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 The theory of the anomalous Zeeman effect and its conversion into the Paschen-Back effect 

was reduced to a few basic assumptions about the quantum structure of the atom and its behavior 

in an external magnetic field in a significant investigation by W. Heisenberg (1). Obviously, those 

basic assumptions: 

 

 a) Half-integer quantum jumps between atomic shells and the atomic nucleus (2). 

 

 b) Ineffectiveness of the nuclear momentum under spatial quantization of the magnetic field 

(3). 

 

 c) The axis of the nuclear momentum does not affect the the resultant of external and internal 

fields (4), 

 

 
 (1) W. Heisenberg, “Zur Quantentheorie der Linienstruktur und der anomalen Zeemaneffekte,” Zeit. Phys. 8 

(1922), pp. 273. Cf., also A. Sommerfeld, Atombau und Spektralinien, 3rd ed., pp. 494, et seq.  

 (2) Although the rotational momentum of the nucleus and the luminous electron should be intrinsically half-integer 

only in their time average for continuously whole-number total momenta of the atom, the nucleus can continually 

maintain half-integer momentum for a gradual separation of the luminous electron and an increasingly-weak 

interaction. 

 (3) At the same time, that will imply a contradiction to the momentum coupling of the atomic and ether momenta 

(Rubinowicz), against which even Heisenberg’s arithmetic mean of the radiated momentum would not help, due to 

the variable intensity ratios of the multiple lines. However, according to Wood, e.g., pure D1 line resonances can be 

created in the absence of D2 . 

 (4) From Larmor’s theorem, which is based in mechanics, no such effect can take place, but only a precession 

around the external field direction while conserving the orientation of the internal field.  
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do not seem to be compatible with the general principles that have been known up to now from 

the coupling of mechanics and electrodynamics that were employed by Bohr (1) in his new 

systematic theory of atomic structure. However, with a closer examination of the problem of 

magnetic line splitting, despite all misgivings, one will always once more arrive at the conviction 

that the Zeeman types, with their deep-rooted symmetry of the term splittings, can already be 

interpreted as being hardly essentially different from those of Heisenberg from the formal, as well 

as the model-theoretic viewpoint. For instance, according to Heisenberg, the formal symmetry 

between two associated doublet terms x1 and x2 whose splitting formulas [cf., infra, eq. (6)] emerge 

from each other by only a change of sign  can be reduced to two symmetric positions of the 

nuclear axis, which obviously behaves anomalously in some way, with respect to the atomic axis, 

which remains invariable. By contrast, according to Bohr (lectures at Göttingen, June 1922), for 

the x1 term, the nuclear axis will be parallel to the invariable atomic axis, while for the x2 term, it 

will be perpendicular, which is an arrangement that cannot be suited to a model-based 

understanding of the aforementioned symmetry from the outset, in my opinion. 

 With that state of affairs, in what follows, we shall attempt to give the content of Heisenberg’s 

theory a firm foundation in such a way that when the postulates a), b), c) are approached from the 

standpoint of normal intuition, they will present themselves as necessary consequences of a basic 

assumption about the kinematics of the nucleus that the empirical facts will compel one to 

acknowledge, especially on the grounds of principle of analogy between classical and quantum 

radiation. Namely, from that principle of analogy, one can directly read off the type of anomaly in 

the motion of the luminous electron from the empirical Zeeman types and Paschen-Back 

transitions (§ 1). The conclusion that there are “anomalous” forces that create them is no longer 

complicated then (§ 2) and will lead, on the one hand, to the origin of those forces and furthermore 

to information about atomic structure, on the other, and indeed once more to Heisenberg’s 

conception of things, which then find its kinematical and quantum-theoretical basis. 

 

 

 § 1. – We initially restrict ourselves to weak external fields and consider only Zeeman types 

from the following series of doublet line atoms: 

 

  (s p1) (p1 d1) (d1 b1) … 

   (p2 d2) (d2 b2) … 

 

whose asymptotic approximation to classical radiation (2) is to be expected, because a quantum 

number k will jump by k = 1 for it, which will make lim k / k = 0. 

