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Abstract: It will be shown that asymmetric distortion tenser®ut only symmetric stress tensars
must be employed for the complete description of the stfad body that is endowed with dislocations that
are distributed in the form of a tensor densitin the given case. The antisymmetric pare afescribes
lattice rotations (curvatures, resp.), as one mighify Rontgenographically for, e.g., plastically-forane
media. For the elastic-theoretic treatment of tthe, ST. VENANT compatibility conditions must be
replaced with a new equation of very general validity (&4))]. The stress function tengpthat is defined
by the equation®r = Rot ¢, Div ¢ = 0 can be interpreted as a (tensorial) potentiatliglocations. ¢ is
especially suited to the calculation of the stressahatoupled to a dislocation distributian A summary
of the most important concepts and discussion will ergin § 6.

8 1. Introduction. Previousresults.

In present paper, stress states will be considered cinae about without the
influence of forces; in other words, ones for whiate dvas Divo = 0 whend(t) is the

stress tensor. The topic in the theory of elastitfigt is of issue will generally be
referred to as the “theory of internal stresses” Iso #he “theory of proper stress")(
Various influences come under consideration as the originsuch stresses — e.g.,
magnetostriction, defect arrangements in lattice sirastof crystals, as might perhaps
be produced by plastic deformation, temperature fluctuateire, The elastic effect of
all these influence can be described by the so-calledripatibility tensor” §), which
can also be regarded as the origin of the internabsgse in its own right. The
determination of the internal stresses decomposes twbo parts: First, one must
ascertain the incompatibility tensgras a function of the positionfrom the physical

givens. This is a problem of a predominantly physical natnece it is solved, one will
then come to the mathematical part, namely, therm@tation of the internal stresses
from the now-given incompatibility tensor. This problem edmays be resolved with
the help of the spatial stress functions that wetreduced by the authot)(

() For recent papers on this subject, cf., e.g., J. D.HESN, Phil. Trans. Roy. Lond., Ser. 244
(1951), 87 and E. KRONER, Z. angew. Phys. (1955), 249.
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The following considerations are, above all, concernéd thie physical questions in
the theory of internal stresses. ESHELB)YHas treated the most general case of internal
stresses (spatially-distributed incompatibilities) and icoed the physical reality of the
incompatibilities. NABARRO {) recognized that such an incompatibility distribution is
equivalent to a continuous distribution of dislocatiofi$ie precise connection, however,
remains open. The authad) Showed that every discrete dislocation line is eiased
with a well-defined incompatibility. The relevant forfaweads ):

n=1(tbx0-0Oxbt), 1)

where t is the unit tangent vector to the line in question #&nds the associated

BURGERS vector.t will be differentiated ().

One can thank NYE®Y for some further results. He considered familiesiscrete
dislocation lines in crystals that were laid so clasedch other that it became reasonable
to take the mean over a large number of them. NY&Sslts- to the extent that they are
of interest to us here read: Any such distribution of dislocation lines candescribed
by an asymmetric position-dependent tensay ¢f rank 2. A well-defined average
curvature of the lattice of the crystal in questionimkdd with every distribution of
dislocations. It will not change when one increabesdiensity of the dislocations (say,
per cnf and BURGERS vectdr;) and simultaneously decreases the BURGERS véctor

in such a way that the produgtb; remains constant. When one letsihgo to O in this

way, the elastic energy will vanish for entirely spdized dislocation distributions, while
the lattice curvature will remain the same. The ambitd define such arrangements of
dislocations led, e.g., to the known phenomena of polygooizamnd the formation of
fine-grain boundaries. NYE could give the connection betwbe dislocation tensar
and the lattice curvature tensot(r) for such minimal-energy arrangements of
dislocations. It read():

kK=a-1al. (2)

In this, a; is the scalar (tensor trace) @fandl is the unit tensor of rank 2. The curvature
tensork will be defined by the equatiodd® = x Odr, where® is the axial vector that

described the rotation of the individual volume elemeiftse definition:

k=d O (3

() F.R.N.NABARRO, Adv. Physl (1952), 269.

0) The notations of M. LAGALLY Yorlesungen tber Vektorrechnynfeipzig, Akademische
Verlagsgesellschaft, 1928) will be employed for the requisitsor analysis.

(")  Cf., the Appendix for this.

