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INTRODUCTION 



2 Lecornu – On the equilibrium of flexible, inextensible surfaces 

 
 The conditions of equilibrium for a funicular curve – i.e., a flexible and inextensible 
filament whose elements are subjected to forces that form a continuous system – are 
discussed in all of the treatises on mechanics.  Let ds denote the length of an arbitrary 
element, let P ds denote the force to which it is subjected, let Pn and Pt be the normal and 
tangential components of R, resp., and finally let T denote the tensions that element feels 
from the neighboring elements.  One finds the two equations: 
 

 Pt + 
dT

ds
 = 0, 

 Pn + 
T

ρ
 = 0, 

 
with no difficulty.  1 / r is the curvature of the point considered.  Moreover, one has that 
the osculating plane of the curve passes through the direction of P. 
 Upon referring the curve to three fixed rectangular axes and calling the components 
of the force parallel to those three axes X, Y, Z, one will get the following three equations, 
which will likewise solve the problem: 
 

 
dx

d T
ds

 
 
 

+ X ds = 0, 

 

 
dy

d T
ds

 
 
 

+ Y ds = 0, 

 

 
dz

d T
ds

 
 
 

+ Z ds = 0. 

 
 When the forces are given in magnitude, direction, and sense, those three equations 
will determine the form of the curve and the tension at each point.  On the contrary, if one 
supposes that the form of the curve is given then they will yield two conditions that the 
forces must satisfy and permit one to calculate the tensions that result from the 
application of forces that satisfy those two conditions, in addition. 
 It is natural to seek the generalization of the problem by studying what happens when 
each of the points of a perfectly flexible and inextensible surface is subjected to forces 
that have the same order of magnitude as the corresponding elements.  In particular, one 
can demand to know: 
 
 1. What are equilibrium conditions for a surface that is subject to well-defined 
forces? 
 
 2. What are the laws by which one develops the efforts of tension between the 
various elements of a surface in equilibrium? 
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 3. What is the deformation that a given surface will submit to under the action of 
forces that do not satisfy the equilibrium conditions? 
 
 After having done considerable research in order to know the work that might have 
given rise to those questions, I have acquired the conviction that no one has addressed 
them further, and that their novelty has made me decide to dedicate the present work to 
them.  Without pretending to exhaust a subject that is as extensive as it is difficult, I will 
be content if I have succeeded in laying the milestones of a theory that deserves to take 
its place in science. 
 I have no need to recall here the beautiful work that has given rise to the geometric 
properties of surfaces; it will naturally provide me with an ongoing basis.  The theory of 
deformation of surfaces, which has become classical today, thanks to the discoveries of 
Ossian Bonnet, Bour, Codazzi, etc. has been particularly useful to me. 
 
 

___________ 
 

 



CHAPTER I 
 

GENERAL CONSIDERATIONS ON THE THEORY OF SURFACES 
 

 We believe that we must first establish the fundamental formulas of the theory of 
surfaces as rapidly as possible.  Such a summary of a well-known theory will provide us 
with the occasion to fix a certain number of notations, as well as to make some remarks 
that will be useful in what follows, in order to not return to them. 
 An arbitrary surface can be defined by expressing the Cartesian coordinates x, y, z as 
functions of two arbitrary parameters λ, µ : 
 
(1)   x = ϕ1 (λ, µ),  y = ϕ2 (λ, µ),  z = ϕ3 (λ, µ) . 
 
 The curves λ = const., µ = const. draw a net on the surface that will be orthogonal if 
one imposes the condition: 

x x y y z z

λ µ λ µ λ µ
∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

= 0, 

 
which we write in the abbreviated form: 
 

(2)      
x x

λ µ
∂ ∂
∂ ∂∑ = 0. 

 
 We let L, M denote the metric coefficients that correspond to the two surfaces µ = 
const., λ = const., resp.; i.e., L dλ, M dµ represent the arc lengths of the two curves that 
are found between the curves λ, λ + dλ and µ, µ + dµ .  We denote the radii of geodesic 
curvature of the two curves by ρ1, ρ2, which are supposed to be positive when they point 
in the same sense as the positive arc lengths M dµ, L dλ, resp.  R1 , R2 denote the radii of 
normal curvature, and T1, T2 denote the radii of geodesic torsion.  The positive sense of 
R1, R2, T1, T2 will be, in a certain sense, chosen arbitrarily on the normal. 
 Having said that, one has: 
 

(3)    L2 = 
2

x

λ
∂ 

 ∂ 
∑ , M 2 = 

2
x

µ
 ∂
 ∂ 

∑ . 

 
On the other hand, some very simple geometric considerations will give: 
 

(4)    
2

1

L M

ρ
= 

2

2

x x

µ λ
∂ ∂
∂ ∂∑ , 

2

2

L M

ρ
= 

2

2

x x

λ µ
∂ ∂
∂ ∂∑ . 

 
 Let X, Y, Z be the direction cosines of the normal, which are defined by the equations: 
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 LMX = 
y z y z

λ µ µ λ
∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

, 

 

 LMY = 
z x z x

λ µ µ λ
∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

, 

 

 LMZ = 
x y x y

λ µ µ λ
∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

. 

 
 One effortlessly finds that: 
 

(5)   
2

1

L

R
= 

2

2

x
X

λ
∂
∂∑ ,      

1

LM

T
= 

2

LM

T
= 

2x
X

λ µ
∂

∂ ∂∑ ,      
2

2

M

R
= 

2

2

x
X

µ
∂
∂∑ , 

 

so T1 = T2 .  We let T represent the common value that is given by 
LM

T
=

2x
X

λ µ
∂

∂ ∂∑ . 

 In order for that formula to be exact in sign, it will suffice to agree that when T is 
positive, the positive sense of the normal at the point (λ, µ) will make an acute angle with 
the positive sense of the tangent to the curve λ = const. at the point (λ, µ + dµ). 
 The groups (3), (4), (5) give seven equations that give us L, M, ρ1, ρ2, R1, R2, T as 
functions of x, y, z.  If one combines them with equation (2) then one will get a system of 
eight equations, from which, one can eliminate x, y, z, which will lead to five distinct 
equations between L, M, ρ1, ρ2, R1, R2, T.  We shall construct these five equations. 
 Equation (2) gives: 

2 2

2 2

x x x x

µ λ λ µ
∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂∑ ∑  = 0. 

As a result: 
2

1

L M

ρ
= −

2x x

λ λ µ
∂ ∂
∂ ∂ ∂∑ . 

 
Moreover, one infers from the first of equations (3) that: 
 

L
L

µ
∂
∂

= 
2x x

λ λ µ
∂ ∂
∂ ∂ ∂∑ . 

Hence: 
2

1

L M

ρ
= − 

L
L

µ
∂
∂

, 

and consequently: 

1

1

ρ
= − 

/L

LM

µ∂ ∂
; 

similarly: 
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(6)      
2

1

ρ
= − 

/L

LM

λ∂ ∂
. 

 
The definitions of X, Y, Z lead immediately to the relations: 
 

X 2 + Y 2 + Z 2 = 1, 
 

x
X

λ
∂
∂∑ = 0, 

x
X

µ
∂
∂∑ = 0. 

One deduces from this that: 

 
x

X
λ

∂
∂∑ = 0, 

 

 
x X

λ λ
∂ ∂
∂ ∂∑ = − 

2

2

x
X

λ
∂
∂∑ = 

2

1

L

R

−
, 

 

 
x X

µ λ
∂ ∂
∂ ∂∑ = − 

2x
X

λ µ
∂

∂ ∂∑ = 
LM

T

−
. 

 

 If one considers 
X

λ
∂
∂

, 
Y

λ
∂
∂

, 
Z

λ
∂
∂

 to be the unknowns in these three equations, and if 

one remarks that: 

X Y Z

x y z

x y z
λ λ λ

µ µ µ

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 = LM 

then one will get: 
X

λ
∂
∂

= − 
1

1 1x L x

R T Mλ µ
∂ ∂−
∂ ∂

. 

One will likewise have: 
X

µ
∂
∂

= − 
2

1 1x M x

R T Lµ λ
∂ ∂−
∂ ∂

. 

 
 Differentiate the value of ∂X / ∂λ with respect to µ and then differentiate the value of 
∂X / ∂µ by λ, and equate the two results that one obtains; one will find that: 
 

2

2 1 1 2

1 1 1 1x x x

R R R Rλ µ λ µ µ λ
     ∂ ∂ ∂ ∂ ∂− − +     ∂ ∂ ∂ ∂ ∂ ∂     
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−
2 2

2 2

1 L x M x x L x M

T M L MT LTµ λ µ µ λ λ
 ∂ ∂ ∂ ∂ ∂ ∂   − − +     ∂ ∂ ∂ ∂ ∂ ∂    

 = 0. 

 
 Multiply that equation by ∂x / ∂λ, and combine it with similar equations in y and z.  
Upon taking into account the relations: 
 

 
2x x

λ λ µ
∂ ∂
∂ ∂ ∂∑ = −

2

1

L M

ρ
, 

 

 
2

2

x x

λ µ
∂ ∂
∂ ∂∑ =

2

2

M L

ρ
, 

 

 
2

2

x x

λ λ
∂ ∂
∂ ∂∑ =

L
L

λ
∂
∂

, 

 
moreover, then we will arrive at the equation: 
 

(7)    1

1 2 1 2

(1/ )1 1 (1/ ) 1 1 1 2 1R T

M L R R Tµ λ ρ ρ
 ∂ ∂− + − + ∂ ∂  

 = 0. 

 
 One will likewise have: 
 

  2

2 1 2 1

(1/ )1 1 (1/ ) 1 1 1 2 1R T

L M R R Tλ µ ρ ρ
 ∂ ∂− + − + ∂ ∂  

= 0. 

 
The groups (6) and (7) already provide four of the desired equations.  In order to get the 
last one, calculate ∂2x / ∂λ2 by means of the equations: 
 

 
2

2

x
X

λ
∂
∂∑  = 

2

1

L

R
, 

 

 
2

2

x x

λ λ
∂ ∂
∂ ∂∑  = 

L
L

µ
∂
∂

, 

 

 
2

2

x x

µ λ
∂ ∂
∂ ∂∑  =

2

1

L M

ρ
; 

one gets: 
2

2

x

λ
∂
∂

= 
2 2

1 1

1L L x L x
X

R L Mλ λ ρ µ
∂ ∂ ∂+ +
∂ ∂ ∂

. 
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 Take the derivative with respect to µ, multiply by ∂x / ∂µ and add that to the other 
two analogous expressions; one will find that: 
 

3

2

x x

µ λ µ
∂ ∂
∂ ∂ ∂∑ = − 

2 2 2 2

1 2 1 1

L M M L M L M M L

R R L L Mλ λ ρ µ µ ρ
 ∂ ∂ ∂ ∂+ + +  ∂ ∂ ∂ ∂  

. 

 
On the other hand, one has the equations: 
 

 
2x

X
λ µ
∂

∂ ∂∑ = 
LM

T
, 

 

 
2x x

λ λ µ
∂ ∂
∂ ∂ ∂∑ = 

L
L

µ
∂
∂

, 

 

 
2x x

µ λ µ
∂ ∂
∂ ∂ ∂∑ = −

2

2

x x

λ µ
∂ ∂
∂ ∂∑ = − 

2

2

LM

ρ
, 

 
and as a result, upon operating as above: 
 

3

2

x x

µ λ µ
∂ ∂
∂ ∂ ∂∑ = − 

2 2
2

1 1 2

L M LM L ML M L
M

T ρ µ ρ λ µ ρ
 ∂ ∂ ∂+ − −  ∂ ∂ ∂  

. 

 

 Upon equating the two values of 
3

2

x x

µ λ µ
∂ ∂
∂ ∂ ∂∑  and making some reductions, one 

will arrive at the desired equation: 
 

2 2

1 2
2

1 2 1 2

(1/ ) (1/ )1 1 1 1 1 1

R R T M L

ρ ρ
ρ ρ µ λ

    ∂ ∂− + + − −    ∂ ∂   
= 0. 

 
 The fundamental relations that exist between the elements of the surface are then: 
 

(8)   

2

1 1 2 2

1

1 2 1 2

1 2
2 2 2

1 2 1 2

1 2

(1/ )1 1 (1/ ) 1 1 1 2 1
0,

(1/ )1 1 (1/ ) 1 1 1 2 1
0,

(1/ ) (1/ )1 1 1 1 1 1
0,

1 / 1 /
, .

R T

L M R R T

R T

M L R R T

T R R M L

L M

LM LM

λ µ ρ ρ

µ λ ρ ρ
ρ ρ

µ λ ρ ρ
µ λ

ρ ρ

  ∂ ∂− + − + =  ∂ ∂  
  ∂ ∂ − + − + = 
 ∂ ∂  

∂ ∂ − + + − − = ∂ ∂


∂ ∂ ∂ ∂ = − = −

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 These equations show immediately that under the deformation of an inextensible 
surface, by definition, the coefficients L and M will remain invariable functions of λ and 

µ, and that the same thing will be true for the geodesic and total curvatures 
2

1 2

1 1

R R T
− .  

When one proposes to find all of the surfaces that are deduced from each other by a 
deformation without extension, it will suffice to consider L, M, ρ1, ρ2 to be given 
functions and R1, R2, T to be unknowns. The first three equations (8) will then determine 
those unknowns, and all of the difficulty will come down to the integration of those 
equations (1). 
 In the rest of this article, we will then be led to envision the infinitely-small 
deformations of a given surface in a special fashion.  If we let l, m, θ denote the unknown 
variations that result for 1 / R1, 1 / R2, and 1 / T under such a deformation then the 
equations of the problem will become: 
 

(9)    

2 1

1 2

2 1

1 1 2
0,

1 1 2
0,

2
0.

m l m

L M

l m l

M L

l m

R R T

θ θ
λ µ ρ ρ

θ θ
µ λ ρ ρ

θ

 ∂ ∂ −− + + = ∂ ∂
 ∂ ∂ −− + + = ∂ ∂


+ − =


 

 
 These equations are much simpler than equations (8), because they are linear in l, m, 
θ.  It can then happen that they are integrable without the same thing being true for 
equations (8). 
 If one sets: 

a = 
22

T

R
, b = 

12

T

R
, 

 
to abbreviate, then the third equation in (9) will become: 
 

θ = al + bm. 
 
 When that value of θ is substituted in the first two equations, that will lead to the 
following system: 
 

(10) 1 2

2 1

1 2 1
( ) 0,

1 2 1
( ) 0.

a l l b m m l a a
al bm l m

L M L L

a l m b m l m a a
al bm l m

M L M M

λ µ λ ρ ρ λ λ

µ λ µ ρ ρ µ µ

 ∂ ∂ ∂ − ∂ ∂ − + − + + + − + =  ∂ ∂ ∂ ∂ ∂ 


 ∂ ∂ ∂ − ∂ ∂ − + − + + + − + =  ∂ ∂ ∂ ∂ ∂ 

 

                                                
 (1) Ossian Bonnet has proved (Journal de l’École Polytechnique, Cahier 42, pp. 35) that seven functions 
L, M, ρ1, ρ2, R1, R2 , T that satisfy equations (8) will always determine one and only surface. 



10 Lecornu – On the equilibrium of flexible, inextensible surfaces 

 Choose the values of l and m arbitrarily for all points of a curve f (λ, µ) = 0.  The two 
equations: 

 
l l

d dλ µ
λ µ

∂ ∂+
∂ ∂

− dl = 0, 

 

 
m m

d dλ µ
λ µ

∂ ∂+
∂ ∂

− dm = 0, 

 

when combined with the previous two, will determine the values of 
l

λ
∂
∂

, 
l

µ
∂
∂

, 
m

λ
∂
∂

, 
m

µ
∂
∂

, 

in general.  One will then know the values of the unknowns for the points of a curve that 
is infinitely close to the first one, and upon proceeding in that way, step-by-step, one will 
find the deformation of any surface. 
 However, when the determinant of the four equations is zero, i.e., when: 
 

1
0

1
0

0 0

0 0

a b

L M L
a b

L L M
d d

d d

λ µ
λ µ

− −

− − = 0, 

 
the four equations will be incompatible, unless each of them is not a consequence of the 
other three.  Upon developing the determinant, one will find that: 
 

b L2 dλ2 + LM dλ dµ + a M 2 dµ2 = 0, 
or 

2 2
2 2

1 2

2L LM M
d d d d

R T R
λ λ µ µ+ + = 0. 

 
 That equation is the one for asymptotic lines. 
 One can then say that: 
 
 The asymptotic lines of a surface are the characteristics of its infinitely-small 
deformations. 
 
 For an arbitrary line that is traced on the surface, one can give the deformation that it 
is subject to arbitrarily; on the contrary, an asymptotic line can be deformed only 
according to a well-defined law. 
 One will find that law easily by supposing that the curves λ = const. constitute one of 
the systems of asymptotic lines.  One will then have 1 / R2 = 0, and as a result, a will be 
zero, along with its derivatives (we exclude the case of developable surfaces here, for 
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which 1 / R2 = 0 would imply that 1 / T = 0).  Set a = 0 in equations (10) and eliminate 
∂m / ∂λ ; one will then have: 
 

(11) 
2

2 1 1 2 2 1

1 1 1 1 1
2

l b m b b b b b b
l b m

M M L Mµ µ ρ ρ ρ ρ ρ ρ λ µ
    ∂ ∂ ∂ ∂− + − + − + + − −    ∂ ∂ ∂ ∂    

= 0. 

 
 In order to satisfy that equation, one can choose the values of m arbitrarily; l will then 
be determined by a first-order linear equation.  However, in the general case, it is 
impossible to find how l and m vary when one passes from one characteristic to an 
infinitely-close one.  In order to do that, one must obtain the values of l and m that satisfy 
equation (11) and one of equations (10); for example: 
 

(12)   
2 1

1 2 1m b m l m b b
m

L M Mλ λ ρ ρ µ
 ∂ ∂ − ∂− + + − ∂ ∂ ∂ 

= 0. 

 
Here, we point out an interesting property of the asymptotic line l = const.  If one 
supposes that one has m = 0 for that line then θ will also be annulled, since a = 0.  
However, l can vary while remaining subject to only the condition: 
 

2 1

1 1l b
l

M µ ρ ρ
 ∂ + − ∂  

= 0. 

 
 The equations m = 0 and θ = 0, when combined with the one that expresses the 
constancy of the geodesic curvature, say that the asymptotic line considered will 
experience no deformation.  Hence: 
 
 One can subject a surface to an infinitely-small deformation such that the figure of a 
given asymptotic line remains invariable. 
 
 That property belongs to only the asymptotic lines.  Indeed, the first curvature 1 / R2 
of an arbitrary line λ = const. has a projection onto the tangent plane that is the geodesic 
curvature, which will always remain independent of the deformation, since the first 
curvature can be invariable only if the angle that is defined by the osculating plane and 
the tangent plane is not modified.  Under those conditions, the normal curvature, which is 
equal to the projection of the first curvature onto the normal plane to the surface, will no 
longer change.  On the other hand, the angle dα between two consecutive osculating 
planes is equal to the sum of the geodesic torsion dβ and the increment dγ in the angle γ 
that is formed between the osculating plane and the corresponding tangent plane.  When 
the curve is not deformed, dα and dγ will remain invariable.  The same thing will then be 
true for dβ, and consequently, the geodesic torsion 1 / T.  Finally, the constancy of the 
quantities 1 / R2, 1 / T will imply that of 1 / R1 . 
 One will then have l = 0, m = 0, θ = 0 for all points of the surface considered, and as a 
result, from what we have seen, those quantities will be zero for all points on the surface. 
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 When the condition m = 0 is applied to an asymptotic line, from the preceding, that 
condition will be sufficient for that line to remain invariable.  Moreover, it expresses the 
idea that the normal curvature remains zero, and as a result one can say that: 
 
 When an asymptotic line has an asymptotic line for its transform, those two lines will 
be identical. 
 
 The proposition, which was proved for an infinitely-small deformation, will 
obviously extend to an arbitrary finite deformation, provided that the line is asymptotic in 
all of intermediate states. 
 Conversely: 
 
 If an asymptotic line is not deformed then it will necessarily remain asymptotic. 
 
 That is because if it is not asymptotic in the final state then one cannot pass to the 
initial state with deforming it.  That is inadmissible. 
 If one imposes that the condition that all of the asymptotic lines of a system λ = const. 
remain asymptotic under the deformation then equation (12), in which one has set m = 0, 
will give l = 0, as long as 1 / ρ2 is non-zero; i.e., unless, the asymptotic lines are not 
rectilinear generators.  The quantities 1 / R1, 1 / R2, and as a result, 1 / T, will then be 
invariable, and the surface will not be deformable. 
 The proof is no more difficult in the case of a finite deformation.  When the system 
λ = const. is asymptotic, the total curvature will reduce to – 1 / T, and consequently, if the 
system remains asymptotic then 1 / T will be invariable.  Furthermore, since 1 / R2 = 0, 
the first of equations (8) will give 1 / R1 = const., unless 1 / ρ2 is non-zero.  Thus: 
 
 Two surfaces that can be mapped to each other will coincide when the non-rectilinear 
asymptotic lines of one of the systems for one of the surfaces has the asymptotic lines of 
one of the systems for the other surface for its transform. 
 
 That theorem is due to Ossian Bonnet (Journal de l’École Polytechnique, Cahier 42, 
pp. 44). 
 We shall not dwell further upon these purely-geometric considerations, which we 
have presented only because of the cardinal role of asymptotic lines in the problem of the 
equilibrium of surfaces.  In a paper that was read to the Royal Irish Academy on 23 May 
1853, Professor Jellett studied the deformation of surfaces from an entirely analogous 
viewpoint.  The report (Proceedings of the Royal Irish Academy, vol. V, pp. 441) 
contains only the conclusions of that paper, which are the following ones: 
 

I. – CONVEX SURFACES (oval surfaces) 
 
 If a curve or a portion of a curve that is traced on an inextensible convex surface is 
kept fixed then all of the surface will likewise remain fixed. 
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II. – DEVELOPABLE SURFACES 
 

 1. If an arc of a curve that is traced on the surface and belongs to neither the edge of 
regression nor a rectilinear generator is kept fixed then the entire portion of the surface 
that is found between the edge of regression and the rectilinear generators that pass 
through the endpoints of the arc of the curve will likewise remain fixed. 
 
 2. The edge of regression or a rectilinear generator can generally be made fixed 
without making any part of the surface fixed. 
 
