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Resear ch into the geometry of finite defor mations

By J. LE ROUX.

Translated by D. H. Delphenich

Introduction

This paper has the objective of extending to finite dedbions the geometric theory
of torsion and flexure of continuous media that | hadistud a previous work for the
case of infinitesimal deformationy( The definitive results have exactly the samenfor
and the calculations present only insignificant diffeesnat several points. Moreover,
after establishing the fundamental formulas that rétatae flexure of fibers and sheets,
| have deemed it pointless to recall the study of geler@toperties that one can deduce;
| refer that question to my previous paper.

Although | principally have the ulterior applications teechanics in mind, it is
obvious that this theory will present an exclusively geoimeharacter. In some regards,
one can consider it to be a branch of geometry theitasigly analogous to the theory of
the curvature of lines and surfaces.
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— 9. Angular dilations. — 10. Connection to deformation.

1. We consider a continuous medium in two different statich we call thanitial
stateand thefinal — or deformed- state. Points will be assumed to be defined by their
coordinates referred to rectangular axes. Howevertherquestions that we will be
occupied with, it is not at all necessary that the $tates of the medium must be referred
to the same axes. In order to simplify the presemtaaind avoid repetition, we agree,
once and for all, to denote the corresponding elemehtsv@ media by the same
symbols, but to affect the quantities that relaténéoinitial state with the index zero. For
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example, ifM(x, vy, 2) is a point of the deformed medium thiglg (xo, Yo, z0) will be the
homologous point of the initial medium.

We suppose that the coordinates of each system areofimof the coordinates of
the other system, and that those functions are contmand differentiable, at least up to
order two.

2. We first regard the coordinatesy, z of a pointM of the deformed medium as
functions of the coordinates, Yo, 2 of the corresponding point of the initial medium.
We will then have the relations:

1) 0Xx 0X
dx=—dx +— dy+— dgz,
%, % ¥ 3z, ¢

0y,

0% Y, 07,
0z 0z 0z
dz=—dy+— dy+— dz
0%, » Y, 0z,

between the differentials. We I&tdenote the functional determinant:

0%, 9y, 0%
@ deeyd |0y Oy Oy _,

d(%, Y01 %) | 0% 0Y, 0%
9z 97 0z
0x, 0y, 0%

That determinant must be expressly supposed tondyezero in the domain
considered, and similarly, if the two media areeredd to the same coordinate trihedron
or to superposable trihedra then it will be necestatA must remain positive in order
for our transformation to have any real mecharsagificance. Otherwise, it would be
impossible to pass from the first state to the sdcone by a continuous deformation
without annulling the volumes. For a similar reasthe determinanf must remain
negative when the two coordinate trihedra are npéposable.

Upon considering the initial coordinates to bechions of the final coordinates, we
will have:
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dx, :6_x0 dx+%—);° dyra—);’ dz

6y oy,
3 dy, =22 dx+—22 d d
(3 Yo = ax dy y+aZ Z

_Zo % ., 9%
dx+—=2 d d
9% =5x X oy Mo, 9

Now, the values of the differentiadbo, dyo, dz that are expressed by equations (3) are
obviously identical to the ones that one will obtay solving equations (1). One thus
has the following identities, as well as the othealogous identities that one will deduce
by permuting the coordinates:

9% _1d{y.2

ox  Ad(y,3)

0 1 d(z, X
(4) _XO:_M’

oy Ad(y.2)

9% _1 d(xy)

0z Ad(y, z)

The notatlon% denotes the binary functional determinant:
Yor %
oy oz
9y, 0y, 0A

oy 0z 5 X '
0z, 620 0%,

3. One attaches the notion of the tangent homogeng®fosmation to a poirl of
the medium to the consideration of equations (1)ween the two systems of
differentials. One knows that what one thus ctidks homogeneous deformatioh) (is
defined by the following equations, in which thendpls X, Y, Z, Xo, Yo, Zo denote the
current coordinates:

X - X:_(Xo %)+ W(\G )6)+—(% 9

(M —y——(><0 >s)+ (\4 x)+ (% 9,

Z—Z:a(xo_ >8)+a—yo(%_ ¥)+a( A}



Le Roux — Research into the geometry of finite deformations 4

That expression for tht&angent homogeneous at M convenient and sufficiently
explicit. Meanwhile, one agrees to observe thatdo®s not have a simple poist in
view, but a pair of corresponding pointdy( M), or, more exactly, the material element
that that is transferred fromMg to M.

4. Relations between the coefficients of the homogeneous deformations. — The
coefficients of the homogeneous deformatidhp 4nd those of the inverse deformation
verify nine fundamental identities. We write that tedues ofdx,, dy,, dz that are
inferred from equationsTj will satisfy equations (1) identically:

%a_xo+%%+%a_zozl
0%, OX 0y, 0X 0z 90X
OX 6x0+6x6y0+6x620_

0% 0y 0y, 0y 0z 0y
OX 6x0+6x6y0+6x620_

0% 0z 0y, 0z 0%0z

One can summarize these relations in a unique form hytidg the coordinates,
X2, X3, iINstead ok, y, z

5 0 TAZH TR TR -
®) 0%, 0% 0y, 0% 070X 0 fori k.

0% 0%, 0% 0y,  0x 03 _{ 1 fori=k,
Upon proceeding in the same fashion for the inverse metan, we will obtain a
second system of nine analogous identities, which aregawer, consequences of the
first ones; we further summarize them in the followmgmula, wherexo, X20, X30 denote

the initial coordinates:

®) X, Ox 0%, Ay 0%, 0z :{ 1 fori=Kk,

OX 0%, 0y 0%, 0z0X, 0 fori k.

Formulas (5) and (6) obviously include the relations thét detween the nine cosines
of an orthogonal transformation as a special case.

5. Linear dilatation. — A fiber, or a material line that passes through thet pdgnn
the initial medium, is transformed into a fiber thmtsses through the poim of the
deformed medium. Lads be the length of an infinitely-small fiber that isstfeom the
point M, let a, £, ybe its direction cosines, and 4, dx,, dx; be its projections onto the
axes. One has:

dx=ads
dy=Bds
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dz=yds
We denote the linear dilatation of the fiberdyyso:

E—l+e

ds

The relations between the position of the initigkefi and that of the deformed fiber can
be deduced from equations (1) or (3). Upon dividingls®ythe first system will give:

1) oX 0X
l+e)a=—a,+— B, +—V,,
4 0x, 6yo'g° 02,

ay oy oy
7 1+e —a,t— 06, +—=V,,
(7 (1+e) 0 ayo'g° azoy°

areyy="q —ﬁo+—
6><0 Y, 07,

In the same manner, upon dividing ¢y one will deduce from the second one that:

a _0X, . 0% ,., 0%
—:_a+_ +_ ,
1+e 0x P y
B ayo 6yo ayo
8 _— + ,
®) 1+e ax ’8 0z
¥ _%, azoﬁﬁ%
1+e ax az

We deduce the following equations, which definedhatation, from these two systems:

(9) 1+’ =ea;+&,B:+€yi+2dBy +2éyq #2804,
1 2 2
(10) W:ellaz"'ezzﬁ tepy +t2esfy+2eypa+2epaf.

In the first formula, we have set:

(&) )

o _ O0x 0x_ 0yody 0z0z
0y, 0% %07 0%04
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(32
fu (axj +(6x ¥ ox )’

0%, 0% 0% 0203
dy 0z 0y dz dyoz

and in the second one:

The quadratic cosine forms (9) and (10) can obviously baaeglwith differential
forms that express the linear elements of each ofrtdia as functions of the relative
coordinates of the other one:

(9) ds = cp dx, dx,,
(10) ds =2 ek dx dx .

One knows how the consideration of formulas (9§1&) leads one to represent the
dilation by a second-order indicatrix — viz., the elligsoif dilatations — that one can
consider in either of the two medi.(

6. Surface dilatation. — | call a portion of matter that extends over a sesféut
with negligible thickness, @heet An elementary sheet can be associated with an
infinitely-small piece of the material surface.

Consider two elementary fibers that issue from #maesoriginM, and denote their
component in the deformed state by:

dix, dy, diz
and
dox, doy, bz
respectively. Set:
dy dz
d(y,z): 1 dl ,
d,y d,z
dy dz
d(y, Z): 1 dl
d,y d,z
oy ay oy 37 57 ),
ax, W0 oy, W6, - dXxt—— dyt——
= aXo o ayodly0 azodl% a)sq)é a%qxa%q
% 9y oy 0z 9z 37 ,
ax, 0 gy, % oy 3o G Xt y—°
ox, (0T gy BNt o, BB Gy GXtLL d¥roT dg

() E.and F. COSSERAT, Annales de la Faculté des Sciendesutirise, t. X.



Le Roux — Research into the geometry of finite deformations 7

and the other analogous determinaht@, x), d (z, y) can be developed into a sum of
products of binary determinants:

d(y, 2 dy 32 dyy¥
dy,2=—"22 d y, 2)+—22Z — 17 :
(v, 2 Mhmdx@+d%md;$+d&wd$&
d(z X d z ¥ qdzX
11 d = , )
(11) (“0dm@9d¥@+d@md;&+d&yod%&
d(xy) dxy d(x, y)
dix, y)=——L d(y, z)+——2L —2 2 d(%, y)-
Y= 02 8 B 57 T8 g,y U8 %)

The determinandl(y, 2) represents, in magnitude and sign, the area of thegbian onto
the planeYOZ of the infinitely-small parallelogrando that is defined by the two

elementary fibers considered. Thus,dJer), { be the direction cosines of the normal to
the elementls where that normal is assumed to be drawn in theesefthe positive axis
of rotation of the first fiber to the second one. @ilehave:

¢do=d(y, 2,
ndo=d(z x),
{do=d(x,Y).

