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 1. – The expressions for the angular modifications in the deformation of a continuous 
medium take a remarkably simple form when one compares the sine of the deformed 
angle to the sine of the initial angle. 
 As I did in my previous notes on deformation that were published in the Comptes 
rendus de l’Académie des Sciences, I will call an arbitrary material line a fiber and a fiber 
of infinitely-small length, an elementary fiber.  A sheet will be a portion of matter that is 
extended over a surface, but with negligible thickness. 
 In the neighborhood of a point, the direction of a fiber is determined by its tangent; 
similarly, one can associate the direction of an element of a sheet with either the tangent 
plane or the normal to the surface that carries that element. 
 Having posed these definitions, we shall consider at a point: 
 1. The angle between two elementary fibers. 
 2. The angle between a fiber and a sheet. 
 3. The angle between two sheets. 
 
 
 2. – Angle between two elementary fibers. – Let ds, ds′ be the lengths of the two 
fibers in the deformed state, and let θ be their angle; let ds0, 0ds′ , θ0 be the analogous 

quantities in the initial state. 
 The expression: 

ds ⋅⋅⋅⋅ ds′ sin θ 
 
represents the area of an infinitesimal triangle that is defined by two fibers; the ratio: 
 

0 0 0

sin

sin

ds ds

ds ds

θ
θ

′⋅ ⋅
′⋅ ⋅

 

 
will then be equal to 1 + E, where E denotes the surface dilatation of the plane of that 
triangle at the point considered.  If one calls the linear dilatations of the two fibers e and 
e′ then one will have: 

0 0

ds ds

ds ds

′⋅
′⋅

= (1 + e) (1 + e′), 

and consequently, one will get: 
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(1 + e) (1 + e′) 
0

sin

sin

θ
θ

 = 1 + E. 

 We write that relation in the form: 
 

(1)     
0

sin

sin

θ
θ

 = 
1

(1 )(1 )

E

e e

+
′+ +

. 

 
 
 3. – Angle between a fiber and a sheet. – Let ds be an elementary fiber at a point M 
of the deformed medium, let dσ be an element of the sheet, and let ϕ be the angle 
between them.  The same letters, when affected with the index 0, will continue to denote 
the analogous quantities for the initial medium; here, we will have to consider the linear 
dilatation e of the fiber, the surface dilatation E of the sheet, and the cubic dilatation Θ of 
the medium at M. 
 The product: 

ds ⋅⋅⋅⋅ dσ ⋅⋅⋅⋅ sin ϕ 
 
represents the volume of an infinitely-small cylinder that has ds for its base and dσ for 
the generator of the fiber.  One will then have: 
 

0 0 0

sin

sin

ds d

ds d

σ ϕ
σ ϕ

⋅ ⋅
⋅ ⋅

 = (1 + Θ); 

that is: 

(2)     
0

sin

sin

ϕ
ϕ

= 
1

(1 )(1 )e E

+ Θ
+ +

. 

 
 In the calculations that relate to flexure, one has to consider the angle ϕ′ of a fiber 
with the normal to a sheet.  Since that angle ϕ′ is the complement of the angle ϕ, the 
relation (2) will take the form: 

(2′)     
0

cos

cos

ϕ
ϕ

′
′

 = 
1

1

(1 )(1 )e E

+ Θ
+ +

. 

 
 Equation (2) presents a remarkable analogy with equation (1) and with the analogous 
formula that relates to the angle between two sheets that we shall establish later on.  
However, it differs by a peculiarity that merits special attention. 

 The ratio 
0

sin

sin

ϕ
ϕ

 is determined entirely at a point M when one knows the linear 

dilatation of the fiber and the surface dilatation of the sheet.  On the contrary, the 

calculation of the ratio 
0

sin

sin

θ
θ

 that is given by formula (1) demands that one must know, 

not only the linear dilatations of the two elementary fibers that define the angle θ, but 
also the plane of the two fibers, or at least, the surface dilatation of that plane. 
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 4. – Angle between two sheets. – Consider two elementary sheets dσ and dσ′ at M 
whose planes form the dihedral angle ψ between them.  Call the surface dilatations of the 
two sheets E and E′, and let e denote the linear dilatation of the fiber that is directed along 
their intersection.  In order to apply the line of reasoning to this problem that served for 
us in the first two cases, we shall appeal to the following elementary proposition, whose 
proof is immediate: 
 
 The volume of an arbitrary parallelepiped is equal to the product of the areas of two 
contiguous faces, multiplied by the sine of their dihedral angle, and divided by the length 
of their edge of intersection. 
 