()  J.F.NYE, Acta Metl (1953), 153.

(") More precisely, NYE employed a tensor that was thespose ofr, although it meant the same
thing physically.
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is equivalent to it. NYE’s results lie outside of theeviously-developed theories of
internal stresses)( In a sufficiently general theory, however, thepsld be obtained in
precisely the same way as the determination of the psipmses. Such a theory must
produce the connection between the dislocation deasityd curvaturec for arbitrarily
general dislocation distributions, and thus not jusbftes of minimal elastic energy, and
at the same time produce the associated stresseseody tiinat does that much will be
given in what follows.

8 2. Thebasic equations.

For the presentation of the theory, we let oursehegyuided by the author’s Y
rigorously-exhibited analogy between the theory of irdkstresses and the theory of the
magnetic fields of stationary currents. If one feenhsiders a linear current in the latter
theory then one can characterize it by the lehghifong which it flows and its associated
current strength  Upon going to continuously-distributed currents, one ggegp that the
number of linear currents must continually increase while current strength
simultaneously decreases in such a way that the tataknt will remain finite
everywhere. One arrives at the concept of the cudensityj in that way, which is

defined, perhaps, by one of the two equations:
j=di/d, i=[[ dfg,

wheredf means any vectorial surface element. The right-hgondt®n gives the total

current fluxi that goes through an arbitrary surf&€e Now, it is known that the current
that goes through all possible surfagesvill be the same as long as these surfaces all
have the same bounddRy For that reason, the surface integral must be cted/nto a
line integral. For this, it is necessary and suffitidatj be a rotor, so diy = 0.

In a completely corresponding way, we go from an imdial dislocation lind. with
a BURGERS vectob to the dislocation density, which we define through one of the
equations:
a=db / df, b:ijdfw (4)

The dislocation densityr(r) will be described by an asymmetric tensor field of rank
The right-hand equation in (4) is closely related to veetor b that is called the

“BURGERS vector” in the case of discrete dislocatimes, and is given the name of
dislocation flux Should this flux have be the same for all surfd€éisat have the same
boundary, then the surface integral in (4) could be coedemto a line integral.
However,a must then be a rotor tensor — i.e., it must havedha RotS=0x . It
follows from this that Dive = O O = 0. This equation also appeared in NYE.

() Cf., the cited papers of ESHELBY and KRONER.
(") See footnote 1, pp. 1.
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We are now close to replacing the second basic equatioragnetic field theory —
viz., rot$) =j — with the second basic equation of the theory of makstresses:

Rote=a. (5)

[The first basic equation is known to be d& = 0, (Div o = 0, resp.)] Now, from a

decomposition formula that was recently treated quiferously by the authof’)( one
can decompose the symmetric tensarto a deformation tensag = 5 (Us + sJ) and an

incompatibility tensoe, = [ x 7 x[1. s(t) is therefore the displacement vector field in the

special case of= 0. Whereas, will be zero wherever dislocations are present, &ot
will also be non-vanishing outside of the dislocatioed. Eq. (5) cannot be correct then,
due to the physical meaning of.

As our next possibility, we offer the equation:

Rot&s = q. (6)

This is also in complete analogy with the theory cdigmetic fields. Namely, if we
decomposes) into $; = gradV and $, = rot 2 then rot$) =3, since rot gract O is

nothing but rot$) =j. It will remains for us to establish whether eq. (@lfilfs all

requirements. In order to do that, we now ask whatrongt substitute for the tensar
of an isolated dislocation liné (b). As we will soon prove, the answer reads:

a=tbo, (7)

if £ is the unit tangent vector that belongs féhe multiplication is intended to be dyadic.
Naturally, a will be non-zero only along here. With (4), one gets:

b:ijdeﬂb:(ﬂFdfa)b, 8)

in which one can place the constant vedtavutside of the integral. One must set the
remaining integral equal to 1, as one infers most sinfplgn the formulas that are

analogous to (8):
1= Jl. a0 = o7 = (I ara)i

Since one also has D#Y) = (divt) b = 0, due to the constancy bf (7) will obviously

give the correct expression.
For the tensor (7), one generally has:

() E.KRONER: Z. Physil39 (1954), 175.
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Divag =6tz0

and
a=tb#0

now, with &, = a;j . Both statements contradict eq. (6). Since &i 0, this equation

next demands that one must also havedi 0. One further demands that= 0, as
one will see when one calculates (Rpt. One will get:

(fyz-fzy)+i(£zx—£ x)+§z(£ o € Do (9)

0
Rotég), =
( yl 3 oy

ox
and it will follow that (Rots,), = 0, sinces, is symmetric.
The stated contradiction can be resolved only whbaa allows an asymmetric

distortion tensore. The following paragraph shall be directed towgatde physical
meaning of taking such a step.