We letE denote the dilatation of the corresponding elemersiaegt:

do

=1+E,
do,

and we let& , o, (o denote the direction cosines of the normal to thealirsheetdoy .
There is thus reason to observe that the two sysbémssines £, 77, () and &, o, )
do not refer to two states of the same fiber. Thecton cosines of the fibers and the
direction cosines of the normals to the sheets fevondontragredient systems, to use the
expression that Sylvester employed in the theory obadge forms.

Upon dividing bydaoy, we will obtain equations (11), and upon introducing the
notations that were defined above, we will get the icelat

d(y, 2 dy 3 dyy
1+E)& = o
(+)5cM@m%+dam%+d&wZ
d(z % d z X qdzX
12 1 E = 0 0 [o}!
(12 A+Edr me5+dam”+dawZ
a+az=d“”hg+mxw dxyzw

o+
d(Yo, %) d z ¥) dx ¥

The inverse transformation will lead to similar faras, and we write down simply
the first of them:
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(13) % 400 2) ., A% 2), c(d d;

1+ d(v.2 d(Z>)

If one takes equations (4) into account then tieegxling results can be put into the
form:

1+E . _0 0 d
= 50+i +207,

1+E 0 0
(12) —= 50 ﬁno Z°Zo,

1+ E 0 0
—=¢ ——50 ﬁno Z;Zo,

Afy _ 0X o 0y n+92
1+E axo‘( ax0 axoZ

(13)

There is a remarkable analogy between equationsan(d (8), which relate to the
transformation of fibers, and systems (12) and,(ijch relate to the transformation of
sheets. The surface dilatation will be likewisérderl by formulas that are similar to the
ones that we found for the linear dilatation.

Set:
£ - {d(y z)} { d(sz{ d ”T’
d(Yo, %) d ¥ 2) dy 3
...0..._...a.(.y..z.).....d(..);..a. ...... .d..z...)(.....d..z..);(...., 6y (@,
2 Az %) A% 3) d2 3 0% § 0F X @x
and similarly:

:{d(yo,zo)}z{d(%, >5)T{ d ¥ M)T
d(y, 2 dy3 dy¥|

_de %) Ay 3, dg ¥ gz J, 0§ [deX o
dz® dy3 dzx dxy €.z)x dxXy

We will then have the following formulas for therface dilatations:

(14) (1 +E) E11<(0+E22,70+ E33Z +2E2ﬂ( +2E {é +2Eé’5
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1

A+EY =B 2+ B ? + sz (% + 2Bp3 ) + 2E51 {E+ 2E12 77 .

(15)

7. Relation between thelinear dilatation and the surface dilatation. — One easily
verifies that each of the quadratic forms thatteeta the surface dilatation is the adjoint
to the corresponding form that relates to the lirdiatation. That property will result
immediately from calculating with the coefficientBor example, one will have:

E101 = egzés_(éa)zi

Since the discriminant of the form (7) is equalify that of the form (14) will be
equal toA*. A similar relationship exists between the for(i®) and (15), whose
discriminants are equal to 1\ and 1 /A%, respectively.

Moreover, a very simple geometric reasoning wilbw that this must be true.
Consider the ellipsoid of dilatations that relai®she pointM of the deformed media. If
one denotes the quadratic form that figures inridjat-hand side of equation (10) gy
(a, B, y) then the ellipsoid considered will be represeniygd

(XY, 2) =1

Each ray of the ellipsoid is obtained by startibghe origin and associating a measured
length with the value of the ratio letthat corresponds to the direction of that rayhim t
deformed medium.

Let (D) be a diametral plane of the ellipsoid, Eetbe the surface dilatation of an
elementary sheet that passes throghnd parallel to the plan®). In that diametral
place, the area of the parallelogram that is caostd from two conjugate rays of the
ellipsoid will be constant and equal to 15+ Draw a planeR) that is tangent to the
ellipsoid and parallel toY), and letd be the distance to the origin of the plaRg (The
product of the area (1 £) with the distanced is equal to the volume of the
parallelpepiped that is constructed from three wgaie rays of the ellipsoid. One then
has:

(16) (1 +E) o=A.

If one lets®(u, v, w) denote the adjoint quadratic form # (a, £, )) then the
tangential equation to the ellipsoid will be pubithe form:

h2
®d(u, v, W) = E

in whichu, v, w, h are the homogeneous coordinates of a tangent.plane
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Now, replace the coordinatasv, w with the direction cosine§ 1, ¢ of the normal,
and replacé with — & we have the relation:

52
q)( g’ ,7’ Z) = El
which then becomes:
1
d(éEN H)=—7,
(19 +E)

by virtue of equation (16). One thus find form(1®).

8. Variation of the thickness of the layer. — The quantityd =A / (1 +E) has a
simple significance in the deformation. Consider iafinitely-small cylinder that
contains the poink. LetdV be its volume, letlo be its area, and leth be its height.
One has:
a7 dv=dodh

In the initial medium, one will likewise have:

(17) dVp = dop dhy
for the corresponding cylinder.

The ratiodV/ dV; is equal t@), while the ratio of the arear/ doy is equal to 1 €,
in which E denotes the surface dilatation of the base. Ugigiding both sides of
equations (17) by both sides of (), one will then find:

A:(1+E)%,

and when that result is compared to equation (i&)will give:

ﬂ:d: A
dh, 1+E

(18)

From that, if one cuts an infinitely-thin materialer in the medium that passes through
the pointM and has a height afth at that point then the ratio of the height of the
deformed layer to that of the initial layer — vidh / dhy — will be equal tod. The
variation of 1 /d as a function of the direction cosines of the radri® proportional to
that of the surface ratio 16 One will deduce equations (12nd (13) directly.

9. Angular dilatations. — The calculation of angles can be performed aically
with the aid of the quadratic forms that enter itite expression for the linear or surface
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dilatation and the corresponding polar forms (However, the results will be obtained
more rapidly by geometric considerations.

1. Angle between fibers: Consider two elementary fibers that issue fromstmae
pointM. Letds ds be their lengths, lef be the angle between them, éedind€’ be the
corresponding linear dilatations, and Eebe the surface dilatation of the sheet that they
determine.

One will have:

ds dési.ne =1 +E,
ds, dgsing,

SO

(19) sin@ _ 1+E

sing, (1+e)1+€)’

1. Angle between a fiber and a sheet.Start from the pointM, and take an
infinitely-small lengthds on the fiber, and a surface elemdaton the sheet.

Let ¢ be the angle between the fiber and the sheet. voluene of the infinitesimal
cylinder that haslo for its base andsfor its edge will be equal to:

ds dosin ¢.

Upon letting® denote the cubic dilatation at the point considelettinge denote the
linear dilatation of the fiber, and if one IdEsdenote the surface dilatation of the sheet
then one will have, in turn:

dsdosing

_BSwSng _ 4 4,
ds, do,sing,
1+0(1+5) 3" _ 1.0
0
19) sing __ 1+0

sing, (1+e)1+E)

If one considers the angfebetween the fiber and the normal to the sheetiealsof
the angleg’ between the fiber and the sheet, then the pregedilation will become:

cosp’ _ 1+0
cosp, (l+e)(1+E)

() One will find these calculations performed in a N6&ur les déformations angulaires” (Travaux
Scientifique de I'Université de Rennes, 1911).



Le Roux — Research into the geometry of finite deformations 12

3. Angle between two sheetsThe volume of an arbitrary parallelepiped is equal to
the product of the areas of the two contiguous facesipiredl by the sines of their
dihedral angles, and divided by the length of their comeuge.

From that, consider two elementary sheets thatseteratM and form the dihedral
angle ¢ between them. LeE andE’ be their surface dilatations, letbe the linear
dilatation of the fiber that is directed along theirersection, le® be the cubic dilatation
at the pointM. One will immediately finds, by an argument thatnalagous to the one
that we employed for the two preceding cases:

Q+E)1+E) §in¢1 -1+0
l+e sing,

SO

(19) sing _ (1+0O)1+e)

sing, @+E)1+E)

The three formulas (19), (99 (19') are remarkable in their simplicity and their
similarity. They show thatleformation ratiosfor the angles of the sines that are
analogous to those of the lines, surfaces, andnedu

10. Deformation ratios. — The name ofleformation ratioseems convenient and
significant to us as a way of representing theratia quantity of the deformed medium
to the corresponding quantity of the initial mediuFhe ratio of the linear deformation is
represented by 1 e, theratio of surface deformatiqgrby 1 +E, and theratio of cubic
dilatation, by 1 +® = A. In the calculations that relate to finite defatimans, the
dilatation will generally enter into only the cosp®nding deformation ratio; for example,
we will not have to consider the linear dilatat®axcept in the linear deformation ratio 1
+e
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SECOND-ORDER DIFFERENTIAL ELEMENTS

11. The differential deformatiodT. — 12. The coefficientsy . — 13. The linear dilatation in the
differential deformation. — 14. Mean rotation. — 16. Cutilatation. — 16. Surface dilatation. - 17.
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Relationship between the coefficiemig and the Christoffel brackets.

11. The differential deformation (dT). — Let () and ) be the tangent
homogeneous deformations at two infinitely-close paivitandM’. One can consider
the secondT(’) as the resultant of the first)(and an infinitesimal deformatiodT) that
we call thedifferential deformatiorat the poiniM.

