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INTRODUCTION 
 

 The present article is a contribution to the critical examination of the theory of 
relativity.  Following Brillouin (1), Lecornu (2), Painlevé (3), and many others, I will 
examine some of the grave objections that have been raised against Einstein’s 
construction (4). 
 As a result of the negative result of the celebrated Michelson-Morley experiment, it 
seems legitimate to assume temporarily, by way of postulate, the impossibility of 
detecting the motion of the Earth with respect to the ether, and it would seem useful to 
examine all of the consequences that this hypothesis implies.  That was the viewpoint that 
was adopted by Poincaré in Dynamique de l’Électron (5).  Poincaré did not conceal the 
conventional, and somewhat arbitrary, character of the theory of relativity.  On the 
subject of the Lorentz hypothesis, he remarked that in that theory, two equal lengths are, 
by definition, two lengths such that light takes the same time to traverse them, and he 
added that it might suffice to renounce that definition in order for Lorentz’s theory to be 
upset as completely as Ptolemy’s system was by the intervention of Copernicus. 
 Poincaré’s reservations seem to be justified. 
 There are some inconveniences to abusing principles.  When one qualifies the 
principle of a scientific proposition then one will neither add to its degree of certainty nor 
to the precision of the observations that it summarizes. 
 The principle of relativity is quite contestable.  It differs from the other fundamental 
propositions of science by its negative character. The only thing that one can assert in 
regard to the Michelson experiment is that the phenomena occur in a different manner 
from what one had supposed.  Therefore, one must seek the reason for the result obtained 
in a more exact and complete analysis of those phenomena.  To declare in advance that 
one must find nothing and that one will never find anything along those lines is an 
arbitrary statement that is, in a sense, intended to avoid the difficulty. 

                                                
 (1) Propos sceptiques du sujet du principe de relativité, Scientia, 1913.  
 (2) La Mécanique.  Les Idées et les Faits, 1918, pp. 45-54. – Comptes rend. Acad. Sci. 174, pp. 337. 
 (3) Comptes rend. Acad. Sci. 2nd semester, 1921. 
 (4) See Comptes rend. Acad. Sci. 172, pp. 1227 and 1467; ibid., 173, pp. 1074 and 1343; ibid., 174, pp. 
924.  
 (5) Rend. di Palermo, 21 (1906), pp. 129.  
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 The principle of special relativity, as it was stated by Einstein (1), can be formulated, 
to some extent, in the following manner: 
 
 1. The laws of Nature, when referred to a system of reference to which the laws of 
Newtonian mechanics apply, keep the same form of expression in any other system that is 
deduced from the first one by a motion of uniform translation. 
 
 2. The velocity of light is a universal constant that is independent of the velocity of 
uniform translation of the focus. 
 
 When one examines how that principle is applied, one confirms one of its 
contradictions from the outset and some of the ambiguities that frequently reappear in the 
published work on relativity.  After having said “a uniform translation” in the statement 
of the principle, one replaces that translation with a Lorentz transformation in its 
application.  They are not the same thing. 
 One perceives, moreover, that the only natural laws that Einstein considered in 
special relativity are the ones that refer to the partial differential equation of wave 
propagation in an isotropic medium when the velocity of propagation is equal to that of 
light. 
 In effect, the phenomena to which the theory of special relativity applies are the ones 
whose study comes down to that equation.  It is wrong for one to apply that to all 
phenomena without exception. 
 The extraordinary facts, which are paradoxical in appearance, that one deduces from 
Einstein’s theory are based upon that abuse of extension, and principally upon a 
confusion between Lorentz’s local time and ordinary time. 
 Since they are two different things, one does not have the right to extend something 
that is true for one of them to the other one.  The same observations apply to velocity.  
One pretends to show that no velocity can exceed that of light.  That proposition is true 
for the “pseudo-velocity,” in the Einstein sense, but it does not apply to velocity in the 
ordinary sense of the term; once more, there are two different things that are referred to 
by the same name.  One can multiply the sources of confusion of that kind.  In most 
cases, the words employed have a certain meaning in the arguments and calculations, and 
one then gives them a different meaning in their physical application. 
 The principle of special relativity, in the Einstein sense, seems completely useless.  
One can deduce many absurdities.  The definite facts to which it applies can be obtained 
much more simply by a regular analytical study of the equation of wave propagation in 
an isotropic medium.  One can even argue that the assortment of rulers and ideal 
chronometers that is introduced into Einstein’s arguments constitutes a bizarre procedure 
for representing certain integrals of the equation in question. 
 Analysis has no need for that somewhat crude artifice.  The determination of the 
integrals with moving pole provides a very neat and simple representation of the Lorentz 

                                                
 (1) Cf. LORENTZ, EINSTEIN, MINKOWSKI, Das Relativitäts Prinzip.  Eine sammlung von 
Abhandlungen, 1920. 
  WEYL, Raum, Zeit, Materie, 1921. 
  EDDINGTON, Espace, Temps, Gravitation, Paris, Hermann, 1921. 
  BECQUEREL, Le principe de Relativité et la Théorie de la Gravitation, Paris, 1922. 
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transformation and the apparent Fitzgerald-Lorentz contraction.  Those integrals lead to 
the consideration of ellipsoidal interference waves that are flattened like Lorentz’s 
electrons. 
 For an observer in motion in an isotropic vibrating medium, the phenomena are 
similar to the ones that are observed in a medium at rest, except for the replacement of 
the spherical progressive wave with the flattened ellipsoidal interference wave. 
 It is the interference wave that replaces the progressive wave in reflection 
phenomena.  In the propagation of a train of plane waves that is referred to a moving 
reference system, the ray is not perpendicular to the wave front, but it is parallel to the 
conjugate diameter to the front in the interference ellipsoid.  Once more, it is the 
interference ellipsoid that intervenes as the director element in the determination of the 
interference sheets of two wave trains of the same period.  Finally, if one measures the 
distances in terms of the radii of the ellipsoid then the analytical formulas will preserve 
exactly the same form for moving systems that they have for systems at rest. 
 Since those results are simple consequences of the equation of wave propagation, 
they will be applicable to the extent that the equation considered represents observed 
phenomena precisely.  It applies to sound, as well as light.  It will cease to be applicable 
when the motion of the source produces a dynamical effect on the medium that destroys 
its isotropy. 
 The calculations to which this study leads are exactly the same as those of the theory 
of special relativity, but one has no need for any new principle or hypothesis.  If one does 
not lose sight of the starting point then one will not feel tempted to extend the results that 
are obtained to phenomena for which they have not been proved.  Analysis shows very 
neatly that one has no right to deduce the equality of relative velocities of propagation in 
every sense of the term from the Michelson experiment, which thus exhibits the error in 
logic that has been at the origin of Einstein’s theory. 
 I shall not concern myself with the theory of general relativity in this first article, and 
it will be the subject of another article. 
 

___________ 
 

  
 



CHAPTER I 
 

TIME  
 
 

 1. – In order to discuss any scientific matter properly, it is necessary to agree on the 
meaning of words.  Without that elementary precaution, any discussion would be in vain. 
 The symbols of language have no significance by themselves, and one is not 
generally sure that the same formulas represent the same ideas for the schools of two 
different people.  Verbal definition can obviously determine the meanings of certain 
words, but that always means reducing them to other terms whose significance has been 
supposed previously.  Upon reassembling them step-by-step, one will necessarily arrive 
at a set of fundamental symbols whose significance cannot be defined by other words.  
We will nonetheless recognize the agreement that exists regarding the meaning of those 
symbols upon confirming that one can apply them to the same facts of experience in the 
same manner. 
 It is, moreover, obvious that we have learned from the outset in our use of language to 
constantly attach the same word to the consideration of similar objects or facts.  The 
constant association of symbol and the thing that hearing the symbol spoken recalls will 
remind one of the images of the experimental facts that were perceived before. 
 The initial definitions then reduce essentially to the confirmation of the agreement 
that exists between the fundamental words and the common facts of experience.  Hence, 
it will result that the surest method for recognizing whether one is in accord in regard to 
the meaning of the essential terms of a theory consists of associating them with the 
common basis of experimental observations. 
 Certain logicians, who take the viewpoint of formal logic, consider words to be 
simple symbols that are initially devoid of any concrete sense.  The argument then 
consists of combining those symbols according to well-defined rules, like algebraic 
symbols.  Questions of form have their utility, like the rules of algebraic calculations, but 
they constitute only one facet of the problem.  In scientific matters, one must always start 
from experiments and return to them. 
 An algebraic calculation can be exact and nevertheless lead to false conclusions.  For 
example, that will be the case when one denotes two different quantities by the same 
symbol; that is a very common error amongst the novices. 
 That is precisely the fundamental error in Einstein’s theory.  Only its confrontation 
with experiments can reveal that fact. 
 
 
 2. Time in classical mechanics. – In his treatise on the principles of mechanics, H. 
Hertz (1) began with a set of considerations that he assumed were foreign to all 
experiments and based solely upon the laws of intrinsic intuition, in the Kantian sense.  
There is obviously a great deal of illusion in that, since the words will acquire a 
communicable meaning only when they correspond to experimental facts.  Science is not 
preoccupied with the ideas of Kant on time and space, to which some philosophers 
accord, perhaps, far too much importance. 
                                                
 (1) Die Prinzipien der Mechanik, 1894, pp. 53.  
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 Metaphysical considerations do not enter into either calculations or the interpretation 
of results.  What is important to know is the practical procedure that is employed 
effectively in order to attach a precise numerical value that all observers will agree upon 
to the consideration of time. 
 Chronometers are only auxiliary instruments of comparison whose indications are 
valid only for a limited duration.  One calibrates chronometers by means of astronomical 
observations.  By definition, the practical determination of the number t amounts to a 
measurement of the hour angle.  The observation of diurnal motion then provides us with 
a sort of common chronometer that is valid for all terrestrial observers.  It would be 
premature for us to occupy ourselves with any other one. 
 
