers circuit around an arbitrary surface element ∆F that intersects 
very many crystallites must give null 3.  The ideal polycrystal can be defined by this 
prescription perfectly.  From this, it immediately follows that the body in Fig. 1 is no 
longer an ideal polycrystal, and this must verified, e.g., Röntgenographically 4. 
 For strong bending, the thickness of the dislocation wall in Fig. 1 is smaller than the 
mean linear dimension of a crystallite.  Then, a number of such dislocation walls run 
through most crystallites, which leads to a mean curvature of the lattice planes.  This 
manifests itself as an asterism in Röntgenographic absorption.  Thus, it is sufficiently 
explained how macroscopic structure curvature can also be confirmed in polycrystals. 
 
 

§ 24.  The dislocation types of face-centered cubic crystals 
 

 Up to now, we have always considered primitive cubic crystals.  One thus obtains a 
simplified picture of actual phenomena that suffices for many purposes.  However, there 
are, in fact, no metals that crystallize into primitive cubic lattices.  It is typical of metals 
that they aspire to fill up a large space, so it never happens that, e.g., neighboring lattice 
planes stand in opposition to each other, as in primitive cubic lattices, but they organize 
themselves into gaps, as Fig. 26 shows in the example of face-centered cubic lattice.  It 
thus comes to pass that by far most metals crystallize into only three different lattices: the 
hexagonal closest packing of spheres, the face-centered cubic lattice, and the body-
centered cubic lattice, of which the second occurs most frequently.  In all of these 
crystals, one does not have such simple phenomena as in primitive cubic lattices, so we 
shall briefly direct our attention to at least the case of face-centered cubic lattices, since 
they are connected with many important problems 5. 

(Fig. 26 missing) 

                                                
 1 On this, one also confers Seeger [139].  
 2 In crystal physics, one generally makes no use of this theorem, since the “coarse grain boundaries” are 
often simpler to describe.  However, many times its description as a surface distribution (pp. ?) is 
convenient (Bullough [162]). 
 3 One proposes, perhaps hypothetically, that the volume element ∆V is an ideal crystal in an initial state, 
which then will be brought into the state of a polycrystal through the migration of the dislocations.  The 
Burgers circuit may then be performed in an ideal crystal.   
 4  This conclusion is also true for amorphous bodies, which will thus be likewise included in the 
continuum theory of dislocations. 
 5  The most important cubic face-centered metals are gold, silver, copper, aluminum, brass, and certain 
iron alloys.  However, at room temperature iron is cubic space-centered. 
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 For the description of the crystal lattice, one introduces three Cartesian basis vectors ai, which point 
from, e.g., in Fig. 26, the lower left front corner atom to the lower right (a1) (upper left  (a2), resp.) front 
corner atom, and let a3 = a1 × a2 .  In order to characterize a family of parallel lattice planes, one gives, in 
round brackets, the components of their normal vectors, which one first rids of common factors, such that 
they become relatively prime whole numbers 1.  Thus, (100) are the planes ⊥ a1 , (010) ⊥ a2 , (001) ⊥ a3 .  
These families of lattice planes are crystallographically equivalent, so if one would like to characterize 
them collectively the one might employ the curly brackets: {100} are all of the planes that are 
crystallographically equivalent to the planes (100). 
 In order to characterize a direction, one gives the components of one of the vectors that lie in this 
direction, which will likewise be made relatively prime whole numbers 1.  [100] is then the direction of a1, 
etc.  One characterizes all directions that are crystallographically equivalent to this direction (hence, [010], 
[001], and further [100] , [010] , [001] , where 1 ≡ − 1) by <100>. 
 
 The most important planes of the face-centered cubic lattice are the planes {111}, 
since they alone are possible as glide planes and climb planes under normal conditions.  

The {111}-planes are the closest-packed planes, 
one of which is shown in Fig. 27.  A second 
plane can now fit into the locations B or C.  A 
stacking sequence ABABABAB…(“Two-layer 
sequence”) yields the hexagonal closest packing 
of spheres, and a sequence ABCABCABC… 
(“Three-layer sequence”) yields the face-
centered cubic lattice. 
 For the internal energy of a crystal, the 
forces between neighboring atoms are 
predominant.  Now, if, e.g., the stacking 
sequence includes defects, in such way that one 
has, perhaps, ABCABABCABC…, then each 

atom nevertheless remains surrounded by twelve nearest-neighbors in the same way as 
before, while the ordering between second-to-next neighbors is no longer the same.  Due 
to the short ranges of atomic forces, the thus-qualified increase in the internal energy is 
therefore relatively small, so that such “stacking faults” occur relatively often. 
 
 As we remarked in § 22, should the Burgers vector be a dislocation of the smallest 
possible lattice vector then in a face-centered cubic lattice it points in a <110>-direction, 
as one easily infers.  This direction is, moreover, always the glide direction.  Now, (110) 
is the plane perpendicular to the [110].  Meanwhile, an edge dislocation with a Burgers 
vector in the direction [110] is not the boundary of one inserted plane (110), but two of 
them, since the “thickness” of a (110)-plane is equal to one-half the atomic spacing, as 
follows from, e.g., Fig. 26.  This is represented schematically in Fig. 28a.  In practice, 
one now has the important process of the splitting of such a “complete” dislocation into 
two so-called “Shockley half-dislocations” (Fig. 28b) 2.  The notation shall thus suggest 

                                                
 1 This simplified representation is valid only for cubic crystals, where covariance and contravariance 
must not be distinguished.  For the somewhat complicated behavior in the general case, see, e.g., 
Jagodzinski [68]. 
 2  The stacking fault and the split dislocations were first described by Heidenreich and Shockley [64].  
For a thorough presentation of this, cf., inter alia, Frank [45], Frank and Nicholas [50], Read [121], 
Thompson [152], Seeger [134], [136], [140]. 
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Fig. 27.  Closest-packed latt ice plane, 
from Seeger [134]. 
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that the Burger vector of the two half-dislocations is no longer a complete lattice vector.  
One writes this process of splitting as basically a “reaction equation”: 
 

1
[110]

2
 = 

1 1
[211] [121]

6 2
+ ,    (III.37) 

 
where [110]/2 stands for the Burgers vector of the complete dislocation, while the other 
expressions on the right in eq. (III.37) stand for the Burgers vectors of the half-
dislocations; eq. (III.37) is simply an addition equation for these vectors.  One easily 
infers that a stacking fault survives in the plane between the half-dislocations, which now 
raises the internal energy by the “stacking fault energy,” such that an equilibrium spacing 
of 2η now exists for the two half-dislocations.  The Burgers vector [211]/6 means that 
(Fig. 27), e.g., an atom at the location B will be displaced into the position C when one 
half-dislocation migrates in between it and the neighboring lattice plane A.  If both half-
dislocations migrate in between then it is again in the location B.  One can then no longer 
distinguish whether the dislocation that has caused the relative displacement was split or 
not.  For many purposes – above all, macroscopic problems – one can therefore ignore 
the splitting of dislocations. 
 

a b a b a b a b 

a b a b a b 

a 

a b a b a b a b 

a b a b a b 

Fig. 28.  Schematic representation of an edge dislocation in a face-centered cubic lattice (a).  This splits a 
the formation of a stacking fault into two half-dislocations in (b).  The notation ababab… means that the 
indicated <110>-planes represent a double-layer series.  From Seeger [134]. 

 
 
 In general, one has the theorem that each stacking fault that ends inside the interior of 
the crystal is bounded by an incomplete dislocation.  It is not necessary that complete 
dislocations, and thus, half-dislocations, be straight; they can also define, e.g., closed 
rings in the {111}-planes, hence, run piecewise as screw dislocations, in which case, the 
splitting 2η is somewhat smaller at these places. 
 Thus, let us state without proof the following results on dislocations in face-centered 
cubic metals in simplified representation: 
 
 1. Complete dislocations: These run almost exclusively in the {111}-plane and 
therefore always split into Shockley half-dislocations there.  Where they, e.g., cross over 
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from a {111}-plane to a neighboring plane the splitting must go back to zero; such a 
location is called a “jog.”  The complete dislocations can now glide into their stacking 
fault planes and climb nowhere at all.  A pure screw dislocation always runs in the 
<110>-direction, since the line runs parallel to the Burgers vector.  This direction is the 
line of intersection of two {111}-planes.  The screw dislocation can split in both planes.  
Under a corresponding pressure, it can therefore cross over from one glide plane into 
another, so it has more possible motions than the edge dislocation, which is always bound 
into a glide plane. 
 
 2. Incomplete Frank dislocation [45]:  This is the boundary line of an inserted (or 
removed) lattice plane {111}, to its Burgers vector is <111>/3.  It likewise bounds a 
stacking fault.  This dislocation is always isolated, in contrast to the Shockley half-
dislocations, which normally enter in pairs.  It can climb in its {111}-plane, but it has no 
other possibility of motion.  It is therefore generally complementary to the dislocations 
that were mentioned in 1. 
 
 3. The combined Lomer-Cottrell dislocation [94], [24]: If two split dislocations 
coincide along the line of intersection of two {111}-planes then both of them can “react” 
on the next-lying half-dislocation, such that one obtains a combined dislocation of greater 
stability.  One then has a stacking fault that bends around from one {111}-plane to the 
other.  Such a Lomer-Cottrell dislocation can neither glide nor climb, and is therefore 
completely immobile.  It represents an extremely effective obstacle to the migration of 
more dislocations into the glide planes in question, and therefore plays a big role in the 
theory of hardening 1. 
 
 The things that are possible for dislocations in face-centered cubic crystals, play a 
subordinate role in regard to the dislocations described in 1 to 3. 
 
 

§ 25.  The nonlinear treatment of the singular dislocation by Peierls 
 

 A glimpse at the dislocations in Fig. 3 and 5 shows that in the center of the 
dislocation the elastic deformations are certainly much too large for one to be able to 
calculate them with a linear theory 2.  In fact, up to the present, they have still not been 
calculated exactly.  At the outset, one has, above all, one clue for the extension 2ζ of the 
dislocation center, which indeed enters definitively into the equation for the energy of the 
dislocation (§ 18).  Peierls succeeded in calculating the extension of the dislocation center 
by means of an interesting combination of microscopic and macroscopic methods, at least 
approximately. 
 The basic idea of Peierls [116]3 is that the nonlinearity in the phenomena is 
meaningful at least in the glide plane.  One thinks of the crystal as being separated into 

                                                
 1 Cf., on this, the papers of Mott [104], Leibfried and Haasen [92], Cottrell and Stokes [26], Friedel [56], 
Seeger, Diehl, Mader, and Rebstock [143].  
 2 The same is also true in the case of the splitting dislocation. 
 3 Nabarro [106] especially developed the rather brief paper of Peierls.  Therefore, many authors speak of 
the Peierls-Nabarro model.  
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two halves by a cut into the glide plane, which will be regarded as the elastic half-spaces 
A: x2 > a/2 and B: x2 < − a/2 (Fig. 29).  Additionally, a nonlinear elasticity law will be 
employed that prevails between the two half-spaces.  Thus, the special atomic 
arrangement will be considered in the glide plane.  One obtains the simplest relationship 
in a primitive cubic lattice with {100}-glide planes, which was the case treated by 
Peierls.  Thus, Leibfried and Dietze [91] have also dealt with the face-centered cubic 
crystal 1. 

 

a 

A 

B 

A 

B 

uA 

uB 

x1 

Fig. 29.  The explanation for the Peierls model.  The lattice planes A and B 
(perpendicular to the plane of the paper) bound the half-spaces A and B.  

 
 The notations are explained in Fig. 29.  Let us start with an ideal (primitive cubic) 
crystal.  We denote the tangential displacement of atoms that are in opposition in the 
lattice planes A and B by uA (uB, resp.), and their relative displacement by: 
 

uAB(x1) = uA(x1) − uB(x1),    (III.38) 
 

where x1 means the starting point.  Let the crystal be infinitely extended in all directions, 
so ∂/∂x3 = 0.  The elasticity-theoretic calculation shows, to the extent that it is correct, 
that x2 = 0 for the edge dislocation in the glide plane, at least, in the vicinity of the 
dislocation center; of the stresses, only σ21 is non-zero (eq. (II.114)).  Even at the 
dislocation center the other stresses may be smaller than σ21 .  They will thus be set equal 
to zero in the entire glide plane.  One refers to these as “Peierls assumptions,” where we 
would like to also include the elasticity law that was employed by Peierls, and which is 
valid between the planes A and B.  One comes to it by the following reasoning: 
 
 If one displaces the aforementioned half-space tangentially with respect to the lower 
one through an atomic spacing a then one again finds the entire crystal in equilibrium; 
i.e., there are no more opposing forces there.  From this, it follows that the reaction to a 
relative displacement uAB – viz., the stress σ21 – must be a periodic function of uAB with 
period a.  The simplest Ansatz is the law employed by Peierls: 
 

σ21 = 12 ( )
sin

2

ABu xG

a

π
π

,    (III.39) 

                                                
 1  Nabarro [106] has treated the interaction of two dislocations in primitive cubic crystals, and van der 
Merwe [100] treated planar arrangements of many dislocations.  Seeger and Schöck [141], et al., could 
compute the energy increase of a dislocation due to the splitting into half-dislocations in Peierls.  One finds 
a thorough summary of all of these results in Seeger [134]. 
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where the free constant is chosen such that for small displacements one comes back to 
Hooke’s law. 
 By cutting along the glide plane in the state with a dislocation, we must, when no 
shift of the atoms in the planes A and B is present, introduce the superficial force density 
σ21 for the lattice plane A and – σ21 for B.  The deformation state that belongs to these 
“outer surface forces” of the half-space A in the interior of the half-space is already 
known in elasticity theory since Boussinesq, et al.  One has, for the plane A (cf., Leibfried 
and Lücke [93], eq. (12)): 

1

1

( )Adu x

dx
 = 21 1

1
1 1

( )1 xm
dx

mG x x

σ
π

∞

−∞

′− ′
′−∫ ,   (III.40) 

 
and a corresponding equation with a change of sign on one side is true for B; i.e. 1: 
 

1

1

( )ABdu x

dx
 = 21 1

1
1 1

( )2( 1) xm
dx

mG x x

σ
π

∞

−∞

′− ′
′−∫ .   (III.41) 

 
On the right-hand side, one substitutes eq. (III.39): 
 

1

1

( )ABdu x

dx
 = 

/

12
1 1

1 sin(2 )AB am u
dx

G x x

π
π

∞

−∞

− ′
′−∫ ,  (III.42) 

 
 
and from the Hilbert integral theorem 2 one obtains the so-called Peierls integral 
equation: 

1 1
1

1 1

( ) /ABdu x dx
dx

x x

∞

−∞

′ ′ ′
′−∫ = − 12 ( )1

sin
ABu xm

m a

π−
, (III.43) 

 
which is capable of delivering the displacements uA and uB in the planes A and B. 
 As Eshelby [37] has shown, one can derive a very similar equation: 
  

