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The conditions of equilibrium for a funicular curve e.,.a flexible and inextensible
filament whose elements are subjected to forcesftinat a continuous system — are
discussed in all of the treatises on mechanics. deetenote the length of an arbitrary
element, leP dsdenote the force to which it is subjected HgandP; be the normal and
tangential components & resp., and finally leT denote the tensions that element feels
from the neighboring elements. One finds the two eqgusitio

Pt+d_T =0,
ds
Pn"'I :01
P

with no difficulty. 1 /r is the curvature of the point considered. Moreover,l@sethat
the osculating plane of the curve passes through thetidmeofP.

Upon referring the curve to three fixed rectangular axekcalling the components
of the force parallel to those three aXe¥, Z, one will get the following three equations,
which will likewise solve the problem:

d(T% + X ds=0,
ds

d( ﬂ +Y ds=0,
ds

d(Td—Z +Z ds=0.
ds

When the forces are given in magnitude, direction, andesdghose three equations
will determine the form of the curve and the tensioeath point. On the contrary, if one
supposes that the form of the curve is given then théyield two conditions that the
forces must satisfy and permit one to calculate thesidaes that result from the
application of forces that satisfy those two condgjan addition.

It is natural to seek the generalization of the prolddgrstudying what happens when
each of the points of a perfectly flexible and inexteestlrface is subjected to forces
that have the same order of magnitude as the corresgpeal#ments. In particular, one
can demand to know:

1. What are equilibrium conditions for a surface tisatsubject to well-defined
forces?

2. What are the laws by which one develops the effdrtermsion between the
various elements of a surface in equilibrium?
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3. What is the deformation that a given surface will sulbonunder the action of
forces that do not satisfy the equilibrium conditions?

After having done considerable research in order to knowdnk that might have
given rise to those questions, | have acquired theiction that no one has addressed
them further, and that their novelty has made me deoidiedicate the present work to
them. Without pretending to exhaust a subject thas isxtensive as it is difficult, 1 will
be content if | have succeeded in laying the milestohestbeory that deserves to take
its place in science.

| have no need to recall here the beautiful work kgt given rise to the geometric
properties of surfaces; it will naturally provide me with@ngoing basis. The theory of
deformation of surfaces, which has become classidalytahanks to the discoveries of
Ossian Bonnet, Bour, Codazzi, etc. has been partiguladful to me.




CHAPTER |
GENERAL CONSIDERATIONSON THE THEORY OF SURFACES

We believe that we must first establish the funddaleiormulas of the theory of
surfaces as rapidly as possible. Such a summary efl&mown theory will provide us
with the occasion to fix a certain number of notagioas well as to make some remarks
that will be useful in what follows, in order to neturn to them.

An arbitrary surface can be defined by expressing thee§iant coordinates y, z as
functions of two arbitrary parametetsy: :

(1) x=¢1 (A 1), y=¢:2(A 1), z=¢s(A, 1) .

The curves! = const.,i = const. draw a net on the surface that will baagonal if
one imposes the condition:
0x0x 0ydy, 0207
0Adu 0Adu 0Aadu

which we write in the abbreviated form:

0A ou

We letL, M denote the metric coefficients that correspond totwee surfaces =
const.,A = const., resp.; i.el, dA, M du represent the arc lengths of the two curves that
are found between the curvésA + dA andy, ¢+ du . We denote the radii of geodesic
curvature of the two curves Iy, 0, which are supposed to be positive when they point
in the same sense as the positive arc lendtdg, L dA, resp. R; , R, denote the radii of
normal curvature, andl;, T, denote the radii of geodesic torsion. The positivessef
Ri, Ry, T1, T2 will be, in a certain sense, chosen arbitrarilylwsriormal.

Having said that, one has:

3) LZ:Z(%T M2=Y oY
1)’ ou)
On the other hand, some very simple geometric considiesawill give:

I°M _ < 0x 0°X M _ < 0x 9°x
@ =Y o T Lo
o) ou 04 P> 04 du

Let X, Y, Z be the direction cosines of the normal, which afendé by the equations:



Chapter | — General considerations on the theory of ®gfac 5

Lmx = Y 92_0yoz
A du oy o)

LMy = 929%x_0z0x
97 du  ou o)

LMz = 9X 9y _0x 0y
Aoy ou o)

One effortlessly finds that:

2 2 2 2 2
) U_yx @ M_LM_g 0% M'_ s, 0%

R oA T, T, 0Adu R, ou’’
B . M 9°Xx
soT: =T2. We letT represent the common value that is glvenIJ%g?L —z X YV
u

In order for that formula to be exact in sign, illwuffice to agree that when is
positive, the positive sense of the normal at the fddint) will make an acute angle with
the positive sense of the tangent to the cdrweconst. at the pointA( 1+ dg).

The groups (3), (4), (5) give seven equations that givie, 4, o1, o>, Ry, Ry, T as
functions ofx, y, z If one combines them with equation (2) then onegatla system of
eight equations, from which, one can eliminate/, z, which will lead to five distinct
equations betwedn M, o1, 0, R, Ry, T. We shall construct these five equations.

Equation (2) gives:

Zax 62x+26x62x _o

oA o) o’
As a result:

'M _ ¢ 0x 0%x

o “ororou’

Moreover, one infers from the first of equations (2tth

2
L6L_ 0xX 0°X

o “ororou’
Hence:
L*M __ L%,
j2) ou
and consequently:
1 __dL/ou.
p M

similarly:
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1 oL/0A
(6) S = 5
o, LM

The definitions o, Y, Z lead immediately to the relations:

X2+Y24+72%2=1,

Zx%: 0, Z)(%: 0.
04 ou
One deduces from this that:

oX _
Zxa—)l-o,

%a_x:— ZX 62)(:—_|_2
92 9/ o2 R

OXOX _ _ 5 O°x _ -M
op A Aou T

If one considers%, g—: g—i to be the unknowns in these three equations, fand i
one remarks that:
X Y Zz
0A 04 04
ox 0y 0z
ou ou ou

then one will get:
0X _ 1ox 1L ox

91 RO TMoy
One will likewise have:

OX __ 10x_1M ox

o Rou T LA

Differentiate the value a¥X / dA with respect tq/ and then differentiate the value of
0X /ouby A, and equate the two results that one obtainsywhénd that:

x (1 _1) oxo(1) 9xa(1
arou\R, R) 0dou\ R) ouarl R
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_1[ L 9°x_M o’ _%i(_Lj+2<i(_Mj -0
T\MaZ Lar2) auou\MT) adoA\ LT

Multiply that equation byx / dA, and combine it with similar equations yrandz
Upon taking into account the relations:

ox 9°x __L°M
04 0A0u o

0x 0°x _M?L
NoZ  p,

ox 0°x _ dL
—Z ==
04 0A° 0A

moreover, then we will arrive at the equation:

P, T

@ ié(l/Rl)__la(llT)+_l( 1 _1} 21

M a L a4 p\R R

One will likewise have:

10@/R)_1o@T) 1(1 1| 21
o T

L a4 M o pR R

The groups (6) and (7) already provide four of the desired eggatiin order to get the
last one, calculat@®x / 9A* by means of the equations:

ZX 62x = LZ

01> R’
xox _ oL
04 017 ou’
ox 9°x _L’M
oo’ p

one gets:

9°x _ L2 1L dx L* ox
= X4————
12" R Larod Mp, ou
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Take the derivative with respect tp multiply by ox / du and add that to the other
two analogous expressions; one will find that:

ox o __ LM Maom EGM+M1( L j
Mo,

ouor’oy R R Loddd p oy Loy

On the other hand, one has the equations:

2
Zx 0°X = M,
oAou T
Z%—azx = L%
o orou  ou’
X PxX ¢ 0X X __ LM?
011 0 du 0N 0 0,

and as a result, upon operating as above:

ox _Ox _ _LM® LMo _MLOM _,.,0 (L
Ou 0A*du T pou p oA ou\ p,)

ox 0°x : .
——— and making some reductions, one

Upon equating the two values Ea— Y
U

will arrive at the desired equation:

11 (A, (1) tewp)_ 100p)_,
RR T p,) M ou L aA

P
The fundamental relations that exist between ments of the surface are then:

16(1/%)_ia(lfT)+_1(_1__1j+_2—1:o,
L oA M o p\R R) pT
iaa/a)_gaafru_l[_l__l}_z_l:o,
- M du L a4 p(R R) pT

1_1 ,13@/p), 10Qp,)_ 1_ 1_,
T2 RR M du L 04 o P
1_ oLl 1_ oM I/dA

o) LM o, LM
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These equations show immediately that under the defmrmaf an inextensible

surface, by definition, the coefficientsandM will remain invariable functions of and

1

=g
When one proposes to find all of the surfaces #natdeduced from each other by a
deformation without extension, it will suffice toomsiderL, M, o, o to be given
functions andRy, R;, T to be unknowns. The first three equations (8) thi#in determine
those unknowns, and all of the difficulty will cong®mwn to the integration of those
equations?)

In the rest of this article, we will then be led envision the infinitely-small
deformations of a given surface in a special fashid we letl, m, 8 denote the unknown
variations that result for 1 R;, 1 / R;, and 1 /T under such a deformation then the
equations of the problem will become:

L, and that the same thing will be true for the geodesiccaadcnjrvatures%—

1om_100 1-m 2 _,
Lod Mou p, P
(9) 1a _ _1ﬁ+m—l 2‘9:0’
Moy LoA p  p,
1,m_ 25
R R T

These equations are much simpler than equatignb€Bause they are linearlimm,
6. It can then happen that they are integrable awitithe same thing being true for
equations (8).
If one sets:
_ T b= T

to abbreviate, then the third equation in (9) Wwécome:
f=al +bm

When that value o® is substituted in the first two equations, thall veiad to the
following system:

_aol 1 _ 26_m+ m_|+£(al+bm)—— |@+m@j:o,
04 04

Lod Moy Lod p,

_a al 1 om b am l-m 2 0 a 0 al _
+—(a|+bm)—— +m— |=0.
M a,u LA M 6,u yo R o) M ou

(10)

() Ossian Bonnet has proved (Journal de 'Ecole Polyigcie, Cahier2, pp. 35) that seven functions
L, M, o, o, R, Ry, T that satisfy equations (8) will always determine ors@mly surface.
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Choose the values bandm arbitrarily for all points of a curve(4, 1) = 0. The two
equations:

I ir+ L gu-di=o,
A ou
M1+~ dm=o,
ax . ou

when combined with the previous two, will determine the vadlfegl— of om om

01" oy’ 04" ou’
in general. One will then know the values of the unkm® for the points of a curve that
is infinitely close to the first one, and upon procegdn that way, step-by-step, one will
find the deformation of any surface.

However, when the determinant of the four equatiomsrs, i.e., when:

a1 b
L M L
a 1 b
0 — = -—|=
L L M 0,
dA duy O 0
0 0 dA du

the four equations will be incompatible, unless each ahtlsenot a consequence of the
other three. Upon developing the determinant, onefinallthat:

bL?dA+LMdldu+aM?di#=0,
or

2LM

2 2
Ld/12+ dA d,u+M— du’=0.
R R

That equation is the one for asymptotic lines.
One can then say that:

The asymptotic lines of a surface are the charasties of its infinitely-small
deformations.

For an arbitrary line that is traced on the surface,aamn give the deformation that it
IS subject to arbitrarily; on the contrary, an asymptdéie can be deformed only
according to a well-defined law.

One will find that law easily by supposing that the cutvesconst. constitute one of
the systems of asymptotic lines. One will then havd&k1+ 0, and as a result, will be
zero, along with its derivatives (we exclude the casdesklopable surfaces here, for
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which 1 /R, = 0 would imply that 1 T = 0). Seta = 0 in equations (10) and eliminate
om/0A ; one will then have:

2
(11) iﬂ—b_a_m+(_b—_1j| + _1—_b+23(_1+_bj—_1ﬂ)—_ba_b m=0.
P Py P P, P2 Py

In order to satisfy that equation, one can chabsesalues om arbitrarily;| will then
be determined by a first-order linear equation. wigleer, in the general case, it is
impossible to find how and m vary when one passes from one characteristic to an
infinitely-close one. In order to do that, one toistain the values dfandm that satisfy
equation (11) and one of equations (10); for exampl

(12)

Lol M p, |p Moy

1om bom, I-m (Zb 16bj _
+ + =0.
Here, we point out an interesting property of tisgnaptotic linel = const. If one

supposes that one has= 0 for that line thend will also be annulled, sinca = 0.
However,| can vary while remaining subject to only the cotindt

1a (b 1) _
——+|—-—1|=0.
Mou (p, p

The equationgn = 0 andd = 0, when combined with the one that expresses the
constancy of the geodesic curvature, say that ®ymptotic line considered will
experience no deformation. Hence:

One can subject a surface to an infinitely-smafbdaation such that the figure of a
given asymptotic line remains invariable.

That property belongs to only the asymptotic linésdeed, the first curvature R§
of an arbitrary lined = const. has a projection onto the tangent plaaeishthe geodesic
curvature, which will always remain independenttioé deformation, since the first
curvature can be invariable only if the angle tkadefined by the osculating plane and
the tangent plane is not modified. Under thoselitmms, the normal curvature, which is
equal to the projection of the first curvature otite normal plane to the surface, will no
longer change. On the other hand, the adgiebetween two consecutive osculating
planes is equal to the sum of the geodesic tomdidand the incremerdy in the angley
that is formed between the osculating plane ancténeesponding tangent plane. When
the curve is not deformedg anddywill remain invariable. The same thing will thba
true fordg, and consequently, the geodesic torsionTl [Finally, the constancy of the
quantities 1 Ry, 1 /T will imply that of 1 /R; .

One will then havé=0,m = 0, 8= 0 for all points of the surface considered, asc
result, from what we have seen, those quantitiieizero for all points on the surface.



12 Lecornu — On the equilibrium of flexible, inextensiblefaces

When the conditiom = 0 is applied to an asymptotic line, from the precedingt
condition will be sufficient for that line to remainvariable. Moreover, it expresses the
idea that the normal curvature remains zero, and asith ome can say that:

When an asymptotic line has an asymptotic line for its transform, tivosines will
be identical.

The proposition, which was proved for an infinitelyadimdeformation, will
obviously extend to an arbitrary finite deformation, proditleat the line is asymptotic in
all of intermediate states.

Conversely:

If an asymptotic line is not deformed then it will necessarityaia asymptotic.

That is because if it is not asymptotic in the finaketthen one cannot pass to the
initial state with deforming it. That is inadmissible.

If one imposes that the condition that all of tegraptotic lines of a systerm= const.
remain asymptotic under the deformation then equation i #yhich one has set = 0,
will give | = 0, as long as 1 # is non-zero; i.e., unless, the asymptotic lines are not
rectilinear generators. The quantities B;/ 1 /R,, and as a result, 1T, will then be
invariable, and the surface will not be deformable.

The proof is no more difficult in the case of atendeformation. When the system
A = const. is asymptotic, the total curvature will reduce 10o/T, and consequently, if the
system remains asymptotic then T will be invariable. Furthermore, since R/ = 0,
the first of equations (8) will give 1R; = const., unless 14 is non-zero. Thus:

Two surfaces that can be mapped to each other will coincide when theatiinear
asymptotic lines of one of the systems for one of the surfacesehasymptotic lines of
one of the systems for the other surface for its transform.

That theorem is due to Ossian Bonnet (Journal de IEEeolytechnique, Cahief2,
pp. 44).

We shall not dwell further upon these purely-geometoinsaerations, which we
have presented only because of the cardinal role offsyimlines in the problem of the
equilibrium of surfaces. In a paper that was read t&thal Irish Academy on 23 May
1853, Professor Jellett studied the deformation of surféioes an entirely analogous
viewpoint. The report (Proceedings of the Royal Iristademy, vol. V, pp. 441)
contains only the conclusions of that paper, which ardéalowing ones:

|. — CONVEX SURFACESdval surfacep

If a curve or a portion of a curve that is traced on an inextensible caawéace is
kept fixed then all of the surface will likewise remaiedix
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Il. - DEVELOPABLE SURFACES

1. If an arc of a curve that is traced on the surface and belongs to ndhedge of
regression nor a rectilinear generator is kept fixed then the eptréon of the surface
that is found between the edge of regression and the rectilinear gensethat pass
through the endpoints of the arc of the curve will likewise renmesal f

2. The edge of regression or a rectilinear generator can generally bee riiaed
without making any part of the surface fixed.