 Having said that, start from the point M in the planes of the two sheets that are 
considered and take two infinitely-small parallelograms du, du′ that have a common ds 
that is obviously directed along the line of intersection.  Upon continuing to distinguish 
the initial values by the index zero, we will have: 
 

0 0 0

0

sinsin
:
du dudu du

ds ds

ψψ ′′ ⋅ ⋅⋅ ⋅
 = 1 + Θ, 

or rather: 

0

(1 )(1 ) sin

(1 ) sin

E E

e

ψ
ψ

′+ +
+

 = 1 + Θ, 

and finally: 

(3)      
0

sin

sin

ψ
ψ

= 
(1 )(1 )

(1 )(1 )

e

E E

+ Θ +
′+ +

. 

 
 Equations (1), (2), and (3) show that there exist true ratios of dilatations for the sines 
of the angles of the various types that are analogous to the ones that exist for the lengths, 
surface areas, and volumes. 
 
 
 5. – Review of the formulas for the dilatation.  – The proof of our formulas by a 
direct calculation is very simple. 
 Let us first recall the fundamental formulas that relate to the linear and surface 
dilatations. 
 We suppose that the coordinates x, y, z at each point of the deformed medium are 
expressed as functions of the coordinates x0, y0, z0 of the point considered in the initial 
medium.  Moreover, in order to avoid redundancy, we agree to let the letters without 
indices denote the quantities that relate to the deformed state and the same letters, when 
affected with the index zero, will refer to the corresponding quantities in the initial state. 
 Let ds be an arc element that has dx, dy, dz for its projections onto the axes and α, β, γ 
for its direction cosines. 
 One has: 
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(4)     

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

,

,

.

x x x
dx dx dy dz

x y z

y y y
dy dx dy dz

x y z

z z z
dz dx dy dz

x y z

 ∂ ∂ ∂= + + ∂ ∂ ∂
 ∂ ∂ ∂= + + ∂ ∂ ∂
 ∂ ∂ ∂= + +

∂ ∂ ∂

 

 
 Hence, upon dividing by ds0 and setting ds / ds0 = 1 + e, one will infer: 
 

(5)     

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

(1 ) ,

(1 ) ,

(1 ) .

x x x
e

x y z

y y y
e

x y z

z z z
e

x y z

α α β γ

β α β γ

γ α β γ

 ∂ ∂ ∂+ = + + ∂ ∂ ∂
 ∂ ∂ ∂+ = + + ∂ ∂ ∂
 ∂ ∂ ∂+ = + +

∂ ∂ ∂

 

 
 Upon adding these latter equations together after squaring them, one will obtain the 
expression for the square of 1 + e as a homogeneous function of degree two in α0, β0, γ0 .  
We set: 
(6)   (1 + e)2 = 2 2 2

11 0 22 0 33 0e e eα β γ+ +  + 2 e23 β0 γ0 + 2 e31 γ0 α0 +2 e12 α0 β0 , 

 
and we denote the right-hand side of equation (6) by f(α0, β0, γ0). 
 Equations (5) define the transformation of the direction cosines of the lines.  There is 
good reason to introduce the equations of the transformation of the direction cosines of 
the normals to the sheets, along with these formulas.  Let ξ, η, ζ denote the direction 
cosines of the normal to an elementary fiber whose surface dilatation will be denoted by 
E; the cosines ξ0, η0, ζ0 define the direction of the normal to the corresponding initial 
sheet.  Upon representing the functional determinant of the functions u, v with respect to 

the variables x, y by the general notation 
( , )

( , )

d u v

d x y
, we will then have the transformation 

formulas for the normals in the form: 
 

(7)   

0 0 0
0 0 0 0 0 0

0 0 0
0 0 0 0 0 0

0 0 0
0 0 0 0 0 0

( , ) ( , ) ( , )
(1 ) ,

( , ) ( , ) ( , )

( , ) ( , ) ( , )
(1 ) ,

( , ) ( , ) ( , )

( , ) ( , ) ( , )
(1 ) .