1 1
1

1 1

( ) /ABdw x dx
dx

x x

∞

−∞

′ ′ ′
′−∫  = − 12 ( )

sin
ABw x

a

π
  (III.44) 

 
for a screw dislocation in the x3-direction with x2 = 0 as the glide plane by means of a 
corresponding Ansatz, where wAB is the relative displacement of the atoms as above, only 
in the x3-direction, instead of the x1-direction. 
 For Peierls, eq. (III.43) has, as one easily checks, the rigorous solution (cf., footnote 
1): 
 

                                                
 1 One then has d(uA + uB)/dx1 = 0,  so we set the free integration constant to zero; i.e., uA = − uB. 

 2  This reads f(ξ) =
1 ( )g x

dx
xπ ξ

∞

−∞
∫

−
, g(x) = 

1 ( )f
d

x

ξ ξ
π ξ

∞

−∞
∫

−
 [128]. 
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uA = − 1arctan
2

xa

π ζ ′
,  ζ′ ≡ 

2 1

a m

m−
 ≈ 

3

4
a ,  (III.45) 

 
which corresponds to a static edge dislocation with Burgers vector of magnitude b = a in 
the x1-direction (cf., infra).  From eq. (III.39), with uA (uAB, resp.) one likewise knows σ21 
for the atomic planes A and B; i.e., the outer surface forces of the half-space.  For 
Leibfried and Lücke [93], the classical problem that is connected with this of finding the 
Airy stress function that is associated with these forces in the entire half-space has the 
solution: 

χ = − 2 2
2 1 3ln[ ( / 2 ) ]

2 2

G a
x x x a

ζ ζ
π

′   ′− + − + 
 

.   (III.46) 

 
Compared to the previous solution (II.113), this equation includes the additional term – 
a/2 (− a/2 + ζ′ ≈ a/4, resp.), and thus shows that less atoms are at a distance from the 
dislocation center, so the Peierls solution does not differ from that of (II.113) in practical 
terms. 
 As Eshelby [37] has emphasized, and as would follow from our eq. (I.77), one can 
interpret: 

1

ABdu

dx
= 

2 2
1

a

x

ζ
π ζ

′
′+

    (III.47) 

 
as the superficial dislocation distribution in the glide plane, where: 
 

2 2
1 1/( )

a
dx xζ ζ

π

∞

−∞

′ ′+∫  = a;   (III.48) 

 
i.e., the total Burgers vector of the surface dislocations is naturally of magnitude a.  The 
Peierls calculation thus delivers the following result: The edge dislocation in a primitive 
cubic crystal has a superficial extension, so one can, as before, regard it as composed of 
threads of strength duAB.  The distribution function of the threads is the bell curve (III.47) 
1; 2ζ′ is its half-width 2. 
 For Eshelby [37], the solution of eq. (III.44), which describes the static screw 
dislocation in a primitive cubic lattice, coincides exactly with the elasticity-theoretic 
solution.  Obviously, in this case the Peierls method achieves less for the edge 
dislocation, so one does not come to a finite self-energy for the dislocation. 
 We now report briefly on the most important results of Leibfried and Dietze [91] for 
dislocations that lie in the closest-packed planes of the face-centered cubic and hexagonal 
crystals.  Here, the simple Ansatz (III.39) is no longer applicable, so one needs an 
elasticity law that gives σ21 and σ23 as periodic functions of uAB and wAB.  With it, one 

                                                
 1 The fact that the extension of the dislocation turns out to be two, but not three, dimensional comes 
from the nature of the calculations.  Whether a dislocation cannot have a three-dimensional extension in 
reality can still not be stated with certainty.  In any case, the two-dimensional extension already leads to a 
finite self-energy. 
 2 In the literature, ζ′ mostly refers to the dislocation width.  
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obtains two simultaneous integral equations of Peierls type, which we shall not write 
down.  These equations no longer have elementary solutions.  For Leibfried and Dietze, 
one obtains simple and useful approximate solutions, in which one makes the total elastic 
energy per unity length: 
 

T = TA + TB + TAB     (III.49) 
 
a minimum, where TA and TB relate to the two half-spaces, and TAB is the mutual potential 
energy per unit length in the perturbed state.  Leibfried and Dietze could prove that the 
displacements uA and wA that make this energy expression a minimum satisfy the Peierls 
integral equation, such that the stated variational method actually represents an 
approximation method as a consequence.  Leibfried and Dietze have given the solutions 
for several special types of dislocations; in particular, for the important half-dislocations, 
as well. 
 We likewise give the most general (approximate) solution for the half-dislocations in 
the closest-packed planes [83]: Let the glide plane again be x2 = 0, and the Burgers vector 
likewise lies in this plane (§ 24).  Let β be its angle with the line direction.  With the 
Ansatz that corresponds to (III.45): 
 

uA = − 1sin arctan
2

xb β
π ζ ′

,  wA = − 1cos arctan
2

xb β
π ζ ′

,  (III.50) 

 
where ζ′ is a free parameter, one finds the minimal energy per unit length: 
 

T = 
2

2 2sin cos ln 1
4 1 2

Gb m R

m
β β

π ζ
  + +  ′−  

,   (III.51) 

with: 

ζ′ = 2 22
sin cos

13 3

m
b

m

π β β + − 
.   (III.52) 

 
Thus, 2R is the linear dimension of the medium in the x1-direction that goes to infinity.  
The formula that was given by Leibfried and Dietze for half-dislocations follows from 
this by specializing the angle β. 
 Eq. (III.51) is not suitable for the comparison with the previously-obtained eq. 
(II.144), since the L in the latter has no relation to the R in the former.  However, we can 
easily compute a superficial dislocation distribution on the glide plane that corresponds to 
eq. (III.47).  If we identify 2uA and 2wA with the components g1 and g3 of the dislocation 
source in eq. (I.77) then we easily obtain the dislocation density αααα : 
 

αααα  = − 3 1 3
1 1

A Adu dw
i

dx dx

 
+ 

 
i i  = i3 (sin β i1 + cos β i3) 2 2

12

b

x

ζ
π ζ

′
′+

. (III.53) 
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Here, i3 gives the line direction, while the bracketed expression gives the direction of the 
Burgers vector of the half-dislocation.  Thus, we regard the density (III.53) as an 
arrangement of nothing but dislocation threads with infinitesimal strengths: 
 

db = 
2 2
1

b

x

ζ
π ζ

′
′+

 = bγ(x1) dx1 .   (III.54) 

 
Thus, we obtain from eq. (II.142): 
 

T = 
2 2

2 2 1 1
2 2 2 2 2

1 1 1 1

2
sin cos ln 1

4 1 | |

dx dxG m b L

m x x x x

ζβ β
π π ζ ζ

∞ ∞

−∞ −∞

 ′′ + −   ′ ′ ′ ′− + + −   
∫ ∫ .    (III.55) 

 
We satisfy ourselves with an estimate of this integral, in which we now set db equal to: 
 

db = 1

b
dx

πζ ′
 for − 12 2

x
πζ πζ′ ′

≤ ≤ ,   0 otherwise,  (III.56) 

 

in place of (III.54), which, like (III.54), satisfies the condition db
∞

−∞
∫ = b.  (III.53) implies 

a constant distribution of dislocation threads in the given region.  b/π ζ′ is the height of 
the maximum of the bell curve b γ1(x1).  We have already calculated the integral given 
this way in § 18, when one replaces the ζ there with π ζ′ / 2.  This then gives the energy 
per unit length as: 

T =
2

2 2
3/2

2
sin cos ln 1

4 1

Gb m L

m e
β β

π πζ
  + −   ′−  

 .  (III.57) 

 
 This formula follows from eq. (II.145), from which one can establish that it is also 
valid in the case of curved dislocation lines, as long as one correctly substitutes the length 
ε of the cut.  In § 18, we calculated the value ε = ζ e3/2 for ε.  With ζ = π ζ′ / 2 and eq. 
(III.52), one then obtains: 

ε / b = 
2

2 2

3/2
sin cos

154

m

me

π β β + − 
,  (III.58) 

 
where the factor in front of the bracket is almost precisely 0.3.  Therefore, we are in a 
position to also calculate the energy of curved half-dislocations in the closest-packed 
planes of the face-centered cubic and hexagonal crystals to what is certainly not a bad 
approximation 1. 

                                                
 1 The calculations indeed include one approximation (viz., the Peierls assumptions), but on the other 
hand, the energy is not sensitive to changes in ε that are not too large, since it depends upon ε only 
logarithmically.  One can still refine the calculation when one evaluates the integral (III.55) exactly, and 
further considers the elastic anisotropy in the half-spaces A and B, as well.  Such computations were carried 
out by Seeger and Schöck [141] with success in the case of straight dislocations. 
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 In these calculations, we have restricted ourselves to the Shockley half-dislocations.  
They play the principal role in face-centered cubic and hexagonal crystals at room 
temperature.  In other crystals – e.g., body-centered cubic – one has other types of 
dislocations and must carry out a specific Peierls calculation for each type. 
 In summation, the Peierls method may be assessed as follows: It delivers a measure 
for the extension of the dislocation center by way of the dislocation width ζ′, from whose 
magnitude it follows that the elasticity-theoretic calculation already delivers reliable 
results at a distance of a few atomic spacings from the dislocation line.  The Peierls 
calculation thus gives a clue as to the cases in which one would expect an elasticity-
theoretic treatment of dislocations to give sensible results, and indeed this also gives a 
clue as to when it is no longer applicable, due to great complications, since the treatment 
of the dislocation center itself (e.g., the calculation of its energy) delivers the Peierls 
calculation in the first approximation. 



  

Chapter IV 
 

Non-Riemannian geometry of dislocations 1 
 

 Kondo, as well as Bilby, Bullough, and Smith, have independently recognized the 
close relationship between the geometric problems of plasticity and those of non-
Euclidian geometry.  One can then employ the highly-developed methods of differential 
geometry for the treatment of such problems; in particular, the concept of torsion.  This 
goes back to Cartan, whose work has found a very beautiful application to real bodies.  
The connection between the dislocation tensor αλχ and the torsion tensor Lχ

[µν] is given 
by equation: 

αλχ = ελµν Lχ
[µν]  .    (IV.1) 

 
The difference between the theory of Kondo and that of Bilby, Bullough, and Smith is 
similar to the difference between our Chapters I and III: The theory of Kondo is a 
continuum theory, while Bilby, Bullough, and Smith develop their theory in a crystal.  
Further distinctions between the two theories will be discussed § 28. 
 

§ 26.  The theory of Kondo and co-workers 2 
 

 We next recall some facts that are connected with the presentation of Kondo [74].  In 
a purely elastic theory one is interested in rotations on the boundary only as long as they 
awaken no elastic forces.  The definitive quantity is then the elastic deformation.  By the 
natural state of a volume element, one understands any stress-free state that it assumes 
when it experiences either external forces or a pressure from its neighboring element.  
Under the presence of proper stresses, the volume element can assume its natural state 
after being cut apart from the others, because it is linked with Euclidian space.  
Meanwhile, one can imagine oneself placed in a non-Euclidian space in which it can also 
relax without being cut apart if the pressure that was present in Euclidian space were 
suddenly removed.  We can also define such an imaginary stress-free state in a non-
Euclidian space as the natural state.  One can the consider the volume elements in the 
natural state that were cut apart from each other as (material) Euclidian spaces that are 
tangent to the (material) non-Euclidian space at the point in question.  Ultimately, let the 
final state be defined as the (Euclidian) state of the body in the condition under 
investigation that is marked with stresses. 
 In §§ 26 to 28, we distinguish between covariance and contravariance.  If 2

Eds  is the 

square of the distance between two arbitrary points of a volume element in the final state 
and 2

Nds  is the square of the distance between the same points in the natural state then 

one has: 

                                                
 1 I am very thankful to Herren Prof. K. Kondo and Dr. B. A. Bilby for discussions on this theme.  I 
thank Herrn Dr. J. D. Eshelby for the fact that he kindly placed the book of Kondo [74] at my disposal, 
which was the first time the work of Kondo was made known to me (Dec., 1956).  
 2 The results reported here are all summarized in the book [74].  The greater part of them was presented 
by Kondo for the first time to the Second National Congress for Applied Mechanics in Japan 1952 [73]. 
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 2 2
E Nds ds−  = ( )ij ij

i j

E N
g dx dxδ − ,   (IV.2) 

 
where xi are the (spatially fixed) Cartesian orthogonal coordinates of the point in the final 
state.  ( )ij

i

N
g x = ( )ji

i

N
g x  is the metric tensor of the natural state.  The metric of the final 

state is obviously completely determined by the quantities: 
 

εij = (δij – gij)/2,    (IV.3) 
 

where the subscripts E and N have been dropped, since there is absolutely no danger of 
confusion.  From the theory of large deformations, it is known that in the case of small 
compatible deformations the εij of eq. (IV.3) assume the form: 
 

εij = 2j i
i j

s s

x x

∂ ∂+ ∂ ∂ 
;    (IV.4) 

 
thus εij is identical with the deformation tensor used up to now. 
 The vanishing of the Riemannian curvature tensor Ri

jkl that is defined by the 
Christoffel symbol: 

i

j k

 
 
 

 ≡ 
1

2
lj jkil kl

j k l

g gg
g

x x x

∂ ∂ ∂ + − ∂ ∂ ∂ 
   (IV.5) 

 
that belongs to gij is well-known to mean the same thing as the fulfillment of the 
compatibility conditions for the deformations.  By means of: 
 

Ri
jkl ≡ 

k l

i i i m i m

j l j k mk j l ml j kx x

         ∂ ∂− + −         ∂ ∂         
 = 0  (IV.6) 

 
the classical theory of elasticity is then distinguished from the theory of proper stresses.  
This statement is also true for large deformations, while the form ηhm = 0 for the 
compatibility conditions is only true for small deformations.  The totally covariant 
curvature tensor: 

Rijkl = gih R
h
jkl      (IV.7) 

 
is anti-symmetric in the first and last two pairs of indices and symmetric in the pairs ij  
and kl.  For small deformations one has (cf., McConnell [173]): 
 

Rijkl = εhij εklm ηhm,  ηhm = 4 εhij εklm
 Rijkl ,  (IV.8) 

 
as one easily verifies, when one introduces the εij of (IV.4) with the help of (IV.5) and 
(IV.6) into (IV.7).  One then obtains: 
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ηhm = εhij εklm  
2

jl

i kx x

ε∂
∂ ∂

,    (IV.9) 

 
and with (IV.4) it follows from this that ηhm = 0. 
 In a theory of elasticity that also considers proper stresses Ri

jkl ≠ 0 and the description 
of the deformations becomes a problem in Riemannian geometry.  Since the problems to 
be dealt with in such a theory are essentially of a geometric type, one can, with Kondo 
and co-workers [74], say outright: “Elasticity theory is Riemannian geometry and 
conversely.” 
 Meanwhile, in the considerations up to now, we succeeded in treating the geometric 
questions satisfactorily – at least, for small distortions – without needing Riemannian 
geometry, and for that reason we would like to regard the theorem above, not as a rule for 
the elasticity theoretician, but as perhaps a useful clue for the especially geometrically 
proficient reader.  Undoubtedly, the study of Riemannian and, as we will see, non-
Riemannian geometry might bring more insights into the geometry of the forming of 
solid bodies. 
 Kondo now associated each (Euclidian) volume element in the natural state with its 
own local Cartesian coordinate system with basis vectors eλ (λ = 1, 2, 3), which shall be 
subject to no restriction.  One then has: 
 

dx = eχ  dωχ,      (IV.10) 
 

dωχ  = Ai
χ dxi,  dxl = Aµ 

l dωµ,   (IV.11) 
 

eλ = Aλ 
j ij ,   ij = Aj

χ eχ ,    (IV.12) 
 

deλ = eχ Γχ
λµ dωµ,      (IV.13) 

