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Special relativity and the geometry of wave systems
By J. LE ROUX

Translated by D. H. Delphenich

INTRODUCTION

The present article is a contribution to the critieaamination of the theory of
relativity. Following Brillouin ¢), Lecornu §), Painlevé {), and many others, | will
examine some of the grave objections that have be&edraagainst Einstein’s
construction {).

As a result of the negative result of the celelordfichelson-Morley experiment, it
seems legitimate to assume temporarily, by waypos$tulate the impossibility of
detecting the motion of the Earth with respect todtier, and it would seem useful to
examine all of the consequences that this hypothesigsnprl hat was the viewpoint that
was adopted by Poincaré Bynamique de I'Electrorf®). Poincaré did not conceal the
conventional, and somewhat arbitrary, character ofthe®ry of relativity. On the
subject of the Lorentz hypothesis, he remarked that trttieary, two equal lengths are,
by definition, two lengths such that light takes the esdmme to traverse them, and he
added that it might suffice to renounce that definiirder for Lorentz’s theory to be
upset as completely as Ptolemy’s system was by thevemtigson of Copernicus.

Poincaré’s reservations seem to be justified.

There are some inconveniences to abusing principles.enVme qualifies the
principle of a scientific proposition then one will it add to its degree of certainty nor
to the precision of the observations that it sumneariz

The principle of relativity is quite contestable.ditfers from the other fundamental
propositions of science by its negative character. drtlg thing that one can assert in
regard to the Michelson experiment is that the phenanmecur in a different manner
from what one had supposed. Therefore, one must seesaden for the result obtained
in a more exact and complete analysis of those phemamTo declare in advance that
one must find nothing and that one will never find anything glthose lines is an
arbitrary statement that is, in a sense, intendeddil ake difficulty.

Propos sceptiques du sujet du principe de relati8téentia, 1913.

La Mécanique. Les Idées et les Fait818, pp. 45-54. — Comptes rend. Acad. 564 pp. 337.
Comptes rend. Acad. Sci®Zemester, 1921.

See Comptes rend. Acad. SEr2 pp. 1227 and 146Mid., 173 pp. 1074 and 1343)id., 174 pp.

() Rend. di Palerm®1 (1906), pp. 129.
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The principle of special relativity, as it was stabgdEinstein {), can be formulated,
to some extent, in the following manner:

1. The laws of Nature, when referred to a system of referenchith the laws of
Newtonian mechanics apply, keep the same form of expression in angystieen that is
deduced from the first one by a motion of uniform translation.

2. The velocity of light is a universal constant that is independent ofefbeity of
uniform translation of the focus.

When one examines how that principle is applied, onefirces one of its
contradictions from the outset and some of the ambaguitiat frequently reappear in the
published work on relativity. After having said “a uniformngkation” in the statement
of the principle, one replaces that translation wathLorentz transformation in its
application. They are not the same thing.

One perceives, moreover, that the only natural ldves Einstein considered in
special relativity are the ones that refer to the pladifferential equation of wave
propagation in an isotropic medium when the velocity oppgation is equal to that of
light.

In effect, the phenomena to which the theory otspeelativity applies are the ones
whose study comes down to that equation. It is wromgofee to apply that to all
phenomena without exception.

The extraordinary facts, which are paradoxical in appearahat one deduces from
Einstein’s theory are based upon that abuse of extensioeh principally upon a
confusion between Lorentz’s local time and ordinaryetim

Since they are two different things, one does not hiaweight to extend something
that is true for one of them to the other one. Thmesabservations apply to velocity.
One pretends to show that no velocity can exceddofhigght. That proposition is true
for the “pseudo-velocity,” in the Einstein sense, budaes not apply to velocity in the
ordinary sense of the term; once more, there are tiierett things that are referred to
by the same name. One can multiply the sources miusion of that kind. In most
cases, the words employed have a certain meaning arghenents and calculations, and
one then gives them a different meaning in their phiajgplication.

The principle of special relativity, in the Einstein senseems completely useless.
One can deduce many absurdities. The definite factdich it applies can be obtained
much more simply by a regular analytical study of theagion of wave propagation in
an isotropic medium. One can even argue that thertassd of rulers and ideal
chronometers that is introduced into Einstein’s argumeaonstitutes a bizarre procedure
for representing certain integrals of the equation intepres

Analysis has no need for that somewhat crude artififbe determination of the
integrals with moving pole provides a very neat and sinmgpeesentation of the Lorentz

() Cf. LORENTZ, EINSTEIN, MINKOWSKI, Das Relativitits Prinzip Eine sammlung von
Abhandlungen, 1920.
WEYL, Raum, Zeit, Materiel921.
EDDINGTON,Espace, Temps, GravitatipRaris, Hermann, 1921.
BECQUEREL,Le principe de Relativité et la Théorie de la GravitatiBaris, 1922.
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transformation and the apparent Fitzgerald-Lorentz aotin. Those integrals lead to
the consideration of ellipsoidal interference wavbat are flattened like Lorentz’s
electrons.

For an observer in motion in an isotropic vibrating medi the phenomena are
similar to the ones that are observed in a mediunesif except for the replacement of
the spherical progressive wave with the flattened eligzd interference wave.

It is the interference wave that replaces the pregreswave in reflection
phenomena. In the propagation of a train of plane svéivat is referred to a moving
reference system, the ray is not perpendicular tovdnee front, but it is parallel to the
conjugate diameter to the front in the interferencgsdid. Once more, it is the
interference ellipsoid that intervenes as the direetement in the determination of the
interference sheets of two wave trains of the spar®d. Finally, if one measures the
distances in terms of the radii of the ellipsoid ttle@ analytical formulas will preserve
exactly the same form for moving systems that they f@aveystems at rest.

Since those results are simple consequences of théioggoé wave propagation,
they will be applicable to the extent that the equmationsidered represents observed
phenomena precisely. It applies to sound, as well bt lij will cease to be applicable
when the motion of the source produces a dynamical edfethe medium that destroys
its isotropy.

The calculations to which this study leads are exdlbdysame as those of the theory
of special relativity, but one has no need for any nencyie or hypothesis. If one does
not lose sight of the starting point then one will feel tempted to extend the results that
are obtained to phenomena for which they have not pemred. Analysis shows very
neatly that one has no right to deduce the equality afivelvelocities of propagation in
every sense of the term from the Michelson experime&hich thus exhibits the error in
logic that has been at the origin of Einstein’s tigeo

I shall not concern myself with the theory of gedeelativity in this first article, and
it will be the subject of another article.




CHAPTER |

TIME

1. — In order to discuss any scientific matter properlys iecessary to agree on the
meaning of words. Without that elementary precautiondaoussion would be in vain.

The symbols of language have no significance by thensseled one is not
generally sure that the same formulas represent the s#eas for the schools of two
different people. Verbal definition can obviously deternthe meanings of certain
words, but that always means reducing them to other telmasensignificance has been
supposed previously. Upon reassembling them step-by-step,ilbmesessarily arrive
at a set of fundamental symbols whose significanceataom defined by other words.
We will nonetheless recognize the agreement that evagerding the meaning of those
symbols upon confirming that one can apply them to the sacte of experience in the
same manner.

It is, moreover, obvious that we have learned fronotiteet in our use of language to
constantly attach the same word to the consideratiosimilar objects or facts. The
constant association of symbol and the thing that ingdhie symbol spoken recalls will
remind one of the images of the experimental facswere perceived before.

The initial definitions then reduce essentially to tbhafcrmation of the agreement
that exists between the fundamental words and the corfantmof experience. Hence,
it will result that the surest method for recognizingettier one is in accord in regard to
the meaning of the essential terms of a theory caensitassociating them with the
common basis of experimental observations.

Certain logicians, who take the viewpoint of formadity consider words to be
simple symbols that are initially devoid of any concrsémse. The argument then
consists of combining those symbols according to welhddf rules, like algebraic
symbols. Questions of form have their utility, likeetrules of algebraic calculations, but
they constitute only one facet of the problem. In sdiennhatters, one must always start
from experiments and return to them.

An algebraic calculation can be exact and nevieskdead to false conclusions. For
example, that will be the case when one denotes tWerelit quantities by the same
symbol; that is a very common error amongst the ®svic

That is precisely the fundamental error in Einsteth&ory. Only its confrontation
with experiments can reveal that fact.

2. Time in classical mechanics= In his treatise on the principles of mechanics, H.
Hertz ¢) began with a set of considerations that he assumed foeeign to all
experiments and based solely upon the laws of intrimsigtion, in the Kantian sense.
There is obviously a great deal of illusion in that, sitke words will acquire a
communicable meaning only when they correspond to expetaiiacts. Science is not
preoccupied with the ideas of Kant on time and space, tohwdoee philosophers
accord, perhaps, far too much importance.