( , ) ( , ) ( , )

d y z d y z d y z
E

d y z d z x d x y

d z x d z x d z x
E

d y z d z x d x y

d x y d x y d x y
E

d y z d z x d x y

ξ ξ η ζ

η ξ η ζ

ζ ξ η ζ


+ = + +




+ = + +



+ = + +
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 The square of (1 + E) is also expressed by a quadratic form in the cosines ξ0, η0, ζ0 : 

(8)   (1 + E)2 = 2 2 2
11 0 22 0 33 0E E Eξ η ζ+ + + 2 E23 η0 ζ0 + 2 E31 ζ0 ξ0 +2 E22 ξ0 η0 . 

 The quadratic form on the right-hand side of equation (8) is the adjoint form to f(α0, 
β0, γ0); we denote it by F(ξ0, η0, ζ0). 
 One knows that the cubic dilatation Θ is defined by the equality: 
 

1 + Θ = 
0 0 0

( , , )

( , , )

d x y z

d x y z
. 

 The discriminant of the form f(α0, β0, γ0) is equal to (1 + Θ)2, and that of the form 
F(ξ0, η0, ζ0) is equal to (1 + Θ)4. 
 
 
 6. – Calculation of the angles. 
 
 Angle between two fibers. – Let α, β, γ and α′, β′, γ′ be the direction cosines of the 
two fibers, and let e and e′ be their dilatations, respectively. 
 The use of the formulas (5) permits one to calculate the cosine of their angle θ, which 
is expressed by a bilinear form in the cosines that relate to the initial state.  One then 
finds: 

(1 + e) (1 + e′) cos θ = 0 0 0
0 0 0

1

2

f f fα α γ
α β γ

 ∂ ∂ ∂′ ′ ′+ + ∂ ∂ ∂ 
; 

one then infers that: 
 

(9)  (1 + e)2 (1 + e′)2 sin2 θ = f(α0, β0, γ0) 
0 0 0

2

0 0 0 0 0 0

1
( , , )

4
f f f fα β γα β γ α β γ ′ ′ ′ ′ ′ ′ ′ ′ ′− + +  . 

 
 The right-hand side of equation (9) is expressed with the aid of the adjoint form and 
the binary determinants that are deduced from two rows of elements: 
 
 α0   β0  γ0 
 0α ′  0β ′  0γ ′  
by the identity: 

(10)   f(α0, β0, γ0) 
0 0 0

2

0 0 0 0 0 0

1
( , , )

4
f f f fα β γα β γ α β γ ′ ′ ′ ′ ′ ′ ′ ′ ′− + +   

= [ ]0 0 0 0 0 0 0 0 0 0 0 0( ), ( ), ( )F β γ γ β γ α α γ α β β α′ ′ ′ ′ ′ ′− − − . 

 
 On the other hand, if we let ξ, η, ζ denote the direction cosines of the normal to the 
plane of the two fibers then we will have: 
 
 0 0 0 0β γ γ β′ ′−  = ξ0 sin θ0 , 
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 0 0 0 0γ α α γ′ ′−  = η0 sin θ0 , 

 0 0 0 0α β β α′ ′−  = ζ0 sin θ0  . 

 
 If we substitute these values into the expression for the quadratic form F then we will 
find that: 

[ ]0 0 0 0 0 0 0 0 0 0 0 0( ), ( ), ( )F β γ γ β γ α α γ α β β α′ ′ ′ ′ ′ ′− − −  = sin2 θ0 F(ξ0, η0, ζ0), 

 
and since the form F(ξ0, η0, ζ0) represents the square of the expression 1 + E relative to 
the surface dilatation of the plane of the fibers, equation (9) will finally be converted into 
the form: 

(1 + e)2 (1 + e′)2 sin2 θ = (1 + E)2 sin2θ0 , 
 

which is equivalent to our formula (9). 
 