3. The rectilinear generators of a developable surface are rigid.

Observe here that the latter theorem is true only umeetain limits on the
deformation, since if one considers a portion of the dpadlle surface that does not
contain any part of the edge of regression then one caalogeit onto a plane, and then
unroll it onto another developable surface. It is obvioas #fier that deformation, the
new rectilinear generators will not generally corresptanthe original ones.

lll. = CONCAVO-CONVEX SURFACES

Professor Jellett gave the namecoifves of flexur@o the asymptotic lines, which are
then real, and stated these three theorems:

1. If an arc of a curve that is not a curve of flexure is keptfoe the surface, and if
one draws two curves of flexure through each end point of that arc thguoddelateral
that is found between the four curves of flexure thus formed mdirefixed.

2. One can fix a curve of flexure without forbidding the deformation of aitg fin
portion of the surface.

3. If two arcs of a curve of flexure that start from the same @omkept fixed then
the quadrilateral that is found between those two arcs and the other twesooir flexure
that are drawn through their second end points will likewise remaid.fixe

The proof of all these theorems is deduced effortlefssin the formulas that were
established before. Furthermore, we shall have toepsome propositions of the same
type on the subject of the equilibrium state.

When one seeks to treat the case of an infinitelytsieformation, instead of normal
curvatures and geodesic torsion, one can consider tHaalspent that each point of the
surface experiences and take the projections of thatad&pent onto three given
rectangular axes to be the unknowns. The first-ordtarential coefficients satisfy the

Z ( ax jz 2
aA ’
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ox )
2|5, =M
ou

0X 0X
oA 6,u

=0

before and after the deformation. élfn, { then denote the infinitely-small variations of
X, Y, zthen one will have:
0x 0§ _

92 92

%%: O’

ouou

0x 0 _ < 0x &
za)l oy zaya)l

Make the axe®©x, Oy, Oz coincide with the tangents to the curyes const. A = const.,
and the normal to the surface at the poty( 2), respectively. The three equations
reduce to:

% _ 9 _y L9 m 97

A ou oy 0A

Let hy, hy, k be the projections of the displacemefitrf, ) onto the two tangents and
the normal, resp., in a general way. One will have:

hy = f, h, = n, k = Z
for the present position of the coordinate axes.

Moreover, upon keeping the ax@x, Oy, Oz fixed and varying the position of the
point x, y, 2), one will find, with no difficulty, that:

10¢_1oh h k 106 _10h N Kk
LA Lod p R’ Mou Moy p, T
dop_1oh R _k 1og_1oh h _k
Mou Mou p, R, LA Mou p T

The unknownsy, hy, k must then satisfy the three equations:
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ioh _h, Kk
Lod p R’
(13) i%:i.{__k,
Mou p, R
1oh, 1oh _Xx_h_1h
Mou LOA T p p

Upon eliminatingT, one will get two first-order equations im and h, whose
characteristics will again be asymptotic lines of theamaf which one can easily assure
oneself.

Equations (13) can serve as the proof of the theorbatswe have presented that
were concerned with the deformation of surfaces; kewat is would be pointless for us
to dwell at length upon that subject.



CHAPTER I
STATIC PROPERTIES OF SURFACES

Consider a surface in equilibrium under the actionieérg forces that we shall call
external forcesand imagine that one cuts out an arbitrary closed oot that surface.
The portion of the surface thus-detached will remain inlbguim when one applies
conveniently-chosen forces that are tangent to tHacur In all that follows, we shall
refer to them by the name fufrces of tensionand we shall always suppose that they are
referred to a unit of length, just as one refers thespres in a fluid to a unit of area. The
force of tension that is exerted upon an element otéomtour is, in general, oblique to
that element. It will then have a normal componedtatangential component. One can
call the former thdorce of extensiolr compressionaccording to its sign, and call the
latter theshearing force(These terms are borrowed from the theory of thisteexce of
materials.) Any linear element of the surface is subjeca force of extension and a
shearing force, whose sense will reverse when onsidgms one or the other of the
portions of the surface that the linear element segmrat

A B

- ]

Figure 1.

The surface element that is found between two orthdgomees ¢, A + dA) and (,
M+ du) projects onto a figur&BCD in its tangent plane (Fig. 1) that can coincide vaith
rectangle upon neglecting the infinitesimals of ordigher than one. Within the same
limits of approximation, the tensions will project orttae magnitudes; moreover, they
will be constants on each of the sides and equal (butopjplsite signs) on two parallel
sides. If one takes the sum of the moments offalieforces with respect to the normal
that is drawn to the center of the rectangle thenvahesffortlessly see that the external
forces and the extension forces can give only momehtsecond order, while the
shearing forces andt’, one of which is exerted up@B andCD, while the other one is
exerted upoAC andBD, will give the resultant moment:

(t—t) ABx BD.

Equilibrium of the rectangular element is then possinlly if t =t”. That gives the
theorem:

The shearing forces that are developed at a given point on two line eldhentsit
at a right angle are equal.
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The equalityt = t” supposes that the forceandt’, which are applied tangentially to
the side<CA andCD, are both directed toward or even both of them can diverge. We
shall assume that for a rectangle whose siiesand CA are positive fronC to D and
from C to A, the shearing forces will be positive when they pantt One will see the
reason for that convention later one.

We define the sense of the forces of extension thateaeeted upon the same
rectangle by assuming that on the two sidBsandCA, they are positive when they have
the same sense as the positive directi©@AsCD.

Figure 2.

Now project onto its tangent plane a triangular elntéat is composed of the
orthogonal curved, 4, and a third curve that is required only to be at ainitefy-small
distance from the point at which the first two meétpon neglecting infinitesimals of
order higher than one, one can get the right tria@B® (Fig. 2) for the projection,
which one can regard as being equal to the one-half aéthengleABCD. It is easy to
see that the forces of tension, which are supposed pmdigve CD andDB, will have
the directions that are represented by the arrows.leWalenote the shearing force that
is common toBD and CD, while n; and n, will denote the extension forces that are
exerted orCD andBD, resp. The sid8C is likewise subject to tensions. We suppose
that the positive sense of the shearing fofcis that ofC to B and the sense of the
extension forc&\ will be the sense that points into the triangle.

Upon projecting all of the forces onBEL and its perpendicular and remarking that the
external forces give only second-order terms, onehaile:

(14) { N=ncofa+n sifa+ Z sim cos |,

T=t(cosa-sirfa » (- n, )sinr cog

The second formula shows thats annulled at each point for two real, rectangular
directionsOX, OY that are defined by:

tan 20':2—I

n-n,
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Upon makingAC andBC coincide with those two directions, which one can tal
principal directions of tensigrone will have:

N =n; cog a +n, sirf a,
T=-(m—-np) sinacosa.

y
M

Figure 3.

Let OM be the directiona (Fig. 3). Draw a lineOF, which represents the
corresponding tension in sense and magnitude at som@agyisitale. The coordinates of
the pointF are:

x=Tcosa+Nsina = msina,
y=Tsina—-Ncosa =—-n; cosa.

Hence, upon letting denote the angleOX, one will have:

tanatanf = —i.

n2
Whena varies, the poinE will describe the ellipse:

2

2
+L2:1,
n

but a consideration of that ellipse would have no ytifitnce it does not depend upon the

o : . 1
directionsOF andOM in a simple manner. If we measure out the le@h= — =

N

1
\/nlcosza+n2 sifa

onOM then the coordinates of the poMtwill be:
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cosa

X = ,
\/nlcosza+n2 sifa

y= sina
\/nlcosza+n2 sifa

SO:
Ny X2 +n2y2 =1.

Upon comparing that equation with the one that givegtbduct tana tan S5, one
will immediately see thaOF and OM are two conjugate directions of the conic thus-
obtained. We call that conic thension indicatrix When referred to two rectangular
axes with arbitrary directions, its equation will been

X+ 2 xy+my = 1.

When the indicatrix is a real ellipse, all of theelialements that are drawn through
the point considered will be subject to the part ofshdace that has normal efforts of
compression. When it is an imaginary ellipse, thenabrefforts of compression will be
replaced with efforts of traction. When it is a hymdab the normal action will produce
an effort of compression for certain directions andefiart of traction for some other
ones, and in that case, there will exist two readadions for which the normal action
reduces to zero.

In certain cases, it can be interesting to know thal tintensity of tension that is
exerted on a line element. The square of that quast@iven by:

N?+T?=n’cosa+n’sirfa.

With that, the largest value of the total tensior welrrespond to the direction of the
small axis of the tension indicatrix.

The known properties of the diameters of a conic, wétaed for the indicatrix,
translate into a series of theorems on the tensiousjt would be pointless for us to
dwell upon that. We shall establish only a relatiort tha shall appeal to in what
follows.

Since the two directions andf are conjugate, if one letsdenote the angle that they
form between them, lefs; andN, denote their normal tensions, and I&ts denote the

normal tension in the element whose directiomri® + a then one will obviously have:

1 1 1 1
—_—t—=—+,
N, N, n n
sifg _ 1
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N1+Ni =N +ny.
Upon eliminatingy; andn,, one will infer that:
(15) N; + Ny = sirf @ (N +N;).

The considerations that we just discussed show tlmateiftraces out a double series
of orthogonal curved, 1 on a surface then it will suffice to know the extensefforts
and the common shearing effort that are exerted upoal¢neentd. dA, M du at each
point for the equilibrium state on the surface to bevkm completely. Len; be the
extension effort o dA, let np be the extension effort dvi dy, and lett be the common
shearing effortn;, ny, andt will then be the three functions df and i that must be
determined.

Upon considering the surface element whose sidek dde M du to be a free solid
that is subject to external forces and tension forleaisare developed on the contour, one
can write the equilibrium equations of an invariabledsolNaturally, the projection axes
will be the normal to the surface and the tangentsdaoordinate curves. Upon pushing
the approximation up to second order in the equationsegirbiections of the forces and
up to third order in those of the moments, one willthe¢ the equations of the moments
reduce to those of the projections, and one will are¥fortlessly at the equilibrium
conditions. However, the following method leads td tigective in a much-more-rapid
fashion:

As we have done before, lbt, h,, k denote the projections of the displacements at
each point of the surface onto the tangents to the cabegirand the normal after an
infinitely-small deformation. One will see immedat that the work done by the forces
of tension will be equal to:

0 0
{a(Lnlnz— Ltm+6_)l(M n h- Mthé,)}d)l du .

Let F be the external force per unit area at the point/. Let F;, F, be its
components alongA, du, and let® be its normal component. The elementary work
done by the external forces that are applied to theegitist

(Fithy+Fohp +®K) LM dA du.
One must then have:

0 0
—(L - Lt —(M - Mth)=(F{1hi+Foh, + ® k) LM
a,u( nn hi)‘*a/]( nnh h)=(Fihi+F2h + ®K)

for all possible values df;, hy, k, or rather:

Afpo o) 1p0R oty 1 oh, 0n) 170k, ot
M[nla,uﬂlla,uj M(ta,quna,ujJrL(nza/lJrha/lj L(ta_/l+ tEa/lj
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+ (M —th =Fihi+Fhh+dk
(n2 hy b) M 1thi+kFahp

Replace the derivatives bf andh, with their values that one derives from equations
(13). Sincey, hy, k are capable of taking on an infinitude of independent vatrescan
then write down that the coefficients of those thgeantities are identically zero. That
will give:

iﬂ_iﬂ.}.—nl_nz.{.gzﬁ,
Lod Mou p £
(16) Llon 1ot n-n, 2_p
Moy Lod p  p
i-{-&—g::q)
R, R T

These equations are necessary and sufficient foritagunh, and they given, ny, t.
Since there are as many unknowns as equations, ifoNdw that F1, F,, ® are not
subject to any condition and that consequently:

A surface can exist in equilibrium under the action of arbitraryderc

That theorem seems paradoxical on first glance, buteifvaishes to understand why
the equilibrium conditions of a surface reduce to conustithat relate to the boundary
then it will suffice to recall that when a curve timtraced upon a surface remains fixed,
all of the surface will likewise remain fixed (as longthe curve is not an asymptote).
That makes the problem of the funicular curve completigferent from the problem that
we presently address.

The equations:

Pt"'d—T:O,
ds

Pu+I:O
0

indeed have a certain analogy with equations (16), but ey only to an unknown
tension whose elimination will lead to the equilibriuandition:

o= d(RA)
ds

There is no parallel in the case of surfaces.

The boundary conditions can be written explicitlyyomhen one has integrated the
equilibrium equations. If one finds that those coond#i cannot be satisfied then one
must conclude that the equilibrium of the surface doesxist and that it necessarily
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deforms under the action of the forces that are appbeit. One will then be led to
restrict oneself to the third and last problem that stated in the Introduction, viz.:

What deformation will a given surface experience under the acticoradsf that do
not satisfy the equilibriums conditions?

Here, it goes without saying that one must know hbe forces vary when the
surface is deformed. In order for the problem to bebd®luone must be able to
determine all of the surfaces that can map onto thengiwgface under the conditions that
are imposed upon it. It will then be necessary thatroast know how to integrate the
equilibrium equations for each of those surfaces amigfioe the conditions that relate to
the boundary. Whosoever would study the theory of tlieraation of surfaces and
account for the difficulties that are presented wibrtlessly admit that the problem that
we just posed exceeds the present scope of that scemiderably. | have succeeded in
obtaining some results along those lines for some y&@gial cases that one will find to
be discussed later on. Perhaps one will get somesgtigy theorems upon considering
surfaces that are subject to only very small deformatiand being content to use a
certain approximation. However, my efforts in this cetiare directed towards an
objective that is easier to achieve: | seek to anatheeequilibrium conditions for
surfaces and the laws by which one develops the varftarsseof tension. In a word, |
have concentrated my attention on the first two problahat were stated in the
Introduction.

It is useful to make a remark here in regard to the pedcpplications that can be
made of this theory: The distribution of tensions in dasér in equilibrium is entirely
independent of the inextensibility that |1 have attributedhat surface. That is because
when an extensible surface is in equilibrium, one cantatigrsuppress its extensibility
without changing anything. The conditions that relate he equilibrium of an
inextensible surface are then necessary for the equihlof that surface when it is made
extensible; however, they are generally sufficient.

The left-hand sides of equations (16) are identicale@cties in equations (9), except
for the names of the unknowns. It results from tisediately that:

When a surface or a portion of a surface is not subject to any exterma, fibve
tensions n ny, t that can develop will be proportional to the variations that the
curvaturesl /Ry, 1 /Ry, 1 /T experience under a certain infinitely-small deformation of
the surface.

That fundamental theorem gives the key to the inentiak that exists between the
problem of the equilibrium of surfaces and that of tdeiiormation.

There is an important simplification of equations (1), matter what the external
forces are. Set:

_ g, a _ g, a _a,a
n=n+—, m=n,+—, t—t+?.

The third equation will become:
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WheneverFeilRZ ——_I%z IS non-zero — i.e., whenever the surface is not dpable —

we can determine the functiarby the condition:

1 1
2 —-——
RR T
Substitute that value @& in the expression fam, ny, t. Since the first two equations in

(16) are linear, their left-hand sides will be annullddew one replaces, ny, t with i,

é?l or by those quantities when they are multiplied by astamt. All that will
remain is then:

lom, 1ot n-n A . 10a, 10a_.,

Lad Moy p, p - LRAA MTou *

=F,-
M a,u La)l yo) o MR, oy LT ou

One concludes from this that sirecés a well-defined function, as one just saw, and if
the tangential forcels;, F, are put into the form:

-, 1 o0a 1 oa
Fil=F+—————
LR, 04 MTou’

F, = FZ' i%—i%
MR oy LT oA

then the system of external forces can be dividedtiwagparts:

1. The normal forc& and the tangent forces:

10a_10a
LR, 04 MTou’
1 da_ 1 da

MR oy LToA’
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a
— as particular solutions. We

That system admits the tensians= i, n; = i,
R R T

refer to them by the name of thermal system.

2. Tangential forces;', F, with no normal forces. That system, which we réder

by the name of theangential systemwill give to some tensions that are determined by
the following equations, in which we have dropped the primesghwhave become
unnecessary:

iﬁ_iﬂ.}.m.{.gzﬁ,
Lod Moy p, p
1on 1ot ch-n 2 x _

(17) ——1-Z— .
M ou LM o P
n n2 2t
Rz R T

When one has found three valugs ny, t that define a particular solution of that
system, if one wishes to have the general soluticegoétions (16) then it will suffice to

add those particular solutions, term-by-term, to the 'mist%, %, ?a of the normal

system and the general values that satisfy the equatidms vanishing right-hand side.

The integration of the equations with a vanishing riginieh side constitutes the
problem of the deformation of surfaces, when it is &fired by the hypothesis that one is
dealing with an infinitely-small deformation. Consequgntthe special difficulty in the
problem of equilibrium lies in the search for a particudalution that relates to the
system of tangential forces.

If one knows two patrticular solutionk’;(m’, "), (1", m”, 8”) of equations (9) then
one can apply the method of variation of arbitrary camtstto the search for a particular
solution of equations (17).