 
 3. Isochronicity and simultaneity. – The correspondence between time and any 
physical phenomenon is based upon the notion of simultaneity.  The analysis of that 
motion presents no difficulty when one is dealing with phenomena that are produced in 
the proximity of the observer.  For the phenomena that are produced at a distance, the 
question will necessitate a certain degree of examination, since it is in that subject that we 
will observe the first point of divergence between relativistic language and common 
language.  The whole world knows that when one fires a gun, a distant observer will note 
a very appreciable time interval between seeing the flash and hearing the sound.  
Nevertheless, those two phenomena are simultaneous for a close observer.  There is then 
good reason to distinguish between the simultaneity of the production and the 
simultaneity of perception for two phenomena when one is dealing with distant 
observers.  It remains for us to examine how we can establish the correspondence of the 
simultaneity of production, in the ordinary sense of the word, between phenomena that 
happen at two different locations. 
 A phenomenon happens in New York (e.g., City Hall) on 7 October 1921 at 8h 9m 
23s mean solar time for the meridian through the location; what is the time at the Paris 
Observatory at the same moment?  The dihedral angle subtended by the meridian planes 
of the two locations is the difference in longitude.  It is 76o 20′ 38″, which corresponds to 
a time difference of 5h 5m 23s.  The time of the Paris meridian that corresponds to the 
event considered in New York is then 13h 14m 46s. 
 The determination of the correspondence necessitates simply the measurement of the 
difference in longitude; i.e., a dihedral angle.  Once one has determined the necessary 
elements, one can then see the correspondence of simultaneity between events that 
happen at the two different locations, and with a precision that is comparable to the most 
delicate physical measurements. 
 It is, nonetheless, obvious that the determination of simultaneity or the order of 
succession in the production of phenomena will necessitate the knowledge of a set of 
elements that are sometimes invalid.  The order of perception can differ from one 
observer to the other and can consequently the order of production can differ, as well. All 
of this is well-known.  However, the uncertainty that governs the epoch likewise governs 
the position, and has the same order of magnitude.  That fact that one ignores a date is not 
a sufficient motive for declaring that the notion of date does not exist.  All of the 
predictions of astronomical phenomena are resolved by questions of simultaneity. 
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 4. Correspondence of motions. – If one would like to attach the practical 
determination of time to a more general notion then one can remark that the 
correspondence of simultaneity between the positions of moving body, on the one hand, 
and what is indicated by a chronometer, on the other, comes down to a correspondence 
between two motions. 
 One of them is a typical motion to which one compares all of the others.  Suppose that 
the position of the moving body that defines the typical motion is determined with the aid 
of a parameter t.  One can obviously determine the correspondence of simultaneity by 
employing the same parameter for the study of the other motions. 
 
 
 5. Time in the expression of physical laws. – When one has that simple 
correspondence of simultaneity in mind, it is obvious that one is allowed a great deal of 
latitude in one’s choice of parameter.  For example, one can employ the true or mean 
solar angle with indifference.  That is no longer true, however, when time must intervene 
in the statement of a physical law.  A linear function of the mean solar angle is not linear 
with respect to the true solar angle.  The notion of uniform motion that enters into the 
statement of the principle of inertia then supposes a well-defined calibration of time.  The 
study of the consequences of the principle must indicate whether one can take the mean 
solar angle to be the calibration of time with sufficient precision or if there is good reason 
to apply certain corrections to it. 
 On that subject, one can remark: If one takes the true solar angle in order to calibrate 
time then one must replace the ordinary statement of the principle of inertia with another 
one that states that the velocity of a moving point, when it is free from all external 
actions, will be a variable function of time.  The laws of mechanics are independent of 
time only for a certain choice of parameter. 
 
 
 6. Isochronicity in Einstein’s theory. – In Einstein’s theory, the definition of time 
rests upon other considerations.  Every observer is assumed to be endowed with an ideal 
chronometer to which he refers the phenomena in his neighborhood.  The definition of 
the correspondence of simultaneity presents difficulties only for the observations that are 
performed at different locations.  Einstein imagined the following process: Two observers 
A and B are carried along in the translational motion of a system of axes with respect to 
which one can apply the principles of Newton’s mechanics.  At one instant tA that is 
recorded by A’ chronometer, one emits a light signal that arrives at B at the epoch tB , as 
recorded by the B’s chronometer.  It reflects from a mirror and returns to A at the epoch 

At′ .  By definition, the two chronometers will be isochronous if one has: 

 

tB – tA = At′ – tB , so tB = 
2

A At t′+
. 

 

 One assumes, in addition, that the ratio 
2

A A

AB

t t′ −
 is a universal constant V, which 

represents the velocity of light in vacuo. 
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 The time of a phenomenon in the reference system considered is the time that is 
recorded by an ideal chronometer that is situated at the location at which the phenomenon 
is produced.  Two phenomena are called simultaneous in the system S when they 
correspond to identical readings of chronometers that are placed at the locations where 
they are produced.  After having thus defined simultaneity, Einstein then observed that 
two chronometers that appear to be simultaneous in one system of reference will no 
longer be so in another system S′ that is in uniform translational motion with respect to 
the first one, and consequently the conditions of simultaneity will differ from one system 
to another. 
 Indeed, suppose that a bar AB displaces uniformly with respect to S with a velocity v 
in its own direction.  At the epoch tA , one emits a light signal that arrives at B at the 
epoch tB, and after reflection, returns to A at the epoch At′ .  Since the times tA , tB , At′  are 

recorded by the chronometers in the system S, one will have: 
 

tA − tB = 
AB

V v−
, At′ − tB = 

AB

V v+
. 

 
 By virtue of the displacement of the bar, they will not satisfy the condition: 
 

tA − tB = At′ − tB . 

 
 However, if one considers the system S′ that participates in the translational motion of 
the bar with respect to the system S then the conditions of the experiment must be exactly 
the same as if the system S′ were at rest.  Therefore, let θA, θB, Aθ ′  be the times that are 

analogous to tA , tB , At′ , but as recorded by the chronometers of the observers that are 

linked to the system S′.  The condition of isochronicity in the system S′ must be 
expressed by the equality: 

θB − θA = Aθ ′  − θB . 

 
 Moreover, the measurement of the length AB in the system S′ must likewise satisfy 
the condition: 

2

A A

AB

θ θ′ −
= V, 

 
in which V has the same numerical value for S and S′. 
 The numbers θ are different from the number t then, and equal values of θ will not 
correspond to equal values of t. 
 The definition of isochronicity that Einstein gave was inspired by the idea that the 
velocity of light must be a universal constant, as well as in all directions and also for 
systems S and S′ that are deduced from each other by a uniform, translational motion. 
 From the conditions that he imposed, Einstein deduced the relations that must exist 
between the coordinates and time, as envisioned in the two systems, in order for those 
conditions to be verified.  He then obtained the formulas for the Lorentz transformation. 
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 Suppose, to simplify the calculations, that the axes Ox and O′x′ of the two systems 
coincide, and that the origin O′ of the system S′ describes the origin Ox as having a 
velocity v.  Let x, y, z, t be the coordinates and time of the first system, while x′, y′, z′, t′ 
are the corresponding quantities of the second one; in addition, let c be the speed of light.  
Under that hypothesis, the formulas for the Lorentz transformation are: 
 

(1)     

2

1
( ),

,

,

1
.

x x vt

y y

z z

vx
t t

c

β

β

 ′ = −


′ =
 ′ =
  ′ = −  

 

 

 One has set: 

β = 
2

2
1

v

c
− . 

 
 I shall refrain from reproducing Einstein’s proof of this.  We shall recover the same 
results later on by a different method and with a precise interpretation of the parameter t′. 
 One knows that the Lorentz formulas are invertible.  If one solves equations (1) for x, 
y, z, t then one will have: 
 

  x = 
1

β
(x′ + vt′ ), t = 2

1 vx
t

cβ
′ ′ + 

 
, 

 
  y = y′, z = z′. 
 
 
 7. Comparison of Einstein’s definition with what has been determined 
experimentally. – The definition of isochronicity that Einstein adopted and the condition 
that he imposed on the conservation of the numerical value of the velocity of light then 
implies this necessary consequence: Time is not an element that is independent of the 
reference system; it has no invariant character that one can generally attribute to it in 
relation to the change of coordinates. 
 As a result, we find ourselves confronting two different notions: Common time, 
which is common to all observers no matter what the relative displacement of one with 
respect to the other, and that of Einstein, which varies with the system of reference.  One 
is led to demand to know which of those notions is the more correct one.  If one goes 
back to the experimental conditions, whether real or assumed, then one will immediately 
recognize that one is dealing with two different things, and not two different conceptions 
of the same thing.  Indeed, we have seen that common time, sidereal time, or mean solar 
time is determined by the observation of a sort of universal chronometer that is the same 
for all observers.  On the contrary, under Einstein’s hypothesis, each observer has an 
ideal chronometer, and the correspondence of isochronicity between two different 
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chronometers is determined uniquely by the method of light signals.  The conditions are 
not the same, and there is no reason to assume that the numbers that are determined by 
the two methods are identical. 
 It is interesting to compare that discussion with an argument of Pascal in regard to the 
various definitions of time. 
 Upon repeating it almost word-for-word, we can say that: 
 
 “As a result of that definition, there will be two things that one can refer to by the 
name of time: One of them is the one that the whole world naturally means by that word, 
and that everyone that speaks our language refers to by that term.  The other one will be 
Einstein’s parameter t, which the relativists also refer to by that name, according to a new 
convention.  One must then avoid ambiguity and not confuse the consequences, because 
it does not follow from it that the thing that one naturally means by the word time is, in 
fact, Einstein’s parameter.  He was free to call those two things the same, but he did not 
make their characters agree, along with their names.” 
 
 A large part of the theory of special relativity rests upon a consistent ambiguity that 
consists of applying results that are applicable only to Einstein’s pseudo-time to mean 
solar time. 
 