The deformationT) is defined by the equations)(of no.3, and the deformatior(),
by the analogous equations:

1) 0Xx 0X oX 0 X X
X'=x = 2o a2 |- g4 22 02X |y | X £2( 3,
o ox, oo X ay, 0y, L 0z 03 &9
, 9 9 ) ) )
voy=| Zaa?log- e D a2 loy- o] o £z 5,
0% 0% ay, 0y, dz 03
0z 0z 0z 0z 0z 0z
Z'-72 =) 2+ o2 (%= )+ st Ao (- )| oo+ A (- 7).
ox, 0% % ay, oay,) ° oz oz 27 %

The differential deformationd{) will be represented by the equations that one
obtains by replacing the values of the initial emtrcoordinateXo, Yo, Zo in the system
(T) with their values that are inferred from the syst(T).

Now, upon solving the systenh)(for the differenceXo — %o, Yo — Yo, Zo — %, one
will find:

xo—xo:a—XO(X—x)+a—X°(Y— >a+a—x°(2— 3,
Yo—yo ayO(x x)+ay°(v »+ay°(z 3,

Zo—2 = a—z°(x —x)+a—z°(v— »+a—%( z- 3.
0x oy 0z

When these values are substituted in equatibnsvhile taking the identities (5) into
account, that will give the defining equations tbe differential transformatiord() in
the following form:
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X'-X=(+dg)(X- ¥+ da (¥ ¥+ da( Z )
@D{ Y-y=  da, (X- ¥+ @+ da)(¥ ¥  da( Z )z
Z-7=  da, (X- 3+ dg (¥ 1+ da)( Z )

We have set:
day = Do), M yf %), 0%  0x
ox (0%, ) dx [0y X (0%
= - ﬁd(a_xoj.}.%d(%j.{.%d(a_zoj ,
0% \0x) 0y, \0x) 0z (09X
day = Do ), M yf %), 0%  0x
dy \0%) dy (0y) 0dy (0%
{6_(1 W), % (3% ), 9% 0% }
0% 0y ) 0y, \dy) 9z \dy
daz = a_xod ﬁ +%d % +a_20d ﬂ
oz \0% ) 0z (0y) 0z (07
_ % (9%, 0% (9%, 9% (0%
0% \0z) 0y, \0z) 0z \0z
dap; = a_xod ﬂ +%d ﬂ +a_20d a_
ox (0% ) 0x (0y) OX V4
= ﬂd a_XO +ﬂd % +ﬂd ufin '}
0% \0x) 0y, \0x) 0z (09X
da, = a_xod ﬂ +%d ﬂ +a_20d ﬂ
oy \0%) dy (0y) 0dy (0%
_ {ﬂda_xo+ﬂd%+ﬂd_zo}
0% 0y ) 0y, \dy) 9z \dy
daps = a_xod ﬂ +%d ﬂ +a_20d ﬂ
oz (0% ) 0z (0y) 0z (07
- {ﬂ %), 9y 4 9% +ﬂd6_zo}

Y
2
@
N
Y
S
Y
N
Y
N
Y
N

14
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Gy = o[ 02), 0% o 92),0% 0z
ox |\ 0% ) 0X 6)6 0 X 6%
__ azd(axoj azd(ayoj azd(a_zoj |
0% \0x) 0y, \0x) 0z (09X
Gy = Do 02,0 y[02),0% 02
dy \ox) ay (dy) dy |03
:_{zd %), 02 (0% ), 0z 0% }
0%, 0y ) 0y, \dy) 9z \dy
Gy = D[ 02,0 y[02),0% 02
oz \0% ) 0z |(0y) 0z (07
:_{zd ), 0z 40y, 9z /(0 }

0% \0z) 0y, \\0z) 0z \0z

These formulas are summarized in the following ones:

(20) daj= 6_X0d6_>§+%d%+a_%dﬂ(
ox, (0% ) 0x (dy) ox (03

= [ D] D | 0% o 9% |, 0K g 0% )
ox, (0% | 0y, (0% 6% 0 x

12. The coefficients aj . — One notes the analogy between the differerdi@lsand
the infinitely-small rotations that relate to thepdscement of a tri-rectangular trinedron.
Our calculation is, moreover, applicable to the caséwaf arbitrary, infinitely-close
translations that are independent of the parametdrsehze to define them.

In what follows, we shall suppose that one takes thepemtent variable to be the
coordinates, y, zof a pointM of the deformed medium, and we shall set:

(21) daj = aj1 dx + a2 dy + a3 dz

It results immediately from equation (22) that one icaert the order of the last two
indices in the three-index coefficients:
dijk = aij -

For the infinitely-small deformations that one usuansidered in elasticity, and
which one assumes to be defined by equations of the form:

X =X+, Yy =y+y, Z=z+w,
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the coefficientsy reduce to second derivatives of the displacemgnsw.

The number of independent coefficierdg is equal to the number of second
derivatives of the coordinates of the one system msipect to those of the other — viz.,
18. Later on, we shall study the relations that exisvéen these coefficients and the
various elements of the deformation. However, wel $instl occupy ourselves with the
dilatations in the differential dilatationl).

13. Linear dilatation in the deformation (dT). — If we let e denote the linear
dilatation of a fiber under the homogeneous deformafibn and let€ denote the
dilatation of thesame fiberor a parallel fiber under the deformationT() then the
corresponding deformation ratio for the differentiafodmation @T) will be equal to
_::L;e . The transformation of the direction cosines Wwél obtained by formulas that are

e
analogous to equations (7). Let, B, y’ be the cosines that the transformatidi)(
makes correspond w, B, 1 We will get three equations of the form:

+ U
1*€ = (1 +day) a + daw B+ das .
1re

However, since the new direction is infinitely da® the first one, and the difference
between the dilatations is infinitely small, it isu@l to set:

e'=e+de a’'=a+da, p['=+dB y=y+dy.
If we substitute these values into the equation abeoNgle neglecting second-order
infinitesimals, then we will find:
de
(1+1Tej a+da=(1+da,) a+da,[S+dasy.
That will finally give us the system:

da+a£=adq + [ da,+y da

1+e 1 2 3

de
(23) dﬁ+ﬁlTe:ad321+ﬁdeEz+y da,

de
dy+y1Te:ada3,1+ﬁd%z+y da,

Moreover, one will recover the same results byeddntiating formulas (7), where
one regardsn, (o, y as constants, and upon then replacing these idinexbsines of the
initial fiber with their values as functions of 5, ythat are given by equations (8).
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Add both sides of equations (23), after having multipliedmthey a, £, ¥
respectively; that will give:

d
(24) 1T";= & day, + 32 daws + y? dass + By (daes + davs)
+ ya (dags + dagy) + af (dap; + day)) .

The logarithmic differentialldTe, when taken while consideringo, /%, 6 to be
e

constants, is thus calculated with the aid of thefmierts of the differential deformation
(dT) as the linear dilatation under ordinary infinitesirdaformations.

14. Mean rotation. — The mean rotation of the differential deformation kiaes
components:

dp, =3 (da, - da,),
(25) dpz :%(dQ3_ dél),
dp3 :%(dazl_ de}z)-

In the case of infinitely-small deformations, the qua#dp are the differentials of
the components of the mean rotation, but for finitedeations, those quantities are not
exact differentials, at least, in general. Neverglgve can, with no inconvenience, let

%, % 9 denote the coefficients alx, dy, dz respectively, in the expression for

ox oy 0z
dp.
One will then have:
op, op, op
26 Moo= 1 _ , o= 1 _ , Moo= 1 _ .
(26) X > (8321 — @231) dy > (8322 — a@232) P > (8323 — @33

The other analogous expressions are deduced from thesaraytipgrindices.
The identities = ay; give the relation:

%+%+%: 0
ox 09y 0z

We believe that is it useful to remark here thahéef homogeneous deformatiofs (
and {T’) are pure deformations then the rotation of the diffaal deformationdT) will
nevertheless be non-zero, unless the principal dilataies of ) and T’ are not
parallel. That result will correspond to the factttthee finite, pure deformations do not,
in general, constitute a group of transformations.
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15. Cubicdilatation. — LetdV, be an infinitely-small volume element that surrounds
the pointMg of the initial mediumdV anddV’ are the transforms of that same volume
under the homogeneous deformatioRsgand ), respectively.

The cubic dilatation of the differential deformati¢dT) is equal todV’/ dV — 1.
Now, we have:

dv=(1+0) dWw

and
dv'=(1+0+dO) dWw;
consequently:
dv' 1= do
dv 1+0°

On the other hand, one knows that the cubic dilatatiothe deformationdT) is
represented by the sum:
da; + dap + dags .
Hence, one has the identity:
do

+ + = .
(27) day + dapy + dags 110

It is easy to verify that result directly by cdltion. In fact, upon differentiating the
equation:

OxX 0X 0x

0%, 09y, 0z
1+0= ﬂﬂﬂ ,
0%, 0y, 0%
0z 0z 0z

0x, 9y, 0z

one will find:
do = 32 d[ﬂj+ dy3 d(a_xj+ d ,y)zd(a_j+
d(,, %) (0%) dz ¥ 0y dx Y (03

If we replace the binary functional determinants ia tlyht-hand sides with their
values that one infers from equations (4) then we \ailieh

d@:(1+@){a—xod[%j+%d[%j+a_zod[%j.}....}
ox \0x ) o0x (0y) 0x (03

finally, by virtue of formulas (20):

do = (1 +@) (dall +dap, + d833)
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16. Surface dilatation. — Differentiate equations (23), while regardig /7, {o as
constants in them.
The first one gives:

(iraJoeredlire) = a5 nal Si)re()

Upon replacing the cosings, 7o, { in the right-hand side of that equation with their
values that are inferred from equations’YE3d proceeding in the same manner in regard
to the other two equations of the systeni)énhe will obtain the system:

1+E
d5+5dlog( 7o =-(¢da, +nda,+{ da),
1+E
(28) dn +n dlog -6 =-({dg,+n7da,+{ da,),
1+E
d7+¢ dlog( +@ = —(fda, +n da,+¢ da).
One deduces from this that:
1+0) _ _» 2
(29) dlog (Ej = £2dayy + 77 dagy + ¢ % dass + ¢ (dasy + daga)

+ {& (days + dagy) + & (dapr + day)) .