8 3. Theasymmetric state of distortion

VOIGT () has already given a thorough analysis of the asstmc state of
distortion, so we can summarize it briefly here.
With VOIGT, we assume that we have an elasti
body that is composed of nothing but smaF++++++ a
elementary masses. Now, a distortion shall mean
that these elementary masses are not only displaced‘\' _\, .|. + +
+ b

with respect to each other, but are also rotated
respect to each other. We shall initially leaverop

the question of whether this rotation does or does

not produce a stress. m
We consider a sequence of elementary ma % c
that was originally straight (Fig. la). Under a ¢
displacement of the particles, they will go t0 &igure 1a-c. The elementary masses

curved line (Fig. 1b). In addition, the particisall are indicated by crosses, which we
then all be rotated through an angle ) (Fig. magine are rigidly coupled with the

1c). Now, according to VOIGT, the symmetric par{n asses.

of this total distortiore will describe the distortion 1b precisely, whitetanti-symmetric
part will describe the additional distortion — j.#e rotation in 1c. One observes that the
“symmetric” distortion 1b is already linked with ratation of the elementary masses.

This is known from the ordinary theory of elastiqitot s). By contrast, what is new and

different is the “incompatible” rotatiom The picture that is shown here will also be true
for three-dimensional distortions with a correspgongdconversion.

() W. VOIGT: Lehrbuch der Kristallphysikpp. pp. 596et seq. Berlin: J. B. Teubner, 1910.
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The assertion that we shall now make is that suclofimpatible” rotations will exist
everywhere there are dislocations. We consider, &.grain boundary according to the
well-known model of BURGERS and BRAG®).( Such a grain boundary consists of a
sequence of dislocations that act in such a waywwagtains will be rotated with respect
to each other. Indeed, the places at which elementasges are rotated with respect to
each other will be precisely the ones at which theodalons are present. The
incompatible rotations will be non-zero at these plaaed,only at them. Fig. 2a shows a
crystal in a polygonized state. Here, we have seveadh gpoundaries of the kind that
was just described. The number of boundaries has doubkad.iflb, so the strengths of
the dislocation lines have been halved, and thus theomdeaof the neighboring masses
will also be only half as large. If we now think oktlgrain boundaries are becoming
gradually denser then we will gradually come to a continagigbution of dislocations
and a continuous rotation of the elementary masses wegpect to each other.
Macroscopically, this will already appear to us to lm®tinuous curvature of the crystal
lattice for a not-completely-continuous distributiordiflocations.

We have thus arrived at the new and
interesting result: The anti-symmetric part
of the distortion tensor describes precisely

, the lattice rotations (lattice curvature,
resp.) that are observed on the basis of the
presence of dislocations — e.g., on grain

boundaries and after polygonization.

The question of whether the lattice
rotations produces stresses can also be
answered. We must first exclude
asymmetric stress tensors, since they
contradict the laws of equilibrium in the

f‘-..\ theory of elasticity. Indeed, asymmetric
b stress tensors only come under
consideration when a distribution of

Figure 2a and b. A bent crystal after rotational moments acts upon the body

polygonization. Dashed lines are dislocation externally which is excluded here. The

walls, solid lines are traces of net planes. The energy density shall also be equal do
mean curvature of the net planes is the samel:l:w2 here. Now, twice the scalar product

in both cases. . . .

of an anti-symmetric tensor with a
symmetric one will always be zero. Therefore, thie-symmetric part of the distortion —
which we would like to calk; — will contribute nothing to the energy; i.e., it calso
produce no stress.

Now, in order for the stated lattice rotations to dbtuake place, real dislocations
must be present. A body will admit the existenceeaf dislocations when it responds to
an external pressure — at least, partially — with ratatthat produce no stresses, and for
that reason are also coupled with no elastic energy.

