On the four-dimensional formulation of wave mechanics

By J. Kudar

Translated by D. H. Delphenich

In his first communication $\left({ }^{1}\right)$ on wave mechanics, Schrödinger introduced the substitution:
(1)

$$
W=\frac{h}{2 \pi} \log \psi
$$

into Hamilton's partial differential equation:

$$
H\left(q_{i}, \frac{\partial W}{\partial q_{i}}\right)-E=0
$$

and derived the wave equation from the variational principle:

$$
\delta \iiint\left[H\left(q_{i}, \frac{h}{2 \pi} \frac{1}{\psi} \frac{\partial \psi}{\partial q_{i}}\right)-E\right] \psi d x d y d z=0
$$

In the second communication $\left(^{2}\right.$), he dropped the relation (1) and used a different one that was based upon an adaptation of de Broglie's ideas about wave mechanics. The starting point was the relation:

$$
(\operatorname{grad} W)^{2}=2(E-V)
$$

which represents Hamilton's partial differential equation in classical mechanics ($E=$ energy, $V=$ static potential). Based upon the construction of the surfaces $W=$ const., that gave the phase velocity:

$$
u=\frac{E}{\sqrt{2(E-V)}}
$$

In the associated wave equation:

[^0]$$
\Delta \psi-\frac{1}{u^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=0
$$
one substitutes:
$$
\psi=e^{2 \pi i E t / h} \cdot \psi_{1}
$$
in which ψ_{1} is independent of time. It will then follow that:
$$
\Delta \psi_{1}+\frac{8 \pi^{2}}{h^{2}}(E-V) \psi_{1}=0
$$

As Schrödinger also emphasized, it does not seem that one can find an analogue of that process in relativistic mechanics in the presence of the four-potential.
V. Fock $\left({ }^{1}\right)$ had also exhibited the wave equation for three-dimensional mechanics. He substituted the Ansatz:

$$
\frac{\partial W}{\partial t}=-E, \quad \frac{\partial W}{\partial q_{i}}=-E \frac{\frac{\partial \psi}{\partial q_{i}}}{\frac{\partial \psi}{\partial t}}
$$

in

$$
H\left(q_{i}, \frac{\partial W}{\partial q_{i}}\right)+\frac{\partial W}{\partial t}=0
$$

and applied the variational principle:

$$
\delta \int\left[H\left(q_{i},-E \frac{\frac{\partial \psi}{\partial q_{i}}}{\frac{\partial \psi}{\partial t}}\right)-E\right]\left(\frac{\partial W}{\partial t}\right)^{2} d \Omega=0
$$

in which $d \Omega=d t d q_{1} d q_{2} d q_{3}$.
In what follows, we will derive the wave equation for relativistic mechanics in the general case where a four-potential exists by adopting the viewpoint of Schrödinger's first method.

The metric (in rectangular spatial coordinates) is:

$$
\begin{equation*}
d s^{2}=d x_{0}^{2}-\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right) \tag{2}
\end{equation*}
$$

in which $x_{0}=c t$. The equations of motion of the electron can be derived from the Lagrange function $\left({ }^{2}\right)$:

[^1]$$
L=\frac{1}{2} m c^{2}\left[\left(\frac{d x_{0}}{d s}\right)^{2}-\sum_{i=1}^{3}\left(\frac{d x_{i}}{d s}\right)^{2}\right]+e \sum_{i=1}^{3} \varphi_{k} \frac{d x_{k}}{d s}
$$
in which φ_{i} means the components of the four-potential. If we start with the Hamiltonian function:
\[

$$
\begin{equation*}
H=\frac{1}{2} m c^{2}\left[\left(\frac{d x_{0}}{d s}\right)^{2}-\sum_{i=1}^{3}\left(\frac{d x_{i}}{d s}\right)^{2}\right] \tag{3}
\end{equation*}
$$

\]

and introduce the impulse coordinates:

$$
\begin{align*}
& \frac{\partial L}{\partial \frac{d x_{0}}{d s}}=m c^{2} \frac{d x_{0}}{d s}+e \varphi_{0}=\frac{\partial W}{\partial x_{0}}, \tag{4}\\
& \frac{\partial L}{\partial \frac{d x_{i}}{d s}}=-m c^{2} \frac{d x_{i}}{d s}+e \varphi_{i}=\frac{\partial W}{\partial x_{i}} \tag{5}
\end{align*} \quad(i=1,2,3),
$$

then Hamilton's partial differential equation will become:

$$
\begin{equation*}
\frac{1}{2 m c^{2}}\left[\left(\frac{\partial W}{\partial x_{0}}-e \varphi_{0}\right)^{2}-\sum_{i=1}^{3}\left(\frac{\partial W}{\partial x_{i}}-e \varphi_{i}\right)^{2}\right]+\frac{\partial W}{\partial s}=0 . \tag{6}
\end{equation*}
$$

