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The screwing motion, the null system, and the linear complex 

 
By C. Küpper in Prague. 

 
Translated by D. H. Delphenich 

 
 The present exposition can be recommended especially for the purpose of lecturing at 
technical institutes.  I have published its foundations in a treatise on the variation of the 
positions of rigid systems in volume 6 of Schlömilch’s Zeitschrift für Mathematik und 
Physik. 
 
 
 1. A screwing motion is given by its axis C, a translation dσ in the direction of C, 
and a rotation dτ around C.  Let the perpendicular ac = x be dropped from an arbitrary 
point a in space to C.  a will describe a helix in a certain sense whose tangent A at a will 
define an angle ϕ with C such that: 

x = 
d

d

σ
τ

 ⋅⋅⋅⋅ tan ϕ . 

 
 The non-zero constant dσ / dτ = k is called the parameter of the motion.  A is 
perpendicular to ca, and is called the translation ray of the point a. 
 If one considers the translation rays of all points of ca then one will see that they 
define a ruled family of equilateral paraboloids T0 that has C, ac for its vertex lines and k 
for its distribution parameter.  T0 is the translation surface of the lines ac. 
 If a, with a translation ray A, were subjected to a finite screwing motion then the 
displaced ray A would remain the translation ray for the displaced point a. 
 We now draw a plane E through a that is perpendicular to A and call it the null plane 
of a, which we give the notation of e.  In this way, any point e of space will be assigned a 

plane E that goes through it that contains the perpendicular ec from e to C that is possible.  

Conversely, an arbitrary plane E that cuts C – say, at c – will be the null plane of any of 
its points e.  There is a line ca in E that goes through c and is perpendicular to C.  From 

what was just said, e must be on it.  If one imagines the translation surface T0 that belongs 

to ca then one and only one of its lines that are perpendicular to ca will also be 
perpendicular to E, and it will then meet E at the point e, for which E will be the null 

plane, and e will be its null point.  If E and e are at the basis of the screwing motion then 

the displaced point e will always remain the null point of the displaced plane E.  The null 

system consists of the points of space and their null planes. 
 The null system is obviously well-defined when the screw axis C is known, along 
with the translation of any point.  Now, if only the translation ray of a were given then 
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the helix that a describes would indeed be known, but the sense in which would be 
traversed by a would still be double-valued.  Which of them one would like to choose is 
irrelevant for the determination of the null system. 
 
 
 2. Conjugate lines G, G in the null system.  The planes that are perpendicular to C 

will be cut by C at its null points.  We choose any of them to be the horizontal projection 
plane and pose the problem: Find 
the null points e for all planes E 

that go through a line G that is 
skew to C!  Let e0 c0 be the shortest 
transversal of G, C and let the 
horizontal plane be drawn through 
it, while the vertical plane is 
perpendicular to e0 c0 .  Let G′ be 
the horizontal projection of G, and 
let G″ be the vertical one.  E0 will 
be the plane that has e0 c0 for its 
horizontal trace and is inclined 
with respect to the horizontal plane 
by the angle w0 .  Its null point e0 

must lie on e0 c0, and can be chosen 
arbitrarily on it, so the null system 
will, in turn, be determined in such 
a way that the translation of e0 is 

perpendicular to E0 .  E is drawn 
through G, its trace is E′, and w is 
the angle that it defines with the 
horizontal plane.  Its null point e is 

found on a line that cuts C 
perpendicularly, and whose 

horizontal projection will then go through e0 and must be parallel to E′.  The point e 
where this line meets G immediately provides its vertical projection e″ c″.  One must now 
deal with the position of the horizontal projection e′ of the null point e in question.  One 

now shows that e is on the line G′ that is drawn through e0 parallel to G′.  If x denotes the 

unknown length, and c, e′, x are the known c0 e0 then one must have: 

 

0

x

x
 = 

0

tan

tan

w

w
. 