() Die Prinzipien der Mechanjki894, pp. 53.
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Metaphysical considerations do not enter into eithiEutions or the interpretation
of results. What is important to know is the practipabcedure that is employed
effectively in order to attach a precise numericdli@dhat all observers will agree upon
to the consideration of time.

Chronometers are only auxiliary instruments of compariwhose indications are
valid only for a limited duration. One calibrates chnoeters by means of astronomical
observations. By definition, the practical determinatad the numbet amounts to a
measurement of the hour angle. The observationuohal motion then provides us with
a sort of common chronometer that is valid for altestrial observers. It would be
premature for us to occupy ourselves with any other one.

3. Isochronicity and simultaneity. — The correspondence between time and any
physical phenomenon is based upon the notion of sinaitiyan The analysis of that
motion presents no difficulty when one is dealing witlemdmena that are produced in
the proximity of the observer. For the phenomena @ahatproduced at a distance, the
guestion will necessitate a certain degree of examimasgince it is in that subject that we
will observe the first point of divergence between reistic language and common
language. The whole world knows that when one firesma gualistant observer will note
a very appreciable time interval between seeing theh flasd hearing the sound.
Nevertheless, those two phenomena are simultaneoasclose observer. There is then
good reason to distinguish between the simultaneity hef production and the
simultaneity of perception for two phenomena when onedasling with distant
observers. It remains for us to examine how we cabkst the correspondence of the
simultaneity of production, in the ordinary sense hef word, between phenomena that
happen at two different locations.

A phenomenon happens in New York (e.g., City Hall)j7o@ctober 1921 at 8h 9m
23s mean solar time for the meridian through the lonatvhat is the time at the Paris
Observatoryat the same moment?he dihedral angle subtended by the meridian planes
of the two locations is the difference in longitudeis|76 20 38', which corresponds to
a time difference of 5h 5m 23s. The time of the Paesidian that corresponds to the
event considered in New York is then 13h 14m 46s.

The determination of the correspondence necessgebgdy the measurement of the
difference in longitude; i.e., a dihedral angle. Once has determined the necessary
elements, one can then see the correspondence oftasigity between events that
happen at the two different locations, and with a piactithat is comparable to the most
delicate physical measurements.

It is, nonetheless, obvious that the determinationimbtlsaneity or the order of
succession in the production of phenomena will necésdite knowledge of a set of
elements that are sometimes invalid. The order ofepéion can differ from one
observer to the other and can consequently the orgodiiction can differ, as well. All
of this is well-known. However, the uncertainty tgatverns the epoch likewise governs
the position, and has the same order of magnitude. fattahat one ignores a date is not
a sufficient motive for declaring that the notion ddte does not exist. All of the
predictions of astronomical phenomena are resolved lstiqne of simultaneity.
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4. Correspondence of motions.— If one would like to attach the practical
determination of time to a more general notion then cae@ remark that the
correspondence of simultaneity between the positibmsowing body, on the one hand,
and what is indicated by a chronometer, on the otleenes down to a correspondence
between two motions.

One of them is &ypical motionto which one compares all of the others. Suppose that
the position of the moving body that defines the typmation is determined with the aid
of a parametet. One can obviously determine the correspondence oftaimeity by
employing the same parameter for the study of the othBomso

5. Time in the expression of physical laws— When one has that simple
correspondence of simultaneity in mind, it is obvious tre is allowed a great deal of
latitude in one’s choice of parameter. For exampte can employ the true or mean
solar angle with indifference. That is no longer ttu@wever, when time must intervene
in the statement of a physical law. A linear functadrthe mean solar angle is not linear
with respect to the true solar angle. The notiommform motion that enters into the
statement of the principle of inertia then supposesliads@ned calibration of time. The
study of the consequences of the principle must indichtther one can take the mean
solar angle to be the calibration of time with stiéfnt precision or if there is good reason
to apply certain corrections to it.

On that subject, one can remark: If one takes the tiae @ogle in order to calibrate
time then one must replace the ordinary statemerteoptinciple of inertia with another
one that states that the velocity of a moving pointenvit is free from all external
actions, will be a variable function of time. The aaf mechanics are independent of
time only for a certain choice of parameter.

6. Isochronicity in Einstein’s theory. — In Einstein’s theory, the definition of time
rests upon other considerations. Every observer isreskto be endowed with &teal
chronometer to which he refers the phenomena in hgghberhood. The definition of
the correspondence of simultaneity presents diffiesilanly for the observations that are
performed at different locations. Einstein imaginedftiiewing process: Two observers
A andB are carried along in the translational motion of/stesm of axes with respect to
which one can apply the principles of Newton’s mechaniés one instanta that is
recorded byA’ chronometer, one emits a light signal that arrigeB at the epochs, as
recorded by th®&'s chronometer. It reflects from a mirror and retutaA at the epoch
t, . By definition the two chronometers will hsochronousf one has:

tB—tA:t;_\—tB, SO tg =

, . 2 , . ,
One assumes, in addition, that the raf;eT is a universal constant, which
AT A
represents the velocity of light vacuo
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The time of a phenomenon in the reference systersidened is the time that is
recorded by an ideal chronometer that is situated db¢h&ion at which the phenomenon
is produced. Two phenomena are cal®dhultaneousin the systemS when they
correspond to identical readings of chronometers tleapkced at the locations where
they are produced. After having thus defined simultang&itystein then observed that
two chronometers that appear to be simultaneous insgsiem of reference will no
longer be so in another syste&hthat is in uniform translational motion with respemxt t
the first one, and consequently the conditions of Banaity will differ from one system
to another.

Indeed, suppose that a B displaces uniformly with respect with a velocityv
in its own direction. At the epoda , one emits a light signal that arrivesBagt the
epochtg, and after reflection, returns foat the epocti,. Since the timet, tg, t, are

recorded by the chronometers in the sysEone will have:

AB AB
a—tg = , t' —tg = )
ATV o ATV v

By virtue of the displacement of the bar, they wdt satisfy the condition:
ta—tg = t:,_\— 5.

However, if one considers the syst8hthat participates in the translational motion of
the bar with respect to the syst&then the conditions of the experiment must be exactl
the same as if the systeé®nwere at rest. Therefore, 16k, &, 8, be the times that are

analogous tda, tg, t,, but as recorded by the chronometers of the obsetivarsare

linked to the systen®’. The condition of isochronicity in the syste®i must be
expressed by the equality:

&-60=0, - 6.

Moreover, the measurement of the leng® in the systens” must likewise satisfy
the condition:
2AB _

QA_QA

Vl

in whichV has the sameumericalvalue forSandS’,

The numberd are different from the numberthen, and equal values éfwill not
correspond to equal valuestof

The definition of isochronicity that Einstein gawas inspired by the idea that the
velocity of light must be a universal constant,wadl as in all directions and also for
systemsS andS’that are deduced from each other by a uniformstaéinnal motion.

From the conditions that he imposed, Einstein deduthe relations that must exist
between the coordinates and time, as envisiongteinwo systems, in order for those
conditions to be verified. He then obtained theniglas for the Lorentz transformation.
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Suppose, to simplify the calculations, that the @®rsandO'x of the two systems
coincide, and that the origi® of the systenf5’ describes the origi©x as having a
velocityv. Letx,y, z t be the coordinates and time of the first system, whil¢, Z, t'
are the corresponding quantities of the second onelditian, letc be the speed of light.
Under that hypothesis, the formulas for the Lorergmdformation are:

1
= (x—= W),
B
y=y,
1
(1) >
t':i(t—v—xj.
B\ ¢
One has set:

g= -2
c

| shall refrain from reproducing Einstein’s praaffthis. We shall recover the same
results later on by a different method and withecse interpretation of the parametter
One knows that the Lorentz formulas are invertidfeone solves equations (1) far
Y, z, t then one will have:

X= %(X’ +vt’), t= —(t'+—2j,
Y=Y, z=2.

7. Comparison of Einstein’s definition with what has beendetermined
experimentally. — The definition of isochronicity that Einsteincgeded and the condition
that he imposed on the conservation ofribenerical valueof the velocity of light then
implies this necessary consequence: Time is natlement that is independent of the
reference system; it has no invariant character dha can generally attribute to it in
relation to the change of coordinates.