 
 8. Critique of the definition of isochronicity. – Since the notions of isochronicity 
and simultaneity are the origin of any relativistic ambiguity, it is indispensible to insist 
upon the artificial and arbitrary character of Einstein’s definitions.  There are some 
notions that one will alter upon applying rules of logical definitions to them.  They are 
the ones whose general idea results from the concordant observation of a large 
multiplicity of natural facts and which end up being sufficiently familiar to us that we no 
longer remember having acquired them.  Such is the case for the simultaneity that is 
determined in practice by a set of observations of various forms.  The method that 
Einstein supposed is never applied under the conditions that he indicated.  Telegraphic 
signals can obviously be used for the problem of longitudes, but only to the extent that 
the errors that can result are less than the measurement errors that are provided by the 
application of other methods.  The conclusions that Einstein inferred are based precisely 
upon the consideration of quantities whose order of smallness is that of the errors.  The 
problem of longitudes can be posed for a sphere whose dimensions are much larger than 
those of Earth, and for which, consequently, the results that are provided by the method 
of light signals must submit to a very appreciable correction.  Einstein’s ideal 
chronometers have no existence in reality.  Since they are the products of pure 
imagination, the author could endow them with all the qualities that he pleased, because 
he had arranged them like all of his work. 
 When one remains at the same location, one can always replace mean solar time with 
a proportional number – such as sidereal time, for instance – and Einstein’s definition 
will present no inconvenience.  The same thing is not true for displacements.  The 
Lorentz transformation formula supposes a law of time shift for the records that are 
provided by moving chronometers.  It is obvious that one needs considerable credulity in 
order to assume that the advance of chronometers is governed by that law.  We shall see, 
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moreover, that the time shift in question presents itself in the study of wave systems with 
a completely different significance from the one that was assumed by Einstein. 
 There is another criticism that one can formulate in regard to the confusion that 
comes about between Einstein’s pseudo-time and ordinary time.  It is not concerned with 
merely the difference between the numerical values, which is a secondary question: It 
refers to the character itself of the notion of time.  Astronomers take the minutest 
precautions in order to render the chronometric observation of various observatories 
rigorously comparable.  The numbers that are measured directly submit to various 
corrections that are destined to eliminate the purely local circumstances of the 
observations.  In that way, the calculated numbers will present a truly invariant character 
in regard to the changes of coordinates or observer.  Now, it is to precisely that invariant 
character that one must attribute the special role of time in mechanics.  Duration is a sort 
of integral invariant.  In the expression for the theorem of vis viva, one considers the ratio 
of two invariants. 
 Einstein’s pseudo-time does not present the same character, so it is an abuse of 
terminology for it to keep the same role in the expression of the laws of mechanics.  
There is yet another serious consequence: From Einstein’s argument, the constancy of the 
velocity of light will not be a natural law – i.e., a relation between observed facts.  It 
results simply from the arbitrary convention by which the observers enforce the 
correspondence between their chronometers. 
 
 
 9. Ordinary time and the relativistic interval. – In the theory of relativity, the 
element that enjoys the same invariance properties as ordinary time is the quantity that is 
referred to by the name of Minkowski’s interval or proper time. 
 The elementary interval dσ is defined by the equality: 
 

dσ2 = c2 dt2 – dx2 – dy2 – dz2. 
 
 It is unaltered by a Lorentz transformation.  Under the motion of a material point, the 
integral ∫ dσ, when evaluated between two positions or two states of the moving body, is 
likewise independent of the reference system.  That property corresponds to the invariant 
character of duration in classical mechanics. 
 If one establishes a correspondence between two motions that is expressed by a 
relation between the intervals then that correspondence will persist when one performs a 
change of reference system that is represented by a Lorentz transformation. 
 Suppose that one takes the typical motion to be a motion that is observable in the 
different systems, and that the correspondence of simultaneity is expressed by a relation 
between the intervals of the various moving points and the interval that corresponds to 
the typical motion: One will find oneself in a case that is analogous to that of classical 
mechanics.  In the general theory of relativity, it is, indeed, the interval that plays the role 
of common time, but without bearing that name. 
 Einstein’s conclusions in regard to time do not result from the principle of relativity; 
they come from the special convention that serves as the basis for his definition of 
isochronicity, and we have seen that his convention contradicts the determination of 
simultaneity in the ordinary sense of the word.  He had to suppose that the observers 
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displaced in a space that was marked out with chronometers and that each of them 
observed the reading of the chronometer that he passed, instead of consulting his own 
chronometer.  Since those readings are independent of the velocity of the observer with 
respect to the space marked out, it is obvious that Einstein’s conclusions will have to be 
different.  That hypothesis, with its paradoxical appearance, is perhaps closer to reality 
than Einstein’s, since astronomical phenomena provide precisely a sort of chronometric 
calibration of space.  One can attach that concept to the method that is employed at sea in 
order to determine the longitude by the observation of lunar distances. 
 Nevertheless, we shall see that the study of wave phenomena leads to the introduction 
of a parameter that is analogous to Lorentz’s local time and enjoys the same properties 
from the standpoint of transformations.  However, that parameter is not mean solar time. 
 

___________ 
 

 



CHAPTER II 
 

WAVES WITH MOVING POLES  
 

 10. – In rectangular coordinates, the equation of wave propagation in a homogeneous, 
isotropic medium takes the following form: 
 

(3)     
2 2 2 2

2 2 2 2 2

1V V V V

x y z c t

∂ ∂ ∂ ∂+ + −
∂ ∂ ∂ ∂

 = 0. 

 
 The constant c is the velocity of propagation, which depends upon the constitution of 
the medium, while the variable t is deemed to denote ordinary time. 
 That equation admits integrals with fixed poles that one obtains easily by Poisson’s 
method.  I shall briefly recall the calculations. 
 For example, look for the integrals that admit a fixed pole at the origin of coordinates.  
We set: 

r2 = x2 + y2 + z2, 
 
and we will be led to study the integrals that depend upon only r and t.  They satisfy the 
celebrated equation of Euler and Poisson that Darboux made a profound study of: 
 

(4)     
2 2

2 2 2

1 2V V V

r c t r r

∂ ∂ ∂− +
∂ ∂ ∂

 = 0. 

 
 An easy calculation will bring it into the form: 
 

  
2 2

2 2 2

1
( ) ( )rV rV

r c t

∂ ∂−
∂ ∂

= 0, 

so 
  r V = f (r + ct) + ϕ (r − ct), 
 
in which f and ϕ denote arbitrary functions of the characteristic variables r + ct and r − ct. 
 One will then have: 

V = 
( ) ( )f r ct r ct

r

ϕ+ + −
. 

 
 That integral admits characteristic singularities that are defined by the form of the 
functions f and ϕ, along with the fixed pole r = 0.  The latter singularity can disappear for 
certain combinations of arbitrary functions.  In particular, if one has: 
 

f (r + ct) = 
1

r ct+
, ϕ (r − ct) = 

1

r ct−
, 
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then the integral V will come down to the fundamental integral (1): 
 

2 2 2

1

r c t−
. 

 
 
 11. – Now consider the case of a pole that displaces along the Ox axis with uniform 
velocity v.  In order to convert the problem of the wave with moving pole into that of the 
wave with fixed pole, it is natural to perform a change of coordinates by setting x = x1 + 
vt. 
 The partial differential equation (3) will then become: 
 

(5)    
2 2 2 2 2 2

2
2 2 2 2 2 2
1 1 1

1
2

V V V V V V
v v

x y z c t x t x

 ∂ ∂ ∂ ∂ ∂ ∂+ + − − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
= 0. 

 

 Equation (5) contains a term in 
2

1

V

x t

∂
∂ ∂

.  One makes them disappear by a new 

transformation that is performed on the variable t.  Supposing that v2 < c2, we will have: 
 

(6)      θ = β t − 1
2

v x

c β
, 

 

in which β denotes the Lorentz factor 
2

2
1

v

c
− . 

 If we take v to be a new variable, in place of t then we will convert equation (5) into 
the symmetric form: 

(7)     
2 2 2 2 2

2 2 2 2 2 2
1

1
1

v V V V V

c x y z c θ
  ∂ ∂ ∂ ∂− + + −  ∂ ∂ ∂ ∂ 

 = 0. 

 
 By a further transformation: 

(8)      x′ = 1x

β
= 

x vt

β
−

, 

 
we will finally recover the form of the original equation: 
 

(9)      
2 2 2 2

2 2 2 2

V V V V

x y z θ
∂ ∂ ∂ ∂+ + −

′∂ ∂ ∂ ∂
= 0. 

 

                                                
 (1) HADAMARD, “Sur les solutions fondamentales et l’intégration des équations linéaires aux dérivées 
partielles,” Ann. Ec. Norm. Sup. (1904) and (1905). 



Le Roux – Special relativity and wave geometry. 14 

 It is clear that formulas (6) and (8) define the Lorentz transformation.  That is obvious 
for formula (8).  In formula (6), when one replaces x1 with its value x1 = x – vt, one will 
find that: 

(10)    θ = β t − 2

( )v x vt

c β
−

 = 2

1 vx
t

cβ
 − 
 

. 

 
 We integrate equation (9) by Poisson’s method, while setting: 
 

r′ = 2 2 2x y z′ ′ ′+ + , 

 
and get the general form for the desired integral with two arbitrary functions: 
 

(11)    V = 
( ) ( )f r c r c

r

θ ϕ θ′ ′− + +
′

. 