Upon setting:

n=al’+bl",

n=am’+bnt,
t =afd'+bao",
one will have the two equations:

moa, mab_&
M

LoA Lo

da
ou

gok_
M ou

I6a " ob @ oa 6 ob _

_ -t =F

L 04 Ma)l LoA L oA
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to determine the functiorssandb .

The unknowns enter into these two equations only by tleivatives. That method
will lead to an advantageous result when equationad8)jit a solution ”, m”, 8” such
that one will have:

072 -1"m”= 0.

If one writes:

then the equations that determaandb will lead to the following one:

krrf—6?'@t+ r_W@:kFﬁFz,
L 04 M ou

which is an equation with only one unknown whose intémmnats incomparably simpler
than that of the two simultaneous equations.

The expressio®”? — 1”m” can be regarded as the invariant of the tension indicatri
upon supposing that the external forces are zero. Itale the principal tensiodsm
then one must have:

Im=1"m"-8"%=0,
sol =0 andm=0.

For example, lek= 0. Moreover, one will havé = 0 for the principal directions. If
one supposes that equations (9) refer to the principal dheension then they will
reduce to:

=M_M_y My, M-,
LoA p, P R

In order for these equations to be satisfied witlszttingm = 0 (which would imply
thatl”=m”= "= 0), it is necessary that 1of and 1 /R; must both be zero, which
would be true only in the case of rectilinear gahars.

The solutiond”2 — |” m” = 0 cannot exist then, and as a result, the psooés
integration that we have deduced will be applicaoy when we are dealing with a
ruled surface.

Let us return to the general system whose equifibis expressed by equations (16).
Upon substituting some arbitrary functionsiodndy for ng, n,, t, one can obviously find
an infinitude of values foFi, F,, ® that make the integration possible. For example,
one calls a constaAtand sets:

, nzzﬁ, t=0
M
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It would be puerile to multiply the examples of this kindnetheless, the following
case deserves to be pointed out.

If one has:
low _l1low

F= =29 Fo= =29,
Y "M oy

in which ais an arbitrary function, or what amounts to thms thing:

0 0
—((LF)=—MF),
a,u( 1) a)l( 2)

then one can set:
m=n +a
N =n, +a
and the equations will reduce to:

ion, 10t n-n A_
LoA Mou p, p

Thensetn =k/Ri+ n/, n,=k/Rx+ n;,t=k/T+t, in whichk is a constant. The
first two equations will not change form, and thght-hand side of the last one will

become:
¢_m[i+_1j —z{i—izj.
R R RR T

If that expression is zero then the three equatwill be found to have a vanishing
right-hand side, and one will be down to the problef infinitely-small deformations.
The same thing will happen whéns not a constant, but a function that satisfiesttvo
equations:

1 ok 1 0k _

LR, 04 MT oy

1ok __ 1 ok_,

LT 04 MR oy
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The last case is possible onIy—iFeierE——_l%2 =0 ; i.e., if the surface is developable.
However, k will then disappear from the expression for thenma force, which will
reduce to:

(OR m(i +—1j :
R R

It is interesting to look for the conditions thihe external forces must fulfill in order
for one to constantly have = n, andt = 0; i.e., for all of the directions that passotigh
the same point to be subject to identical tensidBg.virtue of that hypothesis, equations
(16) will reduce to:

1@: F.,

L 041

i@:FZ,

M ou
@:CD,
R

when one replaces andn, with n and denotes the mean curvat%«’[eé +?éj by 1/R.

If one setd. dA =ds , M du =ds then the desired conditions can be written:

2F, = 0@R)
0s,

2F,= 2OR)
0s,

One will find the third condition, viz.:

o/ _R_OF_F
ds, p 0s p,

upon eliminatingn from the values df; andF,, which reverts to the first two conditions.
When the external forces are everywhere normdhdosurface, the necessary and
sufficient condition for one to have = n, andt = 0 is thatdPR must be constant. If that
is true then the value ofwill be likewise constant at all points of the fage.
The points of a surface for which = n, andt = 0 play a role in regard to the tensions
that is analogous to the one that is played by licshin regard to the curvatures; one can
refer to those points by the nameuafbilical equilibrium points.
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In order to complete the analogy, it is necessaay titey must generally be isolated
on a surface in equilibrium in the manner of umbili®¥e will show that this is not the
case.

Indeed, consider a surface in equilibrium and refer goat®ns to the principal lines
of tension. In order to do that, it suffices totset0, which will give:

16n2+r1l n, _ —F,

L 04 0O,

lon . n-n N_g ’

M 0# j2)
i+& =o.
R, R

In order for a point to be umbilical, it is necagsand sufficient that one must have
n; =ny. Inorder for an infinitely-close point to b&dwise umbilical, it is necessary and
sufficient that one can find a directidp = k d1 such that one has:

O 249 gyy= O gy 9% g
o o T o o

Now, it results from the equality, = n; that:

Mp, Mowp,.
oA u

Upon differentiating the third equation with resp&s A and then setting; = n, and
i+—: —, one will find that:
R R

a_nl 0 20R FL
YRR R A R )

similarly:

‘31 ® 2 R _F,M
_Rla)l RdA R )

When these values are substituted into the equation

on, _on,
OH _ 9) A
04 On, _0n’

ou ou
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that will determine a direction (which is always uniqueless it is arbitrary) along which
there exists an umbilical point that is infinitely-adot® the first one.

As a result, if there exists an umbilical tensiompdhen there will exist an infinitude
of them that will form an umbilical tension line oretburface.

When an umbilical line belongs to one of the systehpwiacipal lines, its form will
be determined completely from what one knows at onésopoints. Indeed, if we
suppose that the umbilical is represente@/byconst. then we will have:

10n _ PR
__:F11 n=—
L oA 2

for that line, by virtue of the general integrals, so upgplacingL dA with ds:

AR _ o,
ds

At each point of the surface, there always existsamakonly one direction for which
that condition is fulfilled. Indeed, I&F be the projection of the external force onto the
tangent plane at the poiAt(Fig. 4).

P

Figure 4.

Let AM = ds be an element that passes throdgand makes an angle MAF = a
with AF. Letdg, do’ be the projections of that element oAb and the perpendicular
APto AF. One has:

dOR) 4o= AR 454 XEB 4
ds 00 oo’

or
d(®R) _ 0(PR) c
ds 0o

osa +

9®B sirg.
Jo
Furthermore, the componeRt of the external force alongM is equal toF cosa.
As a result, the condition that was found above canritgen:

0(PR)
do

o(®R

!

cosa + sino=F cosa,

or:
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- 0(PR)
o
0(PR)
oo’

tana =

which is a direction that is entirely independent of #mbitrary functions that were
introduced by the integration.

Whereas the other principal tension lines deform iaraitrary fashion according to
conditions that relate to the boundary, the umbilioa¢ will depend upon just one
arbitrary constant. In particular, when there areoional forces, the umbilical line will
always be an orthogonal trajectory of the tange riaes.

Regardless of the external forces, one can repsaahble part of the remarks that
were made before concerning equations (9) in the contexjuatiens (16). Hence, it is
generally possible to choose the values of two ofutilenowns arbitrarily for all points
of a curve that is traced on the surface, and one esnd#termine the state of the entire
surface. Meanwhile, that proposition cannot be corapldtue, because without it, if
one considers a portion of the surface that is boundedclysad contour and is subject
to arbitrary external forces then one can impose @heition that the extension force and
the shearing force must be zero for all points of the@aur. One will thus arrive at the
conclusion that a portion of the surface that is elytifree will remain in equilibrium for
any external forces, which is obviously an absurd resitltis easy to see why the
argument is vicious. Trace out a series of closed cumes portion of the surface, one
of which surrounds the others, and begin with the goamour in order to finally reduce
it to an isolated poinP. The law of tensions that the curve obeys will deteenthe one
that the tensions on an infinitely-close curve wbkg, and so on, until one arrivesRat
However, the law of tensions is well-defined for annitély-close curve that surrounds
the pointP. When one neglects infinitely-small quantities,sitexpressed by formulas
(14), in which only three arbitrary constants appear. dttgrary functions that are
introduced by integration must consequently be determinedeawer, they must be
chosen in such a fashion that the tensions at the p@re not infinite. Consequently, it
is not permissible to suppoaepriori that the contour is subject to no effort of tension.

In the case of surfaces with opposite curvatures,ghgidns that are exerted on a
closed contour will then satisfy another conditidhis obvious that equations (16), like
equations (9), admit the asymptotic lines of the surfaceahieir characteristics, which
will be real lines for that type of surface. The twbitsary functions that are introduced
by the integration are each a function of one or theratharacteristic parameter. In
other words, the general solution can be put into the:form

m =11 [A, 1 @1 (), @2 (a2)],
2 =12 [A, 1, 1 (1), @2 (a2)],

t= f3 [A, H; ¢l (0'1), ¢2 (02)]1
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in which ¢, and ¢, denote two arbitrary functions, whila, a» are two quantities that
each remain constant when one displaces along a cuavédlongs to one of the two
systems of asymptotic lines.

AI
Figure 5.

Consider the closed conto@r(Fig. 5), and choose the valuesnpfandn, for a point
A on the contour arbitrarily. LeiB be the asymptotic line that passes through the point
A for which a» remains constant. The values of the tensions atatheus point of that
line will depend upon just one arbitrary functign(ai), and upon eliminating it, one will
get a relatiorfF; (ng, ny, t) = O betweem;, Ny, t with no arbitrary function. LeB be the
second point at which the asymptote meets the contouoth&r asymptotic line will
pass through the poiit that cuts the contour at another pdvitand if the tensions &t’
are known then one will have a new relatien(ns, ny, t) = 0 for the poinB. Those two
relations will determina,, ny, t when they are combined with:

i-}-&—g =o.
R, R T

From this, if one knows the tensionsfaandA’ then one will likewise know them &
Let m, n be the contact points of the two asymptotic litteg are tangent to the contour
that belong to the same systemAds Letn, n' be those of the two asymptotic lines
from the same system &5 B'. If the pointsm andnY are chosen in such a fashion that
the arcmAA n1 includes the pointe andn’, and one draws the asymptotgp, mp that
cut the contour at the poinfsandp’ then one will effortlessly see that knowing the
tensions that are exerted on the amm will imply the complete knowledge of the
tensions that are exerted on the jgpcand will leave only one tension undetermined on
each of the arasirip’, mnp.

Nothing like that is true for convex surfaces,csirtheir asymptotic lines will be
imaginary. Later on, we shall see what does happarspecial example.



CHAPTER 1l
STUDY OF TANGENTIAL SYSTEMS

In the preceding chapter, we saw how an arbitrary sysfdorces that is applied to a
surface can be decomposed into two systems that wéed dagnormal systenand the
tangential system.We proved that one will always have an integrahim former case
and that all of the difficulty in the problem consistantegrating the latter one. That is
what we shall now address exclusively.

A tangential system is characterized by the absentteeafiormal components to the
external forces. In such a case, one will alwayghav

i+&—§:0
R R T

Upon taking the lines of curvature to be coordifiawes, that equation will become:

i+&: 0.
R, R

That shows that; / np, always has the opposite signRp/ R,, and that consequently:
The tension indicatrix is always hyperbolic for geer surfaces.
The same proposition can be further stated infésision:

A convex surface that is subject to tangential dsralways presents two systems of
lines that are followed uniquely by shearing.

In the case of surfaces with opposite curvatuhestension indicatrix can be elliptic
or hyperbolic, and consequently, the lines that wilebe dealing with can be real or
imaginary. All that one can conclude from the fdwtn; / n, is positive for lines of
curvature is that the acute angle that is defirtesl @oint by the sliding lines when they
are real will never include a principal directior the surface. One explains that
immediately upon remarking that two rectangulamditers of a hyperbola can have
squares with the same signs only when they are bmihded in the obtuse angle
between the asymptotes.

Consider a surface that is referred to its dioetiof normal tension and for whitk
0. The equation of the tension indicatrix will thiee:

e +mpy = 1.

The angular coefficientsn, n of the two conjugate directions are coupled by the
relation:
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mm:—i.
n2

The equation of the ordinary indicatrix of the surface is

The angular coefficients, ¢/ of the asymptotic directions are the roots of:

2
'u_+2_'u+i:(),
R, T R
which gives:
_R
MU =—.
R

Sincei + - 0, we can state the following fundamental theorem:

The asymptotic directions of the surface are twojugate directions of the tension
curve.

In other words:
The tensions that act upon an asymptotic line amlfel to the asymptotic lines of

the other system.
E

o) F A
Figure 6.

Due to that property and the ones that were establaehestly for asymptotic lines, it
is interesting to look for what the equilibrium equasiomill become when one refers
them to those lines as the coordinate lines. One stablsh the equations thus-
transformed directly, but one can arrive at them jaswvall by a change of coordinates.
To that end, imagine that the original coordinates amposed of a system of
asymptotic lines and orthogonal trajectories. If the asgtigplines constitute the system
M = const. and i denotes the angle between the two asymptotic @%&0B (Fig. 6)
then, from the preceding theorem, one will have:
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t =—ny cot g,
if one recalls the sign conventions.
Let n be the normal tension that is exerted@®B It results from formula (15) that
one will have:

n+n=sif ¢(m+n).

When one putd di = ds, M du = ds, to abbreviate, the first two equilibrium
equations will become:
on, Lh-n 2

=F,
S 6% P, Py

on _ ot ch-n 2t —F
- 2.
0s, 6% P P

Let f be an arbitrary function of andx. LetF be what that function will become
when one expresses it in terms of the parametarsd S of the asymptotic lines, in such
a way that:

f(A, 0 =F(a,p.
One infers from this that:

M ir+9 ay = F 4o+ F 4.
A ou T ea B

Let A, B be the metric coefficients that correspondrtandf. The displacementio;
anddothat are performed alor@A andOB, resp., are expressed by:

doi=Adg, do=Bdg
and one will have, as a result:

of dy , of ds _ oF do,  OF dB

6/1L 6,uM 6aA a,BB
or rather:

af of oF oF
—dg+—ds = —dog,+—do.
6,u 00, 0o

Moreover, Fig. 6 shows that:
ds =doi + cos¢ dg,

ds = sing dg,
and as a result:

of oF of o oF
———— |do, +| —cosp +— sip—— |do =0,
[65 aalj % (aq AP PR4 aaj ?

so sincedoganddo; are arbitrary:
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of _oF
ds do,
i:_ia_lz—cot¢a_l:_
0s, sing do a0,

Upon setting =t =—n; cot @, one will have:
ot on . _n 09

=-Cos — :
do, sin“¢ do,;

ds, sin“gdo do, sifgdo sing do,

n
Forf =n, = ——+ ny cof’ ¢, one gets:
sin“ ¢

on, _ 12 on +cot2¢anl —ZC_OS¢ 09
ds sin“¢ do, do, sinfgoo,

h+n).

Finally, upon settindg = n; , one will get:

a_nl :ia_nl —C0t¢a_nl.
0s, sing do 00,

Upon substituting these values and multiplyingreteng by sifi ¢, the equilibrium
equations will become:

on, on, Ccosgp 0¢ n d¢ n+tncosak n_. _ .
— —1—(h+n) - et AP L N 4 =F; sirf
hlog +eosp hlog (@+n ‘sing 00, sing oo 0, plsm % =Fasit 4

sing oM —n I MHNCOSH_ N oy i g
do ‘oo ) P,

Letf, f; be the components of the external force aldBandOA One has:
F, =f, +fcosg,
F, = fsin ¢,

so one will deduce with no difficulty that:
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sin¢%—n[2005¢ gg +SE¢ + C?¢j—q[%—%+ (ij:fl sirt @,

.on [ 0¢p cosPp sinzﬁz .
Sm¢60 n{aal ) + o j fsir ¢ .

Introduce the geodesic curvature Adf the asymptotic lin©B. In order to calculate
it, it will suffice to project the elementary curvidar triangle that is defined by the two
asymptotic lines and the orthogonal trajectory to thatgoiof the lines that belong to
the systen©A onto its tangent plane, upon remarking that the angleeleet the extreme
tangents to one of the sides of that projection is eguidde quotient of the projected arc
length with its radius of geodesic curvature, and thatstim of the deviations that the
tangent to a point on one of the sides can experienea wie make a complete circuit of

the triangle is equal to zero. Upon giving a conveniignt t® o, one will find that:

— 1: %+_COS¢ —_Sir¢
p 00 p P>

and the preceding formulas will become:

S|n¢ﬂ—n{a¢+ +Zcos¢(a¢ +—H+ﬁ:f15in°’ ,
a0, oo p oo, p, P

S|n¢ar; ;—n{gg +;+2 o@(—ﬁ+zﬂzfsirﬁ¢.

