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Introduction 
 

 This paper has the objective of extending to finite deformations the geometric theory 
of torsion and flexure of continuous media that I had studied in a previous work for the 
case of infinitesimal deformations (1).  The definitive results have exactly the same form, 
and the calculations present only insignificant differences at several points.  Moreover, 
after establishing the fundamental formulas that relate to the flexure of fibers and sheets, 
I have deemed it pointless to recall the study of geometric properties that one can deduce; 
I refer that question to my previous paper. 
 Although I principally have the ulterior applications to mechanics in mind, it is 
obvious that this theory will present an exclusively geometric character.  In some regards, 
one can consider it to be a branch of geometry that is strongly analogous to the theory of 
the curvature of lines and surfaces. 
 
 

CHAPTER I 
 

DILATATION 
 

1-2-3.  Definitions and generalities.  Tangent homogeneous deformation. – 4.  Relations between the 
coefficients of the homogeneous deformation. – 5.  Linear dilatation. – 6.  Surface deformation. – 7.  
Relations between the linear dilatation and the surface dilatation. – 8.  Variation of the thickness of a layer. 
– 9.  Angular dilations. – 10. Connection to deformation. 
 
 

 1. We consider a continuous medium in two different states, which we call the initial 
state and the final − or deformed − state.  Points will be assumed to be defined by their 
coordinates referred to rectangular axes.  However, for the questions that we will be 
occupied with, it is not at all necessary that the two states of the medium must be referred 
to the same axes.  In order to simplify the presentation and avoid repetition, we agree, 
once and for all, to denote the corresponding elements of two media by the same 
symbols, but to affect the quantities that relate to the initial state with the index zero.  For 

                                                
 (1) Ann. de l’É.N.S (3) 28 (1911), 523-579.  
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example, if M(x¸ y, z) is a point of the deformed medium then M0 (x0, y0, z0) will be the 
homologous point of the initial medium. 
 We suppose that the coordinates of each system are functions of the coordinates of 
the other system, and that those functions are continuous and differentiable, at least up to 
order two. 
 
 
 2. We first regard the coordinates x, y, z of a point M of the deformed medium as 
functions of the coordinates x0, y0, z0 of the corresponding point of the initial medium. 
 We will then have the relations: 
 

(1)     

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

,

,

x x x
dx dx dy dz

x y z

y y y
dy dx dy dz

x y z

z z z
dz dx dy dz

x y z

 ∂ ∂ ∂= + + ∂ ∂ ∂
 ∂ ∂ ∂= + + ∂ ∂ ∂
 ∂ ∂ ∂= + +

∂ ∂ ∂

 

 
between the differentials.  We let ∆ denote the functional determinant: 
 

(2)     
0 0 0

( , , )

( , , )

d x y z

d x y z
 = 

0 0 0

0 0 0

0 0 0

x x x

x y z

y y y

x y z

z z z

x y z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 = ∆. 

 
 That determinant must be expressly supposed to be non-zero in the domain 
considered, and similarly, if the two media are referred to the same coordinate trihedron 
or to superposable trihedra then it will be necessary that ∆ must remain positive in order 
for our transformation to have any real mechanical significance.  Otherwise, it would be 
impossible to pass from the first state to the second one by a continuous deformation 
without annulling the volumes.  For a similar reason, the determinant ∆ must remain 
negative when the two coordinate trihedra are not superposable. 
 Upon considering the initial coordinates to be functions of the final coordinates, we 
will have: 
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(3)     

0 0 0
0

0 0 0
0

0 0 0
0

,

,

.

x x x
dx dx dy dz

x y z

y y y
dy dx dy dz

x y z

z z z
dz dx dy dz

x y z

 ∂ ∂ ∂= + + ∂ ∂ ∂
 ∂ ∂ ∂

= + + ∂ ∂ ∂
 ∂ ∂ ∂= + + ∂ ∂ ∂

 

 
Now, the values of the differentials dx0, dy0, dz0 that are expressed by equations (3) are 
obviously identical to the ones that one will obtain by solving equations (1).  One thus 
has the following identities, as well as the other analogous identities that one will deduce 
by permuting the coordinates: 

(4)     

0

0 0

0

0 0

0

0 0

1 ( , )
,

( , )

1 ( , )
,

( , )

1 ( , )
.

( , )

x d y z

x d y z

x d z x

y d y z

x d x y

z d y z

 ∂ = ∂ ∆
 ∂ = ∂ ∆
 ∂ =

∂ ∆

 

 

 The notation 
0 0

( , )

( , )

d y z

d y z
 denotes the binary functional determinant: 

 

0 0

0 0

y z

y y

y z

z z

∂ ∂
∂ ∂
∂ ∂
∂ ∂

 = 

0

x

x

∂∆
 ∂∂  ∂ 

. 

 
 

 3. One attaches the notion of the tangent homogeneous deformation to a point M of 
the medium to the consideration of equations (1) between the two systems of 
differentials.  One knows that what one thus calls the homogeneous deformation (T) is 
defined by the following equations, in which the symbols X, Y, Z, X0, Y0, Z0 denote the 
current coordinates: 

(T)    

0 0 0 0 0 0
0 0 0

0 0 0 0 0 0
0 0 0

0 0 0 0 0 0
0 0 0

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).

x x x
X x X x Y y Z z

x y z

y y y
Y y X x Y y Z z

x y z

z z z
Z z X x Y y Z z

x y z

 ∂ ∂ ∂− = − + − + − ∂ ∂ ∂
 ∂ ∂ ∂− = − + − + − ∂ ∂ ∂
 ∂ ∂ ∂− = − + − + −

∂ ∂ ∂
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 That expression for the tangent homogeneous at M is convenient and sufficiently 
explicit.  Meanwhile, one agrees to observe that one does not have a simple point M in 
view, but a pair of corresponding points (M0, M), or, more exactly, the material element 
that that is transferred from M0 to M. 
 
 
 4. Relations between the coefficients of the homogeneous deformations. – The 
coefficients of the homogeneous deformation (T) and those of the inverse deformation 
verify nine fundamental identities.  We write that the values of dx0, dy0, dz0 that are 
inferred from equations (T) will satisfy equations (1) identically: 
 

 0 0 0

0 0 0

x y zx x x

x x y x z x

∂ ∂ ∂∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = 1, 

 0 0 0

0 0 0

x y zx x x

x y y y z y

∂ ∂ ∂∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = 0, 

 0 0 0

0 0 0

x y zx x x

x z y z z z

∂ ∂ ∂∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = 0, 

 ……………………………….. 
 
 One can summarize these relations in a unique form by denoting the coordinates x1, 
x2, x3, instead of x, y, z: 
 

(5)    0 0 0

0 0 0

i i i

k k k

x x x y x z

x x y x z x

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = 
1 for ,

0 for .

i k

i k

=
 ≠

 

 
 Upon proceeding in the same fashion for the inverse deformation, we will obtain a 
second system of nine analogous identities, which are, moreover, consequences of the 
first ones; we further summarize them in the following formula, where x10, x20, x30 denote 
the initial coordinates: 
 

(6)    0 0 0

0 0 0

i i i

k k k

x x xx y z

x x y x z x

∂ ∂ ∂∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = 
1 for ,

0 for .

i k

i k

=
 ≠

 

 
Formulas (5) and (6) obviously include the relations that exist between the nine cosines 
of an orthogonal transformation as a special case. 
 
 
 5. Linear dilatation. – A fiber, or a material line that passes through the point M0 in 
the initial medium, is transformed into a fiber that passes through the point M of the 
deformed medium.  Let ds be the length of an infinitely-small fiber that issues from the 
point M, let α, β, γ be its direction cosines, and let dx1, dx2, dx3 be its projections onto the 
axes.  One has: 
 dx = α ds, 
 dy = β ds, 
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 dz = γ ds. 
 
We denote the linear dilatation of the fiber by e, so: 
 

0

ds

ds
= 1 + e. 

 
The relations between the position of the initial fiber and that of the deformed fiber can 
be deduced from equations (1) or (3).  Upon dividing by ds0, the first system will give: 
 

(7)     

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

(1 ) ,

(1 ) ,

(1 ) .

x x x
e

x y z

y y y
e

x y z

z z z
e

x y z

α α β γ

β α β γ

γ α β γ

 ∂ ∂ ∂+ = + + ∂ ∂ ∂
 ∂ ∂ ∂+ = + + ∂ ∂ ∂
 ∂ ∂ ∂+ = + +

∂ ∂ ∂

 

 
In the same manner, upon dividing by ds, one will deduce from the second one that: 
 

(8)     

0 0 0

0 0 0

0 0 0

,
1

,
1

.
1

x x x

e x y z

y y y

e x y z

z z z

e x y z

α α β γ

β α β γ

γ α β γ

 ∂ ∂ ∂= + + + ∂ ∂ ∂
 ∂ ∂ ∂

= + + + ∂ ∂ ∂
 ∂ ∂ ∂= + + + ∂ ∂ ∂

 

 
We deduce the following equations, which define the dilatation, from these two systems: 
 
(9)  (1 + e)2 = 0 2 0 2 0 2 0 0 0

11 0 22 0 33 0 23 0 0 31 0 0 12 0 02 2 2e e e e e eα β γ β γ γ α α β+ + + + + , 

 

(10) 2

1

(1 )e+
 = e11 α2 + e22 β 2 + e33 γ 2 + 2 e23 βγ + 2 e31 γα + 2 e12 αβ . 

 
 In the first formula, we have set: 
 

 0
11e  = 

2 2 2

0 0 0

x y z

x x x

     ∂ ∂ ∂+ +     ∂ ∂ ∂     
, 

 …………………………………, 

 0
23e  = 

0 0 0 0 0 0

x x y y z z

y z y z y z

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

, 
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and in the second one: 

 e11 = 
2 2 2

0 0 0x y z

x x x

∂ ∂ ∂     + +     ∂ ∂ ∂     
, 

 …………………………………, 

 e23 = 0 0 0 0 0 0x x y y z z

y z y z y z

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

, 

 ………………………………… 
 
 The quadratic cosine forms (9) and (10) can obviously be replaced with differential 
forms that express the linear elements of each of the media as functions of the relative 
coordinates of the other one: 
(9′) ds2 = 0

0 0ik i kc dx dx∑ , 

(10′) 2
0ds  = ∑ eik dxi dxk . 

 
 One knows how the consideration of formulas (9) or (10) leads one to represent the 
dilation by a second-order indicatrix – viz., the ellipsoid of dilatations – that one can 
consider in either of the two media (1). 
 
 
 6. Surface dilatation. – I call a portion of matter that extends over a surface, but 
with negligible thickness, a sheet.  An elementary sheet can be associated with an 
infinitely-small piece of the material surface. 
 Consider two elementary fibers that issue from the same origin M, and denote their 
component in the deformed state by: 
 d1x, d1y, d1z 
and 
 d2x, d2y, d2z, 
respectively.  Set: 

d(y, z) = 1 1

2 2

d y d z

d y d z
, 

…………………… 
The determinant: 

 d(y, z) = 1 1

2 2

d y d z

d y d z
 

 

  = 
1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0

2 0 2 0 2 0 2 0 2 0 2 0
0 0 0 0 0 0

y y y z z z
d x d y d z d x d y d z

x y z x y z

y y y z z z
d x d y d z d x d y d z

x y z x y z

∂ ∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂ ∂

, 

 

                                                
 (1) E. and F. COSSERAT, Annales de la Faculté des Sciences de Toulouse, t. X.  
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and the other analogous determinants d (z, x), d (z, y) can be developed into a sum of 
products of binary determinants: 
 

(11) 

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0 0

( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , ),

( , ) ( , ) ( , )

( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , ),

( , ) ( , ) ( , )

( , ) ( , )
( , ) ( , ) (

( , ) ( , )

d y z d y z d y z
d y z d y z d z x d x y

d y z d z x d x y

d z x d z x d z x
d z x d y z d z x d x y

d y z d z x d x y

d x y d x y
d x y d y z d z

d y z d z x

= + +

= + +

= + 0 0 0
0 0

( , )
, ) ( , ).

( , )

d x y
x d x y

d x y









+


 

 
The determinant d(y, z) represents, in magnitude and sign, the area of the projection onto 
the plane YOZ of the infinitely-small parallelogram dσ that is defined by the two 
elementary fibers considered.  Thus, let ξ, η, ζ be the direction cosines of the normal to 
the element ds, where that normal is assumed to be drawn in the sense of the positive axis 
of rotation of the first fiber to the second one.  One will have: 
 
 ξ dσ = d (y, z), 
 η dσ = d (z, x), 
 ζ dσ = d (x, y). 
 