 
 Obviously, if e′ is thought of as being on G′ then c0 e′ will fulfill this condition, as one 

will recognize when one ascertains w by means of the perpendicular e s that is dropped 
from e to E′. 

 

Figure 1. 
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 The fact that the locus of e is now a line G will easily come to light when one 

observes that e c describes an equilateral paraboloid when e is assumed to vary on G: 
This paraboloid has a line G that belongs to the same family as C, G in common with the 

plane that is erected vertically to G′, and that will be the desired locus.  If one calls the 

angle of inclination of G over the horizontal plane w0 then one will see that: 

 

0

0

tan

tanw

w
= 

c e

c

′′ ′′
′′ ′′e

 = 0

0

x

x
. 

 
It follows from this that the plane E0 that that goes through G and c0 e0 has its null point 

at e0 .  If one then bases the argument that was just carried out upon the G that was just 

found, instead of G then that must imply that G is the locus of the null points e of the 
planes E that possibly go through G, which is where we started.  G, G are called 

conjugate lines because any axis is a pencil of planes that have their null points in the 
others. 
 Here, however, one 
must especially take note 
when ∠ w0 = 0, because the 
paraboloid that facilitates 
the proof would no longer 
exist then.  As a horizontal 
plane, E0 would also have 
its null point at c0 now, 
such that the null system 
would first be determined 
when one assigned a null 
point e1 to a second plane 

E1 that goes through G. 
 If E1 meets the axis C at 
c1 and if c1 e1 is parallel to 

G then the null point of E1 
must lie anywhere on the 
line c1 e1, so it will also be 

arbitrary as long as the null system is not already assumed to be given.  If E denotes a 
third plane through G, e, its null point, and w its inclination angle above the horizontal 

then one will have: 

1

tan

tan

w

w
= 

1 1

c

c

e

e
. 
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If will then follow that 
1 1

c

c

e

e
= 0

0 1

c c

c c
; i.e., the locus of e is a line G that goes through c0 

and is perpendicular to c0 e0 .  One will have tan w0 = 0c c

ce
 for them, and since tan w = 

0

0 0

c c

e c
, one will have 

tan

tanw

w
 = 0 1c e

ce
. 

 One sees from this that e0 is the null point of the plane E0 that contains G, c0, e0 .  

Finally, if E is drawn through G arbitrarily, and w is its angle with the horizontal plane 

then one will have 
0

tan

tan

w

w
 = 0

0 0

c e

c e
, as above, if e means the point of intersection of G and 

G.  However, e0 is the null point of E0, so e is that of E. 

 
 
 3. The foregoing discussion immediately yields these consequences: 
 
 a) Two conjugate G, G are skew. 

 b) If the angle between G, C is not π / 2 then the same thing will be true for ∠ G, C, 

and G, G, C will determine an equilateral paraboloid that will have C for its vertex line 

and e0 e0 for the shortest transversal of G, G. 

 c) By contrast, if ∠ G, C = π / 2 then G, C will intersect, and conversely, if G meets 

the axis C then one must have ∠ G, C = π / 2. 

 d) If ∠ G, G = π / 2 then G, G must be the translation rays of the points e0, e0, since 

the null plane of e0 that goes through G will be perpendicular to G.  Conversely, if G is 

the translation ray of e0 then G must be rectangular to G, since G will lie in the null plane 

of e0 .  The translation rays will then be paired as rectangular conjugates lines. 
 e) If G is parallel to C then the translation rays will be parallel to the points of G, so 
they will also be their null planes; i.e., G will be at infinity.  This also sheds light upon 

the fact that the null points to parallel planes are found on lines that are parallel to C.  
Thus, if two points have parallel translations then their connecting lines C must be 
parallel. 
 f) Let E be an arbitrary plane that intersects C, such that its null point e lies at a 

finite point.  Any line G that is thought of as being in E, but not going through e will have 

a conjugate G that goes through e, but does not lie in E.  It will then follow that the null 

planes of all points of E will go through e, and all possible planes that go through e will 

have their null points in E. 
 Now, when G is drawn through e, the null planes of its points must all contain G, or 

else G would have to coincide with its conjugates.  The pencil of rays (e) that is present in 

E consists of such self-conjugate lines – viz., the so-called complex rays – and any point 
in space will be the center of such a pencil of rays. 
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 g) If E is parallel to C then one will draw a G that is rectangular to C in E and 
consider its conjugate G.  Any point e on G will have a null plane E that goes through G.  