 
 
 12. Modulus and parameter of radiation. – The denominator r′  takes the form: 
 

r′ = 
2

2 2
2

( )x vt
y z

β
− + +  

 
when it is expressed as a function of the original variables. 
 We give that quantity the name of the modulus of the integral V. 
 The points that correspond to the same value of the modulus in the moving system are 
situated on the surface of an ellipsoid of revolution that has Ox for its axis and the 
moving pole for its center. 
 That surface is flattened in proportion to the Lorentz contraction factor. 
 The characteristic arguments v′ ± c θ, upon which the arbitrary functions depend, 
correspond to series of waves; the positive waves, which dilate concentrically around the 
pole, and the negative waves, which, by contrast, contract when one approaches that 
point.  For one of them, the pole constitutes a focus for emission, and for the other one, a 
focus for absorption. 
 In the motion of the wave, the variation of modulus is always equal to that of the 
argument cθ in absolute value.  In what follows, we shall set cθ = u′ and it give the name 
of radiation parameter to that quantity. 
 The expression for the radiation parameter depends upon only the constant c and the 
velocity of dragging of the moving system, when both the magnitude and direction of that 
velocity are considered. 
 We likewise let u = ct denote the radiation parameter of a system of fixed axes. 
 
 
 15. Ellipsoidal interference waves. – Consider the case of a doublet that is 
comprised of the juxtaposition of a focus for emission and a focus for absorption that 
correspond to equal periodic waves. 
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 For example, let: 
 

f = A sin 
2 ( )r uπ α

λ
′ ′− +

, ϕ = A sin 
2 ( )r uπ β

λ
′ ′+ +

, 

 
in which A, α, β, λ denote constants. 
 The corresponding value of V will take the following form: 
 

(12)   V = 
2 2 2sin 2 cos 2

r uA

r

α β β α

π π
λ λ

+ −′ ′+ +

′
. 

 
 That form exhibits a series of stationary interference surfaces in the moving system. 
 The function V will be annulled for any radiation parameter at the points where the 
modulus verifies the condition: 

r =
2

n
λ

  (n integer). 

 
 There is interference at those points. 
 For that reason, we give the name of interference waves to the ellipsoidal waves that 
correspond to the constant values of the modulus. 
 If one considers a system of moving axes with the same directions as the fixed axes 
that have their origins at the pole of the wave then the interference wave surface will be 
represented by the equation: 

2
2 21
1 12

x
y z

β
+ + = u2 = const. 

 
 
 14. Physical significance of the Lorentz transformation – We call the particular 
surface that corresponds to u = 1 the interference ellipsoid of the moving medium. 
 The wavelengths of the interference waves will vary with direction by virtue of the 
contraction of the interference wave in the direction of displacement of the pole.  
However, if we evaluate the distances in radii of the ellipsoid (or, more precisely, if we 
refer them in each direction to a unit that varies in proportion to the radius of the 
interference ellipsoid that corresponds to that direction) then the axes of the ellipsoid will 
be measured in terms of equal numbers.  That change of units is equivalent to the 
transformation: 

1x

β
= x′, y1 = y′,  z1 = z′. 

 
 We now have a very simple and precise physical interpretation for the Lorentz 
transformation. 
 Let u and u′ denote the radiation parameters for the waves that are attached to two 
reference systems, respectively, and set v / c = α.  The Lorentz formulas will then take 
the following form: 
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 x′ = 
1

β
(x – α u), u′ = 

1

β
(u – α x), 

 y′ = y,  z′ = z,  β = 21 α− . 
 
 In each system, the rectilinear distances are measured in radii of the interference 
ellipsoid that relates to the system considered.  We give the name of Lorentz variables to 
those values of the coordinates. 
  
 
 15. Phase (1) of the radiation parameter. – The values of the radiation parameter 
are simply proportional to time in the fixed system.  In the moving system, those values 
will propagate or shift by way of plane waves.  Upon expressing u′ as a function of t and 
x, one will have: 

u′ = 2

c vx
t

cβ
 − 
 

. 

 
 The phase velocity is then equal to c2 / v. 
 In the system of variables x1, y1, z, t that relates to the axes that are comoving with the 
translational motion of the moving pole, but whose lengths will preserve their usual 
significance, one will have: 

u′ = 2 1
2

vxc
t

c
β

β
 − 
 

. 

 
 The phase velocity is equal to c2 β / v when it is measured in wave lengths of the 
interference wave and in time.  It is the geometric mean of two others. 
 
 
 16. Periods. – Consider a periodic function of the radiation parameter; let U′ be its 
period.  The corresponding period referred to time will not be the same for the two 
systems of axes.  Let T be the period, when referred to the fixed system, and 
consequently take x = const., by hypothesis.  One will have: 
 

T = 
U

c

β′
. 

 
 The period T1 , which refers to the moving system, and when one takes x1 = const., by 
hypothesis, will be given by the formula: 

T1 = 
U

cβ
′
. 

 
 The ratio of the periods T / T1 is equal to: 

                                                
 (1) An expression that was employed by VARCOLLIER, “Les déplacements dans les champs de 
vecteurs et la Théorie de la Relativité,” Revue générale des Sciences (1918), pp. 101-114 and 135-146. 
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β 2 = 1 −
2

2

v

c
. 

 
 The product of the periods TT1 is equal to U′ 2 / c2.  The ratio U′ / c will be the period, 
when referred to the variable θ that is defined by equation (10), and it will correspond to 
Einstein’s pseudo-time in the case of light vibrations. 
 
  
 17. Progressive waves. – Instead of taking the viewpoint of interferences, consider 
the locus of points that are attained at an epoch t by an instantaneous perturbation that 
issues from moving pole at a previous instant t0 .  The problem amounts to the search for 
the locus of points for which the characteristic argument r′ – u′ of the positive wave has a 
constant value that is given at the epoch considered t.  The initial value is equal to: 
 

0u′  = 0
0 2

vx
t

c c

β  − 
 

, 

 
in which one can suppose that x0 = ct0 , moreover. 
 At the epoch t, one must then have: 
 

r′ – u′  = − 0u′ , 

or 
2r ′  = 2

0( )u u′ ′− . 

 
 By a simple calculation, one infers from this that: 
 

(x – x0)
2 + y2 + z2 = c2 (t – t0)

2. 
 
 As one would have expected, the locus is a sphere that its center at the point of origin 
of the perturbation and a radius that grows in proportion to duration.  That result is the 
same as if the pole were fixed.  In order to distinguish these ordinary waves from 
interference waves, we give them the name of progressive waves.  In the case of a fixed 
pole, the interference waves will coincide with progressive waves. 

 
 
 18. Analytical character of the functions that represent the modulus and 
radiation parameter of the moving wave. – When one introduces the radiation 
parameter in place of time, the partial differential equation for the wave propagation will 
take on the form: 

2 2 2 2

2 2 2 2

V V V V

x y z u

∂ ∂ ∂ ∂+ + −
∂ ∂ ∂ ∂

= 0. 

 
 The characteristic multiplicities are defined by the first-order equation: 
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22 2 2

2 2 2 2x y z u

ϕ ϕ ϕ ϕ ∂ ∂ ∂ ∂     + + −      ∂ ∂ ∂ ∂      
= 0. 

 
 We denote the left-hand side of that equation by D (ϕ).  The modulus r′ and that 
radiation parameter u′ satisfy the following relations: 
 

D (r′ ) = 1, D (u′) = − 1, 
 

r u r u r u r u

x x y y z z u u

′ ′ ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= 0. 

 
Using a notation that is frequently employed, the last of these relations can be represented 
by: 

D (r′, u′) = 0. 
 
 It is easy to deduce from these results that the functions r′ − u′ and r′ + u′ satisfy the 
partial differential equation for characteristic multiplicities. 
 Upon then attaching the Lorentz transformation to the theory of characteristics and 
the motion of the propagation of waves with moving pole, one sees how the problem can 
be generalized to arbitrary motions.  The difficulties that one encounters are of a purely 
analytical order and have the same character for all of the problems that relate to the 
integration of partial differential equations. 
 
 
 19. Extension to the case of arbitrary velocities. – We have consistently supposed 
that the velocity of translation v is less than the speed of propagation of c.  That 
restrictive condition is not obligatory.  For speeds that are greater than c, the interference 
waves will be hyperbolic, and the modulus will be annulled on the surface of a real cone.  

The Lorentz coefficient of contraction must be replaced with 2 1α − ; however, aside 
from that detail, the calculation will be identical.  The case of v = c is a singular case that 
will necessitate a special study. 
 The fact that the Lorentz transformation can be presented in the study of interferences 
of any wave system shows sufficiently that the conclusions that one believes can be 
inferred in the special case of light are not well-founded. 
 Moreover, mathematical theories have no mysterious power to govern phenomena.  
Einstein’s pretense of enacting a restrictive condition to which the laws of nature must be 
subject is difficult to assume. 
 The analytical operations have neither the significance nor the scope that one thus 
attributes to them.  They are not facts that one bends to our formulas; they are formulas 
that must be adapted to observation, and we cannot pretend to attribute a precision to the 
result of our calculations that is greater than that of the experimental data upon which 
they are founded. 
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 20. Anisotropic, homogeneous systems. – The fact that the Maxwell equations 
preserve their form under Lorentz transformations seems to indicate that interference 
waves and the radiation parameter must be very important in the study of optical 
phenomena and electromagnetism when one has to consider moving foci.  From the 
purely analytically viewpoint, their consideration permits us to generalize our results 
quite simply, in addition.  Indeed, we can envision the much more general case of the 
propagation of waves in an anisotropic, homogeneous medium.  If one always takes the 
interference ellipsoid to be the quadric directrix for the measurement of distances then, as 
we have pointed out, the equations will preserve exactly the same form as for isotropic 
systems.  The calculations and the expression for the integral itself will remain identical.  
We will always have an elliptic modulus r and a radiation parameter u that is a linear 
function of time and the coordinates. 
 The anisotropy of the waves can be revealed only by measurements that are made 
with instruments that do not participate in the apparent deformation of the waves.  If the 
lengths are evaluated in terms of radii of the interference ellipsoid then any distinction 
between isotropic and anisotropic systems will disappear. 
 We then arrive at a result that is quite interesting, and which explains the role of the 
theory of special relativity in the intrinsic study of wave systems.  One can have a notion 
of the displacement of the focus in the medium only by comparison with other 
phenomena. 
 