 We let E denote the dilatation of the corresponding elementary sheet: 
 

0

d

d

σ
σ

 = 1 + E, 

 
and we let ξ0 , η0, ζ0 denote the direction cosines of the normal to the initial sheet dσ0 .  
There is thus reason to observe that the two systems of cosines (ξ, η, ζ) and (ξ0, η0, ζ0) 
do not refer to two states of the same fiber.  The direction cosines of the fibers and the 
direction cosines of the normals to the sheets form two contragredient systems, to use the 
expression that Sylvester employed in the theory of algebraic forms. 
 Upon dividing by dσ0, we will obtain equations (11), and upon introducing the 
notations that were defined above, we will get the relations: 
 

(12)   

0 0 0
0 0 0 0 0 0

0 0 0
0 0 0 0 0 0

0 0 0
0 0 0 0 0 0

( , ) ( , ) ( , )
(1 ) ,

( , ) ( , ) ( , )

( , ) ( , ) ( , )
(1 ) ,

( , ) ( , ) ( , )

( , ) ( , ) ( , )
(1 ) .

( , ) ( , ) ( , )

d y z d y z d y z
E

d y z d z x d x y

d z x d z x d z x
E

d y z d z x d x y

d x y d x y d x y
E

d y z d z x d x y

ξ ξ η ζ

η ξ η ζ

ζ ξ η ζ


+ = + +




+ = + +



+ = + +


 

 
 The inverse transformation will lead to similar formulas, and we write down simply 
the first of them: 
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(13)   0

1 E

ξ
+

 = 0 0 0 0 0 0( , ) ( , ) ( , )

( , ) ( , ) ( , )

d y z d y z d y z

d y z d z x d x y
ξ η ζ+ + , 

    ……………………………………………….. 
 
 If one takes equations (4) into account then the preceding results can be put into the 
form: 

(12′)    

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

1
,

1
,

1
,

x y zE

x x x
x y zE

y y y

x y zE

z z z

ξ ξ η ζ

η ξ η ζ

ζ ξ η ζ

 ∂ ∂ ∂+ = + + ∆ ∂ ∂ ∂
∂ ∂ ∂+ = + + ∆ ∂ ∂ ∂

 ∂ ∂ ∂+ = + + ∆ ∂ ∂ ∂

 

 

(13′) 0

1 E

ξ∆
+

 = 
0 0 0

x y z

x x x
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
, 

  ……………………………… 
 
 There is a remarkable analogy between equations (7) and (8), which relate to the 
transformation of fibers, and systems (12) and (13), which relate to the transformation of 
sheets.  The surface dilatation will be likewise defined by formulas that are similar to the 
ones that we found for the linear dilatation. 
 Set: 

 0
11E  = 

2 2 2

0 0 0 0 0 0

( , ) ( , ) ( , )

( , ) ( , ) ( , )

d y z d z x d x y

d y z d y z d y z

     
+ +     

     
, 

 …………………………………………………., 

 0
23E  = 

0 0 0 0 0 0 0 0 0 0 0 0

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

d y z d y z d z x d z x d x y d x y

d z x d y z d z x d x y d z x d x y
+ + , 

 ……………………………………………………………………..., 
 
and similarly: 
 

 E11 = 
2 2 2

0 0 0 0 0 0( , ) ( , ) ( , )

( , ) ( , ) ( , )

d y z d z x d x y

d y z d y z d y z

     
+ +     

     
, 

 …………………………………………………., 

 E23 = 0 0 0 0 0 0 0 0 0 0 0 0( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

d y z d y z d z x d z x d x y d x y

d z x d y z d z x d x y d z x d x y
+ + , 

 ……………………………………………………………………... 
 
We will then have the following formulas for the surface dilatations: 
 
(14) (1 + E)2 = 0 2 0 2 0 2 0 0 0

11 0 22 0 33 0 23 0 0 31 0 0 12 0 02 2 2E E E E E Eξ η ζ η ζ ζ ξ ζ η+ + + + + , 
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(15) 2

1

(1 )E+
 = E11 ξ 2 + E22 η 2 + E33 ζ 2 + 2E23 ηζ + 2E31 ζξ + 2E12 ξη . 

 
 
 7. Relation between the linear dilatation and the surface dilatation. – One easily 
verifies that each of the quadratic forms that relate to the surface dilatation is the adjoint 
to the corresponding form that relates to the linear dilatation.  That property will result 
immediately from calculating with the coefficients.  For example, one will have: 
 
 0

11E  = 0 0 0 2
22 33 23( )e e e− , 

 ……………………, 
 0

23E  = e12 e31 – e11 e22 , 
 ……………………… 
 
 Since the discriminant of the form (7) is equal to ∆2, that of the form (14) will be 
equal to ∆4.  A similar relationship exists between the forms (10) and (15), whose 
discriminants are equal to 1 / ∆2 and 1 / ∆4, respectively. 
 Moreover, a very simple geometric reasoning will show that this must be true.  
Consider the ellipsoid of dilatations that relates to the point M of the deformed media.  If 
one denotes the quadratic form that figures in the right-hand side of equation (10) by ϕ 
(α, β, γ) then the ellipsoid considered will be represented by: 
 

ϕ (X, Y, Z) = 1. 
 
Each ray of the ellipsoid is obtained by starting at the origin and associating a measured 
length with the value of the ratio 1 + e that corresponds to the direction of that ray in the 
deformed medium. 
 Let (D) be a diametral plane of the ellipsoid, let E be the surface dilatation of an 
elementary sheet that passes through M and parallel to the plane (D).  In that diametral 
place, the area of the parallelogram that is constructed from two conjugate rays of the 
ellipsoid will be constant and equal to 1 + E.  Draw a plane (P) that is tangent to the 
ellipsoid and parallel to (D), and let δ be the distance to the origin of the plane (P).  The 
product of the area (1 + E) with the distance δ is equal to the volume of the 
parallelpepiped that is constructed from three conjugate rays of the ellipsoid.  One then 
has: 
(16)     (1 + E) δ = ∆. 
 
 If one lets Φ(u, v, w) denote the adjoint quadratic form to ϕ (α, β, γ) then the 
tangential equation to the ellipsoid will be put into the form: 
 

Φ(u, v, w) = 
2

2

h

∆
, 

 
in which u, v, w, h are the homogeneous coordinates of a tangent plane. 
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 Now, replace the coordinates u, v, w with the direction cosines ξ, η, ζ of the normal, 
and replace h with – δ; we have the relation: 
  

Φ( ξ, η, ζ) = 
2

2

δ
∆

, 

which then becomes: 

Φ( ξ, η, ζ) = 2

1

(1 )E+
, 

 
by virtue of equation (16).  One thus find formula (15). 
 
 
 8. Variation of the thickness of the layer. – The quantity δ = ∆ / (1 + E) has a 
simple significance in the deformation.  Consider an infinitely-small cylinder that 
contains the point M.  Let dV be its volume, let dσ be its area, and let dh be its height.  
One has: 
(17)     dV = dσ dh. 
 
 In the initial medium, one will likewise have: 
 
(17′)     dV0 = dσ0 dh0  
for the corresponding cylinder. 
 The ratio dV / dV0 is equal to ∆, while the ratio of the areas dσ / dσ0 is equal to 1 + E, 
in which E denotes the surface dilatation of the base.  Upon dividing both sides of 
equations (17) by both sides of (17′), one will then find: 
 

∆ = (1 + E) 
0

dh

dh
, 

 
and when that result is compared to equation (16) that will give: 
 

(18) 
0

dh

dh
 = d = 

1 E

∆
+

. 

 
From that, if one cuts an infinitely-thin material layer in the medium that passes through 
the point M and has a height of dh at that point then the ratio of the height of the 
deformed layer to that of the initial layer – viz., dh / dh0 – will be equal to δ.  The 
variation of 1 / δ as a function of the direction cosines of the normal is proportional to 
that of the surface ratio 1 + E.  One will deduce equations (12′) and (13′) directly. 
 
 
 9. Angular dilatations. – The calculation of angles can be performed analytically 
with the aid of the quadratic forms that enter into the expression for the linear or surface 
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dilatation and the corresponding polar forms (1).  However, the results will be obtained 
more rapidly by geometric considerations. 
 
 1. Angle between fibers. – Consider two elementary fibers that issue from the same 
point M.  Let ds, ds′ be their lengths, let θ′ be the angle between them, let e and e′ be the 
corresponding linear dilatations, and let E be the surface dilatation of the sheet that they 
determine. 
 One will have: 

  
0 0 0

sin

sin

ds ds

ds ds

θ
θ

′
′

= 1 + E, 

so 

(19)     
0

sin

sin

θ
θ

= 
1

(1 )(1 )

E

e e

+
′+ +

. 

 
 1. Angle between a fiber and a sheet. – Start from the point M, and take an 
infinitely-small length ds on the fiber, and a surface element dσ on the sheet. 
 Let ϕ be the angle between the fiber and the sheet.  The volume of the infinitesimal 
cylinder that has dσ for its base and ds for its edge will be equal to: 
 

ds dσ sin ϕ. 
 

 Upon letting Θ denote the cubic dilatation at the point considered, letting e denote the 
linear dilatation of the fiber, and if one lets E denote the surface dilatation of the sheet 
then one will have, in turn: 

0 0 0

sin

sin

ds d

ds d

σ ϕ
σ ϕ

= 1 + Θ, 

 

(1 + e) (1 + E) 
0

sin

sin

ϕ
ϕ

 = 1 + Θ, 

 

 (19′)     
0

sin

sin

ϕ
ϕ

= 
1

(1 )(1 )e E

+ Θ
+ +

. 

 
 If one considers the angle ϕ between the fiber and the normal to the sheet, instead of 
the angle ϕ′ between the fiber and the sheet, then the preceding relation will become: 
 

0

cos

cos

ϕ
ϕ

′
′

= 
1

(1 )(1 )e E

+ Θ
+ +

. 

 

                                                
 (1) One will find these calculations performed in a Note: “Sur les déformations angulaires” (Travaux 
Scientifique de l’Université de Rennes, 1911). 
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 3. Angle between two sheets. – The volume of an arbitrary parallelepiped is equal to 
the product of the areas of the two contiguous faces, multiplied by the sines of their 
dihedral angles, and divided by the length of their common edge. 
 From that, consider two elementary sheets that intersect at M and form the dihedral 
angle ψ between them.  Let E and E′ be their surface dilatations, let e be the linear 
dilatation of the fiber that is directed along their intersection, let Θ be the cubic dilatation 
at the point M.  One will immediately finds, by an argument that is analogous to the one 
that we employed for the two preceding cases: 
 

0

(1 )(1 ) sin

1 sin

E E

e

ψ
ψ

′+ +
+

 = 1 + Θ, 

so 

(19′)    
0

sin

sin

ψ
ψ

 = 
(1 )(1 )

(1 )(1 )

e

E E

+ Θ +
′+ +

. 

 
The three formulas (19), (19′), (19″) are remarkable in their simplicity and their 
similarity.  They show that deformation ratios for the angles of the sines that are 
analogous to those of the lines, surfaces, and volumes. 
 
 
 10. Deformation ratios. – The name of deformation ratio seems convenient and 
significant to us as a way of representing the ratio of a quantity of the deformed medium 
to the corresponding quantity of the initial medium: The ratio of the linear deformation is 
represented by 1 + e, the ratio of surface deformation, by 1 + E, and the ratio of cubic 
dilatation, by 1 + Θ = ∆.  In the calculations that relate to finite deformations, the 
dilatation will generally enter into only the corresponding deformation ratio; for example, 
we will not have to consider the linear dilatation e except in the linear deformation ratio 1 
+ e. 
 

_________ 
 



CHAPTER II 
 

SECOND-ORDER DIFFERENTIAL ELEMENTS 
 
 

11. The differential deformation dT. – 12.  The coefficients aijk . – 13. The linear dilatation in the 
differential deformation. – 14.  Mean rotation. – 16.  Cubic dilatation. – 16.  Surface dilatation. -  17.  
Expressing the second derivatives of the initial coordinates as functions of the coefficients aijk . – 18.  
Partial differential equations that the coefficients must satisfy. – 19.  Deformations that correspond to a 
given system of coefficients aijk . – 20.  Calculation of the differentials of the coefficients of the linear 
dilatation. – 21.  Expressing the coefficients aijk as functions of the coefficients of the dilatation. – 22.  
Relationship between the coefficients aijk and the Christoffel brackets. 
 