() J. M. BURGERS: Proc. Kon. Ned. Akad. Wetensth(1939), 293. — W. L. BRAGG: Proc. Phys.
Soc. Lond54 (1940).
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Like any anti-symmetric tensaos;, is also equivalent to an axial vector, which we will
call &; it is the vector that describes the direction andntede of the rotation. The
vector & will then obviously be identical to the NYE rotatiorcter gin eq. (3). We will
then have to set:

K=E&U (20)
for the lattice curvature tensar

8 4. Incorporation of the previousresults.

Now that we have invoked asymmetric distortion tensarsich are obviously
physically meaningful, we are finally in a position to folate the desired basic
equations in a manner that is free of contradictiomsiaicomplete analogy to the theory
of magnetic fields. One will have)("):

Rot (& + &) =a. (11

In this paragraph, it will be shown, among other thingat the basic equation (11) is in
harmony with NYE’s results and with the theory of ttaculation of internal stresses
that is constructed with the use of the incompatibitysor. If one introduces =1 x &
into eq. (11) then that will yield:

Rotg + gl - (dive) |l =a, (12)

from a known decomposition formula, from which, it lwih turn, follow thata; = - 2
div &. If one then eliminates di& from (12) and considers (10) then one will get:

Rote+k=a-1al. (13)

This is NYE's eq. (2), up to the first term. Now, SINN¥E expressly referred to
distributions of dislocations that had minimal energywhich are obviously ones for
which Rot & will vanish in the mean — (13) will not contradict (2),one naturally
assumes that there is actually such a distributiahstdcations, to begin with. However,
the last question is answered in the affirmative,esmalone is subject to the restriction
that diva = 0.

() The conclusion of eq. (11) is also compulsory in ttseabe of any consideration of analogues when
one demands linearity — i.e., when one restricts ¢ihésesmall deformations and assumes that the
dislocation density is obtained from any sort of digtorguantities by a first-order differentiation. Since
rots will drop out of eq. (11) for the same reasorgas linear combination o andeg, will remain in the

bracket in (11). The fact that it will be preciseby+ & will follow from the agreement with previously-
proved egs. (2) and (15)s + & will contain six independent components, as it must, Ansg the same
number agr. One concludes the fact that the stated assumptfatifiied from the fact that the distortion
field of an isolated straight dislocation line will vahi at infinity like 1 /p (o = distance from the
dislocation line).

(") Remark by the editor: B. A. BILBY has just given a formulation that is appaheequivalent to
eg. (11). (Rep. Conf. Def. in Cryst. Solids, Bristol, 19%%,124).
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NYE'’s dislocation state can then be defined by the emuat
anve = Rot &,

in which Rotg, is to be considered as a spatial mean for discontindigtrioutions of
dislocations. Eg. (2) will yield the associated averaggature.

The stresses for an isolated dislocation line cansbertined with the help of the
incompatibility tensor (1). If we introdudeb = a into (1) then we will get an expression
that is also true for continuous distributions of diskions, as would emerge from the
following:

n=3%(ax0-0Oxa)=-SY(Rota) (14)

with SY= “symmetric part of.” One next convinces oneself bipsiitution in (14) that
the Roteg, part of a contributes nothing tg. Therefore, it will produce no stresses, as
was required in 8 3. We thus understand \whgid not enter into the previous theory of
internal stresses. We also recognize that HOOKRusslafficed in the older form, since
only a coupling of the stress tensor with the symmeiait of the distortion tensor is
necessary.

Thus, only the Rog, part of a will contribute to the incompatibility, so we are in
complete agreement with the theory up to now. Sincant@mpatibility (Ink) of an
anti-symmetric tensor does not vanish, but yields arsgmmetric tensor, from the
earlier theory(), one must set:

Ink & =0xgx0=n. (15)

This equation is identical with eq. (14) when one subsstaten it from eq. (11). Eg.
(15) was discussed thoroughly by the author. Its integraétyothe author was facilitated
especially by the use of the tensor of stress funcigfis which is introduced by means
of the equationgr=Ink y, (m+ 2) Div y =grady; .

8 5. Theintegration of thebasic equation (11).

This raises the question of whether one cannot employ(1d) directly for the
calculation of the internal stresses, instead atistpwith (15). This is, in fact, often
possible.

