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 In his first communication (1) on wave mechanics, Schrödinger introduced the substitution: 
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h
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into Hamilton’s partial differential equation: 
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and derived the wave equation from the variational principle: 
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 In the second communication (2), he dropped the relation (1) and used a different one that was 

based upon an adaptation of de Broglie’s ideas about wave mechanics. The starting point was the 

relation: 

(grad W)2 = 2 (E – V) , 

 

which represents Hamilton’s partial differential equation in classical mechanics (E = energy, V = 

static potential). Based upon the construction of the surfaces W = const., that gave the phase 

velocity: 

u = 
2( )

E

E V−
. 

In the associated wave equation: 

 
 (1) E. Schrödinger, Ann. Phys. (Leipzig) 79 (1926), pp. 361.  

 (2) E. Schrödinger, Ann. Phys. (Leipzig) 79 (1926), pp. 489. 
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one substitutes: 

 = 2 /
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iEt he   , 

 

in which 1 is independent of time. It will then follow that: 
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As Schrödinger also emphasized, it does not seem that one can find an analogue of that process 

in relativistic mechanics in the presence of the four-potential. 

 V. Fock (1) had also exhibited the wave equation for three-dimensional mechanics. He 

substituted the Ansatz: 
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and applied the variational principle: 
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in which d  = dt dq1 dq2 dq3 . 

 In what follows, we will derive the wave equation for relativistic mechanics in the general case 

where a four-potential exists by adopting the viewpoint of Schrödinger’s first method. 

 The metric (in rectangular spatial coordinates) is: 

 

(2)  2ds  = 2 2 2 2

0 1 2 3( )dx dx dx dx− + + , 

 

in which x0 = c t. The equations of motion of the electron can be derived from the Lagrange 

function (2): 

 
 (1) V. Fock, Zeit. Phys. 38 (1926), pp. 242.  

 (2) e = charge of the electron, m – rest mass. The Ansatz: 
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in which i means the components of the four-potential. If we start with the Hamiltonian function: 
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and introduce the impulse coordinates: 
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then Hamilton’s partial differential equation will become: 
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Since the proper time s does not occur explicitly, one has 
W

s
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 = const., and indeed from (2) and 

(3): 
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is not applicable, since the associated Hamiltonian function: 
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vanishes identically. After eliminating proper time, one will have: 
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Cf. my note: Phys. Zeit. 26 (1925), pp. 207. 



Kudar – On the four-dimensional formulation of wave mechanics. 4 
 

(7)  
W

s




= − 21

2
mc . 

 

 When the four-potential does not include the cosmic time x0, there will exist an energy integral: 
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We will consider this case later. For the time being, the law of energy will not be assumed. 

 In order to arrive at the wave equation, we set: 
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in which 0 is independent of s, and  = 21
2
mc . From (9) and (10), we get: 
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After substituting (7), (12) in (6), we will get: 
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Corresponding to Schrödinger’s line of reasoning (1), instead of that differential equation, we shall 

consider the variational principle: 

 

(14) Qd   = 0 , 

 

in which d = dx0 dx1 dx2 dx3 ds, and Q denotes the quadratic form on the left-hand side of (13). 

 After an easy calculation (by partial integration), we will get the following wave equation from 

(14): 

 
 (1)  E. Schrödinger, loc. cit., I. Mitteilung. 



Kudar – On the four-dimensional formulation of wave mechanics. 5 
 

(15) 
2

2 2 2 2

2
Div grad Div 2  Grad ( 4 )e e e

s s s

  
    

   
+  +  +  − 

   
 = 0 , 

in which: 

  Div grad  = 
2 23

2 2
10 i ix x

 

=

 
−

 
 , 

 Div  = 
3

0

10

i

i ix x

 

=

 
−

 
 , 

 Grad 
s

 
 

 
 = 

2 23

0

10

i

i is x s x

 
 

=

 
−

   
 , 

2 = 
3

2 2

0

1

i

i

 
=

−  , 

   = 21
2
mc . 

 

 We now consider the special case in which 1 = 2 = 3 = 0, and e 0 = V (x1, x2, x3) is 

independent of x0. If we set: 
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then (8) will also be fulfilled formally when we recall (9). The wave equation (15) will reduce to: 
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We can also arrive at this latter equation by the second Schrödinger method (1). Namely, 

Hamilton’s partial differential equation is: 
 

(grad W)2 = (E – V)2 − 2 4m c , 
 

in this case, where grad W is taken to be three-dimensional. Here, E is normalized such that the 

rest energy of the electron will amount to 2mc , according to (8), (4). If we put 2mc + E in place of 

E and set V = − 2 /e r  then (16) will go to equation (27) in Fock (2). It should be remarked that the 

phase velocity that enters into (16) agrees with the de Broglie Ansatz (3) for the index of refraction. 

 

 Budapest, August 1926. 
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 (1) E. Schrödinger, II. Mitteilung. – Oskar Klein [Zeit. Phys. 37 (1926), pp. 895] has derived our equation (16) 

in the context of the five-dimensional theory of relativity. 

 (2) V. Fock, loc. cit., pp. 247.  

 (3) L. de Broglie, Journal de Physique, January 1926.  