 
 21. Remark on the Michelson experiment. – In the Michelson experiment, the 
interference phenomena are observed with the aid of instruments that are alleged to be 
rigid.  One does not find them then in the case of homogeneous phenomena that we just 
spoke of.  The study of experiments can be facilitated to a certain degree by the results 
that we have established already. 
 The usual discussion is obviously defective and can allow some doubts about the 
validity of the conclusion to persist.  Meanwhile, we assume that they are exact.  The 
consequences are interesting, but have no relationship with Einstein’s theory. 
 The experiment must exhibit the flattening of the interference waves.  On the 
contrary, the results obtained tend to show that under the conditions and limitations of 
observation, the interference wave is rigorously spherical, in the physical sense of the 
term, since the measurements are made with terrestrial instruments. 
 The modulus r then denotes a true distance.  The equation of the characteristic 
multiplicity in four variables: 

v2 = (u – u0)
2, 

 
gives the interference wave that we just envisioned when it is interpreted by supposing 
that u = const..  The same equation gives another quadric that represents the progressive 
wave when it is interpreted by supposing that t = const..  Since the radiation parameter u 
is a linear function of the coordinates, that quadric will generally be an ellipsoid of 
revolution that has the moving pole for its focus. 
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 We then arrive at an interesting result that was pointed out by Poincaré (1) in a less 
general form, rediscovered by Ch.-E. Guillame (2), and likewise corresponds to the 
research of Sagnac (3). 
 It is the progressive wave that gives the law of variation of the relative velocities of 
propagation.  From that result, one does not therefore have the right to say that those 
velocities are equal in all directions.  The isotropy of the interference wave does not 
imply the isotropy of the progressive wave. 
 At the same time, we obtain another very important consequence. 
 The ellipsoidal form of the progressive wave no longer permits us to assume that the 
medium of propagation is isotropic in the restricted domain in which one performs the 
experiment. 
 In that domain, the Earth will then influence the medium, and consequently, the 
propagation of light. 
 As for the form and nature of that influence, the scope of possible hypotheses is 
extremely vast.  We shall not formulate any.  The only legitimate consequence that we 
can infer from the Michelson experiment is the isotropy of the interference wave.  We 
have no information about the expression for the parameter u.  The result is quite 
interesting, but it presents nothing paradoxical when one examines it with no 
preconceived ideas. 
 In our calculations, we have supposed that the medium can be considered to be 
homogeneous in the domain of the experiment and that the measurements are performed 
with the aid of terrestrial instruments. 
 In order to explain the result of Michelson’s experiment, Einstein supposed that, in 
addition to the terrestrial observers, there exist other observers that are carried along by 
the motion of the Earth.  Those observers will be endowed with an appropriate set of 
compressible rulers and retarded chronometers whose readings will correspond to those 
of the terrestrial instruments by way of the Lorentz formulas. 
 The intervention of these hypothetical personages seems hardly useful in the context 
of the question, because we can speak only in terrestrial language of terrestrial 
measurements and terrestrial observers.  Moreover, in the Michelson experiment, one 
does not have to consult the chronometer or establish the comparison with the other 
chronometers that do not exist and are carried by observers that do not exist either.  
Those elements are entirely foreign to the interpretation of phenomena. 
 
 

___________ 
 

 
 

                                                
 (1) Science et Méthode, pp. 239.  
 (2) Comptes rendus du Congrès Int. des Math. de Strasbourg, pp. 602. 
 (3) Compt. rend. Acad. Sci. 174 (1922), pp. 29.  



CHAPTER III 
 

GEOMETRY OF WAVE SYSTEMS  
 

 22. – The geometry of wave systems in an isotropic medium comes down to the study 
of Lorentz transformations when it is considered from the most general viewpoint.  In 
that study, one encounters geometric properties that are quite interesting. 
 We have given the precise significance of the Lorentz formulas independently of any 
considerations of metaphysical chronometers and enchanted rulers. 
 If one is given two systems of axes in uniform, translational motion with respect to 
each other then they will each correspond to an interference ellipsoid and a radiation 
parameter.  Since lengths are assumed to be measured in terms of radii of the interference 
ellipsoid, we have the Lorentz formulas in the normal form: 
 

x′ = 
1

β
(x – α u), u′ = 

1

β
(u – α x), y′ = y,  u′ = z. 

 
 Since the factor 1 / β is greater than unity, we set: 
 

1

β
 = cosh ϕ, 

α
β

= sinh ϕ, α = tanh ϕ, 

 
upon introducing the hyperbolic functions. 
 The first two Lorentz formulas become: 
 

(13)    
cosh sinh ,

sinh cosh .

x x u

u x u

ϕ ϕ
ϕ ϕ

′ = −
 ′ = − +

 

 
 By their form, they recall formulas of rotation, with the substitution of hyperbolic 
functions for circular functions. 
 One has identically: 

u′2 − x′2 − y′2 − z′2 ≡ u2 − x2 − y2 − z2. 
 
 Let dσ 2 denote the common value of the two sides of that identity.  The quantity dσ 
that the relativists call the elementary interval is a relative invariant under Lorentz 
transformations.  Conversely, the group of transformations that preserves the invariant dσ 
constitutes the most general Lorentz group. 
 
 
 23. Determination of the transformations of the Lorentz group. – From the 
geometric viewpoint, it is extremely easy to obtain the most general transformation that 
preserves the form dσ. 
 One knows that the linear transformations with constant coefficients are the only ones 
that replace a quadratic differential form with constant coefficients with another form of 
the same nature.  We will then have to occupy ourselves with only linear transformations.  
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We shall even neglect the additive constants in order to confine ourselves to the case of 
homogeneous forms. 
 The equation: 
(14)     u2 − x2 − y2 − z2 = 0 
 
can be considered to represent a sphere of radius equal to unity in homogeneous 
coordinates.  Any substitution that reduces the left-hand side to the form: 
 
  u′2 − x′2 − y′2 − z′2 
 
will be obtained by taking the reference tetrahedron to be a tetrahedron that is conjugate 
with respect to the sphere.  Conversely, any conjugate tetrahedron will correspond to a 
linear substitution that enjoys the required property. 
 Of the four summits of a conjugate tetrahedron, there is only one of them that is 
interior to the sphere; that summit will be the point O′, which has the homogeneous 
coordinates x′ = 0, y′ = 0, z′ = 0 in the new system.  The plane u′ = 0 will be the polar 
plane to O′. 
 The trihedron O′ x′ y′ z′ must be conjugate with respect to the imaginary cone whose 
summit O′ circumscribes the sphere.  If one would wish that it should be, at the same 
time, tri-rectangular then it is necessary that one of the new coordinate axes should 
coincide with the axis of revolution OO′ of the cone; the other two will be subject to only 
the condition that they must be mutually-perpendicular and perpendicular to OO′.  
Finally, in order for the transformation to be reciprocal – i.e., the first system should be 
deduced from the second one in the same way that the second is deduced from the first 
with conservation of orthogonality – it is likewise necessary that one of the axes of the 
first system must coincide with OO′. 
 Therefore, take that line to be the common axis of x and x′.  Let u = 1, x = α, y = 0, z 
= 0 be the homogeneous coordinates of the point O′ in the first system of axes.  The polar 
plane P′ to that point has the equation u – α x = 0 in the first system and u′ = 0 in the 
second.  The plane perpendicular to OO′ that is drawn through the point O′ is represented 
by the equations: 

x – α u = 0, x′ = 0, respectively, 
in the two systems of axes. 
 Upon denoting the constant coefficients by λ and µ, one will then have: 
 

u′ = λ (x – α u), x′ = µ (x – α u). 
 
 The variables u′ and x′ are expressed as homogeneous functions of u and x.  The 
variables y and z are likewise expressed with the aid of only the variables y′, z′, since the 
corresponding coordinate planes pass through the same line OO′. 
 The proposed identity: 

u′2 − x′2 − y′2 − z′2 ≡ u2 − x2 − y2 − z2 
 
then splits into two other ones: 
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u′2 − x′2 = u2 − x2,   y′2 + z′2 ≡ y2 + z2. 
 
 One infers from the first that: 

λ2 – µ2 = 
2

1

1 α−
. 

 
 The second one expresses the idea that the directions of the axes O′ x′ and O′ z′ are 
deduced from the corresponding axes of the first system by a simple rotation. 
 The conditions of orthogonality and reciprocity obviously restrict the number of 
parameters upon which the most general transformation will depend.  The result obtained 
translates into a sort of hyperbolic rotation for the variables u and x and an ordinary 
circular rotation for the variables y and z.  Upon neglecting the latter rotation, one will get 
the Lorentz transformation in its customary form. 
 
 
 24. The modulus. – The cone that circumscribes the sphere (14) and has the point O′ 
for its summit will be represented by the equation: 
 

(u – α x)2 – (1 – α2) (u2 – x2 – y2 − z2) = 0. 
 
 The left-hand side of that equation reduces to the following expression: 
 

(1 – α2)
2

2 2
2

( )

1

x u
y z

α
α

 − + + − 
 = (1 – α2) (x′2 + y′2 + z′2), 

 
in which one will recognize the square of the modulus of the wave with moving pole, up 
to a factor. 
 All of the elements of the transformation, including the modulus, are then defined 
entirely by a point O′ that is assumed to be interior to the fundamental sphere considered. 
 The abscissa of the polar plane to the point O′ is equal to 1 / α. 
 It represents the phase velocity of the new radiation parameter u′ with respect to u. 
 
 
 25. Composition of Lorentz transformations. – What one calls the composition of 
velocities in the theory of relativity is, in reality, equivalent to the composition of Lorentz 
transformations. 
 In the domain of the four variables u, x, y, z, a displacement will be represented by a 
variation in those quantities.  Consider an infinitely-small displacement du, dx, dy, dz, 
and let dσ be the corresponding interval.  Set: 
 

ds2 = dx2 + dy2 + dz2. 
 