Upon setting:

%+£:£
do p u’
op,1_1
do, Py ul,

for brevity, then one will finally get:
sin¢ﬂ (1 Mj 2L =1fsirfg,
dog, Uy P

sin¢a—nl—n{i+wj+£: fsirfg.
0o W Py

(18)
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That is the very simple form that the equilibrium edquag will take when one refers
them to the asymptotic lines. Furthermore, it should letgub out that one will arrive at
exactly the same equations in regard to the tensionsvtmrarbitrary conjugate lines.
However, the asymptotes are the only lines of that tigaé are knowra priori and
whose orientation does not depend upon either the giveesfar the arbitrary functions
that are introduced by the integration. It goes withaying that in order to perform that
integration,do andda; must be expressed as functions of the asymptotic lirsareers.

The property that the asymptotic lines enjoy of being tharacteristics of the
tensions that develop on the surface is exhibited quite byekquations (18). For
example, the value af; can be chosen arbitrarily for all points of the cua@ng which
the arc lengtho is measured. However, the second equation will thee the
corresponding value af with no indeterminacy, provided that 1o/ is not zero; i.e.,
provided that the asymptotes of the other system aresoblinear generators. (We shall
pass over that case, for the momenn)and n; will be determined then, so the first
equation will giveoan / dai ; i.e., n will be known for the points of a curve that is
infinitely close to the first one, and the second equaivill provide the corresponding
value ofn; with the introduction of an arbitrary constant. Upmmmtinuing in that way,
one will get the state of the entire surface. Howetleat will introduce an arbitrary
constant whenever one passes from one charactetustibe following one, which
amounts to saying that one can assign a series ofaaybvalues to the tensiam for all
points at which one arbitrary curve meets the succes$igeacteristics. If one makes
that new curve coincide with a characteristic of ttieer system then one will get the
following theorem:

In order to know the equilibrium state of the surface, it is nacgsnd sufficient to
know one of the tensions in two asymptotic lines that do not belongdantigesystem.

One can also phrase that by saying:

The most general value of the tension has the form:

n=¢la, B @(a) x (Bl m=¢.[a, B @(a) x (B,

in which a and § are the parameters of the asymptotic lines, ang are two arbitrary
functions.

Since the knowledge of the tensions that are exerted two directions at a point
will imply knowledge of the tensions that are exdrie all possible directions, the form
that we just established can be applied in any coordsyiem, and one can always
represent the solutions of the problem by:

m =N [a, 5 @(a), x(B)],
=Nz [a, B, @(a), x(B)]
t=0la B @) x(P).
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If the surface is convex them and £ will be conjugate imaginary quantities. One
must then choos&andy in such a fashion as to obtain real values for th&das.
N/

N ”

¢}
Figure 7

Equations (18) can serve to transform the problem oétjdlibrium of surface in a
remarkable way. LeAA (Fig. 7) be the elemendio of an asymptotic line. Construct the
spherical indicatrix of the surface by drawing paral@id OF to the normal®\N, A'N'
through the cente® of a sphere of radius 1. By virtue of the definitionasiymptotic
lines, the normaf'N'" will project onto the planBIAA along a lineA’'N” that is parallel to
AN. The elemenPP of the spherical indicatrix is parallel to the pladié&'N". It will
then be perpendicular BA. As a result:

The spherical indicatrix of an asymptotic line has its tangents perpdadio those
of the asymptotic line.

The tangent planes to the corresponding points onutface and the sphere are
parallel, moreover, so we can add that:

The geodesic contingency angles of the two curves are constantly equal.

Finally, the lengtlds = PP of the element of the indication is a measure ofitingle
N'A'N", which is equal talo/ T, where 1 /T is the geodesic torsion of the asymptotic
line; i.e., the square root of the total curvature (takesitipely). Hence:

ds= d_U
T

Let da be the contingency angle that is common to the twwes, and lep be the
radius of geodesic curvature of the spherical indicat@re will have:



Chapter 11l — Study of tangential systems 39

da __da 1 7T
—=T— or —=—.
ds do p P
We now return to equations (18) and remark that the atdites of the two
asymptotic lines define the same anglm the sphere as the lines in the surface. We can

replace the quantities 1do, 1 /doi , 1 /p, 1 / ;o with the quantities that are equal to
1 1 1 1

Tds'Tds Tr' Tr,
that correspond to andu, resp., on the sphere then the equations will tneco

, resp. Consequently, if one letsand v; denote the quantities

sin¢@—n(1 2 cos¢j+ Nt Tsinf g,
0s vV

v, r

sin¢a—”l—nl[i+3 cos¢j+D:fTsin3 é.
0s v, V r

If the spherical indicatrices of the asymptotieBnare lines of conjugate tension, and if
the components of the external forces along thgetats to those curves &xd, f T then

the equilibrium equations will be precisely the stieat we just obtained.
Hence:

When one knows the equilibrium state of a spheradfis1 that is subject to given
external forces, one can deduce the equilibriuntest# all surfaces for which the
asymptotic lines admit lines of conjugate tensioithie sphere as spherical indicatrices
and which are subject to a tangential force at epomt that is perpendicular to the one
at the corresponding point on the sphere, wheradhie of the two forces is equal to the
square root of the total curvature.

Observe that the system of forces that are appliethe sphere does not, by any
means, need to be tangential. If one is given réacel that is subject to arbitrary
tangential forces then one can even perform thesfsamation that was just pointed out
and then seek to determine the normal forces ®rsfihere such that the transforms of
the asymptotic lines can be lines of conjugateidens The calculation is done in the
following manner with no difficulty:

Let:

mxX+2Axy+my =1

be the indicatrix of the tensions at a point ondpbere. Two conjugate directions are
coupled by the relation:
nmn+t(m+nf) +n, =0.

If that equation is satisfied for two given direets for whichmm =a, m+ m =b then
one will have:
amnp+bt+nm =0,
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which is a relation that will permit one to eliminatg n, t when it is combined with the
three general equations. One will then obtain an equatiat determines the normal
force ®. However, that equation is a second-order partial réiftéal equation and
cannot have any utility for the solution of the problémgeneral. The true interest of the
transformation that we have just described results fiteanstatement of the preceding
theorem: It consists of the fact that any solutioat tis found on the sphere can be
immediately generalized.

That generalization will often be facilitated by the udeisothermal geographic
coordinates, which were invented by Ossian Bonnet [Journkiodwille (2), t. V] and
which provide a very precise instrument for the study ofases. One will obtain it
upon putting the equation of the tangent plane in the form:

Xsin@cosg +Ysindsing +Zcosf=9

and setting:
X=g,
y = log tang
2 )
_ 1)
z=- ——.
sind

The equation of the tangent plane will then become:
X cosx +Ysiny + Zi cosiy +z=0.

The geometric interpretation ®fy, zis very simple. If one draws a parallel to each
normal to the surface through the origin and takes tha pbat which it meets a sphere
of radius 1 that has the origin for its center thiem stereographic projectidvi of that
point onto theXY-plane will have coordinates with respect to the @&¥sOY that are
guantitiesx', y’, which are coupled witk, y by the formulas:

Xr + | y/: ey+iX’
Xr — | y/: ey—iX ,
l.e.,y +ix, y —ix are the Napierian logarithms @f+ iy’ xX —iy’ The third coordinate
is the distance from the origin to the trace of thegent plane on they-plane. The
Cartesian coordinates 77, { are coupled witlx, y, z by the equations:
&sinx—n cosx =p,

£cosx + npcosx =—z —qitaniy,

Jcosiy=q.
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Upon lettingp, q, r, S, t denote the partial derivatives oWvith respect tox andy, as is
customary, and setting:
u=r+itaniyq+z
V=S,
w=t+itaniy g,

one will find that the differential equation of the agtotic lines is:

u d¥X + 2v dx dy+w dy’ = 0.

The total curvature is equal te and as a result, the tangential force

1
cogiy w—V*)’
that is applied to the surface will be equal todhe that is applied to the sphere, divided

by cosiy 4/ V* —uw.

A new transformation will permit one to reduce #stady of the equilibrium of the
given surface to that of the equilibrium in a plarie order to do that, it will suffice to
consider the stereographic projection that we shyafieal to in order to interpret the
coordinatesx, y, z That projection does not change angles, andilitreduce the
|nf|n|tely-small lengths by a ratio that is easydalculate: That ratio is (1 &) / 2.
Starting from it, one will see, as before, thathbtbte equations that are applicable to the
sphere will be applicable to the plane, provideat tne multiplies the forcdsT, f T by
(1L+e¥) /2= cosiy.

Here, we are no longer capable of introducing mbrforces that would make the
transformation of the asymptotic lines be linescohjugate tension. Indeed, the third
equation of equilibrium:

nn_2_g
R, R T

will reduce to® = 0 in the case of the plane; i.e.:
A plane can be in equilibrium only if it containg @ the forces that are applied to it.
However, in revenge, when a plane is subjectrigdatial forces, one needs to satisfy
only two equations in the three unknownsn,, t, and one can impose a third condition;
for example, that a given net of curves defineslititess of conjugate tension. Suppose
that this net has a differential equation:

UdiP+2vdldu+W A =0

when it is referred to arbitrary orthogonal coaedesi, x4, or, upon settlng%— m:

LW nf+ 2VLM m+UM 2 =0.
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Since the equation of the indicatrix of tensions is:
mX%+2AXY+mY?=1,

two conjugate directions, 1’ will be coupled by the relation:
Mo’ +t (+ ') +ny = 0.

If 4, 1”are roots of the equationmmthen one will have:

’ulu'—U_IVIZ ,U+,U,__£—L
wee ' W M’
and thus, the condition:
R UM2—2/LMt+m WL2=0.

When this equation is combined with:

i 10t ,n-n, 2 __
LA Moy p, p

ia_nl—_lﬁ+—nz_q+g =F,,
Mou LoA p P

that will determine the values of, n,, t that are appropriate to the problem.
Upon replacingl, i with the isothermal coordinat&sy, we will have to set:

L=M=—,
cosly
i:O, i:—cosiy;
o) P>

U, V, W will becomeu, v, w for the transforms of the asymptotic lines. Witiiat, the
equilibrium equations will take the form:

on, ot _ F
—2——+np—n =

ox oy cosly
on _ot_ __F
dy 0x cosy

nu—22t+n,w=0.
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The quantitied;, F, that figure in the right-hand sides are the componentken
plane of the external force along the two directigrs const.,x = const., resp. Upon
letting a, B denote the angles that are forces by the first o$ahdirection and the
transforms of the asymptotic lines then one will have:

F1=T € cosiy (f; cosa +f, cosp),
F, =T € cosiy (f1 sina —f, sin ),
where tanx and tang are the roots of the second-degree equation:
wnf+2m+u=0.,
The transformation is then achieved with no diffiguttere. Upon performing the
inverse transformation, if one knows the equilibriumdibons for a portion of the plane

that is subject to given forces then one can always desugébrium equations for an
infinitude of surfaces that are located in manner thatraust determine.




CHAPTER IV
APPLICATIONS

The objective of this chapter is to apply the genemdribs that were just presented
to a certain number of particular cases.

The simplest of all surfaces is the plane. Itsicsiaroperties differ radically from
those of all other surfaces and can be summarizeteirfallowing two propositions,
which we have already had occasion to prove:

I. A plane can be in equilibrium only if it contains all of the forces #natapplied
to it.

[I. The equilibrium of a plane (when it is possible) is defined by &raysf two
equation in three unknowns, which will permit one impose an arbitrary ¢omdition.

In Cartesian coordinates, the equilibrium equations are:

ot
ox oy
on ot
dy 0x

If one imposes the conditidr= const. then they will reduce to:

%:Fl a_nl:FZ

0x oy

which are equations whose integration will come dowsirtgple quadraturesy refers to
an arbitrary function of, andn; refers to an arbitrary function gf

A B

C D
Figure 8.
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For example, IeABCD be a vertical rectangle (Fig. 8) whose horizontal giéeis
kept fixed, while the other three sides are free, anaeight per unit area is a constént
and is supported by its lower part with a weightmk CD that is distributed uniformly
alongCD. Upon takingCD, CAto be thex andy axes, resp., and settidgC = h, CD =1,
one will have:

% = O, a_nl = P,
0x oy

under the hypothesis thiat 0, so:
ny = funct.y, n; =Py+ funct.x.

ny, which will be annulled foxx = 0 andx = | for anyy, is identically zero. The
arbitrary function than; is referred to is determined by setting 0, which will given; =
awfor anyx. The equilibrium state is then:

m=Py+aw, nm=0 1t=0.

If the sideBD, rather than being free, is subject to a variable edibextension that is
expressed by the condition = Y (Y being a function o) then one no longer make the
hypothesist = 0; however, one can suppose thatF (y), whereF is a conveniently-
chose function oy. Indeed, one will then have:

%_Fy)=0,
X

SO
n; =F’(y) x + funct.y.

The second function gfwill zero, sincen, will then be subject to being annulled for
0. Upon setting =1, one will have:
[F’(y) =Y,

which will determineF. The value oh; will not be modified.
In polar coordinateg, «j the equilibrium equations in the plane are:

g, 10t _n-n

- :Fl’
op pow p
l1on, ot 2
——=-—-— =F.
pow 0p p

We apply these formulas to the case of a cirde ithsubject to external forcEshat
are everywhere directed along the radius and cotnstaeach value gb.
Upon supposing= 0, one will have:
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la_nl: O,
ow
%—m: F

o p

for an arbitrary point.

The first equation shows that depends upon onjy. Letn; =dy/do=x"(0). The
second equation will give:

d
45 A =x"(0) +Fp,
o)
SO
np=x(0)+ [[Fpdo +Q,

in whichQ is a function ofw One will infer from this that:

X(0)

Q
-

_ 1.
Ny = +;j0 Fodp+

In order forn, to remain finite when one approaches the centes, fitst necessary
that Q should be identically zero. Moreover, it is necesshat y (0) should tend to
zero. If that is true then the limit of will be x’ (o). It will then be equal to that of; .
Without that equalityt cannot be zero for any of the directions in the neigidied of
the center. In summary, the equilibrium state pgesented by:

n =X’ (0),

)

1o
+;JO Fodp,

t=0.

The arbitrary functiony (o) is required only to be annulled fgr= 0 and to take a
well-defined value whep becomes equal to the radius of the circle.

If, instead of a circle, one considers that circdane that is found between two
circumferences of radiug and p’, on which normal efforts that are constant per unit
length are exerted then the same formulas will be adpéc In that case, the functign
does not need to become zero for 0, but it must take well-defined values for the
limiting radii p andp"”.

We shall give an example of the transformation$ Were at issue in the preceding
chapter for the very simple case that was just studied.

The tension indicatrix has the equation:
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X(p)+[Fpdp
+ y =

X' (o) X

The relation between two conjugate directionsn is then:
mm [y (o) + [Fpdp] +px'(0) = 0.

Introduce isothermal coordinates and set:
p=¢
for them.
Let w(y) be whaty (o) becomes, and let (y) be what j Fpdp becomes. One has:

pX' ()= ‘f'j—‘”= @)
Yy

Hence:
mm[@(y) +¢ ()] + @) =0.

In order for the transforms of the asymptotic $ireé a surface to satisfy that equation,
one must have:

u__ @y
wo a(y)+e(y)’
or, upon settin% =-K:
Y-k
W

Suppose, to simplify, that one has 0, in addition (which amounts to saying that the
transforms are inclined the same with respect ¢opblar radius). If one refers to the
definitions ofu, v, wthen one will first find that:

9°z
oxay

SO
z=X+Y.

X andY represent two functions, one of which is a functaf x and the other of
which is a function oy, resp. Moreover, one has:

r+itaniyg+z-K({t+itaniyg =0
or rather:
X7+itaniy Y+ X+Y-K (Y’+itaniy Y’) =0.
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SinceK is necessarily a function of onjy that equation will be possible only if one
has:
X+X=C,
KY”+ (K-=1)itaniy Y=Y =C,

when one let€ denote a constant.

The latter equation can be integrated in certain spbeas@s. For example, if one has
K =—1 then it will become:

KY”+ 2itaniyY'+Y+C=0,
and ifh andg are constants, one will find that:
Y=h(cosiy+iysiniy)+gsiniy—-C;

Xis equal toA cosx + B sinx + C.

As a result:

z=h(cosiy+iysiniy) +gsiniy+ A cosx+ B sinx.

According to a remark by Ossian Bonnet, one can alwvej® the terms in cos sin
X, and sin y disappear by a simple change of origin. What wilhtremain is:

z=h(cosiy+iysiniy).
One will infer from this that:
g=-hycosiy,
z+itaniyg=hcosiy,

and upon passing to the Cartesian coordinates:

E2+n?=(@+itaniy g?=h’codiy,

zZ= q_ =-hy.
cosly

Those equations represent a surface of revolwiwse meridian is given by:
&=hcosiy,

¢=-hy,
or

g(: g(eilh + e—[/h).