 
 11. The differential deformation (dT). – Let (T) and (T′) be the tangent 
homogeneous deformations at two infinitely-close points M and M′.   One can consider 
the second (T′) as the resultant of the first (T) and an infinitesimal deformation (dT) that 
we call the differential deformation at the point M. 
 The deformation (T) is defined by the equations (T) of no. 3, and the deformation (T′), 
by the analogous equations: 
 

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0
0 0

( ) ( ) ( ),

( ) ( ) ( ),

( )

x x x x x x
X x d X x d Y y d Z z

x x y y z z

y y y y y y
Y y d X x d Y y d Z z

x x y y z z

z z
Z z d X x

x x

     ∂ ∂ ∂ ∂ ∂ ∂′ ′− = + − + + − + + −     ∂ ∂ ∂ ∂ ∂ ∂     

     ∂ ∂ ∂ ∂ ∂ ∂′ ′− = + − + + − + + −     ∂ ∂ ∂ ∂ ∂ ∂     

 ∂ ∂′ ′− = + − + ∂ ∂ 
0 0 0 0

0 0 0 0

( ) ( ).
z z z z

d Y y d Z z
y y z z








    ∂ ∂ ∂ ∂ + − + + −   
 ∂ ∂ ∂ ∂   

 

 
 The differential deformation (dT) will be represented by the equations that one 
obtains by replacing the values of the initial current coordinates X0, Y0, Z0 in the system 
(T) with their values that are inferred from the system (T). 
 Now, upon solving the system (T) for the differences X0 – x0 , Y0 – y0 , Z0 – z0 , one 
will find: 

 X0 – x0 = 0 0 0( ) ( ) ( )
x x x

X x Y y Z z
x y z

∂ ∂ ∂− + − + −
∂ ∂ ∂

, 

  Y0 – y0 = 0 0 0( ) ( ) ( )
y y y

X x Y y Z z
x y z

∂ ∂ ∂− + − + −
∂ ∂ ∂

, 

 Z0 – z0 = 0 0 0( ) ( ) ( )
z z z

X x Y y Z z
x y z

∂ ∂ ∂− + − + −
∂ ∂ ∂

. 

 
 When these values are substituted in equations (T), while taking the identities (5) into 
account, that will give the defining equations for the differential transformation (dT) in 
the following form: 
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(dT) 
11 12 13

21 22 23

31 22 33

(1 )( ) ( ) ( ),

( ) (1 )( ) ( ),

( ) ( ) (1 )( ).

X x da X x da Y y da Z z

Y y da X x da Y y da Z z

Z z da X x da Y y da Z z

′ ′− = + − + − + −
 ′ ′− = − + + − + −
 ′ ′− = − + − + + −

 

 
 We have set: 
 

 da11  =      0 0 0

0 0 0

x y zx x x
d d d

x x x y x z

     ∂ ∂ ∂∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
  

 = − 0 0 0

0 0 0

x y zx x x
d d d

x x y x z x

 ∂ ∂ ∂∂ ∂ ∂     + +      ∂ ∂ ∂ ∂ ∂ ∂      
, 

 

 da12  =      0 0 0

0 0 0

x y zx x x
d d d

y x y y y z

     ∂ ∂ ∂∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
  

 = − 0 0 0

0 0 0

x y zx x x
d d d

x y y y z y

      ∂ ∂ ∂∂ ∂ ∂+ +      ∂ ∂ ∂ ∂ ∂ ∂      
, 

 

 da13  =      0 0 0

0 0 0

x y zx x x
d d d

z x z y z z

     ∂ ∂ ∂∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
  

 = − 0 0 0

0 0 0

x y zx x x
d d d

x z y z z z

 ∂ ∂ ∂∂ ∂ ∂     + +      ∂ ∂ ∂ ∂ ∂ ∂      
, 

 
 

 da21  =      0 0 0

0 0 0

x y zy y y
d d d

x x x y x z

     ∂ ∂ ∂∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
  

 = − 0 0 0

0 0 0

x y zy y y
d d d

x x y x z x

 ∂ ∂ ∂∂ ∂ ∂     + +      ∂ ∂ ∂ ∂ ∂ ∂      
, 

 

 da22  =      0 0 0

0 0 0

x y zy y y
d d d

y x y y y z

     ∂ ∂ ∂∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
  

 = − 0 0 0

0 0 0

x y zy y y
d d d

x y y y z y

      ∂ ∂ ∂∂ ∂ ∂+ +      ∂ ∂ ∂ ∂ ∂ ∂      
, 

 

 da23  =      0 0 0

0 0 0

x y zy y y
d d d

z x z y z z

     ∂ ∂ ∂∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
  

 = − 0 0 0

0 0 0

x y zy y y
d d d

x z y z z z

 ∂ ∂ ∂∂ ∂ ∂     + +      ∂ ∂ ∂ ∂ ∂ ∂      
, 
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 da31  =      0 0 0

0 0 0

x y zz z z
d d d

x x x y x z

     ∂ ∂ ∂∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
  

 = − 0 0 0

0 0 0

x y zz z z
d d d

x x y x z x

 ∂ ∂ ∂∂ ∂ ∂     + +      ∂ ∂ ∂ ∂ ∂ ∂      
, 

 

 da32  =      0 0 0

0 0 0

x y zz z z
d d d

y x y y y z

     ∂ ∂ ∂∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
  

 = − 0 0 0

0 0 0

x y zz z z
d d d

x y y y z y

      ∂ ∂ ∂∂ ∂ ∂+ +      ∂ ∂ ∂ ∂ ∂ ∂      
, 

 

 da33  =      0 0 0

0 0 0

x y zz z z
d d d

z x z y z z

     ∂ ∂ ∂∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
  

 = − 0 0 0

0 0 0

x y zz z z
d d d

x z y z z z

 ∂ ∂ ∂∂ ∂ ∂     + +      ∂ ∂ ∂ ∂ ∂ ∂      
. 

 
 These formulas are summarized in the following ones: 
 

(20)  daij =      0 0 0

0 0 0

i i i

j j j

x x y x z x
d d d

x x x y x z

     ∂ ∂ ∂ ∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
  

 = − 0 0 0

0 0 0

i i i

j j j

x x x y x z
d d d

x x y x z x

      ∂ ∂ ∂ ∂ ∂ ∂+ +           ∂ ∂ ∂ ∂ ∂ ∂       
. 

 
 
 12. The coefficients aijk . – One notes the analogy between the differentials daij and 
the infinitely-small rotations that relate to the displacement of a tri-rectangular trihedron.  
Our calculation is, moreover, applicable to the case of two arbitrary, infinitely-close 
translations that are independent of the parameters that serve to define them. 
 In what follows, we shall suppose that one takes the independent variable to be the 
coordinates x, y¸ z of a point M of the deformed medium, and we shall set: 
 
(21)    daij = aij1 dx + aij2 dy + aij3 dz. 
 
 It results immediately from equation (22) that one can invert the order of the last two 
indices in the three-index coefficients: 

aijk = aikj . 
 

 For the infinitely-small deformations that one usually considered in elasticity, and 
which one assumes to be defined by equations of the form: 
 

x′ = x + u, y′ = y + v, z′ = z + w, 
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the coefficients aijk reduce to second derivatives of the displacements u, v, w. 
 The number of independent coefficients aijk is equal to the number of second 
derivatives of the coordinates of the one system with respect to those of the other – viz., 
18.  Later on, we shall study the relations that exist between these coefficients and the 
various elements of the deformation.  However, we shall first occupy ourselves with the 
dilatations in the differential dilatation (dT). 
 
 
 13. Linear dilatation in the deformation (dT). – If we let e denote the linear 
dilatation of a fiber under the homogeneous deformation (T), and let e′ denote the 
dilatation of the same fiber or a parallel fiber under the deformation (T′) then the 
corresponding deformation ratio for the differential deformation (dT) will be equal to 
1

1

e

e

′+
+

.  The transformation of the direction cosines will be obtained by formulas that are 

analogous to equations (7).  Let α′, β′, γ′ be the cosines that the transformation (dT) 
makes correspond to α, β, γ.  We will get three equations of the form: 
 

1

1

e

e

′+
+

α′ = (1 + da11) α + da12 β + da13 γ . 

 
 However, since the new direction is infinitely close to the first one, and the difference 
between the dilatations is infinitely small, it is natural to set: 
 

e′ = e + de, α′ = α + dα, β′ = β + dβ, γ′ = γ + dγ . 
 
If we substitute these values into the equation above, while neglecting second-order 
infinitesimals, then we will find: 
 

1
1

de

e
 + + 

α + dα = (1 + da11) α + da12 β + da13 γ . 

 
 That will finally give us the system: 
 

(23)   

11 12 13

21 22 23

31 32 33

,
1

,
1

.
1

de
d da da da

e
de

d da da da
e

de
d da da da

e

α α α β γ

β β α β γ

γ γ α β γ

 + = + + +

 + = + + +
 + = + + +

 

 

 Moreover, one will recover the same results by differentiating formulas (7), where 
one regards α0, β0, γ0 as constants, and upon then replacing these direction cosines of the 
initial fiber with their values as functions of α, β, γ that are given by equations (8). 
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 Add both sides of equations (23), after having multiplied them by α, β, γ, 
respectively; that will give: 

(24)  
1

de

e+
= α2 da11 + β 2 da22 + γ 2 da33 + βγ (da32 + da23)  

 + γα (da13 + da31) + αβ (da21 + da12) . 
 

 The logarithmic differential 
1

de

e+
, when taken while considering α0, β0, γ0  to be 

constants, is thus calculated with the aid of the coefficients of the differential deformation 
(dT) as the linear dilatation under ordinary infinitesimal deformations. 
 
 
 14. Mean rotation. – The mean rotation of the differential deformation has the 
components: 

(25)     

1
1 32 232

1
2 13 312

1
3 21 122

( ),

( ),

( ).

dp da da

dp da da

dp da da

= −
 = −
 = −

 

 
 In the case of infinitely-small deformations, the quantities dpi are the differentials of 
the components of the mean rotation, but for finite deformations, those quantities are not 
exact differentials, at least, in general.  Nevertheless, we can, with no inconvenience, let 

ip

x

∂
∂

, ip

y

∂
∂

, ip

z

∂
∂

 denote the coefficients of dx, dy, dz, respectively, in the expression for 

dpi. 
 One will then have: 
 

(26)  ip

x

∂
∂

 = 1
2 (a321 – a231), ip

y

∂
∂

 = 1
2 (a322 – a232), ip

z

∂
∂

 = 1
2 (a323 – a233). 

 
 The other analogous expressions are deduced from these by permuting indices. 
 The identities aijk = aikj give the relation: 
 

31 2 pp p

x y z

∂∂ ∂+ +
∂ ∂ ∂

= 0. 

 
 We believe that is it useful to remark here that if the homogeneous deformations (T) 
and (T′) are pure deformations then the rotation of the differential deformation (dT) will 
nevertheless be non-zero, unless the principal dilatation axes of (T) and (T′) are not 
parallel.  That result will correspond to the fact that the finite, pure deformations do not, 
in general, constitute a group of transformations. 
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 15.  Cubic dilatation. – Let dV0 be an infinitely-small volume element that surrounds 
the point M0 of the initial medium; dV and dV′ are the transforms of that same volume 
under the homogeneous deformations (T) and (T′), respectively. 
 The cubic dilatation of the differential deformation (dT) is equal to dV′ / dV – 1.  
Now, we have: 

dV = (1 + Θ) dV0 
and 

dV′ = (1 + Θ + dΘ) dV0 ; 
consequently: 

dV

dV

′
 − 1 = 

1

dΘ
+ Θ

. 

 
 On the other hand, one knows that the cubic dilatation of the deformation (dT) is 
represented by the sum: 
      da11 + da22 + da33 . 
Hence, one has the identity: 

(27)     da11 + da22 + da33 = 
1

dΘ
+ Θ

. 