The equality that defines the interval can be written: 
 

dσ 2 = du2 – ds2, 
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which permits one to set: 
 du = dσ cosh ϕ, 
 ds = dσ sinh ϕ, 
 
upon letting ϕ denote the argument of the hyperbolic functions. 
 The components dx, dy, dz of the displacement along the axes have the form: 
 

dx = l dσ sinh ϕ, dy = m dσ sinh ϕ, dz = n dσ sinh ϕ, 
 
while the parameters l, m, n are coupled by the relation: 
 

l 2 + m2 + n2 = 1. 
 
 The ratio ds / du is assigned to a velocity in the theory of relativity; we call it a 
pseudo-velocity.  In effect, time, properly speaking, does not enter into the question; as 
we have seen, it is not necessarily proportional to the radiation parameter. 
 One has: 

ds

du
= tanh ϕ, 

 
so the components of the pseudo-velocity along the axes will be: 
 

dx

du
= l tanh ϕ,  

dy

du
= m tanh ϕ, 

dz

du
= n tanh ϕ. 

 
 Any pseudo-velocity of that form corresponds to a point O′ that is interior to the 
fundamental sphere that was defined previously, and the point O′ likewise corresponds to 
a Lorentz transformation. 
 Now, refer the same displacement to a second reference system u′, x′, y′, z′.  Upon 
letting ϕ′ denote the hyperbolic argument that relates to the displacement in that system, 
one will get formulas that are analogous to the first ones: 
 

du′ = dσ cosh ϕ′, dx′ = l′ dσ sinh ϕ′, dy′ = m′ dσ sinh ϕ′, du′ = n′ dσ sinh ϕ′. 
 
 Finally, let θ denote the hyperbolic argument of the Lorentz transformation that 
establishes the correspondence between the two systems: 
 
 x =    x′ cosh θ + u′ sinh θ, 
 u = + x′ sinh θ + u′ cosh θ. 
 We will immediately get: 
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(15)   

cosh cosh cosh sinh sinh ,

sinh sinh cosh cosh sinh ,

sinh sinh ,

sinh sinh .

l

l l

m m

n n

θ ϕ θ ϕ θ
θ ϕ θ ϕ θ
θ ϕ
θ ϕ

′ ′ ′= +
 ′ ′ ′= +
 ′ ′=
 ′ ′=

 

 
 Since the coefficient l′ denotes a cosine, the first two equations of that group recall 
the fundamental formulas of non-Euclidian trigonometry.  We shall see the reason for 
that later on. 
 As before, set: 

tanh θ = α, 
1

coshθ
= β. 

 Equations (15) give: 
 

(16)   

/
tanh ,

1 /

/
,

1 /

/
.

1 /

dx dx du
l

du dx du

dy dy du

du dx du

dz dz du

du dx du

αϕ
α

β
α

β
α

′ ′ += = ′ ′+
 ′ ′

= ′ ′+
 ′ ′

= ′ ′+

 

 
 If the displacement considered is directed along the axis Ox then one will have: 
 

l′ = 1, m′ = n′ = 0, 
which implies that: 

ϕ = ϕ′ + θ, 
so 

tanh ϕ = 
tanh tanh

1 tanh tanh

ϕ θ
ϕ θ

′ +
′+

. 

 
 
 26. Case of pseudo-velocities that are greater than that of light. – Up to now, by 
our use of hyperbolic functions, we have supposed that the components of the pseudo-
velocity are all less than unity.  Meanwhile, a similar calculation can be performed in the 
case of arbitrary pseudo-velocities.  Consider the case of two pseudo-velocities α and α′ 
that have the same direction.  The resultant pseudo-velocity α1 will be given by the 
formula: 

α1 = 
1

α α
αα

′+
′+
. 

 
 The difference 1 – α1 is no longer necessarily positive.  One has: 
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1 − α1 = 
(1 )(1 )

1

α α
αα

′− −
′+

. 

 
 That quantity will change sign when one of the velocity components crosses unity or 
also when the denominator is annulled. 
 Therefore: If one of the components of the pseudo-velocity is equal to unity then the 
resultant pseudo-velocity will also be equal to unity.  If one of the components is equal 
and opposite to the phase pseudo-velocity of the radiation parameter then the resultant 
will become infinite. 
 The sum 1 + α1 can be put into a similar form: 
 

1 + α1 = 
(1 )(1 )

1

α α
αα

′+ +
′+

. 

 
 
 27. The Lorentz transformation and Cayley geometry (1). – Up to now, we have 
confined ourselves to the consideration of Lorentz transformations that preserve the 
Euclidian orthogonality of the axes.  However, one can examine the more general case by 
a simple geometric method that leads to an interesting application of Cayley’s notion of 
angle and distance. 
 We have shown that the Lorentz transformation can be represented by a 
homogeneous coordinate transformation that preserves a fixed sphere.  In a tetrahedron 
that is conjugate with respect to the sphere, the interior summit will play a special role 
when one considers only translational pseudo-velocities that are less than unity. 
 The center O of the sphere corresponds to a certain fundamental reference system (S).  
Any other point P that is interior to the sphere will define a translational pseudo-velocity 
with respect to the system (S) that will be measured by the vector OP.  One can take the 
point P to be the pole; it will correspond to another system (S′ ).  The pseudo-velocities 
that are referred to the system (S′ ) are not measured by the Euclidian lengths of vectors. 
 For example, if one considers a point P1 that is different from P then the pseudo-
velocity that corresponds to that point with respect to the system (S′) will indeed be 
measured by the Euclidian length OP1 , but the pseudo-velocity relative to the system (S′) 
will not be measured by the Euclidian length PP1 .  It will then seem that there is a 
difference between the two systems.  Now, it is possible to make it disappear by a process 
of measurement that is applied to all systems indifferently, no matter what their 
corresponding pole. 

 Let v denote the vector OP .  The hyperbolic argument θ of the Lorentz 
transformation that permits one to pass from the system (S) to the system (S′ ) will be 
defined by the equality: 

tanh θ =
2

2

1

1

e

e

θ

θ
−
+

= v, 

and one will consequently have: 

                                                
 (1) CAYLEY, “A sixth memoir on quantics,” Trans. Roy. Phil. Soc. London, 1859. 



Le Roux – Special relativity and wave geometry. 27 

θ =
1 1

ln
2 1

v

v

+
−

. 

 
 It is easy to give a projective form to that expression that will be preserved under a 
change of pole.  The line OP cuts the sphere at two point M and M′.  I have supposed that 
one has taken the positive sense on the line to the sense of M M′ . 
 The anharmonic ratio of the four points M, M′, O′ P is equal to: 
 

:
OM PM

OM PM′ ′
=

1 1
:

1 1

v

v

−
− +

= 
1

1

v

v

+
−

. 

 
 Upon denoting that anharmonic ratio by (MM′ OP), one will then have: 
 

θ = 1
2 ln (MM′ OP). 

 
 The particular role of the position that attributed to the point O initially will disappear 
in this new expression, and one can apply the same formula in order to pass from one 
point P1 to another one P2 . 
 The line P1 P2 cuts the sphere at two points N, N′. 
 The hyperbolic argument θ of the corresponding transformation will be given by the 
formula: 

θ = 1
2 ln (NN′ P1 P2). 

 
 That is precisely the expression for the Cayleyian distance that corresponds to the 
sphere considered, when it is taken to be the fundamental quadric. 
 Let [P1 P2] denote that distance.  It is obvious that one has a straight line: 
 

1 3[ ]PP  = [P1 P2] + [P2 3P ] 

 
for a system of three points P1, P2, P3 . 
 The Cayleyian distance from any point P to a point on the surface of the sphere is 
infinite. 
 The pseudo-velocity that corresponds to the argument θ is always equal to tanh θ, no 
matter what the pole of the reference system.  Cayley geometry thus provides a very 
simple image of the composition of pseudo-velocities. 
  
 
 28. Analytical expression for the Cayleyian distance. – I believe that is useful to 
briefly recall the calculation of the Cayleyian distance as a function of the coordinates. 
 Let two points P1 (x1, y1, z1), P2 (x2, y2, z2) be interior to the fundamental sphere.  The 
coordinates of any point of the line P1 P2 can be put into the form: 
 

x = 1 2

1

x xλ
λ

+
+

, y = 1 2

1

y yλ
λ

+
+

, z = 1 2

1

z zλ
λ

+
+

. 



Le Roux – Special relativity and wave geometry. 28 

 Upon expressing the idea that the point M is found on the sphere, one will get a 
equation that has degree two in λ: 
 

2 2 2 2 2 2 2
1 1 1 1 2 1 2 1 2 2 2 2(1 ) 2 (1 ) (1 )x y z x x y y z z x y zλ λ− − − + − − − + − − −  = 0. 

 
 One sets: 

Fij = 1 – xi xj – yi yj – zi zj ; 
 
the equation in λ will take the abbreviated form: 
 

F11 + 2λ F12 + λ2 F22 = 0. 
 
 Let λ1 and λ2 be the roots of that equation that correspond to the intersection points 
M1, M2 . 
 The anharmonic ratio (M1 M2 P1 P2) is equal to λ1 / λ2 . 
 One then has: 

eθ = 1

2

λ
λ

, 

so: 

cosh θ = 1 2

2 1

1

2

λ λ
λ λ

 
+  

 
 = 1 2

1 22

λ λ
λ λ
+

 = − 12

11 22

F

F F
. 

 
 We infer from this that: 

sinh2 θ = 
2

12 11 22

11 22

F F F

F F

−
, 

and as a result: 

tanh2 θ = 
2

12 11 22
2

12

F F F

F

−
, 

 
 Upon developing the expression for sinh2 θ, one will find that: 
 
 sinh2 θ = 
 

2 2 2 2 2 2
1 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 2 1

2 2 2 2 2 2
1 1 1 2 2 2

( ) ( ) ( ) ( ) ( ) ( )

(1 )(1 )

x x y y z z y z y z z x z x x y x y

x y z x y z

− + − + − − − − − − −
− − − − − −

. 