 
Aλ 

j Ai
χ = δi 

j, Aλ 
i Aj 

χ = δχ 
j,    (IV.14) 

 
where dx = dxi ii is the difference in position between two matter points in the final state 
and dωχ are the components of the corresponding vector (which relates to the same 
matter point) in the natural state.  We regard eλ , Aµ 

l, Ai
χ, Γχ

λµ  as functions of xi.  For the 
natural system, we employ Greek indices, and for the (Cartesian) final system, Latin 
ones.  To abbreviate, we set: 
 

∂i ≡ ∂/∂xi,   ∂ν ≡ Aν 
i ∂/∂xi.   (IV.15) 

 
Now, the first integrability conditions: 
 

(∂j ∂i − ∂i ∂j) x = 0    (IV.16) 
 
must naturally be fulfilled.  One has ∂i x = eχ Ai

χ, ∂j x = eχ  Ai
χ, so: 
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( )

( )
j i i j j i i j j i

i j j i i j

A A A A A

A A A

λ χ χ λ µ χ
λ χ χ λµ

χ λ µ χ
χ λµ

∂ ∂ = ∂ + ∂ = Γ + ∂ 
∂ ∂ = = Γ + ∂ 

x e e e

x e
  (IV.17) 

hence: 
Γχ

λµ (Ai
λ Aj 

µ – Aj
λ Ai 

µ) + ∂j Ai 
χ − ∂i Aj 

χ = 0,   (IV.18) 
 

from which, upon multiplying by Aν 
i Aπ  

j and using eq. (IV.14), it easily follows that: 
 

Γχ 
[λµ] = 

1

2
 Aλ 

i Aµ  
j (∂j Ai 

χ − ∂i Aj 
χ).    (IV.19) 

 
Square brackets will always signify that the anti-symmetric part relative to the indices in 
question is to be taken.  After Cartan [15], one refers to the anti-symmetric part of an 
affine connection as the torsion.  Whenever it does not vanish, one finds oneself in the 
realm of non-Riemannian geometry.  As is well-known, Γχ 

[λµ] is a tensor of rank three, 
whose Cartesian components read: 
 

Γi 
[km] = Aχ 

i Ak 
λ Am�

µ Γχ 
[λµ] ,    (IV.20) 

 
and with the relations (IV.14), it follows that ([74], pp. 461): 
 

Γi 
[km] = 

1

2
 Aχ 

i (∂m Ak 
χ − ∂k Am 

χ).   (IV.21) 

 
 Eq. (IV.10) and (IV.11), which define the coordinate system eλ , are generally 
Pfaffian differential forms; i.e.: 

(∂i ∂j − ∂j ∂i) eλ ≠ 0.    (IV.22) 
 
The left-hand side of this equation delivers, after simple calculations involving the Γχ

λµ , 
the Riemann-Christoffel curvature tensor that relates to the natural state, which we would 
not like to write down explicitly, namely: 
 

Rχ
λµν  ≠ 0.      (IV.23) 

 
 One can now parallel displace (relative to the connection Γχ

λµ ) a vector cλ around an 
infinitesimal surface element ∆Fµν = εµνρ ∆Fρ according to the rules of differential 
geometry 1, and thus form the integral: 
 

− c dχ λ µ
λµ ωΓ∫� ,    (IV.24) 

 
and obtain (cf., Kondo) the change in cλ in this way: 
 

                                                
 1 See, e.g., Schouten [130].  
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∆cλ = [ ] [ ]

1

2
R c Fχ λ χ µν

λ µν µν
 + Γ ∆ 
 

.   (IV.25) 

 
Now, Kondo compared the circuit above with the Franks-Burgers circuit (§ 21).  The 
torsion Γχ

[µν] gives rise to a translation: 
 

∆bχ = Γχ
[µν] ∆Fµν = αρχ ∆Fr ,    (IV.26) 

 
where Γχ

[µν] is expressed by the associated tensor of rank two.  Upon comparison with eq. 
(I.14), one sees that Γχ

[µν] is connected with our previous dislocation tensor αααα by way of: 
 

Γχ
[µν] = 

1

2
εµνρ αρχ,  αλχ = ελµν  Γχ

[µν] ,  (IV.27) 

 
insofar as ∆bχ is actually the Burgers vector.  This question will be discussed in § 28. 
 The other contribution in eq. (IV.25) is more difficult to discuss; on this, one confers 
Kondo [74], pp. 466 et seq.  First, let it be remarked, in addition: The tensor Rιλµν = gιχ 
Rχ

λµν (gιχ ≡ eι · eχ) associated with Rχ
λµν  is anti-symmetric only with respect to the last 

two indices, since Γχ
λµ  no longer has the form 

λ
χ µ
 
 
 

.  One can, however, split off a part 

of Rιλµν that has the symmetry above, and obtain: 
 

∆Cι = 
1

2
R[ιλ][µν] C

λ ∆Fµν.   (IV.28) 

 
When R[ιλ][µν] is substituted in eq. (IV.8), one obtains: 
 

∆Cι = ειλπ ηπρ Cλ ∆Fρ ,   (IV.29) 
or, in vector notation: 

∆C = C × ηηηη · ∆F.    (IV.30) 
 

Thus, ∆C ⊥ C, i.e., the vector experiences (in the case of small distortions) a pure 
rotation: 

∆D = − ηηηη · ∆F.    (IV.31) 
 

This result shows (cf., eq. (I.64)) that, with the help of non-Riemannian geometry one not 
only arrives at our previous results concerning dislocations (cf., infra), but also the results 
relating to incompatibilities 1. 
 Besides Cartan torsion and Riemannian curvature there is yet another quantity that is 
important in this connection that we will now discuss.  One sees the essentials most 
conveniently for two-dimensional matter; thus, perhaps, for curved membranes.  In 
general, one can stretch them between two rigid planar boundaries, and they are thus 

                                                
 1  The difference in sign is purely conventional. 
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forced into a two-dimensional Euclidian space in which they then exhibit “proper 
stresses.”  However, if the membrane forms, e.g., a thin, circular, hollow, cylinder then 
this is no longer true, unless one first makes a cut.  For this membrane, the Riemannian 
curvature is zero, regardless of whether it is curved.  Its extrinsic curvature in the three-
dimensional Euclidian space in which it is embedded will be described by ∂2X / ∂xi ∂xj , 
if, for the moment, X is the position in three-dimensional space and xi are the coordinates 
in the surface. 
 One can now propose that our three-dimensional natural state represents a “three-
dimensional membrane” in a six-dimensional Euclidian space.  Let XΛ (A = 1…6) be its 
Cartesian coordinates.  The “Euler-Schouten curvature tensor” 1 will then be defined by 
[130]: 

HΛ
ij = 

2

i j

X

x x

Λ∂
∂ ∂

,    (IV.32) 

 
where xi once again has its previous meaning.  The connection between Rijkl and HΛ

ij is 
given by ([74], pp. 468): 

Rijkl = 
6

1

( )ik jl il jkH H H HΛ Λ Λ Λ

Λ=
−∑ ,   (IV.33) 

 
in which one assumes that although when HΛ

ij = 0, Rijkl always vanishes, the converse is 
not true.  One must also include the latter case in a complete theory. 
 Moreover, Kondo classified the lattice defects that appear in crystals as follows: 
 
 1. Lattice defects with incompatible metrics, which are characterized by a non-
vanishing Riemannian curvature tensor in the natural state (“curvature defects”). 
 2. “Non-Riemannian” lattice defects, which are characterized by a non-vanishing 
torsion tensor in the natural state (“torsion defects”). 
 3. Lattice defects that are linked with a non-vanishing Euler-Schouten tensor. 
 
 After Kondo, it is, on the one hand, possible that of the three quantities Γχ

[µν] , Rijkl , 
and HΛ

ij , only Γi
[ jk] is non-zero, but one can also have only HΛ

ij non-zero, and one can 
have Γi

[ jk] = 0, but  Rijkl ≠ 0.  From the fact that the part of ∆cχ that corresponds to the 
curvature tensor, according to eq. (IV.25), is proportional to the vector cλ that is being 
displaced, Kondo concludes that the curvature tensor also describes defect locations that 
extend over a large volume, while the torsion tensor is appropriate for dislocations at a 
smaller (more microscopic) scale.  As defect locations that are described with the help of 
the curvature tensor, one has, above all, the build-up of dislocations in a glide plane that 
is provoked by foreign atoms distributed in a volume and lattice distortions through 
temperature fluctuations.  By means of eq. (IV.33), all curvature defect locations are also 
described by the Euler-Schouten tensor. 
 If we compare these statements with our previous presentation then we see that two 
points still need clarification.  

                                                
 1 In regard to this terminology, cf., [130], pp. 256.  
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 a) The Riemannian curvature can also be finite in the absence of torsion – i.e., of 
dislocations 1.  One can show that this is not compatible with condition (IV.46) of BBS, 
which states that Lα

βγ  has the form (IV.37).  In fact, Kondo also permitted general forms 
for the connection.  The case considered here thus goes over to the theory of BBS, as well 
as our theory, in which everything comes down to the dislocations.  It will be a problem 
for future research to specify more precisely which phenomena can be attributed to such a 
curvature tensor with vanishing torsion. 
 b) If Rijkl vanishes then no elastic deformation is present in the absence of external 
forces − at least, in the case of small distortions − so the crystal is free of proper stresses.  
In addition, let Γi

[jk] = 0.  Then, from our previous presentation the only possible 
distortion that leaves the body compact is the plastic distortion Grad sP, by which 
dislocations form in the body, but at the end of the process they are no longer in the body.  
It now seems necessary to link this distortion with the tensor HΛ

ij , in the case Rijkl = 0, 
Γi

[ jk] = 0, whenever (in analogy with the cylinder example above) cuts on the surface are 
necessary in order to bring the body from the Euler-Schouten curvature state that it is 
found in into the three-dimensional Euclidian state.  Any cut corresponds to the migration 
of a dislocation through the body 2. 
 Certainly, the ultimate clarification of the aforementioned two points will round off 
the picture that we have drawn up here, such that it will be in complete harmony with our 
previous results.  Even now, the agreement is very convincing.  We further point out that 
eq. (IV.17) is nothing but our basic geometric equation when it is now written in the 
(spatially fixed) Cartesian coordinates of the final state.  We will confirm this in the next 
paragraph. 
 

§ 27. The theory of Bilby, Bullough, and Smith [3, 4, 5] 
 

 The states considered in the theory of Bilby and co-workers are referred to the state of 
the ideal crystal, the lattice vectors shall be described (§ 21) by a Cartesian coordinate 
system with the basis vectors iα , and the final state was referred to by the authors as the 
“discolated state.”  In order to describe it, one chooses three independent basis vectors 
ea(P) at each point that shall be the same lattice vectors everywhere 3,4.  These can be 
regarded as the basis vectors of the reference lattice undergoing a distortion: 
 

ea = Da
α iα ,  iβ = Eβ 

a ea ,   (IV.34) 
 

where Da
α is the associated tensor of the affine transformation and Eβ 

a is the tensor 
reciprocal to it, so: 
                                                
 1  The following two theorems are necessary for § 27. 
 2  A two-dimensional membrane can, by definition, admit only two-axis stresses.  It can thus be bent into 
the aforementioned cylinder without stresses. 
 3  For real plastic forming, the small regions that are bounded by the glide and climb planes will only be 
elastically formed, and neighboring atoms in them will remain neighboring during the entire process.  Since 
these “elementary regions” are very small compared to the physical volume element (§ 20), one can regard 
their elastic distortions as homogeneous.  One can then directly define the atomic triads under the ea 
(perhaps at the center of mass of the elementary region), such that the ea describe the lattice in the 
dislocated state directly. 
 4  We now employ, with BBS, Greek indices for the Cartesian relative system. 
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Da
α Eα 

a = δa
b,  Eα 

a Da
β  = δα 

β.   (IV.35) 
 
BBS now define a new law of parallel displacement in Euclidian space, by establishing 
that vectors at different points shall be parallel when they have the same components in 
the ea-system.  The actual difference C between two parallel vectors at two neighboring 
points P and Q will be defined as a vector attached to the point P.  The authors obtain, 
after a simple calculation: 

dCµ  = a aD
E C dx

x

µ
λ γ

λ γ
∂
∂

,    (IV.36) 

 
and further consider a Euclidian space with the linear connection: 
 

Lα
βγ  = − aD

E
x

µ
α

β γ
∂
∂

 = 
a

a

E
D

x
βα
γ

∂
∂

   (IV.37) 

 
(the parallel displacement law (IV.36) that belongs to it, resp.).  The torsion tensor 
follows from: 

Lα 
[βγ] = 

1

2

a a

a

E E
D

x x
β γα
γ β

 ∂ ∂
−  ∂ ∂ 

,   (IV.38) 

 
which corresponds to the eq. (IV.21) of Kondo.  Now, one carries out the Franks-Burgers 
circuit.  The typical element of this circuit in the dislocated crystal is 1: 
 

dxα iα  = dxα Eα
a ea .    (IV.39) 

 
The corresponding step in the reference lattice has, from § 21, numerically the same 
components in the iα-system as the step (IV.39) in the ea-system, and can thus be written: 
 

dxλ Eλ
 a ia for α = a.   (IV.40) 

 
From § 21, the circuit around a surface F with boundary C delivers the associated Burgers 

vector (= dislocation flux): 
 

B 
n

=  − a
adx Eλ

λ∫�
C

i  for α = a.   (IV.41) 

 

Due to the sign 
n

=  (cf., infra), an application of Stokes’s theorem, and going to an 
infinitesimal surface gives: 

                                                
 1  In the sense of footnote 2, pp ?, one may assume that one does not go from one atom to another, but 
from one elementary domain to another.  This corresponds to the fact that in the case of macroscopic 
continuous dislocation distributions the dislocations are arranged between the elementary domains.  For a 
thorough discussion of the generalization of the Burgers circuit of § 21 to continuous dislocation 
distributions, see the work of BBS [3], [4]. 
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dBα 
n

=  − 
1

2

a aE E
dF

x x
µ λµλ
λ µ

 ∂ ∂−  ∂ ∂ 
 α = a.   (IV.42) 

 
In eq. (IV.41), dxλ means the difference between two points in the final state, and Eλ 

a 
shall also be taken in the final state.  Henceforth, the entire right-hand side of eq. (IV.42) 
is referred to the final state.  Therefore, eq. (IV.42) (and also the equation just before it) is 

no ordinary vector equation, since the 
n

=  says, moreover, that numerically the 
components on both sides of eq. (IV.42) are the same for α = a.  Due to (IV.34), the 
right-hand side of eq. (IV.42) is then equal to the vector in the final state, which one 
obtains when one constructs dBα in the final state, so: 
 

 dLα = Da
α dBa     (IV.43) 

or: 

dLα = 
1

2

a a

a

E E
D dF

x x
β γα βγ
γ β

 ∂ ∂
−  ∂ ∂ 

.   (IV.44) 