 
 It is easy to verify that result directly by calculation.  In fact, upon differentiating the 
equation: 

1 + Θ = 

0 0 0

0 0 0

0 0 0

x x x

x y z

y y y

x y z

z z z

x y z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

, 

one will find: 

dΘ = 
0 0 0 0 0 0 0 0 0

( , ) ( , ) ( , )

( , ) ( , ) ( , )

d y z x d y z x d y z x
d d d

d y z x d z x y d x y z

     ∂ ∂ ∂+ +     ∂ ∂ ∂     
+ … 

 
 If we replace the binary functional determinants in the right-hand sides with their 
values that one infers from equations (4) then we will have: 
 

dΘ = (1 + Θ) 0 0 0

0 0 0

x y zx x x
d d d

x x x y x z

      ∂ ∂ ∂∂ ∂ ∂+ + +      ∂ ∂ ∂ ∂ ∂ ∂      
⋯ ; 

 
finally, by virtue of formulas (20): 
 

dΘ = (1 + Θ) (da11 + da22 + da33). 
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 16.  Surface dilatation. – Differentiate equations (23), while regarding ξ0, η0, ζ0 as 
constants in them. 
 The first one gives: 
 

1 1

1 1

E E
d dξ ξ+ +   +   + Θ + Θ   

 = 0 0 0
0 0 0

x y z
d d d

x x x
ξ η ζ∂ ∂ ∂     + +     ∂ ∂ ∂     

. 

 
 Upon replacing the cosines ξ0, η0, ζ0 in the right-hand side of that equation with their 
values that are inferred from equations (13′) and proceeding in the same manner in regard 
to the other two equations of the system (12′), one will obtain the system: 
 

(28)   

11 21 31

12 22 32

13 23 33

1
log ( ),

1

1
log ( ),

1

1
log ( ).

1

E
d d da da da

E
d d da da da

E
d d da da da

ξ ξ ξ η ζ

η η ξ η ζ

ζ ζ ξ η ζ

 + + = − + +  + Θ 
 + + = − + +  + Θ 
 + + = − + +  + Θ 

 

 
 One deduces from this that: 
 

(29)  d log 
1

1 E

+ Θ 
 + 

 = ξ 2 da11 + η2 da22 + ζ 2 da33 + ηζ (da32 + da23) 

 + ζξ (da13 + da31) + ξη (da21 + da12) . 
 
 The quadratic form that figures in the right-hand side of equation (29) is exactly the 
same as the one that represents the linear dilatation in formula (24).  That result can be 

explained when one refers to the significance of the ratio δ = 
1

1 E

+ Θ
+

 that we already 

occupied ourselves with in no. 8.  The dilation of the thickness of a layer will not, in 
general, correspond to a linear dilatation under a finite dilatation, because the normal 
fiber to the initial layer does not correspond to the normal fiber to the deformed layer.  
On the contrary, the normal fibers will correspond to each other under an infinitely-small 
deformation, or more precisely, each of them will correspond to a fiber that is infinitely 
close to the other one.  It will then result that the dilatation of the thickness of a layer 
must then be represented by the same quadratic form as the linear dilatation of the fiber 
that is normal to that layer. 
 
 
 17.  Expressing the second derivatives of the initial coordinates as functions of 
the coefficients aijk . – Consider the three equations: 
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 − da1j = 0 0 0

0 0 0j j j

x y zx x x
d d d

x x y x z x

     ∂ ∂ ∂∂ ∂ ∂+ +          ∂ ∂ ∂ ∂ ∂ ∂     
, 

 − da2j = 0 0 0

0 0 0j j j

x y zy y y
d d d

x x y x z x

     ∂ ∂ ∂∂ ∂ ∂+ +          ∂ ∂ ∂ ∂ ∂ ∂     
, 

 − da3j = 0 0 0

0 0 0j j j

x y zz z z
d d d

x x y x z x

     ∂ ∂ ∂∂ ∂ ∂+ +          ∂ ∂ ∂ ∂ ∂ ∂     
. 

 
 That system can be solved for the three differentials that figure in the right-hand sides 
and yield the following values for these quantities: 
 

 − 0

j

x
d

x

 ∂
  ∂ 

= 0 0 0
1 2 3j j j

x x x
da da da

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, 

 − 0

j

y
d

x

 ∂
  ∂ 

= 0 0 0
1 2 3j j j

y y y
da da da

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, 

 − 0

j

z
d

x

 ∂
  ∂ 

= 0 0 0
1 2 3j j j

z z z
da da da

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

. 

 
 If one lets u denote any of the initial coordinates x0, y0, z0, when considered as a 
function of the final coordinates x, y, z, then one will have, as a consequence: 
 

(30)   − 
j

u
d

x

 ∂
  ∂ 

= 1 2 3j j j

u u u
da da da

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

. 

 
 Upon equating this with the coefficients of dx, dy, dz, one will obtain an expression 

for each of the second derivatives 
2

j k

u

x x

∂
∂ ∂

 as a linear and homogeneous function of the 

coefficients aijk : 

(31)    

2

1 2 3

1 2 3 0 0 0[ , , , ( , , )].

jk jk jk

j k

u u u u
a a a

x x x y z

x x x y x z u x y z

 ∂ ∂ ∂ ∂− = + + ∂ ∂ ∂ ∂ ∂
 = = = =

 

 

 If one knows the numerical values of the first derivatives 
u

x

∂
∂

, 
u

y

∂
∂

, 
u

z

∂
∂

 at a point and 

those of the 18 coefficients aijk then one can calculate the 18 numerical values of the 

second derivatives 
2

j k

u

x x

∂
∂ ∂

.  The coefficients aijk are thus subject to no restriction insofar 
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as their numerical values at a fixed point are concerned.  However, the same thing is not 
true for their derivatives.  Indeed, the 54 first derivatives are expressed with the aid of the 
30 third derivatives of the functions x0, y0, z0, and consequently, must verify at least 24 
condition equations that we shall determine. 
 
 
 18.  Partial differential equations that the coefficients aijk must satisfy. – That 
question comes down to the search for compatibility conditions for a system of partial 
differential equations.  If one supposes that the 18 functions aijk are known then the three 
initial coordinates x0, y0, z0, when considered to be functions of the variables x, y, z, will 
verify a system of six second-order partial differential equations: 
 

(32)  
2

1 2 3jk jk jk
j k

u u u u
a a a

x x x y z

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂ ∂

= 0 (j, k = 1, 2, 3). 

 
We thus have to express the idea that the system (32) admits three distinct solutions 
whose functional determinant with respect to the variables x, y, z is non-zero. 
 The condition equations that relate to the second derivatives: 
 

2

j k

u

x x

∂
∂ ∂

= 
2

k j

u

x x

∂
∂ ∂

 

are consequences of the identities: 
aijk = aijk . 

 
 It will then remain for us to simply write that by virtue of the system (32) the third 
derivatives will satisfy the conditions: 
 

(33)    
2

i j k

u

x x x

∂ ∂
∂ ∂ ∂

= 
2

k j i

u

x x x

∂ ∂
∂ ∂ ∂

. 

 
 Write equations (32) in the form: 
 

2

rjk
rj k r

u u
a

x x x

∂ ∂+
∂ ∂ ∂∑  = 0. 

 
 Differentiate this with respect to xi and replace the second derivatives in the result 
with their values as inferred from the same system (32).  Finally, permute the indices k 
and l and write that the condition (32) is verified.  One will obtain the equation: 
 

( )ijk ijl
irk rjl irl rjk

i rl k i

a a u
a a a a

x x x

∂ ∂  ∂− + − ∂ ∂ ∂ 
∑ ∑ = 0. 
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 The coefficients of the three partial derivatives ∂u / ∂xi must be separately zero.  
Indeed, if that were not true then the functions u would verify the same linear equation 
that would be homogeneous of order one and have the form: 
 

u u u
A B C

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0. 

 
 It would thus be impossible to find three solutions whose functional determinant is 
non-zero. 
 The compatibility conditions for the system (32) thus finally come down to the form: 
 

(34)  1 1 2 2 3 3 1 1 1 1 1 1
ijk ijl

i k jl i k jl i k jl i l jk i l jk i l jk
l k

a a
a a a a a a a a a a a a

x x

∂ ∂
− + + + − − −

∂ ∂
 = 0. 

 
 From the theory of partial differential equations, one knows, moreover, that equations 
(34) are sufficient.  If they were not verified then the conditions of compatibility that 
relate to the derivatives of higher order of the known function u would themselves be 
satisfied by virtue of equations (34) and the ones that result by differentiation. 
 The number of equations (34) is equal to 27; however, if one takes the three 
identities: 

12 12 23 21 31 32i i i i i ia a a a a a

z y x z y x

∂ ∂ ∂ ∂ ∂ ∂− + − + −
∂ ∂ ∂ ∂ ∂ ∂

= 0  (i = 1, 2, 3) 

 
into account then one will recognize that they reduce to twenty-four distinct conditions. 
 
 
 19.  Deformations that correspond to a given system of coefficients aijk. – Suppose 
that the compatibility conditions are satisfied.  In order to solve the system of six 
equations (32), one can give the values of the function u and its first derivatives at a point 
arbitrarily.  The derivatives of higher order are then determined and expressed as a linear 
and homogeneous functions of the initial derivatives.  The system admits an obvious first 
solution of U0 = 1.  If one knows three other ones U1, U2, U3 whose functional 
determinant is non-zero then the most general solution will have the form: 
 

u = a0 + a1U1 + a2U2 +  a3U3, 
 
where a0, a1, a2, a3 denote arbitrary constants. 
 The initial coordinates x0, y0, z0 will thus be finally defined as functions of the x, y, z 
by three expressions of the form: 
 
  x0 = a0 + a1U1 + a2U2 +  a3U3, 
   y0 = b0 + b1U1 + b2U2 +  b3U3, 
  z0 = c0  + b1U1 + c2U2 +  c3U3 . 
 
 Since the constants ai, bi, ci are arbitrary, we have this proposition: 
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 If one knows an arbitrary deformation that corresponds to a given system of functions 
aijk then one will obtain the most general deformation of the system by combining the 
deformation considered with an arbitrary homogeneous deformation that is performed on 
the initial medium. 
 
 
 20.  Calculation of the differentials of the coefficients of the linear dilatation. – In 
order to study the various questions that relate to deformations, it is useful to express the 
differentials of the coefficients of the dilatation as functions of the differentials daij .  We 
shall not enter into the details of the calculation, which is extremely simple.  One will 
find that: 

(35)  

11 11 11 12 21 13 31

22 21 12 22 22 23 32

33 31 12 32 23 33 33

23 21 13 22 23 23 33 31 12 32 22 23 32

31 31 11 32 21 33 31 11 13 1

2( ),

2( ),

2( ),

( ) ( ),

( ) (

de e da e da e da

de e da e da e da

de e da e da e da

de e da e da e da e da e da e da

de e da e da e da e da e

− = + +
− = + +
− = + +
− = + + + + +
− = + + + + 2 23 13 33

12 11 12 12 22 13 32 21 11 22 21 23 31

),

( ) ( ).

da e da

de e da e da e da e da e da e da







 +


− = + + + + +

 

 
One finds the following results for the coefficients of the surface dilatation: 
 

(36)  

11 11 11 12 12 13 13 11 11 22 33

23 31 21 32 22 33 23

21 31 22 32 23 3

2[ ( )],

................................................................................................,

dE E da E da E da E da da da

dE E da E da E da

E da E da E da

= + + − + +

= + +
+ + + 3 23 11 22 232 ( ),

................................................................................................

E da da da





 − + +



 

 
 A remarkable property that is common to all of these expressions is that the 
coefficients of the differential daij are the same coefficients of the quadratic forms that 
intervene in the formulas for the dilatation. 
 
 
 21.  Inverse problem.  Expressing the coefficients aijk as functions of the 
coefficients of the dilatation. – We treat the inverse problem only for the linear 
dilatation.  Introduce three auxiliary differentials dω1, dω2, dω3 that are defined by the 
formulas: 

(37)  
31 12 32 22 33 32 21 13 22 23 23 33 1

11 13 12 23 13 33 31 11 32 21 33 31 2

21 11 22 21 23 31 11 12 12 22 13 32 3

( ) ,

( ) ,

( ) ,

e da e da e da e da e da e da d

e da e da e da e da e da e da d

e da e da e da e da e da e da d

ω
ω
ω

+ + − + + =
 + + − + + =
 + + − + + =

 

 
 With the aid of the systems (35) and (37), we form the combinations of the following 
form, which contain only three unknowns: 
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(38)   

1
11 11 12 21 13 31 112

1 1
21 11 22 21 23 31 3 122 2

1 1
31 11 32 21 33 31 2 312 2

,

,

.

e da e da e da de

e da e da e da d de

e da e da e da d de

ω
ω

+ + = −
 + + = −
 + + = − −

 

 

 The determinant of equations (38) is equal to 
2

1

∆
= 2

1

(1 )+ Θ
; the minors are the 

coefficients Eik of the adjoint form.  One will then have: 
 

(39)  

21
21 11 22 12 23 13 23 2 22 32

11
11 11 12 12 13 13 13 2 12 32

31
31 11 32 12 33 13 33 2 32 32

2
,

(1 )

2
,

(1 )

2
.