 3. The rectilinear generators of a developable surface are rigid. 
 
 Observe here that the latter theorem is true only under certain limits on the 
deformation, since if one considers a portion of the developable surface that does not 
contain any part of the edge of regression then one can develop it onto a plane, and then 
unroll it onto another developable surface.  It is obvious that after that deformation, the 
new rectilinear generators will not generally correspond to the original ones. 
 

III. – CONCAVO-CONVEX SURFACES 
 

 Professor Jellett gave the name of curves of flexure to the asymptotic lines, which are 
then real, and stated these three theorems: 
 
 1. If an arc of a curve that is not a curve of flexure is kept fixed on the surface, and if 
one draws two curves of flexure through each end point of that arc then the quadrilateral 
that is found between the four curves of flexure thus formed will remain fixed. 
 
 2. One can fix a curve of flexure without forbidding the deformation of any finite 
portion of the surface. 
 
 3. If two arcs of a curve of flexure that start from the same point are kept fixed then 
the quadrilateral that is found between those two arcs and the other two curves of flexure 
that are drawn through their second end points will likewise remain fixed. 
 
 The proof of all these theorems is deduced effortlessly from the formulas that were 
established before.  Furthermore, we shall have to prove some propositions of the same 
type on the subject of the equilibrium state. 
 When one seeks to treat the case of an infinitely-small deformation, instead of normal 
curvatures and geodesic torsion, one can consider the displacement that each point of the 
surface experiences and take the projections of that displacement onto three given 
rectangular axes to be the unknowns.  The first-order differential coefficients satisfy the 
equations: 

 
2

x

λ
∂ 

 ∂ 
∑ = L2, 
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2

x

µ
 ∂
 ∂ 

∑ = M 2, 

 

 
x x

λ µ
∂ ∂
∂ ∂∑ = 0 

 
before and after the deformation.  If ξ, η, ζ then denote the infinitely-small variations of 
x, y, z then one will have: 

 
x ξ
λ λ

∂ ∂
∂ ∂∑ = 0, 

 

 
x ξ
µ µ

∂ ∂
∂ ∂∑ = 0, 

 

 
x xξ ξ
λ µ µ λ

∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂∑ ∑ = 0. 

 
Make the axes Ox, Oy, Oz coincide with the tangents to the curves µ = const., λ = const., 
and the normal to the surface at the point (x, y, z), respectively.  The three equations 
reduce to: 

ξ
λ

∂
∂

= 0, 
η
µ

∂
∂

= 0, L M
ξ η
µ λ

∂ ∂+
∂ ∂

= 0. 

 
 Let h1, h2, k be the projections of the displacement (ξ, η, ζ) onto the two tangents and 
the normal, resp., in a general way.  One will have: 
 

h1 = ξ,   h2 = η,   k = ζ 
 
for the present position of the coordinate axes. 
 Moreover, upon keeping the axes Ox, Oy, Oz fixed and varying the position of the 
point (x, y, z), one will find, with no difficulty, that: 
 

 
1

L

ξ
λ

∂
∂

= 1 2

1 1

1 h h k

L Rλ ρ
∂ − −
∂

, 
1

M

ξ
µ

∂
∂

= 1 2

2

1 h h k

M Tµ ρ
∂ + −
∂

, 

 

 
1

M

η
µ

∂
∂

= 2 1

2 2

1 h h k

M Rµ ρ
∂ − −
∂

, 
1

L

η
λ

∂
∂

= 2 1

1

1 h h k

M Tµ ρ
∂ + −
∂

. 

 
The unknowns h1, h2, k must then satisfy the three equations: 
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(13) 

1 2

1 1

2 1

2 2

1 2 2 1

1 1

1
,

1
,

1 1 2
.

h h k

L R

h h k

M R

h h h hk

M L T

λ ρ

µ ρ

µ λ ρ ρ

 ∂ = + ∂
 ∂ = + ∂
 ∂ ∂+ = − −

∂ ∂

 

 
 Upon eliminating T, one will get two first-order equations in h1 and h2 whose 
characteristics will again be asymptotic lines of the surface, which one can easily assure 
oneself. 
 Equations (13) can serve as the proof of the theorems that we have presented that 
were concerned with the deformation of surfaces; however, it is would be pointless for us 
to dwell at length upon that subject. 
 

__________ 
 

 



CHAPTER II 
 

STATIC PROPERTIES OF SURFACES 
 

 Consider a surface in equilibrium under the action of given forces that we shall call 
external forces, and imagine that one cuts out an arbitrary closed contour on that surface.  
The portion of the surface thus-detached will remain in equilibrium when one applies 
conveniently-chosen forces that are tangent to the surface.  In all that follows, we shall 
refer to them by the name of forces of tension, and we shall always suppose that they are 
referred to a unit of length, just as one refers the pressures in a fluid to a unit of area.  The 
force of tension that is exerted upon an element of the contour is, in general, oblique to 
that element.  It will then have a normal component and a tangential component.  One can 
call the former the force of extension or compression, according to its sign, and call the 
latter the shearing force. (These terms are borrowed from the theory of the resistance of 
materials.) Any linear element of the surface is subject to a force of extension and a 
shearing force, whose sense will reverse when one considers one or the other of the 
portions of the surface that the linear element separates. 
 

 A B 

C D  
Figure 1. 

 
 The surface element that is found between two orthogonal curves (λ, λ + dλ) and (µ, 
µ + dµ) projects onto a figure ABCD in its tangent plane (Fig. 1) that can coincide with a 
rectangle upon neglecting the infinitesimals of order higher than one.  Within the same 
limits of approximation, the tensions will project onto true magnitudes; moreover, they 
will be constants on each of the sides and equal (but with opposite signs) on two parallel 
sides.  If one takes the sum of the moments of all of the forces with respect to the normal 
that is drawn to the center of the rectangle then one will effortlessly see that the external 
forces and the extension forces can give only moments of second order, while the 
shearing forces t and t′, one of which is exerted upon AB and CD, while the other one is 
exerted upon AC and BD, will give the resultant moment: 
 

(t − t′) AB × BD. 
 
 Equilibrium of the rectangular element is then possible only if t = t′.  That gives the 
theorem: 
 
 The shearing forces that are developed at a given point on two line elements that cut 
at a right angle are equal. 
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 The equality t = t′ supposes that the forces t and t′, which are applied tangentially to 
the sides CA and CD, are both directed towards C, or even both of them can diverge.  We 
shall assume that for a rectangle whose sides CD and CA are positive from C to D and 
from C to A, the shearing forces will be positive when they point to C.  One will see the 
reason for that convention later one. 
 We define the sense of the forces of extension that are exerted upon the same 
rectangle by assuming that on the two sides CD and CA, they are positive when they have 
the same sense as the positive directions CA, CD. 
 

 A B 

D C 

α 

 
Figure 2. 

 
 Now project onto its tangent plane a triangular element that is composed of the 
orthogonal curves λ, µ, and a third curve that is required only to be at an infinitely-small 
distance from the point at which the first two meet.  Upon neglecting infinitesimals of 
order higher than one, one can get the right triangle CBD (Fig. 2) for the projection, 
which one can regard as being equal to the one-half of the rectangle ABCD.  It is easy to 
see that the forces of tension, which are supposed to be positive CD and DB, will have 
the directions that are represented by the arrows.  We let t denote the shearing force that 
is common to BD and CD, while n1 and n2 will denote the extension forces that are 
exerted on CD and BD, resp.  The side BC is likewise subject to tensions.  We suppose 
that the positive sense of the shearing force T is that of C to B and the sense of the 
extension force N will be the sense that points into the triangle. 
 Upon projecting all of the forces onto BC and its perpendicular and remarking that the 
external forces give only second-order terms, one will have: 
 

(14)   
2 2

1 2
2 2

1 2

cos sin 2 sin cos ,

(cos sin ) ( )sin cos .

N n n t

T t n n

α α α α
α α α α

 = + +
 = − − −

 

 
 The second formula shows that T is annulled at each point for two real, rectangular 
directions OX, OY that are defined by: 
 

tan 2α = 
1 2

2l

n n−
. 
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 Upon making AC and BC coincide with those two directions, which one can call the 
principal directions of tension, one will have: 
 
 N = n1 cos2 α + n2 sin2 α, 
 
 T = − (n1 – n2) sin α cos α . 

 
 y 

O 

α 
β 

x 

M 

F  
Figure 3. 

 
 Let OM be the direction α (Fig. 3).  Draw a line OF, which represents the 
corresponding tension in sense and magnitude at some arbitrary scale.  The coordinates of 
the point F are: 
 x = T cos α + N sin α =    n2 sin α, 
 y = T sin α − N cos α = − n1 cos α . 
 
Hence, upon letting β denote the angle FOX, one will have: 
 

tan α tan β = − 1

2

n

n
. 

 
 When α varies, the point F will describe the ellipse: 
 

2 2

2 2
2 1

x y

n n
+  = 1, 

 
but a consideration of that ellipse would have no utility, since it does not depend upon the 

directions OF and OM in a simple manner.  If we measure out the length OM = 
1

N
 = 

2 2
1 2

1

cos sinn nα α+
 on OM then the coordinates of the point M will be: 
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 x = 
2 2

1 2

cos

cos sinn n

α
α α+

, 

 

 y = 
2 2

1 2

sin

cos sinn n

α
α α+

, 

so: 
n1 x

2 + n2 y
2 = 1. 

 
 Upon comparing that equation with the one that gives the product tan α tan β, one 
will immediately see that OF and OM are two conjugate directions of the conic thus-
obtained.  We call that conic the tension indicatrix.  When referred to two rectangular 
axes with arbitrary directions, its equation will become: 
 

n1 x
2 + 2t xy + n2 y

2 = 1. 
 
 When the indicatrix is a real ellipse, all of the line elements that are drawn through 
the point considered will be subject to the part of the surface that has normal efforts of 
compression.  When it is an imaginary ellipse, the normal efforts of compression will be 
replaced with efforts of traction.  When it is a hyperbola, the normal action will produce 
an effort of compression for certain directions and an effort of traction for some other 
ones, and in that case, there will exist two real directions for which the normal action 
reduces to zero. 
 In certain cases, it can be interesting to know the total intensity of tension that is 
exerted on a line element.  The square of that quantity is given by: 
 

N 2 + T 2 = 2 2 2 2
1 2cos sinn nα α+ . 

 
 With that, the largest value of the total tension will correspond to the direction of the 
small axis of the tension indicatrix. 
 The known properties of the diameters of a conic, when stated for the indicatrix, 
translate into a series of theorems on the tensions, but it would be pointless for us to 
dwell upon that.  We shall establish only a relation that we shall appeal to in what 
follows. 
 Since the two directions α and β are conjugate, if one lets ϕ denote the angle that they 
form between them, lets N1 and N2 denote their normal tensions, and lets 1N′  denote the 

normal tension in the element whose direction is π / 2 + α then one will obviously have: 
 

1 2

1 1

N N
+ = 

1 2

1 1

n n
+ , 

 
2

1 2

sin

N N

ϕ
= 

1 2

1

n n
, 
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N1 + 1N′  = n1 + n2 . 

 
 Upon eliminating n1 and n2 , one will infer that: 
 
(15) N1 + N2 = sin2 ϕ (N1 + 1N′ ). 
 
 The considerations that we just discussed show that if one traces out a double series 
of orthogonal curves λ, µ on a surface then it will suffice to know the extension efforts 
and the common shearing effort that are exerted upon the elements L dλ, M dµ at each 
point for the equilibrium state on the surface to be known completely.  Let n1 be the 
extension effort on L dλ, let n2 be the extension effort on M dµ, and let t be the common 
shearing effort; n1, n2, and t will then be the three functions of λ and µ that must be 
determined. 
 Upon considering the surface element whose sides are L dλ, M dµ to be a free solid 
that is subject to external forces and tension forces that are developed on the contour, one 
can write the equilibrium equations of an invariable solid.  Naturally, the projection axes 
will be the normal to the surface and the tangents to the coordinate curves.  Upon pushing 
the approximation up to second order in the equations of the projections of the forces and 
up to third order in those of the moments, one will see that the equations of the moments 
reduce to those of the projections, and one will arrive effortlessly at the equilibrium 
conditions.  However, the following method leads to that objective in a much-more-rapid 
fashion: 
 As we have done before, let h1, h2, k denote the projections of the displacements at 
each point of the surface onto the tangents to the coordinates and the normal after an 
infinitely-small deformation.  One will see immediately that the work done by the forces 
of tension will be equal to: 
 

1 2 1 2 1 2( ) ( )L n n Lt h M n h M t h
µ λ

 ∂ ∂− + − ∂ ∂ 
dλ dµ . 

 
 Let F be the external force per unit area at the point (λ, µ).  Let F1, F2 be its 
components along dλ, dµ, and let Φ be its normal component.  The elementary work 
done by the external forces that are applied to the element is: 
 

(F1 h1 + F2 h2 + Φ k) LM dλ dµ . 
One must then have: 
 

1 2 1 2 1 2( ) ( )L n n Lt h M n h M t h
µ λ
∂ ∂− + −

∂ ∂
= (F1 h1 + F2 h2 + Φ k) LM 

 
for all possible values of h1, h2, k , or rather: 
 

2 2 1 1 2 2
1 1 1 2 1 2

1 1 1 1h h h h n ht t
n n t h n h t h

M M L Lµ µ µ µ λ λ λ λ
   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂   + − + + + − +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
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+ (n1 h2 – t h1) 
/L

LM

µ∂ ∂
+ (n2 h1 – t h2) 

/L

LM

λ∂ ∂
= F1 h1 + F2 h2 + Φ k. 

 
 Replace the derivatives of h1 and h2 with their values that one derives from equations 
(13).  Since h1, h2, k are capable of taking on an infinitude of independent values, one can 
then write down that the coefficients of those three quantities are identically zero.  That 
will give: 

(16)   

2 1 2
1

2 1

1 2 1
2

1 2

1 2

2 1

1 1 2
,

1 1 2
,

2
.

n n nt t
F

L M

n n nt t
F

M L

n n t

R R T

λ µ ρ ρ

µ λ ρ ρ

 ∂ −∂− + + = ∂ ∂
 ∂ −∂− + + = ∂ ∂


+ − = Φ


 

 
 These equations are necessary and sufficient for equilibrium, and they give n1, n2, t.  
Since there are as many unknowns as equations, it will follow that F1, F2, Φ are not 
subject to any condition and that consequently: 
 
 A surface can exist in equilibrium under the action of arbitrary forces. 
 
 That theorem seems paradoxical on first glance, but if one wishes to understand why 
the equilibrium conditions of a surface reduce to conditions that relate to the boundary 
then it will suffice to recall that when a curve that is traced upon a surface remains fixed, 
all of the surface will likewise remain fixed (as long as the curve is not an asymptote).  
That makes the problem of the funicular curve completely different from the problem that 
we presently address. 
 The equations: 

 Pt + 
dT

ds
= 0, 

 

 Pu + 
T

ρ
= 0 

 
indeed have a certain analogy with equations (16), but they refer only to an unknown 
tension whose elimination will lead to the equilibrium condition: 
 

Pt = 
( )nd P

ds

ρ
. 

 
 There is no parallel in the case of surfaces. 
 The boundary conditions can be written explicitly only when one has integrated the 
equilibrium equations.  If one finds that those conditions cannot be satisfied then one 
must conclude that the equilibrium of the surface does not exist and that it necessarily 
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deforms under the action of the forces that are applied to it.  One will then be led to 
restrict oneself to the third and last problem that was stated in the Introduction, viz.: 
 
 What deformation will a given surface experience under the action of forces that do 
not satisfy the equilibriums conditions? 
 
 Here, it goes without saying that one must know how the forces vary when the 
surface is deformed.  In order for the problem to be soluble, one must be able to 
determine all of the surfaces that can map onto the given surface under the conditions that 
are imposed upon it.  It will then be necessary that one must know how to integrate the 
equilibrium equations for each of those surfaces and to define the conditions that relate to 
the boundary.  Whosoever would study the theory of the deformation of surfaces and 
account for the difficulties that are presented will effortlessly admit that the problem that 
we just posed exceeds the present scope of that science considerably.  I have succeeded in 
obtaining some results along those lines for some very special cases that one will find to 
be discussed later on.  Perhaps one will get some interesting theorems upon considering 
surfaces that are subject to only very small deformations and being content to use a 
certain approximation.  However, my efforts in this article are directed towards an 
objective that is easier to achieve: I seek to analyze the equilibrium conditions for 
surfaces and the laws by which one develops the various efforts of tension.  In a word, I 
have concentrated my attention on the first two problems that were stated in the 
Introduction. 
 It is useful to make a remark here in regard to the practical applications that can be 
made of this theory: The distribution of tensions in a surface in equilibrium is entirely 
independent of the inextensibility that I have attributed to that surface.  That is because 
when an extensible surface is in equilibrium, one can mentally suppress its extensibility 
without changing anything.  The conditions that relate to the equilibrium of an 
inextensible surface are then necessary for the equilibrium of that surface when it is made 
extensible; however, they are generally sufficient. 
 The left-hand sides of equations (16) are identical to the ones in equations (9), except 
for the names of the unknowns.  It results from this immediately that: 
 
 When a surface or a portion of a surface is not subject to any external force, the 
tensions n1, n2, t that can develop will be proportional to the variations that the 
curvatures 1 / R1, 1 / R2, 1 / T experience under a certain infinitely-small deformation of 
the surface. 
 
 That fundamental theorem gives the key to the intimate link that exists between the 
problem of the equilibrium of surfaces and that of their deformation. 
 There is an important simplification of equations (16), no matter what the external 
forces are.  Set: 

n1 = 1
1

a
n

R
′ + , n2 = 2

2

a
n

R
′ + , t = 

a
t

T
′ + . 

 
 The third equation will become: 
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1 2

2 1

2n n t

R R T

′ ′ ′
+ − = Φ − 

2
1 2

1 1

R R T

 
− 

 
. 

 

 Whenever 
2

1 2

1 1

R R T
−  is non-zero – i.e., whenever the surface is not developable – 

we can determine the function a by the condition: 
 

2
1 2

1 1
2a

R R T

 
− 

 
= Φ. 

 
Substitute that value of a in the expression for n1, n2, t.  Since the first two equations in 

(16) are linear, their left-hand sides will be annulled when one replaces n1, n2, t with 
1

1

R
, 

2

1

R
,
1

T
, or by those quantities when they are multiplied by a constant.  All that will 

remain is then: 
 

2 1 2

2 1

1 1 2n n nt t

L Mλ µ ρ ρ
′ ′ ′′ ′∂ −∂− + +

∂ ∂
= F1 − 

2

1 1a a

LR MTλ µ
∂ ∂+
∂ ∂

 = 1F ′ , 

 

2 2 1

1 2

1 1 2n n nt t

M Lµ λ ρ ρ
′ ′ ′′ ′∂ −∂− + +

∂ ∂
= F2 − 

2

1 1a a

MR LTµ µ
∂ ∂+
∂ ∂

 = 2F ′ . 

 
 One concludes from this that since a is a well-defined function, as one just saw, and if 
the tangential forces F1, F2 are put into the form: 
 

 F1 = 1
2

1 1a a
F

LR MTλ µ
∂ ∂′+ −
∂ ∂

, 

 

 F2 = 2
1

1 1a a
F

MR LTµ λ
∂ ∂′ + −
∂ ∂

 

 
then the system of external forces can be divided into two parts: 
 
 1. The normal force Φ and the tangent forces: 
 

2

1 1a a

LR MTλ µ
∂ ∂−
∂ ∂

, 

 

1

1 1a a

MR LTµ λ
∂ ∂−
∂ ∂

. 



24 Lecornu – On the equilibrium of flexible, inextensible surfaces 

 That system admits the tensions n1 = 
1

a

R
, n2 = 

2

a

R
, t = 

a

T
 as particular solutions.  We 

refer to them by the name of the normal system. 
 
 2. Tangential forces 1F ′ , 2F ′  with no normal forces.  That system, which we refer to 

by the name of the tangential system, will give to some tensions that are determined by 
the following equations, in which we have dropped the primes, which have become 
unnecessary: 

(17)   

2 1 2
1

2 1

1 2 1
2

1 2

1 2

2 1

1 1 2
,

1 1 2
,

2
0.

n n nt t
F

L M

n n nt t
F

M L

n n t

R R T

λ µ ρ ρ

µ λ ρ ρ

 ∂ −∂− + + = ∂ ∂
 ∂ −∂− + + = ∂ ∂


+ − =


 

 
 When one has found three values n1, n2, t that define a particular solution of that 
system, if one wishes to have the general solution of equations (16) then it will suffice to 

add those particular solutions, term-by-term, to the solutions 
1

a

R
, 

2

a

R
, 

a

T
 of the normal 

system and the general values that satisfy the equations with a vanishing right-hand side. 
 The integration of the equations with a vanishing right-hand side constitutes the 
problem of the deformation of surfaces, when it is simplified by the hypothesis that one is 
dealing with an infinitely-small deformation.  Consequently, the special difficulty in the 
problem of equilibrium lies in the search for a particular solution that relates to the 
system of tangential forces. 
 If one knows two particular solutions (l′, m′, θ′ ), (l″, m″, θ″ ) of equations (9) then 
one can apply the method of variation of arbitrary constants to the search for a particular 
solution of equations (17). 
 Upon setting: 
 n1 = a l′ + b l″, 
 
 n2 = a m′ + b m″, 
 
 t   = a θ′ + b θ ″, 
 
one will have the two equations: 
 

 
m a m b a b

L L M M

θ θ
λ λ µ µ

′ ′′ ′ ′′∂ ∂ ∂ ∂+ − −
∂ ∂ ∂ ∂

 = F1, 

 

 
l a l b a b

L M L L

θ θ
λ λ λ λ

′ ′′ ′ ′′∂ ∂ ∂ ∂+ − −
∂ ∂ ∂ ∂

 = F2 
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to determine the functions a and b . 
 The unknowns enter into these two equations only by their derivatives.  That method 
will lead to an advantageous result when equations (9) admit a solution l″, m″, θ″  such 
that one will have: 

θ″ 2 − l″ m″ = 0. 
 If one writes: 

l

θ
′′
′′

=
m

θ ′′
′′

= k 

 
then the equations that determine a and b will lead to the following one: 
 

km a l k a

L M

θ θ
λ µ

′ ′ ′ ′− ∂ − ∂+
∂ ∂

 = k F1 + F2 , 

 
which is an equation with only one unknown whose integration is incomparably simpler 
than that of the two simultaneous equations. 
 The expression θ″ 2 – l″ m″ can be regarded as the invariant of the tension indicatrix 
upon supposing that the external forces are zero.  If one calls the principal tensions l, m 
then one must have: 

lm = l″ m″ − θ″ 2 = 0, 
so l = 0 and m = 0. 
 For example, let l = 0.  Moreover, one will have θ = 0 for the principal directions.  If 
one supposes that equations (9) refer to the principal lines of tension then they will 
reduce to: 

2

1 m m

L λ ρ
∂ −
∂

= 0, 
1

m

ρ
= 0,  

1

m

R
= 0. 