 
For BBS, dLα is called the “local Burgers vector,” while dBa was referred to as the “true 
Burgers vector.”   One observes: From the standpoint of an invariant representation there 
is naturally only one Burgers vector; dBa and dLα are merely two different 
characterizations of these vectors.  For small distortions, Da

α  can be replaced with δa
α  in 

eq. (IV.44); one no longer needs to distinguish between local and true Burgers vectors.  
From a comparison with eq. (I.14), one again finds the connection between the torsion 
tensor and the dislocation density as being given by: 
 

Lχ
[µν] = 

1

2
εµνρ αρχ,  αρχ = εµνρ  Lχ

[µν] .  (IV.45) 

 
BBS speak of the local dislocation density. 
 The Riemann-Christoffel curvature tensor: 
 

Lα
βγδ  = 

L L
L L L L

x x

α α
βδ βγ α λ α λ

λγ βδ λδ βγγ δ

∂ ∂
− + −

∂ ∂
,  (IV.46) 

 
for the connection (IV.37) vanishes identically.  For BBS, this is the condition for one to 
be able to define the local basis ea everywhere and implies teleparallelism.  This 
corresponds to the fact that one finds both the reference state and the final state in 
Euclidian space.  For Kondo, by contrast, the curvature tensor (IV.23) was taken in the 
non-Riemannian (natural) state and thus did not vanish 1.  One obtains the same result in 
the BBS theory when one takes the curvature tensor relative to ea · eb metric (called the 

                                                

 1 The two definitive curvature tensors are, from our previous standpoint, to be defined by G

αββ∆ ≡ Lαβγδ 

∆Fγδ,  ∆βαβ ≡ Rαβγδ ∆Fγδ, where ∆ has the same meaning as in eq. (IV.31). 
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“local metric” by BBS).  This is therefore not the same curvature tensor as (IV.46).  The 
vanishing of the curvature tensor that comes from the local metric, as well, would mean 
that the crystal is free of proper stresses. 
 It has shown that the theory we just reported on is very suitable for the investigation 
of the pure rotation states of Nye (§ 7), which, like the state of classical elasticity theory, 
is characterized by the vanishing of the incompatibilities (§ 7).  We cannot reproduce in 
detail the calculations in question, which are very interesting as applications of non-
Riemannian geometry to real bodies, but restrict ourselves to a particularly important 
point: the connection between the torsion tensor and the Nye curvature tensor. 
 The starting point is the law of parallel displacement (IV.36), which we write in form: 
 

dCa = − Labc C
b dxc.     (IV.47) 

 
We split Labc into a symmetric part L(ab)c and an anti-symmetric part L[ab]c : 
 

dCa = − (L(ab)c + L[ab]c) C
b dxc.   (IV.48) 

 
If one thinks of the Cb as being taken, in turn, from the lattice vectors eb then dCa is the 
change in them as they move to a neighboring point.  One sees immediately that L(ab)c 
therefore refers to a pure deformation, while L[ab]c is a pure rotation of the lattice (one 
perhaps sets Cb equal to the vectors e1 , e2 in sequence).  In the case of L[ab]c one then has 
dC ⊥ C and the angle between e1 , e2 remains conserved, whereas for L(ab)c in general the 
length and angle of the ea will be changed.  If one then sets: 
 

L[ab]c ≡ εabd χd
c ,  χd

c = 
1

2
 εabd Labc   (IV.49) 

 
then the rotational part of dC is: 
 

 dCa
Rot = − εabd χd

c  C
b dxc,    (IV.50) 

 
or, in vector notation, dCRot = − C × χχχχ · dx, from which, one obtains the rotation of the 
lattice under a motion from one point to another: 
 

d
�ωωωω  = χχχχ · dx.     (IV.51) 

 
By definition, χχχχ is then the Nye curvature tensor and (IV.49) is the connection between it 
and the torsion.  Thus, χχχχ is connected with the first two indices in a similar way to the 
way that the dislocation tensor relates to the last two.  In the case of a pure rotational 
state, one easily arrives at the Nye relation (I.59) by comparison with eq. (IV.45) [5] 1.  In 
this case, the tensors χχχχ and K of § 7 will also be identical 2. 
 BBS show further that the equations: 
 

                                                
 1 One thus writes eq. (IV.49) with Greek indices.  
 2  For a discussion of the different curvature tensors, cf., also Eshelby [41]. 
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χχχχ × ∇ = 0,     (IV.52) 
 

which already appeared in Nye, are only valid for small rotations.  These equations are 
indeed the conditions for the d

�ωωωω  of eq. (IV.51) to be a complete differential.  Naturally, 
this can, however, only be true for small rotation angles. 

 
 

 § 28.  Discussion 
 

 In the last two paragraphs, we reported on applications of non-Riemannian geometry 
to continuous distributions of dislocations.  The cited authors have continued to discuss in 
detail the connection with known problems of differential geometry – let us mention, say, 
Cartan’s holonomy groups and structure equations and Ricci’s rotation coefficients – and 
have thus paved the way for the non-Riemannian conception of dislocations.  In the book 
of Kondo [74], an interesting possibility was described of treating the same problems 
with the help of pure Riemannian geometry in six dimensions, where one then no longer 
starts with the (holonomic) coordinates xi, but must employ the anholonomic coordinates 
of the Riemannian space.  In the opinion of this author, the method in question is 
particularly suitable for the treatment of plastic problems, so he has based a new theory of 
plasticity on it.  Unfortunately, the papers of Kondo and collaborators were made know to 
this author just short of the completion of this report, so the aforementioned papers can be 
considered no further here. 
 In the opinion of the author, Riemannian and non-Riemannian geometry will, above 
all, play a role for large elastic distortions.  In the first place, they are, in another 
connection, extraordinarily well-developed geometries that are formulated for arbitrarily 
large distortions from the outset.  Secondly, the incompatibility tensor ηij is uniquely 
responsible for the proper stresses only for small distortions, while the Riemannian 
curvature tensor is also responsible for large ones.  On the other hand, one must 
constantly contend with tensors of rank three and four in theories that one can, at least in 
the case of small distortions, always replace with ones of lower rank [cf., eq. (IV.9) and 
(IV.27)].  As a result, the theory that was described in the first paragraph of this report in 
the case of small distortions seems particularly suitable when compared to one of the 
other theories, especially since it is developed somewhat closer to the physical processes 
of plastic forming. 
 In the introductory remarks to this chapter, we have hinted at the differing viewpoints 
of Kondo and BBS.  Now, we shall briefly mention a second difference between the two 
theories that exists independently of the first one. 
 For a given reference state and final state of the body, the Da

α and Eβ 
a in eq. (IV.34) 

are uniquely determined 1, but not the Aλ  
j and Aj 

χ in eq. (IV.12).  Here, one still has a 
free choice of coordinate system.  We would now like to first have at our disposal the 
freely-defined orientation of the elementary region in the natural state of Kondo, so it has 
the same direction everywhere.  Furthermore, we imagine the final state of a virtual, 
ideal, point lattice, at best of the same form as the real atomic lattice in the ideal state, 
impressed (aufgeprägt) in such a way that, e.g., the ij are the basis vectors of this lattice, 

                                                
 1 By the convention in footnote 2, pp. ?  
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just as the ia are the basis vectors of the reference lattice of BBS.  If one could also 
establish this virtual lattice in the natural state then it would have suffered precisely the 
opposite (reciprocal) deformations and rotations as the actual atomic lattice under the 
transition from the natural state to the final state.  The virtual lattice can, in the natural 
state (in which it is deformed), be completely described by a system of basis vectors eλ .  
Thus, if one chooses, like Kondo, the basis system eλ from the present viewpoint then eq. 
(IV.12) takes on the same significance for the virtual lattice as eq. (IV.34) does for the 
real one.  That is, any Aj 

χ that take the virtual lattice from the natural state into the final 
state are numerically equal to the Da

α that take the atomic lattice from the natural state or, 
equivalently, the reference state, to the final state.  The latter is true due to the definition 
above of the orientation in the natural state. 
 From this, it follows that the components of Γi

[km] in eq. (IV.21) and Lα 
[βγ] in eq. 

(IV.38), which indeed both refer to the Cartesian coordinates of the final state, do not 
need to agree numerically, and it then follows that the dislocation densities αααα computed 
in eq. (IV.27) and (IV.45) will generally deviate from each other.  One can refer to the 
dislocation density calculated by Kondo as “virtual.”  There is no particular difficulty at 
all in converting the real and virtual dislocation densities into each other. 
 Finally, this difference in results of the two theories is a matter of convention that one 
should endow with no more significance than a sign convention.  In the case of small 
distortions the difference between virtual, local, and true dislocation densities vanishes, 
and eqs. (IV.21) and (IV.38) then go directly into the (I.17) of the fundamental geometric 
equation, as we now show: 
 As remarked above, Kondo’s Aj 

χ and the Da
α of BBS are numerically equal.  Their 

meaning can be described are a distortion of the lattice from the reference state to the 
final state.  This distortion has the form I + ββββ, where ββββ is identical with our previous 
distortion tensor (I ≡ identity tensor of rank two).  For small distortions then the 
reciprocal distortions, which are represented by Aχ 

i and Eβ 
a are equal to I – ββββ.  If one 

substitutes this in eq. (IV.21) and (IV.38) and one neglects ββββ compared to I in the Aχ 
i 

(Da
α, resp.) that stands in front of the bracket the one obtains: 

 

Γi
[km] = − 

1

2
(∂m βk 

i − ∂k βm i),    (IV.53) 

resp.: 

Lα 
[βγ] = − 

1

2 x x

α α
β γ
γ β

β β ∂ ∂
−  ∂ ∂ 

.    (IV.54) 

 
These equations are identical (the fact that Latin indices appear in one, while Greek 
indices appear in the other likewise arises, like the difference in sign, only from the 
difference between the conventions used by Kondo and BBS).  Likewise, one sees upon 
consideration of eq. (IV.45) that eq. (IV.54) is identical with our fundamental geometrical 
equation (I.17) in the case of small distortions.  Furthermore, one can make a proper 
vector equation out of eq. (IV.42) when one refers all quantities on the right-hand side to 
the reference state, as in § 10.  One then obtains, after comparing with eq. (I.14), the 
fundamental geometric equation with the interpretation that is valid for large distortions.  
In the general case of large distortions (cf., § 10), one needs to refer the fundamental 
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equation to the coordinates of the points in the final state, because the equilibrium 
conditions themselves likewise refer to these coordinates.  One then must employ the 
fundamental equation in the form (IV.21) ((IV.38), resp.). 



 

Chapter V 
 

Applications 
 

 The continuum theory of dislocations has still not been explored up to now in the 
context of the continuum-mechanical problems that are usually treated in classical 
elasticity theory, since the time since its formulation has been too short.  Heretofore, the 
problems that were treated continuum-theoretically were of a predominately physical sort 
and involved, above all, isolated dislocations and atoms.  An essential ambition of 
modern plasticity research is to understand the fundamental phenomena by starting from 
the microscopic picture.  It has been shown that one can approximate the hardening of 
metals only in this way.  We first bring up a few points about hardening in § 29, because 
we believe that the reader can be presumed to have a certain interest in such matters, in 
other words, to show the way in which difficult mathematical problems often come to the 
surface as a result of such considerations.  The phenomenon of hardening is not purely 
mechanical, but has a complex physical nature, and here we can give, at best, an entirely 
brief insight into the way that such problems are treated today.  For a presentation of the 
current state of hardening theory, refer to the new Handbuch article of Seeger [135]. 
 In our opinion, the description of point-like lattice defects (foreign atoms, lattice 
vacancies, etc.) as dipoles or polarization centers takes on a fundamental meaning, so in § 
31 we will treat four problems that show, in an impressive way, what sort of far-reaching 
problems can be coped with using the simple formulas of § 19 for such elastic 
singularities.  It would certainly be a worthwhile problem for experimental research to 
measure and tabulate the dipole strength and polarizability for the largest possible 
number of atoms B embedded in a ground substance A, since this has long since been 
done for, e.g., electric and magnetic dipoles and polarizabilities. 
 Finally, in § 32, we shall give examples of the practical significance of the stress 
function tensor.  We believe that the complete study of this tensor will bring to light 
many results of practical significance, of which we feel that the examination of the three-
dimensional, and also rotationally-symmetric, boundary-value problem is especially 
urgent.  These are only problems of an essentially mathematical nature, and § 32 may 
thus be regarded as an impetus to the mathematical circles, in that sense.  In addition, § 
32 includes the most important results on circular dislocations, which are not yet to be 
found in the literature. 
 
 

§ 29.  The hardening of face-centered, cubic metals 
 

 One of the most interesting − but, at the same time, most difficult − problems of 
modern solid-body physics is the hardening of metals.  Fig. 30 shows the typical 
hardening curve for a face-centered, cubic unit crystal, as one would establish in a tensile 
test.  One cannot derive this curve deductively from the basic equations of continuum 
mechanics or any laws of solid-body physics, since it largely relies upon empiricism.  
One makes certain assumptions about the processes that are at work inside the body 
during plastic forming and then examines the circumstances under which they would lead 
to hardening.  One then performs the corresponding experiment and tests the extent to 
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which it is in agreement with the theoretical predictions.  In that way, one has learned to 
distinguish the three clearly distinct hardening 
domains I, II, III in Fig. 30. 
 In 1934, Taylor [149] first came up with the idea 
that proper stress fields were created under plastic 
deformation by the migration and compression of 
dislocations that tended to inhibit the further 
migration of the dislocations.  This qualitative picture 
is still valid to this day. 
 The stress field in a crystal that originates in the 
applied external loads can be decomposed into its 
components along the glide plane and the glide 
directions.  The shearing stress will then be greatest in 
one of the glide systems; we call it τ.  This so-called 
principal glide system will be the first thing that we 
occupy ourselves with.  In case the crystal is 
favorably oriented with respect to the strain axis, this 

glide system will remain up to the greatest deformation of the principal glide system, 
which is, for the most part, due to the plastic change of form.  Fig. 31a, b show how a 
lengthening of the strain axis is produced by a glide in a glide system.  For theoretical 
investigations, the external shear stress t will, in general, be applied against the glide in 
the principal glide system.  This is defined to be the ratio of the (mean) relative plastic 
displacement of two lattice planes at a distance of d to d, which is then the plastic 
distortion P

ijβ , if i characterizes the glide plane and j characterizes the glide direction at 

the point in question on the hardening curve.  Furthermore, we call this glide γ.  At the 
same time, τ will have the meaning of a flow stress, since Fig. 30 gives the stress that one 
requires in order to make a crystal that has performed a forming γ flow further. 
 According to Seeger [137], one can split the flow 
stress of a pure metal into two parts by to the formula: 
 

τ = τS + τG , 
 
where τS is the part that the dislocations in the principal 
glide planes need in order to intersect the dislocations that 
traverse the other glide plane and pierce the principal 
glide plane (often referred to as a “forest of dislocations”).  
τG will be required to overcome the far-reaching stress 
field of the dislocations in the principal glide system.  For 
many questions, τS will play no role in relation to τG , 
which is why we would like to restrict ourselves to the 
consideration of τG . 
 