The quadratic form that figures in the right-handie of equation (29) is exactly the
same as the one that represents the linear dilatatiformula (24). That result can be

: — . +
explained when one refers to the significance ef rttio 0 = ﬁ that we already

occupied ourselves with in n@. The dilation of the thickness of a layer willthan
general, correspond to a linear dilatation undéinige dilatation, because the normal
fiber to the initial layer does not correspond te hormal fiber to the deformed layer.
On the contrary, the normal fibers will correspaodach other under an infinitely-small
deformation, or more precisely, each of them woltrespond to a fiber that is infinitely
close to the other one. It will then result tha¢ dilatation of the thickness of a layer
must then be represented by the same quadraticdsrtine linear dilatation of the fiber
that is normal to that layer.

17. Expressing the second derivatives of the initial coordinates as functions of
the coefficients a; . — Consider the three equations:
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— day; _%d ax@ +%d % +%d 6_20
"ox, \ox ) ady, |\ax ) dz (ax)

g = W [0, 0y (%], 9y 4 0%
J o, (0% ) 0y, (0% ) 07 (0X

Cda = 22426, 92 (), 92 0%
J o, (0% ) 0y, (0% ) 07 (0X

That system can be solved for the three differntieat figure in the right-hand sides
and yield the following values for these quantities:

-d axo Xo qu aXo dazl Xo dqj
ax,.

dy,|_ 0 9 9
_da_x)f yodalj yodazﬁyod%“

J

0z, |_ 0z, Zo %
- d a>z<? Soday + b da,+ Tt da.

If one letsu denote any of the initial coordinates Yo, o, when considered as a
function of the final coordinates y, z, then one will have, as a consequence:

du ou 6u u
—d — d .
(30) d( % j ox a; + a; %J

Upon equating this with the coefficients X dy, dz one will obtain an expression

for each of the second derlvatlv%sa— as a linear and homogeneous function of the
X; 0%

coefficientsayy :
d°u _au au au

- =a, +t—a,, 6 +—
(31) ox 0% ox * oy oz

[} =X %=¥%%=2FE(% ¥% 3l

A

If one knows the numerical values of the fwstm@nves@ @ Ll at a point and

ox oy 0z
those of the 18 coefficient then one can calculate the 18 numerical valuethef

9%u
second derlvatlves— The coefficientsy are thus subject to no restriction insofar
0x; 0%,
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as theimumerical valuest a fixed point are concerned. However, the samg tkinot
true for their derivatives. Indeed, the 54 first derivatisee expressed with the aid of the
30 third derivatives of the functions, yo, 2o, and consequently, must verify at least 24
condition equations that we shall determine.

18. Partial differential equations that the coefficients aj must satisfy. — That
guestion comes down to the search for compatibility timms$ for a system of partial
differential equations. If one supposes that the 18tifumea, are known then the three
initial coordinates«, Yo, Zo, Wwhen considered to be functions of the variakjes z, will
verify a system of six second-order partial differdré@uations:

0% +6u ou

32 —a, +—
(32) Ox; 0%, ax o ay

Jdu
& +a_za3jk:O (. k=1, 2, 3).

We thus have to express the idea that the system (32jjsathree distinct solutions
whose functional determinant with respect to the vaeg@bly, z is non-zero.
The condition equations that relate to the secondateres:

0’u _ d«
ox, 0% 0x 0X
are consequences of the identities:

dik = Ak -

It will then remain for us to simply write that by wig of the system (32) the third
derivatives will satisfy the conditions:

9 0u _ 0 d«u

(33) _——
ox 0x 0%  0x, 0x 0X

Write equations (32) in the form:

9%u au
+Sa, =
Ox; 0%, Zr:a”" 0%

Differentiate this with respect tg and replace the second derivatives in the result
with their values as inferred from the same syst8®).( Finally, permute the indicés
andl and write that the condition (32) is verified. Ondl wtain the equation:

dg, 0y, ou
E _— - E - q —=0.
~ ox 0% ¥ - (B )G ) 0x
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The coefficients of the three partial derivativias / dx; must be separately zero.
Indeed, if that were not true then the functionaould verify the same linear equation
that would be homogeneous of order one and have the form:

A@+ B@+ CﬂJ =0.
0x oy 0z

It would thus be impossible to find three solutions whinsetional determinant is
non-zero.
The compatibility conditions for the system (32) thusifiy come down to the form:

oa. da
(34) ai):_a;l+aijkaij|+az<am+aaaﬁ_ﬂiﬂ_iaiﬂ_i?’ijﬁ:o-

From the theory of partial differential equations, &news, moreover, that equations
(34) are sufficient. If they were not verified there tbonditions of compatibility that
relate to the derivatives of higher order of the knownctionu would themselves be
satisfied by virtue of equations (34) and the ones thalt t@gdifferentiation.

The number of equations (34) is equal to 27; however, & takes the three
identities:

68112_aa12+aa23_aa21+aa31_aa‘32:0 6:1 2 3)
0z dy 9dx 0z 4y O0X Y

into account then one will recognize that they redudeémty-four distinct conditions.

19. Deformations that correspond to a given system of coefficients ajx. — Suppose
that the compatibility conditions are satisfied. Irder to solve the system of six
equations (32), one can give the values of the functemd its first derivatives at a point
arbitrarily. The derivatives of higher order are thetedained and expressed as a linear
and homogeneous functions of the initial derivatives. Syis¢em admits an obvious first
solution of Up = 1. If one knows three other onék, U, Us whose functional
determinant is non-zero then the most general solwtitbihave the form:

u=ap+aU; +aU, + asUs,
whereay, ai, a, agdenote arbitrary constants.
The initial coordinatego, Yo, 2o will thus be finally defined as functions of tkey, z
by three expressions of the form:
Xo =ap + ayU1 + aUz + agUs,
Yo = bo + biU1 + Uz + bsUs,
2 =C +biUs + Uz + c3Us.

Since the constangg b, ¢ are arbitrary, we have this proposition:
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If one knows an arbitrary deformation that corresponds to a given systiematibns
ajx then one will obtain the most general deformation of the system byntognbie
deformation considered with an arbitrary homogeneous deformation that is performed
the initial medium.

20. Calculation of the differentials of the coefficients of the linear dilatation. — In
order to study the various questions that relate to defamsa it is useful to express the
differentials of the coefficients of the dilatatias functions of the differentiatky; . We
shall not enter into the details of the calculativhjch is extremely simple. One will
find that:

—de, =2(g,da,+ ¢, d3+ e dg,

—de, =2(e,dag,+ g,dg,+ e dg),

—de, =2(g,da,*+ g, dg;+ ¢ dg),

—de,=(e,da,+ g,dg,+ ¢ dg+( gdg g da g dj
—de, =(e,da,+ g, dg;+ g dg+( g dg .ga,;+e,da),
—dg,=(¢g,da,+ g, dg,+ g dgd+( g dg g da £ da

(35)

One finds the following results for the coefficientdlee surface dilatation:

dEn:Z[ E11d5h+ E12dQ2+ Elsdeh_ I-:1(1 diﬁ' de}? d%L
(36) dE23 = E31d821+ E32d822+ Essd%a
+ E21d%1+ Ezzdas2+ Ezsdas_ZEx(dau'*' dazz+ dazs)!

A remarkable property that is common to all of thegpressions is that the
coefficients of the differentiada; are the same coefficients of the quadratic forms that
intervene in the formulas for the dilatation.

21. Inverse problem. Expressing the coefficients aj as functions of the
coefficients of the dilatation. — We treat the inverse problem only for the linear

dilatation. Introduce three auxiliary differentialsy, dap, daz that are defined by the
formulas:

eﬂdah'*' € d§2+ &3 d@z_( & d@' & d%’ 8 dB: C«)d_,
(37) endab'*' & d@3+ €s d@s_( & dﬁ"' S d?f £ %: awd
921d6h+ € d%l'*' €s d@l_( & d"r:‘z'*' e dg— £ dB: wd

With the aid of the systems (35) and (37), we form thalanations of the following
form, which contain only three unknowns:
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end6h+ &, d%l+ s d@'l: _% dﬁ
(38) e,da,+ e,da,+ g,dg= % d)s_% dg
eﬂdeh+ &, d%l+ & d@'l: _% a 2_% d?i
. . . 1 .
The determinant of equations (38) is equalz%gz (1+@)2; the minors are the

coefficientsEy of the adjoint form. One will then have:

2d
- (1+2;2 =E,de,+ E,dg,+ E,de;t E,@ 5+ E,d,
2da, _
(39) - (1+@)2 = E11dQ1+ E12 dQ2+ '-:13 d%'*' Es‘d’ 2 Ez‘d 3
2d
B (1+g;2 = E31de11+ E32 d@2+ Ezs d%'*' Ea‘d’ 2 Erz‘d 3

The other quantitieda; will obviously be calculated by a similar process.order to
then have expressions for the coefficieajs it will suffice to develop the two sides of
each of equations (39) as linear functions of the dy, dz and to equate the
corresponding coefficients of the same differestialt is then necessary that we must
first develop each of the quantitida) . Now, upon referring to equations (35) and (37),
one will easily verify the following identities:

de = 08, _ 08, dx+ 98, _0&, dy+ 0e, 08 dz

0z 0y dz 0y dz oy

_(0e, _0g e 6%} (6% 6@}
40 daw, =| = -2 |dx+ 2 292 | dy+ 3_" 13| g
(40) “ ox 0z X 0X 0z 4 0Xx 02z ¢
daw, = 98 _08&; dx+ 0, 0&, dy+ 98, 06y dz

dy 0x oy 0X oy 0x

Substituting these values into equations (39)araogous equations, we finally find
that:

(41)

_ % _ [958, 08 08
2 T il
1+0) ox  0x;, 0%

+Ei{6ez,- L 98 _6qu+5{6% L ﬁj.

ox, O0x. 0% 0% 0x 0%

J
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22. Relationship between the coefficients aj and the Christoffel brackets. — The
form of the result offers a special interest in thenmer by which it is attached to the
theory of quadratic forms of differentiaf§ (

Consider an arbitrary quadratic form of the differdstul; (i = 1, 2, ...,n):

f=2 e dx dxc,
where we letE denote the discriminant and Ek denote the coefficients of the adjoint

form.
Upon introducing a notation that is due to Christoffad,set:

-4
(128l

Apply these formulas to the quadratic form’{1@at represents the linear element of
the initial medium as a function of the coordinatethefdeformed medium:

and in turn:

Y. e dx dx = dg,

L . 1
and recall that the discriminaBtof the form is equal te———.