In the theory of the magnetic fields of stationanyrents, the magnetic energy of an

infinitely-extended medium is given bﬂ j J j2dr, where2(x) is the vector potential
whose introduction will make the basic equation#iv= 0 be satisfied identically.
If one analogously introduces the asymmetric stresgibamtensorg(x) with the help

of o= Rot ¢, which will then fulfill the basic equation Dig= 0, then one will get the
elastic energy:

() See footnote 1, pp. 1.
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E=1if[[amdr=1[[[ampdr (16)

in an infinitely-extended medium. The proof of this fael® from the known energy
formula %Hjé‘[ﬂﬂTdT, in which one introduces Rat and — after partial integration &

according to eq. (11). This is possible, since, as onslwan, thes, part of this integral
contributes nothing.

The tensop is closely connected with the symmetric stress fondinsory that was
defined at the end of the last paragraph. Onegphag %[, from which, the equationg
=0 [cf., (9)] and Divg = 0 will follow immediately. The auxiliary conditioBiv ¢ = 0
will follow further from the second defining equation far

We conclude from the simple form of the energy equati®) that¢ is especially
suited to the calculation of internal stresses fgivan dislocation density. In order to
formulate the differential equation fgr, we define the tensar, = Rots, . We will then
have:

A(p +mg) =-2G(Mm+ 1)
in an infinite medium, or:

Ap=- m(maz _dz) . (17)

which is equivalent to that. One can convert these emsinto the known differential
equations (4) for the stress functignsvith the help of eq. (14) ang = y x [0 and then
deduce the proof of eq. (17) backwards from that. The Fedtit is, in fact,a, that

enters into it, and nat, is based in just the fact that only ttxepart ofa will contribute
to the stresses.

The determination ofx, from ¢« is, from (13), usually not possible without an
integration that the curvature tenserhas to supply. We deduce the equation to be
integrated from (12) and (13):

A& =Div @ —4grada; .

This integration is inapplicable when the dislocatiores distributed in such a way that
they collectively create no curvature»(= a), which is obviously possible. If one is
dealing with a finite body then there will be a boundeaiue problem to solve, in
addition to the summation problem.

Finally, the possibility of employings for the determination of stresses that are
produced by boundary forces in a medium is worthy of attentilhe equatioAAg = 0
will be valid for that case.

We shall go into the behavior of bodies of finite exteore thoroughly in another
place.
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8 6. Further problem statements.

For many purposes, the theory of internal stressesishabnstructed from the
incompatibility tensor will suffice in the context thae author (| has recently described.
For example, one can calculate the temperaturessssefor a given temperature
distribution, the magnetostrictive stresses fonaimagnetization'(), and much more.
By contrast, that theory does not suffice for moisthe problems that are related to
plastic deformation. In order to have an example indmwe imagine any crystalline
material as being plastically deformed from a normatesby a certain amount. It will
then be found in a completely well-defined state; thitestcannot be described
completely by the incompatibility tensor. (This sayshimg about, e.g., the curvature of
the lattice.) However, the statements that the imadibility tensor does make will also
be less intuitive. For that reason, the possiboityeplacing that tensor with the very
intuitive tensor of dislocation density is a significant advance. Beyond thatwill
describe the state of the medium to a large exterleast to the extend that one can
average the properties of the dislocations that gneesented byr over microscopically
larger domains. Naturally, one is dealing with mean sties the calculation of stresses
for an averaged, but in reality discontinuous, distributbdislocations.

With the knowledge of the tensar, the formalism of the last paragraph can be
brought into play, and the state of the body in isatatian be established. The most
difficult, and generally still unsolved, problem is, haweg the determination af from
the influences that act upon the body.

The problem that was broached here, namely, that efrdeting the state of a body
as a result of plastic deformation, is the basidlenm of macroscopic plasticity theory.
The dislocation density tensor did not enter ints theory, up to now. We believe that
the introduction of the tensows and ¢ into this theory can bring essentially progress.
This says, among other things, that the dislocationitgeissthe naturalquantity for a
process in which dislocations play the main role. @ust further note that the stress
functions also keep their meaning in a plastically-formmedlium, since Diw = 0, while
a displacement field can no longer be defined thétewever, the most important thing
seems to be that the introduction of dislocations théomacroscopic theory of plasticity
is probably the best bridge to the results of the atanitstory of plasticity.