 Frank and Read [51] have given a mechanism by 
which one can define closed rings of dislocations by 
means of shearing stresses that are applied to the glide 

 

I II III 
γ 

τ 

Figure 30.  Typical hardening curve 
for a cubic face-centered metal 
(e.g., Cu).  In the elastic domain, the 
curve τ(γ) will practically coincide 
with the τ-axis in our units. 

 

a b 

Figure 31.  Model for plastic 
stretching of a rod. 

From Schmidt-Boas [129]. 
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system in question.  For this, one requires a not-too-short piece of a dislocation A B (Fig. 
32a), which fixed at its ends in some way, perhaps in such a way that it defines a so-
called dislocation node there with other dislocations (this is not indicated in the figure), 
which is often immobile then.  The dislocation then bulges under a suitable shearing 
stress (Fig. 32b).  From eq. (II.148), the force on a dislocation in a stress field will always 
be perpendicular to the dislocation line, so it will successively bulge into the forms that 
are indicated by Fig. c, d.  The curve segments at C have the same Burgers vector, but 
opposite line directions, so the dislocations will have opposite signs, so, from § 18, they 
will draw together until they might annihilate, such that ultimately a new ring (e) is 
formed, and the original line A B remains.  The process can then start all over again.  This 
formation of a dislocation ring is completely analogous to the creation of soap bubbles, in 
which the line stress takes on the role of the outer surface stress for the soap bubble.  The 
required starting lines A B are also present in an undeformed crystal in sufficient number, 
since a “network” of dislocations is already constructed in the crystal by its growth (1).  
For many metals, the number of dislocations that pierce 1 cm2 is on the order of 107, and 
under deformation, it will increase by several more orders of magnitude. 

 

C a 

A 

B 

b c d e 

x2 

x1 
b 

Fig. 32.  Generating a dislocation ring with the help 
of the Frank-Read mechanism  

 
 In the hardening domain I – which is usually referred to as the “easy-glide domain” – 
the so-called hardening coefficient dτ / dγ is relative small, so the dislocations can form 
and wander without much obstruction.  From the length of the electron-microscopically 
visible glide lines on the outer surface of the crystal (which was polarized before the 
deformation), one can conclude (Mader [96]) that the dislocations define paths here that 
are comparable to the cross-sectional dimensions of the crystal (mm). 

                                                
 (1) Dislocations play a principal role in the theory of crystal growth.  One might confer Frank [49], 
Verma [154], Dekeyser and Amerlinckx [32]. 



128 V.  Applications 

 The essentially stronger hardening coefficient in the hardening domain II will be 
attributed to the appearance of Lomer-Cottrell dislocations (§ 24) that shrink the glide 
path of the dislocations noticeably.  One of the dislocations that emanate from a Frank-
Read source might possibly coalesce with a dislocation that moves in a second glide 
system, such that a Lomer-Cottrell dislocation reaction will take place.  None of the other 
dislocations of the aforementioned source will get past this obstruction now, but they will 
pile up against it and will perhaps define a dislocation wall of the kind in Fig. 24 (but 
with variable distances between the dislocations).  Seeger, Diehl, Mader, and Rebstock 
[143] have investigated the processes in hardening domain II theoretically and 
experimentally by starting with this picture, and could explain the linear rise in the 
hardening curve in domain II, at least quantitatively. 
 The hardening coefficient is even smaller in domain III of the hardening curve.  This 
is currently explained by saying that now the possibility emerges of going around the 
obstruction by the increased external shearing stress of the piled-up dislocations.  In order 
for that to happen, in any case, the breakdown of the dislocation lines (§ 24) in the glide 
plane must decrease over a distance of several atomic distances.  This cannot come about 
by means of the stresses that originate at the location of the dislocations alone, since that 
would require an increase in the free energy on the order of eV at the location in question 
(cf., footnote 1 on pp. 7).  The distance between the semi-dislocations will then be 
reduced somewhat by the resulting external and internal stresses at the location of the 
dislocation, while the rest of the energy that one needs in order to make the breakdown 
decrease completely (viz., the so-called activation energy Q) must be produced by 
temperature fluctuations.  Obviously, Q will depend upon the stress, and it is only when 
that is sufficiently large (so Q will be sufficiently small) that the activation energy will 
actually result from temperature fluctuations. 
 For that reason, step dislocations will indeed still not have more possible glides than 
before, since, from § 24, only one glide plane orientation will exist for them.  By contrast, 
screw dislocations that, from § 24, extend in the <110> directions, which always define 
the line of intersection of two {111}-planes, can, after the splitting dies out, split in the 
other {111}-plane, which will be the so-called “transverse glide plane” for it.  Fig. 33 
illustrates this process.  The newly-obtained degree of motion for the screw dislocations 
will lead to the observed reduction of the hardening rise. 
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Figure 33.  Transverse guiding in a screw dislocation.  Hatched region: stacked defect, 
z ≡ x3 .  From Seeger [134]. 
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 Seeger, Diehl, Mader, and Rebstock [143] have verified the validity of this picture 
conclusively by observing the outer surfaces of polarized crystal with an electron 
microscope.  However, the complete rounding-off of the picture of hardening in domain 
III belongs to the treatment of a new problem statement that still cannot presently be 
resolved satisfactorily, due to great mathematical difficulties (1). 

For the time being, we shall base our 
discussion upon that of Schoeck and Seeger 
[133] or Seeger [134] (pp. 610, et seq.), resp.  
If the length 2l over which the splitting dies 
off is very large compared to the width 2η0 
(Fig. 34) of the splitting then one will find 
the dislocation to be almost in a state of 
unstable equilibrium, since the probability of 
it splitting in the principal glide planes is not 
essentially larger than the probability of it 
splitting in the transverse glide planes.  The 
shorter the segment 2l is, the more preferable 
the principal glide plane will generally be.  

However, if a shearing stress τQ exists in the transverse glide plane then it will be 
preferred, since the dislocation will then flatten and glide in it, so the shearing stress τQ 
can thus perform work (2).  From this, one can conclude that any such shearing stress will 
be associated with an equilibrium length 2l0, for which, the splitting in the principal and 
transverse glide planes will be equally probable.  At that length, the splitting of the 
concentrated dislocations in the principal glide system must, at the least, diminish when 
the external pressure is produced by a jump in the transverse glide system.  The activation 
energy Q of this process will be the energy that the temperature fluctuations must give 
rise to in order to exhibit two parallel semi-dislocations at a distance of 2η in the 
configuration of Fig. 34. 

 

2l 

k k′ 

x1 

x3 
2η0 

b 
1 

2 2 

1 

Figure 35.  A somewhat simpler model for the calculation of the activation energy for 
transverse guiding. 

a c 

 
   
 One can deduce a value for the so-called specific stacked defect energy from 
experiments, which is the energy that is required for the formation of a stacked defect that 
extends completely through the crystal, measured per cm2 of stacked defect surface.  The 

                                                
 (1) This problem is currently being worked on. 
 (2) One observes: The resultant force on the concentrated dislocations is approximately zero in the 
principal glide plane, since otherwise it would, in fact, glide. 
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Figure 34.  Calculating the activation energy for 
the transverse guiding in a screw dislocation.  
The distance between the dashed l ines is 2η0 .  
From Seeger [134]. 
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activation energy Q then takes on the following parts: The (positive) energy E12 that one 
needs in order to overcome the mutual repulsion of the two semi-dislocations under 
bending together and the (positive) energies E11 and E22 that one needs in order to bring 
the semi-dislocations alone into the position of Fig. 34 (in which they will be longer than 
before).  Finally, the (negative) stacked defect energy ESt that one gets due to the fact that 
the stacked defect surface will be reduced. 
 The exact calculation of the activation energy raise great difficulties, since the form 
of the curve for the dislocations is not known at all, but will first be ascertained by the 
calculus of variations.  For this, only direct methods will be at issue in practice.  Since the 
asymmetry of the arrangement in Fig. 34 is not established physically, we would like to 
depict the foregoing in the somewhat simpler arrangement of Fig. 35.  We take the free 
parameters to be, e.g., the transverse glide length 2l, the splitting width 2η, and the rise in 
the curve at the nodes K and K′.  The calculation of the part ESt is trivial.  The part E12, 
which previously raised great difficulties, will follow very simply from formula (II.136).  
The main work provokes the energy E22 .  The line 2 consists of three pieces a, b, c.  We 
write E22 = Eaa + Ebb + Eab + Eac + Ebc .  Thus, Ebb is very easy to obtain from eq. (II.144), 
and likewise, Eaa and Aac are relatively easy, since one of the two line integrals in eq. 
(II.128) proves to be elementary in that case.  Since Eaa = Ebb , the main problem is then 
the calculation of Eaa  and Eac .  Meanwhile, the branches a and c are relatively far apart, 
such that Eac certainly makes a small contribution to E22 that is not entirely precise.  One 
can then deal with this part with a simple approximate calculation.  Thus, what essentially 
remains will be the energy Eaa that one needs in order to bring the branch a into the 
precise form that is given in Fig. 35.  We will treat the problem of the self-energy of 
curve dislocations in the next paragraph and will see that one can manage quite well 
today with not-too-complicated curve forms. 
 One is then currently in a position to treat successfully the activation energy problems 
of the aforementioned kind that show up very often in solid-body physics with the 
methods of the continuum theory and to confirm or contradict by comparison with 
experiment the conclusions about elementary processes in solid bodies that were deduced 
in other ways. 
 
 In aluminum, in contrast to copper, the stacked defect energy is relatively large, so 
the splitting, and simultaneously the activation energy, will be small, such that one should 
expect that here hardening domain III will begin with essentially smaller stresses than it 
does for copper.  This is confirmed quite well by experiment.  It is very satisfying that 
one can presently understand the differences in hardening behavior of cubic face-centered 
metals almost quantitatively that has been quite puzzling for some years.  The hardening 
of cubic space-centered metals is understood much less well. 
 
 

§ 30.  An approximation method for the calculation of the self-energy of singular 
dislocations 

 
 The self-energy of bent dislocations is important for many problems of solid-body 
physics.  Compared to the older methods, in which one must evaluate, at the very least, a 
line integral of a function that was given as a surface integral in order to obtain the self-
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energy of the dislocation, the reduction of the problem to the double line integral (II.145) 
represents a great advance.  Still, it may be evaluated exactly only in the simplest cases.  
From Kröner [83], one reaches one’s destination in the complicated cases with the help 
of the convergent approximation method that we will now describe. 
 The starting point is eq. (II.145), in which the cutoff length ε will have to be assumed 
as given.  For the semi-dislocations that appeared in the last paragraph, one takes ε as in 
eq. (III.58).  The integral in eq. (II.145) will have either the form: 
 

| |L L

dL dL

ε′

′
′−∫ ∫ x x

     (V.1) 

 
or the forms that one obtains when one adds either the expression 1 1 3 3( )( )x x x x′ ′− − / (x − 

x′)2 or the expression 2
3 3( )x x′− / (x − x′)2 to the integrand of (V.1) as a factor.  The 

calculation of the latter integral is not essentially different from that of eq. (V.1), so we 
would like to restrict ourselves here to the treatment of (V.1).  One will now have: 
 

dL = dx1 i1 + dx3 i3 ,  dL′ = 3 1 1 3dx dx′ ′+i i ,  (V.2) 

 
such that one must compute integrals of the form: 
 

| |
i jdx dx′

′−∫∫ x x
, i, j = 1, 3.   (V.3) 

Thus, in the expression: 

| x − x′ | = 2 2
1 1 3 3( ) ( )x x x x′ ′− + − ,   (V.4) 

 
one must always replace one of the two quantities x1, x3 ( 1x′ , 3x′ , resp.) with the other one 

according to the curve equation x1 = x1(x3).  If the dislocation is piecewise straight then 
the evaluation of the integral is elementary.  For curves of degree two, one obtains elliptic 
integrals; in other cases, one can evaluate the integral numerically.  In the case of § 29, 
where the curve equation includes free parameters, such a process would be much too 
involved.  The following method then leads to our destination in many cases: We set: 
 

| x − x′ | = 3 3 1x x s′− + ,  s ≡ 
2

1 1

3 3

x x

x x

 ′−
 ′− 

  (V.5) 

 
and develop the root w(s) in a Legendre polynomial in S in the domain 0 ≤ s ≤ S.  Since 
w(s) is a parabola, one can compute with good convergence, as long as one takes S to be 
not much greater than, say, 3.  Due to the simple form of w(s), the estimation of the error 
will involve no great effort.  If the dislocation moves, e.g., in such a way that its tangent 
vector never defines an angle < 30o with the ± x1 direction then obviously 0 ≤ s ≤ 3, and 
the development of w(s) will converge quite well along the entire dislocation.  In the 
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event that, by contrast, the dislocation includes approximately vertical places, along with 
the approximately horizontal ones, one will employ: 

| x – x′ | = 1 1 1 1/x x s′− + ,  s ≡ 
2

1 1

3 3

x x

x x

 ′−
 ′− 

 ,  (V.6) 

 
in addition to (V.5) and represent w(1/s) as a Legendre polynomial in 1/s.  However, it 
would be good to investigate whether one can, in the relevant case, avoid the 
complication that is linked with it, namely, that one adds higher terms in the development 
of the development of w(s), by which, the domain 0 ≤ s ≤ S can be enlarged, in such a 
way that one might perhaps no longer need w(1/s).  The foregoing is recommended, e.g., 
for the calculation of the energy Eaa . 
 The scope of the calculations will be, for the most part, determined by the form of the 
curve for the dislocation.  If x1(x3) is a polynomial then that will make the integrations 
elementary.  The same thing will be true for, e.g., the hyperbolas x1 ± a = c / (x3 ± b), and 
indeed this statement will also be true for finite segments of hyperbolas.  One can 
obviously describe the line segments a, c in Fig. 35 with such a hyperbola and calculate 
the energy in an elementary way, moreover.  The scope of this calculation is tolerable. 
 Naturally, one can also apply the same processes to the calculation of interaction 
energies of two bent dislocations using eq. (II.128).  Thus, one can then also calculate the 
activation energy that belongs to the arrangement in Fig. 34. 
 
 The τ3 part of the flow stress will be required for the reciprocal intersecting of two 
dislocations.  According to Heidenreich and Schockley [64], the splitting must die off 
around the point of intersection of both dislocations.  One will then obtain a so-called 
constriction (Stroh [148]), which will follow from Figs. 34 and 35 when one sets l = 0 in 
them.  Schöck [132] and Schöck and Seeger [133] calculated the activation energy for the 
intersection of dislocations in some cases that were in satisfactory agreement with the 
experimentally-measured activation energies (cf., also Seeger [136]). 
 