(1+0)
e 18],

Our coefficients with three indices thus coincide, to sign, with the Christoffel
brackets that relate to the quadratic form considler That agreement is particularly
interesting, since the starting points are entidgfferent.

The determination of the deformation when thetdilan is given is a well-known
problem. The preceding results give the immedsatietion. One first calculates the
coefficientsay by formulas (41) or with the aid of the Christéfgymbols, and one then
forms the linear equations (32); the discussiomof 19 applies. Nonetheless, the
constantsa, a;, ... are no longer entirely arbitrary, but are saobje the condition that
they must give a well-defined value to the lineameent. It then results that if one

We find immediately that:

() CHRISTOFFEL, “Transformation der homogenen Differaatsdriicke zweiten Grades,” Journal
der Crelle, Bd. 70, pp. 46. — LIPSCHITZ, “Untersuchungen itréBfeder ganzen homogenen Funktionen
von n Differentialen,”ibid., pp. 71. — DARBOUXLec¢ons sur les systéemes orthogonaux et les coordinées
curvilignes Livre II, Chap. Il.
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knows a solution to the problem then all of the othersomill be deduced from it by a
Euclidian displacement.



CHAPTER 111

FUNDAMENTAL SECOND-DEGREE COVARIANTS

23. Generalities. — 24. Second dilatation. — 25. Defintfdorsion. — 26. Analytical expression for the
torsion. — 27. Torsion indicatrix. — 28. Asymmetric chtmaof torsion. — 29. Expressing the coefficients
of torsion as functions of the dilatation. — 30. Apgiion. — 31. Derived rotation. Rotation of the rioiat
—32. Components of the vectbr — 33. Expressing the coefficiersg as functions of the covariants.

23. The consideration of the fundamental covariantsweashall occupy ourselves
with will permit us to express the eighteen coeffitsag) as functions of the coefficients
of three algebraic forms that each have a geometistc mechanical significance that is
independent of the coordinates. The first of themtey@ary cubic form that represents
what we call thesecond dilatationit involves ten components. The second one is a
guadratic form that defines the distribution of mechartimadions; the six coefficients of
that form are coupled by one linear relation, which reddkesnumber of parameters
upon which they depend to five. Finally, the third one idinear form whose
consideration can be replaced with that of a vestatepends upon three independent
parameters. The total number of arbitrary quantitias figure in the expression for the
three forms considered is thus equal to eighteen, likeothibe coefficientsi .

The set of these three forms presents an obvious gnaWth the geometric
guantities that were introduced by Woldemar Voigt in his ystofdthe linear relations
between a vector and a tensor.

24. Second dilatation. — If one replaces the quantitiday in the expression for the

logarithmic differentialldTe that is defined by equation (24) with their values in (21)
e

then one will obtain an expression that is linear hathogeneous with respect to the
differentials dx, dy, dz Now, suppose that the direction of the infinitemyedl
displacement that is defined by these differentialeicddes with the directiom, £, y
Upon lettingds denote the elementary arc that corresponds to thdackspent:

1 de ..
42 _— = ik i a; Qi i,j,k=1, 2, 3),
(42) o aaac (i )

(m=a ;=06 as=)).

We give the name adecond dilatatiorto that logarithmic derivativc—ii—%, which
e ds

is taken as we have already indicated by regard# gk, ) as constants — i.e., upon
displacing in the deformed medium along the lines tlatespond to the lines of the
initial medium. We leD- (a, £, )) denote the cubic form of cosines that represents the
second dilatation in formula (42), and set:
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(43) D2 (a, B ) =2, C111 @° + 32, Cia2 &P+ 6 Cruzafiy;

the coefficientsc do not change when one permutes their three indices arkatrary
manner.
Their values are expressed as functions oéfhby the formula:

(44) 3Cik = aijk + aja + A -

Following a procedure that is currently employed in gegymahd mechanics, one
can represent the variation of the second dilatatiopa pointM as a function of the
direction a, g, y by a surface of third order that we call tinelicatrix of the second
dilatations. It suffices to start with the poMt(or any other origin) and draw a vectdr
in the direction considered whose length is defined éyetjuality:

1

ID,(a.B.y)

When the direction varies, the pointvill describe the indicatrix. The asymptotic
cone to the indicatrix of second dilatations is definedh®ytangents to the fibers for
which the second dilatation is zero.

That indicatrix is independent of the reference ax#ls the same names as those of
the ellipsoid of dilatations.

The formD- (@, £, )) is a differential covariant of the deformation kviespect to the
group of Euclidian displacements — i.e., in simpler,dmuivalent terms: with respect to
the coordinate transformations.

The proper invariants of the forDyp, or the simultaneous invariants of that form and
any other invariant form, are thus differential invatsaaf the deformation with respect
to the Euclidian group.

25. Definition of torsion. — In the mechanics of slender bodies, tiwsion of a
rectilinear fiber is the deformation that is produced whbaa of the extremities of the
fiber remain fixed, while the right section to the othgtremity is turned through a
certain angle around the axis of the fiber.

For a fiber that is directed along tle axis, that would be the deformation that is
defined by the following equations:

X=X Cos—+ SIin— .
% Yo

(45) y= >g)sini+ Yo cos®
a a

z= 7,
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The right section that is drawn through the origin neshéixed, while the other one turns
through an angle that is proportional to the ezge

The consideration of the differential deformatia@T)( permits one to easily extend
that notation of torsion to the three-dimensionatticmous media.

We first remark that in the neighborhood of a pdnbf the medium, the orientation
of the fibers or sheets that issue from that pointiatermined by the homogeneous
deformation T) that is tangent td1. Having said that, consider an infinitely-small fiber
MM “that issues frorM. The deformationT), when extended to all of the medium, will
bring the pointM to its defining position and orient all of the infirstmal elements that
issue from that point. If one then leaves the pbirfixed, as well as the directions that
issue from that point, then one will apply the diffgfal deformation ¢T) to the
elements that issue from’, as the final orientation of these latter elementisbe found
to be obtained likewise. The mean rotation of the rdeddion @T) does not, in general,
have its axis directed aloMgM ’; but one can decompose it into two rotations whosge axe
are parallel and perpendicular &M’ respectively. It is the former component that
produces the torsion of the fiber.

From that, we shall call the projection of the meatation of the corresponding
infinitesimal deformation dT) onto the direction of the fiber thmtal torsion of the
elementary fibeMM” and the ratio of the total torsion to the lengthhef fiber themean
torsion

For the elementary fibers, we will hardly have tosider the mean torsion, which we
will then call, more simply, theorsion of the fibet?).

26. Analytical expression for the torson. — The analytical expression for torsion
results immediately from these considerations. Pveggethe notations of Chapter II, we
let ds denote the length of the elementary fibéM’, let a, B, y denote its direction
cosines, and let (a, £, )) denote the corresponding mean torsion. The totabtovsill
then be:

rds=adp + Sdp, + ydps,
and the mean torsion will be:
_ . dp, dp, . dp,
r= GE+ ’BE+ y—OIS :
Now, one has:

dp _ 9p . .0 . 9P
—=-g+p—"+y—
ds 0x d oy 4 0z
and consequently, one will have:
@) 1@ pp=aPrp s, O

0x oy 0z

() SeeComptes rendus de I'’Académie des Scier8#lay 1910 and 10 April 1911.
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+ gy| 9=, 0P +ya(6_p1+6_psj+aﬁ 9., 9n |
dy 0z dz 00X o0x 0y

The expression for the torsion is then a functiodegree two in the direction cosines
of the fiber; it is formed from the differential coefénts of the rotationdp, and like the
linear dilatation for an infinitesimal deformatiomom the partial derivatives of the
displacements. We set:

(47) 7(a, B ) =0 &+ 0 B+ Taz y° + 2122 By + 281 ya + 211, a3

The coefficientsr; are expressed immediately with the aid of eitherdifferential
coefficientsdp / dx or with the aid of the coefficients :

0
I = a_F))(l =5~ Ay

op,
Iy = = Q3" Agyy

oy
op.
I35 = 6_23 = Q37 A5,
(48) _0p,  0p, _
2T23 - a_y t— T T Ay, Ayt gy Qg

op, . dp
2r, =—t+—32=a,,—a, ta, —a
31 az a X 323 233 221 121

op, O
2T12 = 6_)(2 +6_y =Q3 7 Ayt Qg Ay

As in the case of infinitesimal deformations, thktion:

(49) i+ 2+ 1m3=0
is satisfied identically.