 The splitting of those line series – say, of (p1 d1) and (p2 d2) [see eq. (1)] – can be regarded as 

being constructed from several intertwined sub-triplets that each consist of a -component that is 

 
 (1) N. Bohr, Drei Aufsätze über Spektren und Atombau, Braunschweig, Friedrich Vieweg & A.-G., 1922. In 

particular, see the remarks in it about Heisenberg’s theory, pp. 98. 

 (2) No analogy should be expected with the combination of an x1 term with an x2 term, which is linked with a jump 

in the nuclear position, because the quantum number for the nuclear orientation does not go to infinity asymptotically. 
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surrounded by two -components, which is suggested by  –  –  in eq. (1). It is characteristic 

of those sub-triplets that: 

 

 1. Their line-width is not that of a normal Lorentzian triplet. 

 

 2. Their center line (-component) is displaced with respect to the field-free center line. 

 

1 1

2 2

21/15 ( 3 /15) 11/15

19 /15 ( 1/15) 17 /15
( , )

17 /15 ( 1/15) 19 /15

15 /15 ( 3 /15) 21/15

13 /15 ( 1/15) 11/15
( , )

11/15 ( 1/15) 13 /15

− − + 


− − + 


− + + 
 − + + 
− − +


− + +  

p d

p d

       (1) 

 

 In summary, the observations (by extrapolation of the Bergmann series) yield the following 

Table I for the displacements of the center lines of the sub-triplets and their line-widths, which are 

constant within a Zeeman type. [The line-width () –  of the normal triplet is set equal to 1.] 

 

Table I. 

 

 

Series 

 

 

 / o = displacement 

 

1 + b / o 

= line-width 

 

  

(s  p1) … 

     

     1/3 

 

1 + 1/3 

 (p1 d1) …      1/5,      1/15 1 + 1/5 

 (d1 b1) …      1/2,      3/25,       1/35 1 + 1/7 

   

 (p2 d2) …   [ 1/ 5], 1/15  1 – 1/5 

 (d2 b2) …   [ 1/ 7], 3 / 35, 1/ 35  1 – 1/7 

 

 [The sub-triplets that belong to the bracketed displacements for the (x2, y2) types are 

unobservable since they have vanishing intensity.] 

 This structure of a Zeeman type as something that consists of displaced and expanded sub-

triplets was initially indicated under the assumption of classical radiation from following motions 

of the luminous electron: Each particular sub-triplet corresponds to a rotation of the luminous 

electron in its orbit and a superimposed precession of the orbital plane around the field direction 

for a particular inclination  between the normal to the orbit and the magnetic field. However, the 
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anomalous line-width of the sub-triplet shows that it is not the normal Larmor precession o that 

one expects from the ordinary theory (1) that takes place, but a modified precession of the 

frequency o + o around the field direction. The displacement of the -components of the sub-

triplet further shows that the field-free orbital frequency  of the luminous electron has been 

converted into a field-free orbital frequency of  + . The values in Table I give the 

corresponding ratios  / o and (o + o) / o for the sub-triplets of the Zeeman type. In that way, 

from Table I, the maximum amount of additional rotation ( / o)max will be equal to o / o, 

moreover. Obviously, that comes from the parallel placement of the atomic axis and the field 

direction (cos  =  1)., while the remaining small additional rotation  is attributed to a factor 

cos  that belongs to a skew placement of the axes (2). 

 Quantum-theoretically, this picture that was obtained from the line splitting can be adapted to 

the terms in the following way: If an external magnetic field acts on a doublet line atom in the term 

state: 

1 1 1

2 2 2

1 2 3 4n




= 

s p d b

p d b      (2) 

 

then the luminous electron will not take on the Larmor precession o that one would expect from 

electrodynamics for an unchanged rotation , but an additional precession o will be added to o 

and an additional rotation  will be added to  (3). As will be shown shortly, the following Ansatz 

for the additional quantities in the doublet terms will lead to the empirical term splitting: 

 

o

o
 = 

1

2 1n


−
= 

1
2

1
2

n



−
 = max( )

o
,  



o
 = max( )

cos






o

,   (3) 

 

which does, in fact, agree with Tab. I asymptotically. 