It is a catenary whose directrix coincides witl #xis of revolution. The surface that
is generated in that fashion has been studied \®ralegeometers, and Bour gave it the
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name ofalysseid. It is the only surface of revolution that is minimal; addition, it
enjoys the property of being mappable to a ruled helicoid.
The semi-angle of the asymptotic has the tangent:

/ @) - [Tx =1
@(y)+¢(y)

These lines are real then and intersect at a righteanvhich is a property that is
characteristic of minimal surfaces.

Sinceﬂ
@(y)+o(y)

=1, one has:

@ (y)=aw(y) + ¢ ),
or rather:

pa@ ) =x( + [Fpdp,

_x(p)+[Fpdp.
5 ,

X' )

it results from this that; = n,, and since = 0, each point of the surface will be in a state
of umbilical equilibrium. Hence:

If a portion of an alysseide that is subjected:ttemal forces that are tangent to the
parallel and constant along each of them terminavgh a parallel to the elements upon
which a constant tension is exerted then all ofgbmts will be in a state of umbilical
equilibrium

Naturally, the law by which the tension varies wimme passes from one parallel to
another depends updh One should not forget th&tis the force applied to the plane.
In order to get the corresponding force on the asaf it suffices to recall that its
components along the asymptotic lines are equahdocanalogous components for the

plane, multiplied by;_. Since the angles between the asymptotic lindstlaa
T e’ cosiy
coordinate lines do not vary under the transforomatine force applied to the surface will
be directed tangentially to the parallel and wdldqual to_l_eyL_. T is the inverse of
cosiy

the square root of the curvature; its value foralysseide i cosiy. The applied force
is then:
F

T € cosiy

When the external force is constantly zero, onéhave F = 0. The equation that
determine< will then reduce to:
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PX (P —-x( =0,
SO
M: const. =,
yo

and as a resulf’ (o) =a. In that case, the tensiong n, are equal and constant for all
points of the surface.

Developable surfaces

From what we know already, the developable susfare the only ones for which
one cannot make the normal component of the extfnreees disappear.

Take the rectilinear generators to be the cootéina = const. One will see
immediately that:

. oL LM
Since —= -
T

convenient choice of. The general equations of the theory of surféicess reduce to:

= 0, one will haveL = funct. A, and one can sdt = 1 with a

M_ M

A p

OLIR)_ 1
A Rp,

o(1lp,)_ 1

2

i(uﬂj = 0.
JANY

The last equation can be written:

If1 /0 =0,M, andR; are functions of onlys. They will then be constants all along
the same generator; it is easy to see that tipessible only for cylinders. In the other
cases, one will have:
% +1=0,
0A

SO
m=a—-A.

a is a function ofu that represents the distance from the point fackvh = 0 to the point
of contact with the edge of regression. One trexfudes that:
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1
=-=(a-A),
b( )

R2-+R(a ’]j,
a

upon lettingb andR denote two other functions pf
As a result, the equilibrium equations become:

ot
( —a)— b—+n2—n1—F1(/1 a)
ou

26t

b(A- @aq (=8 = +20- a)t=F,(1-3a>

S—re]

or, upon setting:

one will get:
an b a8 b 46
Mm-_ +(FL+W) () — %,
01 (A-a)ou rRrY) -9 (A-a)? au

96 _ oW
5 [F bg—joa 2 +bW (- @—;

m=¥(-a.

The third equation gives; immediately. The second one determifdsy means of
an equation that one integrates by a simple quadrafpon considering to be constant.
The value of@ refers to an arbitrary function gf One will then geh by means of the
first equation, which one likewise integrates bydpature and which introduces a new
arbitrary function of.

When the portion of the surface considered rdfei@ arc of the edge of regression,
the values that pertain to that edge will be olatdiby makingd — atend to zero. Upon
writing out that this is true, one will get two edions that determine the two arbitrary
functions ofm for all points that are found between the tangémas are drawn through
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the two endpoints of the arc of regression. If these conditions are satisfied then one
will have:

) n on
n=Iim— =—,
A-a 04
e 1 66’__qu@

t = lim - = - —=- .
(A-a)? 2(1-a)ol 2 ou

Sinceon / 04 can be written:
Fi+WY)(A-a + bﬁ,
ou
all that will remain is:

np = bﬁ

ou
Chooseyu in such a fashion thatli is the angle between the two consecutive
generators. In that cadewill be equal to 1, anda / du represents the radiusof the
first curvature of the edge of regression. Oné thvén find the system of tensions:

_Wr )]

t =-—L =Ry,
2 2a

e O

2 aﬂl

n, =0.

It should be remarked that and b will remain invariable when one deforms the
surface. As a result, whdén, F,, W (or F1, F;, and®R, if one prefers) keep constant
values at each point, the equilibrium equation$ mot be modified. In particular, when
® = 0, one can deform the surface while keepingddmme tangential forces without
changing the equilibrium equations. For @myone can continue the deformation up to
the point thaR becomes infinite while keepimgR constant; i.e., until that portion of the
given surface is mapped to a plane. The equilbraenditions of developable surfaces
are then found to be identified with those of thenp. The only exceptional case is the
case that was envisioned above in which the podfahe surface considered contains a
part of the edge of regression, since then surfaceot truly developable in the
neighborhood of that edge.

WheneveR is finite, n; will be annulled at the same timeds As a result:

When a developable surface is subject to tangeaxia@rnal forces, it will produce no
effort of extension along the generators.
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We have skipped over the case of the cylinder. That sudatharacterized by 10
= 0, which implies that:

M = funct. @), R, = funct. ).
One can suppose thdt= 1, and the equilibrium equations will then reduce to:

on, ot _
YR

1,

on, ot _
- T - F2 ]
ou oA

n =R, ®,

which are equations whose integration once more comes tioguadratures.

The equatiom; = R, @ is completely analogous to the equatios — P, p, which
corresponds to the equilibrium of a funicular curveorié imposes the condition that
0 then the second equation will reduc®1d/ ds = F, , and will then be equivalent to the
equationdT / ds = — Py for funicular equilibrium. In that case, the fiesuation will
reduce todn, / 04 = Fy . It will determine the variation of the third tensin, along a
generator of the cylinder.

The cone reverts to the general case of developablacearf No matter what the
directrix is, the quantitya will be constant. The quantityis also constant and can be
supposed to be equal to 1. That amounts to saying thattbg wif the formuldvl = A /

b, m will represent the length of the variable arc onc¢bae that is intercepted by the
sphere of radius 1 that is described with its centereastimmit of the cone when one
starts from a fixed origin.

As a special case, consider the lateral surfacefrolstum of a cone whose bases are
entirely free and to which one applies arbitrary forddpon settinga = const.b =1 and
introducing two new functions, f, that are defined by:

2 ov) _ of,
( a)[Fz aﬂj e
1 of, _of;
(Fi+¥)(1-9 O—afoy a1’
one will first get:
00 _of,
04 01’

by virtue of the established equations,&e f; + @ (1), in which @ denotes an arbitrary
function, and then:
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on _ _ 1 jofy
5= V-9 (;u-a){a,f‘ﬁ(”)]
SO

n=fi+a )+ x W,

in which y is an arbitrary function.
From this, the tensions, n,, t have the values:

n]_:—CDRE,
a
o= (f4 )+
2 A 1 (A— )2 ’
1
t=— —= (i + .
T

It remains to determin& (1) andy () in such a fashion that the boundary conditions
will be fulfilled. In order to do that, we suppog®t we have taken the base of the cone
to be its two curves of intersection with the twiheres of radiua + ¢, a — cthat are
described with their centers at the cone’s sumnfihose two curves correspond to the
valuest c of A.

From that,n, andt must be annulled for any when one setd = = c. In order to
continue the calculations to their ultimate concoswe shall suppose that + W and
F,—0W /oy are independent . Upon setting:

Fi+W =2,
ow

Fo— —=3w,
ou

we will have:
fi=@-a° (- 1m),

fb=(1—-3° b .

It is pointless to add new arbitrary functions, ethwould do double duty witbo and y.
As a result, the values of andt will be:

np = [@+x(A-a)+ - 1) (-3,

(A-a)*

o1 e
e LAY
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and one can conclude immediately that #ndt are zero for any then the quantitieq,
X, 1, e will all be identically zero fod = +candA =-c.
Equilibrium will be possible then only if one has= 0, 16 = 0, or rather:

F,+W¥ =0, Fz—a—w=0
ou
For the points that are situated on the mean cdrwe0, those equations can be

written as:

aF +®R=0, an—EIO.

ou

If the forces that are applied to the frustum of to@e do not verify those two
conditions then the surface will necessarily be deéat. It will preserve the same
geometric character while it is deforming, and the sameilibrium equations will
continue to be applicable. If one then supposesRhaf, , @ do not vary during the
deformation then the condition (via,F, + ®R = 0) will determineR, and a result, the
equilibrium figure of the cone. WheR has been determined in that way, equilibrium

cannot be realized unless the second condition @viz.,—~ ?: 0) is fulfilled.
7

The equatiorF, - i%: 0 is exactly the one that one obtains by applyhmey

normal forced® and the tangential forde to the mean curve, when it is considered to be
a funicular curve, and looking for the conditiom fioto not deform.

When the equilibrium figure is a cone of revolatidhe equatiorF; + PR = 0
expresses the idea that the sum of the projectibtige external forces that are applied to
an arbitrary point onto the axis of the cone isada zero. Indeed, if one letsdenote
the semi-angle of the summit of the cone then #wus of curvature of the normal
section to the edge that is made at a distarfcem the summit will bR = a tana, and
as a result, the equation that one must addredsecamitten a$-; cosa + ® sina = 0.

Skew surfaces

Upon taking the coordinates lines to be the riee@dr generatorsi(= const.) and
their orthogonal trajectoried & const.), one will have:

i:o, i:o,

R Py

from which, one will first deduce that / ox = 0, which will permit one to sét=1, as
before. The general equations of the theory dasas will then become:
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1_ aM/aA

P, M

0U/R)_10WT)_ 1 1_,
A M o pR

_oWT), 21_

oA pT

1 ,0Wp) 1 _g

T? 04 yos
One infers from the last two that:

1
i 1_ﬂl Aa
7+7
T p
1
[
T p
or rather:
Ei_ i 1 _ H—H

T =1 -1 (,ul_/])(,uz_/]),

2_ 1 1 _ pp-2

P =A p=A (,ul_/])(,uz_/]).

Upon lettingis denote a third function g, the first two general equations will give,
in turn:

M? = (= A)( to = A)
and
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26(1/R2)_i( 1, 1 j_i\/ /s { b }:0
04 Rlth=A =4 (U= )= A) [ (1= A)? (U= A)? ’

or

- —OU/R), 1 2-p-p, . Mo M, |
A e A= ) e R =) 'm{(m—mz (uﬂ)z} >

Upon integrating this and letting, denote a fourth function @f, one will get:

- L My )
2/ (th = M)t A)Rzﬂw_a[ﬂl_)l ﬂz_)lj .

M must be real for all real values.af That will be possible only if the roots, (& of
the trinomial {4 — A)(t» — A) are conjugate imaginary quantities amds positive. We
then set:

= a-pi,
e =a+ pi,

and we sets = 1, which is permissible. Upon replacingwith 2y, we will find that:

1_ B
T (A-a)+p*
1__ A-a
(19) p, (A-a)+p*

1 4 + A-a)B +a'B
R J(A-ay+p [(A-a)*+p7"

Some very simple geometric considerations thatewminted out by Bour in his
theory of the deformation of surfaces (Journal’Bedle Polytechnique, Cahié4, pp.
33) will allow us to interpret the parameterandf. For a well-defined generatar,is
the distance from the poink = O to the central point anf is the ratio of the shortest
distance between two infinitely-close generatorsh® angle between those generators.
We add that/can be interpreted just as simply. Indeed, wewrdte:

I\/I—d’u:yd,u+darctan B :
R, A-a
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in which the differentials are taken while keepihgonstant. Now, the left-hand side
expresses the contingency angle between the sectitwe stirface and the plane that is
perpendicular to the generator at the point consider&tiat contingency angle is
obviously composed of:

1. The angle between two infinitely-close centrahgis.
2. The variation of the angle that is defined by thgeah plane to the surface and
the corresponding central plane. That angle will hbegangent:

pgdu  _ B
A-a)duy A-a

Having said that, it will suffice to consider thght-hand side of the equality above in
order to see that its last term represents prgcibel second part of the contingency
angle, and that as a result, its first term wiiresent the first party du will then be the
angle between two infinitely-close central plareas] one can say that:

The parametery is the quotient of the angle between two infinitely-close central
planes with the angle between the corresponding generators.

If one constructs a spherical indicatrix of thewksurface by drawing parallels to the
generators through a fixed point and takes theé@rsection with the sphere of radius 1
that has that fixed point for its center then oae further say that:

The parameteyis the geodesic curvature of the spherical indicatrix

By means of the expressions (19), the generaliequim equations will become:

on, 1 ot . A-a (n-n) =F
- - - =rF1,

04 JU-ay+pou J(-ay+p "

_ ot 1 on, A-a

2t :Fz,

A JGayipou (A-ay+p

A-a)B +a'B 26t 2, 2
- SINGE
n{w (A-a)*+p? } J(A-a)?+ B A=ay+p

in the case of skew surfaces.

The last one gives; as a function ot, and upon substituting that value in the
preceding equation, one will gétby means of a linear first-order partial differaht
equation. t will then include an arbitrary function of a cemaguantity (which is
obviously the parameter of the non-rectilinear gstyrtic lines), in its expression: We
can call those lines theesymptotic lines of the second systefmally, the first equation
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will give np by quadrature, with an arbitrary function gfi.e., of the parameter of the
rectilinear generators. In order get back to the casdewélopable surfaces, it will
suffice to sejz = 0.

When the external forces are zero, the equatiorvith have the form:

Aﬁ+ Bﬁ =Ct,

o oy

in which A, B, C depend uponl and iz uniquely. If one let$ (A, 1) = u represent the
integral of the equation:
dA_ du

A B

or, in other words, if one lets denote the parameter of the asymptotes of the second
system, and if = @ (A, ) is a non-zero particular solution of the equatioty moreover,
then one will effortlessly see that the general sofutvill have the form:

t=6 Oo(u),

Which is an expression in whigrdenotes an arbitrary function.

If results from this that if is required to be annulled for all points along a segroé
the generator then the corresponding values @f) will be zero. Sinceu(u) is constant
along an arbitrary asymptote of the second system,lifolldw that:

When t is zero for all points along a segment ef generator, if one draws non-
rectilinear asymptotic lines through the endpoiatgshe segment then t will remain zero
for any portion of the surface that is found betmvé®e two asymptotic lines.

The relation%—%: 0 shows that if 1 Ry is not zero (which is the general case)

then the same theorem can be stated for the tension

Geometrically, one can conclude a property of dusrfaces from that whose
statement | have not encountered anywhere. Inr doddo that, it will suffice to recall
that in the absence of any external force, theegfn;, ny, t will be proportional to the

infinitely-small variations that%, é ?1 can be subjected to. Saying thais zero for

a portion of the ruled surface amounts to sayirgg th/R; does not vary, and will
consequently remain zero. Hence:

When an arbitrary generator remains rectilinear ancertain length under the
infinitely-small deformation of a ruled surfacel| af the generators will likewise remain
rectilinear for the portion of that surface that munded by the same two asymptotic
lines of the second system.
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The theorem extends to an arbitrary finite deformatimt the two asymptotes that
bound the band considered will then be progressively neadifinder the deformation,
and one will need a special discussion in order to find thieope of the generator that
remain rectilinear in each case. That difficulty wiliappear when a generator remains
rectilinear along all of its length, and one can sta¢efollowing property:

When a generator of a ruled surface remains rectilinear for a certamrmetion of
the surface, all of the generators will likewise remain redr.

That theorem can be regarded as the converse obeethehat was established by
Ossian Bonnet (Journal de I'Ecole Polytechnique, Cal2leand that we state thus:

If a ruled surface remains ruled after deformation then any arbitramyegator will
remain rectilinear.
A Al

B Bl
Figure 9.

The theorem of Ossian Bonnet can be deduced with nolaabns, moreover, on the
basis of what we just stated. In order to do that, idensa ruled surface whose
rectilinear generators afB, A'B', ... (Fig. 9). Assume that a system of geodesic lines
CD, C'D7, ... can become rectilinear as a result of a certdorohation.

Imagine a third deformation under which we keep the gered® fixed and let the
radii of normal curvature of the li@D grow until it becomes infiniteCD will then be a
straight line, and since the surfate¢hus-obtained can be reduced to the one that admits
CD, C’'D/, ... as its rectilinear generators by a convenient defoomabiur theorem will
show that the line€D, C’'D’, ... are all rectilinear on the surfake However,AB, and
consequently, all analogous lines, will likewise remaiaight. Hence:

If the two systems AB, AB,and CD, CD,... do not coincide then the surfage
possesses a double system of rectilinear generators. It will lkea second-degree
surface.