27. Torsion indicatrix. — The variation of the torsion at a point as acfiom of the
direction of the fiber is represented by a quadrakpression whose equation will have
the form:

T(x,y,2=x1

when one takes the poikt to be the origin.
The asymptotic cone of the indicatrix is alwaysalrand admits an inscribed tri-
rectangular trihedron. It is formed from the tamgeto the fibers for which the

mechanical torsion &yl is zero. That is why we have given it the namé¢hefcone of
intorsion.
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The consideration of the torsion indicatrix immediatekhibits the elements that
enjoy some important properties relative to the torsiwvie call the principal axes and
principal planes of the indicatrix th@incipal axesand principal planesof torsion, and
the torsions of the fibers that are directed along th®es will be therincipal torsions

28. Asymmetric character of torsion. — By virtue of the relation (49), the algebraic
sum of the principal torsions will be zero.

The sign of the torsion of a fiber depends esseytigdbn the sense that is chosen to
define the positive rotations. Consequently, it wilrywavith the orientation of the
trihedron of the coordinate axes. A symmetry transftonathat has the effect of
changing the senses of the rotations will also chamgsigns of the torsions. If we, with
Voigt, give the name ofensorsto the geometric quantities that are defined by the
guadratic forms in the cosines then we will see thatadhsion is represented by a tensor,
but it is an axial tensor.

The asymmetric character of torsion is, moreovehnjbted by formulas (48) when
one considers the expressions for coefficigntss functions of the coefficients .

29. Expresson of the coefficients of torsion as functions of those of the
dilatation. — By replacing the coefficients in formulas (48) with their values that are
inferred from equations (41), one will obtain the valukthe coefficientsr; as functions
of the coefficients of the linear dilatation. Acdong to the notation of Christoffel, we

will have:
= 31 |2
11 2 3 ’
13 33 2 1
I3 = - + - :
G
These expressions simplify in the case of infinitesideformations, and one will
have simply:
= 31 |21
11 2 3 ’
13| |33 (22 |1
I3 = - + - :
2 1 1 3
in which the square brackets have replaced the curly ones.
If one would like to apply these formulas to the doefhts of dilatation that one

usually considers in the theory of elasticity then onastnrobserve that all of our
calculations have been performed on the quadratic fémtmedormula (10), which gives

the ratio % The value that is approached by that ratio faoiinitesimal

ey

deformations is 1 — while the value that is approached by the inveasie (1 +€) that
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one considers in the usual calculations is le+ & change of sign will then result that
will have to be taken into account in the calculations.

30. Application to an example. — The application of our theory of torsion to an
example will show that our definition is not arbitrabut that it still corresponds to the
ordinary sense of the wotdrsion First, consider the deformation that is defined by
equations (45). The inverse deformation will be giverhisygquations:

z . Z
Xo = XCOS—+Yysin—,
a a

.z z
Yo =— X Sin =+ y cos—,
a a

L= Z.

The calculation of the linear element gives:

2 2
¢ + Ay + dZ =dx2+dy2+X+Z—2+zzdz2 +%’dxdz—%x dy d.

One finds the following expressions for the caadints da; of the differential

deformation ¢T):
dag1 = dape = dags = 0,

dalZ:—d_Z’ dal3:—$/+xizz’
a a a
dazlz d_’ dazZ: 2(+yizi
a a
daelzdagzz 0.

Consequently, the components of the corresporndfirgtesimal rotation are:

1/ dx dz
dpr=-—=| —+y—|,

20 a a
1( dy dz
dp= —| —+x— |,
P2 2( a azj
dm:d—z,
a

from which, one will deduce the expression for tivsion:

Y _la*+p® (Bx-ay)y
a 2 a & '

(50) r(a.p )=
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Formula (50) shows that the torsion of the fibers #ina parallel t@zis constant and
equal to 1 & . That quantity indeed represents the ratio that igirdd by dividing the
angle of rotation of each right section by the diseafrom the section considered to the
invariable right sectiom= 0. The fibers that are perpendiculaOmalso have a constant
torsion; it has a sign that is opposite to the foramet is equal to — 1 &2

It will be easy to succeed in applying the general forsntllat we have established to
the deformation (45) and to verify their exactness it gimple example. | have
considered some other examples that relate to the afasfinitesimal deformations in
my previous paper.

31. Derived rotation. — We call the rotation about a given directigng, ythat has

the ratlosd—IOl d—pz d—Q" for its components, wheds denotes an elementary arc that is
s ds ds
carried in the direction considered, ttherived rotation Consequently, the components

of the derived rotation will have the following values:

d_pl—afapl+,[36p1 pl

ds  ox Yoz
dp, _ 00, , 6p2+ op,
ds x oy ez

dp, op, apg op,
S =g=+p=2+y—3
ds X d oy yaz

The consideration of torsion permits us to apply tlednmtoltz decomposition into
symmetric and asymmetric parts to the derived rotation.

Set:
PEETLS
20y azj’
1(0p, _dp,
¢2_E B &j
pre (20 _0n
7 2( ox ayj'

The expressions for the differential ratds / ds can then be written:

dp _10r

_— = 4 —

s 29 ¢ y—¢s B,
dp, _1or

ds 26,3 +dsa—¢1
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The vector®, which has the componengs, ¢», @s, presents itself as the rotation of
the rotation; it intervenes in the study of flexuas we shall find. Along with the second
dilatation and the torsion, it constitutes the sgsbf our three fundamental second-order
covariants.

The coefficients of each of these three covariahtsnge values when one effects a
coordinate transformation, but the new coefficieofs each transformed form are
expressed uniquely with the aid of coefficientstlod analogous form that relate to the
first system of axes.

From the algebraic viewpoint, the considerationtha vector® can obviously be
replaced with that of the linear form in the cosine

pra+ @B+ gsy.

32. Calculation of the components of the vector ®. — The expressions for the
componentsg:, @», ¢s of the vector® are obtained immediately by replacing the
differential coefficients of the rotation with theialues:

1(op, O 1

¢, = E 6_21 _a_%j = Z(aszs_ Qy33~ Ayt Ayy),
1(0 0 1

(51) ¢, = E a_i)j _a_pzzj :Z(aﬂz_ &5~ Ayt Agy),s
1(op, O 1

¢, = E 6_)(2 _a_[:))/lj = 2(8131_ Ag0,~ Qg Aya)-

If one adds and subtracts the same quaatityin the expression fog; then one will
find, upon taking into account the permutabilitytbé last two indices in the coefficients
aijk , that:

4¢1 = a111 + @21 + Agzr — (@111 + Q122 + A13).
Now, one infers from equation (27) that:

dlog(1+@) _
——— = a1t a2t ag31.
ou
It remains for us to transform the sam; + a2 + ai3s3.
Let A(u) generally denote the second-order Lamé diffeaépirameter that relates to
the functionu:

0°u d%u 0d%
A(u) = + + .
W x> ay* 07
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Upon replacing the coefficiensg. with their values, we will find that:
0X 0X 0x
aurrt &zt Az = —A(%) +=—A(Y,) +=—A(7),
0% 0%

Y,

and equations (51) become:

1 00 o0X
4, = —+——A —A —A
# = o ax Tax A0 )+ayo (¥o)*+ ZO (2),
1 00 ay
52 4¢, = —A A A
(52) ¢, = 1+0 0y a (%) + yo (yo)+ (%),
1 00 oz
A, = 99,92 Ax)+22 —A
0= 0 0 o L) gy A0 5 A,

In the case of infinitesimal deformations, theseriulas will reduce to the following
form, which | gave in my first paper:

4¢1 = a—e—AU,
0x
4¢2 = a—@—AV,
oy
4¢3 = a—O—AW.
0z
In equations (52), the derivativeg / 0xo, ..., which are taken with respect to the

initial variables, can be replaced with their valubat are inferred from the inverse

system to formulas (4):

)d(yo, Zo),
d(y, 2

%: (]_ +0
0%,

in such a manner that the transformed expressiorisnger contain derivatives that are
taken with respect to the same system of variablgsz. One will thus find:

A(X) A(Y,) A(%)

¢1__1 a_@+(1+@) aXO % i
1+0 ax dy 0y 0y
% 0% 0%

0z 0z 0z
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33. Expressing the coefficients aj as functions of the coefficients of the
covariants. — Equations (44), (48), and (51) express the components ofhtee t
covariants as functions of the coefficierdg ; conversely, one can express these
coefficients with the aid of the covariants. Theca&tion is quite simple and gives the

following result:

(53)

311 = Gy
_ 4 4
Ay = C122_§ T23_§¢ 2
_ 4 4
Q33 C133+§ T23_§¢ 2

_ _ 2 2
Qo= A= 0123_:_3 r 33+§ T

_ _ 2 2
Q3= Ay = 0113+5T 12+§¢ 3

2
8y, = Ay = Cyppt 2T 31+:_3¢ 2

_ 4 4
&, = c:112'*'_T31_§‘¢ 2

3
A0 = Coop
Qp3 = Ay3 = Copza™

2
3 12

gm
2 2
3
2

aZ a‘213 = C13 3 11 +— 33’
_ 2
aZ a321 C122+ 3 T + 3¢ 1

A3, = Cip5~

Q335 = Cyz3
_ _ 2 2
Q3p3 = A= C233+§ r 31+§¢ 2

_ 2 2
as a313 C331 3T23+§¢1

_ _ 2 2
A3y = Qg = 0123_:_3 r 22+§T 11

This set of eighteen formulas is summarized ie¢hdentities, and we write just the

first of them:

(54) ag11 OF + a1 B2 + anss P + 28103 By + 2au0 Yo+ 2112 a8
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= EaDz
3 0a

+ 20y~ Br,) == +2a(ad,+ B+ 1),

The other two identities are deduced from this by permutire indices and the
cosinesqa, B, y.
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FLEXURE OF FIBERS AND SHEETS

34. Compositions of the incurvations. — 35. Anothpregsentation of the curvature. — 36. Curvature of a
deformed fiber. — 37. Calculation of the logarithmic ddfetial %. — 38. Decomposition of the
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40. Another form of the formulas. — 41. Geometric elasef flexure. — 42. Incurvation and flexure of
sheets. — 43. Remark on the transform of the initialature. - 44. Geodesic flexure.