 [The upper sign shall always be true for the x1 terms, while the lower one shall be true for the 

x2 term. According to eq. (2), n is assigned to the individual terms.] Here as well, the additional 

precession o and the additional rotation ()max cancel each other in the positions cos  = + 1 

 
 (1) P. Debye, Göttinger Nachr., 3 June 1916. A. Sommerfeld, Phys. Zeit. 17 (1916), pp. 491. 

 (2)  In the event that one leaves behind the normal precession o and the field-free rotation , the relationships are 

the same as they are for the rotation  of the Foucault pendulum relative to the Earth, which rotates by o. At the 

poles (cos  =  1), o cancels out ()max precisely, but in general, one has |  | = | o  cos  |. I have Herrn A. D. 

Fokker in Delft to thank for that comparison. 

 (3) The author has suggested that the anomalous character of the Zeeman effect is due to an additional precession 

or rotation in Zeit. Phys. 7 (1921), pp. 398, (Part II), and in fact, he got around the dilemma that was mentioned above 

on pp. 1, rem. 3 in a different way. In connection with the paper by Heisenberg that appeared then (loc. cit.), we shall 

now assign ()max to the parallel placement cos  =  1. 
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and cos  = − 1. The motion remains a normal Larmor precession here, and the associated 

magnetic energy is calculated in the entirely normal way [eqs. (5) and (5)]. 

 From the basic principles of quantum theory (1), along with the parallel and opposite positions 

of the field and atomic axis, one should also expect the skew positions  for which the magnetic 

energy terms E / h differ from the maximal energy term by integer multiples of the perturbation, 

i.e., the orbital number of precession o + o, in this case: 

 

maxE E

h h
−  = z  (o + o) (z = whole number).   (4) 

 

 The total momentum I of the atom around its invariable axis is set to: 

 

I = 1 1
2 2

( )
2

h
n


−             (5) 

 

for the x1 term (x2 term, resp.) (2). That I belongs to the value: 

 

maxE

h
 = 1 1

2 2
( )n − o            (5) 

 

for the maximum magnetic energy term in the normal way in which the parallel position where the 

normal Larmor precession takes place. 

 Therefore, eqs. (3) and (4) yield the following (empirically confirmed) series of term splittings: 

 

E / h = 1 1
2 2

( )n − o  − z (0 + o)  (z = 0, 1, 2, …, 2n – 1) . 

 

This can also be written as: 

E

h
 = 

1
21 1

2 2 1
2

( )
n z

n
n

− −
−  

−
o      (6) 

with the use of eq. (3). 

 (6) is associated with the following angle between the atomic axis and the field: 

 

cos  = 
max

E

E
 = 

1
2

1
2

n z

n

− −

−
,     (6) 

 

 
 (1) N. Bohr, On the quantum theory of line spectra, Copenhagen 1916, Part II, 32.  

 (2) Due to the field-less choice of combination in Sommerfeld’s “combined doublet” [Ann. Phys. (Leipzig) 63 

(1920), pp. 221], k = n (n – 1, resp.) was introduced as an “internal quantum number.” On the basis of the intensity 

ratios within the individual Zeeman types, the author [Zeit. Phys. 5 (1921), pp. 231, Part I, § 5] interpreted k as a total 

momentum quantum number of the atom. 
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such that the equatorial momentum quantum number J cos  will become a fractional quantum 

number. (6) gives precisely the position of the axes that Heisenberg introduced in order to explain 

the empirical (1) splitting term eq. (6), and which he derived theoretically from his basic 

assumption b) that it is not the equatorial component of the total atomic momentum that advances 

by whole quantum steps, but only that of the luminous electron, although the nucleus should 

contribute to the total magnetic energy in the field H in the usual way. The goal of the 

considerations in the present § 1 was to represent the consequences of Heisenberg’s hypothesis 

b), which is initially debatable from the standpoint of quantum theory, as consequences of Bohr’s 

quantum demand (4) with the help of the anomalous precession frequency o + o. The question of 

what sort of forces would generate the additional precession o and the additional rotation  

shall be treated in § 2, while the origin of those forces will be treated in § 3. 