 
 The expression for the Cayleyian line element is deduced from this immediately: 
 

dθ 2 = 
2 2 2 2 2 2

2 2 2

( ) ( ) ( )

(1 )

dx dy dz y dz z dy z dx x dz x dy y dx

x y z

+ + − − − − − −
− − −

. 
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 These formulas solve the problem of the composition of pseudo-velocities in the most 
general case. 
 When the expression for dθ 2 is assigned to a line element, it will lead to the 
expression for the element that replaces the angle in Cayleyian terminology. 
 The Cayleyian angle comes down between a logarithm of the anharmonic ratio, like 
the distance. 
 Let ∆ and ∆′ be two lines that intersect at a point P that is interior to the sphere.  One 
can draw two conjugate imaginary tangents T and T′ to the sphere through the point P in 
the plane ∆∆′.  The Cayleyian angle of the two lines is the product of 1 / 2i with the 
anharmonic ratio of the four lines T, T′, ∆, ∆′.  That definition, along with that of 
distance, is obviously inspired by the usual expression for the angle that was given by 
Laguerre in 1853 (1). 
 
 
 29. Cayleyian geometry and Lobachevskian geometry. – F. Klein (2) observed in 
1871 that Cayleyian geometry provides a simple representation of the propositions of 
Lobachevski when one takes the elements to be the points and line segments that are 
interior to the fundamental sphere, and one evaluates the distance using Cayley’s 
definition.  It is interesting to point out how that representation is attached to the 
representation that was utilized by Poincaré in the theory of Fuchsian functions.  The 
correspondence is extremely simple in the case of plane geometry.  The fundamental 
sphere is then replaced by a circle (C) in the fixed plane considered Π. 
 Imagine a hemisphere (Σ) that is situated above the plane Π and passes through the 
fundamental circle (C).  Any point P in the plane Π that is interior to the circle (C) is the 
projection of a point P′ on the hemisphere.  A line segment that is interior to the circle 
(C) is the projection of a semicircle in Σ.  The imaginary tangents that issue from P to the 
circle (C) are the projections of the rectilinear generators of the sphere that passes 
through P′. 
 The anharmonic ratio of the sheaf that is defined by two arbitrary lines that pass 
through P and the two imaginary tangents to the circle (C) is equal to that of the sheaf of 
four homologous lines that pass through P′ and are drawn in the plane tangent to the 
sphere at that point.  It results immediately from this that the Cayleyian angle between 
two lines that pass through the point P is equal to the angle at which it cuts the 
semicircles of the hemisphere (Σ) on the sphere that correspond to those lines, 
respectively. 
 It remains to transform the expression for the Cayleyian distance.  Let P1 and P2 be 
two points in the plane Π that are interior to the circle (C), and let M and M′ be the two 
points where the line P1 P2 cuts the fundamental circle (C).  Let ρ denote the radius of the 
semicircle that projects onto the line M′ P1 P2 M, and let ϕ1 and ϕ2 respectively denote 
the angles that M′ M forms with the radii of that semicircle that ends at the points 1P′ , 2P′   
that are homologues of P1 and P2 .  The anharmonic ratio (M′ P1 P2 M) is equal to: 
 

                                                
 (1) LAGUERRE, “Sur la théorie des foyers,” Nouvelles Annales de Mathématiques, 72 (1853), pp. 57. 
 (2) F. KLEIN, Math. Ann. 4 (1871); ibid. 6 (1873); ibid. 7 (1874).  
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1 2

1 2

(1 cos ) (1 cos )
:

(1 cos ) (1 cos )

ρ ϕ ρ ϕ
ρ ϕ ρ ϕ

− −
− + − +

= 
2

1
2

2

tan / 2

tan / 2

ϕ
ϕ

. 

 
 The hyperbolic argument that we have denoted by θ and which represents the 

Cayleyian distance between two points is then equal to ln
2

1
2

2

tan / 2

tan / 2

ϕ
ϕ

. 

 Now, if one joins the point M′ to the points M, 1P′ , 2P′  and completes that sheaf by 

adding the tangent to the semicircle at M′ then the anharmonic ratio of the sheaf thus-
constructed will be the constant anharmonic ratio of the four points M, M′, 1P′ , 2P′   of the 

semicircle. 

 The angular coefficients of the four lines considered are 0, ∞, tan 1

2

ϕ
, tan 2

2

ϕ
, 

respectively, so the anharmonic ratio has the value tan 1

2

ϕ / tan 2

2

ϕ
, and one will have: 

 
θ = ln anh. rat. M M′′ 1P′ 2P′ . 

 
 Now, perform a stereographic projection of the hemisphere (Σ) onto the plane Π.  The 
semicircles whose planes are perpendicular to Π project along the arcs of circles that are 
normal to the circle (C).  The points M1, 1M ′  are preserved; 1P′ , 2P′  project onto 1P′′ , 2P′′ , 
respectively.  The anharmonic ratio (M M′′ 1P′′ 2P′′ ) on the arc of the circle of the 

stereographic projection is equal to the anharmonic ratio (M M′′ 1P′ 2P′ ) on the semicircle 

of the sphere (Σ).  It is, consequently, equal to the square root of the anharmonic ratio of 
the four points along the straight line M1, 1M ′ , P1, P2 . 

 Since the angles are preserved by stereographic projection, the Euclidian angle 
between two arcs of a circle that is normal to the fundamental circle is equal to the 
Cayleyian angle between their chords. 
 One thus recovers the well-known representation of the fundamental elements of non-
Euclidian geometry. 
 The use of the hemisphere (Σ) likewise provides a very simple image of the Lorentz 
contraction.  Let P be a pole in the plane Π, and let P′ be its image on (Σ).  A small circle 
on Σ that has the point P′ for its pole will project onto an ellipse in Π.  The ratio of the 
axes of that ellipse is equal to the Lorentz contraction coefficient for the translational 
velocity that corresponds to the point P. 
 
 
 30. Extension to three-dimensional figures. – The extension of the preceding 
method to three-dimensional figures is extremely simple.  The fundamental sphere: 
 
(Σ)      1 – x2 – y2 – z2 = 0 
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is the projection onto the space (x, y, z) of the four-dimensional semi-hypersphere (Σ) that 
is defined by the following equation and inequality: 
 

2 2 2 21 0,

0.

x y z w

w

 − − − − =


>
 

 
 We can repeat the arguments that we applied to the three-dimensional figure that we 
considered before with that four-dimensional figure, and we will obtain the 
transformation of rectilinear segments into arcs of circles that are normal to the 
fundamental sphere. 
 If one considers the coordinates x, y, z to be the components of a pseudo-velocity in a 
system (S) then the fourth coordinate w will represent the derivative dσ / du of the 
interval with respect to the radiation parameter.  That fourth variable will then have a 
very precise physical significance. 
 Of course, the results that we just presented are not essentially new, but it seemed 
useful to me to recall them in order to accentuate the mathematical interest of the 
geometry of wave systems. 
 
 
 31. The Minkowski universe (1). – To conclude this brief study of the Lorentz 
transformation and the questions that are attached to it, I would like to add some 
observations on the Minkowski universe.  One knows that Minkowski considered the 
three coordinates of space and time to be the elements of a four-dimensional multiplicity 
that he called the universe.  The use of geometric language in order to describe sets in 
which the spatial coordinates and time vary simultaneous is not new.  It presents itself 
advantageously in certain questions, and Hadamard (among others) recently made use of 
it in his Leçons sur la propagation des ondes.  One can criticize the terminology 
employed; it is somewhat ridiculous to wish to represent the universe with the aid of only 
four variables.  However, there are other more serious reproaches.  Under the pretext that 
the four variables appear symmetrically in his formulas, Minkowski presumed to 
eliminate the physical distinction between those quantities, which is absurd.  If one 
replaces u with si in the quadratic form: 
 

− ds2 = dx2 + dx2 + dz2 – du2 
then it will become: 

− ds2 = dx2 + dx2 + dz2 + ds2. 
 
 That symmetric form has some advantages for certain calculations.  In particular, the 
Lorentz transformations reduce to orthogonal transformations in four variables, which 
constitutes an interesting reconciliation. 
 Similarly, the equation of wave propagation takes the symmetric form of the usual 
potential equation: 

                                                
 (1) “Die Grundgleichungen für die elektromagnetische Vorgänge in bewegten Körpern,” Nachr. der K. 
Ges. d. Wiss. zu Göttingen, 1908. 
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2 2 2 2

2 2 2 2

V V V V

x y z s

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

= 0. 

 
 However, one should not conceal the fact that this simplification is illusory in the 
interpretation of real phenomena.  The analytical characters of real integrals are very 
different according to whether the characteristics are real or imaginary.  Similarly, the 
distinction between real and imaginary is essential for Lorentz transformations. 
 In order to account for the character of the Minkowski transformation, one can 
compare it to the transformation of x2 – y2 into x2 + y2 that replaces an equilateral 
hyperbola with a circle. 
 That computational gimmick can be advantageous in certain cases, but it presents 
some inconveniences in other.  However, it is only a gimmick, and the conclusions that 
one pretends to deduce from the standpoint of physical realities are absolutely 
unacceptable. 
 