34. Compostion of incurvations. — One knows that the study of the motion of
Serret trinedra that are coupled to a skew curve leadsmmnepresent curvature by a
rotation ¢) whose axis is perpendicular to the osculating pland whose angular
velocity is measured by the inverse of the radius of ature. That mode of
representation lends itself to the composition by geocraddition.

Let R be the figurative rotation of the curvatuieof an infinitely-small ards If Ris
the resultant of the other two rotatioR$ R” that have their axes in the normal plane to
the elements then the corresponding curvatusgcan itself be considered to be the
resultant of the curvatur® and «f, which figure in the rotationR” andR"’, respectively.

Letx, y, zbe the coordinates of a potof the curve; let:

a, B ¥
a, B, v,
all, ﬁll, yll

be the system of direction cosines of the tangblatptincipal normal, and the binormal,
and letpbe the radius of curvature. The components of thediga rotation of the
curvature around the coordinate axes are:

One can represent all of the elements that retatutvature with the aid of these
guantities.

The axis of curvature is the locus of points that reanmamobile under the resultant
motion of the rotatiorR and a translation whose velocity, which is equal tayuns
directed along the tangent. If one calls the currentdioatesX, Y, Z then the points of
the axis will consequently verify the following relations

a+R(Z-2-Rs(Y-y =0,
B+Re (X=X -Ri(Z-2=0,
y+R1(Y—9—R2(X—)9:0,

() DARBOUX, Lecons sur la Théorie générale des surfatése |, Chap. |.
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which are compatible and reduce to two distinct conditiongrye of the equality:

R10'+R2,3+R3y:l_

These equations can be replaced with the system:

(55) aX-X+B(Y-y+y(Z-3=0,
X=xY-y Z-

(56) a £ y |+1=0,
R R R

whose geometric significance is obvious.

One can associate each curvature compoRénR” ... with an element that is
analogous to the resultant curvature, namely, a curvptane, which is perpendicular to
the axis of figurative rotation, a center, a radiugjrele, a curvature axis, and even a
principal normal of curvature.

In my previous paper on infinitesimal deformations, | cateéd a very simple
construction for the axis of curvature that is the ltasti of two given curvatures when
one knows the axes of the component curvature, anddeshthat this construction is the
transform of the geometric addition of values by podaiprocals.

35. Another representation of the curvature. — From the viewpoint of the
composition of curvatures, there exists a second repatwantthat offers the same
advantages as the figurative rotation. It consistenafowing the principal normal of
curvature with a length that measures the value of theatture. That length can,
moreover, be taken to have either the same or thesgppsense as the radius, provided
that one adopts the same convention for all of timpoments curvatures. Upon denoting
the components of the vector thus-obtainetHbyH,, Hs, one will then have:

The relations between the new figurative ve¢tdqH1, H,, H3) and the rotatioRR (Ry,
R>, Rs) are given by the formulas:

Ri=H; y-Hs S, Hi =R - YR,

R>=Hza —H ), Ho=yR - aRs,

R’gZHlﬁ—Hza’, H3:0’R2—,3R1.
With the use of the new notations, equation (56) besome

(56) HHX=X+H(Y-y+H3(Z-2+1=0.
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It represents the polar plane to the extremity olvetorH with respect to the imaginary
sphere:

X=R2+(Y -y’ +@Z-2"+1=0.

It results from this that the curvature axis is the ptdathe extremity of the vectdt
with respect to the imaginary circle that is obtaibgdcutting the preceding sphere with
the plane normal to the curve. If one representsdnaposition of the curvature, on the
one hand, by the geometric addition of the correspongBatprsH’, H” ..., and on the
other hand, by the construction of the axes that wereégmbaut in my previous papeh) (
then the correspondence by polar reciprocals betweeriwtbefigures will become
obvious.

36. Curvature of a deformed fiber. — The formulas that relate to the transformation
of the curvature of the fibers are obtained easily biimgause of the Frenet formulas.
We preserve the notations that were indicated irBaidor the curvature and the direction
cosines of the tangent, the principal normal, and therbial in the deformed medium.
When the same letters are affected with the index, zbey will denote the analogous
guantities for the initial medium. In nbB, we established equations of the form:

)4 0X
l+e)a=—a,+—L,+—V,-
(1+e o ayoﬁo 6zoy°

Differentiate this, while regardingo, f, ) as variables and taking the Frenet formulas
into account; we find:

67 1+ + ade [ﬁ LY Vojds‘)
o 0%, 0Y, 0z, ") p,

0X
el &l 2ol

If one replacesn, f, ) with their values that one infers from formulas (&mn one
will get:

aod[%}ﬁod[ﬁjmd[ axj = (1 +¢) (a da + Bdaz + ydany)
aXO ayo aZO

It remains for us to transform the parentheses:

ox , Ox .,  0X
—a+—pB+——y.
0%, 6yoﬁ° 620V°

() Annales de I'Ecole Normale, 1911, pp. 541.
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The homogeneous deformatiom) (that is tangent tdM makes a directiorMN
correspond to the initial principal normal that generaiffets from the principal normal
of the deformed curvature. We call the direction cesikethat transforma;, G/, ¥,

and the linear dilatation of the corresponding elemgritber e;; by virtue of equations
(7) in no.5, we will then have:

ox , Ox .,  0X
= a+—pB+—_y.
oy Bt otk

0

(1+e)a,

When one divides both sides of equation (57) and the tilteanalogous equations by
(1 +e) ds= (1 +e)? ds, they will become:

a,ade_1te a,, .03, ;d3,  da,
o 1l+eds 1+ & p, ds ds ds
(58) £+ ﬁ d_e: 1+elzﬁ+a, d821+ﬁ d622+ydaz3,

p l+teds 1+ 9 p, ds ds ds
Y,y de_lte ¥ da, ,da,  da
o l+eds (1+ €& p, ds ds ds

37. Calculation of the logarithmic differential 1dTe. — The logarithmic derivative
e

1 de

Tro ds which figures in the left-hand side of equations (58),keridy consideringy,

o, W as variables. Consequently, it differs from the sdcdilatation, which is a
derivative of the same quantity, but it is taken by reggrdu (o, ) as constants. The
difference between these two quantities is calculaasdyewith the aid of equations (58),

when one adds them together after having multiplied them g, y; respectively.
One finds:

1 de_ (i+e)@a,+fBi+p) 1

- + D al ) )
1+e ds (1+e) A 2(@. 5.1
or rather:
1 de _ (1+¢) cosf,
59 —— -Do(a, B, ) = —2—2,
(59) 1+e ds 2(@ B9 1+e) p,

in which & denotes the angle that is formed in the deformedimm by the direction of

the tangentMT and the directiorMN, which is the transform of the initial principal
normal.
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38. Decomposition of the curvature. Definition of the flexure. — We perform a
first transformation in the formulas that are obéal for the curvature by eliminating the

logarithmic derivativﬁ from equations (58). In order to write the resflthe
e)ds

elimination in a simple form, we first remark tlzate has:
By -y=a’ ..

The expression®y, — ), , ... transform in the same manner by introducingdinection

cosines of the common perpendicular to the tanlyghand to the directioMN; that is

the transform of the initial principal normal. Thé&ne P) that is determined by these
two directions is the transform of the initial okting plane by the homogeneous
deformation T) that is tangent tM. We leta;, B, ), denote the direction cosines of

the normal to the plan®), and we will have, in turn:

Byi—yB = aj siné,
yai—ay, = 5 siné,
ap - Ba, =y, sinéG,
where 8 denotes the angle that was already defined abdweon introducing these

notations, the elimination of the derivativedL between the last two equations (58)

(1+e)ds
will give us:
(60) i:1+—elein91ﬁ+,3(a’da3l+lgda32+ydaﬁsj
p  (1+e) Po ds ds ds

_ [ 98, ,da, dazgj
y(ads 'Bds ars
We now remark that the two directioMsT and MN are the transforms of the two
rectangular directions in the initial medium. Cemqsently, if we leE denote the surface
dilatation of the elementary sheet that is appieelll, on the initial osculating plane then
we will have:
(L+e)(L+e)siné =(1 +E).
Equation (60) then becomes:

a"_ 1+E a da, da, dagj
61 —= 2+pBla—3+ 2 + 3
(61) o @A+e)’ p, '[{ ds o ds 4 ds
da, , ,da, dazgj
-yl a + + ,
y( ds F ds 4 ds

One will find, in the same way, that:



Le Roux — Research into the geometry of finite deformations 43

B _1+E B y( d2u+ﬁ &, damj a( d831+ﬁ da,, , d%l
S

(61) o (@1+e) p, ds ds d
Y _1+E y ( da, , ,da, dazsj ( da,, , da, dqsl
o et o % as TP as T as) Pl as P s VT gk

Formulas (61) and (6lLrepresent the projections of the figurative rotatidrthe
curvature of the fiber in the deformed medium. An exation of their right-hand sides
will show that this rotation decomposes into two otheeso The one that equals

(i:E) pirepresents the transform of the curvature of thiiainfiber by the
0

homogeneous deformatiofM)(that is tangent td/; it is zero for originally rectilinear
fibers. The second rotation is independent ofititeal curvature; it is the same for all
straight or curved fibers that admit the same tahgét is to that second component of
the curvature that we given the namdleture of the fiber

One must remark the analogy that our decomposiibeurvature presents with
Meusnier’s theorem. Here, the flexure plays a tbé is comparable to the one that is
played by the curvature of normal sections in tie®ty of surfaces.