 

 

 § 2. – We recall some familiar theorems from the theory of tops. For a rigid symmetric top 

with its axis fixed at one point, the magnitude and direction parallel to that axis of its rotational 

momentum will be represented by the momentum vector I1, which subtends 

an angle of 1 with the fixed z-direction (Fig. 1). A rotational moment M 

around a M axis that is kept perpendicular to the z I1-plane is now exerted 

on a top that rotates with an orbital number of . It is then known that axis 

of the top I1 will then exhibit a precession o around the z-axis with an 

angle 1 that stays constant and whose orbital frequency is given by the 

vector equation: 

 

11 1

  and  vector || 
,

       "      and .[ ] [ ]

z

z

 =   
=  = 

 = ⊥ ⊥ 

o oo M M
o z

M Io I o I o
  (7) 

 

 Since the rotational moment M can produce no change of momentum around the z-axis, o 

will be coupled with a simultaneous change  in , in such a way that  will vanish when 

1cos   = 0, while  will cancel with o when cos 1 = 1 and – 1, and in general there will be the 

corresponding vector equation: 

|  | = | o  cos  | ,     (8) 

 

 = − 1 1

2

1

( )I o  I

I
  ( = vector || I1)    (8) 

 

 
 (1) A. Landé, “Über den anomalen Zeemaneffekt,” Part I, Zeit. Phys. 5 (1921), pp. 231. 

z 

H  

90o 

I1 

Hp 

Hs 

Figure 1. 
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(cf., Foucault pendulum, see above). Moreover, the coupling of precession o and the additional 

rotation  acts in such a way that when the rotational moment M increases from zero, it can do 

no work since the increase is kinetic energy o will cancel with the decrease in kinetic energy . 

The additional motion is therefore “free of work and impulse.” 

 It is known that things are different when a rotational moment [i1 H] that is due to a magnetic 

field H that is parallel to z acts upon a system of masses that is endowed with a charge whose ratio 

is  : , which will then appear to be a magnet whose moment is: 

 

i1 = 1
2c




I  .      (9) 

Corresponding to eq. (7), a precession of: 

 

o = 1

1

[ ]

[ ]

H i H

I H
 = 1

1

i
H

I
 = 

2e




H     (10) 

 

will appear, but the additional rotation  will be missing, and the magnetic field will do work: 

 

A = (i1 H)            (10) 

 

when it increases from zero to full strength (1). 

 If an external magnetic field H that is parallel to z acts simultaneously with a mechanical 

rotational moment M around an axis that is perpendicular to I1 and z then both [effects eqs. (7), 

(8), and (10)] will combine and lead to the following result: 

 

1

Precession : , , ,
2 [ ]

Additional rotation : , | | | cos |

due to the magnetic field  and rotational moment .

c





  

  
+  = = 


  =   





o M
o o o H

o I o

o

H M

   (11) 

 

 The result eq. (3) of § 1 can then be interpreted in the following way: Along with the external 

field H, which leads to a normal Larmor precession of the luminous electron I1 around H with a 

 
 (1) One can, in fact, regard H as a vector sum H = Hp + Hs (Fig. 1). The component Hs = H  cos 1 that is 

perpendicular to I1 acts like a mechanical rotational moment [i1 H] = [i1 Hs], so from eq. (7), the precession frequency 

o will be eq. (10), and likewise the additional rotation around the I1 axis will be – o  cos 1 . The component Hp that 

is parallel to I1 will give an additional rotation around the I1-axis of + o cos 1 , such that the pure Larmor precession 

o will remain the same with an associated normal increase (i1 H) in the kinetic energy. 
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normal magnetic energy (10), there exists a mechanical rotational moment M whose axis always 

stays perpendicular to H and I1, so it will not increase the momentum around z or do any work. 

When one sets eq. (3) equal to eq. (7): 

 

o

o
 = 

1[ ]

M

I o
 = 

1
2

1
2

n



−
 ,  |  | = | o cos  | ,        (12) 

 

its magnitude is determined to be: 

M = 
1
2

11
2

[ ]
n




−
I o  ,      (13) 

or, due to eqs. (9) and (10): 

M = 
1
2

11
2

[ ]
n




−
i H  .      (14) 

 

 That mechanical additional rotational moment, whose origin was explained in § 3 and might 

be referred to as the “internal rotational moment,” can then be identified as the cause of the 

additional precession o and the additional rotation in § 1. 