 

§ 31.  Foreign atoms as elastic dipoles and polarization centers 
 

 One speaks of “foreign” atoms when one finds isolated atoms of a second sort B in a 
crystal that consists of atoms of one sort A.  A foreign atom can either replace the regular 
lattice site of an atom A (viz., a substitution) or it can occupy a so-called “intermediate” 
lattice site.  This will happen especially when the atom B is very small in comparison to 
the atoms A.  Very small sets of such foreign atoms can already influence the so-called 
“structural sensitivity” properties of matter very strongly (Smekal [145]).  It is known that 
there are strong variations of the properties that iron exhibits when carbon (C) has been 
dissolved in it in a dilute concentration.  Here, the C atoms will sit on intermediate lattice 
sites.  From Cottrell [23] and Cottrell and Bilby [25], the elastic interaction of the C with 
the dislocations in iron is responsible for, e.g., the known “yield-point effect” of steel. 
 Fig. 36a shows how such a C atom is installed in the cubic space-centered lattice of 
iron.  In order for it to have sufficient room, it must push the neighboring atoms apart.  
One will obviously obtain the same state of distortion of the lattice in the immediate 



§ 31.  Foreign atoms as elastic dipoles and polarization centers. 133 

vicinity when one applies any force of magnitude P to the location of the C atom that 
pushes the one atom up and the other one down.  If a is the distance between atoms in the 
normal state then one will have a force dipole here that has one non-zero component P22 
= a P. 
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Fig. 36a)  Intermediate lattice sites in cubic space-centered crystal as a model for 
carbon atoms in an iron lattice.  For clarity, only the required atoms are indicated in 
their entire magnitude.  For d = a 3/ 2 , each atom will contact its eight nearest 
neighbors. 
    b)  The same thing, after switching the places of the intermediate lattice atoms. 

(Read x2 for y and x1 for z.)  
 
 The picture that was just described is a bit too simplistic.  For a more precise 
discussion, one must examine which of these atoms hold together; that will be determined 
by the special type of electron distribution 
that exists.  One can show that with the 
inclusion of the C atom, not only will the 
force ratios between two neighboring 
atoms change, but other neighboring 
atoms will be drawn into the sphere of 
influence.  One must then reckon that 
collectively the C atom does not act as 
just an isolated dipole P22, but that other 
dipole components, as well as components 
of higher poles will also play a role.  
However, experience has shown that the 
direct interaction between atoms already 
dies off so quickly at a scale of one 
atomic distance that one can indeed 
describe the C in the situation of Fig. 36a 
by its dipole components P22, as well as 
P11 and P33, to good approximation. 
 An example of the substitution of a foreign atom is shown in Fig. 37.  Here, one can 
think of the foreign atom as being replaced by a number of force dipoles that are rotated 
through 60o from each other.  One can show that the displacement field that is provoked 

 

Fig. 37.  Substitution of a foreign atom in closest-
packing plane.  The atomic rows are bent slightly. 
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by such a dipole arrangement will be that of a dilatation center Pii (1).  In fact, in a 
continuum a dilatation center will correspond to small constrained sphere. 
 For many problems, it is important to know the energy with which a foreign atom is 
bound to a dislocation.  In general, a dislocation will exert a force on a foreign atom by 
means of its elastic deformation field according to eq. (II.156).  If one moves it from a 
site with zero deformation to a site with a deformation εij in the neighborhood of the 
dislocation then one can arrive at an energy in the given case that would follow from eq. 
(II.165).  The wandering of such an atom will first become possible with the aid of 
temperature fluctuations.  By imposing a shearing stress (at least, at room temperature), a 
dislocation can now glide with an essentially larger velocity than that of the foreign atom, 
which the dislocation naturally strives to maintain, There then exists a tendency for the 
applied shearing stress to separate the dislocation and the foreign atom.  However, extra 
energy will be required for that, whose magnitude will be equal to the “binding energy” 
of the foreign atom to the dislocation.  According to Cottrell, in the normal state, any 
dislocation will be surrounded by an entire “cloud” of C atoms, such that collectively a 
seemingly large extra energy will be necessary in order to rip the dislocation loose from 
the cloud and help it gain its actual mobility.  This leads to the well-known yield-point 
effect (2). 
 We would now like to examine the interaction of the C atom with a screw dislocation 
by appealing to the method of representation in Cochardt, Schöck, and Wiedersich [16] 
(3). 
 In iron, screw dislocations move in the <111> direction.  We next restrict ourselves to 
calculating the interaction of a force dipole P11 with a screw dislocation in the [111] 
direction.  The starting point is the two equations: 
 

Kk = Pij Vk εij,     (V.7) 
U = − Pij εij      (V.8) 

 
of § 19.  In polar coordinates ρ, ϕ, z, with [111] for the z-direction and ϕ = 0 in the  
[211]-direction, the deformation field that follows from the stress field (II.118) will have 
only the components: 

εzϕ  = εϕ z  = 
4

b

πρ
.     (V.9) 

 

                                                
 (1) This statement is true in the case of a cubic face-centered lattice, but now, however, for the 
hexagonal lattice, with no further assumptions,  since in the latter the elastic compliance that relates to the 
isolated dipoles will depend upon their direction, so one will need differing dipole strengths in order to 
displace opposing atoms from each other by the same amount. 
 (2) According to the most recent argument of Seeger [135], this basis must be modified.  
 (3) Cottrell and Bilby have described the C atom as essentially a center of dilatation Pii , and thus 
obtained no interaction with a screw dislocation, since εii  will vanish for a screw dislocation from eq. 
(II.118).  As these authors themselves remarked, and as was emphasized by Crussard [27] and Nabarro 
[107] especially, this will follow from a consideration of the tetragonality of the distortions as a result of 
the interactions of a C atom with screw dislocations.  This was first investigated quantitatively by 
Cochardt, Schöck, and Wiedersich [16].  They employed no force dipole explicitly, but their method is very 
similar to our own. 
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From eq. (V.8), a force will be exerted on a dipole in the field of such a screw dislocation 
only when it likewise has a zϕ (ϕz, resp.) component.  As a tensor, the force dipole can 
now be transformed into the ρ, ϕ, z system by the usual rules, and one will get: 
 

Pzϕ = Pϕ z = (iϕ ⋅⋅⋅⋅ i1) (iz ⋅⋅⋅⋅ i1) P11 .    (V.10) 
 
If we set iϕ  = 

0 90
cos sinϕ ϕϕ ϕ+i i  then 

0ϕi  will be the unit vector that is perpendicular to 

the vectors iz = 1 1 1
3 3 3, , 

 
  and 

90ϕi = 2 1 1
3 6 6, , − − 

 (1).  
0ϕi = iz × 

90ϕi will have no 

component in the x1-direction, as one easily confirms, such that one will ultimately 
obtain: 

Pzϕ = Pϕ z = 
2

3
P11 sin ϕ     (V.11) 

 
for eq. (V.10).  Thus, from eq. (V.7), since εϕ z depends upon only ρ, the dipole will 
experience a force: 

Kρ = 
2

sin

3 2

b ϕ
ρπ

−
 P11 .    (V.12) 

 
This will be a force of tension in the domain 0 < ϕ < 180o, and a compression otherwise.  
If one repeats the same argument for P22 and P33 then one will obtain formulas that 
follow from eq. (V.12) when one replaces ϕ with ϕ + 180o (ϕ + 240o, resp.) in it.  This 
symmetry will be a natural consequence of the fact that the [111] direction defines the 
same angles with the xi-axes. 
 One obtains the energy of the dipole P11 in the elastic field of the dislocation: 
 

U = − 11 sin

3 2

b P ϕ
ρπ

     (V.13) 

 
from eq. (V.8), along with (V. 9) and (V.11). 
 The application of these formulas to the case of the C atom is hindered by the fact 
that the dipole strength is not known for the C atom.  At present, one can still supply it 
only experimentally, which means that one needs a theory of how to couple the dipole 
strengths with the experimentally-measured values, which it admits.  There is still no 
process that is applicable in every case, as of yet. 
 Eshelby [39] has given the following method for measuring the dipole strengths of 
dilatation centers: One dissolves a number of atoms of type B in a pure metal A (e.g., Al 
in Cu) and measures the changes in the lattice constants that then appear.  They will 
depend upon the concentration of the atom B in A that is of issue and the strengths of the 
dilatation centers.  Eshelby has given the necessary formulas for the determination of Pii  
from the changes in the lattice constants. 

                                                
 (1) One sees immediately that iz and 

90ϕi  are unit vectors in the [111] and [211]  directions, resp. 
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 We would now like to say that this method is capable of being extended to the case of 
arbitrary force dipoles.  If one distributes a number of force dipoles statistically in a 
previously homogeneous pure body A then that will change its external form and size, in 
general.  If one chooses certain physical volume elements that contain very many such 
dipoles (but are, on the other hand, very small compared to the external dimensions of the 
body) then one can say that every volume element will have been imprinted with a mean 
(macroscopic) deformation Qijε  (§ 6) as a result of the dipole distribution.  If we assume 

that the concentration is constant as a function of the volume element (which one can 
generally achieve experimentally) then the connectivity of the body will not be disturbed 
by these imprinted deformations – i.e., no (macroscopic) elastic deformations will be 
necessary in order to keep the body compact.  Therefore, the imprinted deformation will 
already be the macroscopically-observed total deformation εεεεG.  The macroscopic stresses 
will vanish. 
 Now, it is clear that one cannot distinguish macroscopically whether one has, say, 106 
dipoles of strength Aij or 107 dipoles of strength Aij / 10 in a volume element; in other 
words, one can think of the N dipoles of strength Pij as being replaced with a constant 
dipole density pij that is determined from the condition: 
 

ijV
p dV∫∫∫ = pij V = N Pij .    (V.14) 

 
Rieder [123] called such a dipole density, when taken to be negative, an “extra stress,” 
and the term “imprinted stress” was also meaningful.  It will be connected with the 
imprinted deformation only by way of the equation (cf., [123], [122]): 
 

pij = cijkl
Q
klε ,     (V.15) 

 
as one easily sees (1).  Since pij is known, one will likewise have the total deformation 

G
ijε = Q

ijε  of the body.  Conversely, one will immediately obtain the dipole strength: 

 
Pij = (V / N) cijkl

G
klε     (V.16) 

 
for a known concentration N / V and total deformation Gijε . 

 Due to the assumption of Hooke’s law (V.15), the method will be true only for small 
deformations.  One can conveniently measure them as changes in the lattice constants (2).  
Once more, in general, one does not employ entirely simple arguments in order to 
convince oneself that the changes in the lattice constants that one establishes 
Röntgenographically will actually be directly equal to the macroscopic deformation.  

                                                
 (1) One imagines that outer surface forces that initially produce no deformation are combined with the 
dipole density at the same time.  One can then excise the volume element and measure the forces pij dFi that 
one must add if no distortions are to be present. The deformation that is associated with the relaxation of 
tension will naturally be coupled to these stresses by Hooke’s law.  One likewise sees that one must work 
with small pij – i.e., small concentrations – since otherwise eq. (V.15) would no longer be true. 
 (2) Since one must generally melt the probe in order to introduce the dipole, one can compare their 
external dimensions with and without dipoles only very poorly.  
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Naturally, one will very well have microscopic stresses and fields of elastic deformations 
that change signs over distances whose order of magnitude is the mean distance between 
dipoles.  The investigations of Miller  and Russel [101], Huang [66], Teltow [150], and 
Eshelby [39] regarding this subject seem to have answered this question in the positive 
(1). 
 In cubic, space-centered iron-carbon the C atoms are distributed statistically over the 
three possible positions – we would like to call them, mutatis mutandis, the 1, 2, and 3 
positions.  One can establish only one uniform dilatation of the lattice and obtain only 
one intersection statement about the Pij in this case.  By contrast, the C atoms in 
martensite are arranged tetragonally (e.g., all of them in the 1-position), so one would 
expect a strong dipole P11 and two weak dipoles P22 and P33 . 
 Kurdjumov and Kaminski [85] obtained an increase in the lattice constant c in the 1 
direction from 2.86 to 2.96 Å for 1 Gew.-% of C in Fe (corresponding to V / N = 2.58 ⋅⋅⋅⋅ 
10−22 cm3), while, at the same time, the ratio c / a rose from 1.0 to 1.04.  (a = lattice 
constant in the 2 or 3 direction, resp.)  This means that there are rotations 11

Gε  = 0.035, 

22
Gε = 33

Gε  = − 0.0048.  With c1111 = 2.37 ⋅⋅⋅⋅ 1012 dyne/cm2, c1122 = 1.41 ⋅⋅⋅⋅ 1012 dyne/cm2 (2), it 

will follow easily that (3): 
 

P11 = 11.2 eV,  P22 = P33 = 4.6 eV.   (V.17) 
 
One will then obtain the energy of the total dipole that represents the C atom at a distance 
of b from the screw displacement when ϕ = 90o (where | U | is maximal) as 0.5 eV (4) 
from eq. (V.13) and the corresponding formulas for P22 and P33 . 
 We shall briefly give an application to the important Snoek effect [146] (5).  If one 
imposes a stress σ11 in the crystal of Fig. 36a such that it is extended in the x1-direction 
then the C atoms would like to cross over to the 1-positions (Fig. 36b) since they would 
have more room there.  The total deformation will now be composed of an elastic part εij 
= sijkl σkl and an additional quasi-plastic deformation Q

ijε  = sijkl pkl [eq. (V.15)], where pkl 

is the change in the dipole density that appears as a result of the transition of n dipoles 
from 2 and 3 position into the 1 position.  The total deformation will then be: 
 

G
ijε  = sijkl (σkl + pkl).     (V.18) 

 

                                                
 (1) Cf., the discussion of Eshelby [39].  
 (2) One now has c1111 = c2222 = c3333 ≡ c11,  c1122 = c1133 = c2211 = (etc.) ≡ c11,  c11 and c12 are both taken 
from Zener [158], pp. 17. 
 (3) 1 eV = 1.60 ⋅⋅⋅⋅ 10−12 erg.  
 (4) The discrepancy with the value of 0.75 that was obtained by Cochardt and collaborators then 
originates in the fact that these authors employed the isotropic E modulus.  This is a practically meaningful 
and instructive example of how large the difference can be when one does not consider the elastic 
anisotropy of the crystal. 
 (5) The Snoek effect is much used for the determination of the smallest C content in Fe [75].  Zener 
[158] has treated this effect theoretically in a very satisfying way, so we shall use his presentation, in part.  
What is new and different here is the fact that we will be attributing the relaxation of the elastic coefficients 
sijkl to the force dipole that the C atom represents. 