 Angle between a fiber and a sheet. – The cosine of the angle 
2

π ϕ − 
 

 that is formed 

between a fiber and the normal to a sheet can be calculated with the aid of formulas (5) 
and (7).  The binary functional determinants that figure in it as coefficients in the right-
hand sides of formulas (7) are the coefficients of the partial derivatives: 
 

0

x

x

∂
∂

, 
0

x

y

∂
∂

, …. 

 
in the development of the ternary functional determinant: 
 

0 0 0

( , , )

( , , )

d x y z

d x y z
 

in the elements of its rows or columns. 
 Upon taking that remark into account, one will find immediately that: 
 

(1 + e) (1 + E) (αξ + βη + γζ) = (1 + Θ) (α0 ξ0 + β0 η0 + γ0 ζ0), 
 

and one will have, consequently: 

0

sin

sin

ϕ
ϕ

 = 
1

(1 )(1 )e E

+ Θ
+ +

. 

 
 Angle between two sheets. – The calculation of the angle between two sheets is 
absolutely similar to that of the calculation of the angle between two fibers.  All that one 
needs to do is replace equations (5) with equations (7) and replace the identity (10) with 
the following one: 

F(ξ0, η0, ζ0) 
0 0 00 0 0 0 0 0

1
( , , )

4
F F F Fξ η ζξ η ζ ξ η ζ ′ ′ ′ ′ ′ ′ ′ ′ ′− + +   

(11)   = (1 + Θ)2 [ ]0 0 0 0 0 0 0 0 0 0 0 0( ), ( ), ( )f η ζ ζ η ζ ξ ξ ζ ξ η η ξ′ ′ ′ ′ ′ ′− − − . 
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 One will then find the equation: 
 
(12)   (1 + E)2 (1 + E′)2 sin2 ψ = (1 + Θ)2 (1 + e)2 sin2 ψ0 , 
 
which is equivalent to our formula (3). 
 
 Another form for the calculations. − The calculation of the sine of the angles between 
two fibers or two sheets can be further carried out by a somewhat different procedure that 
exhibits the relation that exists between the systems (5) and (7). 
 Recall equations (5) and the analogous equations that relate to the direction α′, β′, γ′, 
and form the binary determinant: 
 β γ′ − γ β′  = ξ sin θ, 
 γ α′ − α γ′ = η sin θ, 
 α β′ − β γ′ = ζ sin θ . 
 We have: 

(13) (1 + e)(1 + e′)(β γ′ − γ β′) = 
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

y y y z z z

x y z x y z

y y y z z z

x y z x y z

α β γ α β γ

α β γ α β γ

∂ ∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′+ + + +
∂ ∂ ∂ ∂ ∂ ∂

. 

 
 The determinant in the right-hand side can be put into the form of a sum of products 
of second-order determinants; equation (13) then takes the form: 
 
(1 + e)(1 + e′)(β γ′ − γ β′) =  

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

( , ) ( , ) ( , )
( ) ( ) ( )

( , ) ( , ) ( , )

d y z d y z d y z

d y z d z x d x y
β γ γ β γ α α γ α β β α′ ′ ′ ′ ′ ′− + − + − , 

 
and that result will become: 
 

(1 + e)(1 + e′) sin θ ⋅⋅⋅⋅ ξ = sin θ0 0 0 0
0 0 0 0 0 0

( , ) ( , ) ( , )

( , ) ( , ) ( , )

d y z d y z d y z

d y z d z x d x y
ξ η ζ

 
+ + 

 
 

 
by an immediate transformation, or, upon dividing by sin θ0 : 
 

0

(1 )(1 )sin

sin

e e θ
θ

′+ + ⋅⋅⋅⋅ ξ = 0 0 0
0 0 0 0 0 0

( , ) ( , ) ( , )

( , ) ( , ) ( , )

d y z d y z d y z

d y z d z x d x y
ξ η ζ+ + . 

 
 We thus find the first of equations (7) in an equivalent form, and the interpretation of 
the result that is obtained will give formula (1) immediately. 
 

_____________ 