As a result, we find ourselves confronting twofat#nt notions: Common time,
which is common to all observers no matter whatrtiative displacement of one with
respect to the other, and that of Einstein, whigheg with the system of reference. One
is led to demand to know which of those notiongh&s more correct one. If one goes
back to the experimental conditions, whether realssumed, then one will immediately
recognize that one is dealing with two differenhgfs, and not two different conceptions
of the same thing. Indeed, we have seen that contime, sidereal time, or mean solar
time is determined by the observation of a soro¥ersal chronometer that is the same
for all observers. On the contrary, under Einsehypothesis, each observer has an
ideal chronometer, and the correspondence of isochtgnlmétween two different
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chronometers is determined uniquely by the method of lightals. The conditions are
not the same, and there is no reason to assumehthatinbers that are determined by
the two methods are identical.

It is interesting to compare that discussion wittaegument of Pascal in regard to the
various definitions of time.

Upon repeating it almost word-for-word, we can say that:

“As a result of that definition, there will be twhings that one can refer to by the
name oftime: One of them is the one that the whole world naturalians by that word,
and that everyone that speaks our language refers tmbtetm. The other one will be
Einstein’s parametdr which the relativists also refer to by that namepgetiog to a new
convention. One must then avoid ambiguity and nofusenthe consequences, because
it does not follow from it that the thing that oneurally means by the wortime s, in
fact, Einstein’s parameter. He was free to call thasethings the same, but he did not
make their characters agree, along with their names.”

A large part of the theory of special relativity segpon a consistent ambiguity that
consists of applying results that are applicable onl§ittstein’'s pseudo-time to mean
solar time.

8. Critique of the definition of isochronicity. — Since the notions of isochronicity
and simultaneity are the origin of any relativistickaguity, it is indispensible to insist
upon the artificial and arbitrary character of Einstidefinitions. There are some
notions that one will alter upon applying rules of logidefinitions to them. They are
the ones whose general idea results from the conabrdbservation of a large
multiplicity of natural facts and which end up being sudintly familiar to us that we no
longer remember having acquired them. Such is the cashdosimultaneity that is
determined in practice by a set of observations of varfoums. The method that
Einstein supposed is never applied under the conditiohhéhandicated. Telegraphic
signals can obviously be used for the problem of longitug&sonly to the extent that
the errors that can result are less than the measuteerrors that are provided by the
application of other methods. The conclusions that &mshferred are based precisely
upon the consideration of quantities whose order of snssllisethat of the errors. The
problem of longitudes can be posed for a sphere whosensiioms are much larger than
those of Earth, and for which, consequently, the reshét are provided by the method
of light signals must submit to a very appreciable exdron. Einstein’s ideal
chronometers have no existence in reality. Since ey the products of pure
imagination, the author could endow them with all the ¢jealithat he pleased, because
he had arranged them like all of his work.

When one remains at the same location, one carysleplace mean solar time with
a proportional number — such as sidereal time, fornosta- and Einstein’s definition
will present no inconvenience. The same thing is not fouedisplacements. The
Lorentz transformation formula supposes a law of tshét for the records that are
provided by moving chronometers. It is obvious that one nemusderable credulity in
order to assume that the advance of chronometers isrgovby that law. We shall see,
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moreover, that the time shift in question presentsf itse¢he study of wave systems with
a completely different significance from the onet thhas assumed by Einstein.

There is another criticism that one can formulateegard to the confusion that
comes about between Einstein’s pseudo-time and ordimaey tlt is not concerned with
merely the difference between the numerical valwdsch is a secondary question: It
refers to the character itself of the notion of timéstronomers take the minutest
precautions in order to render the chronometric obgervaif various observatories
rigorously comparable. The numbers that are measuredtlgirgubmit to various
corrections that are destined to eliminate the purehalladrcumstances of the
observations. In that way, the calculated numberspnglsent a truly invariant character
in regard to the changes of coordinates or observer., Ml@awo precisely that invariant
character that one must attribute the special rotera in mechanics. Duration is a sort
of integral invariant. In the expression for the tleofvis vivg one considers the ratio
of two invariants.

Einstein’s pseudo-time does not present the same cobigract it is an abuse of
terminology for it to keep the same role in the expogs®ef the laws of mechanics.
There is yet another serious consequence: From Hiisseggument, the constancy of the
velocity of light will not be a natural law — i.e.,ralation between observed facts. It
results simply from the arbitrargonvention by which the observers enforce the
correspondence between their chronometers.

9. Ordinary time and the relativistic interval. — In the theory of relativity, the
element that enjoys the same invariance propertiesdagoy time is the quantity that is
referred to by the name of Minkowskitgterval or proper time

The elementary intervadlo is defined by the equality:

dd? = & df —d¥ —dy? —dZ.

It is unaltered by a Lorentz transformation. Und@r inotion of a material point, the
integral] do; when evaluated between two positions or two statéseofoving body, is
likewise independent of the reference system. That propertgsponds to the invariant
character of duration in classical mechanics.

If one establishes a correspondence between two moti@t is expressed by a
relation between the intervals then that corresparelenll persist when one performs a
change of reference system that is represented byemtizdransformation.

Suppose that one takes the typical motion to be aomdhiat is observable in the
different systems, and that the correspondence of tsinaily is expressed by a relation
between the intervals of the various moving points andntieeval that corresponds to
the typical motion: One will find oneself in a cadattis analogous to that of classical
mechanics. In the general theory of relativity, itimgleed, the interval that plays the role
of common time, but without bearing that name.

Einstein’s conclusions in regard to time do not resolinfthe principle of relativity;
they come from the special convention that serveshasbasis for his definition of
isochronicity, and we have seen that his conventionradicts the determination of
simultaneity in the ordinary sense of the word. He teaduppose that the observers



Le Roux — Special relativity and wave geometry. 11

displaced in a space that was marked out with chrormeind that each of them
observed the reading of the chronometer that he passtdad of consulting his own
chronometer. Since those readings are independeng aktbcity of the observer with
respect to the space marked out, it is obvious thatdsrstconclusions will have to be
different. That hypothesis, with its paradoxical appesears perhaps closer to reality
than Einstein’s, since astronomical phenomena providasplg@a sort of chronometric
calibration of space. One can attach that concepetonethod that is employed at sea in
order to determine the longitude by the observation @rldistances.

Nevertheless, we shall see that the study of wavegrhena leads to the introduction
of a parameter that is analogous to Lorentz’s loioa tand enjoys the same properties
from the standpoint of transformations. Howevert gaaameter is not mean solar time.




CHAPTER I
WAVES WITH MOVING POLES

10. - In rectangular coordinates, the equation of wave projpagata homogeneous,
isotropic medium takes the following form:

OV 0V OV _ 19V _

+ -2 2 =o.
ox* 9oy° 07 c ot

3)

The constant is the velocity of propagation, which depends upg@nconstitution of
the medium, while the variabtas deemed to denote ordinary time.

That equation admits integrals with fixed poleattbne obtains easily by Poisson’s
method. | shall briefly recall the calculations.

For example, look for the integrals that admiixad pole at the origin of coordinates.

We set:
> =X +y +7,

and we will be led to study the integrals that echepepon onlyr andt. They satisfy the
celebrated equation of Euler and Poisson that Rexrbmade a profound study of:

NV 19V 20V _
P +_—_—_ = 0
or? c?9dt?> ror

(4)

An easy calculation will bring it into the form:

9° 1 0°

—(rV)-——(rV)=0,

6r2( )czatz( )
SO

rv=f(+ct) +¢(r—ct),

in whichf and¢ denote arbitrary functions of the characteristicables + ct andr — ct.
One will then have:

_ f(r+ct)+¢@(r —ct)
r

Vv

That integral admits characteristic singularitibat are defined by the form of the
functionsf and ¢, along with the fixed pole= 0. The latter singularity can disappear for
certain combinations of arbitrary functions. Intpaular, if one has:

f(r+ct):rjct, ¢(r—ct):?lct,
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then the integraV will come down to the fundamental integrt (

1
r2—cx?’

11. - Now consider the case of a pole that displacegdlmaOx axis with uniform
velocityv. In order to convert the problem of the wave withving pole into that of the
wave with fixed pole, it is natural to perform a changeadrdinates by setting=x; +
Vi

The partial differential equation (3) will then become

2 2 2 2 2
5) 0V , 0V 9%V 1(av_ av+vzavj_

o oy o7 Claf Vaxat oy

Equation (5) contains a term ig‘%. One makes them disappear by a new
X
transformation that is performed on the variablSupposing that’ < ¢, we will have:

—pr_VX
(6) f=pt g’

2
in which S denotes the Lorentz fact(#l—v—z :
c

If we takev to be a new variable, in place tathen we will convert equation (5) into
the symmetric form:

(7)

=0.