The surfaces that can be mapped onto ones of degresrévtben the only ones that
can remain ruled without the original generators all ieimg rectilinear. That is the
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only exception to the theorem of Ossian Bonnet, who ptiinted out that exception
himself.

When the surface has a director playeill be zero, and if one supposes, moreover,
that one has reduced the system of forces to a taaggydtem then the third equilibrium
equation will take the form:

ﬁj 2/t

0
—| arctan = )
" ( y-a) Jo-ay+p

u

In particular, consider the square-threaded screw surfacEhat surface is
characterized by the constancyam&nds. One can arrange thatis zero. Under those
conditions, the last equation will give= O immediately. The other two will reduce to:

o, 4
N N+

g—nl: FA A2+ 5.
U

Upon settind=, = df, / 9y, sof, =] F» di, and supposing that integral is taken from a
well-defined lower limit (for example, from = 0), one will get:

(np—m) =Fq,

= f\ A2+ B2+ w(A);
hence:
an2+n2 2/] ;=Fi+ znl/]z’
04 A+ B A+ B

or, upon multiplying byy/ A%+ 8% :

6 2 2\ 2 2 A
a7+ 57 ) =R A+ iyt

Furthermore, set:

FAJ A%+ B +cv()l)—T2)I+lB2 +fA= %;

A2+ 5% =t x ().

one will get:

The integral that givek is supposed to take a well-defined valueloffor example,
A=0.
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The two arbitrary functions then includein one case, and in the other, which one
could have expected upon remarking that the asymptotic lihéiseosquare-threaded
screw surface are rectilinear generators and orthog@pettiories. The value @f can
be written:

N = @ (A) +jF2|v| du.

When one displaces along one of the asymptotes oketlung systemA(= const.),
the variation of the extension force that is exaibetween two consecutive generators
will be equal to the integral of the projections of tweresponding external forces onto
the tangents to the asymptotes.

If the surface is bounded by an asymptotic curve and thake damnms afree
boundary(i.e., it is not subject to any extension or sliding &rthen one must have =
0 for A = @, for anyu (a is the parameter of the curve considered). That tiondwill
determiney (1) whenais known, because it can be written:

X () =-11(A, ﬂ)(/]:a) .

In order to determineu (1), it suffices to know the law of variation of along a
generator. For example, suppose #rd#l) has the forn®A, in whichA is a constant and
assume, moreover, that the external fofleesndF, are zero. For any generator, one
will haven; = w(A) = A4 ; the equation:

2
%: (U(A) A = A A
0A \/A2+ﬁ2 \/A2+ﬁ2

fi= A[AJ A° + B° = B*log(A +/ A7+ B7)],

and y (1) will reduce to the constant:

-Alay a®+ B> - B?log(a + a’+ B?)].

For the surfaces that can be mapped to the stqlua@ded screw surface, and within
the limits in which the generators remain rectéiner and will be the same as they are
for the screw surface; howevefis an arbitrary function of .

will then give:

on ot

1 A
b _ A n
aA [A2+ﬁ26/j [A2+ﬁ2(2

—-m)=Fq,

ot on, A o =F,.

1
-+ 1
oA [A2+ﬁ2 a/j A2+ﬁ2
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A
W e SV

We first look for the integrals of those equations mtiey have vanishing right-hand
sides. Upon replacing A+ 3% with M, we will have:

25 .

n=—t
1 My

Zﬁ[lat tayj
6# My\you v ou
and as a result:

a2 2, pdr)
Y yM ou yM? yidu '

In order to integrate that equation, we definesineultaneous equations:

dA _ _
e _A ﬁyj
S VE 2 d
SO
dt 2dA B
R
or rather:
ydu + 'Bd)l 0,
dt,2Adi dy_
t M?  y
So:

jyd,u+ 2 arctan% = const.

Upon lettingaw denote an arbitrary function, the general integiflithen be:

_y ré :
t——Mszyd,LHZarcta )lj’
as a result:

nn=——0w.
M3
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Finally, np is given by the first equilibrium equation, from whichganfers that:

on, An, 1 2., .2 2
M—2+ = 200+ yV oM *+ y- o’ M “),

FYIY |\/|4( La+y y )
or rather:

n2:ﬁj%(Zﬁm+wa2+y2w’M2)+funct.,u.

The values ohy, ny, t have the remarkable property that they are obtainemhin
explicit form without making any hypothesis on the funttgio

In general, one cannot arrive at a similar res@hfttine right-hand sides are arbitrary.
Impose the condition that the complete equations aarpdrticular system of solutions
for which n; is zero. That condition will be obtained by writiogit that the last two
equations are compatible; i.e., upon eliminatifigpm:

ﬁ+%t: -F,
0A A°+p
2Bt=—-dPM?2
One will then find that:
0P
M?—+ 41d = 2F, 3.
FY 2P
One will have:
2
t=- oM , ng = 0,
2t
and
on, An, _ 1 0(oM?
_+__ Fl_ ~ ]
01 M? 2M oul\
SO

nz=ij{MFl—ii(¢Mzﬂd)l.
M 20u\ pS

Hence, when the condition that was written abavdulfilled, the equilibrium of
surfaces that can be mapped to the square-thread sarface will be expressed by:

2B

n=—=w,
M3

OM?  y
=— +——w,
28 M?
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Y 10 (PM? 1 ¢4 dA 2, 2 2
n=— {MFl———lu( 3 Hd)HVIOW(Zﬁmﬂ/mM + y wM”) + ),

which are expressions in which and w are two arbitrary functions, the one being a
function of, while the other is a function (jfyd,u+ 2 arctand / S.

A C
AI
CI
DI
BI
B D
Figure 10.

Having said that, imagine that a portion of theissg-threaded screw surface is
bounded by the quadrilateral that is defined by tgeneratorsAB, CD, and two
orthogonal trajectorieAC, BD (Fig. 10), that the lin&B is kept fixed, and that the other
three sides remain free, and finally, that thistiparof the surface is subjected to forces
that satisfy the condition that was stated above.

From a theorem that was established before, thergrCD will remain straight
under each deformation along a certain @D’ of its length. When the surface is in
the equilibrium state, one will hawve = O for all points ofCD. For all points of the part
that is common t&€D andC’ D", it will result thateco= 0, since the preceding equations
are applicable. Upon drawing the asymptotes ofdwnd system that pass through the
endpoints of that common part, one will bound aaedor whichwis zero in its entire
extent. For all points of the part that is commoiD andC’D’, one will havet = 0, in
addition. Sincawis already equal to zero, the valuat shows thatb must be zero oy
must be infinite.

If the asymptote#\’ C’, B’ D’ that are drawn throug@’ andD " are inside 0ABCD
then our equations will cease to be applicabléé¢oportions;ACA’C’, BDB’D’, andCC/,
DD’ can be deformed in an arbitrary fashion, moreoviérthe linesA’ C’, B’ D" are
entirely external toABCD then our equations will be applicable to the en@xtent of
ABCD, and the generata€ZD will remain entirely rectilinear. In that caseheh we
shall now envision exclusively)p is zero for all points of the portion of the swda
considered, and as a result, for the entire leo§t@D, one will have® = 0 or y = oo,
which amounts to saying that the equilibrium w# possible under the conditions that
we supposed have been imposed only if the surasahjected to forces aloi@p that
are exclusively tangential, or even if the sphérindicatrix of the surface presents a
regression at the corresponding point.
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When @ is zero for all points ofCD, the component, of the external force is
likewise zero, by virtue of the relation:

F=M 00 g,

2801 B

In this case, the generator can be subject to famges that are directed along its
length.

Along the curvefC, BD, one must have, = 0 andt = 0. Sincewis supposed to be
zero, the conditionn = 0 will once more imply thatb = 0 or y= 0 . However, it is
impossible foryto be infinite for all points of a finite arc ofcarve that is not a segment
of the generator. One must then héve 0. n, will be given by the formula:

2
n2:i A{MFl—Ei(CDM ﬂd)l +X.
u\ B

That tension must be annulled for gmyor two constant values; and A, of A, and
sincey is a function of only, one will be led to the condition:

2 2
ij” M, - 19 [ OM d)l:ij” M, -9 [ OMT g,
M, 7o 20u\ pS M, o 20u\ pS

in whichM; andM;, are the values dfl for A = A; andA = A, .

That relation must be true for all valuesuothat correspond to the generators that are
found betwee®B andCD.

If F1 and® do not depend upopthen that relation cannot be fulfilled, in gengeaid
consequently equilibrium will be impossible undee tonditions that we have supposed.
However, ifF;, and® depend uporythen we will be dealing with an equation jmhat
determines that unknown, and consequently, thdiequm form.

For example, consider a system of normal foréesorder forF, to be zero, one must
have:

M29®  mo=o0
0/
which one can write as:

26(13

A%+ 3% +4)l()l +B3 =0,

or
® (A2+ %) =funct.u.

Suppose that the function pfthat is found in the right-hand side jsyd,u, where

the limits are taken in such a fashion that thiegnal is annulled for the generat©b.
Upon settindg=1 = 0, the condition that is imposed uppwill be:
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2 2
L Y LN
M,"° B ou M,” B ou
or
Ljﬂld)l _y A4 dA
Mo M?> M, M?’
Y arctar: = Y arctartz |
1 2 B

and since the coefficients ¢fin the two sides are unequal, in general, it vedult thaty
= 0; i.e., thesurface of equilibrium will be the square-thread®dew surface.

Y1
Figure 11.

The second-degree surfaces can be treated likd sulrfaces with real or imaginary
generators, and consequently, one can be ceatginori that the separation of the
unknowns can always be carried out for those seisfaclhe problem even comes down
to the integration of two total differential equats that are linear and first-order, because
if one refers the surface to its generators themwill find immediately upon applying
formulas (18), in which one must set2# 1 /0, = 0, that:

sin¢ﬂ—n (%+Zcos¢ a¢j:f1 Sirt g,

oo, |\do 90,
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sin ¢ a—nl—nl (%+Zcos¢%j= fsir ¢.
0o 00, 0o
We shall study the case of the hyperbolic paraboloidpanticular, since the
calculations and formulas will take on great simpliddit.
When one refers a hyperbolic paraboloid to three obkxes that are defined by the
rectilinear generatordx, Ay (Fig. 11), which cross at a poiAton the surface, and the
parallelAzto the axis, the equation of the paraboloid will takefdinsn:

xy =kz

We givek the name of thparameter of the surfaca the pointA.

Let ¢, 17 be the anglegAz xAz and letg be the anglgAx Take an infinitely-small
lengthAA’= £ on Ax the generator of the systefy that passes througk' will have the
equations:

X=¢&
=y
y.

It is situated in the planeAy that is parallel ta@Ay. The triangley’A’y1, whose sidg”y;
is parallel toAz gives:

sinw  _ Yy _¢
sinE-w) Ay, k'’
S0, sincewis infinitely small:
w= £sin &
k

If one refers the surface to the new a&éxg, A’y, A’ zthen one will have:

k
X=Xt &e=X"+——w
siné

y _ Ay, _sin-w) _
L= = , =y’(1 —wcotd),
y Ay Sing y=y’( é

z:z’+y’y1:z’+yE:z’+ :)i—n);(l—a)coté) :

With that, the equation of the surface will become:

X +_La) y' (1 —wcoté) =kz’'+ k 6'_)—yl(l —wcoté)
siné siné

or
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X'y (1 —wcoté) =k Z.
Thus, ifk’is the new value d€ then one will have:

__k
1-wcoté

14

=k (1 + wcoté),

or rather, upon setting' — k =dkandw=-d¢:

%:—cotfdf,

which will give:
log k = - log siné + const.

The constant is a function a@f, since that angle will remain constant when one
displaces along the generatax. Since nothing will distinguish the two generatasne
will likewise find that:

log k =-log sinz; + const.

As a result, one will generally have:
log k =-log siné — log sinn + const.,

k= L .
siné siy

SO

ko is the value ok for £=n =/ 2 ;i.e., for the summit of the paraboloid.
The displacement alorgx is expressed as a functiono&nd by:

do=e=k 2= K&
siné sin® ¢ sivg
Similarly:
do = - |:0—dl7
sin® & sirg

If one sets:

i: dx, (_j_”: dy

siné sing

then the preceding formulas will become:
k= ko cosix cosiy,

do= - ko cosix cosiy dx,
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doi = — ko cosix cosiy dy.
The anglep in the trinedrorAxyzis given by:
CoS@ = cosé cos/y + siné sing CosA,

in which A is the dihedron alongx; i.e., the angle between the director planes. That
formula can be written:
. . COsSA
cosg =-tanixtaniy +——.
COS X COsYy
Now suppose that a hyperbolic paraboloid is suligea system of tangential forces,
and apply formulas (18) to it, in which we set 2# 1 /o = 0, and that we divide by
Sin'g :
1 on cosp d0¢ n o0¢ _
sin’ ¢ a0, sirfg do, singado

1,

1 a_nl_2 cosp o n_ 0¢ ¢
sin g 0o sifg do  sing do,

Consider only the first equation and sétsirf ¢ = N. That equation will become:

-~ . L~ _—h,

0o, singado

or rather, upon replacindy / sin @ with du :

or also, upon replacindo andda; with their values:

N _ @:—flkocosixcosiy.
oy 0X

The equation that determingswill lead to the following one:

COSA sinix

—sin¢%:—itiniy(1+tar°rix)+i >
ox cos ix cosy

SO
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N : . COSA sinix

i taniy (1+ tarfix Fi —————

au_oprax_ O™ " codix cosy

ox  sing [ o cosA jz '
1-| tanix tany ———————
COSIX cosy

or

ou _ i(siniy cosy — CO#\ siix cag )

ax codix codiy— (siix siiy- coa’’
Upon setting:
= log [cogi x cog i y — (sini x sini y — cosA)?,

that equation will become:
Ou__ov
x oy

Upon multiplying everything bg’, the equation itN will be:

e’ 6_N+ Né’a—v =—f1 ko cosi x cosiy €,

oy oy
o)

N € = - ko cosix on f, cosiy €' dy+ X,
with the condition that:

e” = cogixcosiy— (sini x sin y — cosA)?;

Nz will be given by an analogous formula, and thestjoe is thus found to have been
solved completely.
Upon replacing’ with its equivalent cosx cosi y sin ¢ andN by n / sirf ¢, one can
once more write:
n _ cosx

sin¢ cos

j f,cosix sing dy+X.

Finally, upon recalling that the resultanbf the tensions that are exerted upon an
asymptote is directed along the other asymptoteasnd result equal to / sin ¢, and
upon lettingF; denote the componefitsin ¢ of the external forces along the normal to
the asymptotic lin& = const., one will obtain:

cosix
cosy

r:ro—

jF cosiydy.

WhenF; is a function of only, one will have:
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F, cosix
4i cosy

r=ro—ko (2ly + sin 2Y).

WhenF; has the formw (X) / cosiy, or rather (what amounts to the same thipgk)
sin 77, wherea, andy are arbitrary functions, one will have:

COSIX

F=ro—ko X g (x) sini y = o+ x (&) ko 21
cosly

cosé

In particular, ify (§) =A/ko siné in whichA is a constant, then one will find that:
r =ro+Acoss.

In this caseF; will be equal to A/ ko) sinésinnp =A/k; it will then be inversely
proportional to the parameter.
WhenF; = 0, all that will remain is = ro, which one can state by saying that:

If the tangential external forces that are appliedthe various points of a generator
G are directed along the generators of anothereysthen they will all experience the
same tension, which is directed along G to thetgomhere they meet G.

Surfaces of revolution

Upon taking the lined = const. to be the parallels and the lipes const. to be the
meridians, one will have immediately:

Furthermore, all of the other parameters are fanstof onlyA. One can sdt = 1,
and the general equations of the theory of surfadéthen reduce to:

d(l/%)@(_l__lj:o
d  p(R R

1 ,d@p)_ 1_g

RR d g

1__ dM/dA

P, M

One will infer that:
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1d@/R)_1 d(1/p2)+_1(—1+_1j=°
p, dA R d Rlp; B)
SO

arctan(&} j a4 _ const.,
R, R

which is a relation that is easy to predict, since wilesee geometrically thab, is the
length of the tangent to the meridian between theacbmoint and the axis, thg is the
length of the normal, and that arctar’ R, is consequently the angle between the normal
and the axis, which is an angle whose differential ningstequal (up to sign) to the

contingency angldA / R; of the meridian. Set:

arctan& =-6,
SO
o =—Rytané
and
1 _ dé
R dA

Upon replacing 1 R, with — tan&/ p, and multiplying by p?, the second general

equations can be written:
coseﬂ— sin€%+ cosfd=0:

dA dA

as a result:
1
=———|cosgdA

P2 cosd

and

Ry=~ (cosddA.
sin@

The quantityM is obtained from the equation:

dM _ _dA __dAcosf _ d(p,cosd)
M p,  pcos®  p,cosd
o)
M =f (1) o, cosé.