 
 In order for these equations to be satisfied without setting m = 0 (which would imply 
that l″ = m″ = θ″ = 0), it is necessary that 1 / ρ1 and 1 / R1 must both be zero, which 
would be true only in the case of rectilinear generators. 
 The solution θ″ 2 – l″ m″ = 0 cannot exist then, and as a result, the process of 
integration that we have deduced will be applicable only when we are dealing with a 
ruled surface. 
 Let us return to the general system whose equilibrium is expressed by equations (16).  
Upon substituting some arbitrary functions of λ and µ for n1, n2, t, one can obviously find 
an infinitude of values for F1, F2, Φ that make the integration possible.  For example, if 
one calls a constant A and sets: 
 

n1 = 
A

L
,  n2 = 

A

M
,  t = 0 

then one will find that: 
 

F1 = 
2

A

L ρ
, F2 = 

1

A

M ρ
, Φ = 

1 2

1 1
A

LR MR

 
+ 

 
. 
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 It would be puerile to multiply the examples of this kind; nonetheless, the following 
case deserves to be pointed out. 
 If one has: 

F1 = 
1

L

ϖ
λ

∂
∂

,  F2 = 
1

M

ϖ
µ

∂
∂

, 

 
in which ϖ is an arbitrary function, or what amounts to the same thing: 
 

µ
∂

∂
(L F1) = 

λ
∂

∂
(M F2), 

then one can set: 
 n1 = 1n′  + ϖ, 

 n2 = 2n′  + ϖ, 

and the equations will reduce to: 
 

 2 1 2

2 1

1 1 2n n nt t

L Mλ µ ρ ρ
∂ −∂− + +
∂ ∂

= 0, 

 

 1 2 1

1 2

1 1 2n n nt t

M Lµ λ ρ ρ
∂ −∂− + +
∂ ∂

= 0, 

 

 1 2

2 1

2n n t

R R T

′ ′
+ − = Φ – ϖ 

1 2

1 1

R R

 
+ 

 
. 

 
 Then set 1n′ = k / R1 + 1n′′ ,  2n′ = k / R2 + 2n′′ , t = k / T + t, in which k is a constant.  The 

first two equations will not change form, and the right-hand side of the last one will 
become: 

Φ – ϖ 
1 2

1 1

R R

 
+ 

 
 – 2k 

2
1 2

1 1

R R T

 
− 

 
. 

 
 If that expression is zero then the three equations will be found to have a vanishing 
right-hand side, and one will be down to the problem of infinitely-small deformations.  
The same thing will happen when k is not a constant, but a function that satisfies the two 
equations: 

 
2

1 1k k

LR MTλ µ
∂ ∂−
∂ ∂

= 0,  

 

 
1

1 1k k

LT MRλ µ
∂ ∂−
∂ ∂

= 0 . 
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 The last case is possible only if 
2

1 2

1 1

R R T
−  = 0 ; i.e., if the surface is developable.  

However, k will then disappear from the expression for the normal force, which will 
reduce to: 

Φ – ϖ 
1 2

1 1

R R

 
+ 

 
. 

 
 It is interesting to look for the conditions that the external forces must fulfill in order 
for one to constantly have n1 = n2 and t = 0; i.e., for all of the directions that pass through 
the same point to be subject to identical tensions.  By virtue of that hypothesis, equations 
(16) will reduce to: 

 
1 n

L λ
∂
∂

= F1 , 

 

 
1 n

M µ
∂
∂

= F2 , 

 

 
2n

R
= Φ, 

 

when one replaces n1 and n2 with n and denotes the mean curvature 
1 2

1 1 1

2 R R

 
+ 

 
 by 1 / R. 

 If one sets L dλ = ds1 , M dµ = ds2 then the desired conditions can be written: 
 

 2 F1 = 
1

( )R

s

∂ Φ
∂

, 

 

 2 F2 = 
2

( )R

s

∂ Φ
∂

. 

 
 One will find the third condition, viz.: 
 

1 1

2 1

F F

s ρ
∂ −
∂

= 2 2

1 2

F F

s ρ
∂ −
∂

, 

 
upon eliminating n from the values of F1 and F2, which reverts to the first two conditions. 
 When the external forces are everywhere normal to the surface, the necessary and 
sufficient condition for one to have n1 = n2 and t = 0 is that ΦR must be constant.  If that 
is true then the value of n will be likewise constant at all points of the surface. 
 The points of a surface for which n1 = n2 and t = 0 play a role in regard to the tensions 
that is analogous to the one that is played by umbilics in regard to the curvatures; one can 
refer to those points by the name of umbilical equilibrium points. 
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 In order to complete the analogy, it is necessary that they must generally be isolated 
on a surface in equilibrium in the manner of umbilics.  We will show that this is not the 
case. 
 Indeed, consider a surface in equilibrium and refer the equations to the principal lines 
of tension.  In order to do that, it suffices to set t = 0, which will give: 
 

 2 1 2

2

1 n n n

L λ ρ
∂ −+
∂

= F1 , 

 

 1 2 1

1

1 n n n

M µ ρ
∂ −+
∂

= F2 , 

 

 1 2

2 1

n n

R R
+  = Φ. 

 
 In order for a point to be umbilical, it is necessary and sufficient that one must have 
n1 = n2 .  In order for an infinitely-close point to be likewise umbilical, it is necessary and 
sufficient that one can find a direction dµ = k dλ such that one has: 
 

1 1n n
d dλ µ

λ µ
∂ ∂+
∂ ∂

= 2 2n n
d dλ µ

λ µ
∂ ∂+
∂ ∂

. 

 
Now, it results from the equality n1 = n2 that: 
 

2n

λ
∂
∂

= F1 L, 1n

µ
∂
∂

= M F2 . 

 
 Upon differentiating the third equation with respect to λ and then setting n1 = n2 and 

1 2

1 1

R R
+ = 

2

R
, one will find that: 

 1n

λ
∂
∂

= 1
2

2 1

2 F LR
R

R Rλ λ
 ∂Φ ∂− − ∂ ∂ 

; 

similarly: 

 2n

µ
∂
∂

= 2
1

2 2

2 F MR
R

R Rλ λ
 ∂Φ ∂− − ∂ ∂ 

. 

 
When these values are substituted into the equation: 
 

µ
λ

∂
∂

= 

1 2

2 1

n n

n n
λ λ

µ µ

∂ ∂−
∂ ∂
∂ ∂−
∂ ∂

, 
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that will determine a direction (which is always unique, unless it is arbitrary) along which 
there exists an umbilical point that is infinitely-close to the first one. 
 As a result, if there exists an umbilical tension point then there will exist an infinitude 
of them that will form an umbilical tension line on the surface. 
 When an umbilical line belongs to one of the systems of principal lines, its form will 
be determined completely from what one knows at one of its points.  Indeed, if we 
suppose that the umbilical is represented by µ = const. then we will have: 
 

1 n

L λ
∂
∂

= F1 ,  n = 
2

RΦ
 

 
for that line, by virtue of the general integrals, so upon replacing L dλ with ds : 
 

( )d R

ds

Φ
= 2 F1 . 

 
 At each point of the surface, there always exists one and only one direction for which 
that condition is fulfilled.  Indeed, let AF be the projection of the external force onto the 
tangent plane at the point A (Fig. 4). 
 

 P 

A 

α 
F 

M 

 
Figure 4. 

 
 Let AM = ds be an element that passes through A and makes an angle of MAF = α 
with AF.  Let dσ, dσ′ be the projections of that element onto AF and the perpendicular 
AP to AF.  One has: 

 
( )d R

ds
ds

Φ
= 

( ) ( )R R
d dσ σ

σ σ
∂ Φ ∂ Φ ′+

′∂ ∂
, 

or 

 
( )d R

ds

Φ
= 

( ) ( )
cos sin

R Rα α
σ σ

∂ Φ ∂ Φ+
′∂ ∂

. 

 
 Furthermore, the component F1 of the external force along AM is equal to F cos α.  
As a result, the condition that was found above can be written: 
 

( ) ( )
cos sin

R Rα α
σ σ

∂ Φ ∂ Φ+
′∂ ∂

= F cos α, 

or: 
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tan α = 

( )

( )

R
F

R
σ

σ

∂ Φ−
∂

∂ Φ
′∂

, 

 
which is a direction that is entirely independent of the arbitrary functions that were 
introduced by the integration. 
 Whereas the other principal tension lines deform in an arbitrary fashion according to 
conditions that relate to the boundary, the umbilical line will depend upon just one 
arbitrary constant.  In particular, when there are no normal forces, the umbilical line will 
always be an orthogonal trajectory of the tangential forces. 
 Regardless of the external forces, one can repeat a sizable part of the remarks that 
were made before concerning equations (9) in the context of equations (16).  Hence, it is 
generally possible to choose the values of two of the unknowns arbitrarily for all points 
of a curve that is traced on the surface, and one can then determine the state of the entire 
surface.  Meanwhile, that proposition cannot be completely true, because without it, if 
one considers a portion of the surface that is bounded by a closed contour and is subject 
to arbitrary external forces then one can impose the condition that the extension force and 
the shearing force must be zero for all points of the contour.  One will thus arrive at the 
conclusion that a portion of the surface that is entirely free will remain in equilibrium for 
any external forces, which is obviously an absurd result.  It is easy to see why the 
argument is vicious.  Trace out a series of closed curves on a portion of the surface, one 
of which surrounds the others, and begin with the given contour in order to finally reduce 
it to an isolated point P.  The law of tensions that the curve obeys will determine the one 
that the tensions on an infinitely-close curve will obey, and so on, until one arrives at P.  
However, the law of tensions is well-defined for an infinitely-close curve that surrounds 
the point P.  When one neglects infinitely-small quantities, it is expressed by formulas 
(14), in which only three arbitrary constants appear.  The arbitrary functions that are 
introduced by integration must consequently be determined; moreover, they must be 
chosen in such a fashion that the tensions at the point P are not infinite.  Consequently, it 
is not permissible to suppose a priori that the contour is subject to no effort of tension. 
 In the case of surfaces with opposite curvatures, the tensions that are exerted on a 
closed contour will then satisfy another condition.  It is obvious that equations (16), like 
equations (9), admit the asymptotic lines of the surface for their characteristics, which 
will be real lines for that type of surface.  The two arbitrary functions that are introduced 
by the integration are each a function of one or the other characteristic parameter.  In 
other words, the general solution can be put into the form: 
 
 n1 = f1 [λ, µ, ϕ1 (α1), ϕ2 (α2)], 
 
 n2 = f2 [λ, µ, ϕ1 (α1), ϕ2 (α2)], 
 
  t = f3 [λ, µ, ϕ1 (α1), ϕ2 (α2)], 
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in which ϕ1 and ϕ2 denote two arbitrary functions, while α1, α2 are two quantities that 
each remain constant when one displaces along a curve that belongs to one of the two 
systems of asymptotic lines. 

 
B 

p′ 

n′ 

m 

A′ 
A 

m 

n 

p 

C 

 
Figure 5. 

 
 Consider the closed contour C (Fig. 5), and choose the values of n1 and n2 for a point 
A on the contour arbitrarily.  Let AB be the asymptotic line that passes through the point 
A for which α2 remains constant.  The values of the tensions at the various point of that 
line will depend upon just one arbitrary function ϕ1 (α1), and upon eliminating it, one will 
get a relation F1 (n1, n2, t) = 0 between n1, n2, t with no arbitrary function.  Let B be the 
second point at which the asymptote meets the contour.  Another asymptotic line will 
pass through the point B that cuts the contour at another point A′, and if the tensions at A′ 
are known then one will have a new relation F2 (n1, n2, t) = 0 for the point B.  Those two 
relations will determine n1, n2, t when they are combined with: 
 

1 2

2 1

2n n t

R R T
+ −  = Φ . 

 
From this, if one knows the tensions at A and A′ then one will likewise know them at B.  
Let m, n be the contact points of the two asymptotic lines that are tangent to the contour 
that belong to the same system as AB.  Let m′, n′ be those of the two asymptotic lines 
from the same system as A′ B′.  If the points m and m′ are chosen in such a fashion that 
the arc mAA′ m′ includes the points n and n′, and one draws the asymptotes m′p, mp′ that 
cut the contour at the points p and p′ then one will effortlessly see that knowing the 
tensions that are exerted on the arc mm will imply the complete knowledge of the 
tensions that are exerted on the arc pp′ and will leave only one tension undetermined on 
each of the arcs mn′p′, m′np . 
 Nothing like that is true for convex surfaces, since their asymptotic lines will be 
imaginary.  Later on, we shall see what does happen in a special example. 
 

_________ 
 



CHAPTER III 
 

STUDY OF TANGENTIAL SYSTEMS 
 

 In the preceding chapter, we saw how an arbitrary system of forces that is applied to a 
surface can be decomposed into two systems that were called the normal system and the 
tangential system.  We proved that one will always have an integral in the former case 
and that all of the difficulty in the problem consists of integrating the latter one.  That is 
what we shall now address exclusively. 
 A tangential system is characterized by the absence of the normal components to the 
external forces.  In such a case, one will always have: 
 

1 2

2 1

2n n t

R R T
+ − = 0. 

 
Upon taking the lines of curvature to be coordinate lines, that equation will become: 
 

1 2

2 1

n n

R R
+ = 0. 

 
That shows that n1 / n2 always has the opposite sign to R1 / R2, and that consequently: 
 
 The tension indicatrix is always hyperbolic for convex surfaces. 
 
 The same proposition can be further stated in this fashion: 
 
 A convex surface that is subject to tangential forces always presents two systems of 
lines that are followed uniquely by shearing. 
 
 In the case of surfaces with opposite curvatures, the tension indicatrix can be elliptic 
or hyperbolic, and consequently, the lines that one will be dealing with can be real or 
imaginary.  All that one can conclude from the fact that n1 / n2 is positive for lines of 
curvature is that the acute angle that is defined at a point by the sliding lines when they 
are real will never include a principal direction of the surface.  One explains that 
immediately upon remarking that two rectangular diameters of a hyperbola can have 
squares with the same signs only when they are both included in the obtuse angle 
between the asymptotes. 
 Consider a surface that is referred to its directions of normal tension and for which t = 
0.  The equation of the tension indicatrix will then be: 
 

n1 x
2 + n2 y

2 = 1. 
 

 The angular coefficients m, m′ of the two conjugate directions are coupled by the 
relation: 



Chapter III – Study of tangential systems 33 

mm′ = − 1

2

n

n
. 

 
The equation of the ordinary indicatrix of the surface is: 
 

2 2

1 2

2x xy y

R T R
+ + = 1. 

 
 The angular coefficients µ, µ′ of the asymptotic directions are the roots of: 
 

2

2 1

2 1

R T R

µ µ+ + = 0, 

which gives: 

µ µ′ = 2

1

R

R
. 

 Since 1 2

2 1

n n

R R
+  = 0, we can state the following fundamental theorem: 

 
 The asymptotic directions of the surface are two conjugate directions of the tension 
curve. 
 
 In other words: 
 
 The tensions that act upon an asymptotic line are parallel to the asymptotic lines of 
the other system. 

 E2 B 

O 

ϕ 

A F 
 

Figure 6. 
 

 Due to that property and the ones that were established already for asymptotic lines, it 
is interesting to look for what the equilibrium equations will become when one refers 
them to those lines as the coordinate lines.  One can establish the equations thus-
transformed directly, but one can arrive at them just as well by a change of coordinates.  
To that end, imagine that the original coordinates are composed of a system of 
asymptotic lines and orthogonal trajectories.  If the asymptotic lines constitute the system 
µ = const. and if ϕ denotes the angle between the two asymptotic lines OA, OB (Fig. 6) 
then, from the preceding theorem, one will have: 
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t = − n1 cot ϕ, 
if one recalls the sign conventions. 
 Let n be the normal tension that is exerted on OB.  It results from formula (15) that 
one will have: 

n + n1 = sin2 ϕ (n1 + n2) . 
 
 When one puts L dλ = ds1, M dµ = ds2, to abbreviate, the first two equilibrium 
equations will become: 

 2 1 2

1 2 2 1

2n n nt t

s s ρ ρ
∂ −∂− + +
∂ ∂

= F1 , 

 

 1 2 1

2 1 1 2

2n n nt t

s s ρ ρ
∂ −∂− + +
∂ ∂

= F2 . 

 
 Let f be an arbitrary function of λ and µ.  Let F be what that function will become 
when one expresses it in terms of the parameters α and β of the asymptotic lines, in such 
a way that: 

f (λ, µ) = F (α, β). 
 One infers from this that: 
 

f f
d dλ µ

λ µ
∂ ∂+
∂ ∂

 = 
F F

d dα β
α β

∂ ∂+
∂ ∂

. 

 
 Let A, B be the metric coefficients that correspond to α and β.  The displacements dσ1 
and dσ that are performed along OA and OB, resp., are expressed by: 
 

dσ1 = A dσ, dσ = B dβ, 
and one will have, as a result: 
 

1 2ds dsf f

L Mλ µ
∂ ∂+
∂ ∂

 = 1dF F d

A B

σ β
α β

∂ ∂+
∂ ∂

. 

or rather: 

1 2

f f
ds ds

λ µ
∂ ∂+
∂ ∂

 = 1
1

F F
d dσ σ

σ σ
∂ ∂+
∂ ∂

. 

 
 Moreover, Fig. 6 shows that: 
 ds1 = dσ1 + cos ϕ dσ, 
 ds2 =            sin ϕ dσ, 
and as a result: 

1
1 1 2

cos sin
f F f f F

d d
s s s

σ ϕ ϕ σ
σ σ

   ∂ ∂ ∂ ∂ ∂− + + −   ∂ ∂ ∂ ∂ ∂   
= 0, 

 
so since dσ and dσ1 are arbitrary: 
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1

f

s

∂
∂

=
1

F

σ
∂
∂

, 

 

 
2

f

s

∂
∂

=
1

1
cot

sin

F Fϕ
ϕ σ σ

∂ ∂−
∂ ∂

. 

 
Upon setting f = t = − n1 cot ϕ, one will have: 
 

 
1

t

s

∂
∂

= − cos ϕ 1 1
2

1 1sin

n n ϕ
σ ϕ σ

∂ ∂+
∂ ∂

, 

 

 
2

t

s

∂
∂

= − 21 1 1 1
2 3 3

1 1

coscos
cot

sin sin sin

n n n n ϕϕ ϕ ϕϕ
ϕ σ σ ϕ σ ϕ σ

∂ ∂ ∂ ∂+ + −
∂ ∂ ∂ ∂

. 

 

For f = n2 = 2sin

n

ϕ
+ n1 cot2 ϕ, one gets: 

 

2

1

n

s

∂
∂

= 2 1
12 3

1 1 1

1 cos
cot 2 ( )

sin sin

nn
n n

ϕ ϕϕ
ϕ σ σ ϕ σ

∂∂ ∂+ − +
∂ ∂ ∂

. 

 
Finally, upon setting f = n1 , one will get: 
 

1

2

n

s

∂
∂

= 1 1

1

1
cot

sin

n nϕ
ϕ σ σ

∂ ∂−
∂ ∂

. 

 
 Upon substituting these values and multiplying everything by sin2 ϕ, the equilibrium 
equations will become: 
 

1 1 1 1 1
1

1 2 1

cos 2cos
cos (2 ) sin 2

sin sin

n n n n n n
n n

ϕϕ ϕ ϕϕ ϕ
σ σ ϕ σ ϕ σ ρ ρ

∂ ∂ +∂ ∂+ − + − − −
∂ ∂ ∂ ∂

 = F1 sin2 ϕ, 

 

1 1 1 1
1

1 2

cos2
sin sin 2

n n n n n
n

ϕϕ ϕ
σ σ ρ ρ

∂ ∂ +− + −
∂ ∂

 = F2 sin2 ϕ . 

 
 Let f, f1 be the components of the external force along OB and OA.  One has: 
 
  F1 = f1 + f cos ϕ, 
 
  F2 =       f sin ϕ, 
 
so one will deduce with no difficulty that: 
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1
1 1 2 1 2 1

sin cos sin cos
sin 2cos

n
n n

ϕ ϕ ϕ ϕ ϕ ϕϕ ϕ
σ σ ρ ρ σ ρ ρ

   ∂ ∂ ∂− + + − − +   ∂ ∂ ∂   
= f1 sin3 ϕ, 

 

1
1

1 1 2

cos 2 sin 2
sin

n
n

ϕ ϕ ϕϕ
σ σ ρ ρ

 ∂ ∂− − + ∂ ∂ 
= f sin3 ϕ . 

 
 Introduce the geodesic curvature 1 / ρ of the asymptotic line OB.  In order to calculate 
it, it will suffice to project the elementary curvilinear triangle that is defined by the two 
asymptotic lines and the orthogonal trajectory to the point O of the lines that belong to 
the system OA onto its tangent plane, upon remarking that the angle between the extreme 
tangents to one of the sides of that projection is equal to the quotient of the projected arc 
length with its radius of geodesic curvature, and that the sum of the deviations that the 
tangent to a point on one of the sides can experience when one make a complete circuit of 
the triangle is equal to zero.  Upon giving a convenient sign to ρ, one will find that: 
 

− 
1

ρ
= 

1 2

cos sinϕ ϕ ϕ
σ ρ ρ

∂ + −
∂

, 

 
and the preceding formulas will become: 
 

 1

1 1 1

1 1
sin 2cos

nn
n

ϕ ϕϕ ϕ
σ σ ρ σ ρ ρ

  ∂ ∂ ∂− + + + +  ∂ ∂ ∂  
= f1 sin3 ϕ, 

 

 1
1

1 1 1

1 1
sin 2cos

n n
n

ϕ ϕϕ ϕ
σ ρ σ ρ σ ρ

  ∂ ∂ ∂+ − + + +  ∂ ∂ ∂  
= f sin3 ϕ . 