_ 62\/ LoV 0V _10%V
c2 X ay2 "9Z o6’

By a further transformation:
(8) X=2=

we will finally recover the form of the original equcat:

oV 62\/ LoV 9V _

=0.
c')x’2 ¥ 622 067

(9)

() HADAMARD, “Sur les solutions fondamentales et I'intétion des équations linéaires aux dérivées
partielles,” Ann. Ec. Norm. Sup. (1904) and (1905).
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It is clear that formulas (6) and (8) define the Lozérinsformation. That is obvious
for formula (8). In formula (6), when one replasgsvith its valuex; = x — vt one will
find that:

ooy V(X=VD 1( _vxj
10 O=pft—-—=_"7 = —|t-——|.
(10) c’p &) 2

c

We integrate equation (9) by Poisson’s method|engetting:

r/: [X12+y'2+22,

and get the general form for the desired integrdd two arbitrary functions:

_ f(r'=cO) +4(r' +c6)
. .

(11) Vv

12. Modulus and parameter of radiation.— The denominatar’ takes the form:

Y
r/:\/(xﬁ\z/t) +y2+22

when it is expressed as a function of the origuaaiables.

We give that quantity the name of tim@dulusof the integraV.

The points that correspond to the same valueeofrtbdulus in the moving system are
situated on the surface of an ellipsoid of revolutihat hasOx for its axis and the
moving pole for its center.

That surface is flattened in proportion to thedmirz contraction factor.

The characteristic argumenis+ ¢ 6 upon which the arbitrary functions depend,
correspond to series of waves; the positive wavbgh dilate concentrically around the
pole, and the negative waves, which, by contrastiract when one approaches that
point. For one of them, the pole constitutes ai$oior emission, and for the other one, a
focus for absorption.

In the motion of the wave, the variation of moduls always equal to that of the
argumentcd in absolute value. In what follows, we shallsét= u’ and it give the name
of radiation parameteto that quantity

The expression for the radiation parameter depapda only the constaitand the
velocity of dragging of the moving system, whenhoibte magnitude and direction of that
velocity are considered.

We likewise letu = ct denote the radiation parameter of a system of feaxees.

15. Ellipsoidal interference waves.— Consider the case of doublet that is
comprised of the juxtaposition of a focus for enoissand a focus for absorption that
correspond to equal periodic waves.
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For example, let:
2r(r'-u' +a) $=Asin 2 (r'+u +,[>’),

f=Asin ,
A A

in which A, a, S, A denote constants.
The corresponding value ¥fwill take the following form:

2A r,+7a’+l[3 u’+7'3_a
(12) V= sinor—2  cosar—2
r A A

That form exhibits a series of stationary intezfere surfaces in the moving system.
The functionV will be annulled for any radiation parameter a points where the
modulus verifies the condition:

r= n% (n integer).

There is interference at those points.

For that reason, we give the namarérference waves the ellipsoidal waves that
correspond to the constant values of the modulus.

If one considers a system of moving axes withsda@e directions as the fixed axes
that have their origins at the pole of the waventtiee interference wave surface will be

represented by the equation:
2

X4 y2+ 2= 12 = const.

B

14. Physical significance of the Lorentz transformation- We call the particular
surface that correspondsua 1 theinterference ellipsoid of the moving medium.

The wavelengths of the interference waves willywaith direction by virtue of the
contraction of the interference wave in the dicattiof displacement of the pole.
However, if we evaluate the distances in radiite €éllipsoid (or, more precisely, if we
refer them in each direction to a unit that variesproportion to the radius of the
interference ellipsoid that corresponds to thagalion) then the axes of the ellipsoid will
be measured in terms of equal numbers. That chahgeits is equivalent to the

transformation:
X _ _ _
—=X, yi=Y, 1=7.
B

We now have a very simple and precise physicarpmetation for the Lorentz
transformation.
Let u andu' denote the radiation parameters for the wavesatatttached to two

reference systems, respectively, andvset = a. The Lorentz formulas will then take
the following form:
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, 1
X ==X-au), u

B

Y, Z =z L=1-a°.

In each system, the rectilinear distances are unedsin radii of the interference
ellipsoid that relates to the system considered giVe the name dforentz variablego
those values of the coordinates.

L—

(u-ax),

R

y

15. Phase {) of the radiation parameter. — The values of the radiation parameter
are simply proportional to time in the fixed systein the moving system, those values
will propagate or shift by way of plane waves. Wpmxpressing’ as a function of and

X, one will have:
,_C VX
u=— t__2 .
£ c

The phase velocity is then equalkfd v.
In the system of variables, yi, z, t that relates to the axes that are comoving wih th
translational motion of the moving pole, but whdsagths will preserve their usual

significance, one will have:
' — c 2. VX1
u=— t——|.
I ('B c* j

The phase velocity is equal @ 8B/ v when it is measured in wave lengths of the
interference wave and in time. It is the geomet@an of two others.

16. Periods.— Consider a periodic function of the radiatiomgmaeter; letU’ be its
period. The corresponding period referred to tiwwik not be the same for the two
systems of axes. LeT be the period, when referred to the fixed systemg
consequently take = const., by hypothesis. One will have:

T=25
C

The periodTy, which refers to the moving system, and when akedx; = const., by
hypothesis, will be given by the formula:
UI
Tl = —.
cB

The ratio of the periods/ T is equal to:

() An expression that was employed by VARCOLLIER, “Lepldéements dans les champs de
vecteurs et la Théorie de la Relativité,” Revue gérétas Sciences (1918), pp. 101-114 and 135-146.
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V2

c?’

Be=1-

The product of the periodgT; is equal tdJ’? / c®. The ratioU’/ c will be the period,
when referred to the variablthat is defined by equation (10), and it will correspond to
Einstein’s pseudo-time in the case of light vibrations.

17. Progressive waves- Instead of taking the viewpoint of interferences, aersi
the locus of points that are attained at an eggda an instantaneous perturbation that
issues from moving pole at a previous instant The problem amounts to the search for
the locus of points for which the characteristic argumén u’ of the positive wave has a
constant value that is given at the epoch consider@tie initial value is equal to:

Uy = %(te —%j ,

in which one can suppose that= cty, moreover.
At the epocht, one must then have:

r—u =-u,,
or
r's = -u)’.

By a simple calculation, one infers from this that:
(x—x)*+y +Z = (t-b)°.

As one would have expected, the locus is a sphere tleaniter at the point of origin
of the perturbation and a radius that grows in proportoduration. That result is the
same as if the pole were fixed. In order to distingulssé ordinary waves from
interference waves, we give them the namprofressive wavesin the case of a fixed
pole, the interference waves will coincide with progressvaves.

18. Analytical character of the functions that represent te modulus and
radiation parameter of the moving wave.— When one introduces the radiation
parameter in place of time, the partial different@gi&ion for the wave propagation will
take on the form:

oV +c’)2V+62V_62V_
x> 9oy 07 O0U

0.

The characteristic multiplicities are defined by thstforder equation:
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2 2 2 2
[%J [92 (%j (%) “o.
ox® oy’ 07 ou
We denote the left-hand side of that equatiorDb{®). The modulug ” and that
radiation parameter satisfy the following relations:

Dr’)=1, D(U)=-1,

or'ou’” or'ou or'ou or' ou
- + + - =

X 90X aya_y 920z 9 ud U

Using a notation that is frequently employed, the ¢dshese relations can be represented
by:
D(r,u)=0.

It is easy to deduce from these results that the iamsat’— u' andr’+ U’ satisfy the
partial differential equation for characteristic mplicities.

Upon then attaching the Lorentz transformation tothie®ry of characteristics and
the motion of the propagation of waves with moving poles sees how the problem can
be generalized to arbitrary motions. The difficultieat one encounters are of a purely
analytical order and have the same character foofalhe problems that relate to the
integration of partial differential equations.

19. Extension to the case of arbitrary velocities- We have consistently supposed
that the velocity of translation is less than the speed of propagationcof That
restrictive condition is not obligatory. For speed# tire greater thar the interference
waves will be hyperbolic, and the modulus will be annutladhe surface of a real cone.

The Lorentz coefficient of contraction must be repth with  / a®-1; however, aside

from that detail, the calculation will be identicalhe case of = c is a singular case that
will necessitate a special study.

The fact that the Lorentz transformation can l@s@nted in the study of interferences
of any wave system shows sufficiently that the deions that one believes can be
inferred in the special case of light are not i@lnded.

Moreover, mathematical theories have no mysterpawer to govern phenomena.
Einstein’s pretense of enactiagestrictive condition to which the laws of natunast be
subject is difficult to assume.