(1 )

da
E de E de E de E d E d

da
E de E de E de E d E d

da
E de E de E de E d E d

ω ω

ω ω

ω ω


− = + + + − + Θ


− = + + + − + Θ


− = + + + − + Θ

 

 
 The other quantities daij will obviously be calculated by a similar process.  In order to 
then have expressions for the coefficients aijk, it will suffice to develop the two sides of 
each of equations (39) as linear functions of the dx, dy, dz, and to equate the 
corresponding coefficients of the same differentials.  It is then necessary that we must 
first develop each of the quantities dωi .  Now, upon referring to equations (35) and (37), 
one will easily verify the following identities: 
 

(40)  

31 32 23 3321 22
1

31 32 33 1311 12
2

13 2311 21 12 22
3

,

,

e e e ee e
d dx dy dz

z y z y z y

e e e ee e
d dx dy dz

x z x z x z

e ee e e e
d dx dy

y x y x y

ω

ω

ω

     ∂ ∂ ∂ ∂∂ ∂= − + − + −     ∂ ∂ ∂ ∂ ∂ ∂     

∂ ∂ ∂ ∂∂ ∂     = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂     

    ∂ ∂∂ ∂ ∂ ∂= − + − + −   ∂ ∂ ∂ ∂ ∂ ∂   
.dz

x







  
  
  

 

 
 Substituting these values into equations (39) and analogous equations, we finally find 
that: 

(41) − 2

2

(1 )
ijka

+ Θ
= 1 1

1
1

j jkk
i

k j

e ee
E

x x x

 ∂ ∂∂+ −  ∂ ∂ ∂ 
 

 + 2 32 3
2 3

2 3

j jk j jkk k
i i

k j k j

e e e ee e
E E

x x x x x x

   ∂ ∂ ∂ ∂∂ ∂+ − + + −      ∂ ∂ ∂ ∂ ∂ ∂   
. 
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 22.  Relationship between the coefficients aijk and the Christoffel brackets. – The 
form of the result offers a special interest in the manner by which it is attached to the 
theory of quadratic forms of differentials (1). 
 Consider an arbitrary quadratic form of the differentials dxi (i = 1, 2, …, n): 
 

f = ∑ eik dxi dxk , 
 

where we let E denote the discriminant and let Eik denote the coefficients of the adjoint 
form. 
 Upon introducing a notation that is due to Christoffel, we set: 
 

k l

i

 
 
 

 = 
1

2
ik il kl

l k i

e e e

x x x

 ∂ ∂ ∂+ − ∂ ∂ ∂ 
, 

and in turn: 
j k

i

 
 
 

 = ir
j kE

rE

 
 
 

∑ . 

 
 Apply these formulas to the quadratic form (10′) that represents the linear element of 
the initial medium as a function of the coordinates of the deformed medium: 
 

∑ eik dxi dxk = 2
0ds , 

 
 

and recall that the discriminant E of the form is equal to 2

1

(1 )+ Θ
. 

 We find immediately that: 

aijk = − 
j k

i

 
 
 

. 

 
 Our coefficients with three indices thus coincide, up to sign, with the Christoffel 
brackets that relate to the quadratic form considered.  That agreement is particularly 
interesting, since the starting points are entirely different. 
 The determination of the deformation when the dilatation is given is a well-known 
problem.  The preceding results give the immediate solution.  One first calculates the 
coefficients aijk by formulas (41) or with the aid of the Christoffel symbols, and one then 
forms the linear equations (32); the discussion of no. 19 applies.  Nonetheless, the 
constants a0, a1, … are no longer entirely arbitrary, but are subject to the condition that 
they must give a well-defined value to the linear element.  It then results that if one 

                                                
 (1) CHRISTOFFEL, “Transformation der homogenen Differentialausdrücke zweiten Grades,” Journal 
der Crelle, Bd. 70, pp. 46. – LIPSCHITZ, “Untersuchungen in Betreff der ganzen homogenen Funktionen 
von n Differentialen,” ibid., pp. 71. – DARBOUX, Leçons sur les systèmes orthogonaux et les coordinées 
curvilignes, Livre II, Chap. II.  
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knows a solution to the problem then all of the other ones will be deduced from it by a 
Euclidian displacement. 
 

_________ 
 
 



CHAPTER III 
 

FUNDAMENTAL SECOND-DEGREE COVARIANTS 
 

23.  Generalities. – 24.  Second dilatation. – 25.  Definition of torsion. – 26.  Analytical expression for the 
torsion. – 27.  Torsion indicatrix. – 28.  Asymmetric character of torsion. – 29.  Expressing the coefficients 
of torsion as functions of the dilatation. – 30.  Application. – 31.  Derived rotation.  Rotation of the rotation. 
– 32.  Components of the vector Φ. – 33.  Expressing the coefficients aijk as functions of the covariants. 
 
 
 23.  The consideration of the fundamental covariants that we shall occupy ourselves 
with will permit us to express the eighteen coefficients aijk as functions of the coefficients 
of three algebraic forms that each have a geometric and mechanical significance that is 
independent of the coordinates.  The first of them is a ternary cubic form that represents 
what we call the second dilatation; it involves ten components.  The second one is a 
quadratic form that defines the distribution of mechanical torsions; the six coefficients of 
that form are coupled by one linear relation, which reduces the number of parameters 
upon which they depend to five.  Finally, the third one is a linear form whose 
consideration can be replaced with that of a vector; it depends upon three independent 
parameters.  The total number of arbitrary quantities that figure in the expression for the 
three forms considered is thus equal to eighteen, like that of the coefficients aijk . 
 The set of these three forms presents an obvious analogy with the geometric 
quantities that were introduced by Woldemar Voigt in his study of the linear relations 
between a vector and a tensor. 
 
 
 24.  Second dilatation. – If one replaces the quantities daik in the expression for the 

logarithmic differential 
1

de

e+
 that is defined by equation (24) with their values in (21) 

then one will obtain an expression that is linear and homogeneous with respect to the 
differentials dx, dy, dz.  Now, suppose that the direction of the infinitely-small 
displacement that is defined by these differentials coincides with the direction α, β, γ.  
Upon letting ds denote the elementary arc that corresponds to that displacement: 
 

(42)   
1

1

de

e ds+
 = ∑ aijk αi αj αk (i, j, k = 1, 2, 3), 

(α1 = α, α2 = β, α3 = γ). 
 

 We give the name of second dilatation to that logarithmic derivative 
1

1

de

e ds+
, which 

is taken as we have already indicated by regarding α0, β0, γ0 as constants – i.e., upon 
displacing in the deformed medium along the lines that correspond to the lines of the 
initial medium.  We let D2 (α, β, γ) denote the cubic form of cosines that represents the 
second dilatation in formula (42), and set: 
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(43)   D2 (α, β, γ) = ∑ c111 α3 + 3 ∑ c112 α2β + 6 c112 αβγ ; 
 
the coefficients cijk do not change when one permutes their three indices in an arbitrary 
manner. 
 Their values are expressed as functions of the aijk by the formula: 
 
(44)    3 cijk = aijk + ajkl + akij . 
 
 Following a procedure that is currently employed in geometry and mechanics, one 
can represent the variation of the second dilatation at a point M as a function of the 
direction α, β, γ by a surface of third order that we call the indicatrix of the second 
dilatations.  It suffices to start with the point M (or any other origin) and draw a vector MI 
in the direction considered whose length is defined by the equality: 
 

MI = 
3

2

1

( , , )D α β γ
. 

 
 When the direction varies, the point I will describe the indicatrix.  The asymptotic 
cone to the indicatrix of second dilatations is defined by the tangents to the fibers for 
which the second dilatation is zero. 
 That indicatrix is independent of the reference axes with the same names as those of 
the ellipsoid of dilatations. 
 The form D2 (α, β, γ) is a differential covariant of the deformation with respect to the 
group of Euclidian displacements – i.e., in simpler, but equivalent terms: with respect to 
the coordinate transformations. 
 The proper invariants of the form D2, or the simultaneous invariants of that form and 
any other invariant form, are thus differential invariants of the deformation with respect 
to the Euclidian group. 
 
 
 25.  Definition of torsion. – In the mechanics of slender bodies, the torsion of a 
rectilinear fiber is the deformation that is produced when one of the extremities of the 
fiber remain fixed, while the right section to the other extremity is turned through a 
certain angle around the axis of the fiber. 
 For a fiber that is directed along the Oz axis, that would be the deformation that is 
defined by the following equations: 
 

(45)    

0 0
0 0

0 0
0 0

0

cos sin ,

sin cos ,

.

z z
x x y

a a
z z

y x y
a a

z z

 = +

 = +


=
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The right section that is drawn through the origin remains fixed, while the other one turns 
through an angle that is proportional to the edge z0 . 
 The consideration of the differential deformation (dT) permits one to easily extend 
that notation of torsion to the three-dimensional continuous media. 
 We first remark that in the neighborhood of a point M of the medium, the orientation 
of the fibers or sheets that issue from that point is determined by the homogeneous 
deformation (T) that is tangent to M.  Having said that, consider an infinitely-small fiber 
MM′ that issues from M.  The deformation (T), when extended to all of the medium, will 
bring the point M to its defining position and orient all of the infinitesimal elements that 
issue from that point.  If one then leaves the point M fixed, as well as the directions that 
issue from that point, then one will apply the differential deformation (dT) to the 
elements that issue from M′, as the final orientation of these latter elements will be found 
to be obtained likewise.  The mean rotation of the deformation (dT) does not, in general, 
have its axis directed along MM′, but one can decompose it into two rotations whose axes 
are parallel and perpendicular to MM′, respectively.  It is the former component that 
produces the torsion of the fiber. 
 From that, we shall call the projection of the mean rotation of the corresponding 
infinitesimal deformation (dT) onto the direction of the fiber the total torsion of the 
elementary fiber MM′  and the ratio of the total torsion to the length of the fiber the mean 
torsion. 
 For the elementary fibers, we will hardly have to consider the mean torsion, which we 
will then call, more simply, the torsion of the fiber (1). 
 
 
 26.  Analytical expression for the torsion. – The analytical expression for torsion 
results immediately from these considerations.  Preserving the notations of Chapter II, we 
let ds denote the length of the elementary fiber MM′, let α, β, γ denote its direction 
cosines, and let τ (α, β, γ) denote the corresponding mean torsion.  The total torsion will 
then be: 

τ ds = α dp1 + β dp2 + γ dp3 , 
and the mean torsion will be: 

τ = 31 2 dpdp dp

ds ds ds
α β γ+ + . 

 Now, one has: 

idp

ds
= i i ip p p

x y z
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
, 

 
and consequently, one will have: 
 

(46) τ (α, β, γ) = 2 2 2 31 2 pp p

x y z
α β γ ∂∂ ∂+ +

∂ ∂ ∂
 

                                                
 (1) See Comptes rendus de l’Académie des Sciences, 30 May 1910 and 10 April 1911. 
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    + 3 32 1 2 1p pp p p p

y z z x x y
βγ γα αβ   ∂ ∂∂ ∂ ∂ ∂ + + + + +    ∂ ∂ ∂ ∂ ∂ ∂    

. 

 
 The expression for the torsion is then a function of degree two in the direction cosines 
of the fiber; it is formed from the differential coefficients of the rotations dpi, and like the 
linear dilatation for an infinitesimal deformation, from the partial derivatives of the 
displacements.  We set: 
 
(47)  τ (α, β, γ) = τ11 α2 + τ22 β 2 + τ33 γ 2 + 2τ22 βγ  + 2τ31 γα + 2τ12 αβ. 
 
 The coefficients τij are expressed immediately with the aid of either the differential 
coefficients dpi / dxk or with the aid of the coefficients αijk : 
 

(48)   

1
11 321 231

2
22 132 312

3
33 213 123

3 2
23 212 122 133 313

31
31 323 233 221 121

2 1
12 131 211 321 231

,

,

,

2 ,

2 ,

2 .

p
a a

x
p

a a
y

p
a a

z
p p

a a a a
y z

pp
a a a a

z x
p p

a a a a
x y

τ

τ

τ

τ

τ

τ

∂ = = − ∂


∂ = = −
 ∂


∂ = = −
 ∂
 ∂ ∂ = + = − + −

∂ ∂
 ∂∂ = + = − + −
 ∂ ∂
 ∂ ∂
 = + = − + −

∂ ∂

 

 
 As in the case of infinitesimal deformations, the relation: 
 
(49)     τ11 + τ22 + τ33 = 0 
is satisfied identically. 
 