One can tak®él =— p, cos@. ltis the radius of the parallel.

The preceding formulas reduce the equilibrium &éqoa of the surfaces of revolution

that are subject to tangential forces to:
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on, 1 ~(n-n) cosd _F
- - . ~—r,
0/ j cosddA ay [ cogdA
ot 1 on, o cosd _ E
- - - 2

ou [cosgdAou [ cosdi

sing dé

7 n+—n=0.
.[cosé?d)lnl ax

If one sets co¥=dA /dA = A’ then those equations can be written:

an2 '
+— N =F1 A\,

6/1 o (n—n) 1
ﬁ+a—nl+2t/\’ =-F2 A,
0A ou

n__A

—~+-——n, =0,

/\ 1_/\12 2

or rather, upon eliminating, and suppressing the indexref which has become useless,
one will get:

12 /]
aon ot AN@-A?-AN")

= F1 A,
FYIEY 1-A" !

at AN an

42N =-F,A .
9 1-Nou

If one sets:
NAy/1-A"? =N,

tA? =T
then those equations will finally become:

1_/\12
oN, . LI FAJ1I-AZ,
0A N ou

oT AN"  ON
+

T M I _F A
6/] (1_/\12)3/2 6/,1 2
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Consider these equations with a vanishing right-hand <siohel replace the
coefficientsdT / oy, ON / o with L; andL,, resp., to abbreviate:

oN

oT
-+ _:O,
YL

I N_y
oA 2ou

If one sets:
N 1+N G =an,
04 ou

I+ gy =ar,
A oy

in addition, then one will obtain differential equaisothat pertain to the characteristics
upon writing that the preceding four equations will give indebeate values for

ON ON 0T 0T o will then find that:

94 ou’ 91’ au
L]_de/]2+d/12:0,

L, dAdN-dudT =0,
or rather:

du_ “LL,,

JLdN= £ /LT,

I+

We limit ourselves to studying the case in which the sg@muation is integrable,
which will happen only wher., / L; is constant. We first look for the surfaces of

revolution that enjoy that property.
One has:
L, AN :
I— m = const. =
and upon integrating:

1 c
— = const. =,

A2 1-N72

Ao [ron’-1
bAZ -1

oOlkr



76 Lecornu — On the equilibrium of flexible, inextensiblefaces

The quadrature that remains to be performed depends upeticeflinctions.
However, one can geometrically interpret the relatloat exists betweeA andA. In
order to do that, one remarks that if one repld@cesith cos@then that will make:

i=b+ ¢ or N\ = sing

N sin” @ Jbsin?@+c
«/bsin29+ccos9—w

bsin29+c% _ ccosd  dé
bsin?@+c dl  (bsin’8+c)¥? dA

and as a result:

N =cosf=

_ cde
(bsin? @+ c)*'?

Recall that1 is the arc length of the meridian, aéids the angle between the normal

and the axis.
2 2

Now, if one considers the eIIips%+%: 1 and letsf denote the angle between

the normal and thg-axis then one will find the following formulas Wwino difficulty:

dx = A’B’cosd dd dy= - A’B’sing dd
(A’sin” @+ B*cos @ §'*’ (A’sin” @+ B*cos @ §'*’
SO
A2B? 6 B (B2/ A%) d@

dA = dX?®+dY* =

[(A% - B%)sin?6+ B¥?  (A’sin’ 6+ B? cogd '’
That value fodA will become identical to the one that we foundabi we set:

BZ_ AZ_BZ_

A A2 b.

If cis negative then the ellipse will be replaced dyyperbola. Ifb + ¢ = 0 then it
will result that 1 /A? = 0, which gives a parabola. The integrabilitgeahat we shall
examine is then that of all second-degree surfatesvolution. Upon re-establishing the
right-hand sides, the equations that one mustrategvill be:

ON . oT ~
—+L,—= FAJ1-A?,
Y Llay !

LI Lza—N:—Fz/\z.
04 “ou
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Replacel; by its value € L, and add the corresponding sides of the two equations
after multiplying the second one Q;&—c . That will give:

N \/— LQJ_( GTJ

A oy

= FAJ1-N? = [-CcF,A%

Upon settingN + T / —c¢ = &, and replacing the right-hand side withthat equation
will take the form:

it is integrated by means of the simultaneous egjstt
_ du _ dw
LJ-c¢ F

Upon replacing,/ —¢ with —,/-c and settingN — T /—-c= y, one will get the
second system:

dA

LF F’

If one knowsw and y then one will knowN andT, and as a result, the problem will
be solved. The equatiordy = + L,/ —cdA are the differential equations of the
asymptotic lines.

When F, , F, , and as a result, F’ are functions of onlyd, one will have
immediately:

A = - dx

w= jF dA + funct. @), X= jF’d/H funct. ),

if one letsa, S denote the parameters of the asymptotic lines.
If one would like to have the relations that cletesaize the asymptotic lines in an
explicit form then it will suffice to change thenables by setting:

dz=+/1-A"? dA = sin@dA.

When one is given the geometric significancd ahd g, one will see effortlessly that
dzis nothing but the distance between the planesvofitfinitely-close parallels. With
that new variable, one will have:
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A= jcos&d/l = jcotedz.

Now:
cdé

"~ bsin8+c)?’

which will give:

_ ctand (1+ tai @ W@
Z= ’
[c+(b+ dtan® T

__c 1
b+c/c+(b+Qtart g

(b+c)3/22
\/cz—c(b+ 922

cotgd=

if one measuresupon starting from the equator.

Hence:
dz 1
A=(+c)3? Z = c2-c(b+ 9% Z.
0+ I\/cz—c(b+ 0% 7 C\/b+C\/
The relation:
du=1L, . —-cdAj,
or

[4_ pAr2
d,u:# dA = 3 A dA,
J—C N/ —-c

du = c(b+odz
J-c[@-o(b+ 9>

U— arctar{ (b+¢) Z} = const.

=

The quantities that we have callec&andS are then:

will then become:

One infers from this that:

U+ arctan{ (b+9 Z} :

\/TC

In the case of the ellipsoid, is positive, andx, £ are conjugate imaginary§y and
\J1-A'? are real. In order for the valuesrofndt :
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w+ )

A 1-N2

t= X

2,/ —cN?
to be real, it is necessary and sufficient tmtaind y should be conjugate imaginary
guantities.

We shall push the application of the method to itstlby studying the very simple
problem that takes the form:

Determine the equilibrium conditions for an ellipsoid of revolution ttattains a
fluid that exerts a constant normal pressure on all points of its surfac

The first thing to do is to decompose the forces imoranal system and a tangential
system. In order to find the former, it will suffite set:

2a _ 1 oa_ 1 oa_
- - ] - .- ll —__FZl
RR

upon calling the normal forc®.

The first equation determingsas a function of onlyl. The second one gives the
componentF; of the external force along the tangent to theidr@n. The third one
shows that the componels of the external force along the parallel is eqaaero.

We have found that:

i: %: singddé
R dA dz
i: sin@
R A
Hence:
1 _ smzeﬁ
R N dz
One has, moreover:
3/2
cot 8= (b+toy "z ,
J & —c(b+q? Z
SO
2 _ 2
Sir? 9= 1 _ c°-c(b+to°z

1+cofd c+b(b+ad’ 2’
The value of\ is:
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A:\/cz—c(b+c)2 22.
cy b+c

Finally:

. dé_df_ (b+¢)*?
sinf —=—=c¢"—; 575 -
dz dA [c®+b(b+ Q® 7]

Consequently, one has:
1 _ 2 (b+¢c)?

R [c® +b(b+ 9* Z]*

and
_ @[c®+b(b+9° 7]*
a=— 5 5 .
2 c(b+ 0
Hence:
99:zqibz[c:z+b(b+c)2z2],
dz ¢
and since:
_ 1 da _sin°fda
Fl - . - T
R, dA N dz
one will get:
FlA:ZiEZﬁ?+b(b+@2fL

upon replacing sfn@andda/ dzby their values.
Upon setting:
g2-_C 2db (b+ ¢)? _p
(b+0)?’ c?

one can further write:
Fi A =Pz(B*-7).

With that, the forces that are applied to thesbiid are composed of:

1. The normal system that is defined by the normade ® and the tangential force
F1=Pz(B*-2) /A, which is directed along the tangents to the diens.

2. The tangential system that is defined by theei#, = - Pz (B> —Z) / A, which is
tangent to the meridians.

The first system gives rise to the effort of esienn; =a/R; = ® Ry / 2 at each
point, which is normal to the meridian, and theogafbf extensiom; =a/R,=® R,/ 2,
which is normal to the parallel; these efforts miostadded to the ones that result from
the second system.
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The equation isothat was written previously will then become:

0w 1~ N? dw _
= F'AJ1-N
Ry /\ J-cou 2

2 2
here, or, upon replacirdy with dz/ sin@=dz/ \|/1-A, andA? with b+ c)Bz:
0@,i_B 07 _p,2_p)
04 B°-Zz du

The corresponding simultaneous equations are:

= du _ dw
iB/(B*-Z) -Pz(B-7)

. B+z
M—1log ,/— = const.
B-z

- ; (B?—2) %= const.

It will have:

for its integrals. That will give the general valaf w:

w= ;(532—z2)2+¢l (,u—ilog,/:%zj.

One will likewise find that:
X= 2@ -2+ po| pritog |22 |,
4 B-z

o+ x _(m+)()BZ«/b+ 1+——
A\ 1- N2 2(B° - 2°)

and then:

(= @-X _(@-Yb+gB
2/-cN? 2ic(B*-2) '

or even, if one replacdsandc with their values as functions of the axes ofélipse:
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A? - B? B?
b= a— C=—,
A A
2 Y
((U'*')()i\ 1+AB4B 2
n= :
2(B°-2)
_ (@-x)B
t=_——_A_
2i(B°—-2%)

Those values are applicable no matter what podidhe ellipsoid that one considers.
If one is dealing with the entire ellipsoid theeyimust remain finite whentends tatB.

For that to be true, it is necessary tbaand y must both tend to zero for apy Upon
considering the expressions that were found foseéhltwo quantities and setting:

u=xu+ilog Brz
B-z'

v=u+ilog Btz
\ B-2’

?1 (U= = @2 (U)v=o = O

one must have:

for any L.

Furthermore,n and t, and consequently; (u) and ¢» (v), must remain finite,
continuous and well-defined for amyandv. When one describes an absolutely arbitrary
closed contour on the surface, one must find tineesaalues forg; (u) and @, (v) upon
returning to the starting point.

From the known properties of functions of imagyngariables, a function such as
#1(u) that remains finite, continuous, and well-defifedall possible values of the value
that it contains must necessarily reduce to a eohstin the present case, that constant
can be nothing but zero, and we will have simply:

w=x= ; (B2 -2)>

It results immediately from this that O; i.e., that:
The meridians and parallels are the lines of proatitension of the surface.

One then finds:
P B? A - B
n=n=-—(B*-2),[1+ v
? 2 A ) B*
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for the effort of extension that is exerted upon theapels.

The effort of extension; that is exerted on the meridians is obtained by muyitigl
n times:

AN _ 1-N?_ -c(b+9 _ -A/B°
_ A2 2~ 2 2 2 2 _ Rp2 J
1-A ANc  c+b(b+ 9?7 1+AB4B 2
one will then find that:
n-—% B -7 __EA(AZ—BZ) B*- 7
1 4 A2 — B2 2 B* A2 — B2 )
1+ = z 1+ = z

In order to get values of andn, that are appropriate to the problem, one must add
the quantities that produce the normal system (B&; / 2, PR, / 2) to the quantities;
andn, thus-determined. Now, the formulas that wereldistzed before give:

2 2 o2 3/2
R= B[1 KB )
A B

A2 2 312
R, = A(l+ sz :

B4

As a result, the definitive values of andn, will be:

2 2 _ 2

o 2-A A B 2
n=—A B B

2 A2_82

1+ 5 z
2 _R2

nZ:EA 1+¥22_

2 B

It is easy to verify that; andn, satisfy the condition:

i+&: CD,
R, R

as they must.
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One can obtain a more important verification of lgregthy deductions that have led
us to the result by considering the ellipsoidal cap thabunded by the paralleE const.
and writing out that the sum of the projections onto zlagis of the tensions that are
normal to that parallel is equal to the sum of the moments with respect to the same
axis of the pressures that are exerted on the cap. cbmalition will determinen,
immediately, and one will recover the value to whicghwere led.

The value oh; can be written:

0} A(AZ— Bz) B- 7
n=np——

2 B* 2 _ 2 )
\/1+A B z

B4

The differencen; — n, will have a constant sign then, which will be pwsi if the
ellipsoid is elongated and negative if it is flaged. It will be annulled for the two poles
=+ B, which will be umbilical equilibrium points, asrasult. Contrary to what happens
in general, those points do not link up with a lefgoints that enjoy the same property.
That amounts to saying that in the present casedlifferential equation of the line that
we are dealing with will reduce ttz = 0.

Upon settingn = 0, one will get the equation:

Z _ A-28
B> 2(A*-B%)’

which can be satisfied only K is greater tharB\/E. When that condition is satisfied,
there will always be two parallels for which theng®mn that is perpendicular to the
meridians is zero. In the zone that is found betwthose parallels, the two principal
tensions will have opposite signs, and one knowasttere will then exist two directions
at each point whose elements do work solely byrafgea

Now consider an arbitrary portion of the surfacepiace of the complete ellipsoid.
One can no longer say that (u) and ¢, (v) are constant, becausendv will no longer
pass through all possible values. Siggdu) must be a periodic function pfthat has a
period of 27or a divisor of 2 we can take the variable to be the quantity:

. B+
eiu:ew-lom[B—_; _ /B_Zeiﬂ
B+z

instead ofu, without introducing any indeterminacy.
Upon settingz = B cos« one will have:

gl = tan%)e“‘ and @1 (u) = w(tan%) “’j :

If considers an ellipsoidal cap that has its aeatethe polew = 0 and is found
entirely within the portion of the given surfacesthsince the expressiaf must remain
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finite, continuous, and well-defined for all points on tbap, it must be developable into
a series in increasing integer powers of tar 2) €. Within the limits of the cap thus-
defined, we will have:

P1=A+As tan%)e“‘+ A, tarfc—zuei” .

As before, one will see thagt must be annulled for arngyand forz = B; i.e., for tan
a2 = 0. For the neighboring pointsof B, ¢, must have the same orderBfs- Z = B?
sirf w That demands th# andA; must be zero. Upon setting:

A=a, +iby, A=a, +iby, ceey
one will then have:

#1 (U) = (e +i by) tarf ‘—; (cos 2u+i sin 2)

+ @ +i b3)tar?%)(cos L +i sin 3)

Likewise:

@, (V) = (@2 — i by) tarf %)(cos -isin2u+ ...
As a result, in order to gat , one must add the expression:
2 2 _p2
B oW+ [, KB,
A 2(B°-7) B’

A% cod w+ B? sirfw _ _
= \/ S ABood 00 ] 2 [(a2 cos 24 —by sin 2u) + tan%)(ae, Cos —bzsin ) + ...]

to the value that was found beforg;will be consequently modified, arigwill not be
equal to zero, but to:

B ¢1(U) - ¢2 (V)
2i B2-22)
1

=—— [(agcos u+bysin 2u) + tanﬁ)(a\o, COS H+bzsin3u) + ...].
2Bcos w /2 2
The inspection of these formulas shows immediatély the arbitrary functions must
be annulled when the surface is closed: It is bezdhey must remain finite for any
when wtends torz and consequently, cos)( 2) tends to zero.
The indeterminacy that is introduced into the Bouiim conditions by the arbitrary
functions should not surprise us: It is completaialogous to what one encounters when
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one seeks the reactions that are experienced by anaibkasolid that has more than
three support points.