The analytical operations have neither the sigaifce nor the scope that one thus
attributes to them. They are not facts that om&lgeo our formulas; they are formulas
that must be adapted to observation, and we cgeténd to attribute a precision to the
result of our calculations that is greater thart tffathe experimental data upon which
they are founded.
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20. Anisotropic, homogeneous systems: The fact that the Maxwell equations
preserve their form under Lorentz transformationsmse&o indicate that interference
waves and the radiation parameter must be very importathe study of optical
phenomena and electromagnetism when one has to comsaeng foci. From the
purely analytically viewpoint, their consideration pelsmus to generalize our results
quite simply, in addition. Indeed, we can envision thelmmore general case of the
propagation of waves in an anisotropic, homogeneous meditione always takes the
interference ellipsoid to be the quadric directrix fae theasurement of distances then, as
we have pointed out, the equations will preserve exaetysame form as for isotropic
systems. The calculations and the expression fointbgral itself will remain identical.
We will always have an elliptic modulusand a radiation parametarthat is a linear
function of time and the coordinates.

The anisotropy of the waves can be revealed only by ureraents that are made
with instruments that do not participate in the appiadeformation of the waves. If the
lengths are evaluated in terms of radii of the interfeeeellipsoid then any distinction
between isotropic and anisotropic systems will disappear.

We then arrive at a result that is quite interestamgl which explains the role of the
theory of special relativity in the intrinsic studywéve systems. One can have a notion
of the displacement of the focus in the medium only doynparison with other
phenomena.

21. Remark on the Michelson experiment— In the Michelson experiment, the
interference phenomena are observed with the aid timents that are alleged to be
rigid. One does not find them then in the case of lgemeous phenomena that we just
spoke of. The study of experiments can be facilitabed tertain degree by the results
that we have established already.

The usual discussion is obviously defective and caswadome doubts about the
validity of the conclusion to persist. Meanwhile, a&sume that they are exact. The
consequences are interesting, but have no relationshifwiskein’s theory.

The experiment must exhibit the flattening of the imtexice waves. On the
contrary, the results obtained tend to show that utfgerconditions and limitations of
observation, the interference wave is rigorously sphérin the physical sense of the
term, since the measurements are made with tealdsgiruments.

The modulusr then denotes a true distance. The equation of the atbaséc
multiplicity in four variables:

V= (U— w)?

gives the interference wave that we just envisionednwhis interpreted by supposing
thatu = const.. The same equation gives another quadric tha&sesys the progressive
wave when it is interpreted by supposing thatconst.. Since the radiation parameter
is a linear function of the coordinates, that quadrid gdnerally be an ellipsoid of
revolution that has the moving pole for its focus.
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We then arrive at an interesting result that wastpdiout by Poincaré'in a less
general form, rediscovered by Ch.-E. Guillanfe @nd likewise corresponds to the
research of Sagnad) (

It is the progressive wave that gives the law ofatamn of the relative velocities of
propagation. From that result, one does not therefore have the right to say that those
velocities are equal in all directions. The isotropy of the interfee wave does not
imply the isotropy of the progressive wave.

At the same time, we obtain another very importansequence.

The ellipsoidal form of the progressive wave no lorgaEmits us to assume that the
medium of propagation is isotropic in the restricted donmaiwhich one performs the
experiment.

In that domain,the Earth will then influence the medium, and consequently, the
propagation of light.

As for the form and nature of that influence, the scopeossible hypotheses is
extremely vast. We shall not formulate any. The dedytimate consequence that we
can infer from the Michelson experiment is the isotropyhe interference wave. We
have no information about the expression for the patanu. The result is quite
interesting, but it presents nothing paradoxical when onemimes it with no
preconceived ideas.

In our calculations, we have supposed that the mediumbeaconsidered to be
homogeneous in the domain of the experiment and that tasum@nents are performed
with the aid of terrestrial instruments.

In order to explain the result of Michelson’s expent, Einstein supposed that, in
addition to the terrestrial observers, there exisérotbservers that are carried along by
the motion of the Earth. Those observers will be amdbwith an appropriate set of
compressible rulers and retarded chronometers whaskings will correspond to those
of the terrestrial instruments by way of the Lorewtarfulas.

The intervention of these hypothetical personages séandaly useful in the context
of the question, because we can speak only in terresémmuage of terrestrial
measurements and terrestrial observers. MoreoveaheirMichelson experiment, one
does not have to consult the chronometer or estalilisicémparison with the other
chronometers that do not exist and are carried by ofasethat do not exist either.
Those elements are entirely foreign to the integbi@t of phenomena.

() Science et Méthodep. 239.
() Comptes rendus du Congrés Int. des Math. de Strashopré02.
() Compt. rend. Acad. ScL.74(1922), pp. 29.



CHAPTER IlI
GEOMETRY OF WAVE SYSTEMS

22.— The geometry of wave systems in an isotropic medmoimes down to the study
of Lorentz transformations when it is considered friv® most general viewpoint. In
that study, one encounters geometric properties thapgteeinteresting.

We have given the precise significance of the Lorétnulas independently of any
considerations of metaphysical chronometers and ereshamers.

If one is given two systems of axes in uniform, tratistel motion with respect to
each other then they will each correspond to an eremte ellipsoid and a radiation
parameter. Since lengths are assumed to be measuezth&of radii of the interference
ellipsoid, we have the Lorentz formulas in the norfoah:

x':i(x—au), u’:i(u—ax), y =Y, u =

B B

Since the factor 18is greater than unity, we set:
L coshg, L=sinhg, a=tanhg
B B ’ ’

upon introducing the hyperbolic functions.
The first two Lorentz formulas become:

X' = xcoshg —u sin
(13) { hy tp

u' = —xsinhg + u cosly

By their form, they recall formulas of rotationjtivthe substitution of hyperbolic
functions for circular functions.
One has identically:

u’2—x'2—y’2—z’25u2—x2—y2—22.

Let do? denote the common value of the two sides of tetity. The quantitdo
that the relativists call the elementary intervala relative invariant under Lorentz
transformations. Conversely, the group of tramsftions that preserves the invaridaot
constitutes the most general Lorentz group.

23. Determination of the transformations of the Lorentz grop. — From the
geometric viewpoint, it is extremely easy to obtdia most general transformation that
preserves the formo.

One knows that the linear transformations withstant coefficients are the only ones
that replace a quadratic differential form with stamt coefficients with another form of
the same nature. We will then have to occupy dwesevith only linear transformations.
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We shall even neglect the additive constants in aimeonfine ourselves to the case of
homogeneous forms.
The equation:

(14) W-xX-y-Z2=0

can be considered to represent a sphere of radius equatitio in homogeneous
coordinates. Any substitution that reduces the left-lségelto the form:

u,z_x.z_y,z_z.z

will be obtained by taking the reference tetrahedomohe a tetrahedron that is conjugate
with respect to the sphere. Conversely, any conjugathégtron will correspond to a
linear substitution that enjoys the required property.

Of the four summits of a conjugate tetrahedron, thereniy one of them that is
interior to the sphere; that summit will be the padt which has the homogeneous
coordinate = 0,y = 0,Z = 0 in the new system. The plane= 0 will be the polar
plane toO".

The trihedrorO’ X y Z must be conjugate with respect to the imaginary coresah
summit O’ circumscribes the sphere. If one would wish thahauld be, at the same
time, tri-rectangular then it is necessary that ondhef new coordinate axes should
coincide with the axis of revolutioc®O’ of the cone; the other two will be subject to only
the condition that they must be mutually-perpendicidad perpendicular tdO’.
Finally, in order for the transformation to be recimboe i.e., the first system should be
deduced from the second one in the same way that tbadsécdeduced from the first
with conservation of orthogonality — it is likewise eesary that one of the axes of the
first system must coincide withO’.

Therefore, take that line to be the common axis afdx'. Letu=1,x=a,y=0,z
= 0 be the homogeneous coordinates of the [@fm the first system of axes. The polar
planeP’to that point has the equation— a x = 0 in the first system and = 0 in the
second. The plane perpendiculacx®’that is drawn through the poit’is represented
by the equations:

Xx—au=0, X =0, respectively,
in the two systems of axes.
Upon denoting the constant coefficientshgndy, one will then have:

u=AKX-au), X =u(X—au).

The variableas andx are expressed as homogeneous functions afidx. The
variablesy andz are likewise expressed with the aid of only the vaesy! Z, since the
corresponding coordinate planes pass through the san@difhe

The proposed identity:

u’2—x'2—y’2—z’25u2—x2—y2—22

then splits into two other ones:
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U2-x2=12 - y,2+2,25y2+22.