 
 Upon setting: 

  
1ϕ

σ ρ
∂ +
∂

 = 
1

u
, 

 

  
1 1

1ϕ
σ ρ

∂ +
∂

= 
1

1

u
, 

for brevity, then one will finally get: 
 

(18) 

31
1

1 1

31
1

1 1

1 2cos
sin sin ,

1 2cos
sin sin .

nn
n f

u u

n n
n f

u u

ϕϕ ϕ
σ ρ

ϕϕ ϕ
σ ρ

  ∂ − + + =  ∂  


 ∂ − + + =  ∂  
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That is the very simple form that the equilibrium equations will take when one refers 
them to the asymptotic lines.  Furthermore, it should be pointed out that one will arrive at 
exactly the same equations in regard to the tensions for two arbitrary conjugate lines.  
However, the asymptotes are the only lines of that type that are known a priori and 
whose orientation does not depend upon either the given forces or the arbitrary functions 
that are introduced by the integration.  It goes without saying that in order to perform that 
integration, dσ and dσ1 must be expressed as functions of the asymptotic line parameters. 
 The property that the asymptotic lines enjoy of being the characteristics of the 
tensions that develop on the surface is exhibited quite well by equations (18).  For 
example, the value of n1 can be chosen arbitrarily for all points of the curve along which 
the arc length σ is measured.  However, the second equation will then give the 
corresponding value of n with no indeterminacy, provided that 1 / ρ1 is not zero; i.e., 
provided that the asymptotes of the other system are not rectilinear generators. (We shall 
pass over that case, for the moment.)  n and n1 will be determined then, so the first 
equation will give ∂n / ∂σ1 ; i.e., n will be known for the points of a curve that is 
infinitely close to the first one, and the second equation will provide the corresponding 
value of n1 with the introduction of an arbitrary constant.  Upon continuing in that way, 
one will get the state of the entire surface.  However, that will introduce an arbitrary 
constant whenever one passes from one characteristic to the following one, which 
amounts to saying that one can assign a series of arbitrary values to the tension n1 for all 
points at which one arbitrary curve meets the successive characteristics.  If one makes 
that new curve coincide with a characteristic of the other system then one will get the 
following theorem: 
 
 In order to know the equilibrium state of the surface, it is necessary and sufficient to 
know one of the tensions in two asymptotic lines that do not belong to the same system. 
 
 One can also phrase that by saying: 
 
 The most general value of the tension has the form: 
 

n = ϕ [α¸ β, ϖ (α), χ (β)],  n1 = ϕ1 [α¸ β, ϖ (α), χ (β)], 
  
in which α and β are the parameters of the asymptotic lines, and ϖ, χ are two arbitrary 
functions. 
 
 Since the knowledge of the tensions that are exerted upon two directions at a point 
will imply knowledge of the tensions that are exerted in all possible directions, the form 
that we just established can be applied in any coordinate system, and one can always 
represent the solutions of the problem by: 
 
 n1 = N1 [α¸ β, ϖ (α), χ (β)] , 
 n2 = N2 [α¸ β, ϖ (α), χ (β)] , 
  t  =  Θ [α¸ β, ϖ (α), χ (β)] . 
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 If the surface is convex then α and β will be conjugate imaginary quantities.  One 
must then choose ϖ and χ in such a fashion as to obtain real values for the tensions. 
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Figure 7 

 
 Equations (18) can serve to transform the problem of the equilibrium of surface in a 
remarkable way.  Let AA′ (Fig. 7) be the element dσ of an asymptotic line.  Construct the 
spherical indicatrix of the surface by drawing parallels OP, OP′ to the normals AN, A′N′ 
through the center O of a sphere of radius 1.  By virtue of the definition of asymptotic 
lines, the normal A′N′ will project onto the plane NAA′ along a line A′N″ that is parallel to 
AN.  The element PP′ of the spherical indicatrix is parallel to the plane N′A′N″.  It will 
then be perpendicular to AA′.  As a result: 
 
 The spherical indicatrix of an asymptotic line has its tangents perpendicular to those 
of the asymptotic line. 
 
 The tangent planes to the corresponding points on the surface and the sphere are 
parallel, moreover, so we can add that: 
 
 The geodesic contingency angles of the two curves are constantly equal. 
 
 Finally, the length ds = PP′ of the element of the indication is a measure of the angle 
N′A′N″, which is equal to dσ / T, where 1 / T is the geodesic torsion of the asymptotic 
line; i.e., the square root of the total curvature (taken positively).  Hence: 
 

ds = 
d

T

σ
. 

 
 Let dα be the contingency angle that is common to the two curves, and let ρ be the 
radius of geodesic curvature of the spherical indicatrix.  One will have: 
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d

ds

α
= 

d
T

d

α
σ

      or      
1

ρ
= 

T

ρ
. 

 
 We now return to equations (18) and remark that the indicatrices of the two 
asymptotic lines define the same angle α in the sphere as the lines in the surface.  We can 
replace the quantities 1 / dσ, 1 / dσ1 , 1 / ρ, 1 / ρ1 with the quantities that are equal to 

1

T ds
,

1

1

T ds
, 

1

T r
, 

1

1

T r
, resp.  Consequently, if one lets ν and ν1 denote the quantities 

that correspond to u and u1, resp., on the sphere then the equations will become: 
 

1

1 1

1 2
sin cos

nn
n

s r
ϕ ϕ

ν ν
 ∂ − + + ∂  

= f1 T sin3 ϕ , 

 

1
1

1 1

1 2
sin cos

n n
n

s r
ϕ ϕ

ν ν
 ∂ − + + ∂  

= f T sin3 ϕ . 

 
If the spherical indicatrices of the asymptotic lines are lines of conjugate tension, and if 
the components of the external forces along the tangents to those curves are f1T, f T then 
the equilibrium equations will be precisely the ones that we just obtained. 
 Hence: 
 
 When one knows the equilibrium state of a sphere of radius 1 that is subject to given 
external forces, one can deduce the equilibrium state of all surfaces for which the 
asymptotic lines admit lines of conjugate tension in the sphere as spherical indicatrices 
and which are subject to a tangential force at each point that is perpendicular to the one 
at the corresponding point on the sphere, where the ratio of the two forces is equal to the 
square root of the total curvature. 
 
 Observe that the system of forces that are applied to the sphere does not, by any 
means, need to be tangential.  If one is given a surface that is subject to arbitrary 
tangential forces then one can even perform the transformation that was just pointed out 
and then seek to determine the normal forces for the sphere such that the transforms of 
the asymptotic lines can be lines of conjugate tension.  The calculation is done in the 
following manner with no difficulty: 
 Let: 

n1 x
2 + 2t xy + n2 y

2 = 1 
 
be the indicatrix of the tensions at a point on the sphere.  Two conjugate directions are 
coupled by the relation: 

n2 mm′ + t (m + m′) + n1 = 0. 
 

If that equation is satisfied for two given directions for which mm′ = a, m + m′ = b then 
one will have: 

a n2 + bt + n1 = 0, 
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which is a relation that will permit one to eliminate n1, n2, t when it is combined with the 
three general equations.  One will then obtain an equation that determines the normal 
force Φ.  However, that equation is a second-order partial differential equation and 
cannot have any utility for the solution of the problem, in general.  The true interest of the 
transformation that we have just described results from the statement of the preceding 
theorem: It consists of the fact that any solution that is found on the sphere can be 
immediately generalized. 
 That generalization will often be facilitated by the use of isothermal geographic 
coordinates, which were invented by Ossian Bonnet [Journal de Liouville (2), t. V] and 
which provide a very precise instrument for the study of surfaces.  One will obtain it 
upon putting the equation of the tangent plane in the form: 
 

X sin θ cos ϕ + Y sin θ sin ϕ + Z cos θ = δ 
and setting: 
 x = ϕ, 

 y = log tan 
2

θ
, 

 z = − 
sin

δ
θ

. 

 
The equation of the tangent plane will then become: 
 

X cos x + Y sin y + Zi cos iy + z = 0. 
 
 The geometric interpretation of x, y, z is very simple.  If one draws a parallel to each 
normal to the surface through the origin and takes the point M at which it meets a sphere 
of radius 1 that has the origin for its center then the stereographic projection M of that 
point onto the XY-plane will have coordinates with respect to the axes OX, OY that are 
quantities x′, y′ , which are coupled with x, y by the formulas: 
 
 x′ + i y′ = e y+ix, 
 
 x′ − i y′ = e y−ix ; 
 
i.e., y + ix, y – ix are the Napierian logarithms of x′ + i y′, x′ − i y′.  The third coordinate z 
is the distance from the origin to the trace of the tangent plane on the xy-plane.  The 
Cartesian coordinates ξ, η, ζ are coupled with x, y, z by the equations: 
 

ξ sin x – η cos x = p, 
 

ξ cos x + η cos x = − z – qi tan i y, 
 

ζ cos i y = q . 
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 Upon letting p, q, r, s, t denote the partial derivatives of z with respect to x and y, as is 
customary, and setting: 
 u = r + i tan i y q + z, 
 v = s, 
 w = t + i tan i y q, 
 
one will find that the differential equation of the asymptotic lines is: 
 

u dx2 + 2v dx dy + w dy2 = 0. 
 

 The total curvature is equal to 
2 2

1

cos ( )iy uw v−
, and as a result, the tangential force 

that is applied to the surface will be equal to the one that is applied to the sphere, divided 

by cos i y 2v uw− . 

 A new transformation will permit one to reduce the study of the equilibrium of the 
given surface to that of the equilibrium in a plane.  In order to do that, it will suffice to 
consider the stereographic projection that we shall appeal to in order to interpret the 
coordinates x¸ y, z.  That projection does not change angles, and it will reduce the 
infinitely-small lengths by a ratio that is easy to calculate: That ratio is (1 + e2y) / 2.  
Starting from it, one will see, as before, that both the equations that are applicable to the 
sphere will be applicable to the plane, provided that one multiplies the forces f1T, f T by 
(1 + e2y) / 2 = ey cos  i y. 
 Here, we are no longer capable of introducing normal forces that would make the 
transformation of the asymptotic lines be lines of conjugate tension.  Indeed, the third 
equation of equilibrium: 

1 2

2 1

2n n t

R R T
+ − = Φ 

 
will reduce to Φ = 0 in the case of the plane; i.e.: 
 
 A plane can be in equilibrium only if it contains all of the forces that are applied to it. 
 
 However, in revenge, when a plane is subject to tangential forces, one needs to satisfy 
only two equations in the three unknowns n1, n2, t, and one can impose a third condition; 
for example, that a given net of curves defines the lines of conjugate tension.  Suppose 
that this net has a differential equation: 
 

U dλ2 + 2V dλ dµ + W dµ2 = 0 
 

 when it is referred to arbitrary orthogonal coordinates λ, µ, or, upon setting 
M d

L d

µ
λ

= m: 

 
L2 W m2 + 2 VLM m + UM 2 = 0. 
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Since the equation of the indicatrix of tensions is: 
 

n1 X 2 + 2t XY + n2 Y 2 = 1, 
 

two conjugate directions µ, µ′ will be coupled by the relation: 
 

n2 µµ′ + t (µ + µ′ ) + n1 = 0. 
 

If µ, µ′ are roots of the equation in m then one will have: 
 

µµ′  = 
2

2

UM

WL
,  µ + µ′  = − 

2V L

W M
, 

and thus, the condition: 
n2 UM 2 – 2VLM t + n1 WL 2 = 0. 

 
When this equation is combined with: 
 

 2 1 2

2 1

1 1 2n n nt t

L Mλ µ ρ ρ
∂ −∂− + +
∂ ∂

 = F1 , 

 

 1 2 1

1 2

1 1 2n n nt t

M Lµ λ ρ ρ
∂ −∂− + +
∂ ∂

 = F2 , 

 
that will determine the values of n1, n2, t that are appropriate to the problem. 
 Upon replacing λ, µ with the isothermal coordinates x, y, we will have to set: 
 

L = M = 
1

cosiy
, 

 

1

1

ρ
= 0,  

2

1

ρ
= − cos i y ; 

 
U, V, W will become u, v, w for the transforms of the asymptotic lines.  With that, the 
equilibrium equations will take the form: 
 

 2n t

x y

∂ ∂−
∂ ∂

+ n2 – n1 = 1

cos

F

iy
, 

 

 1n t

y x

∂ ∂−
∂ ∂

– 2t  = 2

cos

F

iy
, 

 
n2 u – 2vt + n1 w = 0. 
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 The quantities F1, F2 that figure in the right-hand sides are the components in the 
plane of the external force along the two directions y = const., x = const., resp.  Upon 
letting α, β denote the angles that are forces by the first of those direction and the 
transforms of the asymptotic lines then one will have: 
 
 F1 = T ey cos iy (f1 cos α + f2 cos β), 
 
 F2 = T ey cos iy (f1 sin α − f2 sin β), 
 
where tan α and tan β are the roots of the second-degree equation: 
 

w m2 + 2v m + u = 0. 
 

 The transformation is then achieved with no difficulty here.  Upon performing the 
inverse transformation, if one knows the equilibrium conditions for a portion of the plane 
that is subject to given forces then one can always deduce equilibrium equations for an 
infinitude of surfaces that are located in manner that one must determine. 
 

___________



CHAPTER IV 
 

APPLICATIONS 
 

 The objective of this chapter is to apply the general theories that were just presented 
to a certain number of particular cases. 
 The simplest of all surfaces is the plane.  Its static properties differ radically from 
those of all other surfaces and can be summarized in the following two propositions, 
which we have already had occasion to prove: 
 
 I. A plane can be in equilibrium only if it contains all of the forces that are applied 
to it. 
 
 II. The equilibrium of a plane (when it is possible) is defined by a system of two 
equation in three unknowns, which will permit one impose an arbitrary third condition. 
 
 In Cartesian coordinates, the equilibrium equations are: 
 

 2n t

x y

∂ ∂−
∂ ∂

= F1 , 

 

 1n t

y x

∂ ∂−
∂ ∂

= F2 . 

 
If one imposes the condition t = const. then they will reduce to: 
 

2n

x

∂
∂

= F1 , 1n

y

∂
∂

= F2 , 

 
which are equations whose integration will come down to simple quadratures; n1 refers to 
an arbitrary function of x, and n2 refers to an arbitrary function of y. 

 A B 

C D  
Figure 8. 

 



Chapter IV – Applications 45 

 For example, let ABCD be a vertical rectangle (Fig. 8) whose horizontal side AB is 
kept fixed, while the other three sides are free, and its weight per unit area is a constant P 
and is supported by its lower part with a weight of ϖ × CD that is distributed uniformly 
along CD.  Upon taking CD, CA to be the x and y axes, resp., and setting AC = h, CD = l, 
one will have: 

2n

x

∂
∂

= 0, 1n

y

∂
∂

= P, 

 
under the hypothesis that t = 0, so: 
 

n2 = funct. y, n1 = Py + funct. x. 
 
 n2, which will be annulled for x = 0 and x = l for any y, is identically zero.  The 
arbitrary function that n1 is referred to is determined by setting y = 0, which will give n1 = 
ϖ for any x.  The equilibrium state is then: 
 

n1 = Py + ϖ,      n2 = 0,      t = 0. 
 

 If the side BD, rather than being free, is subject to a variable effort of extension that is 
expressed by the condition n2 = Y (Y being a function of y) then one no longer make the 
hypothesis t = 0; however, one can suppose that t = F (y), where F is a conveniently-
chose function of y.  Indeed, one will then have: 
 

2n

x

∂
∂

− F′ (y) = 0, 

so 
n2 = F′ (y) x + funct. y. 

 
The second function of y will zero, since n2 will then be subject to being annulled for x = 
0.  Upon setting x = l, one will have: 

l F′ (y) = Y, 
 
which will determine F.  The value of n1 will not be modified. 
 In polar coordinates ρ, ω, the equilibrium equations in the plane are: 
 

  2 1 21n n nt

ρ ρ ω ρ
∂ −∂− −
∂ ∂

 = F1 , 

 

 21 2n t t

ρ ω ρ ρ
∂ ∂− −
∂ ∂

 = F2 . 

 
 We apply these formulas to the case of a circle that is subject to external forces F that 
are everywhere directed along the radius and constant for each value of ρ. 
 Upon supposing t = 0, one will have: 
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11 n

ρ ω
∂
∂

= 0, 

 

2 1 2n n n

ρ ρ
∂ −−
∂

= F, 

for an arbitrary point. 
 The first equation shows that n1 depends upon only ρ.  Let n1 = dχ / dρ = χ′ (ρ).  The 
second equation will give: 

d

dρ
(n2 ρ) = χ′ (ρ) + Fρ, 

so 

n2 ρ = χ (ρ) + 
0

F d
ρ

ρ ρ∫  + Ω, 

 
in which Ω is a function of ω.  One will infer from this that: 
 

n2 = 
0

( ) 1
F d

ρχ ρ ρ ρ
ρ ρ ρ

Ω+ +∫ . 

 
 In order for n2 to remain finite when one approaches the center, it is first necessary 
that Ω should be identically zero.  Moreover, it is necessary that χ (ρ) should tend to 
zero.  If that is true then the limit of n2 will be χ′ (ρ).  It will then be equal to that of n1 .  
Without that equality, t cannot be zero for any of the directions in the neighborhood of 
the center.  In summary, the equilibrium state is represented by: 
 
 n1 = χ′ (ρ), 
 

 n2 = 
0

( ) 1
F d

ρχ ρ ρ ρ
ρ ρ

+ ∫ , 

 
 t = 0. 
 
 The arbitrary function χ (ρ) is required only to be annulled for ρ = 0 and to take a 
well-defined value when ρ becomes equal to the radius of the circle. 
 If, instead of a circle, one considers that circular zone that is found between two 
circumferences of radius ρ and ρ′, on which normal efforts that are constant per unit 
length are exerted then the same formulas will be applicable.  In that case, the function χ 
does not need to become zero for ρ = 0, but it must take well-defined values for the 
limiting radii ρ and ρ′. 
 We shall give an example of the transformations that were at issue in the preceding 
chapter for the very simple case that was just studied. 
 The tension indicatrix has the equation: 
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χ′ (ρ) x2 + 2
( ) F d

y
χ ρ ρ ρ

ρ
+ ∫  = 1. 

 
The relation between two conjugate directions m, m′ is then: 
 

m m′ [χ (ρ) + F dρ ρ∫ ] + ρ χ′ (ρ) = 0. 

 
Introduce isothermal coordinates and set: 

ρ = ey  
for them. 

 Let ϖ (y) be what χ (ρ) becomes, and let ϕ (y) be what F dρ ρ∫  becomes.  One has: 

 

ρ χ′ (ρ) = 
d

dy

ϖ
= ϖ′ (y) . 

Hence: 
m m′ [ϖ (y) + ϕ (y)] + ϖ′ (y) = 0. 

 
 In order for the transforms of the asymptotic lines of a surface to satisfy that equation, 
one must have: 

u

w
= − ( )

( ) ( )

y

y y

ϖ
ϖ ϕ

′
+

, 

 

or, upon setting 
( )

( ) ( )

y

y y

ϖ
ϖ ϕ

′
+

= − K: 

u

w
= K. 

 
 Suppose, to simplify, that one has v = 0, in addition (which amounts to saying that the 
transforms are inclined the same with respect to the polar radius).  If one refers to the 
definitions of u, v, w then one will first find that: 
 

2z

x y

∂
∂ ∂

= 0, 

so 
z = X + Y. 

 
 X and Y represent two functions, one of which is a function of x and the other of 
which is a function of y, resp.  Moreover, one has: 
 

r + i tan i y q + z – K (t + i tan i y q) = 0 
or rather: 

X″ + i tan i y Y′ + X + Y – K (Y″ + i tan i y Y′ ) = 0. 



48 Lecornu – On the equilibrium of flexible, inextensible surfaces 

 Since K is necessarily a function of only y, that equation will be possible only if one 
has: 

X + X = C, 
KY″ + (K – 1) i tan i y Y′ – Y = C, 

 
when one lets C denote a constant. 
 The latter equation can be integrated in certain special cases.  For example, if one has 
K = – 1 then it will become: 

KY″ +  2i tan i y Y′ + Y + C = 0, 
 
and if h and g are constants, one will find that: 
 

Y = h (cos i y + i y sin i y) + g sin i y – C ; 
 
X is equal to A cos x + B sin x + C. 
 As a result: 

z = h (cos i y + i ysin i y) + g sin i y + A cos x + B sin x. 
 
 According to a remark by Ossian Bonnet, one can always make the terms in cos x, sin 
x, and sin i y disappear by a simple change of origin.  What will then remain is: 
 

z = h (cos i y + i ysin i y) . 
One will infer from this that: 

q = − h y cos i y, 
 

z + i tan i y q = h cos i y, 
 
and upon passing to the Cartesian coordinates: 
 

ξ 2 + η 2 = (z + i tan i y q)2 = h2 cos2 i y, 
 

z =
cos

q

iy
= − hy . 

 
 Those equations represent a surface of revolution whose meridian is given by: 
 
 ξ = h cos i y, 
 
  ζ = − h y, 
or 

ξ = / /( )
2

h hh
e eζ ζ−+ . 

 
 It is a catenary whose directrix coincides with the axis of revolution.  The surface that 
is generated in that fashion has been studied by several geometers, and Bour gave it the 
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name of alysseid.  It is the only surface of revolution that is minimal; in addition, it 
enjoys the property of being mappable to a ruled helicoid. 
 The semi-angle of the asymptotic has the tangent: 
 

( )

( ) ( )

y

y y

ϖ
ϖ ϕ

′
+

= K−  = 1. 

 
These lines are real then and intersect at a right angle, which is a property that is 
characteristic of minimal surfaces. 

 Since 
( )

( ) ( )

y

y y

ϖ
ϖ ϕ

′
+

= 1, one has: 

 
ϖ′ (y) = ϖ (y) + ϕ (y), 

or rather: 

 ρ ϖ′ (y) = χ (ρ) + F dρ ρ∫ , 

 

 χ′ (y)  = 
( ) F dχ ρ ρ ρ

ρ
+ ∫ ; 

 
it results from this that n1 = n2 , and since t = 0, each point of the surface will be in a state 
of umbilical equilibrium.  Hence: 
 
 If a portion of an alysseide that is subjected to external forces that are tangent to the 
parallel and constant along each of them terminates with a parallel to the elements upon 
which a constant tension is exerted then all of the points will be in a state of umbilical 
equilibrium. 
 