 

 

 § 3. – The atomic nucleus might possess mechanical angular momentum I2 and therefore a 

magnetic moment of i2 = I2  / 2m c. With Heisenberg, we assume that the vector I2 is positioned 

parallel (for the x1 term) or opposite (for the x2 term) to the resultant H + Hi of the internal and 

external field, where the internal field Hi should point parallel to 

the momentum I1 of the luminous electron (Fig. 2). The rotational 

moment [i2 H] that H exerts upon i2 will then be cancelled by the 

opposite rotational moment − [i2 H] that the luminous electron 

exerts upon the nucleus in the event that i2 is parallel (anti-parallel, 

resp.) to the resultant H + Hi in equilibrium, corresponding to Heisenberg’s assumption. However, 

the latter rotational moment, as a reaction, corresponds to an opposite rotational moment [i2 H] 

that the nucleus I2 exerts upon the luminous electron I1 : 

 

M = [i2 H] .      (15) 

 

 In particular, if H is small compared to Hi (weak external field) then the resultant H + Hi will 

become parallel to Hi , so i2 will also become parallel to i1 , and: 

 

Hi 

H 

i2 

i1 

Figure 2. 
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M = 2
1

1

[ ]
i

i H
i

  (i2 ||  i1).  (16) 

 

 We identify this rotational moment, which does no work or impulse, that the nuclear 

orientation exerts upon the luminous electron with the internal rotational moment that was found 

in § 2 eq. (14) for a weak field (1). In particular, equating the eqs. (14) and (16) will then yield the 

condition: 
1
2

1
2

n



−
 = 2

1

 i

i
 = 2

1

 I

I
  (I2 ||  I1) .    (17) 

 

 Since the total momentum of the atom in eq. (5) was: 

 

I = I1 + I2 = 1 1
2 2

( )
2

h
n


−  ,      (17) 

 

what will ultimately follow is the special result that: 

 

I1 = 1
2

( )
2

h
n


− , I2 = 1

2
2

h


             (18) 

 

are the individual momenta of the nucleus and luminous electron, resp., which corresponds to what 

Heisenberg found a). The basic assumption c) that the nucleus does not affect the resultant of H 

and Hi will then suffice to make Heisenberg’s further assumption b) irrelevant, since the 

momentum I2 of the nucleus does not affect the spatial quantization in the magnetic field. Rather, 

b) follows from c) by means of (4). Imagining the nucleus to be a bar magnet (i.e., a magnetic 

dipole, and in particular with a moment of 1/2 magneton here) contradicts Larmor’s theorem, 

which requires only a precession o in a fixed field-free position for the nucleus, as a top (i.e., an 

Ampèrian molecular current), but only leads to the normal Zeeman effect. 

 In the resultant position, which already contradicts the kinematics of tops then, the nucleus 

cannot be treated as a top then either. That is because no resultant rotational moment at all acts 

upon the nucleus in the resultant position. As a top, the nucleus shall then remain at rest in the 

instantaneous direction of the resultant in space, since its normal Larmor precession o that is 

produced by the external field H shall be superimposed with an opposite additional precession o 

= − o and an additional rotation |  | = | − o cos 2 | as a result of the internal field Hi . Those 

additional quantities of the nucleus that do no work or impulse will then differ from the additional 

quantities eq. (3) that do no work or impulse for the luminous electron. The fact that, in reality, the 

 
 (1) The ratio of the anomalous precession number to the normal one o + o / o is identical to the ratio (I1 + I2) / 

I1 and identical to the splitting factor g that appeared in the term analysis of the Zeeman types (cf., Landé, loc. cit., 

Part I). 
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nucleus (in addition to the normal energy increase 1
2

cosh  o o  of the Larmor precession that enters 

into the potential energy against the internal field as an energy term) brings with it the additional 

quantities eq. (3) that do no work or impulse for the luminous electron if the atom is to still maintain 

its integrity, shows just that the normal treatment of the nucleus as a top does not indeed contradict 

the laws of energy and momentum, but probably kinematics, and must be replaced with a non-

mechanical picture of the nucleus. 