If one then draws a parallel to C through e that lies in E then any point of it must possess 
a null plane that is parallel to G.  Thus, an arbitrary line of the plane E will have a 

conjugate that is parallel to G, which will then also run parallel to E.  More briefly: 

 
 The null point of E is to be thought of as being at infinity in the direction that goes 
through G, and the complex rays that are found in E will all have that direction. 

 
4.  The translation surface for the lines G in space. 

 
 a) Let G be parallel to C.  The parallel translations of the points of G will trace out a 
plane. 
 b) Let G be the translation ray of the point e0.  Its conjugate G will, in turn, likewise 

be the translation ray for the point e0, and the plane e0 G will be the translation surface of 

G.  Since the translation of a point e that is chosen on G will be perpendicular to the plane 
that joins G with e, the translation rays that are present in the plane e0G will envelop a 

parabola whose focal point will be e0 .  Should any translation whatsoever be in a plane 

E whose null point is e – say, the point e – then the null plane of e must obviously include 

the translation ray of e. 

  c) Let G be either parallel to C, a translation, or a complex ray, and let G be its 

conjugate. 
 The angle G, G is either 0 or π / 2.  From a known theorem, since they will be 

perpendicular to the planes Ge, the translation rays of the points e that are found on G 

will be the lines of a common (not equilateral) paraboloid whose vertex lines are G, and 
the translation ray will be its axis C at the next-lying point e0 .  For that reason, these two 
lines cannot define a right angle, since otherwise G, G would have to be parallel. 

 d) Let G be a complex ray.  Its translation surface is always an equilateral 
paraboloid.  If one then drops the perpendicular e c from any point e to the C then G c 
will be the null plane of e.  However, the line e c will describe a paraboloid as e varies 
that will contact the plane G c at e.  If one constructs the normal paraboloid that belongs 
to G for it then one will obtain the translation surface in question. 
 Thus, the complex ray can be defined as a line that occurs as the translation surface of 
an equilateral paraboloid or also as one from which a point has a translation that is 
perpendicular to it; any other point on it must then behave similarly (*). 
 It is important for the kinetic theory of curvature to stress the difference that exists 
between a screwing motion and a rotation: For the former, a complex ray will always 
describe a skew element.  For the latter, by contrast, it will describe a planar one, and the 

                                                
 (*) The property of the change in position of a rigid line that is emphasized here can make the 
connection between the lines of curvature of parallel surfaces immediately recognizable. 
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point of intersection of infinitely-close complex rays will yield a point of the rotational 
axis. 
 
 

5.  The quadratic complex of translation rays. 
 

 Let A1 be the translation ray of the point a1 .  What is the locus of the possible 
translations A through a1, and where does the point a to which they belong lie?  Chasles 
first answered this question, and thus took a step that led to the tetrahedral complex by a 
closely-related generalization.  One will arrive at the ray A in a very simple way when 
one looks for it in the planes E that are drawn through A1 .  One has a certain parabola in 