138 V.  Applications 

In this, pkl shall now be expressed in terms of known quantities.  Let 1
ijP , 2

ijP , 3
ijP  be the 

dipoles in the three positions.  Due to the fact that 2
ijP and 3

ijP  have the same value, it will 

then follow from eq. (V.14) that: 
 

pkl = 1 2( )kl kl

n
P P

V
− .     (V.19) 

 
According to Zener [158], one will obtain n in this very simply from Boltzmann 
statistics: 

n = − 1 22

9

U U
N

kT

−
,  for 1 2| |U U

kT

−
≪  1, (V.20) 

 
where U1 is the elastic energy of the dipole in the 1 position, and analogously for U2 .  It 
follows from eq. (V.8) that: 

U1 – U2 = − 1 2( )ij ijP P− εij ,    (V.21) 

from which, one will get: 

pkl = 1 2 1 22
( )( )

9 kl kl ij ij ij

N
P P P P

VkT
ε− − .   (V.22) 

 
We write εij = sijmn σmn in this, and then substitute pkl in eq. (V.18).  That will then give: 
 

G
ijε  = (sijkl + ∆sijkl) σkl ,     (V.23) 

with 

∆sijkl = 
2

9 ij kl

N
Q Q

VkT
,  Qij ≡ sijmn 

1 2( )mn mnP P− .  (V.24) 

 
 One calls sijkl  + ∆sijkl the relaxed elastic coefficients, and one measures them statically 
as the ratio of the total deformation to the applied stress.  By contrast, one can measure 
the unrelaxed elastic coefficients sijkl in oscillating rods for which the period of oscillation 
is short enough that the rearrangement of the dipoles (viz., the relaxation), which always 
takes a finite length of time, cannot take place.  Zener, whose numerical results are 
essentially the same as ours, has further described the way in which ∆sijkl is a measure of 
the magnitude of the observed damping.  Confer Zener [158] for this and the comparison 
with experimental results, which proves to be quite satisfactory. 
 In conclusion, we shall briefly go into polarizability (§ 19).  We assume that the 
probe contain no dipoles, but only centers that can be polarized.  An important example 
of this is the lattice vacancies in many face-centered, cubic crystals (1).  One can refer to 
such a material as dia-elastic, in analogy with the behavior in electrodynamics, and by 
contrast we would like to call a body with dipoles para-elastic.  The para-elastic bodies 
always have a certain dia-elasticity.

                                                
 (1) The fact that the dipole strength of these lattice vacancies is approximately zero was recently 
calculated by Seeger and Bross [142] using electron theory. 
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 If one imposes, e.g., a homogeneous stress σij on a dia-elastic rod then ind
ijP dipoles 

with a density of ind
ijp  will be induced in it.  One will then get: 

 
σij +

ind
ijp  = ijkl klc ε′ ,     (V.25) 

in place of the usual Hooke law: 
 

σij = cijkl εkl       (V.26) 
 
that one would have in the absence of dia-elasticity.  Combining the two equations will 
yield: 

ind
ijp = ( ijklc′ − cijkl) εkl ,     (V.27) 

and 
cijkl = ijklc′ − cijkl      (V.28) 

 
will be the elastic susceptibility of the probe.  Since ind

ijp = ind
ijP N / V, the elastic 

polarizability of eq. (II.169) will be given by: 
 

Rijkl = r ijkl V / N .     (V.29) 
 

ijklc′  and cijkl can be measured quite well in many cases as elastic moduli by a probe with 

and without polarization centers, such that polarizability of a defect site is often obtained 
relatively simply (1).  The interaction of the dia-elastic lattice defect sites is determined 
essentially by the polarizability.  This is a short-range intersection (the force is 
proportional to the – 6 power of distance), since the force between dipoles goes with the 
– 4 power. 
 

 
§ 32.  Applications of the stress function tensor χχχχ′ to rotationally-symmetric and 

three-dimensional problems 
 

 Let ρ, ϕ, z be cylindrical coordinates, and let iρ , iϕ , iz be the associated basis vectors 
(with magnitude 1).  The components of the stress function tensor χχχχ′ might not depend 
upon ϕ .  One can then write the auxiliary conditions i ijχ ′∇  = 0 of § 12, as one easily 

verifies: 
( ) z

z
ρρ ρ

ϕϕ

ρ χ χ
χ ρ

ρ
′ ′∂ ∂

′− +
∂ ∂

 = 0,    (V.30) 

                                                
 (1) The effective moduli 

ijkl
c′  of a probe with polarization centers appear to be reduced or increased in 

comparison with the moduli of the probe without centers according to the sign of ind /
ij kl

p ε .  According to 

Zener [159], all proper stress sources produce yet another effect that always diminishes the moduli.  It goes 
back to an increase in the entropy of oscillation of the body with increasing elastic deformation, which is − 
in contrast to our effect − essentially temperature-dependent.  Thus, it can be isolated experimentally. 
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2

2

( )1 z

z
ρϕ ϕρ χ χ

ρ ρ
′ ′∂ ∂

+
∂ ∂

= 0,     (V.30′) 

( )1 z zz

z
ρρ χ χ

ρ ρ
′∂ ′∂+

∂ ∂
 = 0.    (V.30″) 

 
If they are fulfilled then the stresses will follow most simply from eq. (II.23): 
 

σσσσ = 2G ( )
1 I

m
I

m
χ ′ ′∆ + ∇∇ − ∆ − 

χχχχ , 

with 

 (σρρ + σϕϕ ) / 2G = 
2

21 I

m

m z
χ χ+

 ∂′ ′∆ − ∆ + − ∂ 
, 

 

 (σρρ − σϕϕ ) / 2G = 
2

2 2

4 1

1 I

m

m
χ χ

ρ ρ ρ ρ−
   ∂ ∂′ ′∆ + + −   − ∂ ∂   

, 

 

 σzz / 2G = 
2

21zz I

m

m z
χ χ ∂′ ′∆ − ∆ − − ∂ 

, 

 

 σρ z / 2G = 
2

2

1

1z I

m

m zρχ χ
ρ ρ

  ∂′ ′∆ − +  − ∂ ∂ 
, 

 

 σϕ z / 2G = 
2

1
zϕχ

ρ
  ′∆ − 
 

, σρϕ  / 2G = 
2

1
ρϕχ

ρ
  ′∆ − 
 

. 

 
Now, the Cartesian components of ijχ ′  satisfy eq. (II.20): 

 

ijχ ′∆∆ = ηij .    (V.31) 

It will follow from this directly that: 
 

χ+′∆∆ = η+ , zzχ ′∆∆ = ηzz .    (V.32) 

 
One derives the remaining equations somewhat more tediously: 
 

2 2

1 1 χ
ρ ρ −

    ′∆ − ∆ −   
   

 = η− ,  
2 2

1 1
ρϕχ

ρ ρ
    ′∆ − ∆ −   
   

 = ηρϕ , (V.32′) 

 

2 2

1 1
zρχ

ρ ρ
   ′∆ − ∆ −  
  

 = ηρ z ,  
2 2

1 1
zϕχ

ρ ρ
   ′∆ − ∆ −  
  

 = ηρϕ .  (V.32″) 



§ 32.  Applications of the stress function tensor χχχχ′. 141 

Since ∇i ηij = 0, ηij will naturally be subject to the restrictions that correspond to (V.30).  
One sees that initially the components of χχχχ′ are not coupled to each other by the 
differential equations, although ( , , )zρρ ϕϕ ρχ χ χ′ ′ ′ , ( , )zρϕ ϕχ χ′ ′ , and ( , )zz zρχ χ′ ′  will be linked 

with each other by the conditions (V.30).  One can often say from the outset that σϕ z = 
σϕρ = 0, so one can ignore zϕχ ′  and ϕρχ ′ .  Now, in the event that one further has ηϕ z = ηzz 

= 0, one will require only ρρχ ′  and ϕϕχ ′  in order to arrive at the particular integral.  Even 

though we can still find no rigorous proof, it is very likely that all stress states in which 
Div σσσσ, ηηηηi, σϕ z, σϕρ vanish can be expressed in terms ofρρχ ′ and ϕϕχ ′ alone.  One will then 

be dealing with the stress states for which one will generally use Love’s displacement 
function in order to calculate them.  We would like to consider the case of zϕχ ′  = ϕρχ ′  = 

zρχ ′  = zzχ ′  = 0 by itself later on. 

 Remarkably, from eq. (V.30), ϕϕχ ′  can now be expressed in terms of ρρχ ′ .  One can 

also write the conditions (V.30) in terms of ρρχ ′  and χ+′  ( χ−′ , resp.), and correspondingly 

for ηηηη: 
 

χ+′ = 
2( )1 ρρρ χ

ρ ρ
′∂

∂
, χ−′  = − ρρχ

ρ
ρ
′∂

∂
, η+ = 

2( )1 ρρρ η
ρ ρ

∂
∂

, η− =
ρρη

ρ
ρ

∂
∂

.   (V.33) 

 
Moreover, the stresses can be written: 
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 (V.34) 

 
By adding the eqs. (V.32) and (V.32′), which refer to η+ and η−, one will obtain with 
(V.33) 

∆′ ∆′ χρρ = ηρρ , ∆′ ≡ ∆ + 
2

ρ ρ
∂

∂
.   (V.35) 

 
Now, is χ+′ = 0 then it will follow from eq. (V.33) that 2

ρρρ χ ′  can only have the form f(z).  

If one has ηηηη = 0 then f(z) can only be a polynomial of degree three [since otherwise eq. 
(V.35) would not be fulfilled].  The stresses that belong to f(z) will follow easily from eq. 



142 V.  Applications 

(V.34) as σρρ = −σϕϕ = (c0 + c1 z) / ρ2, while all other components will vanish.  Insofar as 
this relatively trivial stress state is not present in the body in question (1) (which will be 
true for, e.g., convex bodies that are subject to outer surface forces), the function χ+′  (and 

therefore also χ−′ ) will have the same value asρρχ ′ .  One can then calculate − say,χ+′  − 

and then calculate ρρχ ′  from that with the help of the formula: 

 

ρρχ ′  = 2

1
dρ χ ρ

ρ +′∫ ,     (V.36) 

 
which follows from eq. (V.33), and with that the stresses will be obtained from eq. (V.34) 
by differentiating it twice.  Insofar as one calculates ρρχ ′  from the outset, one needs to 

differentiate it three times in order to get the stresses.  We shall not actually write down 
eq. (V.34) in terms of ρρχ ′ . 

 Presently, the still-unsolved problem is that of how one can express the boundary 
conditions advantageously in terms of ρρχ ′ or χ+′ .  Any bi-harmonic function ρρχ ′ or χ+′  

will yield a possible stress state, such that the boundary-value problem will be doubly 
harmonic.  One must conclude from this that the totality of stress states that are 
encompassed by Love functions (with Div σσσσ = 0) are also actually encompassed by 

ρρχ ′ ( χ+′ , resp.).  Since one gets somewhat closer to the stresses with the latter function, 

the solution of the boundary-value problem by these functions will have some practical 
significance. 
 These considerations show the great variety of possibilities that the stress function 
tensor implies, such one can adapt a given problem to a great extent.  This is especially 
true for the use of components for the stress function tensor that belong to curvilinear 
coordinates.  Here, we have chosen the auxiliary condition i ijχ ′∇  = 0 from the outset, but 

there are still numerous possibilities, about which, almost nothing is known at present. 
 We would now like to give an application of the above to circular dislocations.  One 
of will lie in the plane z = 0 with its center at the origin and a radius of R.  The stress 
function field of this dislocation will be given essentially by eq. (II.107) as the integral: 
 

ixdL′∫� ,     (V.37) 

 
which one can easily show will have the form: 
 

F(ρ, z) iϕ .     (V.38) 
 
From Franz and Kröner [53], one will then have: 
 

                                                
 (1) In the other case, one can probably also remove it from the total state somehow.  One will find most 
of the results in this § for the case of η = 0 in Marguerre [98]. 
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F = 
3

3

s

k
[2k′ K – (2 – k2) E].    (V.39) 

 
In this, K ≡ K(k) and E ≡ E(k) mean the complete elliptic integrals of genus 1 and 2, 
respectively.  Moreover, one has: 
 

k ≡ 
2

4 R

s

ρ
, s2 ≡ z2 + (R + ρ)2, k′ 2 ≡ 1 – k2.   (V.40) 

 
As one easily verifies, the stress functions of eq. (II.107): 
 

ρρχ ′  = 
4

b

π ρ
F

,  ϕϕχ ′  = 
4

b

π ρ
∂
∂
F

    (V.41) 

 
will follow from F, while the remaining components of χ′ will vanish.  This equation is 
true for the case in which the Burgers vector (magnitude b) of the dislocation points in 
the z-direction, and it only is in that case that the problem will be rotationally-symmetric. 
 The author has treated an arrangement of parallel, equidistant, circular dislocations by 
starting from eq. (V.41) [79].  This arrangement is very similar to the well-known current 
coil in electrical engineering.  If one takes the coil to be very long in comparison with the 
radius R then one can employ the same approximation that one uses for the current coil, 
so one will obtain: 

σρρ = σϕϕ  = 
1

G

m

−
−

ν b, σzz = 
2

1

Gm

m

−
−

ν b   (V.42) 

inside of the coil and: 

σρρ = − σϕϕ  = 
1

G

m

−
−

ν b 
2

2

R

ρ
     (V.42′) 

 
outside of it (ν = number of windings per unit length).  All of the remaining components 
will vanish in this approximation.  The external state is precisely the state that was 
written above with χ+′  = 0.  The energy per unit of coil volume will then be: 
 

e = 
1

mG

m−
ν2 b2.    (V.43) 

 
There are no major difficulties associated with treating this problem exactly with the use 
of elliptic integrals (1). 
 Calculations of this kind are significant for some problems in the physics of metals.  
One sees the essence of them in the following problem: In the cold hardening of the very 
                                                
 (1) One can attribute the stresses in the known problem of the stretching of a hollow cylinder onto a 
solid cylinder with a somewhat larger radius to an arrangement of dislocations in the boundary surface.  
However, from eq. (I.77) these dislocations will move in the z-direction and have their Burgers vector in 
the ϕ-direction.  Our problem will then correspond to the welding together of two cylinders, as above, but 
where the inner one is elastically-extended in the longitudinal direction compared to the external one. 
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important aluminum-copper alloy (Duraluminum), there are, inter alia, the two following 
states: One has superficial accumulations of Cu atoms in the {100} planes of the Al 
lattice, and in fact, possible monoatomic layers of copper.  These are distributed 
statistically in one state (which is then called the Guinier-Preston zone I), and in the other 
one they are arranged into a number of complexes that are parallel to them (viz., Guinier-
Preston zones II) (1). 
 One can describe the process of Cu enrichment by saying that a partial net plane of 
atoms is taken out of the Al lattice and replaced with Cu atoms.  The Cu layer will now 
be “thinner,” so, in effect, a layer is missing whose density is equal to the difference 
between the net plane separation in Al (dAl) and Cu (dCu).  Meanwhile, the connection 
will be once more represented by the atomic forces of cohesion, so one will obtain elastic 
reactions, and the Cu layer will act like a dislocation line with a Burgers vector of 
magnitude b = dAl − dCu in the z-direction, if that direction is perpendicular to the layer.  
One now treats the “quasi-dislocation” (they are not complete step dislocations, since the 
net plane does not, in fact, belong to them) as being approximately circular.  
Experimentally, one will observe that (at least, in certain temperature regimes) they do, in 
fact, arrange themselves into a “coil.”  Since the Burgers vectors of the individual 
dislocations run parallel to each other, one should expect that the opposite situation will 
be more likely, since dislocations of the same 
type with parallel Burgers vectors will repel each 
other, according to § 18. 
 One can understand the converse effect, 
according to Franz and Kröner [53], by saying 
that perhaps one of the intermediate Cu layers of 
the complex will be bounded by a complete 
dislocation with an opposite Burgers vector; i.e., 
this layer will not advance like an Al net plane 
from the outside.  Since the Burgers vector of 
this dislocation will be essentially larger than that 
of the quasi-dislocation, it can attract a large 
number of quasi-dislocations, until the sum of all 
Burgers vectors of the complex will be zero.  
Thus, the far-reaching, energy-consuming, stress 
field will be formed.  As a probable arrangement 
of the layers in the Guinier-Preston zones II, one 
has today: Any fourth net plane is a copper-rich 
one (2).  This will yield six as the number of 
layers in a complex [53], so the vertical 
arrangement of a zone is equal to 21 net planes, 
corresponding to perhaps over 40Å, which is 
satisfactory agreement with the experiments that 
can, at present, be interpreted only with coarse 
precision. 