 
 27.  Torsion indicatrix. – The variation of the torsion at a point as a function of the 
direction of the fiber is represented by a quadratic expression whose equation will have 
the form: 

τ (x, y, z) = ± 1 
 
when one takes the point M to be the origin. 
 The asymptotic cone of the indicatrix is always real and admits an inscribed tri-
rectangular trihedron.  It is formed from the tangents to the fibers for which the 
mechanical torsion at M is zero.  That is why we have given it the name of the cone of 
intorsion. 
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 The consideration of the torsion indicatrix immediately exhibits the elements that 
enjoy some important properties relative to the torsion.  We call the principal axes and 
principal planes of the indicatrix the principal axes and principal planes of torsion, and 
the torsions of the fibers that are directed along those axes will be the principal torsions. 
 
 
 28.  Asymmetric character of torsion. – By virtue of the relation (49), the algebraic 
sum of the principal torsions will be zero. 
 The sign of the torsion of a fiber depends essentially upon the sense that is chosen to 
define the positive rotations.  Consequently, it will vary with the orientation of the 
trihedron of the coordinate axes.  A symmetry transformation that has the effect of 
changing the senses of the rotations will also change the signs of the torsions.  If we, with 
Voigt, give the name of tensors to the geometric quantities that are defined by the 
quadratic forms in the cosines then we will see that the torsion is represented by a tensor, 
but it is an axial tensor. 
 The asymmetric character of torsion is, moreover, exhibited by formulas (48) when 
one considers the expressions for coefficients τij as functions of the coefficients aijk . 
 
 
 29.  Expression of the coefficients of torsion as functions of those of the 
dilatation. – By replacing the coefficients aijk in formulas (48) with their values that are 
inferred from equations (41), one will obtain the values of the coefficients τij as functions 
of the coefficients of the linear dilatation.  According to the notation of Christoffel, we 
will have: 

 τ11 = 
3 1 2 1

2 3

   
−   

   
, 

 τ23 = 
1 3 3 3 2 2 1 2

2 1 1 3

       
− + −       

       
. 

 
 These expressions simplify in the case of infinitesimal deformations, and one will 
have simply: 

 τ11 = 
3 1 2 1

2 3

   
−   

   
, 

 τ23 = 
1 3 3 3 2 2 1 2

2 1 1 3

       
− + −       

       
, 

 
in which the square brackets have replaced the curly ones. 
 If one would like to apply these formulas to the coefficients of dilatation that one 
usually considers in the theory of elasticity then one must observe that all of our 
calculations have been performed on the quadratic form of the formula (10), which gives 

the ratio 2

1

(1 )e+
.  The value that is approached by that ratio for infinitesimal 

deformations is 1 – 2e, while the value that is approached by the inverse ratio (1 + e)2 that 
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one considers in the usual calculations is 1 + 2e.  A change of sign will then result that 
will have to be taken into account in the calculations. 
 
 
 30.  Application to an example. – The application of our theory of torsion to an 
example will show that our definition is not arbitrary, but that it still corresponds to the 
ordinary sense of the word torsion.  First, consider the deformation that is defined by 
equations (45).  The inverse deformation will be given by the equations: 
 

 x0 =    x cos 
z

a
+ y sin

z

a
, 

 y0 = − x sin 
z

a
+ y cos

z

a
, 

 z0 =  z . 
 
 The calculation of the linear element gives: 
 

2 2 2
0 0 0dx dy dz+ +  = dx2 + dy2 + 

2 2 2
2

2

2 2x y z y x
dz dxdz dy dz

a a a

+ + + − . 

 
 One finds the following expressions for the coefficients daij of the differential 
deformation (dT): 

da11 = da22 = da33 = 0, 

da12 = − 
dz

a
,  da13 = − 

2

dy dz
x

a a
+ , 

da21 =    dz

a
,  da22 =    

2

dx dz
y

a a
+ , 

da31 = da32 = 0. 
 

 Consequently, the components of the corresponding infinitesimal rotation are: 
 

 dp1 = − 2

1

2

dx dz
y

a a
 + 
 

, 

 dp2 =    2

1

2

dy dz
x

a a
 − + 
 

, 

 dp3 = dz

a
, 

 
from which, one will deduce the expression for the torsion: 
 

(50)   τ (α, β, γ) = 
2 2 2

2

1 ( )

2

x y

a a a

γ α β β α γ+ −− + . 

 



Le Roux – Research into the geometry of finite deformations. 33 

 Formula (50) shows that the torsion of the fibers that are parallel to Oz is constant and 
equal to 1 / a .  That quantity indeed represents the ratio that is obtained by dividing the 
angle of rotation of each right section by the distance from the section considered to the 
invariable right section z = 0.  The fibers that are perpendicular to Oz also have a constant 
torsion; it has a sign that is opposite to the former and is equal to – 1 / 2a. 
 It will be easy to succeed in applying the general formulas that we have established to 
the deformation (45) and to verify their exactness in that simple example.  I have 
considered some other examples that relate to the case of infinitesimal deformations in 
my previous paper. 
 
 
 31.  Derived rotation. – We call the rotation about a given direction α, β, γ that has 

the ratios 1dp

ds
, 2dp

ds
, 3dp

ds
 for its components, where ds denotes an elementary arc that is 

carried in the direction considered, the derived rotation.  Consequently, the components 
of the derived rotation will have the following values: 
 

 1dp

ds
 = 1 1 1p p p

x y z
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
, 

 2dp

ds
 = 2 2 2p p p

x y z
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
, 

 3dp

ds
 = 3 3 3p p p

x y z
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
. 

 
 The consideration of torsion permits us to apply the Helmholtz decomposition into 
symmetric and asymmetric parts to the derived rotation. 
 Set: 

 ϕ1 = 3 21

2

p p

y z

 ∂ ∂− ∂ ∂ 
, 

 ϕ2 = 311

2

pp

z x

∂∂ − ∂ ∂ 
, 

 ϕ3 = 2 11

2

p p

x y

 ∂ ∂− ∂ ∂ 
. 

 
 The expressions for the differential ratios dpi / ds can then be written: 
 

 1dp

ds
 = 

1

2

τ
α

∂
∂

 + ϕ2 γ – ϕ3 β, 

 2dp

ds
 = 

1

2

τ
β

∂
∂

 + ϕ3 α – ϕ1 γ, 

, 
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 3dp

ds
 = 

1

2

τ
γ

∂
∂

 + ϕ1 β – ϕ2 α . 

. 
 The vector Φ, which has the components ϕ1, ϕ2, ϕ3, presents itself as the rotation of 
the rotation; it intervenes in the study of flexure, as we shall find.  Along with the second 
dilatation and the torsion, it constitutes the system of our three fundamental second-order 
covariants. 
 The coefficients of each of these three covariants change values when one effects a 
coordinate transformation, but the new coefficients of each transformed form are 
expressed uniquely with the aid of coefficients of the analogous form that relate to the 
first system of axes. 
 From the algebraic viewpoint, the consideration of the vector Φ can obviously be 
replaced with that of the linear form in the cosines: 
 

ϕ1 α + ϕ2 β + ϕ3 γ . 
 
 
 32.  Calculation of the components of the vector Φ. – The expressions for the 
components ϕ1, ϕ2, ϕ3 of the vector Φ are obtained immediately by replacing the 
differential coefficients of the rotation with their values: 
 

(51)   

31
2 323 233 211 121

3 2
1 212 122 132 313

2 1
3 131 311 322 232

1 1
( ),

2 4

1 1
( ),

2 4

1 1
( ).

2 4

pp
a a a a

z x

p p
a a a a

y z

p p
a a a a

x y

ϕ

ϕ

ϕ

 ∂∂ = − = − − +  ∂ ∂ 
  ∂ ∂ = − = − − +  ∂ ∂ 
  ∂ ∂
 = − = − − + ∂ ∂  

 

 
 If one adds and subtracts the same quantity a111 in the expression for ϕ1 then one will 
find, upon taking into account the permutability of the last two indices in the coefficients 
aijk , that: 

4ϕ1 = a111 + a221 + a331 – (a111 + a122 + a133). 
 
 Now, one infers from equation (27) that: 
 

log(1 )

u

∂ + Θ
∂

 = a111 + a221 + a331 . 

 
 It remains for us to transform the sum a111 + a122 + a133 . 
 Let ∆(u) generally denote the second-order Lamé differential parameter that relates to 
the function u: 

∆(u) = 
2 2 2

2 2 2

u u u

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

. 
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 Upon replacing the coefficients aijk with their values, we will find that: 
 

a111 + a122 + a133 = 0 0 0
0 0 0

( ) ( ) ( )
x x x

x y z
x y z

∂ ∂ ∂∆ + ∆ + ∆
∂ ∂ ∂

, 

 
and equations (51) become: 
 

 (52) 

1 0 0 0
0 0 0

2 0 0 0
0 0 0

3 0 0 0
0 0 0

1
4 ( ) ( ) ( ),

1

1
4 ( ) ( ) ( ),

1

1
4 ( ) ( ) ( ).

1

x x x
x y z

x x y z

y y y
x y z

y x y z

z z z
x y z

z x y z

ϕ

ϕ

ϕ

 ∂Θ ∂ ∂ ∂= + ∆ + ∆ + ∆ + Θ ∂ ∂ ∂ ∂
 ∂Θ ∂ ∂ ∂= + ∆ + ∆ + ∆ + Θ ∂ ∂ ∂ ∂
 ∂Θ ∂ ∂ ∂= + ∆ + ∆ + ∆

+ Θ ∂ ∂ ∂ ∂

 

 
 In the case of infinitesimal deformations, these formulas will reduce to the following 
form, which I gave in my first paper: 

 4ϕ1 = 
x

∂Θ
∂

− ∆u, 

 4ϕ2 = 
y

∂Θ
∂

− ∆v, 

 4ϕ3 = 
z

∂Θ
∂

− ∆w. 

 
 In equations (52), the derivatives ∂x / ∂x0, …, which are taken with respect to the 
initial variables, can be replaced with their values that are inferred from the inverse 
system to formulas (4): 

0

x

x

∂
∂

= (1 + Θ) 0 0( , )

( , )

d y z

d y z
, …, 

 
in such a manner that the transformed expressions no longer contain derivatives that are 
taken with respect to the same system of variables x, y, z.  One will thus find: 
 

4ϕ1 = 

0 0 0

0 0 0

0 0 0

( ) ( ) ( )

1
(1 )

1

x y z

x y z

x y y y

x y z

z z z

∆ ∆ ∆
∂ ∂∂Θ + + Θ

+ Θ ∂ ∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 . 
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 33.  Expressing the coefficients aijk as functions of the coefficients of the 
covariants. – Equations (44), (48), and (51) express the components of the three 
covariants as functions of the coefficients aijk ; conversely, one can express these 
coefficients with the aid of the covariants.  The calculation is quite simple and gives the 
following result: 

(53)    

111 111

122 122 23 1

133 133 23 1

123 132 123 33 22

113 131 113 12 3

112 121 112 31 2

211 112 31 2

222 222

223 232 233 12 3

231 213 12

,

4 4
,

3 3
4 4

,
3 3

2 2
,

3 3
2 2

,
3 3

2
2 ,

3
4 4

,
3 3

,

2 2
,

3 3

a c

a c

a c

a a c

a a c

a a c

a c

a c

a a c

a a c

τ ϕ

τ ϕ

τ τ

τ ϕ

τ ϕ

τ ϕ

τ ϕ

=

= − −

= + −

= = − +

= = + +

= = + +

= + −

=

= = − +

= = 3 11 33

212 321 122 23 1

311 113 12 3

322 223 12 3

333 333

323 332 233 31 2

331 313 331 23 1

312 321 123 22 11

2 2
,

3 3
2 2

,
3 3

4 4
,

3 3
4 4

,
3 3

,

2 2
,

3 3
2 2

,
3 3
2 2

.
3 3

a a c

a c

a c

a c

a a c

a a c

a a c

τ τ

τ ϕ

τ ϕ

τ ϕ

τ ϕ

τ ϕ

τ τ
























 − +



= = + +

= − −

= + −

=

= = + +

= = + +

= = − +



















 

 
 This set of eighteen formulas is summarized in three identities, and we write just the 
first of them: 
(54)  a111 α2 + a122 β 2 + a133 γ 2 + 2 a123 βγ  + 2 a121 γα + 2 a112 αβ  
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= 2
1 1 2 3

1 2 4 4
( ) ( )

3 3 3 3

D
β γγτ βτ ϕ α αϕ βϕ γϕ

α
∂ ′ ′+ − − + + +
∂

. 