 Naturally, the law by which the tension varies when one passes from one parallel to 
another depends upon F.  One should not forget that F is the force applied to the plane.  
In order to get the corresponding force on the surface, it suffices to recall that its 
components along the asymptotic lines are equal to the analogous components for the 

plane, multiplied by 
1

cosyT e iy
.  Since the angles between the asymptotic lines and the 

coordinate lines do not vary under the transformation, the force applied to the surface will 

be directed tangentially to the parallel and will be equal to 
cosy

F

T e iy
.  T is the inverse of 

the square root of the curvature; its value for the alysseide is h cos2 i y.  The applied force 
is then: 

cosy

F

T e iy
. 

 
 When the external force is constantly zero, one will have F = 0.  The equation that 
determines c will then reduce to: 
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ρ χ′ (ρ) – χ (ρ) = 0, 
so 

( )χ ρ
ρ

= const. = a, 

 
and as a result χ′ (ρ) = a.  In that case, the tensions n1, n2 are equal and constant for all 
points of the surface. 
 

Developable surfaces 
 
 From what we know already, the developable surfaces are the only ones for which 
one cannot make the normal component of the external forces disappear. 
 Take the rectilinear generators to be the coordinates µ = const.  One will see 
immediately that: 

1

1

R
= 0,  

1

1

ρ
= 0,  

1

T
= 0 . 

 

 Since 
L

µ
∂
∂

= −
1

LM

ρ
= 0, one will have L = funct. λ, and one can set L = 1 with a 

convenient choice of λ.  The general equations of the theory of surfaces then reduce to: 
 

 
M

λ
∂
∂

= −
2

M

ρ
, 

 

 2(1/ )R

λ
∂

∂
= 

2 2

1

R ρ
, 

 

 2(1/ )ρ
λ

∂
∂

= 
2
2

1

ρ
. 

The last equation can be written: 

2
2
2

1
1

ρ
ρ λ

∂ + ∂ 
 = 0. 

 
 If 1 / ρ2 = 0, M, and R2 are functions of only µ .  They will then be constants all along 
the same generator; it is easy to see that this is possible only for cylinders.  In the other 
cases, one will have: 

2ρ
λ

∂
∂

 + 1 = 0, 

so 
ρ2 = a – λ . 

 
a is a function of µ that represents the distance from the point for which λ = 0 to the point 
of contact with the edge of regression.  One then deduces that: 
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 M = − 
1

b
(a – λ), 

 

 R2 = + R 
a

a

λ− 
 
 

, 

 
upon letting b and R denote two other functions of µ. 
 As a result, the equilibrium equations become: 
 

(λ – a) 2n t
b

λ µ
∂ ∂−
∂ ∂

+ n2 – n1 = F1 (λ – a), 

 

b (λ – a) 21 ( )
n t

aλ
µ λ

∂ ∂− −
∂ ∂

+ 2 (λ – a) t = F2 (λ – a)2, 

 

n1 = − R Φ 
a

a

λ − 
 
 

, 

or, upon setting: 
n = (λ – a) n2 , 

 
θ = − (λ – a)2 t, 

 
R

a

Φ
= − Ψ, 

one will get: 

 
n

λ
∂
∂

= − 2( )

b

a

θ
λ µ

∂
− ∂

+ (F1 + Ψ) (λ – a) + 2( )

b

a

θ
λ µ

∂
− ∂

, 

 

 
θ
λ

∂
∂

= 2F b
µ

 ∂Ψ− ∂ 
(λ – a)2 + b Ψ (λ – a)

a

µ
∂
∂

, 

 
 n1 = Ψ (λ – a). 
 
 The third equation gives n1 immediately.  The second one determines θ by means of 
an equation that one integrates by a simple quadrature upon considering µ to be constant.  
The value of θ refers to an arbitrary function of µ.  One will then get n by means of the 
first equation, which one likewise integrates by quadrature and which introduces a new 
arbitrary function of µ. 
 When the portion of the surface considered refers to an arc of the edge of regression, 
the values that pertain to that edge will be obtained by making λ – a tend to zero.  Upon 
writing out that this is true, one will get two equations that determine the two arbitrary 
functions of m for all points that are found between the tangents that are drawn through 
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the two endpoints of the arc of regression.  If those two conditions are satisfied then one 
will have: 

 n2 = lim 
n

aλ −
 = 

n

λ
∂
∂

, 

 

 t = lim − 2( )a

θ
λ −

= − 1

2( )a

θ
λ λ

∂
− ∂

= − 
2

b a

µ
Ψ ∂

∂
. 

 
Since ∂n / ∂λ can be written: 

(F1 + Ψ) (λ – a) + 
t

b
µ

∂
∂

, 

all that will remain is: 

n2 = 
t

b
µ

∂
∂

. 

 
 Choose µ in such a fashion that dµ is the angle between the two consecutive 
generators.  In that case, b will be equal to 1, and ∂a / ∂µ represents the radius r of the 
first curvature of the edge of regression.  One will then find the system of tensions: 
 

 t = − 
2

rΨ
 = 

2a

Φ
Rr, 

 

 n2 = 
t

µ
∂
∂

, 

 
 n1 = 0. 
 
 It should be remarked that a and b will remain invariable when one deforms the 
surface.  As a result, when F1, F2, Ψ (or F1, F1, and ΦR, if one prefers) keep constant 
values at each point, the equilibrium equations will not be modified.  In particular, when 
Φ = 0, one can deform the surface while keeping the same tangential forces without 
changing the equilibrium equations.  For any Φ, one can continue the deformation up to 
the point that R becomes infinite while keeping ΦR constant; i.e., until that portion of the 
given surface is mapped to a plane.  The equilibrium conditions of developable surfaces 
are then found to be identified with those of the plane.  The only exceptional case is the 
case that was envisioned above in which the portion of the surface considered contains a 
part of the edge of regression, since then surface is not truly developable in the 
neighborhood of that edge. 
 Whenever R is finite, n1 will be annulled at the same time as Φ.  As a result: 
 
 When a developable surface is subject to tangential external forces, it will produce no 
effort of extension along the generators. 
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 We have skipped over the case of the cylinder.  That surface is characterized by 1 / ρ2 
= 0, which implies that: 
 

M = funct. (µ),  R2 = funct. (µ). 
 
 One can suppose that M = 1, and the equilibrium equations will then reduce to: 
 

2n t

λ µ
∂ ∂−
∂ ∂

= F1 , 

 

1n t

µ λ
∂ ∂−
∂ ∂

= F2 , 

 
n1 = R2 Φ, 

 
which are equations whose integration once more comes down to quadratures. 
 The equation n1 = R2 Φ is completely analogous to the equation T = − Pn ρ, which 
corresponds to the equilibrium of a funicular curve.  If one imposes the condition that t = 
0 then the second equation will reduce to ∂T / ∂s = F2 , and will then be equivalent to the 
equation ∂T / ∂s = − Pt for funicular equilibrium.  In that case, the first equation will 
reduce to ∂n2 / ∂λ = F1 .  It will determine the variation of the third tension n2 along a 
generator of the cylinder. 
 The cone reverts to the general case of developable surfaces.  No matter what the 
directrix is, the quantity a will be constant.  The quantity b is also constant and can be 
supposed to be equal to 1.  That amounts to saying that by virtue of the formula M = λ / 
b, m will represent the length of the variable arc on the cone that is intercepted by the 
sphere of radius 1 that is described with its center at the summit of the cone when one 
starts from a fixed origin. 
 As a special case, consider the lateral surface of a frustum of a cone whose bases are 
entirely free and to which one applies arbitrary forces.  Upon setting a = const., b = 1 and 
introducing two new functions f1, f2 that are defined by: 
 

 (λ – a)2 2F
µ

 ∂Ψ− ∂ 
  = 2f

λ
∂
∂

, 

 

 (F1 + Ψ)(λ – a) − 2
2

1

( )

f

aλ µ
∂

− ∂
 = 1f

λ
∂
∂

, 

one will first get: 
θ
λ

∂
∂

= 2f

λ
∂
∂

, 

 
by virtue of the established equations, so θ = f2 + ϖ (µ), in which ϖ denotes an arbitrary 
function, and then: 
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n

λ
∂
∂

= (F1 + Ψ)(λ – a) − 2
2

1
( )

( )

f

a
ϖ µ

λ µ
 ∂ ′+ − ∂ 

, 

so 
n = f1 + ϖ′ (µ) + χ (µ), 

 
in which χ is an arbitrary function. 
 From this, the tensions n1, n2, t have the values: 
 

 n1 = − Φ R 
a

a

λ −
, 

 

 n2 = 1 2

1 1
( )

( )
f

a a
χ ϖ

λ λ
′+ +

− −
, 

 

 t = − 2

1

( )aλ −
(f2 + ϖ). 

 
 It remains to determine ϖ (µ) and χ (µ) in such a fashion that the boundary conditions 
will be fulfilled.  In order to do that, we suppose that we have taken the base of the cone 
to be its two curves of intersection with the two spheres of radius a + c, a – c that are 
described with their centers at the cone’s summit.  Those two curves correspond to the 
values ± c of λ. 
 From that, n2 and t must be annulled for any µ when one sets λ = ± c.  In order to 
continue the calculations to their ultimate conclusion, we shall suppose that F1 + Ψ and 
F2 − ∂Ψ / ∂µ are independent of λ.  Upon setting: 
 
 F1 + Ψ  = 2µ1 , 
 

 F2 − 
µ

∂Ψ
∂

= 3µ2 , 

we will have: 
 f1 = (λ – a)2 (µ1 − 1

22 µ′ ), 
 
 f2 = (λ – a)2 µ2 . 
 
It is pointless to add new arbitrary functions, which would do double duty with ϖ and χ.  
As a result, the values of n2 and t will be: 
 

 n2 = 2

1

( )aλ −
[ϖ′ + χ (λ – a) + (µ1 − 1

22 µ′ ) (λ – a)3], 

 

 t   = − 2

1

( )aλ −
[ϖ +(λ – a)3µ2], 
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and one can conclude immediately that if n and t are zero for any µ then the quantities ϖ, 
χ, µ1, µ2 will all be identically zero for λ = + c and λ = − c. 
 Equilibrium will be possible then only if one has µ1 = 0, µ2 = 0, or rather: 
 

F1 + Ψ = 0,  F2 − 
µ

∂Ψ
∂

= 0. 

 
 For the points that are situated on the mean curve λ = 0, those equations can be 
written as: 

a F1 + ΦR = 0,  a F2 − 
R

µ
∂Φ
∂

= 0. 

 
 If the forces that are applied to the frustum of the cone do not verify those two 
conditions then the surface will necessarily be deformed.  It will preserve the same 
geometric character while it is deforming, and the same equilibrium equations will 
continue to be applicable.  If one then supposes that F1, F2 , Φ do not vary during the 
deformation then the condition (viz., a F1 + ΦR = 0) will determine R, and a result, the 
equilibrium figure of the cone.  When R has been determined in that way, equilibrium 

cannot be realized unless the second condition (viz., a F2 − 
R

µ
∂Φ
∂

= 0) is fulfilled. 

 The equation F2 − 
1 R

a µ
∂Φ
∂

= 0 is exactly the one that one obtains by applying the 

normal force Φ and the tangential force F2 to the mean curve, when it is considered to be 
a funicular curve, and looking for the condition for it to not deform. 
 When the equilibrium figure is a cone of revolution, the equation F1 + ΦR = 0 
expresses the idea that the sum of the projections of the external forces that are applied to 
an arbitrary point onto the axis of the cone is equal to zero.  Indeed, if one lets α denote 
the semi-angle of the summit of the cone then the radius of curvature of the normal 
section to the edge that is made at a distance a from the summit will be R = a tan α, and 
as a result, the equation that one must address can be written as F1 cos α + Φ sin α = 0. 
 

Skew surfaces 
 
 Upon taking the coordinates lines to be the rectilinear generators (µ = const.) and 
their orthogonal trajectories (λ = const.), one will have: 
 

1

1

R
= 0,  

1

1

ρ
= 0, 

 
from which, one will first deduce that ∂L / ∂µ = 0, which will permit one to set L = 1, as 
before.  The general equations of the theory of surfaces will then become: 
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2

1

ρ
= − 

/M

M

λ∂ ∂
, 

 

2 2

(1/ ) 1 (1/ ) 1 1tR T

M Rλ µ ρ
∂ ∂− −

∂ ∂
= 0, 

 

− 
2

(1/ ) 2 1T

Tλ ρ
∂ +

∂
= 0, 

 

2
2 2

2

(1/ )1 1

T

ρ
λ ρ

∂+ −
∂

= 0. 

One infers from the last two that: 
 

 
2

2 2

1 1i i

T Tλ ρ ρ
   ∂ + − +   ∂    

= 0, 

 

 
2

2 2

1 1i i

T Tλ ρ ρ
   ∂ − − −   ∂    

= 0, 

 
and as a result, upon letting µ1 and µ2 denote two functions of m : 
 

 

2

1
1i

T ρ
+

= µ1 – λ, 

 

 

2

1
1i

T ρ
−

= − µ2 + λ, 

or rather: 

 
2i

T
=

1 2

1 1

µ λ µ λ
−

− −
= 2 1

1 2( )( )

µ µ
µ λ µ λ

−
− −

, 

 

 
2

2

ρ
=

1 2

1 1

µ λ µ λ
+

− −
= 1 2

1 2

2

( )( )

µ µ λ
µ λ µ λ

+ −
− −

. 

 
 Upon letting µ3 denote a third function of µ, the first two general equations will give, 
in turn: 

M2 = (µ1 – λ)( µ2 – λ) 
and 
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32 1 2
2 2

2 1 2 1 2 1 2

(1/ ) 1 1 1
2

( )( ) ( ) ( )
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i

R

µ µ µ
λ µ λ µ λ µ λ µ λ µ λ µ λ

   ′ ′∂ − + − −   ∂ − − − − − −   
= 0, 

 
or 
 

2 1 2 1 2
1 2 3 2 2

2 1 21 2

(1/ ) 21
2 ( )( )

( ) ( )( )( )

R
i

R

λ µ µ µ µµ λ µ λ µ
λ µ λ µ λµ λ µ λ

 ′ ′∂ − −− − + − − ∂ − −− −  
= 0. 

 
Upon integrating this and letting µ4 denote a fourth function of µ, one will get: 
 

1 2
1 2 3

2 1 2

1
2 ( )( ) i

R

µ µµ λ µ λ µ
µ λ µ λ

 ′ ′
− − + − − − 

 = µ4 . 

 
 M must be real for all real values of λ.  That will be possible only if the roots µ1, µ2 of 
the trinomial (µ1 – λ)(µ2 – λ) are conjugate imaginary quantities and µ3 is positive.  We 
then set: 
 µ1 = α – β i, 
 
 µ2 = α + β i, 
 
and we set µ3 = 1, which is permissible.  Upon replacing µ4 with 2γ, we will find that: 
 

(19)    

2 2

2 2
2

2 2 3/ 22 2
2

2 2

1
,

( )

1
,

( )

1 ( )
,

[( ) ]( )

( ) .

T

R

M

β
λ α ρ

λ α
ρ λ α β

γ λ α β α β
λ α βλ α β

λ α β

 = − +


− = − − +


′ ′− + = + − +− +
 = − +

 

 
 Some very simple geometric considerations that were pointed out by Bour in his 
theory of the deformation of surfaces (Journal de l’École Polytechnique, Cahier 34, pp. 
33) will allow us to interpret the parameters α and β.  For a well-defined generator, α is 
the distance from the point λ = 0 to the central point and β is the ratio of the shortest 
distance between two infinitely-close generators to the angle between those generators.  
We add that γ can be interpreted just as simply.  Indeed, we can write: 
 

2

M d

R

µ
= γ dµ + d arctan 

β
λ α−

, 

 



58 Lecornu – On the equilibrium of flexible, inextensible surfaces 

in which the differentials are taken while keeping λ constant.  Now, the left-hand side 
expresses the contingency angle between the section of the surface and the plane that is 
perpendicular to the generator at the point considered.  That contingency angle is 
obviously composed of: 
 
 1. The angle between two infinitely-close central planes. 
 2. The variation of the angle that is defined by the tangent plane to the surface and 
the corresponding central plane.  That angle will have the tangent: 
 

( )

d

d

β µ
λ α µ−

= 
β

λ α−
. 

 
 Having said that, it will suffice to consider the right-hand side of the equality above in 
order to see that its last term represents precisely the second part of the contingency 
angle, and that as a result, its first term will represent the first part.  γ dµ will then be the 
angle between two infinitely-close central planes, and one can say that: 
 
 The parameter γ is the quotient of the angle between two infinitely-close central 
planes with the angle between the corresponding generators. 
 
 If one constructs a spherical indicatrix of the skew surface by drawing parallels to the 
generators through a fixed point and takes their intersection with the sphere of radius 1 
that has that fixed point for its center then one can further say that: 
 
 The parameter γ is the geodesic curvature of the spherical indicatrix 
 
 By means of the expressions (19), the general equilibrium equations will become: 
 

 2
2 12 2 2 2
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( ) ( )

n t
n n
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λ µλ α β λ α β

∂ ∂ −− + −
∂ ∂− + − +

 = F1 , 

 

 − 1
2 22 2

1
2

( )( )

nt
t

λ α
λ µ λ α βλ α β

∂∂ −+ −
∂ ∂ − +− +

 = F2 , 

 

 1 2 2 2 2

( ) 2

( ) ( )

t
n

λ α β α β βγ
λ α β λ α β

′ ′ − ++ − − + − + 
= Φ 2 2( )λ α β− +  

 
in the case of skew surfaces. 
 The last one gives n1 as a function of t, and upon substituting that value in the 
preceding equation, one will get t by means of a linear first-order partial differential 
equation.  t will then include an arbitrary function of a certain quantity (which is 
obviously the parameter of the non-rectilinear asymptotic lines), in its expression: We 
can call those lines the asymptotic lines of the second system.  Finally, the first equation 
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will give n2 by quadrature, with an arbitrary function of µ; i.e., of the parameter of the 
rectilinear generators.  In order get back to the case of developable surfaces, it will 
suffice to set β = 0. 
 When the external forces are zero, the equation in t will have the form: 
 

t t
A B

λ µ
∂ ∂+
∂ ∂

= Ct, 

 
in which A, B, C depend upon λ and µ uniquely.  If one lets f (λ, µ) = u represent the 
integral of the equation: 

d

A

λ
= 

d

B

µ
, 

 
or, in other words, if one lets u denote the parameter of the asymptotes of the second 
system, and if t = θ (λ, µ) is a non-zero particular solution of the equation in t, moreover, 
then one will effortlessly see that the general solution will have the form: 
 

t = θ  ⋅⋅⋅⋅    ϖ (u), 
 

Which is an expression in which ϖ denotes an arbitrary function. 
 If results from this that if t is required to be annulled for all points along a segment of 
the generator then the corresponding values of ϖ (u) will be zero.  Since ϖ (u) is constant 
along an arbitrary asymptote of the second system, it will follow that: 
 
 When t is zero for all points along a segment of the generator, if one draws non-
rectilinear asymptotic lines through the endpoints of the segment then t will remain zero 
for any portion of the surface that is found between the two asymptotic lines. 
 

 The relation 1

2

2n t

R T
− = 0 shows that if 1 / R2 is not zero (which is the general case) 

then the same theorem can be stated for the tension n1 . 
 Geometrically, one can conclude a property of ruled surfaces from that whose 
statement I have not encountered anywhere.  In order to do that, it will suffice to recall 
that in the absence of any external force, the values of n1, n2, t will be proportional to the 

infinitely-small variations that 
1

1

R
, 

2

1

R
,
1

T
 can be subjected to.  Saying that n1 is zero for 

a portion of the ruled surface amounts to saying that 1 / R1 does not vary, and will 
consequently remain zero.  Hence: 
 
 When an arbitrary generator remains rectilinear on a certain length under the 
infinitely-small deformation of a ruled surface, all of the generators will likewise remain 
rectilinear for the portion of that surface that is bounded by the same two asymptotic 
lines of the second system. 
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 The theorem extends to an arbitrary finite deformation, but the two asymptotes that 
bound the band considered will then be progressively modified under the deformation, 
and one will need a special discussion in order to find the portions of the generator that 
remain rectilinear in each case.  That difficulty will disappear when a generator remains 
rectilinear along all of its length, and one can state the following property: 
 
 When a generator of a ruled surface remains rectilinear for a certain deformation of 
the surface, all of the generators will likewise remain rectilinear. 
 
 That theorem can be regarded as the converse of a theorem that was established by 
Ossian Bonnet (Journal de l’École Polytechnique, Cahier 42) and that we state thus: 
 
 If a ruled surface remains ruled after deformation then any arbitrary generator will 
remain rectilinear. 

 

B B′ 

C 

C′ 

A A′ 

D′ 

D 

 
Figure 9. 

 
 The theorem of Ossian Bonnet can be deduced with no calculations, moreover, on the 
basis of what we just stated.  In order to do that, consider a ruled surface whose 
rectilinear generators are AB, A′B′, … (Fig. 9).  Assume that a system of geodesic lines 
CD, C′ D′, … can become rectilinear as a result of a certain deformation. 
 Imagine a third deformation under which we keep the generator AB fixed and let the 
radii of normal curvature of the line CD grow until it becomes infinite.  CD will then be a 
straight line, and since the surface Σ thus-obtained can be reduced to the one that admits 
CD, C′ D′, … as its rectilinear generators by a convenient deformation, our theorem will 
show that the lines CD, C′ D′, … are all rectilinear on the surface Σ.  However, AB, and 
consequently, all analogous lines, will likewise remain straight.  Hence: 
 
 If the two systems AB, AB,… and CD, CD, … do not coincide then the surface Σ 
possesses a double system of rectilinear generators.  It will then be a second-degree 
surface. 
 
 The surfaces that can be mapped onto ones of degree two are then the only ones that 
can remain ruled without the original generators all remaining rectilinear.  That is the 



Chapter IV – Applications 61 

only exception to the theorem of Ossian Bonnet, who also pointed out that exception 
himself. 
 When the surface has a director plane, γ will be zero, and if one supposes, moreover, 
that one has reduced the system of forces to a tangential system then the third equilibrium 
equation will take the form: 
 

1 arctann
β

µ γ α
 ∂
 ∂ − 

 = 
2 2

2

( )

tβ
λ α β− +

. 

 
 In particular, consider the square-threaded screw surface.  That surface is 
characterized by the constancy of α and β.  One can arrange that α is zero.  Under those 
conditions, the last equation will give t = 0 immediately.  The other two will reduce to: 
 

2
2 2

n λ
λ λ β
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∂ +

(n2 – n1) = F1 , 

 

1n

µ
∂
∂

= 2 2
2F λ β+ . 