One infers from the first that:

p2_pp=_t

1-a?°

The second one expresses the idea that the directidhs axeD’x andO’Z are
deduced from the corresponding axes of the first sybieansimple rotation.

The conditions of orthogonality and reciprocity obvigueestrict the number of
parameters upon which the most general transformatibdepend. The result obtained
translates into a sort of hyperbolic rotation for tfeiablesu and x and an ordinary
circular rotation for the variablgsandz. Upon neglecting the latter rotation, one will get
the Lorentz transformation in its customary form.

24. The modulus— The cone that circumscribes the sphere (14) and égsthtO’
for its summit will be represented by the equation:

U—axX?—1-) (P -x-y-D)=0.

The left-hand side of that equation reduces to thewallp expression:
_ 2
(1 —02){%+ v + zz} =(1-°) (X?+Yy?+27?,

in which one will recognize the square of the modulus efwthve with moving pole, up
to a factor.

All of the elements of the transformation, includitigg modulus, are then defined
entirely by a poinO’that is assumed to be interior to the fundamentargptonsidered.

The abscissa of the polar plane to the pOifis equal to 1 £.

It represents the phase velocity of the new radigg@ametet’ with respect ta.

25. Composition of Lorentz transformations.— What one calls the composition of
velocities in the theory of relativity is, in realitgquivalent to the composition of Lorentz
transformations.

In the domain of the four variablesx, y, z, a displacement will be represented by a
variation in those quantities. Consider an infinitetyadl displacementiu, dx, dy, dz
and letdo be the corresponding interval. Set:

ds’ = dxé +dy? +dZ.
The equality that defines the interval can be written:

do? =dv —d<,
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which permits one to set:
du=docoshg,
ds=dosinhg,

upon lettingg denote the argument of the hyperbolic functions.
The componentdx, dy, dzof the displacement along the axes have the form:

dx=1dosinh g, dy =m dosinh g, dz=n dosinh ¢,
while the parameteidsm, n are coupled by the relation:
|2+ +n’=1.

The ratiods / du is assigned to a velocity in the theory of relativitye call it a
pseudo-velocity.In effect, time, properly speaking, does not entar the question; as
we have seen, it is not necessarily proportionaieéaadiation parameter.

One has:

ds
— =tanhg,
du ¢

so the components of the pseudo-velocity along the adsew

%z | tanhg, ﬂz mtanhg, Ez ntanhg.
du du du

Any pseudo-velocityof that form corresponds to a poi@’ that is interior to the
fundamental sphere that was defined previously, and the @o6likewise corresponds to
a Lorentz transformation.

Now, refer the same displacement to a second refersystemu’, X', y, Z. Upon
letting ¢' denote the hyperbolic argument that relates to th@adisment in that system,
one will get formulas that are analogous to the fingso

du =docosh¢', dX =I"dosinhg’, dy =m dosinh¢’, du =n"dosinh¢g'.

Finally, let & denote the hyperbolic argument of the Lorentz transtion that
establishes the correspondence between the two systems:

Xx= X cosh@+u sinhé,
u=+x sinh@+ u coshé.
We will immediately get:
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coshd= coslp’ cosh+|' sighl sigh
I sinh@=1"sinhp’ cosl@+ coghl sirth
msinh@ = m sinhy’ ,

nsinh@ =n' sinhy’ .

(15)

Since the coefficient denotes a cosine, the first two equations of that greoallr
the fundamental formulas of non-Euclidian trigonometiWe shall see the reason for
that later on.

As before, set:

1
tanh@= a, =
coshd A

Equations (15) give:

X _ | tanng = X/ dd+a
du 1+a dx/ di

(16) dy_ pdyldi

du” 1+a dx/ du
dz _ [ d¢/ du
du 1+adt/du’

If the displacement considered is directed along xi&eCGx then one will have:

I'=1, m=n =0,
which implies that:
p=¢ +86
SO
tanhg' + tant@

tanh¢ = :
4 1+ tanhy’ tant®

26. Case of pseudo-velocities that are greater than that of ligh- Up to now, by
our use of hyperbolic functions, we have supposedl the components of the pseudo-
velocity are all less than unity. Meanwhile, aitamcalculation can be performed in the
case of arbitrary pseudo-velocities. Considerctdme of two pseudo-velocitiesand a’
that have the same direction. The resultant pseabtiwity a1 will be given by the
formula:

_a+a
1+aa'

m

The difference 1 &1 is no longer necessarily positive. One has:
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1-a= (1—0')(1—’0' )
1+aa

That quantity will change sign when one of the véocomponents crosses unity or
also when the denominator is annulled.

Therefore: If one of the components of the pseudoeusl is equal to unity then the
resultant pseudo-velocity will also be equal to unity.orié of the components is equal
and opposite to the phase pseudo-velocity of the radipaoameter then the resultant
will become infinite.

The sum 1 4 can be put into a similar form:

_ (@Q+a)@+a’)
o= —"—-—-,.
1+aa

1+

27. The Lorentz transformation and Cayley geometry ). — Up to now, we have
confined ourselves to the consideration of Lorentzsfoamations that preserve the
Euclidian orthogonality of the axes. However, one €gamine the more general case by
a simple geometric method that leads to an intereafpdjcation of Cayley’s notion of
angle and distance.

We have shown that the Lorentz transformation dan represented by a
homogeneous coordinate transformation that preserveed dphere. In a tetrahedron
that is conjugate with respect to the sphere, the anteummit will play a special role
when one considers only translational pseudo-velod¢hetsare less than unity.

The centePO of the sphere corresponds to a certain fundamerigaéree systenty.
Any other pointP that is interior to the sphere will define a tratislaal pseudo-velocity
with respect to the syster§)(that will be measured by the vectoP. One can take the
point P to be the pole; it will correspond to another systé&f).( The pseudo-velocities
that are referred to the syste8i) are not measured by the Euclidian lengths of vectors.

For example, if one considers a poifit that is different fronP then the pseudo-
velocity that corresponds to that point with respecthe system§) will indeed be
measured by the Euclidian lenditP; , but the pseudo-velocity relative to the syst& (
will not be measured by the Euclidian lend@®R; . It will then seem that there is a
difference between the two systems. Now, it is a0 make it disappear by a process
of measurement that is applied to all systems inéiffdy, no matter what their
corresponding pole.

Let v denote the vectorOP. The hyperbolic argument of the Lorentz
transformation that permits one to pass from the sy$& to the system§’) will be
defined by the equality:

26
tanhezezg—1 =V,
e’ +1
and one will consequently have:

() CAYLEY, “A sixth memoir on quantics,” Trans. Roy. Ptioc. London, 1859.
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It is easy to give a projective form to that expr@sghat will be preserved under a
change of pole. The lin@P cuts the sphere at two poMtandM’. | have supposed that

one has taken the positive sense on the line to tise s6M M .
The anharmonic ratio of the four poitls M, O’P is equal to:

Upon denoting that anharmonic ratio BN “OP), one will then have:
f=1In (MM’'OP).

The particular role of the position that attributedh® pointO initially will disappear
in this new expression, and one can apply the same f@rimwrder to pass from one
point P; to another oné;.

The lineP; P, cuts the sphere at two poimisN”.

The hyperbolic argumer#l of the corresponding transformation will be giventby
formula:

6= %In (NN Py Py).

That is precisely the expression for the Cayleyiatadee that corresponds to the
sphere considered, when it is taken to be the fundateumdric.
Let [P1 P;] denote that distance. It is obvious that one hasaghkt line:

[RP] =[PP + [P, P]

for a system of three poinks, P,, Ps.

The Cayleyian distance from any poltto a point on the surface of the sphere is
infinite.

The pseudo-velocity that corresponds to the arguientlways equal to tani no
matter what the pole of the reference system. @aydometry thus provides a very
simple image of the composition of pseudo-velocities.

28. Analytical expression for the Cayleyian distance- | believe that is useful to
briefly recall the calculation of the Cayleyian dista as a function of the coordinates.

Let two pointsPy (X1, Y1, 1), P2 (X2, Y2, Z2) be interior to the fundamental sphere. The
coordinates of any point of the lifkg P, can be put into the form:

X*A% _NtAY, o _z+Az

1+A 1+A 1+
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Upon expressing the idea that the pdvhtis found on the sphere, one will get a
equation that has degree twolin

L-X-¥W-Z)+2A(L-x %= ¥ ¥~ 2 9+A°(1- ¥ ¥ P=0.