Since the proper time s does not occur explicitly, one has $\frac{\partial W}{\partial s}=$ const., and indeed from (2) and (3):

$$
L=m c^{2} \sqrt{\left(\frac{d x_{0}}{d s}\right)^{2}-\left[\left(\frac{d x_{1}}{d s}\right)^{2}+\left(\frac{d x_{2}}{d s}\right)^{2}+\left(\frac{d x_{3}}{d s}\right)^{2}\right]}+e \sum_{i=0}^{3} \varphi_{i} \frac{d x_{i}}{d s}
$$

is not applicable, since the associated Hamiltonian function:

$$
H=\sum_{i=0}^{3} \frac{\partial L}{\partial \frac{d x_{i}}{d s}} \frac{d x_{i}}{d s}-L
$$

vanishes identically. After eliminating proper time, one will have:

$$
L=-m c^{2} \sqrt{1-\frac{1}{c^{2}}\left[\left(\frac{d x_{1}}{d s}\right)^{2}+\left(\frac{d x_{2}}{d s}\right)^{2}+\left(\frac{d x_{3}}{d s}\right)^{2}\right]}+e\left(\varphi_{0}+\frac{1}{e} \sum_{i=0}^{3} \varphi_{i} \frac{d x_{i}}{d s}\right) .
$$

Cf. my note: Phys. Zeit. 26 (1925), pp. 207.

$$
\begin{equation*}
\frac{\partial W}{\partial s}=-\frac{1}{2} m c^{2} \tag{7}
\end{equation*}
$$

When the four-potential does not include the cosmic time x_{0}, there will exist an energy integral:

$$
\begin{equation*}
\frac{\partial W}{\partial x_{0}}=\text { const. }=E . \tag{8}
\end{equation*}
$$

We will consider this case later. For the time being, the law of energy will not be assumed.
In order to arrive at the wave equation, we set:

$$
\begin{equation*}
W=\frac{e h}{2 \pi i} \log \psi \quad(i=\sqrt{-1}) . \tag{9}
\end{equation*}
$$

It follows (7) that:

$$
\begin{equation*}
\frac{e h}{2 \pi i} \frac{1}{\psi} \frac{\partial \psi}{\partial s}=-\frac{1}{2} m c^{2} \tag{10}
\end{equation*}
$$

so

$$
\begin{equation*}
\psi=e^{-2 \pi i \varepsilon s / c h} \cdot \psi_{0}\left(x_{0}, x_{1}, x_{2}, x_{3}\right), \tag{11}
\end{equation*}
$$

in which ψ_{0} is independent of s, and $\varepsilon=\frac{1}{2} m c^{2}$. From (9) and (10), we get:

$$
\begin{equation*}
\frac{\partial W}{\partial x_{i}}=-\varepsilon \frac{\frac{\partial \psi}{\partial q_{i}}}{\frac{\partial \psi}{\partial t}} \quad(i=0,1,2,3) \tag{12}
\end{equation*}
$$

After substituting (7), (12) in (6), we will get:

$$
\begin{equation*}
\left(\varepsilon \frac{\partial \psi}{\partial x_{0}}+e \varphi_{0} \frac{\partial \psi}{\partial s}\right)^{2}-\sum_{i=1}^{3}\left(\varepsilon \frac{\partial \psi}{\partial x_{i}}+e \varphi_{i} \frac{\partial \psi}{\partial s}\right)^{2}-4 \varepsilon^{2}\left(\frac{\partial \psi}{\partial s}\right)^{2}=0 . \tag{13}
\end{equation*}
$$

Corresponding to Schrödinger's line of reasoning (${ }^{1}$), instead of that differential equation, we shall consider the variational principle:

$$
\begin{equation*}
\delta \int Q d \omega=0 \tag{14}
\end{equation*}
$$

in which $d \omega=d x_{0} d x_{1} d x_{2} d x_{3} d s$, and Q denotes the quadratic form on the left-hand side of (13).
After an easy calculation (by partial integration), we will get the following wave equation from (14):
(${ }^{1}$) E. Schrödinger, loc. cit., I. Mitteilung.