 
 Upon setting F2 = ∂f2 / ∂µ , so f2 = ∫ F2 dµ , and supposing that integral is taken from a 
well-defined lower limit (for example, from µ = 0), one will get: 
 

n1 = 2 2
2f λ β+ + ϖ (λ); 

hence: 
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or, upon multiplying by 2 2λ β+ : 
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 Furthermore, set: 
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λ β
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+
+ f2 λ = 1f

λ
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∂

; 

one will get: 
2 2

1n λ β+  = f1 + χ (µ) . 

 
 The integral that gives f1 is supposed to take a well-defined value of λ ; for example, 
λ = 0. 
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 The two arbitrary functions then include λ, in one case, and µ, in the other, which one 
could have expected upon remarking that the asymptotic lines of the square-threaded 
screw surface are rectilinear generators and orthogonal trajectories.  The value of n1 can 
be written: 

n1 = ϖ (λ) + 2F M dµ∫ . 

 
 When one displaces along one of the asymptotes of the second system (λ = const.), 
the variation of the extension force that is exerted between two consecutive generators 
will be equal to the integral of the projections of the corresponding external forces onto 
the tangents to the asymptotes. 
 If the surface is bounded by an asymptotic curve and that curve forms a free 
boundary (i.e., it is not subject to any extension or sliding force) then one must have n2 = 
0 for λ = a, for any µ (a is the parameter of the curve considered).  That condition will 
determine χ (µ) when ϖ is known, because it can be written: 
 

χ (µ) = − f1 (λ, µ)(λ=a) . 
 
 In order to determine ϖ (λ), it suffices to know the law of variation of n2 along a 
generator.  For example, suppose that ϖ (λ) has the form Aλ, in which A is a constant and 
assume, moreover, that the external forces F1 and F2 are zero.  For any generator, one 
will have n1 = ϖ (λ) = Aλ ; the equation: 
 

1f

λ
∂
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= ϖ (λ) 
2 2

λ
λ β+

= 
2

2 2
A

λ
λ β+

 

will then give: 

f1 = 2 2 2 2 2[ log( )]A λ λ β β λ λ β+ − + + , 

 
and χ (µ) will reduce to the constant: 
 

− 2 2 2 2 2[ log( )]A α α β β α α β+ − + + . 

 
 For the surfaces that can be mapped to the square-threaded screw surface, and within 
the limits in which the generators remain rectilinear, α and β will be the same as they are 
for the screw surface; however, γ is an arbitrary function of µ . 
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n1 γ −
2 2

λ
λ β+

= 2 2λ βΦ + . 

 
 We first look for the integrals of those equations when they have vanishing right-hand 

sides.  Upon replacing 2 2λ β+  with M, we will have: 

 

n1 = 
2

t
M

β
γ

, 

 

1n

µ
∂
∂

= 
2

2 1 t t

M

β γ
γ γ µ γ µ
 ∂ ∂− ∂ ∂ 

, 

and as a result: 

−
2 2 2

2 2t t d
t

M M d

β β γλ
λ γ µ γ γ µ

 ∂ ∂+ − + ∂ ∂  
 = 0. 

 
 In order to integrate that equation, we define the simultaneous equations: 
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or rather: 
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 dγ µ∫ + 2 arctan 
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 = const. 

 
 Upon letting ϖ denote an arbitrary function, the general integral will then be: 
 

t = 2 2arctand
M

γ βϖ γ µ
λ

 + 
 
∫ ; 

as a result: 

n1 = 3

2

M

β ϖ . 



64 Lecornu – On the equilibrium of flexible, inextensible surfaces 

 Finally, n2 is given by the first equilibrium equation, from which, one infers that: 
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or rather: 
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∫ (2β ϖ + γ′ ϖ M 2 + γ 2 ϖ′ M 2) + funct. µ . 

 
 The values of n1, n2, t have the remarkable property that they are obtained in an 
explicit form without making any hypothesis on the function γ. 
 In general, one cannot arrive at a similar result then the right-hand sides are arbitrary.  
Impose the condition that the complete equations admit a particular system of solutions 
for which n1 is zero.  That condition will be obtained by writing out that the last two 
equations are compatible; i.e., upon eliminating t from: 
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 Hence, when the condition that was written above is fulfilled, the equilibrium of 
surfaces that can be mapped to the square-thread screw surface will be expressed by: 
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 n1 = 
2
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which are expressions in which χ and ϖ are two arbitrary functions, the one being a 

function of µ, while the other is a function of dγ µ∫ + 2 arctan λ / β. 
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Figure 10. 

 
 Having said that, imagine that a portion of the square-threaded screw surface is 
bounded by the quadrilateral that is defined by two generators AB, CD, and two 
orthogonal trajectories AC, BD (Fig. 10), that the line AB is kept fixed, and that the other 
three sides remain free, and finally, that this portion of the surface is subjected to forces 
that satisfy the condition that was stated above. 
 From a theorem that was established before, the generator CD will remain straight 
under each deformation along a certain part C′ D′ of its length.  When the surface is in 
the equilibrium state, one will have n1 = 0 for all points of CD.  For all points of the part 
that is common to CD and C′ D′, it will result that ϖ = 0, since the preceding equations 
are applicable.  Upon drawing the asymptotes of the second system that pass through the 
endpoints of that common part, one will bound a region for which ϖ is zero in its entire 
extent.  For all points of the part that is common to CD and C′ D′, one will have t = 0, in 
addition.  Since ϖ is already equal to zero, the value of t shows that Φ must be zero or γ 
must be infinite. 
 If the asymptotes A′ C′, B′ D′ that are drawn through C′ and D′ are inside of ABCD 
then our equations will cease to be applicable to the portions ACA′ C′, BDB′ D′, and CC′, 
DD′ can be deformed in an arbitrary fashion, moreover.  If the lines A′ C′, B′ D′ are 
entirely external to ABCD then our equations will be applicable to the entire extent of 
ABCD, and the generator CD will remain entirely rectilinear.  In that case (which we 
shall now envision exclusively), ϖ is zero for all points of the portion of the surface 
considered, and as a result, for the entire length of CD, one will have Φ = 0 or γ = ∞, 
which amounts to saying that the equilibrium will be possible under the conditions that 
we supposed have been imposed only if the surface is subjected to forces along CD that 
are exclusively tangential, or even if the spherical indicatrix of the surface presents a 
regression at the corresponding point. 
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 When Φ is zero for all points of CD, the component F2 of the external force is 
likewise zero, by virtue of the relation: 

F2 = 
2

2
2

M λ
β λ β

∂Φ + Φ
∂

. 

  
 In this case, the generator can be subject to only forces that are directed along its 
length. 
 Along the curves AC, BD, one must have n2 = 0 and t = 0.  Since ϖ is supposed to be 
zero, the condition t = 0 will once more imply that Φ = 0 or γ = ∞ .  However, it is 
impossible for γ to be infinite for all points of a finite arc of a curve that is not a segment 
of the generator.  One must then have Φ = 0.  n2 will be given by the formula: 
 

n2 = 
2

10

1 1

2

M
MF

M

λ

µ β
  ∂ Φ−  ∂   

∫ dλ + χ . 

 
 That tension must be annulled for any µ for two constant values λ1 and λ2 of λ, and 
since χ is a function of only µ, one will be led to the condition: 
 

2

10
1

1 1

2

M
MF

M

λ

µ β
  ∂ Φ−  ∂   

∫ dλ = 
2

10
2

1 1

2

M
MF

M

λ

µ β
  ∂ Φ−  ∂   

∫ dλ, 

 
in which M1 and M2 are the values of M for λ = λ1 and λ = λ2 . 
 That relation must be true for all values of µ that correspond to the generators that are 
found between AB and CD. 
 If F1 and Φ do not depend upon γ then that relation cannot be fulfilled, in general, and 
consequently equilibrium will be impossible under the conditions that we have supposed.  
However, if F1 and Φ depend upon γ then we will be dealing with an equation in γ that 
determines that unknown, and consequently, the equilibrium form. 
 For example, consider a system of normal forces.  In order for F2 to be zero, one must 
have: 

2M
λ

∂Φ
∂

+ 4λ Φ = 0, 

which one can write as: 
2 2 2( )λ β

λ
∂Φ+
∂

+ 4λ (λ 2 + β 2) Φ = 0, 

or 
Φ (λ 2 + β 2) = funct. µ . 

 

 Suppose that the function of µ that is found in the right-hand side is dγ µ∫ , where 

the limits are taken in such a fashion that this integral is annulled for the generator CD.  
Upon setting F1 = 0, the condition that is imposed upon γ will be: 
 



Chapter IV – Applications 67 

1
2

0
1

1 M
d

M

λ
λ

β µ
∂Φ
∂∫ = 

2
2

0
2

1 M
d

M

λ
λ

β µ
∂Φ
∂∫  

or 
1

20
1

d

M M

λγ λ
∫ = 

1

20
2

d

M M

λγ λ
∫ , 

 

1

1

arctan
M

λγ
β

= 2

2

arctan
M

λγ
β

, 

 
and since the coefficients of γ in the two sides are unequal, in general, it will result that γ 
= 0; i.e., the surface of equilibrium will be the square-threaded screw surface. 

 

y 

ξ 

ϕ 

η 
A 

y′ 

ω 

y1 

x 
A′ 

z z′ 

 
Figure 11. 

 
 The second-degree surfaces can be treated like ruled surfaces with real or imaginary 
generators, and consequently, one can be certain a priori that the separation of the 
unknowns can always be carried out for those surfaces.  The problem even comes down 
to the integration of two total differential equations that are linear and first-order, because 
if one refers the surface to its generators then one will find immediately upon applying 
formulas (18), in which one must set 1 / ρ = 1 / ρ1 = 0, that: 
 

sin ϕ 
1

n

σ
∂
∂

– n 
1

2cos
ϕ ϕϕ
σ σ

 ∂ ∂+ ∂ ∂ 
= f1 sin3 ϕ, 
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sin ϕ 1n

σ
∂
∂

– n1 
1

2cos
ϕ ϕϕ
σ σ

 ∂ ∂+ ∂ ∂ 
= f sin3 ϕ . 

 We shall study the case of the hyperbolic paraboloid in particular, since the 
calculations and formulas will take on great simplicity for it. 
 When one refers a hyperbolic paraboloid to three oblique axes that are defined by the 
rectilinear generators Ax, Ay (Fig. 11), which cross at a point A on the surface, and the 
parallel Az to the axis, the equation of the paraboloid will take the form: 
 

xy = kz. 
 

 We give k the name of the parameter of the surface at the point A. 
 Let ξ, η be the angles yAz, xAz, and let ϕ be the angle yAx.  Take an infinitely-small 
length AA′ = ε on Ax; the generator of the system Ay that passes through A′ will have the 
equations: 
 x = ε, 
 

 z = y
k

ε
. 

 
It is situated in the plane zAy1 that is parallel to zAy.  The triangle y′A′ y1, whose side y′ y1 
is parallel to Az, gives: 

sin

sin ( )

ω
ξ ω−

= 1

1

y y

A y

′
′

 = 
k

ε
, 

so, since ω is infinitely small: 

ω = 
k

ε
sin ξ. 

 
 If one refers the surface to the new axes A′ x, A′ y, A′ z then one will have: 
 

x = x′ + ε = x′ +
sin

k

ξ
ω, 

 
y

y′
= 1A y

A y

′
′ ′

= 
sin ( )

sin

ξ ω
ξ
−

, y = y′ (1 – ω cot ξ), 

 

z = z′ + y′ y1 = z′ + y 
k

ε
= z′ + 

sin

yω
ξ
′

(1 – ω cot ξ) . 

 
With that, the equation of the surface will become: 
 

sin

k
x ω

ξ
 ′ + 
 

y′ (1 – ω cot ξ) = kz′ + k 
sin

yω
ξ
′

(1 – ω cot ξ) 

or 
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x′ y′ (1 – ω cot ξ) = k z′. 
 
 Thus, if k′ is the new value of k then one will have: 
 

k′  = 
1 cot

k

ω ξ−
 = k (1 + ω cot ξ), 

 
or rather, upon setting k′ − k = dk and ω = − dξ : 
 

dk

k
= − cot ξ dξ , 

which will give: 
log k = − log sin ξ + const. 

 
 The constant is a function of η, since that angle will remain constant when one 
displaces along the generator Ax.  Since nothing will distinguish the two generators, one 
will likewise find that: 

log k = − log sin η + const. 
 
 As a result, one will generally have: 
 

log k = − log sin ξ – log sin η + const., 
so 

k = 0

sin sin

k

ξ η
. 

 
k0 is the value of k for ξ = η = π / 2 ; i.e., for the summit of the paraboloid. 
 The displacement along Ax is expressed as a function of ξ and η by: 
 

dσ = ε =
sin

k
ω

ξ
= − 0

2sin sin

k dξ
ξ η

. 

Similarly: 

dσ1 = − 0
2sin sin

k dη
ξ η

. 

If one sets: 

sin

dξ
ξ

= dx, 
sin

dη
η

= dy 

 
then the preceding formulas will become: 
 
 k =       k0 cos ix cos iy, 
 
 dσ = − k0 cos ix cos iy dx, 
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 dσ1 = − k0 cos ix cos iy dy . 
 
 The angle ϕ in the trihedron Axyz is given by: 
 
 cos ϕ = cos ξ cos η + sin ξ sin η cos A, 
 
in which A is the dihedron along Ax; i.e., the angle between the director planes.  That 
formula can be written: 

 cos ϕ = − tan i x tan i y +
cos

cos cos

A

i x i y
. 

 
 Now suppose that a hyperbolic paraboloid is subject to a system of tangential forces, 
and apply formulas (18) to it, in which we set 1 / ρ = 1 / ρ1 = 0, and that we divide by 
sin3ϕ : 

 
2 3 3

1 1

1 cos
2

sin sin sin

n n
n

ϕ ϕ ϕ
ϕ σ ϕ σ ϕ σ

∂ ∂ ∂− −
∂ ∂ ∂

 = f1 , 

 

 1
12 3 3

1

1 cos
2

sin sin sin

n n
n

ϕ ϕ ϕ
ϕ σ ϕ σ ϕ σ

∂ ∂ ∂− −
∂ ∂ ∂

 = f . 

 
Consider only the first equation and set n / sin2 ϕ = N.  That equation will become: 
 

1 sin

N N ϕ
σ ϕ σ

∂ ∂−
∂ ∂

= f1 , 

 
or rather, upon replacing dϕ / sin ϕ with du : 
 

1

N u
N

σ σ
∂ ∂−
∂ ∂

= f1 , 

 
or also, upon replacing dσ and dσ1 with their values: 
 

N u
N

y x

∂ ∂−
∂ ∂

= − f1 k0 cos i x cos i y . 

 
 The equation that determines ϕ will lead to the following one: 
 

− sin ϕ 
x

ϕ∂
∂

 = − i tin i y (1 + tan2 ix) + 2

cos sin

cos cos

A ix
i

ix iy
, 

so 
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u

x

∂
∂

= 
/

sin

xϕ
ϕ

∂ ∂
= 

2
2

2

cos sin
tan (1 tan )

cos cos

cos
1 tan tan

cos cos

A ix
i iy ix i

ix iy

A
ix iy

ix iy

+ −

 − − 
 

. 

or 
u

x

∂
∂

= 
2 2 2

(sin cos cos sin cos )

cos cos (sin sin cos )

i iy iy A ix iy

ix iy ix iy A

−
− −

. 

 Upon setting: 
v = log [cos2 i x cos2 i y – (sin i x sin i y – cos A)2], 

 
that equation will become: 

u

x

∂
∂

= − 
v

y

∂
∂

. 

 
 Upon multiplying everything by ev, the equation in N will be: 
 

v vN v
e Ne

y y

∂ ∂+
∂ ∂

 = − f1 k0 cos i x cos i y ev, 

so 

N ev = − k0 cos ix 10

y
f∫ cos iy ev dy + X, 

with the condition that: 
 

e2v = cos2 i x cos2 i y – (sin i x sini y – cos A)2 ; 
 
N1 will be given by an analogous formula, and the question is thus found to have been 
solved completely. 
 Upon replacing ev with its equivalent cos i x cos i y sin ϕ and N by n / sin2 ϕ, one can 
once more write: 

sin

n

ϕ
= − k0 10

cos

cos

yix
f

iy ∫
cos2 i x sin ϕ dy + X. 

 
 Finally, upon recalling that the resultant r of the tensions that are exerted upon an 
asymptote is directed along the other asymptote and as a result equal to n / sin ϕ, and 
upon letting F1 denote the component f1 sin ϕ of the external forces along the normal to 
the asymptotic line x = const., one will obtain: 
 

r = r0 – k0 10

cos

cos

yix
F

iy ∫
 cos2 i y dy. 

 
 When F1 is a function of only x, one will have: 
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r = r0 – k0 1 cos

4 cos

F ix

i iy
 (2iy + sin 2i y). 

 
 When F1 has the form ϖ (x) / cos iy, or rather (what amounts to the same thing), χ (x) 
sin η, where ϖ, and χ are arbitrary functions, one will have: 
 

r = r0 – k0 
cos

cos

ix

iy
ϖ (x) sin i y = r0 + χ (ξ) k0 

cos

cos

η
ξ

. 

 
 In particular, if χ (ξ) = A / k0 sin ξ, in which A is a constant, then one will find that: 
 

r = r0 + A cos η. 
 

 In this case, F1 will be equal to (A / k0) sin ξ sin η = A / k ; it will then be inversely 
proportional to the parameter. 
 When F1 = 0, all that will remain is r = r0, which one can state by saying that: 
 
 If the tangential external forces that are applied to the various points of a generator 
G are directed along the generators of another system then they will all experience the 
same tension, which is directed along G to the points where they meet G. 
 

Surfaces of revolution 
 
 Upon taking the lines λ = const. to be the parallels and the lines µ = const. to be the 
meridians, one will have immediately: 
 

1

1

ρ
= 0,  

1

T
= 0. 

 
 Furthermore, all of the other parameters are functions of only λ.  One can set L = 1, 
and the general equations of the theory of surfaces will then reduce to: 
 

2

2 1 2

(1/ ) 1 1 1d R

d R Rλ ρ
 

+ − 
 

= 0, 

 

2
2

1 2 2

(1/ )1 1d

R R d

ρ
λ ρ

+ − = 0, 

 

2

1

ρ
= − 

/dM d

M

λ
. 

One will infer that: 
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2 2
2

2 2 1 2 2

(1/ ) (1/ )1 1 1 1 1d R d

d R d R R

ρ
ρ λ λ ρ

 
− + + 

 
= 0, 

so 

arctan 2

2 1

d

R R

ρ λ 
+ 

 
∫  = const., 

 
which is a relation that is easy to predict, since one will see geometrically that ρ2 is the 
length of the tangent to the meridian between the contact point and the axis, that R2 is the 
length of the normal, and that arctan ρ2 / R2 is consequently the angle between the normal 
and the axis, which is an angle whose differential must be equal (up to sign) to the 
contingency angle dλ / R1 of the meridian.  Set: 
 

arctan 2

2R

ρ
= − θ, 

so 
ρ2 = − R2 tan θ 

and 

1

1

R
= 

d

d

θ
λ

. 

 
 Upon replacing 1 / R2 with – tan θ / ρ2 and multiplying by 2

2ρ , the second general 

equations can be written: 

cos θ 2d

d

ρ
λ

– sin θ 
d

d

θ
λ

+ cos θ = 0 ; 

as a result: 

ρ2 = − 1
cos

cos
dθ λ

θ ∫
 

and 

R2 =
1

cos
sin

dθ λ
θ ∫

. 

 
 The quantity M is obtained from the equation: 
 

dM

M
= −

2

dλ
ρ

 = −
2

cos

cos

dλ θ
ρ θ

= 2

2

( cos )

cos

d ρ θ
ρ θ

, 

so 
M = f (µ) ρ2 cos θ. 

 
One can take M = − ρ2 cos θ .  It is the radius of the parallel. 
 The preceding formulas reduce the equilibrium equations of the surfaces of revolution 
that are subject to tangential forces to: 
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 2
1 2

1 cos
( )

cos cos

n t
n n

d d

θ
λ µθ λ θ λ

∂ ∂− − −
∂ ∂∫ ∫

 = F1 , 

 

 − 11 cos
2

cos cos

nt
t

d d

θ
µ µθ λ θ λ

∂∂ − −
∂ ∂∫ ∫

 = F2 , 

 

1 2

sin

cos

d
n n

dd

θ θ
λθ λ

+
∫

= 0. 

 
If one sets cos θ = dΛ / dλ = Λ′ then those equations can be written: 
 

 2
1 2( )

n t
n n

λ µ
∂ ∂ ′Λ + − − Λ
∂ ∂

 = F1 Λ, 

 

 1 2
nt

t
λ µ

∂∂ ′Λ + + Λ
∂ ∂

 = − F2 Λ, 

 

 1
221

n
n

′′Λ−
′Λ − Λ

 = 0, 

 
or rather, upon eliminating n1 and suppressing the index of n2, which has become useless, 
one will get: 

2

2

(1 )

1

n t
n

λ µ
′ ′ ′′∂ ∂ Λ − Λ − ΛΛΛ + +

′∂ ∂ − Λ
= F1 Λ, 

 

2
2

1

t n
t

λ µ
′′∂ ΛΛ ∂ ′Λ + + Λ
′∂ − Λ ∂

= − F2 Λ . 

If one sets: 

 21n ′Λ − Λ = N, 

 
 t Λ2  = T 
then those equations will finally become: 
 

 
2

2

1N T

λ µ
′− Λ∂ ∂+

∂ Λ ∂
= 2

1 1F ′Λ − Λ , 

 

 2 3/2(1 )

T N

λ µ
′′∂ ΛΛ ∂+

′∂ − Λ ∂
= − F2 Λ2. 
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 Consider these equations with a vanishing right-hand side, and replace the 
coefficients ∂T / ∂µ, ∂N / ∂µ with L1 and L2 , resp., to abbreviate: 
 

 1

N T
L

λ µ
∂ ∂+
∂ ∂

= 0, 

 

 2

T N
L

λ µ
∂ ∂+
∂ ∂

= 0. 