                                                
 (1) Cf., e.g., Gerold [59] or Hardy and Heal [63].  
 (2) If only every second atom in a layer is a Cu atom then that would roughly double the vertical 
extension.  Experimentally, this has still not been decided to date. 

 

dA dB 

B A A 

z 

Fig. 38.  Phase boundaries as superficial 
arrangements of dislocations.  Dashed 
lines: net planes.  (Longitudinal section) 
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 One can also treat the phase boundaries between two pure metals A and B in an 
analogous way.  For the sake of simplicity, we assume that the lattice constants of A and 
B differ only in the z-direction and define the phase B inside of A to be a circular cylinder 
with its axis in the z-direction.  If the aforementioned lattice constant dB of B is smaller 
that that of A then from time to time a net plane must belong to B, since in the other case, 
one would obtain the larger energy (V.43).  One can again regard each net plane of B as a 
quasi-dislocation with a Burgers vector with magnitude dA – dB.  If, e.g., dA – dB = dB / 5 
then a complete dislocation must always appear after five net planes.  Thus, one can 
describe this phase boundary by the arrangement of dislocations and quasi-dislocations 
that is indicated in Fig. 38.  Whereas the dislocations and quasi-dislocations are strong 

sources of proper stresses (§ 23) in their own right, 
both of them will act together essentially as a surface 
distribution of “dislocation dipoles” (or 
“incompatibility quadrupoles,” § 23), so their elastic 
effects, and therefore their elastic energy, will be 
small.  If one would like to calculate them, then one 
would have to solve a boundary-value problem that 
relates to the boundary surface and then consider the 
different elastic constants inside and outside. 
 In order to calculate the energy gain during the 
transition from the Guinier-Preston zones I to the 
zone II, naturally, formula (V.43) will no longer 
suffice.  To that end, Kröner and Franz [53] have 
calculated the interaction energy of two coaxial 
circular dislocations with Burgers vectors that are 
perpendicular to the dislocation planes exactly with 
the use of elliptic integrals using formula (II.128).  
Pfleiderer [117] has treated the intersection of 

circular dislocations somewhat more generally, and likewise started with eq. (II.128).  
We summarize these results, which are presently surprisingly simple, as the following: 
 Let: 
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Thus, from Pfleiderer, one will have for two dislocations A and B in the arrangement of 
Fig. 39: 

EAB = H11 + H22 + H33 ,    (V.45) 
where: 

 

ρ 
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B 

Fig. 39.  The calculat ion of the 
interact ion energy of circular 

dislocations. 
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H11 = 1 1
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H22 follows from H11 by the replacement of 1 1

A Bb b  with 2 2
A Bb b .  One should now 

understand ρ to mean the radius of the dislocation B.  A
ib  ( B

ib , resp.) are the Cartesian 

components of the Burgers vectors of the lines A and B.  The formulas simplify 
essentially when both rings lie in the plane z (= x3) = 0, or when both of them have the 
same radius.  One will then have: 
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  (V.47) 

 
 It follows from eq. (V.45, 46) that dislocations whose Burgers vectors are 
perpendicular to each other do not affect each other.  We already obtained this result in § 
18 for straight dislocations.  For the aforementioned problem, the energy of two 
dislocations with ρ = R and a Burgers vector (magnitude b) in the z-direction will be 
important.  One refers then to: 
 

1

m

m−
G b2 R k (K – E).     (V.48) 

 
For other purposes, the case in which both dislocations have their Burgers vectors in the 
x1-direction is especially interesting and lie in the plane z = 0 (this is then the glide plane, 
so the relevant formulas can serve for the calculation of the energy of concentrated 
dislocations).  One will then have the likewise-very-simple expression: 
 

2
22 1
( ) 1

2( 1) 2

m k
Gb R

m
ρ
  − + − −  −   

K E .   (V.49) 

 
If one makes the distances between the dislocations very small here – perhaps, equal to 
twice the length ε that was cut away in formula (II.145) – then one will also obtain the 
self-energy of the dislocation in the approximation that was described in § 18 and § 25.  
This self-energy was first calculated by Nabaro [110] for the dislocation that was implied 
in (V.49) in a different way [starting with eq. (II.122)].  One will have k ≈ 1 in that case 
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(when ε ≪  R), so one will get the approximation formulas E ≈ 1, K ≈ ln (4/k′) [69], and 
will thus obtain: 
 

22 1 4
ln 2

2( 1)

m R
Gb R

m ε
−  − −  

     (V.50) 

 
for the self-energy of this dislocation, in agreement with Nabarro. 
 All of these energy formulas were calculated upon the foundation of an infinitely-
extended medium.  Such a dislocation loop will act like a force dipole at great distances; 
i.e., the far-reaching displacement field of the dislocation will go like 1 / r2 (r ≡ distance 
from the origin), so the stress field will go like 1 / r3, and the energy density εij σij / 2 will 
go like 1 / r6.  The component of the energy in the infinite medium that is localized 
outside of a sphere of radius r0 will then go like 3

01/ r .  Thus, when the dimensions of a 

body are sufficiently large compared to R, which will be true in almost all applications, 
one will not need to observe its outer surface – i.e., the formulas above will also give the 
energy for the finite medium with practically the same approximation. 
 The stress function tensor was only indirectly involved in these energy calculations 
[indeed the basic formula (II.128) was derived with its help].  In conclusion, we shall 
give the formulas for the dislocation with a Burgers vector in the circle plane (i.e., the 
glide plane) that are derived from the stress function field χχχχ′ (Keller, [70]).  Let (x, y, z) ≡ 
(x1, x2, x3).  One will then have [cf., (V.40)]: 
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One observes: The stresses are not rotationally-symmetric, so the problem that is solved 
here with the aid of Keller’s stress function tensor will be truly three-dimensional. 
 All that remains of these stresses at the origin will be: 
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APPENDIX 
 

The decomposition of a tensor field of rank 2 
 

 We apply the vector symbolism of Gibbs 1 piecewise, so we mostly calculate in the 
traditional index notation, including the Einstein summation convention 2.  I. e.: 
 

or is the dyadic

or is the scalar

or is the vectorial

i j

i i

ijk j k

a b

a b

a bε


⋅ 
× 

ab

a b

a b

 product of two vectors a and b. 

 
Therefore, one has ε123 = ε231 = 1, ε132 = ε321 = ε213 = − 1, while all of the remaining 
components of the totally anti-symmetric ε-tensor vanish.  The following formulas will 
be used frequently ([34], Bd. I, pp. 74): 
 

εijk εlmn = 

l m n
i i i

l m n
j j j

l m n
k k k

δ δ δ
δ δ δ
δ δ δ

.     (A.1) 

From this, it follows for n = k that: 
 

εijk εlmk = l m m l
i j i jδ δ δ δ− ,    (A.2) 

and when one also has m = j: 
εijk εlmk = 2 l

iδ .      (A.3) 

Let 3: 

Grad ( )

Div ( )

Rot ( ).

i j

i ij

ijk j kl

a

τ
ε τ

≡ ∇ ≡ ∇
≡ ∇ ⋅ ≡ ∇ 
≡ ∇ × ≡ ∇ 

a a

τ ττ ττ ττ τ
τ ττ ττ ττ τ

    (A.4) 

 
(One reads “gradient of a,” “divergence of ττττ,” and “rotation of ττττ.”) 
 One can uniquely decompose any tensor field ττττ that vanishes at infinity in an 
infinitely-extended medium according to the formula: 
 

ττττ = ∇a + ∇× αααα,     (A.5) 
 

where αααα ≡ (αij).  Likewise, for an arbitrary tensor αααα, one has the unique decomposition: 
 

αααα = b∇ + ββββ ×∇,     (A.6) 
 

                                                
 1 This was briefly advocated by the International Union for Pure and Applied Physics [67].  
 2 One finds this notation publicized in the books of Duschek and Hochrainer [34], especially. 
 3 We write the first symbols large in order to imply that we are concerned with tensor fields.  
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with ββββ ≡ (βij).  When this is substituted into eq. (A.5), one obtains, with ∇× b ≡ c (i.e., div 
c = 0): 

ττττ = ∇a + c∇ + ∇× ββββ ×∇,    (A.7) 
In this, one has: 

(∇× ββββ ×∇)il ≡ εijk εlmn ∇j ∇n βkm .   (A.8) 
 

Symbolically, we also then write 1: 
(Ink ββββ)il     (A.9) 

 
(read “the incompatibility of ββββ”).  In the event that ββββ is symmetric, one can switch i and l 
in (A.8), such that: 

∇× ββββS ×∇ = (∇×ββββ ×∇)S,    (A.10) 
 
where S means that the symmetric part is to be taken.  If b is anti-symmetric then one can 
switch i and l in (A.8) with a change of sign; i.e.: 
 

∇× ββββA ×∇ = (∇×ββββ ×∇)A,    (A.11) 
 
where A means “the anti-symmetric part of.” 
 The symmetric part of eq. (A.7) then reads, when we write a + c ≡ g, a – c ≡ h: 
 

ττττS = 
1

2
(∇g + g∇) + ∇× ββββS ×∇,   (A.12) 

 
and the anti-symmetric part reads: 
 

ττττA = 
1

2
(∇h − h∇) + ∇× ββββA ×∇.   (A.13) 

 
We also write eq. (A.12) symbolically as 2: 
 

ττττS = Def g + Ink ββββS.     (A.14) 
 
Since (A.5) and (A.6) were unique decompositions, (A.14) is a unique decomposition of 
a symmetric tensor field.  One easily verifies the identity relations: 
 

Ink Def  0

Def  Ink 0.

≡ 
≡ 

      (A.15) 

 

                                                
 1 The notation shall thus recall the fact that Ink εεεε = 0 are the St. Venant compatibility conditions.  
They are fulfilled when the “incompatibility of εεεε” vanishes. 
 2 For Def, one reads “deformation of.”  The notation shall then recall that εεεε = Def s is the connection 
between the deformation εεεε and the displacement field s ([52], Bd. I, pp. 97).  
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This says that a tensor ττττS that is subject to the restriction Div ττττS = 0 is an incompatibility 
tensor, while it is a deformator (and thus derived from a vector field) when one has Ink ττττS 
= 0.  The meaning of the operations Ink and Def for elasticity theory lies in the fact that 
the state of an elastic body that is stressed only at the boundary is completely determined 
by the equations: 

Ink εεεε = 0, Div σσσσ = 0,    (A.16) 
 
in which the Hooke law and the equation for the elastic energy density are assumed. 
 In eq. (A.13), one can replace ββββA (like any anti-symmetric tensor [34]) by an 
equivalent vector according to the formula: 
 

A
ijβ  = A

ijk kε β , A
kβ  =

1

2
A

ijk ijε β .     (A.17) 

 
Thus, it follows from this by a routine calculation that: 
 

A
ijτ  = εijk (εklm∇l hm + ∇k λ) ,  λ ≡ −∇l 

A
i iβ∇ ,   (A.18) 

 
or, corresponding to eq. (A.17): 
 

A
kτ = εklm∇l hm + ∇k λ ≡ (rot h + grad λ)k .  (A.19) 

 
I.e., the decomposition of the anti-symmetric tensor field corresponds to the well-known 
decomposition of the associated vector field into a source field and a vortex field. 
 In eq. (A.5), one can add a gradient tensor to αααα without changing ττττ 1.  
Correspondingly, one can add a deformator to ββββS in eq. (A.14) without changing ττττS.  As a 
result, one must impose certain auxiliary conditions on αααα in eq. (A.5) (ββββS in eq. (A.14), 
resp.).  E. g., Div αααα ≡ 0 (Div ββββS = 0, resp.) is always a “supplementary” condition; i.e., 
one can represent any ττττ (ττττS, resp.) by eq. (A.5) ((A.14), resp.) when αααα and ββββS are 
subjected to the stated restrictions [77].  If γγγγ and q are the incompatibilities (sources, 
resp.) of ττττS then in the case Div    ββββS = 0 one obtains from eq. (A.14), as one easily checks: 
 

Ink ττττS = Ink Ink ββββS = ∆∆ββββS = γγγγ.   (A.20) 
 

From this, the associated ββββS follows uniquely from: 
 

ββββS  = − 
1

( ) | |
8

dV
π ∞

′ ′ ′−∫∫∫ x x xγγγγ ,   (A.21) 

 
up to an uninteresting function that depends upon x linearly 2. 
 On the other side, it follows from eq. (A.14): 
 
                                                
 1 Naturally, one has the identities Rot Grad ≡ 0, Div Rot ≡ 0. 
 2 We recall: ττττS shall vanish at infinity.  One easily verifies that (A.21) fulfills the auxiliary condition. 
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Div ττττS = (∆g + ∇∇⋅ g)/2 = q.    (A.22) 
 

By repeated application of the divergence, one obtains: 
 

∆ div g = div q,    (A.23) 
 
from which div q follows, up to a constant.  Thus, one can easily obtain g from eq. 
(A.22), up to an uninteresting constant.  It is thus shown how the decomposition (A.14) is 
actually to be performed in an infinite space. 
 

Addendum 
 
 We present two more theorems about a medium that contains only proper stresses. 
 
 1. One has, for arbitrary elastic homogeneity and anisotropy: 
 

ijV
dVσ∫∫∫ = 0, 

 
which is integrated over the entire volume (that is in the proper stress state). 
 
 2. The total change in volume of the medium for a nonlinear law of elasticity is: 
 

∆V = ijkl ij klV
t dVσ σ∫∫∫ + terms of higher order 

 
with the material constants: 

tijkl ≡ 
2

0

1

2 ij kl σ
σ σ

=

∂ Θ
∂ ∂

. 

 
 Theorem 1 follows from equilibrium considerations [179].  Theorem 2 follows from 
Theorem 1 when one develops the differential change of volume Θ in powers of σij .  
Theorem 2 would change somewhat in comparison with the particular form that were 
found and tested by the current experiments of Zener [178] for elastic isotropy, extended 
by Seeger [176] to cubic crystal symmetry, and applied to dislocations.  The tensor tijkl  
has the same symmetry and number of components as the elasticity tensor cijkl for the 
medium in question. 
 The “volume theorem” of Colonetti that was stated in § 1 follows immediately from 
Theorem 1 by applying Hooke’s law. 
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