 

 

 § 4. – If one applies eq. (15), which is true for all fields, instead of eq. (16), which is true for 

weak fields, then one will get, entirely in connection with Sommerfeld’s (1) formal adaptation of 

Voigt’s coupling theory and Heisenberg’s model-based theory, the transition to the Paschen-

Back effect, since the resultant H + Hi goes from the direction Hi (H  Hi) to the direction H (H 

 Hi), during which the additional rotational moment and the additional precession and rotation 

and magnetic energy will change correspondingly (2). 

 

 

 § 5. – The explanation for the anomalous nature of the magneto-mechanical effect of Barnett 

(3) and Einstein-de Haas (4) is very simple now. From eq. (3), a well-defined magnetization is 

coupled with a precession of the atomic axis around the field direction that is g = 
1

1
2 1n

 
+ 

− 
 

times larger than what one would normally expect for the magnetization in question, so for the s1 

term (normal state n = 1), it would be twice as large. [The same thing is also true for the s1 term 

state of a triple line atom, which likewise possesses the splitting factor g = 2 (cf., footnote on pp. 

9]. In Barnett’s experiment, it is then necessary to have a twice-normal angular velocity of the 

atomic axis and the nuclear mass arrangement that is coupled with it in order to create (cancel, 

resp.) a well-defined magnetization. In the Einstein-de Haas experiment, a twice-normal 

rotational velocity of the atomic axis and the nuclear mass arrangement that is coupled with it as a 

reaction to a well-defined produced magnetization must enter into the magnetization (reverse 

magnetization, resp.) of a body. 

 

 

 

 

 

 
 (1) A. Sommerfeld, Zeit. Phys. 8 (1922), pp. 257. Atombau und Spektrallinien, 3rd ed., Chap. 6. 

 (2) The adaptation of the previous arguments to triplet line atoms will be touched upon in a later article where, 

among other things, the thesis that is derived from the Zeeman effect for chrome and neon will be maintained that one 

must generally replace Bohr’s nk-orbits with nk−1/2-orbits, as Heisenberg had proposed for doublet and triplet line 

atoms. 

 (3) S. J. Barnett, Phys. Rev. 6 (1915), pp. 239. I. G. Stewart, Phys. Rev. 11 (1918), pp. 100.  

 (4) Einstein and de Haas, Verh. d. D. Phys. Ges. 17 (1918), pp. 152. Emil Beck, Ann. Phys. (Leipzig) 60 (1919), 

pp. 109. G. Arvidsson, Phys. Zeit. 21 (1920), pp. 88. 
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Summary 

 

 The non-mechanical contribution of the atomic nucleus to the resultant of the external (H) and 

internal field (Hi), which is due to the luminous electron that Heisenberg assumed, in contradiction 

to Larmor’s mechanically-based theorem, leads to the appearance of a rotational moment M 

that is exerted upon the luminous electron. M creates an additional precession o around H and 

an additional rotation  around Hi that “does no work or impulse.” That additional motion can 

be read off from the empirical Zeeman type using the principle of analogy, and with the help of 

Bohr’s quantization of the perturbation (4), it justifies the apparently anomalous spatial 

quantization in the magnetic field that Heisenberg introduced as a special hypothesis b), along 

with the cancellation hypothesis c). The special form of the Zeeman term splitting can then be used 

in order to establish the individual momenta of the electrons and will lead uniquely to 

Heisenberg’s half-integer quantum division a) between the nucleus and luminous electron in a 

doublet line atom. At the same time, the anomalous additional precession explains the anomalous 

nature of the Barnett and Einstein-de Haas effect. For the non-mechanical nuclear properties, 

Bohr’s quantum perturbation requirement (4) implies the demand of an integer-quantized 

equatorial momentum (which is usually identical to it). 

 

 

_________ 

 

 

 

  

 

 

 

 

 

 