If one sets: 

 
N N

d dλ µ
λ µ

∂ ∂+
∂ ∂

= dN, 

 

 
T T

d dλ µ
λ µ

∂ ∂+
∂ ∂

= dT, 

 
in addition, then one will obtain differential equations that pertain to the characteristics 
upon writing that the preceding four equations will give indeterminate values for 

N

λ
∂
∂

,
N

µ
∂
∂

, 
T

λ
∂
∂

, 
T

µ
∂
∂

.  One will then find that: 

 
 L1 L2 dλ2 + dµ2 = 0, 
 
 L2 dλ dN − dµ dT  = 0, 
or rather: 

 
d

d

µ
λ

= 1 2L L± − , 

 

 2L dN = 1L dT± − . 

 
 We limit ourselves to studying the case in which the second equation is integrable, 
which will happen only when L2 / L1 is constant.  We first look for the surfaces of 
revolution that enjoy that property. 
 One has: 

2

1

L

L
= 

3

2 2(1 )

′′Λ Λ
′− Λ

 = const. = − 
1

c
, 

and upon integrating: 

2 2

1

1

c−
′Λ − Λ

= const. = b, 

 

Λ′ =
2

2

( ) 1

1

b c

b

+ Λ −
Λ −

. 
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 The quadrature that remains to be performed depends upon elliptic functions.  
However, one can geometrically interpret the relation that exists between Λ and λ.  In 
order to do that, one remarks that if one replaces Λ′ with cos θ then that will make: 
 

2

1

Λ
= b + 

2sin

c

θ
 or Λ = 

2

sin

sinb c

θ
θ +

, 

and as a result: 

Λ′ = cos θ =

2
2

2

2

sin cos
sin cos

sin

sin

b
b c

b c d

b c d

θ θθ θ
θ θ

θ λ

+ −
+

+
 = 2 3/2

cos

( sin )

c d

b c d

θ θ
θ λ+

, 

 

dλ = 2 3/2( sin )

cd

b c

θ
θ +

. 

 
 Recall that λ is the arc length of the meridian, and θ is the angle between the normal 
and the axis. 

 Now, if one considers the ellipse 
2 2

2 2

X Y

A B
+ = 1 and lets θ denote the angle between 

the normal and the y-axis then one will find the following formulas with no difficulty: 
 

dX = 
2 2

2 2 2 2 3/2

cos

( sin cos )

A B d

A B

θ θ
θ θ+

, dY = −
2 2

2 2 2 2 3/2

sin

( sin cos )

A B d

A B

θ θ
θ θ+

, 

so 

dλ = 2 2dX dY+ =
2 2

2 2 2 2 3/2[( )sin ]

A B d

A B B

θ
θ− +

= 
2 2

2 2 2 2 3/2

( / )

( sin cos )

B A d

A B

θ
θ θ+

. 

 
 That value for dλ will become identical to the one that we found above if we set: 
 

2

2

B

A
= c, 

2 2

2

A B

A

−
= b . 

 
 If c is negative then the ellipse will be replaced by a hyperbola.  If b + c = 0 then it 
will result that 1 / Λ2 = 0, which gives a parabola.  The integrability case that we shall 
examine is then that of all second-degree surfaces of revolution.  Upon re-establishing the 
right-hand sides, the equations that one must integrate will be: 
 

 1

N T
L

λ µ
∂ ∂+
∂ ∂

= 2
1 1F ′Λ − Λ , 

 

 2

T N
L

λ µ
∂ ∂+
∂ ∂

= − F2 Λ2. 
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 Replace L1 by its value – c L2 and add the corresponding sides of the two equations 

after multiplying the second one by c− .  That will give: 

 

2

N T N T
c L c c

λ λ µ µ
 ∂ ∂ ∂ ∂+ − + − + − ∂ ∂ ∂ ∂ 

 

 

= 2 2
1 21F c F′Λ − Λ − − Λ . 

 

 Upon setting N + T c−  = ϖ, and replacing the right-hand side with F, that equation 
will take the form: 

2L c
ϖ ϖ
λ µ

∂ ∂+ −
∂ ∂

= F ; 

 
it is integrated by means of the simultaneous equations: 
 

dλ = 
2

d

L c

µ
−

 = 
d

F

ϖ
. 

 
 Upon replacing c−  with − c−  and setting N – T c− = χ, one will get the 

second system: 

dλ = −
2

d

L c

µ
−

 = 
d

F

χ
′

. 

 
 If one knows ϖ and χ then one will know N and T, and as a result, the problem will 

be solved.  The equations dµ = ± L2 c− dλ are the differential equations of the 
asymptotic lines. 
 When F1 , F2 , and as a result, F, F′ are functions of only λ, one will have 
immediately: 

ϖ = F dλ∫ + funct. (α), χ = F dλ′∫ + funct. (β), 

 
if one lets α, β denote the parameters of the asymptotic lines. 
 If one would like to have the relations that characterize the asymptotic lines in an 
explicit form then it will suffice to change the variables by setting: 
 

dz = 21 ′− Λ dλ = sin θ dλ. 
 

 When one is given the geometric significance of λ and θ, one will see effortlessly that 
dz is nothing but the distance between the planes of two infinitely-close parallels.  With 
that new variable, one will have: 
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Λ = cos dθ λ∫  = cot dzθ∫ . 

Now: 

dλ = 2 3/2( sin )

cd

b c

θ
θ +

, 

which will give: 

 dz = 
2

2 3/2

tan (1 tan )

[ ( ) tan ]

c d

c b c

θ θ θ
θ

+
+ +

, 

 

 z = − 
2

1

( ) tan

c

b c c b c θ+ + +
, 

 

 cot θ = 
3/2

2 2 2

( )

( )

b c z

c c b c z

+
− +

, 

 
if one measures z upon starting from the equator. 
 Hence: 

Λ = (b + c)3/2 
2 2 2( )

z dz

c c b c z− +∫ = 2 2 21
( )c c b c z

c b c
− +

+
. 

The relation: 

dµ = L2 c− dλ, 
or 

dµ = 1L

c−
 dλ = 

2

2

1

c

′− Λ
Λ −

dλ, 

will then become: 

dµ = 
2 2 2

( )

[ ( ) ]

c b c dz

c c c b c z

+
− − +

. 

One infers from this that: 

µ – arctan 
( )b c z

c

 +
 

−  
= const. 

 
The quantities that we have called α and β are then: 
 

µ ± arctan 
( )b c z

c

 +
 

−  
. 

 
 In the case of the ellipsoid, c is positive, and α, β are conjugate imaginary; Λ and 

21 ′− Λ are real.  In order for the values of n and t : 
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 n = 
22 1

ϖ χ+
′Λ − Λ

, 

 

 t = 
22 c

ϖ χ−
− Λ

 

 
to be real, it is necessary and sufficient that ϖ and χ should be conjugate imaginary 
quantities. 
 We shall push the application of the method to its limit by studying the very simple 
problem that takes the form: 
 
 Determine the equilibrium conditions for an ellipsoid of revolution that contains a 
fluid that exerts a constant normal pressure on all points of its surface. 
 
 The first thing to do is to decompose the forces into a normal system and a tangential 
system.  In order to find the former, it will suffice to set: 
 

1 2

2a

R R
= Φ, 

2

1 a

L R λ
∂
∂

= F1 ,  
1

1 a

M R µ
∂
∂

= F2 , 

 
upon calling the normal force Φ. 
 The first equation determines α as a function of only λ.  The second one gives the 
component F1 of the external force along the tangent to the meridian.  The third one 
shows that the component F2 of the external force along the parallel is equal to zero. 
 We have found that: 

 
1

1

R
= 

d

d

θ
λ

= 
sin d

dz

θ θ
, 

 

 
1

1

R
= 

sinθ
Λ

. 

Hence: 

1 2

1

R R
= 

2sin d

dz

θ θ
Λ

. 

 One has, moreover: 

cot θ = 
3/2

2 2 2

( )

( )

b c z

c c b c z

+
− +

, 

so 

sin2 θ = 
2

1

1 cot θ+
= 

2 2

2 2 2

( )

( )

c c b c z

c b b c z

− +
+ +

. 

The value of Λ is: 



80 Lecornu – On the equilibrium of flexible, inextensible surfaces 

Λ = 
2 2 2( )c c b c z

c b c

− +
+

. 

Finally: 

sin θ 
d

dz

θ
= 

d

d

θ
λ

= c2 
3/ 2

2 2 2 3/ 2

( )

[ ( ) ]

b c

c b b c z

+
+ +

. 

 
Consequently, one has: 

1 2

1

R R
 = c2 

2

2 2 2 2

( )

[ ( ) ]

b c

c b b c z

+
+ +

 

and 

a = 
2 2 2 2

2 2

[ ( ) ]

2 ( )

c b b c z

c b c

Φ + +
+

. 

Hence: 
da

dz
= 

3

2 b

c

Φ
z [c2 + b (b + c)2 z2], 

and since: 

F1 = 
2

1 da

R dλ
 = 

2sin da

dz

θ
Λ

, 

one will get: 

F1 Λ =
3

2 b z

c

Φ
[c2 + b (b + c)2 z2], 

 
upon replacing sin2 θ and da / dz by their values. 
 Upon setting: 

B2 = 2( )

c

b c+
,  

2

2

2 ( )b b c

c

Φ +
= P, 

one can further write: 
F1 Λ = Pz (B2 – z2). 

 
 With that, the forces that are applied to the ellipsoid are composed of: 
 
 1. The normal system that is defined by the normal force Φ and the tangential force 
F1 = Pz (B2 – z2) / Λ , which is directed along the tangents to the meridians. 
 
 2. The tangential system that is defined by the force 1F ′= − Pz (B2 – z2) / Λ , which is 

tangent to the meridians. 
 
 The first system gives rise to the effort of extension n1 = a / R1 = Φ R1 / 2 at each 
point, which is normal to the meridian, and the effort of extension n2 = a / R2 = Φ R1 / 2 , 
which is normal to the parallel; these efforts must be added to the ones that result from 
the second system. 
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 The equation in ϖ that was written previously will then become: 
 

2

2

1

c

ϖ ϖ
λ µ

′− Λ∂ ∂+
∂ ∂Λ −

= 1 21F ′ ′Λ − Λ  

 

here, or, upon replacing dλ with dz / sin θ = dz / 21 ′− Λ  and Λ2 with 
2 2

2( )

B z

b c B

−
+

: 

 

2 2

B
i

B z

ϖ ϖ
λ µ

∂ ∂+
∂ − ∂

= − Pz (B2 – z2). 

 
 The corresponding simultaneous equations are: 
 

dz = 2 2/( )

d

iB B z

µ
−

 = 
2 2( )

d

Pz B z

ϖ
− −

. 

It will have: 

 µ − i log 
B z

B z

+
−

 = const. 

 ϖ − 
4

P
(B2 – z2) 2 = const. 

 
for its integrals.  That will give the general value of ϖ : 
 

ϖ = 
4

P
(B2 – z2)2 + ϕ1 log

B z
i

B z
µ
 +−  − 

. 

 
 One will likewise find that: 
 

χ = 
4

P
(B2 – z2)2 + ϕ2 log

B z
i

B z
µ
 ++  − 

, 

and then: 

n =
22 1

ϖ χ+
′Λ − Λ

= 

2
2

2

2 2

( ) 1

2( )

b z
B b c

c B
B z

ϖ χ+ + +

−
, 

 

t = 
22 c

ϖ χ−
− Λ

 = 
2

2 2

( )( )

2 ( )

b c B

ic B z

ϖ χ− +
−

, 

 
or even, if one replaces b and c with their values as functions of the axes of the ellipse: 
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b = 
2 2

4

A B

A

−
, c = 

2

4

B

A
, 

 

n = 

2 2 2
2

4

2 2

( ) 1

2( )

B A B
z

A B
B z

ϖ χ −+ +

−
, 

 

t = 
2 2

( )

2 ( )

B

i B z

ϖ χ−
−

. 

 
 Those values are applicable no matter what portion of the ellipsoid that one considers.  
If one is dealing with the entire ellipsoid then they must remain finite when z tends to ±B.  
For that to be true, it is necessary that ϖ and χ must both tend to zero for any µ.  Upon 
considering the expressions that were found for those two quantities and setting: 
 

 u = µ + i log 
B z

B z

+
−

, 

 

 v = µ + i log 
B z

B z

+
−

, 

one must have: 
 ϕ1 (u)v=∞ = ϕ2 (u)v=∞ = 0 
for any µ. 
 Furthermore, n and t, and consequently ϕ1 (u) and ϕ2 (v), must remain finite, 
continuous and well-defined for any u and v.  When one describes an absolutely arbitrary 
closed contour on the surface, one must find the same values for ϕ1 (u) and ϕ2 (v) upon 
returning to the starting point. 
  From the known properties of functions of imaginary variables, a function such as 
ϕ1(u) that remains finite, continuous, and well-defined for all possible values of the value 
that it contains must necessarily reduce to a constant.  In the present case, that constant 
can be nothing but zero, and we will have simply: 
 

ϖ = χ = 
4

P
 (B2 – z2)2. 

 
 It results immediately from this that t = 0; i.e., that: 
 
 The meridians and parallels are the lines of principal tension of the surface. 
 
 One then finds: 

 n2 = n = − 
2 2 2

2 2 2
4

( ) 1
4

P B A B
B z z

A B

−− +  
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 = 
2 2 2 2

2 2 2
2 4

( )
1 ( )

4

B z A B
z A B

AB B

Φ − −+ −  

 
for the effort of extension that is exerted upon the parallels. 
 The effort of extension n1 that is exerted on the meridians is obtained by multiplying 
n times: 

21

′′ΛΛ
′− Λ

= −
2

2

1

c

′− Λ
Λ

= 
2 2 2

( )

( )

c b c

c b b c z

− +
+ +

=  
2 2

2 2
2

4

/

1

A B

A B
z

B

−
−+

; 

one will then find that: 
 

n1 = − 
2 2

2 2
2

4

4
1

PA B z

A B
z

B

−
−+

 = − 
2 2 2 2

4 2 2
2

4

( )

2
1

A A B B z

B A B
z

B

Φ − −
−+

 . 

 
 In order to get values of n1 and n2 that are appropriate to the problem, one must add 
the quantities that produce the normal system (i.e., ΦR1 / 2, ΦR1 / 2) to the quantities n1 
and n2 thus-determined.  Now, the formulas that were established before give: 
 

 R1 = 
3/22 2 2

2
4

1
B A B

z
A B

 −+ 
 

, 

 

 R2 = 
3/22 2

2
4

1
A B

A z
B

 −+ 
 

. 

 
As a result, the definitive values of n1 and n2 will be: 
 

 n1 = 

2 2 2
2

2 4

2 2
2

4

2 2

2
1

A A B
z

B BA
A B

z
B

−− +Φ
−+

, 

 

 n2 = 
2 2

2
4

1
2

A B
A z

B

Φ −+ . 

 
 It is easy to verify that n1 and n2 satisfy the condition: 
 

1 2

2 1

n n

R R
+ = Φ, 

as they must. 
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 One can obtain a more important verification of the lengthy deductions that have led 
us to the result by considering the ellipsoidal cap that is bounded by the parallel z = const. 
and writing out that the sum of the projections onto the z-axis of the tensions that are 
normal to that parallel is equal to the sum of the components with respect to the same 
axis of the pressures that are exerted on the cap.  That condition will determine n2 
immediately, and one will recover the value to which we were led. 
 The value of n1 can be written: 

n1 = n2 − 
2 2 2 2

4 2 2
2

4

( )

2
1

A A B B z

B A B
z

B

Φ − −
−+

. 

 
 The difference n1 − n2 will have a constant sign then, which will be positive if the 
ellipsoid is elongated and negative if it is flattened.  It will be annulled for the two poles z 
= ± B, which will be umbilical equilibrium points, as a result.  Contrary to what happens 
in general, those points do not link up with a line of points that enjoy the same property.  
That amounts to saying that in the present case, the differential equation of the line that 
we are dealing with will reduce to dz = 0. 
 Upon setting n1 = 0, one will get the equation: 
  

2

2

z

B
= 

2 2

2 2

2

2( )

A B

A B

−
−

, 

 

which can be satisfied only if A is greater than 2B .  When that condition is satisfied, 

there will always be two parallels for which the tension that is perpendicular to the 
meridians is zero.  In the zone that is found between those parallels, the two principal 
tensions will have opposite signs, and one knows that there will then exist two directions 
at each point whose elements do work solely by shearing. 
 Now consider an arbitrary portion of the surface in place of the complete ellipsoid.  
One can no longer say that ϕ1 (u) and ϕ2 (v) are constant, because u and v will no longer 
pass through all possible values.  Since ϕ1 (u) must be a periodic function of µ that has a 
period of 2π or a divisor of 2π, we can take the variable to be the quantity: 
 

eiu = 
log

B z
i

B ze
µ +−

−  = iB z
e

B z
µ−

+
, 

 
instead of u, without introducing any indeterminacy. 
 Upon setting z = B cos ω, one will have: 
 

eiu = tan 
2

ie µω
  and  ϕ1 (u) = tan

2
ieµωψ  

 
 

. 

 
 If considers an ellipsoidal cap that has its center at the pole ω = 0 and is found 
entirely within the portion of the given surface then since the expression ψ must remain 
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finite, continuous, and well-defined for all points on that cap, it must be developable into 
a series in increasing integer powers of tan (ω / 2) eiu.  Within the limits of the cap thus-
defined, we will have: 

ϕ1 = A0 + A1 tan
2

ie µω
+ A2 tan2

2
ie µω

. 

 
 As before, one will see that ϕ1 must be annulled for any µ and for z = B; i.e., for tan 
ω/2 = 0.  For the neighboring points of z = B, ϕ1 must have the same order as B2 – z2 = B2 
sin2 ω.  That demands that A0 and A1 must be zero.  Upon setting: 
 

A2 = a2 + i b2 ,  A2 = a2 + i b2 ,   …, 
one will then have: 

 ϕ1 (u)  = (a2 + i b2) tan2 
2

ω
(cos 2µ + i sin 2µ) 

 + (a3 + i b3) tan2 
2

ω
(cos 3µ + i sin 3µ) 

 + …………………………………….. 
Likewise: 

ϕ2 (v) = (a2 − i b2) tan2 
2

ω
(cos 2µ − i sin 2µ) + … 

 
 As a result, in order to get n2 , one must add the expression: 
 

 
2 2 2

1 2
2 2 4

( ) ( )
1

2( )

u vB A B
z

A B z B

ϕ ϕ+ −+
−

 

 

= 
2 2 2 2

4

cos sin

2 cos / 2

A B

AB

ω ω
ω

+
[(a2 cos 2µ – b2 sin 2µ) + tan 

2

ω
(a3 cos 3µ – b3 sin 3µ) + …] 

 
to the value that was found before; n1 will be consequently modified, and t1 will not be 
equal to zero, but to: 
 

 1 2
2 2

( ) ( )

2 ( )

u v
B

i B z

ϕ ϕ−
−

 

= 
4

1

2 cos / 2B ω
 [(a2 cos 2µ + b2 sin 2µ) + tan

2

ω
(a3 cos 3µ + b3 sin 3µ) + …]. 

 
 The inspection of these formulas shows immediately why the arbitrary functions must 
be annulled when the surface is closed: It is because they must remain finite for any µ 
when ω tends to π, and consequently, cos (ω / 2) tends to zero. 
 The indeterminacy that is introduced into the equilibrium conditions by the arbitrary 
functions should not surprise us: It is completely analogous to what one encounters when 



86 Lecornu – On the equilibrium of flexible, inextensible surfaces 

one seeks the reactions that are experienced by an invariable solid that has more than 
three support points. 
 

Minimal surfaces 
 

 The minimal surfaces are characterized by the property that their asymptotic lines are 
orthogonal.  One can then apply the general equations of the theory of surfaces to those 
lines, and since one will then have 1 / R1 = 1 / R2 = 0, the equations that one must deal 
with will reduce to: 

1

1

ρ
= − /L

LM

µ∂ ∂
, 

2

1

ρ
= − /M

LM

λ∂ ∂
, 

 

−
1

1 (1/ ) 2 1T

M Tµ ρ
∂ +

∂
 = 0, 

 

−
2

1 (1/ ) 2 1T

L Tλ ρ
∂ +

∂
 = 0, 

 

1 2
2 2 2

1 2

(1/ ) (1/ )1 1 1 1 1

T M L

ρ ρ
µ λ ρ ρ

∂ ∂+ + − −
∂ ∂

= 0. 

 
One infers from this that: 

1 (1/ ) 2 1T L

M LM Tµ µ
∂ ∂+

∂ ∂
= 0 

or rather: 
2L

Tµ
 ∂
 ∂  

= 0. 

 
L2 / T is then a function of only λ, and upon choosing that variable conveniently, one can 
arrange that L2 / T = 1, in some way; similarly, M 2 / T  = 1.  Upon setting T = 1 / θ 2, one 
will have: 

L = M = 
1

θ
. 

One will then find that: 

1

1

ρ
= − 2 (1/ )θθ

µ
∂

∂
= 

θ
µ

∂
∂

, 

 

2

1

ρ
= 

θ
λ

∂
∂

, 

and finally, that: 
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θ 4 + 
222 2

2 2

θ θ θ θθ
λ µ λ µ

   ∂ ∂ ∂ ∂ + − −     ∂ ∂ ∂ ∂    
 = 0, 

which one can write as: 

θ 2 + 
2 2

2 2(log ) (log )θ θ
λ µ
∂ ∂+

∂ ∂
 = 0 

 
upon dividing by θ 2, or even: 

2 
2 2(log )

x y

θ∂
∂ ∂

 = − θ 2, 

when one sets: 
dx = dλ + i dµ,  dy = dλ − i dµ. 

 
If one replaces θ 2 with 4u then that equation will become: 
 

2(log )u

x y

∂
∂ ∂

 = − 2u, 

 
 The general integral, which is due to Liouville, is: 
 

u = − 2( )

X Y

X Y

′ ′
+

, 

 
in which X denotes an arbitrary function of x, and Y denotes an arbitrary function of y, 

and X′, Y′ are the derivatives of those two functions.  θ 2 will then be equal to − 2

4

( )

X Y

X Y

′ ′
+

. 

 The line element of the surface: 
 

ds2 = L2 dλ2 + M 2 dµ2 
will consequently be: 

ds2 = 
2

1

θ
(dλ2 + dµ2) = − 

2( )

4

X Y

X Y

+
′ ′

dx dy . 