One sets:
Fi=1-XX-¥%%-23;

the equation iml will take the abbreviated form:
Fi1+ 24 Fio+ A*F2= 0.
Let A; and A, be the roots of that equation that correspond to tleesettion points

M1, My .
The anharmonic ratidM(z M, P, P,) is equal tody / A, .

One then has:
o= [A
2
coshezi(/i+ ﬁj: Atd R
2W A VA ) 24, F.F,

We infer from this that:

SO:

sintf 6= Flé —FuFy ,
FiiFa
and as a result:
_F3-F,F
tantf 8= —12 211 22

12
Upon developing the expression for Sighone will find that:

sintf 8=

%) A=) (2= 9~ (y 3 Yy r-(zx Z¥X-( Xy XY
A-x - ¥ -2)A- X~ ¥~ 2)

The expression for the Cayleyian line elemeneguted from this immediately:

:dx2+dyz+ dZ-(ydz zdy—-( zdx xdz=( xdy Vyd

2
% (1-x*-y'-7)




Le Roux — Special relativity and wave geometry. 29

These formulas solve the problem of the compositigrsetido-velocities in the most
general case.

When the expression foif? is assigned to a line element, it will lead to the
expression for the element that replaces the an@layteyian terminology.

The Cayleyian angle comes down between a logarithrheodbhharmonic ratio, like
the distance.

Let A andA' be two lines that intersect at a pdithat is interior to the sphere. One
can draw two conjugate imaginary tangehtsnd T to the sphere through the poRitn
the planeAA’. The Cayleyian angle of the two lines is the product 6f2 with the
anharmonic ratio of the four line§, T, A,A'. That definition, along with that of
distance, is obviously inspired by the usual expressionhforahgle that was given by
Laguerre in 1853Y.

29. Cayleyian geometry and Lobachevskian geometry- F. Klein €) observed in
1871 that Cayleyian geometry provides a simple representatitime propositions of
Lobachevski when one takes the elements to be thespamil line segments that are
interior to the fundamental sphere, and one evalutitesdistance using Cayley’s
definition. It is interesting to point out how thatpresentation is attached to the
representation that was utilized by Poincaré in therthef Fuchsian functions. The
correspondence is extremely simple in the case okepigometry. The fundamental
sphere is then replaced by a cird® {n the fixed plane considerétl

Imagine a hemispher&) that is situated above the plaiieand passes through the
fundamental circle@). Any pointP in the pland1 that is interior to the circleq) is the
projection of a poinP’on the hemisphere. A line segment that is intdnothe circle
(C) is the projection of a semicircle n The imaginary tangents that issue frBrto the
circle (C) are the projections of the rectilinear generators ef dhhere that passes
throughP".

The anharmonic ratio of the sheaf that is defined by awmtrary lines that pass
throughP and the two imaginary tangents to the cir€lg i6 equal to that of the sheaf of
four homologous lines that pass throughand are drawn in the plane tangent to the
sphere at that point. It results immediately from thet the Cayleyian angle between
two lines that pass through the poidtis equal to the angle at which it cuts the
semicircles of the hemispher&)( on the sphere that correspond to those lines,
respectively.

It remains to transform the expression for the Cayfedistance. LeP; andP, be
two points in the planél that are interior to the circl€), and letM andM’be the two
points where the linB; P, cuts the fundamental circl€). Let o denote the radius of the
semicircle that projects onto the li’' P, P, M, and letg: and ¢, respectively denote
the angles tha¥l’M forms with the radii of that semicircle that enddree pointskP’, P,

that are homologues & andP, . The anharmonic ratidM’ P, P, M) is equal to:

() LAGUERRE, “Sur la théorie des foyers,” Nouvelles Amsatle Mathématiques? (1853), pp. 57.
() F. KLEIN, Math. Ann.4 (1871);ibid. 6 (1873);ibid. 7 (1874).
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p(l-cosp, ) . p (t cog, )_ tan’g, /2
~p(l+cosp, ) —p (B cop, tar’g, /2

The hyperbolic argument that we have denotedfbgnd which represents the
an’ ¢, 12
tar’ g, /2
Now, if one joins the poin “to the pointsM, B, P, and completes that sheaf by

adding the tangent to the semicircleMitthen the anharmonic ratio of the sheaf thus-
constructed will be the constant anharmonic ratio effthur pointsM, M’, B', P, of the

semicircle.

Cayleyian distance between two points is then equa

The angular coefficients of the four lines consideresl @y co, tanﬁ, tan &
2 2
respectively, so the anharmonic ratio has the valu%aiman % and one will have:

f=Inanh.ratM M"”E F;.

Now, perform a stereographic projection of the hemisp onto the plan€l. The
semicircles whose planes are perpendiculdl faroject along the arcs of circles that are
normal to the circle@). The pointdM;, M, are preservedP, P, project ontoR’,P;,

respectively. The anharmonic ratiM (M”B" B) on the arc of the circle of the
stereographic projection is equal to the anharmonic ristiM (‘R P,) on the semicircle

of the sphereX). It is, consequently, equal to the square root of tharammic ratio of
the four points along the straight li, M, , Py, P>

Since the angles are preserved by stereographic projethienEuclidian angle
between two arcs of a circle that is normal to finedamental circle is equal to the
Cayleyian angle between their chords.

One thus recovers the well-known representatidghefundamental elements of non-
Euclidian geometry.

The use of the hemispherE) (ikewise provides a very simple image of the Lorentz
contraction. LeP be a pole in the plarié, and letP’be its image on). A small circle
on Z that has the poir®’ for its pole will project onto an ellipse M. The ratio of the
axes of that ellipse is equal to the Lorentz conwactoefficient for the translational
velocity that corresponds to the pokht

30. Extension to three-dimensional figures— The extension of the preceding
method to three-dimensional figures is extremely simplee fundamental sphere:

(2) 15—y -Z=0
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is the projection onto the spacey, z) of the four-dimensional semi-hypersphexg that
is defined by the following equation and inequality:

1-x*-y* - Z7- wW=0,
w>0.

We can repeat the arguments that we applied to the-timeensional figure that we
considered before with that four-dimensional figure, and wi@ obtain the
transformation of rectilinear segments into arcs otles that are normal to the
fundamental sphere.

If one considers the coordinatesy, zto be the components of a pseudo-velocity in a
system § then the fourth coordinates will represent the derivativdo / du of the
interval with respect to the radiation parameter.atTurth variable will then have a
very precise physical significance.

Of course, the results that we just presented aressantially new, but it seemed
useful to me to recall them in order to accentuate nia¢hematical interest of the
geometry of wave systems.

31. The Minkowski universe {). — To conclude this brief study of the Lorentz
transformation and the questions that are attached, tb viobuld like to add some
observations on the Minkowskiniverse. One knows that Minkowski considered the
three coordinates of space and time to be the elemkatfar-dimensional multiplicity
that he called theniverse. The use of geometric language in order to describe sets in
which the spatial coordinates and time vary simultanésu®t new. It presents itself
advantageously in certain questions, and Hadamard (among)athezntly made use of
it in his Lecons sur la propagation des onde¥ne can criticize the terminology
employed; it is somewhat ridiculous to wish to reprg the universe with the aid of only
four variables. However, there are other more semepi®aches. Under the pretext that
the four variables appear symmetrically in his formulbBnkowski presumed to
eliminate the physical distinction between those questitwhich is absurd. If one
replacess with si in the quadratic form:

—d€=d¥ +dx¥ +dZ —d?
-ds =d¥ +d¥ +dZ +d<.

then it will become:

That symmetric form has some advantages for ceréddulations. In particular, the
Lorentz transformations reduce to orthogonal trams&ions in four variables, which
constitutes an interesting reconciliation.

Similarly, the equation of wave propagation takes the sstmenform of the usual
potential equation:

() “Die Grundgleichungen fiir die elektromagnetische ¥aige in bewegten Korpern,” Nachr. der K.
Ges. d. Wiss. zu Gottingen, 1908.
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However, one should not conceal the fact that timgplgication is illusory in the
interpretation of real phenomena. The analyticakadtars of real integrals are very
different according to whether the characteristies r@al or imaginary. Similarly, the
distinction between real and imaginary is essertialLbrentz transformations.

In order to account for the character of the Minkowskinsformation, one can
compare it to the transformation &t — y* into X* + y? that replaces an equilateral
hyperbola with a circle.

That computational gimmick can be advantageous in cectsas, but it presents
some inconveniences in other. However, it is only angjok, and the conclusions that
one pretends to deduce from the standpoint of physicaltiesalare absolutely
unacceptable.