E to which A1 is tangent, and which admits 
a tangent that goes through a1 ; it will then 
be A.  One now exhibits the shortest 
transversal ac of A, C, which meets the 
conjugate to A at right angles, and must 
therefore be cut by the translations of all 
points of the line A, and thus those of A1, 
as well.  ac is therefore easy to find: It lies 
in the plane E, and is perpendicular to C.  
Once one has drawn ac, one drops a 
perpendicular to it from a1 whose foot will 
be a.  Now, in order to get the locus of A, 
one needs only to take a parallel C1 to C 
and the plane-pair C1A, A1A : Since ca, as 
well as C, is rectangular to A, and cuts A1, 
moreover, the two aforementioned planes 

will define a right angle, and their line of intersection A will generate a second-degree 
cone with edges A1, C1 . 
 Finally, if one thinks of the line C || C as going through a then the planes CC, C1C will 

intersect at right angles along it, and it will follow that C lives on a cylinder of rotation 

with the edges C, C1 .  The cylinder and the cone will intersect each other in a space 
curve of order three – viz., the locus of a.  One also immediately confirms that this space 
curve is found on the translation paraboloid that belongs to the complex ray a1 c1. 
 
 

6.  The fundamental ways of determining the null system (or linear complex). 
 

 The first manner of determination that we shall use us the one for which the axis C is 
given, along with a point a and its translation ray A. 
 
 Second.  Two conjugate lines G, G are given, and the translation ray A of any point 

a1 in their shortest transversal e0 e0 .  In fact the translation rays of the three points e0, e0, 

a1 will thus be known.  They will determine an equilateral paraboloid whose one vertex 
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line lies along e0, e0, while the second one must, in turn, be the axis C.  Conversely, if this 

is assumed then the complex will be established by a1, A1 alone. 
 
 Third.  Two conjugates G, G, and the translation ray A of any point a in space can be 

taken to be the determining data, assuming that A is perpendicular to the transversal t that 
is possible from a to G, G. 

 The fact that the extra condition must be fulfilled will follow from the fact that the 
transversal G that we spoke of will meet the plane Ga at the null point, and will thus be a 

complex ray.  Moreover, the assumption of a, A comes down to the same thing as when 
one assigns an arbitrary plane to a null point that is found anywhere – here, at a − on the 
transversal t to G, G that is contained in E.  If E then cuts the shortest transversal of G, G 

at a1 then a1 will be the null point of the plane E1 that joins that shortest transversal with 
a.  For that reason, if one determines (from 2) the complex in such a way that the 
translation of a1 is perpendicular to E1 then E will include the null point a, since a will  
appear as the point of intersection of two complex rays a1a, t that are found in E. 
 
 Fourth.  One is given G, G as conjugates and a complex ray l that does not cut G, G: 

An arbitrary plane E through l will contain a transversal t over G, G.  The point of 

intersection tl would be the null point of E in the possible complex, and (from 3), one can 
assume this. 
 
 Fifth.  Three skew complex rays a, b, c are given, along with a plane E and its null 
point e, if E does not contact the hyperboloid abc.  There is a transversal to a, b that lies 
in E, which will be called G, and a second G will contain the point e.  If one observes that 

any complex ray that meets an arbitrary line must also meet its conjugate then one will 
see that G, G will be conjugate in the possible complex; from 4, it will be determined by 

the ray c. Since any transversal of G, G is now a complex ray, the entire ruled family abc 

will belong to the complex rays, while the guiding family will consist of pair-wise 
conjugate lines. 
 We further infer that if four skew a, b, c, d admit two and only two transversals then 
they will be conjugate in all complexes that contain those four as rays.  Any fifth ray e 

that does not cut G, G will suffice to determine that complex. 

 Now, if five skew lines a, b, c, d, e are present, and no line exists that cuts four of 
them then there will also be, in general, a single complex that has the five of them as 
rays: Let the hyperboloids abc, cde be denoted by H1, H2, respectively.  A plane that goes 
through c will contain a transversal G to a, b, c and a transversal Γ to c, d, e.  G, Γ 
intersect at a point 1 that lies in H1, as well as H2 .  A line δ of the family cde will go 
through 1.  Either δ will also belong to the family abc or it will not.  In the first case, one 
can take G to be conjugate to any other transversal of abcδ, and d to be determined by a 
complex that obviously also contains e as a ray, since it will contain three lines cδd of the 
family cde.  In the second case, δ will cut the hyperboloid H1 at perhaps the point 2, in 
addition to 1.  Let the transversal that goes through 2 over abc be G.  The ray δ must be 
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present in the complex that corresponds to our requirement, so G, G must be conjugate in 