 
 The other two identities are deduced from this by permuting the indices and the 
cosines α, β, γ. 
 

_______ 
 

 
 



CHAPTER IV 
 

FLEXURE OF FIBERS AND SHEETS 
 

34.  Compositions of the incurvations. – 35.  Another representation of the curvature. – 36.  Curvature of a 

deformed fiber. – 37.  Calculation of the logarithmic differential 
1
de

e+
. – 38.  Decomposition of the 

curvature.  Definition of the flexure. – 39.  Decomposition of the total flexure into its three components. – 
40.  Another form of the formulas. – 41.  Geometric elements of flexure. – 42.  Incurvation and flexure of 
sheets. – 43.  Remark on the transform of the initial curvature. -  44.  Geodesic flexure. 
 
 
 34.  Composition of incurvations. – One knows that the study of the motion of 
Serret trihedra that are coupled to a skew curve leads one to represent curvature by a 
rotation (1) whose axis is perpendicular to the osculating plane and whose angular 
velocity is measured by the inverse of the radius of curvature.  That mode of 
representation lends itself to the composition by geometric addition. 
 Let R be the figurative rotation of the curvature ω of an infinitely-small arc ds.  If R is 
the resultant of the other two rotations R′, R″ that have their axes in the normal plane to 
the element ds then the corresponding curvature ω can itself be considered to be the 
resultant of the curvature ω′ and ω″, which figure in the rotations R′  and R″, respectively. 
 Let x, y, z be the coordinates of a point M of the curve; let: 
 
 α, β, γ, 
 α′, β′, γ′, 
 α″, β″, γ″ 
 
be the system of direction cosines of the tangent, the principal normal, and the binormal, 
and let ρ be the radius of curvature.  The components of the figurative rotation of the 
curvature around the coordinate axes are: 
 

R1 = 
α
ρ
′′

, R2 = 
β
ρ
′′

, R3 = 
γ
ρ
′′

. 

 
 One can represent all of the elements that relate to curvature with the aid of these 
quantities. 
 The axis of curvature is the locus of points that remain immobile under the resultant 
motion of the rotation R and a translation whose velocity, which is equal to unity, is 
directed along the tangent.  If one calls the current coordinates X, Y, Z then the points of 
the axis will consequently verify the following relations: 
 
 α + R2 (Z – z) – R3 (Y – y) = 0, 
 β + R3 (X – x) – R1 (Z – z) = 0, 
 γ  + R1 (Y – y) – R2 (X – x) = 0, 

                                                
 (1) DARBOUX, Leçons sur la Théorie générale des surfaces, Livre I, Chap. I. 
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which are compatible and reduce to two distinct conditions by virtue of the equality: 
 

R1 α + R2 β + R3 γ = 1. 
 
 These equations can be replaced with the system: 
 
(55)    α (X – x) + β (Y – y) + γ (Z – z) = 0, 
 

(56)     

1 2 3

X x Y y Z z

R R R

α β γ
− − −

 + 1 = 0, 

 
whose geometric significance is obvious. 
 One can associate each curvature component R′, R″, … with an element that is 
analogous to the resultant curvature, namely, a curvature plane, which is perpendicular to 
the axis of figurative rotation, a center, a radius, a circle, a curvature axis, and even a 
principal normal of curvature. 
 In my previous paper on infinitesimal deformations, I indicated a very simple 
construction for the axis of curvature that is the resultant of two given curvatures when 
one knows the axes of the component curvature, and I showed that this construction is the 
transform of the geometric addition of values by polar reciprocals. 
 
 
 35.  Another representation of the curvature. – From the viewpoint of the 
composition of curvatures, there exists a second representation that offers the same 
advantages as the figurative rotation.  It consists of endowing the principal normal of 
curvature with a length that measures the value of the curvature.  That length can, 
moreover, be taken to have either the same or the opposite sense as the radius, provided 
that one adopts the same convention for all of the components curvatures.  Upon denoting 
the components of the vector thus-obtained by H1, H2, H3, one will then have: 
 

H1 = − 
α
ρ

′
, H2 = − 

β
ρ

′
, H3 = − 

γ
ρ
′
. 

 
 The relations between the new figurative vector H (H1, H2, H3) and the rotation R (R1, 
R2, R3) are given by the formulas: 
 
 R1 = H2 γ − H3 β , H1 = β R3 − γ R2 , 
 R2 = H3α  − H1 γ , H2 = γ R1  − α R3 , 
 R3 = H1 β − H2 α , H3 = α R2 − β R1 . 
 
 With the use of the new notations, equation (56) becomes: 
 
(56′)    H1 (X – x) + H2 (Y – y) + H3 (Z – z) + 1 = 0. 
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It represents the polar plane to the extremity of the vector H with respect to the imaginary 
sphere: 

(X – x)2 + (Y – y)2 + (Z – z)2 + 1 = 0. 
 
It results from this that the curvature axis is the polar to the extremity of the vector H 
with respect to the imaginary circle that is obtained by cutting the preceding sphere with 
the plane normal to the curve.  If one represents the composition of the curvature, on the 
one hand, by the geometric addition of the corresponding vectors H′, H″, …, and on the 
other hand, by the construction of the axes that were pointed out in my previous paper (1), 
then the correspondence by polar reciprocals between the two figures will become 
obvious. 
 
 
 36.  Curvature of a deformed fiber. – The formulas that relate to the transformation 
of the curvature of the fibers are obtained easily by making use of the Frenet formulas.  
We preserve the notations that were indicated in no. 35 for the curvature and the direction 
cosines of the tangent, the principal normal, and the binormal in the deformed medium.  
When the same letters are affected with the index zero, they will denote the analogous 
quantities for the initial medium.  In no. 5, we established equations of the form: 
 

(1 + e) α = 0 0 0
0 0 0

x x x

x y z
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
. 

 
Differentiate this, while regarding α0, β0, γ0 as variables and taking the Frenet formulas 
into account; we find: 
 

(57) (1 + e)
dsα

ρ
′

 + α de = 0
0 0 0

0 0 0 0

dsx x x

x y z
α β γ

ρ
 ∂ ∂ ∂′ ′ ′+ + ∂ ∂ ∂ 

 

+ 0 0 0
0 0 0

x x x
d d d

x y z
α β γ

     ∂ ∂ ∂+ +     ∂ ∂ ∂     
. 

 
 If one replaces α0, β0, γ0 with their values that one infers from formulas (8) then one 
will get: 

0 0 0
0 0 0

x x x
d d d

x y z
α β γ

     ∂ ∂ ∂+ +     ∂ ∂ ∂     
 = (1 + e) (α da11 + β da12 + γ da13). 

 
It remains for us to transform the parentheses: 
 

0 0 0
0 0 0

x x x

x y z
α β γ∂ ∂ ∂′ ′ ′+ +

∂ ∂ ∂
. 

 

                                                
 (1) Annales de l’École Normale, 1911, pp. 541.  
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 The homogeneous deformation (T) that is tangent to M makes a direction MN 
correspond to the initial principal normal that generally differs from the principal normal 
of the deformed curvature.  We call the direction cosines of that transform 1α ′ , 1β ′ , 1γ ′  
and the linear dilatation of the corresponding elementary fiber e1; by virtue of equations 
(7) in no. 5, we will then have: 
 

(1 + e1) 1α ′  = 0 0 0
0 0 0

x x x

x y z
α β γ∂ ∂ ∂′ ′ ′+ +

∂ ∂ ∂
. 

 
When one divides both sides of equation (57) and the other two analogous equations by 
(1 + e) ds = (1 + e)2 ds0, they will become: 
 

(58)  

131 1 11 12
2

0

231 1 21 22
2

0

31 32 331 1
2

0

1
,

1 (1 )

1
,

1 (1 )

1
.

1 (1 )

dae da dade

e ds e ds ds ds

dae da dade

e ds e ds ds ds

da da daede

e ds e ds ds ds

αα α α β γ
ρ ρ

ββ β α β γ
ρ ρ

γγ γ α β γ
ρ ρ

 ′′ ++ = + + + + +
 ′′ ++ = + + + + +
 ′′ ++ = + + +

+ +

 

 
 

 37.  Calculation of the logarithmic differential 
1

de

e+
. – The logarithmic derivative 

1

1

de

e ds+
, which figures in the left-hand side of equations (58), is taken by considering α0, 

β0, γ0 as variables.  Consequently, it differs from the second dilatation, which is a 
derivative of the same quantity, but it is taken by regarding α0, β0, γ0 as constants.  The 
difference between these two quantities is calculated easily with the aid of equations (58), 
when one adds them together after having multiplied them by α, β, γ, respectively. 
 One finds: 

1

1

de

e ds+
 = 1 1 1 1

2
0

(1 )( ) 1

(1 )

e

e

αα ββ γγ
ρ

′ ′ ′+ + +
+

 + D2 (α, β, γ), 

or rather: 

(59)   
1

1

de

e ds+
 − D2 (α, β, γ) = 1 1

2
0

(1 ) cos

(1 )

e

e

θ
ρ

+
+

, 

 
in which θ1 denotes the angle that is formed in the deformed medium by the direction of 
the tangent MT and the direction MN, which is the transform of the initial principal 
normal. 
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 38.  Decomposition of the curvature.  Definition of the flexure. – We perform a 
first transformation in the formulas that are obtained for the curvature by eliminating the 

logarithmic derivative 
(1 )

de

e ds+
 from equations (58).  In order to write the result of the 

elimination in a simple form, we first remark that one has: 
 

βγ′ – γβ′ = α″, … 
 
The expressions 1 1βγ γβ′ ′− , … transform in the same manner by introducing the direction 

cosines of the common perpendicular to the tangent MT and to the direction MN1 that is 
the transform of the initial principal normal.  The plane (P) that is determined by these 
two directions is the transform of the initial osculating plane by the homogeneous 
deformation (T) that is tangent to M.  We let 1α ′′ , 1β ′′ , 1γ ′′  denote the direction cosines of 

the normal to the plane (P), and we will have, in turn: 
 
 1 1βγ γβ′ ′−  = 1α ′′  sin θ1, 

 1 1γα αγ′ ′−  = 1β ′′  sin θ1, 

 1 1αβ βα′ ′−  = 1γ ′′  sin θ1, 

 
where θ1 denotes the angle that was already defined above.  Upon introducing these 

notations, the elimination of the derivative 
(1 )

de

e ds+
 between the last two equations (58) 

will give us: 

(60)  
α
ρ
′′

= 31 32 331 1
12

0

1
sin

(1 )

da da dae

e ds ds ds

αθ β α β γ
ρ

′′+  + + + +  
 

− 2321 22 dada da

ds ds ds
γ α β γ + + 
 

. 

 
 We now remark that the two directions MT and MN are the transforms of the two 
rectangular directions in the initial medium.  Consequently, if we let E denote the surface 
dilatation of the elementary sheet that is applied to M0 on the initial osculating plane then 
we will have: 

(1 + e) (1 + e1) sin θ1 = (1 + E). 
Equation (60) then becomes: 
 

(61)  
α
ρ
′′

= 31 32 331
3

0

1

(1 )

da da daE

e ds ds ds

α β α β γ
ρ

′′+  + + + +  
 

− 2321 22 dada da

ds ds ds
γ α β γ + + 
 

. 

 
One will find, in the same way, that: 
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(61′)  

13 31 32 331 11 12
3

0

23 131 21 22 11 12
3

0

1
,

(1 )

1
.

(1 )

da da da dada daE

e ds ds ds ds ds ds

da dada da da daE

e ds ds ds ds ds ds

ββ γ α β γ α α β γ
ρ ρ

γγ α α β γ β α β γ
ρ ρ

′′′′ +    = + + + − + +    +    
 ′′′′ +     = + + + − + +    +    

 

 
 Formulas (61) and (61′) represent the projections of the figurative rotation of the 
curvature of the fiber in the deformed medium.  An examination of their right-hand sides 
will show that this rotation decomposes into two other ones.  The one that equals 

3
0

1 1

(1 )

E

e ρ
+
+

represents the transform of the curvature of the initial fiber by the 

homogeneous deformation (T) that is tangent to M; it is zero for originally rectilinear 
fibers.  The second rotation is independent of the initial curvature; it is the same for all 
straight or curved fibers that admit the same tangent.  It is to that second component of 
the curvature that we given the name of flexure of the fiber. 
 One must remark the analogy that our decomposition of curvature presents with 
Meusnier’s theorem.  Here, the flexure plays a role that is comparable to the one that is 
played by the curvature of normal sections in the theory of surfaces. 
 