We have refrained from a rigorous analysis of the dalon tensora and the
curvature tensork. Otherwise, the dislocation density has been a @bnire the
(atomistic) theory of plasticity for some time noswe, we can refer to the pertinent papers.

§ 7. Summary of the most important concepts and equations.

Internal stresses- even ones that are produced by temperature fluctuations or
magnetization— can also be interpreted as a consequence of a (possittipuous)
tensorial distributiona of dislocations. One thinks of a continuous distributafn
dislocations as arising from, perhaps, an ever denser fafmilgcrete dislocations. One

() See footnote 1, pp. 1.
(") From unpublished research of G. RIEDER, Stuttgart.
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then employs the fact that the dislocation fIH)F(df [&r through an arbitrary surfad¢eis

equal to the total BURGERS vectwof all of the dislocation lines that are encircled by

the boundary line df.

One will require an asymmetric distortion tensdor the complete description of the
state of distortion of a medium that is endowed wliglocations. The anti-symmetric
part & of e describes the “incompatible” rotation of the volumenedat of the body,
which are rotations by which these elements will be edtatith respect to each other.
One will always have to deal with such rotations whenectual dislocations appear.
One might exhibit such volume elements directly by twaingr of a polycrystal that are
separated by a grain boundary. These grains are rotatedegjittct to each other and,
according to BURGERS and BRAGG, the rotation will becawplished by dislocations
that define the ends of the latter grain boundaries.

The elasticity-theoretic part of the total problem gists of calculating the stresses
and distortions for a given dislocation density In order to do this, ordinary elasticity
theory must be extended. This will happen when one repléite ST. VENANT
compatibility conditions, which are valid only in speciakes, with a new fundamental
equation of broader validity. However, the second begi@tion will still be assumed to
be true, which is the equilibrium condition in the fobiv o= 0. (Let the volume forces
be excluded.) The new basic equation reads:

Rot (& + &) = q, (11)

where & + & is the part of the distortion that is coupled locally to thslatations, and
thus vanishes everywhere that there are no dislocatimming through.& describes the
incompatible distortions (excluding the rotations) of thedyp in question. The
integration of the basic equation can be achieved Wwéhhelp of the symmetric stress
function tensory that was previously given by the author. However, d@fien better to
replace it with a new stress function tengdhat must fulfill the equations:

o= Rotg, Div ¢ =0,

which insure the equilibrium conditionsg, like a, is asymmetric, and it will have the
remarkable property that when it is multiplied daythat will yield an elastic energy. One
can then regardp as a potential for the dislocations. In additighwill have the
advantage that it already gives the stresses by aesthfférentiation. In an infinite
medium, the tensap will satisfy the differential equationd; = a;):

8= 22 (ma, - ) (17)

with a» = Rot & .
In order to employ this equation, it will be necesdarfirst calculatea, in terms of
a. In many cases, one must then calculate the rotatansre described k. If & is

the axial vector that is equivalent &— viz., the vector that described the direction and
magnitude of the rotations — then the differential eqoatiat must be solved will read:
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A& =Diva - grada; .

However,a, is also given at the same time &deq. (11)]. Nothing else stands in the
way of solving the problem that was just posed with the dkeq. (17). One calculates
@, then g, and thens — & , with the help of HOOKE's law. The stress stdites the
distortion state will then be determined completely.

Appendix

Eqg. (1) was originally introduced by the author is a sonagvdifferent way. The
values (1) ofp shall be substituted in the particular solution:

X© == () |dl

of the elastic differential equations that are validan infinite medium, and the
differentiations are performed on 4 - ¢ |, but not ont, x’ stands for

()(—miz)(l I j/ZG in this. If one now integrates over the infiniteedium, instead of

along the line (which amounts to the same thing;esf is non-zero only along the line),
then one will get:

)(’(t):—%T”I(tBXD—Dth)lt—ﬂdr'. (18)

The difference between this integral and one thatescribed in the same forfrexcept
that now one differentiates instead of  — ' | — amounts to precisely an outer surface
integral (GAUSS'’s law!), and it will vanish whenethlislocations lie at finite points. A
comparison with eq. (14), which is correct in aage, will show the physical reality of
the differentiation ot in (1). However, this will change nothing abok tfact that for

actual stress calculations, it is preferable téed#ntiate | — ' | in (18).
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