it.  If one assumes this then it will be determined in such a way that it will possess the ray 
d, as well.  However, both families abc, cde will, in turn, be present in it. 
 It is not by any means trivial to also draw one’s attention to the fact that δ contacts the 
surface H1 at the point 1.  We will be led to consider the complex ray from a new 
viewpoint by this in itself. 
 
 

7.  The complex ray as the union of two infinitely-close (i.e., neighboring) 
conjugates. 

 
 Let G be an arbitrary line and let G be its conjugate, where the shortest transversal of 

the two has a finite length.  If a, b, c, d then mean any four complex rays that are skew to 
2 and meet G, G, but do not lie hyperboloidally then the hyperboloid abc will be cut by d 

on G and G.  By contrast, if G is a complex ray then d must obviously be tangent to that 

hyperboloid at the point of intersection d, G – i.e., G will now be the line of the 

hyperboloid that is skew to G and lies infinitely close to it.  One must infer from this 
what one means by the phrase “infinitely-neighboring skew lines G, G”: If one thinks of 

any hyperboloid through G then the line on it that belongs to the same family as G will be 
its neighbor.  Any point e of G is the center of a pencil of rays in whose plane G is 

thought to be; that plane is, in fact, the tangential plane to H at e.  Thus, if a hyperboloid 
osculates H along G then it will likewise contain the neighboring G.  Since it suffices for 

this that the hyperboloid possess the same tangential planes at three different points of G, 
it will easily follow that ∞3 hyperboloids through G and a well-defined neighbor G are 

possible.  If 1, 2, 3 are three points in space then they will determine three planes G1, G2, 
G3 that contact H at e1, e2, e3 on G.  The lines e11, e22, e32 will then determine a new 
hyperboloid H1 that will, as a result of the definition, contain the same neighboring line to 
G to as H does. 
 Now, the question arises of whether the determination of a complex by two 
conjugates and a plane with its null point will still be valid when the conjugates G, G are 

neighboring. 
 We assume that G is a complex ray and the infinitely-close conjugate G is known; in 

other words, one is given the null points of three planes that go through G or also three 
complex rays a, b, c that go through different points on G.  From what was just said, the 
null points of all points of G will be the associated tangential planes of the hyperboloid 
abc. 
 Now, if the arbitrary plane E cuts G at the point e, and G is the null plane of e then 

the null point of E must obviously lie on the line of intersection EE.  If it were chosen 

arbitrarily here and joined with the point Ga through the line G1 then the line of 
intersection G1 of the planes E, Ga would have to belong to G1 as its conjugate.  If one 

assumes this and assigns the plane Gb to the null point Gb then a complex will be 
determined (from 3) that is the only one that will satisfy the requirements that were 
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posed.  It is clear that one can also choose a complex ray that is skew to G in order to 
establish it. 
 A complex is thus given by four skew rays a, b, c, d, and a fifth one G that is cut by 
three of them. 
 If G encounters only two of them a, b then the complex will likewise be determined.  
In order to see this, one takes the hyperboloid Gcd, so the plane Ga will have the line G1 
in common with it, and its conjugate that goes through the point Ga must be a line G1 

that is different from G.  If this were assumed then one could make the plane Gb 
correspond to the point of intersection G, b as a null point, with which, the complex in 
question would then be found. 
 Finally, if a alone were cut by G then, from 5, the complex would be established by 
the rays b, c, d, and the plane G a with its null point Ga.  The case that was pointed out in 
6, in which the auxiliary line δ is tangent to the hyperboloid H1 at the point 1, will also 
find its resolution by our process. 
 
 

__________ 