$$
\begin{equation*}
\varepsilon^{2} \operatorname{Div} \operatorname{grad} \psi+\varepsilon e \operatorname{Div} \Phi \cdot \frac{\partial \psi}{\partial s}+2 \varepsilon e\left(\Phi \operatorname{Grad} \frac{\partial \psi}{\partial s}\right)+\left(e^{2} \Phi^{2}-4 \varepsilon^{2}\right) \frac{\partial^{2} \psi}{\partial s^{2}}=0 \tag{15}
\end{equation*}
$$

in which:

$$
\begin{aligned}
\operatorname{Div} \operatorname{grad} \psi & =\frac{\partial^{2} \psi}{\partial x_{0}^{2}}-\sum_{i=1}^{3} \frac{\partial^{2} \psi}{\partial x_{i}^{2}}, \\
\operatorname{Div} \Phi & =\frac{\partial \varphi_{0}}{\partial x_{0}}-\sum_{i=1}^{3} \frac{\partial \varphi_{i}}{\partial x_{i}}, \\
\left(\Phi \operatorname{Grad} \frac{\partial \psi}{\partial s}\right) & =\varphi_{0} \frac{\partial^{2} \psi}{\partial s \partial x_{0}}-\sum_{i=1}^{3} \varphi_{i} \frac{\partial^{2} \psi}{\partial s \partial x_{i}}, \\
\Phi^{2} & =\varphi_{0}^{2}-\sum_{i=1}^{3} \varphi_{i}^{2}, \\
\varepsilon & =\frac{1}{2} m c^{2}
\end{aligned}
$$

We now consider the special case in which $\varphi_{1}=\varphi_{2}=\varphi_{3}=0$, and e $\varphi_{0}=V\left(x_{1}, x_{2}, x_{3}\right)$ is independent of x_{0}. If we set:

$$
\psi=e^{-2 \pi i \varepsilon s / c h} e^{2 \pi i E x_{0} / c h} \cdot \bar{\psi}\left(x_{1}, x_{2}, x_{3}\right)
$$

then (8) will also be fulfilled formally when we recall (9). The wave equation (15) will reduce to:

$$
\begin{equation*}
\Delta \bar{\psi}+\frac{4 \pi^{2}}{c^{2} h^{2}}\left[(E-V)^{2}-m^{2} c^{4}\right] \bar{\psi}=0 \tag{16}
\end{equation*}
$$

We can also arrive at this latter equation by the second Schrödinger method (${ }^{1}$). Namely, Hamilton's partial differential equation is:

$$
(\operatorname{grad} W)^{2}=(E-V)^{2}-m^{2} c^{4},
$$

in this case, where grad W is taken to be three-dimensional. Here, E is normalized such that the rest energy of the electron will amount to $m c^{2}$, according to (8), (4). If we put $m c^{2}+E$ in place of E and set $V=-e^{2} / r$ then (16) will go to equation (27) in Fock (${ }^{2}$). It should be remarked that the phase velocity that enters into (16) agrees with the de Broglie Ansatz $\left({ }^{3}\right)$ for the index of refraction.

Budapest, August 1926.
(Received on 30 August 1926)

[^2]
[^0]: $\left.{ }^{(}{ }^{1}\right)$ E. Schrödinger, Ann. Phys. (Leipzig) 79 (1926), pp. 361.
 $\left(^{2}\right)$ E. Schrödinger, Ann. Phys. (Leipzig) 79 (1926), pp. 489.

[^1]: $\left.{ }^{1}{ }^{1}\right)$ V. Fock, Zeit. Phys. 38 (1926), pp. 242.
 $\left(^{2}\right) \quad e=$ charge of the electron, m - rest mass. The Ansatz:

[^2]: (${ }^{1}$) E. Schrödinger, II. Mitteilung. - Oskar Klein [Zeit. Phys. 37 (1926), pp. 895] has derived our equation (16) in the context of the five-dimensional theory of relativity.
 $\left.{ }^{(2}\right)$ V. Fock, loc. cit., pp. 247.
 $\left({ }^{3}\right)$ L. de Broglie, Journal de Physique, January 1926.