 
 39.  Decomposition of the total flexure. – By making use of the identity (54) and 
two other analogous identities, one can transform the expression for the components of 
the figurative rotation of the flexure.  We denote these components by F1, F2, F3 and we 
will have: 

(62)  

1 31 21

2 2
2 3

2 2
2 3 1

2 2
3 1

1 4 1 4
( ),

3 3 3 3

1 4 1 4
( ),

3 3 3 3

1 4 1 4
( ).

3 3 3 3

F da da

D D

D D
F

D D
F

α

β

γ α

β α γ α

β γ τ ατ ϕ γ ϕ β
γ β

γ α τ βτ ϕ α ϕ γ
α γ

α β τ γτ ϕ β ϕ α
β α

 = −


 ∂ ∂   ′= − + − + −   ∂ ∂   


  ∂ ∂  ′= − + − + −   ∂ ∂   
  ∂ ∂  ′= − + − + −   ∂ ∂    

∑ ∑

 

 
 Equations (62) show that the flexure can, in turn, be decomposed into three partial 
flexures that are attached to the three fundamental covariants, and which we distinguish 
by the names of flexure of the second dilatation, flexure of torsion, and the cyclic or polar 
flexure, respectively.  The projection of the corresponding figurative rotations onto Ox 
are: 
 For the flexure of the second dilatation: 

 1F ′  = 2 21

3

D Dβ γ
γ β

 ∂ ∂− ∂ ∂ 
, 

for the flexure of torsion: 
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  1F ′′  = 
4 1

3 2

τ ατ
α

∂ − ∂ 
, 

and for the cyclic flexure: 

  1F ′′′  = 
4

3
(ϕ 2 γ – ϕ 3 β). 

 
 
 40.  Another form of the formulas for incurvation. – Let 2α ′ , 2β ′ , 2γ ′  denote the 

direction cosines of the principal normal relative to the first component of curvature – 
i.e., the curvature of the transform of the initial fiber by the homogeneous deformation 
that is tangent to M.  One will have: 
 

2α ′  = 1 1β γ γ β′′ ′′− , 2β ′  = 1 1γ α α γ′′ ′′− , 2γ ′  = 1 1α β β α′′ ′′− , 

 
and similarly, upon considering the principal normal, properly speaking, of the deformed 
fiber: 

α′ = β″ γ − γ″ β, β′ = γ″ α − α″ γ, γ′ = α″ β − β″ α. 
 
 If one takes these relations into account, along with the identity: 
 

D2 (α, β, γ) = 1311 12 dada da

ds ds ds
α α β γ + + 
 

∑ , 

 
then one will deduce the new system from equations (61) and (61′): 
 

(63)  

132 11 12
23

0

232 21 22
23

0

31 32 332
23

0

1
( , , ) ,

(1 )

1
( , , ) ,

(1 )

1
( , , ) .

(1 )

dada daE
D

e ds ds ds

dada daE
D

e ds ds ds

da da daE
D

e ds ds ds

αα α α β γ α β γ
ρ ρ

ββ β α β γ α β γ
ρ ρ

γγ γ α β γ α β γ
ρ ρ

 ′′ += − + + + +
 ′′ += − + + + +
 ′′ += − + + +

+

 

 
 The introduction of fundamental covariants will give the following equivalent form to 
the right-hand sides of equations (63): 
 

(63′)  

2 2
23

0

1 1 2 3

1 1 2

(1 ) 3 3

4 4
( ),

3 3
.................................................

DE
D

e

αα τ τα γ β
ρ ρ α β γ

ϕ α αϕ βϕ γϕ

 ′′  ∂+ ∂ ∂= + − + −  + ∂ ∂ ∂ 
 − + + +
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 Systems (63) or (63′) can also be deduced easily by a direct calculation from formulas 
(58) by taking equation (59) into account and the obvious relations: 
 

1α ′  = α cos θ1 + α2 sin θ1 , … 

 
 From the viewpoint of the decomposition of curvature and flexure, it is obvious that 
equations (63′) have exactly the same significance and scope as equations (61), (61′), and 
(62). 
 
 
 41.  Geometric elements that relate to flexure. – Since flexure is one of the 
components of the curvature, there is reason to make it correspond to the same geometric 
elements that the curvature corresponds to.  For each direction of the fibers at a given 
point, we will then have an axis of flexure, a plane of flexure that is analogous to the 
osculating plane, a principal normal of flexure, a radius, a circle, and a center of flexure. 
 If one represents the flexure according to the method that was indicated in no. 35 as a 
vector H that is carried by the principal normal of flexure in the opposite direction to the 
radius of flexure then one will have the following expressions for the components of the 
that vector: 

(64)  

2
1 2 1 1 2 3

2
2 2 2 1 2 3

2
3 2 3 1 2 3

1 2 4
[ ( )],

3 3 3

1 2 4
[ ( )],

3 3 3

1 2 4
[ ( )].

3 3 3

D
H D

D
H D

D
H D

τ τα β γ ϕ α αϕ βϕ γϕ
α γ β

τ τβ γ α ϕ β αϕ βϕ γϕ
β α γ

τ τγ α β ϕ γ αϕ βϕ γϕ
γ β α

  ∂ ∂ ∂= − + − + − + +  ∂ ∂ ∂ 
  ∂ ∂ ∂ = − + − + − + +  ∂ ∂ ∂ 
  ∂ ∂ ∂
 = − + − + − + + ∂ ∂ ∂  

 

 
The axis of flexure will be defined by the two equations: 
 

(65)  

2 2 2

1 2 3

( ) ( ) ( ) 0;

1
( ) ( ) ( )

3

2

3

4
[ ( ) ( ) ( )] 1 0.

3

X x Y y Z z

D D D
X x Y y Z z

X x Y y Z z

X x Y y Z z

α β γ

α β γ

α β γ
τ τ τ
α β γ

ϕ ϕ ϕ

− + − + − =


 ∂ ∂ ∂ − − + − + −  ∂ ∂ ∂ 


 − − −


+
 ∂ ∂ ∂


∂ ∂ ∂

 + − + − + − + =


 

 
 The first one represents the normal plane; in the second one, we have separated the 
terms that provide the different components of flexure. 
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 The plane of flexure, which is perpendicular to the axis of the figurative rotation, is 
represented by the equation: 
 

F1 (X – x) + F2 (Y – y) + F3 (Z – z) = 0. 
 
 It is pointless to insist upon the calculation of the other elements, which are deduced 
easily from our formulas. 
 
 
 42.  Incurvation and flexure of the sheets.  Normal flexure. – When a fiber belongs 
to a given sheet S, the curvature of the fiber can be decomposed, conforming to the theory 
of surfaces, into a normal curvature and a tangential or geodesic curvature.  The principal 
normal of the first one is normal to the sheet, while that of the second one is tangent.  We 
shall first occupy ourselves with the normal curvature. 
 Let a, b, c be the direction cosines of the normal to the sheet S in the deformed 
medium, let E be the surface dilatation of the sheet of the point considered M, let ω be the 
angle that the osculating plane of the fiber forms with the normal to the sheet, let ω1 be 
the angle of the plane that is the transform of the initial osculating plane with that same 
normal, and let ω0 be the angle between the initial osculating plane and the normal to the 
initial sheet. 
 The angles ω0 and ω1 are the complements of the angles that are formed in the two 
media between the elementary sheet considered and the elementary sheet that is situated 
in the original osculating plane, respectively.  Consequently, if we let E′ denote the 
surface dilatation of the original osculating plane at M then, by virtue of equation (19′) of 
no. 9, we will have: 

(66) 1

0

cos

cos

ω
ω

 = 
(1 )(1 )

(1 )(1 )

e

E E

+ Θ +
′+ +

. 

 
 Having said that, start with equations (63), which we add together, after multiplying 
them by a, b, c, respectively, and replacing E with E′ above.  We will find: 
 

cosω
ρ

= 131 11 12
3

0

cos(1 )

(1 )

dada daE
a

e ds ds ds

ω α β γ
ρ

′+  + + + +  
∑ , 

 
or rather, by virtue of equation (66): 
 

(67)  
cosω

ρ
= 0 1311 12

2
0

cos1

(1 )(1 )

dada da
a

E e ds ds ds

ω α β γ
ρ

+ Θ  + + + + +  
∑ . 

 
 If we let R denote the radius of the normal curvature of the sheet along the fiber 
considered and let R0 denote the analogous radius for the initial medium then we will 
have: 

(68)  
1

R
= 1311 12

2
0

1 1

(1 )(1 )

dada da
a

E e R ds ds ds
α β γ+ Θ  + + + + +  

∑ . 
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Finally, by introducing the fundamental covariants, we infer that: 
 

(69)  
1

R
= 2 2 2

2
0

1 1 1

(1 )(1 ) 3

D D D

E e R
α β γ

α β γ
 ∂ ∂ ∂+ Θ + + + + + ∂ ∂ ∂ 

 

+ 
2

3

a b c

α β γ
τ τ τ
α β γ

∂ ∂ ∂
∂ ∂ ∂

− 4

3
(a ϕ1 + b ϕ 2 + c ϕ 3). 

 
 Equations (68) and (69) further exhibit the decomposition of the normal curvature 
into a sum of two curvatures: The first one is the transform of the initial normal curvature 
by the homogeneous deformation that is tangent to M.  The second one, which is 
independent of the initial curvature, is the normal flexure to the sheet along the fiber 
considered.  Equation (69) also gives the decomposition of the normal flexure into its 
three components relative to the fundamental covariants. 
 
 
 43.  Remark on the transform of the initial curvature. – The form of the first 
component of the curvature is remarkable in its simplicity.  Set: 
 

1

1

R
 = 

2
0

1 1

(1 )(1 )E e R

+ Θ
+ +

. 

 
 If we let ε denote the dilatation of the thickness of a layer that is applied to the surface 
considered at M then we will have: 

1

1 E

+ Θ
+

= 1 + ε, 

 
and the preceding equation will become: 
 

1

1

R
 = 

2
0

1 1

(1 )e R

ε+
+

. 

 
If one varies the direction of the fiber on the sheet around the point M0 in the initial 
medium then the curvature 1 / R0 will be expressed by a homogeneous function of degree 
two in the direction cosines α0, β0, γ0 .  Upon replacing these cosines with their values as 

functions of α, β, γ, one will obtain an expression for the ratio 
2

0

1 1

(1 )e R+
 that is also 

homogeneous and of degree two in α, β, γ, and whose consideration will yield the Dupin 
indicatrix that relates to the transformed curvature 1 / R1 .  The axes of that new indicatrix 
will be the transformed directions of the conjugate diameters that are common to the   
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initial indicatrix and to the ellipse along which the tangent plane to the sheet will cut the 
ellipsoid of linear dilatations at the point M0 in the initial medium. 
 
 
 44.  Geodesic flexure. – For the calculation of the geodesic curvature, it is simpler to 
start with the figurative rotation whose components are given by equations (61) and (61′).  
The axis of the figurative rotation of the geodesic curvature is normal to the surface.  One 
will then obtain the expression for that rotation by adding equations (61) and (61′) 
together, after having multiplied them by a, b, c, respectively.  The result further 
decomposes into two parts, one of which depends upon the initial curvature of the fiber 
and the position of the osculating plane, while the other one depends uniquely on the 
flexure, and for that reason, we shall call it the geodesic flexure.  From the viewpoint of 
the first component, there is, nevertheless, a difference in the result obtained for the 
normal curvature, in the sense that the geodesic curvature of the transformed fiber under 
the homogeneous deformation (T) will no longer be expressed uniquely with the aid of 
the initial geodesic curvature and the linear dilatation of the fiber. 
 The figurative rotation of the geodesic flexure has the expression: 
 

Fn = a F1 + b F2 + c F3 , 
 
where F1, F2, F3 have the values that were defined by formulas (62). 
 One sees that by the use of fundamental covariants the formulas that relate to the 
flexure of fibers and sheets take on a form that is exactly similar to the one that we 
obtained previously for the infinitesimal deformations.  The consequences that we have 
deduced from the viewpoint of geometric properties thus persist entirely without the 
slightest modification, and it is pointless to reproduce them here. 
 
 

__________ 