39. Decomposition of the total flexure. — By making use of the identity (54) and
two other analogous identities, one can transfdrenexpression for the components of
the figurative rotation of the flexure. We denttese components Wy, F,, Fz and we
will have:

F, =) ada,-y) ada,
:% aa?/z _y%_%j +g(%r; —arj+—§(¢zy—¢gﬁ),
@ | B ea) deeen
R R e e T

Equations (62) show that the flexure can, in tdo®m,decomposed into three partial
flexures that are attached to the three fundamenotadriants, and which we distinguish
by the names dfexure of the second dilatatipfiexure of torsionand thecyclic or polar
flexure respectively. The projection of the correspogdiigurative rotations ont@x
are:

For the flexure of the second dilatation:

Fr= 1 50, 0D,
3" oy "o

for the flexure of torsion:
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. 4(16r j
F'=—| =—-ar |,
3\ 20a

=—(¢2y-903D).

and for the cyclic flexure:

Oo-b

40. Another form of the formulas for incurvation. — Let a,, £,, y, denote the

direction cosines of the principal normal relatteethe first component of curvature —
i.e., the curvature of the transform of the initiilder by the homogeneous deformation
that is tangent t¥. One will have:

a, = By-viB, =pna-ayy, v, =aB-pBa

and similarly, upon considering the principal noknpaoperly speaking, of the deformed
fiber:

0":,3”1/—1/',3, ﬁ,: y//a,_a,//y’ V: a”ﬁ_ﬁ”a.

If one takes these relations into account, aloit the identity:

_ da, da, d313
DZ(a"B’m_za( ds i ds / dsj

then one will deduce the new system from equati6hysand (61):

a _ 1+E a, _ da, , ,da,  da,
5 (+ey ab,(a.B.y)+a S+,6’ 4 as
B _ 1+E S da,  ,da,  da,

63 £ = 2 _

(63) 5 Wrey p, BD,(a,B.y)+a S+/J’ 4 ge
y _1+E ), da, , ,da,  da,
L==—"""2_yp (a,p,

o (+e) g, yD(a.By)+a s+’8 ds+y ds’

The introduction of fundamental covariants wilgithe following equivalent form to
the right-hand sides of equations (63):

o (@+e) p, 30a

'3_

a_1+E a, 10D, D+2 or _ ,0r
2 a,e y

(63) _§¢1+§a(a¢1+ﬁ¢2+y¢3)’
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Systems (63) or (6B3can also be deduced easily by a direct calculation fovmulas
(58) by taking equation (59) into account and the obvious relations

a, =acosé +a»siné,

From the viewpoint of the decomposition of curvature dexlufe, it is obvious that
equations (63 have exactly the same significance and scope as eqsidél), (61, and
(62).

41. Geometric elements that relate to flexure. — Since flexure is one of the
components of the curvature, there is reason to makergspond to the same geometric
elements that the curvature corresponds to. For eesttidn of the fibers at a given
point, we will then have an axis of flexure, a plariélexure that is analogous to the
osculating plane, a principal normal of flexure, a radaicircle, and a center of flexure.

If one represents the flexure according to the methattas indicated in no. 35 as a
vectorH that is carried by the principal normal of flexure in tdpgosite direction to the
radius of flexure then one will have the following eegsions for the components of the
that vector:

_op 100, 2(gor_ or) 4,
H, =aDb, 300 (ﬁ oy aﬁj+3[¢l a(ag,+ Be,+ ypJl,
_pp, 190, ,2( or_ or), 4
(64) H,=/5D, 36,8+3( P ayj (9, - Blad.+ 5o, + )],
o, 0D, 2 or_por) 4
H;=yD, - 3ay+3( Y ’Baaj 3[¢3 nag,+ g, + )l

The axis of flexure will be defined by the two equations:

a(X=x+B(Y-Y+y(Z- 2=0;
_}{(X—X)6D2+ ~ 9922 6D2}
3 da 4] oy
X=XY-Yy Z- 7
+§ a B vy

or ot or
da 08 oy
+§[¢1(><—x)+¢z(v— y+ Z- 3 +1=0.

(65)

The first one represents the normal plane; insd@nd one, we have separated the
terms that provide the different components ofiflex
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The plane of flexure, which is perpendicular to the axighe figurative rotation, is
represented by the equation:

FiTX=X+F(Y-y+F(Z-2=0.

It is pointless to insist upon the calculation of thieer elements, which are deduced
easily from our formulas.

42. Incurvation and flexure of the sheets. Normal flexure. — When a fiber belongs
to a given sheé$, the curvature of the fiber can be decomposed, confortoitite theory
of surfaces, into a normal curvature and a tangemtigéodesic curvature. The principal
normal of the first one is normal to the sheet, kiilat of the second one is tangent. We
shall first occupy ourselves with the normal curvature.

Let a, b, ¢c be the direction cosines of the normal to the sisert the deformed
medium, letE be the surface dilatation of the sheet of the pmntsideredV, let wbe the
angle that the osculating plane of the fiber formghwhe normal to the sheet, let be
the angle of the plane that is the transform ofitlitéal osculating plane with that same
normal, and letw be the angle between the initial osculating plane be&ddormal to the
initial sheet.

The angleswy and ey are the complements of the angles that are formedei two
media between the elementary sheet considered amdetnentary sheet that is situated
in the original osculating plane, respectively. Consetiyeri we let E” denote the
surface dilatation of the original osculating plandlahen, by virtue of equation ()%f
no. 9, we will have:
(66) cosw _ (1+0)1+e)

coswy, (+E)I+E)’

Having said that, start with equations (63), whied add together, after multiplying
them bya, b, ¢, respectively, and replaciigwith E”above. We will find:

cosw_ (1+E’') cosy da,, da, dal3j
o (1+e’ p, +Za[a ds+'8 ds ¥ as)’

or rather, by virtue of equation (66):

cosw _ 1+0@  cosw, da, da, dai3j
67 = + + + .
(67) o (@A+E)a+e)f p, Za(a ds o ds 4 ds

If we let R denote the radius of the normal curvature of thees along the fiber
considered and leR, denote the analogous radius for the initial medthen we will
have:

1 1+0 1 da da dalsg
68 == - L 2 .
(68) R (@1+E)a+ef R +2a(a ds+’8 ds+y d
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Finally, by introducing the fundamental covariants, afer that:

(69) 1: 1+0 2_1+_1 aaD2+ﬁ6D2+y6D2
R (@+E)1+ey R 3 o0a s oy
a b c
2 4
+§ a By —§(a¢1+b¢2+c¢3).
or o1 a1
a 0B dy

Equations (68) and (69) further exhibit the decosifion of the normal curvature
into a sum of two curvatures: The first one isttlamsform of the initial normal curvature
by the homogeneous deformation that is tangenMto The second one, which is
independent of the initial curvature, is the norrf@kure to the sheet along the fiber
considered. Equation (69) also gives the decortipnsof the normal flexure into its
three components relative to the fundamental cantsi

43. Remark on the transform of the initial curvature. — The form of the first
component of the curvature is remarkable in itgpdioity. Set:

1 140 1

R (I+E)1+ef R’

If we let £ denote the dilatation of the thickness of a ldiat is applied to the surface
considered atl then we will have:

1+0 _
1+E

1+¢

and the preceding equation will become:

1+¢ i
(1+e)’ R

1
R

If one varies the direction of the fiber on the etharound the poinM, in the initial

medium then the curvature R{ will be expressed by a homogeneous function ofekeg

two in the direction cosineso, (o, )t . Upon replacing these cosines with their valhes

functions ofa, £, ), one will obtain an expression for the ratzifj—)zi that is also
e

homogeneous and of degree twanng, ), and whose consideration will yield the Dupin

indicatrix that relates to the transformed curvatb/R; . The axes of that new indicatrix
will be the transformed directions of the conjugdiameters that are common to the



Le Roux — Research into the geometry of finite deformations 48

initial indicatrix and to the ellipse along which th@gant plane to the sheet will cut the
ellipsoid of linear dilatations at the poidl, in the initial medium.

44. Geodesic flexure. — For the calculation of the geodesic curvature,sirigler to
start with the figurative rotation whose componentsgaren by equations (61) and (h1
The axis of the figurative rotation of the geodesic dumeis normal to the surface. One
will then obtain the expression for that rotation ldiag equations (61) and (1
together, after having multiplied them la b, c, respectively. The result further
decomposes into two parts, one of which depends upon tis autvature of the fiber
and the position of the osculating plane, while the rotree depends uniquely on the
flexure, and for that reason, we shall call it ge®odesic flexure.From the viewpoint of
the first component, there is, nevertheless, a @iffee in the result obtained for the
normal curvature, in the sense that the geodesic cuevafuhe transformed fiber under
the homogeneous deformatiof) (will no longer be expressed uniquely with the aid of
the initial geodesic curvature and the linear dilatatiothe fiber.

The figurative rotation of the geodesic flexure has Kpeession:

Fn=aF+bFR+chs,

whereF;, F;, F3 have the values that were defined by formulas (62).

One sees that by the use of fundamental covarietgormulas that relate to the
flexure of fibers and sheets take on a form that ictéxaimilar to the one that we
obtained previously for the infinitesimal deformatioriBhe consequences that we have
deduced from the viewpoint of geometric properties thus gieesitirely without the
slightest modification, and it is pointless to reprodtem here.



