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On the four-dimensional formulation of wave mechanics
By J. Kudar

Translated by D. H. Delphenich

In his first communication (}) on wave mechanics, Schrodinger introduced the substitution:

(1) W= LIogv,//
2

into Hamilton’s partial differential equation:

H[qi,%j -E=0
aq

and derived the wave equation from the variational principle:

5“‘.[{H (qi,%ég—;ﬂi]—E}y/dxdydz =0,

In the second communication (), he dropped the relation (1) and used a different one that was
based upon an adaptation of de Broglie’s ideas about wave mechanics. The starting point was the
relation:

(grad W) =2(E~ V),

which represents Hamilton’s partial differential equation in classical mechanics (£ = energy, V' =
static potential). Based upon the construction of the surfaces W = const., that gave the phase
velocity:

E

J2(E-V) '

In the associated wave equation:

() E.Schrédinger, Ann. Phys. (Leipzig) 79 (1926), pp. 361.
(® E.Schrédinger, Ann. Phys. (Leipzig) 79 (1926), pp. 489.
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one substitutes:
27iEt/h

y==¢€ Y1

in which w1 is independent of time. It will then follow that:
871°
AW1+F(E_V)V/1 =0.

As Schrodinger also emphasized, it does not seem that one can find an analogue of that process
in relativistic mechanics in the presence of the four-potential.

V. Fock (}) had also exhibited the wave equation for three-dimensional mechanics. He
substituted the Ansatz:

o
W _ g W g%
ot o, oy

ot

n

H[qﬂ}% “o
aq; ot

and applied the variational principle:

oy )

aq; oW
o||H|qg,-E—|-E||— | dQ =0,
j b oy (atJ

ot

in which d Q =dt dq1 dg» dqs .

In what follows, we will derive the wave equation for relativistic mechanics in the general case
where a four-potential exists by adopting the viewpoint of Schrodinger’s first method.

The metric (in rectangular spatial coordinates) is:

) ds? = dx® —(dxZ +dx? +dx?),

in which xo = ¢ t. The equations of motion of the electron can be derived from the Lagrange
function (%):

() V. Fock, Zeit. Phys. 38 (1926), pp. 242.
(®) e = charge of the electron, m — rest mass. The Ansatz:
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dx, \¥ & dx ) 3 dx
i=1 i=1

in which ¢ means the components of the four-potential. If we start with the Hamiltonian function:

ape| (B ) (%)
© Hmame de) Z[ds”

and introduce the impulse coordinates:

oL , dx, oW
4 = mc°—2+eq, = —,
( ) dl dS ¢O 8XO
ds
oL , dx. oW :
5 —=—-mc"—+ep = — =1, 2,3),
(5) % & e ox (i )
ds

then Hamilton’s partial differential equation will become:

2 2
1 ow 3. (oW oW
6 M ep | -S| P g | [+2E -,
©) 2mc? “ X, %j iz_ll(ax. @.j ] s

. . . W .
Since the proper time s does not occur explicitly, one has aa— = const., and indeed from (2) and
S

3):

ot [ ([ %]+ (2] (2]

is not applicable, since the associated Hamiltonian function:

3. oL dx
H=S 2% 24
.Zo:adx ds

ds

vanishes identically. After eliminating proper time, one will have:

l(dx ) (dx, ) (dx, )’ 13 dx
L=—mc? [1—=|| = 2 73 - Shah I
mc\/ cz{(dsj+(dsj+(dsj e ¢°+e§‘¢' ds

Cf. my note: Phys. Zeit. 26 (1925), pp. 207.
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7 —=-1mc’.
@) s ?

When the four-potential does not include the cosmic time xo, there will exist an energy integral:

(8) W _ const. = E .
0X,

We will consider this case later. For the time being, the law of energy will not be assumed.
In order to arrive at the wave equation, we set:

eh .
) W= T“’QV/ (i=y-1).
7l
It follows (7) that:
(10) eh 1w _ iy,
2wy 0S
SO
(11) W= e—27ziss/ch _ (-xO, X1, X2, x3) ,

in which w is independent of s, and &= %mc2 . From (9) and (10), we get:

oy
ow aq, .
(12) a—Xi— 8@ (l 0, 1, 2, 3)
ot
After substituting (7), (12) in (6), we will get:
oy oy t oy oy ’ oy Y
13 E—+ep,— | — s —+ep— | 4| —| =0.
(1) [ ox, %asj Zl[ x asJ (as)

Corresponding to Schrodinger’s line of reasoning (%), instead of that differential equation, we shall
consider the variational principle:

(14) 5[de =0,

in which dw = dxo dx1 dx> dx3 ds, and Q denotes the quadratic form on the left-hand side of (13).
After an easy calculation (by partial integration), we will get the following wave equation from
(14):

() E.Schrédinger, loc. cit., I. Mitteilung.
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2
0S oS o5
in which:
2 3 2
Div grad w= — ,
grad v v le 5
3
Diva = %03 02
XO i=1 axi
2 3 2
[@Gradﬁ—wjz , oy o oy ’
aS a 8X0 i=1 asaxl

We now consider the special case in which ¢1 = ¢ = @3 =0, and e g = V (x1, x2, x3) is
independent of xo. If we set:
W= e—27riss/ch e27riEX0/ch l/7(X1| X2, X3)

then (8) will also be fulfilled formally when we recall (9). The wave equation (15) will reduce to:

_  Ax? _
(16) A(//—Fw[(E—V)Z—mZCA]l// =0.

We can also arrive at this latter equation by the second Schrédinger method (*). Namely,
Hamilton’s partial differential equation is:

(grad W)* = (E V)’ — m’c’,

in this case, where grad W is taken to be three-dimensional. Here, E is normalized such that the
rest energy of the electron will amount to mc?, according to (8), (4). If we put mc®+ E in place of
E and set V'=— e”/r then (16) will go to equation (27) in Fock (*). It should be remarked that the
phase velocity that enters into (16) agrees with the de Broglie Ansatz (%) for the index of refraction.

Budapest, August 1926.
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() E. Schrédinger, 11. Mitteilung. — Oskar Klein [Zeit. Phys. 37 (1926), pp. 895] has derived our equation (16)
in the context of the five-dimensional theory of relativity.

(® WV.Fock, loc. cit., pp. 247.

(® L. de Broglie, Journal de Physique, January 1926.