 If one sets: 

2

dx

X ′
= dx1, 

2

dy

Y′
= dy1 , 

 
and if one lets X1, Y1 denote the functions X and Y when they are expressed in terms of x1, 
y1, resp., then one will get the following formula, which was contributed by Ossian 
Bonnet [Journal de Liouville (2), t. V]: 
 

ds2 = (X1 + Y1)
2 dx1 dy1 . 
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 Having said that, consider a minimal surface that is subject to a system of tangential 
forces and look for the equilibrium conditions that refer to the asymptotic lines.  Since 
those lines are, in a fashion, lines of conjugate tension, they must be lines of principal 
tension in the present case.  One will then have t = 0. 
 Moreover, 1 / R1 = 1 / R2 = 0.  The last equilibrium equation will then disappear 
entirely.  The first two of them reduce to: 
 

 2 1 2

2

1 n n n

L λ ρ
∂ −+
∂

  = F1 , 

 1 2 1

1

1 n n n

M µ ρ
∂ −+
∂

 = F2 , 

or rather: 

 2
1 2( )

n
n n

θθ
λ λ

∂ ∂+ −
∂ ∂

= F1 , 

 

 1
2 1( )

n
n n

θθ
µ µ

∂ ∂+ −
∂ ∂

= F2 , 

so 
2 2

2 2 1 2
1 2

( )
( )

n n n n
n n

θ θ θθ
λ µ λ µ λ µ λ µ
∂ ∂ ∂ −∂ ∂ ∂+ + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 = 1F

µ
∂
∂

, 

 
or even, upon replacing ∂n2 / ∂λ with its value and setting n1 – n2 = u : 
 

2 2
2 2

1

n u
F u u

θ θ θ θθ θ θ
λ µ µ λ λ µ λ µ
∂ ∂ ∂ ∂ ∂ ∂ + − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 = 1F θ
µ

∂
∂

; 

 
similarly, one will have: 
 

2 2
2 1

2

n u
F u u

θ θ θ θθ θ θ
λ µ λ λ λ µ µ λ
∂ ∂ ∂ ∂ ∂ ∂ + + − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 = 2F θ
λ

∂
∂

, 

 
and upon subtracting, one will find that: 
 

2
2 2

u u u
u

θ θ θ θ θθ θ θ θ
λ µ λ µ λ µ µ λ λ µ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

 

= 2 1
1 2

F F
F F

θ θθ
λ µ µ λ

 ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ 
. 

Now set u = v θ, so: 
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2

u
u

θθ
λ λ

θ

∂ ∂−
∂ ∂  = 

v

λ
∂
∂

, 

 
2 2

2

3

2
u u u

u
θ θ θ θ θθ θ θ θ

λ µ λ µ λ µ µ λ µ λ
θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = 
2v

λ µ
∂

∂ ∂
. 

 
 From those formulas, the equation that gives v can be written: 
 

2 2v
v

θθ
λ µ λ µ
∂ ∂−

∂ ∂ ∂ ∂
= 2 1f f

λ µ
∂ ∂−
∂ ∂

, 

 
when one sets F1 / θ = f1 , F2 / θ = f2 .  The knowledge of v, n1, and n2 will be given by 
just one quadrature. 
 The function θ is defined by the relation: 
 

θ 2 = − 2

4

( )

X Y

X Y

′ ′
+

. 

 
However, we have to express that quantity as a function of λ and µ .  In order to do that, 
we remark that if one sets: 

log (X + Y) = ϕ 
then one will have: 

θ 2 = − 4
x y

ϕ ϕ∂ ∂
∂ ∂

, 

or, since x = λ + i µ, y = λ – i µ : 

θ 2 = −
22ϕ ϕ

λ µ
  ∂ ∂  +    ∂ ∂     

, 

 

and since that is equal to 1 / L, it must unavoidably be real; as a result, 
22ϕ ϕ

λ µ
 ∂ ∂  +   ∂ ∂   

 

must be real and negative. 
 ϕ is a function of λ and µ that one can always put into the form: 
 

ϕ = P(λ, µ) + i Q (λ, µ), 
 
in which P and Q are two real functions.  One will then have: 
 

− θ 2 = 
22ϕ ϕ

λ µ
 ∂ ∂  +   ∂ ∂   

= 
2 22 2

2
P P Q Q P Q P Q

i
λ µ λ µ λ λ µ µ

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + − − + +        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
. 
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 In order for θ 2 to be real, it is necessary that the condition: 
 

P Q P Q

λ λ µ µ
∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂

= 0 

 
must be fulfilled.  What will then remain is: 
 

θ 2 = 
2 22 2

Q Q P P

λ µ λ µ
   ∂ ∂ ∂ ∂   + − −      ∂ ∂ ∂ ∂      

. 

  
On the other hand, since eϕ is equal to X + Y, it must have the form: 
 

funct. (λ + i µ) + funct. (λ – i µ), 
 

which will imply the condition: 
2 2

2 2( ) ( )e eϕ ϕ

λ µ
∂ ∂+

∂ ∂
= 0, 

or rather: 
222 2

2 2

ϕ ϕ ϕ ϕ
λ µ λ µ

 ∂ ∂ ∂ ∂ + + +   ∂ ∂ ∂ ∂   
 = 0, 

or, upon developing this: 
 

2 22 22 2 2 2

2 2 2 2

P P P P Q Q Q Q
i

λ µ λ µ λ µ λ µ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + − − + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        

= 0, 

hence: 
2 2

2 2

Q Q

λ µ
∂ ∂+
∂ ∂

= 0, 

 
222 2

2 2

P P P P

λ µ λ µ
 ∂ ∂ ∂ ∂ + + +   ∂ ∂ ∂ ∂   

= 
22

Q Q

λ µ
 ∂ ∂  +   ∂ ∂   

. 

 
 Let ϖ be a function of λ and µ, such that one will have: 
 

ϖ
λ

∂
∂

= 
Q

µ
∂
∂

, 
ϖ
µ

∂
∂

= − Q

λ
∂
∂

. 

 

The function ϖ exists, since 
2 2

2 2

Q Q

λ µ
∂ ∂+
∂ ∂

= 0. 

 The relation 
P Q P Q

λ λ µ µ
∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂

 = 0 will become: 
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P Pϖ ϖ
λ µ µ λ

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

= 0, 

 
which obviously demands that P should be a function of ϖ.  It will then result that: 
 

 
2

2

P

λ
∂
∂

 = 
22 2

2 2

P Pϖ ϖ
ϖ λ µ λ

∂ ∂ ∂ ∂ +  ∂ ∂ ∂ ∂ 
, 

 

 
2

2

P

µ
∂
∂

 = 
22 2

2 2

P Pϖ ϖ
ϖ µ ϖ µ

 ∂ ∂ ∂ ∂+  ∂ ∂ ∂ ∂ 
, 

 

and as a result, upon remarking that 
2 2

2 2

ϖ ϖ
λ µ

∂ ∂+
∂ ∂

= 0: 

 

θ 2 = 
2 2

2 2

P P

λ µ
∂ ∂+
∂ ∂

 = 
222

2

P ϖ ϖ
ϖ λ µ

  ∂ ∂ ∂  +    ∂ ∂ ∂     
. 

 
 P is not an arbitrary function of ϖ, because the condition: 
 

222 2

2 2

P P P P

λ µ λ µ
 ∂ ∂ ∂ ∂ + + +   ∂ ∂ ∂ ∂   

= 
22

Q Q

λ µ
 ∂ ∂  +   ∂ ∂   

 

can be written: 
22 22

2

P P ϖ ϖ
ϖ ϖ λ µ

    ∂ ∂ ∂ ∂   + +       ∂ ∂ ∂ ∂          
= 

22ϖ ϖ
λ µ

 ∂ ∂  +   ∂ ∂   
 

or 
22

2

P P

ϖ ϖ
∂ ∂ +  ∂ ∂ 

= 1. 

 
Upon including the constant that is introduced by integration over ϖ, one will infer from 
this that: 

P

ϖ
∂
∂

= 
2

2

1

1

e

e

ϖ

ϖ
−
+

, 

and 
2

2

P

ϖ
∂
∂

= 
2

2 2

4

( 1)

e

e

ϖ

ϖ +
= 2

4

( )e eϖ ϖ−+
= 

2

1

cos iϖ
. 

 
 Hence, one will finally have: 
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 If one lets ϖ denote an isothermal function of λ and µ – i.e., an arbitrary solution of 

the equation 
2 2

2 2

ϖ ϖ
λ µ

∂ ∂+
∂ ∂

 = 0 – then the most general value of θ will be: 

 

θ = 
22

1

cosi

ϖ ϖ
ϖ λ µ

 ∂ ∂  +   ∂ ∂   
. 

  
 When ϖ is a function of only λ, it can be isothermal only if it reduces to Aλ, where A 

is a constant.  One will then have θ =
cos

A

iAλ
, so 

2θ
λ µ
∂

∂ ∂
= 0, and the equation in v will 

reduce to: 
2v

λ µ
∂

∂ ∂
= 2 1cos f fiA

A

λ
λ µ

 ∂ ∂− ∂ ∂ 
. 

 
 v can then be obtained by means of two successive quadratures.  The hypothesis ϖ = 

funct. (λ) gives 
1

1

ρ
= 

θ
µ

∂
∂

= 0; i.e., the minimal surface is ruled.  One knows that the only 

minimal surface that enjoys that property is the square-threaded screw surface: We then 
revert to a case that was studied before. 
 When the quantities f1, f2 are partial derivatives of the same function (which will 
happen any time that the interval between two consecutive orthogonal trajectories of the 
external forces varies from one point to the other along one of those trajectories in 

inverse proportion to 2 2
1 2f f+ = F / θ), one will have 2 1f f

λ µ
∂ ∂−
∂ ∂

= 0.  As a result, the 

equation in v will become: 

(20)     
21 v

v λ µ
∂

∂ ∂
= 

21 θ
θ λ µ

∂
∂ ∂

. 

 
 In that remarkable form, one will immediately perceive the solution v / θ = const.  
Consequently, for an arbitrary minimal surface that is subject to tangential forces that 

satisfy the condition 2 1f f

λ µ
∂ ∂−
∂ ∂

= 0, one will always have to determine a particular state of 

equilibrium.  It will suffice to choose the boundary conditions suitably.  
 

Minimal surface of revolution 
 
 In the case of the minimal surface of revolution, θ will remain constant for each 
parallel; i.e., for each line such that λ – µ is constant.  If one sets: 
 
 λ + µ = α, 
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 λ − µ = β, 
 
and if one takes α, β to be new variables then θ will depend upon only α.  The isothermal 
function ϖ reduces to α, and θ will have the value: 
 

θ = 
2

cosiα
. 

One will infer from this that: 
θ
λ

∂
∂

= 
θ
µ

∂
∂

= 
θ
α

∂
∂

 = i θ tan iα, 

 
and the equilibrium equations, which are initially supposed to have vanishing right-hand 
sides, namely: 

 2nθ
λ

∂
∂

+ (n1 – n2)
θ
λ

∂
∂

 = 0, 

 

 1nθ
µ

∂
∂

+ (n2 – n1)
θ
µ

∂
∂

 = 0, 

will give: 

2n

λ
∂
∂

 = − 1n

µ
∂
∂

. 

 
 As a result, there will exist a function P such that: 
 

n1 = 
P

λ
∂
∂

, n2 = − 
P

µ
∂
∂

, 

 
and that function will be defined by the equation: 
 

2 /P P P d dθ α
λ µ λ µ θ

 ∂ ∂ ∂− + ∂ ∂ ∂ ∂ 
= 0 

or rather: 
2 2

2 2

P P

α β
∂ ∂−
∂ ∂

− 2i tan iα 
P

α
∂
∂

= 0. 

 Set: 
 x = i tan iα, 
 y = β ; 
 
x and y are two integrals of the equations: 
 

2

2

P

α
∂
∂

− 2i tan iα 
P

α
∂
∂

= 0, 
2

2

P

β
∂
∂

= 0. 
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 If one takes x and y to be independent variables then one will find that: 
 

2 2

2 2

P dx P

x d yα
∂ ∂ − ∂ ∂ 

= 0 ; 

however: 
dx

dα
= − (1 + tan2 iα) = − (1 – x2). 

 
 The equation that the solution of the problem depends upon can then be written: 
 

2

2

z

y

∂
∂

= (1 – x2)2 
2

2

z

x

∂
∂

 

upon replacing P with z. 
 In order for perform the integration, we begin by investigating whether there exist 
solutions of the form: 

z = XY, 
 

in which X and Y are functions of only x, in the former case, and only y, in the latter.  
Upon making the substitution, one will find that: 
 

X Y″ = (1 – x2)2 Y X″, 
 
which is possible only if one has: 
 Y″ = a2 Y,  

  X″ = 
2

2 2(1 )

a

x−
X, 

upon calling a constant α. 
 The equation in Y is integrated with no difficulty.  The equation in X falls within one 
of the general types of linear equations that were studied by J. Tannery (Annales de 
l’École Normale, 1875).  We follow the method that was pointed out in order to find a 
solution.  Set: 

X = (1 – x2)p u, 
 

in which u is a new unknown, and p is an undetermined coefficient.  Upon dividing 
everything by (1 – x2)p−2, the equation to be solved will become: 
 

(1 – x2)2 u″ – 4px (1 – x2) u′ − 2p u + 4p (p − 1) x2 u – a2 u = 0. 
 
 If we set: 

4p (p − 1) = a2 
 
then the left-hand side will be divisible by x2, and what will remain is: 
 

(1 – x2) u″ – 4p x u′ − 2p (2p − 1) u = 0. 
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 One changes the variable by writing: 
 

2t = x + 1, 
so 

1 – x2 = 4t (1 – t). 
One will get: 

t (t – 1)
2

2

d u

dt
 + 2p (2t – 1)

du

dt
 + 2p (2p – 1) u = 0. 

 
 Upon introducing three new parameters α, β, γ such that one has: 
 
 γ  = 2p, 
 α + β + 1 = 4p, 
 αβ  = 2p (2p – 1), 
 
the equation will finally take the form: 
 

(t2 – t) 
2

2

d u

dt
– [γ – (α + β + 1) t] 

du

dt
+ αβ u = 0. 

 
 This an equation that Gauss studied, and it admits the hypergeometric series: 
 

F (α, β, γ, t) = 1 + 2( 1) ( 1)

1 1 2 ( 1)
t t

αβ α α β β
γ γ γ

+ ++
⋅ ⋅ ⋅ ⋅ +

+ … 

for a solution. 
 In order for that series to be convergent, it is necessary that t must be less than 1.  
That condition is always fulfilled when a, and therefore p, is real, because for all real 
values of a, the quantity: 

x = 
a a

a a

e e

e e

−

−

−
+

 

 
will remain between + 1 and – 1, and as a result, t will vary between 1 and 0.  In addition, 
it is generally necessary that γ must not be a negative integer.  However, that restriction is 
pointless here, since one immediately recognizes that α and β are roots of the second-
degree equation: 

m2 + (1 – 4p) m + 2p (2p – 1) = 0, 
 
which are roots that are equal to 2p and 2p – 1, or γ and γ – 1.  Upon taking β = γ, for 
example, the hypergeometric series will reduce to: 
 

1 + (γ − 1) t +
( 1)

1 2

γ γ−
⋅

t 2, 

or rather, to: 
(1 – t)1−γ. 
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 From that, the value of X is: 
 

X = (1 – x2) p 
1 2

1

2

p
x

−− 
 
 

= 2 1

1 1

2 1

p

p

x x

x−

− + 
 − 

. 

 
 Upon taking Y to have the value C eay, in which C denotes an arbitrary constant, and 
dropping the factor 22p−1, one will get the following value for z : 
 

z = C eay (1 – x) 
1

1

p
x

x

+ 
 − 

. 

 
 In order to deduce the value of the unknown tension n1, it will suffice to remark that: 
 

n1 =
z

λ
∂
∂

= 
z z

α β
∂ ∂+
∂ ∂

 = 
z x z

x yα
∂ ∂ ∂+
∂ ∂ ∂

 = 
z

y

∂
∂

− (1 – x2) 
z

x

∂
∂

. 

 
 Upon performing the calculation, one will get: 
 

n1 = C eay 1

(1 )

(1 )

p

p

x

x −

+
−

(a − 2p + 1 + x) . 

 
 The corresponding value of n2 is: 
 

n2 = C eay 1

(1 )

(1 )

p

p

x

x −

+
−

(a − 2p − 1 − x) . 

 
 In order to verify these results, we investigate how n1 varies when we displace along 
the curve λ = const. or dα + dβ = 0, or (what amounts to the same thing): 
 

d d

dx dx

α β+ = − 
2

1

1 x−
+ y′ = 0. 

 
 Upon considering y to be a function of x that is defined by that equation and taking 
the derivative of n1 with respect to x, one will find that: 
 

dn1 = dx C eay (1 + x)p−1 (1 – x)−p (2p – 1 – x) 2x, 
or rather: 

dn1 = 
21

xdx

x−
(n1 – n2), 

 

or furthermore, upon replacing 
21

dx

x−
with – dα and x by i tan iα : 
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dn1 = i tan iα dα (n1 – n2) . 
 

Since dλ = 0, by hypothesis, which entails that dα = dµ, one can write: 
 

1n

µ
∂
∂

= i tan iα (n1 – n2) = 
/θ µ
θ

∂ ∂
(n1 – n2). 

 
 This is the first of the equations that n1 and n2 must satisfy.  The second one will be 
obtained in an analogous fashion. 
 Let p, p′ be the two roots of the equation: 
 

4p (p – 1) = a2. 
 

 One can substitute one or the other roots p in the values of n1 and n2 that were found 
above.  One will then get two systems of solutions, which will permit one to form the 
complete solution: 
 

 n1 = C eay 1

(1 )

(1 )

p

p

x

x −

+
−

(a − 2p + 1 + x) + C′ eay 1

(1 )

(1 )

p

p

x

x

′

′−

+
−

(a – 2p′ + 1 + x), 

 

 n2 = C eay 1

(1 )

(1 )

p

p

x

x −

+
−

(a + 2p − 1 − x) + C′ eay 1

(1 )

(1 )

p

p

x

x

′

′−

+
−

(a + 2p′ − 1 − x) . 

 
 Since p + p′ = 1, one can also write: 
 

 n1 = C eay 1

(1 )

(1 )

p

p

x

x −

+
−

(a − 2p + 1 + x) + C′ eay 1

(1 )

(1 )

p

p

x

x −

+
−

(a + 2p − 1 + x), 

 

 n2 = C eay 1

(1 )

(1 )

p

p

x

x −

+
−

(a + 2p − 1 − x) + C′ eay 1

(1 )

(1 )

p

p

x

x −

+
−

(a − 2p + 1 − x) . 

 
 Finally, one will deduce the general integrals from this upon considering C and C′ to 
be two arbitrary functions of a, ϕ (a), ψ (a), and performing integrals that are defined 
with respect to a between the two well-defined limits a1 and a2 : 
 

 n1 = (1 + x) 
2

1

1
1

1

p
a ay

a

x
e

x

−+ 
 − 

∫ (a − 2p + 1 + x) ϕ (a) da 

 

 + (1 – x) 
2

1

1
1

1

p
a ay

a

x
e

x

−+ 
 − 

∫ (a + 2p − 1 + x) ψ (a) da . 
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 n2 = (1 + x) 
2

1

1
1

1

p
a ay

a

x
e

x

−+ 
 − 

∫ (a + 2p − 1 − x) ϕ (a) da 

 

 + (1 – x) 
2

1

1
1

1

p
a ay

a

x
e

x

−+ 
 − 

∫ (a − 2p + 1 − x) ψ (a) da 

 
 In order to solve the general problem of equilibrium of the minimal surface of 
revolution, it remains for one to find a particular solution of the equations with non-
vanishing right-hand sides.  One will arrive at it by once more taking the values of n1 and 
n2 that include two arbitrary constants C and C′ and applying the method of variation of 
arbitrary constants.  One will then be led to two equations of the form: 
 

 
C C

A A
λ λ

′∂ ∂′+
∂ ∂

= F1 , 

 

 
C C

A A
µ µ

′∂ ∂′+
∂ ∂

= F2 . 

 
 These equations can be solved only in particular cases.  For example, when F1 / A is a 
function of only λ and F1 / A′ is a function of only µ, one can suppose ∂C / ∂µ = 0 and 
∂C′ / ∂µ = 0 ; C and C′ will then be given by simple quadratures. 

  When 1F

Aµ
∂  
 ∂  

= 2F

Aλ
∂  
 ∂  

, one can suppose that C′ = 0 and get C by a quadrature.  If 

1F

Aµ
∂  
 ′∂  

= 2F

Aλ
∂  
 ′∂  

 then one will suppose, on the contrary, that C = 0 and one gets C′ by 

a quadrature.  Finally, whenever 1F

µ θ
∂  
 ∂  

= 2F

λ θ
∂  
 ∂  

, one will immediately procure a 

particular solution without resorting to the variation of arbitrary constants by the method 
that was indicated previously. 
 Besides the cases that were just studied, the general integration of equation (20) 
seems impracticable to me, no matter what hypothesis that one imposes upon the function 
θ.  Moutard has studied equations of the form: 
 

21 v

v λ µ
∂

∂ ∂
= f (λ, µ) 

 
in Cahier XLV of the Journal de l’École Polytechnique and determined the conditions 
that the right-hand side must fulfill in order for there to be an explicit general integral.  I 
do not believe that one can find values of θ that belong to the minimal surfaces and at the 

same time give one of the integrability cases that Moutard established for 
21 θ

θ λ µ
∂

∂ ∂
. 
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 Nonetheless, I shall increase the number of applications.  The preceding discussion 
seems to me to suffice to elucidate the general theory that was presented in the first 
chapters.  On the subject of those applications, there is good reason to point out that the 
cases in which I have succeeded in finding explicit general integrals of the problem all 
refer to ruled surfaces.  It was easy to predict, by inspecting equations (18), that these 
surfaces will be the easiest to treat by far, because when one sets 1 / ρ = 0, the unknown 
n1 will disappear from the first equation. 
 If one would like to extend this research and find some other surfaces for which one 
can obtain the general solution then one must eliminate the unknown n1 from equations 
(18), with vanishing right-hand sides, which will lead to an equation of the form: 
 

2n n n
A B

α β α β
∂ ∂ ∂+ +

∂ ∂ ∂ ∂
+ Cn = 0, 

 
in which α and β denote the parameters of the asymptotic lines.  One then imposes 
various hypotheses upon the values of A, B, C that will permit one to integrate that 
equation.  If one would like, at the same time, to determine the surfaces that correspond 
to each hypothesis then all that would remain to be done would be to apply systems of 
forces to them such that their introduction in the right-hand side would not prevent one 
from performing the integration.  However, that field of study is much too vast for me to 
attempt to enter into it today. 
  

___________ 
 