Minimal surfaces

The minimal surfaces are characterized by the propeatytheir asymptotic lines are
orthogonal. One can then apply the general equatibtige theory of surfaces to those
lines, and since one will then have Ri/= 1 /R, = 0, the equations that one must deal
with will reduce to:

1_ _dLiou 1__oM/aA
p LM P LM
_lodmy,21_

M oy pT
_1odim), 21 g

L 04 o, T

1,10d/p), 10QA/p,) 1 _1_,
T> M ou L o4 o: p:

One infers from this that:
Loam), 20L1_

or rather:

L2/ T is then a function of only, and upon choosing that variable conveniently, care
arrange that?/ T = 1, in some way; similarlyyl 2/ T = 1. Upon setting = 1 / 8% one
will have:
1
L=M==.
o

One will then find that:

1 _ _326(1/8): a6

) ou oy’
1_o6
p, 0A°

and finally, that:
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2 2 2 2
€4+€a€+a€—(%j—% =0,
0A° ou 0/ ou

which one can write as:

02 02
log @)+
a)lz( go) o

0%+ (logd) =0
upon dividing byd?, or even:
2 2
, 0°(096%) __ o
oxoy
when one sets:
dx=dA +idy, dy=dA-idw

If one replace®? with 4u then that equation will become:

0°(logu) _ _ o0
oxay ’

The general integral, which is due to Liouvillg, i

XY
(X+Y)*'

in which X denotes an arbitrary function ®fandY denotes an arbitrary function pf
andX’, Y are the derivatives of those two functior®’ will then be equal te%.

The line element of the surface:

ds = L2 dN* + M > d?
will consequently be:

1 (X +Y)?
d€ = — (dA? +dA) = - dx dy.
92( k) 4X'Y' y
If one sets:
dx dy
——=dx, — =dy;,
ox v T

and if one lets(y, Y1 denote the functions andY when they are expressed in term;of
yi, resp., then one will get the following formulahieh was contributed by Ossian
Bonnet [Journal de Liouville (2), t. V]:

ds’ = (X1 + Y1)? dxg dy; .
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Having said that, consider a minimal surface that isestittp a system of tangential
forces and look for the equilibrium conditions that refe the asymptotic lines. Since
those lines are, in a fashion, lines of conjugate tensi@y must be lines of principal
tension in the present case. One will then have.

Moreover, 1 /Ry = 1 /R, = 0. The last equilibrium equation will then disappear
entirely. The first two of them reduce to:

16n2+r1l n, “F, .

L 04 0O,
1 anl n-n _ -F,
M 6/J o)
or rather:
6n2 00
+ =F,
(% )a)l 1
anl 06
+(n, —=F
a’u (n,—n) o 2
SO
2 2 —
g_a n, +a_nzﬁ+(nl_nz) 00 +%a(q Q) :E’
0Adu 04 ou 0Adu 0A ou ou

or even, upon replacingn, / 04 with its value and setting, —n, = u:

2 2
g 0N, ae(ﬁ_ aej vy 00, p080u _OF,

Mway FY) oAdu  dAou  ou

similarly, one will have:

2 2
P on GH(F 69) ueae 06 du _ OF,

+u? +2 = =29
dAou oA A Aoy dudA  dA

and upon subtracting, one will find that:

, 0°U 06008 060 060u_ 06 0du
tU| ——-O—- |- 0——-0—
0Adu 0Aou  0A0u ou a1 oA a,u

=g 9 OR |, g 99 ¢ 09
oA oy ) ou ‘oA

Now setu =v g so:
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gaiu u%
A 0A _ OV
& 0"
2 2
g2 OY 20999 _g 09 |_p000u_,0u00
0Aou 0Aou  0Adu O 0A  OuoA _ o%v

& S aAou’
From those formulas, the equation that givean be written:

ov__ 0% _ of, _of
0Adu ooy 9r ou’

when one seté, / =1, F,/ 8=1f,. The knowledge o¥, n;, andn, will be given by
just one quadrature.
The function@is defined by the relation:

g2 AXY
(X+Y)*

However, we have to express that quantity as aifumof A andy . In order to do that,
we remark that if one sets:

log X+Y)=¢

then one will have:
62 - %%
ox oy’

or,sincex=A+iyy=A—iu:
62 == (%j2+(%jz
04 ou) |

AL
and since that is equal to 1/it must unavoidably be real; as a resﬁ%j J{G_j
7
must be real and negative.
@ is a function ofl andy that one can always put into the form:

9 =P, 1) +1Q (A 4),

in which P andQ are two real functions. One will then have:

ore (%J a9 _ (6_Pj P 2_(5_Qj2_(5_Qj2+2i (ﬂ’ﬂ?ﬁ_Pa_Qj
oA U oA ou oA ou A 01 duou)
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In order for8? to be real, it is necessary that the condition:

9P IQ, IPOQ_

04 04 a,u ou

must be fulfilled. What will then remain is:

g(a_Qj 29 (ﬁ’j aP)
04 ou 04 ou)
On the other hand, sine# is equal toX + Y, it must have the form:

funct. A +1i ) + funct. A —i L),

which will imply the condition:
62
0A?

2 2 2 2
6¢+6¢+[%j + 99 =0
0% ou® a4 ou
or, upon developing this:

0°P 2P (afr oP) (a jz 0°Q 920Q) _
+ | ] =] - = =1 +j + =0
o2 o \ar) lop) \aa oy FYEF G

0°Q , 0°Q
FYEFYC

62P+6P(6Pj apPY’ (aqj QY
0% a2 \aa) \au)  Lax oy

Let wbe a function oft andy, such that one will have:

62
(e¢’)+a >

or rather:

hence:

:O,

dw_0Q  dw__dQ
91 oy’ ou oA’

2Q 0°Q _
o’
POQ, 0PIQ _

The relatlon— —= = 0 will become:
04 04 a,u ou

=0.
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OPOw _oPow _
oA ou oy oA

which obviously demands thBtshould be a function abi It will then result that:

9°P _ 9P 62w+62P(6wj2
022 dwaA® oaulaa )’

P _ P V@, azp[amjz

o  dw ol A\ du
2 2
and as a result, upon remarking tlgag+ 9 (f =0:
0A°  ou

, 0P 9°P _°P|(dw) (dw)
0= —S+— = + :
0A° du o’ |\ 04 ou
P is not an arbitrary function @f; because the condition:

0°P  92P (apjz [apjz_ (GQJZ [aQJZ
+ | ] = = =] =
022 o \aa) \ou)  \oa oy
{azp (aPﬂKMT (amjz}_(amjz [amjz
+ == === =
ow® \ 0w 04 ou oA ou

9°P (apjz_
+ =1
0w \odw

can be written:

or

Upon including the constant that is introduced by integnabieer a; one will infer from
this that:

P _ e7-1

dw € +1’

and
°P 4 4 1
ow? (e°7+1)?° (°+€e”)? coSiw

Hence, one will finally have:
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If one letsew denote an isothermal function #fand iz — i.e., an arbitrary solution of

2 2
the equationgT(Z +c';_w = 0 —then the most general value &Wwill be:
7

2
2 2
o= 1_ (amj L[ 0@ |
cosiw \| \ 041 ou

Whenwis a function of onlyl, it can be isothermal only if it reducesAd, whereA

A 9°0

——, SO
COSIAA 0Adu

is a constant. One will then hade=

= 0, and the equation mwill

reduce to:

0%v _ COSAA(of, _of,
Aoy A \ar ou)

v can then be obtained by means of two successive quadratlihe hypothesiz =

funct. () givesi: ?: 0; i.e., the minimal surface is ruled. One knovet the only
U
1

minimal surface that enjoys that property is the squaeatiad screw surface: We then
revert to a case that was studied before.

When the quantitie§,, f, are partial derivatives of the same function (Wwhweill
happen any time that the interval between two cortsee orthogonal trajectories of the
external forces varies from one point to the otalemg one of those trajectories in

inverse proportion ta] f>+f7 =F / ), one will have%—g—lf;: 0. As a result, the

equation inv will become:
2 2
(20) 1 0°v _1 96

voAdu 6ardu’

In that remarkable form, one will immediately psike the solutiorv / € = const.
Consequently, for an arbitrary minimal surface tisasubject to tangential forces that

satisfy the conditio%—%: 0, one will always have to determine a particstate of
7

equilibrium. It will suffice to choose the bounglamonditions suitably.
Minimal surface of revolution

In the case of the minimal surface of revolutighwill remain constant for each
parallel; i.e., for each line such that uis constant. If one sets:

A+u=a,
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A-u=p

and if one takeg, Sto be new variables thedwill depend upon onlyr. The isothermal
function wreduces tar, and@will have the value:

N

cosia

One will infer from this that:
06 060 _ 060 _. )
—=—=— =j ftaniq,
04 ou oOda

and the equilibrium equations, which are initiadlypposed to have vanishing right-hand
sides, namely:

on e
6—2+ (M —n)— =0,
or T
on, e
06—+ (p—n)— =0
ou (2 l)a,u
will give:
o, __on
0A ou

As a result, there will exist a functiéhsuch that:

_ 0P 0P
n=— n=-—,
ou

and that function will be defined by the equation:

9%P [ap apj B/ dr
— + _O

0Adu \0A ou 6
or rather:
2 2
9 F:—a I:2)—2i taniaa—P:O.
da® dp Joa
Set:

X =i tania,
y=p5;

x andy are two integrals of the equations:

2

2
I:2)—2itania'a—|:):o, an)—O.
a oa s




94 Lecornu — On the equilibrium of flexible, inextensiblefaces
If one takex andy to be independent variables then one will find that:

2 2
d P(dxj_a P—O;

»\da) oy
however:

%:—(1 +tadia) =- (1 -X).
da

The equation that the solution of the problem depends cgothen be written:

9’z
a4

2 622
ox*
upon replacind® with z
In order for perform the integration, we begin by ingeding whether there exist

solutions of the form:
z= XY,

in which X andY are functions of only, in the former case, and ony in the latter.
Upon making the substitution, one will find that:

XY= (1-x)?Y X,

which is possible only if one has:
Y'=aY,
a.2
R
upon calling a constarmat.

The equation irY is integrated with no difficulty. The equationXnfalls within one
of the general types of linear equations that wsttelied by J. Tannery (Annales de
'Ecole Normale, 1875). We follow the method the#ds pointed out in order to find a
solution. Set:

X=(1-3)Puy,

in which u is a new unknown, angd is an undetermined coefficient. Upon dividing
everything by (1 5@)P, the equation to be solved will become:

(1 =x)?u”—4px (L x> u’-2pu+4p(p-1)x*u—-a’u=0.

If we set:
4p (p-1) =a’

then the left-hand side will be divisible B and what will remain is:

(1= u”—4pxu’-2p(2p-1)u=0.
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One changes the variable by writing:

2t=x+1,
o)
1—x% =4 (1 -t).
One will get:

t(t—l)% +2p(2t—1)% +2p (2p—1)u=0.

Upon introducing three new parameterss, ysuch that one has:

y =2,
a+pf+1=4%,
af =2 (2p-1),

the equation will finally take the form:
2
(€ —t) %— [y— (@+ [+ 1)1 %+ aBu=0.

This an equation that Gauss studied, and it admits thegego®eetric series:

LaB,,a@+DBB+Y .,

Flafyy=1 10y 1ROy + 1)

for a solution.

In order for that series to be convergent, itesassary that must be less than 1.
That condition is always fulfilled whea, and thereforg, is real, because for all real
values ofa, the quantity:

e?-e?
- ea+ e—a

will remain between + 1 and — 1, and as a resultl| vary between 1 and 0. In addition,
it is generally necessary thgtnust not be a negative integer. However, thaticéen is
pointless here, since one immediately recognizas drand S are roots of the second-
degree equation:

m+1-4p)m+2p(2p—-1)=0,

which are roots that are equal tp @1d D — 1, oryand y— 1. Upon taking3 = y; for
example, the hypergeometric series will reduce to:
-Dy,-
1+ (-t +1—t7
-1 )

or rather, to:
(1 -t
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From that, the value of is:

1-x) *_ 1-x(1+x)"
X=(1-x)P = .
=

Upon takingY to have the valu€ €, in which C denotes an arbitrary constant, and
dropping the factor®?™, one will get the following value far:

2=C & (1 -X) (“Xj.
X

In order to deduce the value of the unknown tensjoit will suffice to remark that:

0z 0z 0z 6zax 0z

=0 2, 02 S 0219

04 o0da J5 ~ Axoa 6y
Upon performing the calculation, one will get:

(1+x)°

n1:C€yW(a_2p+ 1+X) .
The corresponding value of is:
1+ x)°
n=C é‘yﬁ(a—Zp— 1-X).

In order to verify these results, we investigabgvim; varies when we displace along
the curved = const. oda + dS = 0, or (what amounts to the same thing):

da  df__ 1

dx dx = 1-x

+y’=0.

Upon consideriny to be a function ok that is defined by that equation and taking
the derivative of; with respect t, one will find that:

dr=dx C& (1 +x)P 1 (1 -x)P (2p— 1 —x) 2x,
or rather:

x dx
dm = Ny —ny),
h 1_X2(l 2)

or furthermore, upon I‘ep|aCin?d—X2 with —da andx byi tania :
- X
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dmy =itaniada (1 —ny) .
SincedA = 0, by hypothesis, which entails tltat = d, one can write:

06/ou (N 1)

on _ =itania(m—ny) =
ou

This is the first of the equations thatandn, must satisfy. The second one will be
obtained in an analogous fashion.
Let p, p’be the two roots of the equation:

4p (p- 1) =a’.

One can substitute one or the other rqoits the values oh; andn, that were found
above. One will then get two systems of solutionsctvhwill permit one to form the
complete solution:

M —Cé‘yu(a 2p+1+x)+C'& (L+x)°

T a—20 + 1 +X),
=% v

A vzp-1-+c@ TN iy 1oy

é\y
(1-x)"" (1-x)""

Sincep + p’= 1, one can also write:

m —Céy%(a—2p+1+x)+0’eay ((1 );)pl( +2p-1+x),

n—Cé‘y%(a+2p 1-x)+C’ eay%(a—Zp+l—x).

Finally, one will deduce the general integralgyirthis upon considerinG andC’to
be two arbitrary functions od, ¢ (a), ¢ (a), and performing integrals that are defined
with respect t@a between the two well-defined limitg anda; :

N = (1 +x) Lley(gj _ (@-2p+1+x) ¢(a)da

+(1—x)j (1—3 (@a+2p-1+x) ¢ () da.
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n = (1 +x) J’: eay(ﬂjp_ (@a+2p-1-x) ¢ (a)da

+(1_x)j (17)’3 (a-2p+1-X% ¢(a)da

In order to solve the general problem of equilibriumtlod minimal surface of
revolution, it remains for one to find a particularwmn of the equations with non-
vanishing right-hand sides. One will arrive at it by oma@e taking the values of and
n, that include two arbitrary constar@sandC’ and applying the method of variation of
arbitrary constants. One will then be led to two eiquatof the form:

A%, x9C
04 0A

Aa—C+ A’aC Fs.
ou ou

These equations can be solved only in particular cdsasexample, wheR; / Ais a
function of onlyA andF; / A’ is a function of only, one can suppos¥C / du¢ = 0 and
0C’/ou =0 ;CandC’will then be given by simple quadratures.

0 (R

Whena—(—j = aa)l (F j one can suppose that= 0 and geC by a quadrature. If
U

i( Flj— 9 (F j then one will suppose, on the contrary, tBat 0 and one getS’by

ou\ A ) )

a quadrature. Finally, Wheneve?—(Fj g (ij one will immediately procure a
ou\ 8 ) oA\ @
particular solution without resorting to the variatminarbitrary constants by the method
that was indicated previously.
Besides the cases that were just studied, the genéegtdtion of equation (20)
seems impracticable to me, no matter what hypothegisteaimposes upon the function
6. Moutard has studied equations of the form:

1 0%v
voAou

=t(A )

in Cahier XLV of theJournal de I'Ecole Polytechniquand determined the conditions
that the right-hand side must fulfill in order for tbeo be an explicit general integral. |
do not believe that one can find valuegthat belong to the minimal surfaces and at the

2
same time give one of the integrability cases thatt&tauestablished fo% ai: :
7
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Nonetheless, | shall increase the number of applitatiolThe preceding discussion
seems to me to suffice to elucidate the general theotywhsa presented in the first
chapters. On the subject of those applications, tkegeod reason to point out that the
cases in which | have succeeded in finding explicit genetadrals of the problem all
refer to ruled surfaces. It was easy to predict, by insgeequations (18), that these
surfaces will be the easiest to treat by far, becad®n one sets 14 = 0, the unknown
n; will disappear from the first equation.

If one would like to extend this research and find sother surfaces for which one
can obtain the general solution then one must elimithe@einknowm; from equations
(18), with vanishing right-hand sides, which will lead to gaation of the form:

2
o°n +Aan+Ban+Cn:0,
dadp da op

in which a and S denote the parameters of the asymptotic lines. One ithgoses
various hypotheses upon the valuesAofB, C that will permit one to integrate that
equation. If one would like, at the same time, to detexrthe surfaces that correspond
to each hypothesis then all that would remain to be dandd be to apply systems of
forces to them such that their introduction in the trigdnd side would not prevent one
from performing the integration. However, that fieldstudy is much too vast for me to
attempt to enter into it today.