__________ 
 

 



CHAPTER IV 
 

INTERFERENCE AND REFLECTION OF PLANE WAVES  
 

 32. – If plane waves are considered to issue from an infinitely-distant pole then one 
can refer them to two systems S and S′ that are in uniform, translational motion with 
respect to each other indifferently.  We say that S is fixed and S′ is in motion. 
 An integral V of the form: 
 

V = A sin 2π 
lx mv nz a u

λ
+ + + −

, 

 
when referred to the system S, will become: 
 

V = A sin 2π 
l x m v n z a u

λ
′ ′ ′ ′ ′ ′ ′ ′+ + + −

′
 

 
under the Lorentz transformation when one sets: 
 

(17)  l′ = 
1

l

l

α
α

−
−

, m′ = 
1

m

l

β
α−

, n′ = 
1

n

l

β
α−

, a′ = 
1

a

l

β
α−

, λ′ = 
1 l

λβ
α−

. 

 
The equality l2 + m2 + n2 = 1 implies that l′ 2 + m′2 + n′2 = 1. 
 The first three of formulas (17) are equivalent to formulas (16). 
 One can compare these results with the condition for two plane wave trains to admit 
stationary interference planes in a given reference system. 
 Let two integrals of the same intensity and the same period in the system S be: 
 

 V  = A sin 2π 
lx my nz a u

λ
+ + + −

, 

 V1 = A sin 2π 1 1 1 1l x m y n z a u

λ
+ + + −

. 

 
 The sum V + V1 is annulled at all points of the planes that are represented by the 
equation: 
(18)  (l − l1) x + (m − m1) y + (n − n1) z + (a − a1) = ( )1

2n λ+  (n integer). 

 
 Consequently, those planes are sheets of stationary interference in the system S. 
 In the system S′, those two wave trains will no longer have the same period in general 
and will not have to define the sheets of stationary interference. 
 
 
 33. Two sheets of stationary interference in the moving system. – Let us look for 
the relations that must exist between the periods of two wave trains in the system S in 
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order for them to interfere at S′.  The Lorentz transformation yields the result 
immediately; meanwhile, it seems useful to me to do the calculation directly upon first 
supposing that S′ is deduced from S by a simple translation in the ordinary sense of the 
word.  We let λ and λ1 denote the periods. 
 As a consequence, set: 

x1 = x – α u 
 
and keep the other variables the same. 
 The characteristic arguments of the integrals will become: 
 

1 1(1 )lx my nz a u lα
λ

+ + + − −
, 

 

1 1 1 1 1 1

1

(1 )l x m y n z a u lα
λ

+ + + − −
. 

 
 In order for the radiation parameter u to disappear in the difference between the 
arguments, it is necessary and sufficient that one must have: 
 

(19)     
1 l

λ
α−

= 1

11 l

λ
α−

. 

 
 When that result is compared with the last of formulas (17), it will express the idea 
that the transformed periods of λ and λ1 under the Lorentz transformation are equal to 
each other. 
 If that condition is realized then the stationary interference planes of the two wave 
trains, when observed in the system S′, will be parallel to the plane: 
 

(20)    1

1

lx my nz

lα
+ +

−
− 1 1 1 1

11

l x m y n z

l α
+ +

−
= 0. 

 
 Equation (20) simplifies by the introduction of the Lorentz transformation. 
 Indeed, an immediate calculation will convert this into the form: 
 
(21)    1 1 1( ) ( ) ( )l l x m m y n n z′ ′ ′ ′ ′ ′ ′ ′ ′− + − + +  = 0. 

 
 It remains to interpret that result geometrically.  If one supposes that the interference 
waves are true spheres in the system S then the planes of the interference sheets (18) will 
be parallel to one of the planes that bisect the planes of the plane waves considered. 
 However, in that case, the interference waves of the system (S′ ) will be ellipsoids; the 
equation: 

x′2 + y′2 + z′2 = 1 
 
represents an ellipsoid, and equation (21) must be interpreted as a consequence. 
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 The bisecting planes of a dihedral are the planes that are both harmonically conjugate 
with respect to the faces of the dihedral and with respect to a sphere that has its center on 
the edge of dihedral. 
 If the directrix sphere is replaced with an interference ellipsoid then one will find 
oneself in the case of the moving system S′.  Therefore: 
 
 The stationary interference planes in the moving system S′ are parallel to one of the 
two planes that are conjugate in direction with respect to the planes of the wave fronts 
and with respect to the interference ellipsoid. 
 
 The expression for the wave front must be made more precise.  The use of the 
coefficients l′, m′, n′ implies that one is dealing with planes that correspond to the 
hypothesis u′ = const., and not to the hypothesis u = const.  It is therefore the radiation 
parameter of the moving system that must enter into the determination of those planes. 
 The preceding argument does not specify which of the conjugate planes is the one 
that corresponds to the direction of the stationary interference plane.  The process of 
eliminating u that we employed shows that the plane considered is the one onto which the 
propagation velocities of the two waves project in the same direction. 
 
 
 34. Rays of propagation. Aberration. – Hadamard has attached the notion of rays of 
propagation to that of bicharacteristics, i.e., one-dimensional lines or multiplicities along 
which the characteristic multiplicities touch their envelope. 
 In no. 18, we gave the partial differential equation for the characteristic multiplicities 
in the system of variables u, x, y, z. 
 The differential equations for the bicharacteristics that correspond to a given integral 
are: 

dx

x

ϕ∂ 
 ∂ 

=
dy

y

ϕ ∂
 ∂ 

=
dz

z

ϕ∂ 
 ∂ 

=
du

u

ϕ
−
∂ 
 ∂ 

. 

 
 In the particular case of plane waves: 
 

lx + my + nz – u = const., 
one has: 

dx

m
=

dy

n
=

dz

n
=

1

du
. 

 
 These equations can be applied to the systems of fixed or moving coordinates 
indifferently, provided that the variable u denotes the radiation parameter relative to the 
system considered, and that one takes care to interpret them while taking into account the 
form of the interference ellipsoid. 
 They express the idea that the ray is parallel to the diameter that is conjugate to the 
plane wave in the interference ellipsoid.  That is what we call the pseudo-normal 
direction to the plane. 
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 The correspondence between the directions of the rays with respect to the two 
systems of axes in uniform, translational motion with respect to each other will result 
immediately from formulas (17) when one employs Lorentz variables in the two systems. 
 A ray of propagation in the first one: 
 

0x x

l

−
= 0y y

m

−
 = 0z z

n

−
= 0

1

u u−
 

 
corresponds to a homologous ray in the second one: 
 

0x x

l

′ ′−
′

= 0y y

m

′ ′−
′

 = 0z z

n

′ ′−
′

= 0

1

u u′ ′−
, 

 
in which the denominators of the two groups are coupled by formulas (17). 
 The first three ratios of each system define the stationary spatial direction of the ray, 
when expressed in Lorentz variables. 
 Consequently, those equations solve the problem of aberration in the most general 
case. 
 
 
 35. Reflection. – The results obtained for stationary interference phenomena apply 
just the same to the reflection of waves from a plane mirror that displaces in the medium 
considered with a uniform, translational motion. 
 We must necessarily suppose that the motion of the mirror alters neither the 
homogeneity nor the isotropy of the mirror.  The plane of the mirror is then a stationary 
interference plane for the incident and reflected waves. 
 The law of reflection is deduced immediately from that remark.  The direction of the 
plane of reflection corresponds to a pseudo-normal, as defined above. 
 The two rays are harmonic conjugate with respect to the pseudo-normal and the line 
of intersection of their plane with the plane of the mirror.  Therefore, the interference 
ellipsoid will again replace the sphere in the study of the phenomenon of reflection.  In 
order for the light ray to reflect into its own direction, it is necessary that it must be 
directed along the pseudo-normal to the plane of the mirror. 
 One can make an interesting remark on this subject.  In the system S′, which 
participates in the translational motion of the mirror, the incident and reflected rays have 
the same wave length.  On the contrary, the wave lengths in the system S generally differ 
from each other.  Even in the case where the two rays are superimposed in S′, the two 
rays of the system S will have different periods.  For example, if one is dealing with light 
vibrations then the incident and reflected rays of the system S will not have the same 
color.  Furthermore, it is convenient to add that the rays considered are not stationary in 
the system S.  In reality, our calculations of the periods apply to the two systems of plane 
waves of the system S that correspond to the directions of the incident and reflected 
waves in the system S′. 
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 36. Reflection and interference of elementary polar waves. – One will arrive at 
similar conclusions in a moving system when one studies the reflection of an elementary 
that issues from a simple pole or the interference of two identical elementary waves that 
issue from the different poles that are linked to the same system.  In those questions, it is 
the elliptic modulus of the wave (no. 12) that replaces the distance and the pseudo-normal 
that replaces the normal. 
 The formulas that relate to stationary interference phenomena or reflection are 
generally obtained by the elimination of time.  However, from the form itself of the 
integral, the elimination of t will imply that of the radiation parameter u.  The 
calculations and the results will then keep the same form in the case of rest or motion, as 
long as one takes into account the physical significance of the modulus. 
 
 
 37. – In all of the preceding, I have confined myself to deducing the mathematical 
consequence of the equation of wave propagation without formulating any new 
hypothesis or introducing any new principle. 
 We have been able to state that for the observations that are performed in a moving 
reference system, it is always the interference ellipsoid that plays the role of directing 
element. 
 Time enters only into the radiation parameter, where it generally appears to degree 
one in the position coordinates, but with a coefficient that can vary a great deal from one 
phenomenon to another. 
 Our calculations are not directed towards light phenomena, in particular; they extend 
to all vibratory phenomena that propagate in an isotropic medium. 
 The formulas that are obtained are analogous to the ones that one pretends to establish 
at the basis for the principle of special relativity.  We then showed that this principle is 
useless for the study of optical and electromagnetic phenomena, since the same results 
can be obtained much more neatly and precisely by the simple analytical study of the 
wave equation. 
 On the other hand, since the extension of Einstein’s principle beyond that category of 
phenomena constitutes an abuse that is based upon an ambiguity, the very neat 
conclusion to which we arrive will be the following one: 
 
 The principle of special relativity, in the Einstein sense, sometimes constitutes a 
pointless redundancy (superfétation) and sometimes an absurdity, according to the 
domain to which it is applied. 
 

__________ 
 