CHAPTER IV
INTERFERENCE AND REFLECTION OF PLANE WAVES

32. — If plane waves are considered to issue from an ialjadistant pole then one
can refer them to two systersand S’ that are in uniform, translational motion with

respect to each other indifferently. We say Bt fixed andS’is in motion.
An integralV of the form:

. IX+mv+ nz+ a U
V=Asin2r Fi ,

when referred to the systegnwill become:

IX"+mvV+ndz+ a- u
AI

V=Asin 27

under the Lorentz transformation when one sets:

(17) =179 g M

| =B @B B
1-la 1-la 1-la 1-la 1-la

The equality? + n* + n? = 1 implies that’? + m?+n'? = 1.

The first three of formulas (17) are equivalent to fda®s{16).

One can compare these results with the conditiotmio plane wave trains to admit
stationary interference planes in a given referesysgem.

Let two integrals of the same intensity and the spen®d in the syster8be:

IX+my+ nz+ a L
A )
Vi =Asin 277I1x+mly+)lr1 Zra- L

V =Asin 27

The sumV + Vi is annulled at all points of the planes that areesgmted by the
equation:

(18) (-l)x+M-m)y+(n-m)z+@-a)=(n+3)A (n integer).

Consequently, those planes are sheets of statiantarjerence in the systet
In the systen%’, those two wave trains will no longer have the samegén general
and will not have to define the sheets of statiomamlrference.

33. Two sheets of stationary interference in the moving system Let us look for
the relations that must exist between the periodsvofwave trains in the systeBiin
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order for them to interfere af. The Lorentz transformation yields the result
immediately; meanwhile, it seems useful to me to d@oddlculation directly upon first
supposing tha®&’is deduced frons by a simple translation in the ordinary sense of the
word. We letd andA; denote the periods.
As a consequence, set:
X1=X—au

and keep the other variables the same.
The characteristic arguments of the integrals wilbipee

X, + my+ nz+ a- ({1- Jr)
A b

I1X1+mly+ nz+ g- @- p)
A

In order for the radiation parameterto disappear in the difference between the
arguments, it is necessary and sufficient thatroust have:

(29) B — :
1-la 1-la

When that result is compared with the last of falam (17), it will express the idea
that the transformed periods afand A; under the Lorentz transformation are equal to
each other.

If that condition is realized then the stationarierference planes of the two wave
trains, when observed in the syst&mwill be parallel to the plane:

(20) Ix, +my+nz_ | x,+my+nz_ 0.
1-la 1-la

Equation (20) simplifies by the introduction oéthorentz transformation.
Indeed, an immediate calculation will convert thi® the form:

(21) (" =1)x" +(m =) y+ (+ ) 2=0.

It remains to interpret that result geometrically.one supposes that the interference
waves are true spheres in the sysgitien the planes of the interference sheets (18) wi
be parallel to one of the planes that bisect thagd of the plane waves considered.

However, in that case, the interference waveb®@tiystem%’) will be ellipsoids; the
equation:

xX?+y?+z2=1

represents an ellipsoid, and equation (21) musgttbepreted as a consequence.
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The bisecting planes of a dihedral are the plandsatieaboth harmonically conjugate
with respect to the faces of the dihedral and with @deea sphere that has its center on
the edge of dihedral.

If the directrix sphere is replaced with an intenfee ellipsoid then one will find
oneself in the case of the moving syst®mTherefore:

The stationary interference planes in the moving systesmeSarallel to one of the
two planes that are conjugate in direction with respect to the planes efabe fronts
and with respect to the interference ellipsoid.

The expression for the wave front must be made moeeise. The use of the
coefficients!’, m', n'" implies that one is dealing with planes that corredptm the
hypothesiau’ = const., and not to the hypothesis const. It is therefore the radiation
parameter of the moving system that must enter into tieerdimation of those planes.

The preceding argument does not specify which of the coejuygahes is the one
that corresponds to the direction of the stationatgrierence plane. The process of
eliminatingu that we employed shows that the plane considered @hento which the
propagation velocities of the two waves project inddmme direction.

34. Rays of propagation. Aberration.— Hadamard has attached the notioragt of
propagation to that dficharacteristicsi.e., one-dimensional lines or multiplicities along
which the characteristic multiplicities touch their elope.

In no.18, we gave the partial differential equation for the abhtaristic multiplicities
in the system of variables x, y, z.

The differential equations for the bicharacteristitat correspond to a given integral
are:

dx dy dz _ —-du

(&) () () GO

In the particular case of plane waves:

IXx + my+ nz—u = const.,
one has:
dx_dy _dz_du

These equations can be applied to the systems of fikeshowing coordinates
indifferently, provided that the variabledenotes the radiation parameter relative to the
system considered, and that one takes care to intenpratwhile taking into account the
form of the interference ellipsoid.

They express the idea that the ray is parallel tadthmeter that is conjugate to the
plane wave in the interference ellipsoid. That isawvwe call thepseudo-normal
directionto the plane.
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The correspondence between the directions of the wetys respect to the two
systems of axes in uniform, translational motion webkpect to each other will result
immediately from formulas (17) when one employs Ltzresriables in the two systems.

A ray of propagation in the first one:

X=X _ Y% _27465_U"l
I m n 1

corresponds to a homologous ray in the second one:

!

X=%_Y-¥ _Z-4_u-4
|’ m n' 1

in which the denominators of the two groups are coupled byulas{17).

The first three ratios of each system define theostary spatial direction of the ray,
when expressed in Lorentz variables.

Consequently, those equations solve the problem of &beria the most general
case.

35. Reflection.— The results obtained for stationary interferencenpmena apply
just the same to the reflection of waves from a plameor that displaces in the medium
considered with a uniform, translational motion.

We must necessarily suppose that the motion of theomalters neither the
homogeneity nor the isotropy of the mirror. The plaf the mirror is then a stationary
interference plane for the incident and reflected wave

The law of reflection is deduced immediately from tlehark. The direction of the
plane of reflection corresponds t@pseudo-normalas defined above.

The two rays are harmonic conjugate with respect to thedpsnormal and the line
of intersection of their plane with the plane of tingror. Therefore, the interference
ellipsoid will again replace the sphere in the studyhef phenomenon of reflection. In
order for the light ray to reflect into its own diriect, it is necessary that it must be
directed along the pseudo-normal to the plane of the mirro

One can make an interesting remark on this subject.thdnsystemS’, which
participates in the translational motion of the mirtbe incident and reflected rays have
the same wave length. On the contrary, the wawgthenn the syster8 generally differ
from each other. Even in the case where the tws aag superimposed B, the two
rays of the syster8 will have different periods. For example, if on@léaling with light
vibrations then the incident and reflected rays of tletesyS will not have the same
color. Furthermore, it is convenient to add that tlys @nsidered are not stationary in
the systen® In reality, our calculations of the periods applyte two systems of plane
waves of the syster8 that correspond to the directions of the incident affiéated
waves in the syste®.
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36. Reflection and interference of elementary polar waves: One will arrive at
similar conclusions in a moving system when one stutiesdflection of an elementary
that issues from a simple pole or the interferencevofidentical elementary waves that
issue from the different poles that are linked to tlmesaystem. In those questions, it is
the elliptic modulus of the wave (nb2) that replaces the distance and the pseudo-normal
that replaces the normal.

The formulas that relate to stationary interfeeerqghenomena or reflection are
generally obtained by the elimination of time. Howeveom the form itself of the
integral, the elimination ot will imply that of the radiation parametar. The
calculations and the results will then keep the samma fn the case of rest or motion, as
long as one takes into account the physical significahtiee modulus.

37.— In all of the preceding, | have confined myself to dedutggmathematical
consequence of the equation of wave propagation withouhufating any new
hypothesis or introducing any new principle.

We have been able to state that for the obsenstlmat are performed in a moving
reference system, it is always the interferencipselld that plays the role of directing
element.

Time enters only into the radiation parameter, whiegenerally appears to degree
one in the position coordinates, but with a coefficidat can vary a great deal from one
phenomenon to another.

Our calculations are not directed towards light phenomanaarticular; they extend
to all vibratory phenomena that propagate in an isotnmeidium.

The formulas that are obtained are analogous to & that one pretends to establish
at the basis for the principle of special relativityve then showed that this principle is
useless for the study of optical and electromagneticgghena, since the same results
can be obtained much more neatly and precisely by the semgligtical study of the
wave equation.

On the other hand, since the extension of Einsteinrgiple beyond that category of
phenomena constitutes an abuse that is based upon an inbibe very neat
conclusion to which we arrive will be the followingean

The principle of special relativity, in the Einstein sense, damest constitutes a
pointless redundancy (superfétation) and sometimes an absurdity, accordimg to t
domain to which it is applied.



