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 One supposes that the number of variables that define the positions of the points of a 
material system has been reduced to the minimum number, while taking into account the 
constraints, and one calls that minimum number of variables q1, q2, q3, …, qk, while 1q′ , 

… , kq′  are their derivatives with respect to time.  In addition, if one lets T denote the 

total vis viva of the system, while Q1, Q2, … denote some well-defined functions of the 
variables then one will know that the equations of motion can be put into the following 
form, which is due to Lagrange: 
 

(1)    
1 1

d dT dT

dt dq dq
−

′
= Q1 , …, 

k k

d dT dT

dt dq dq
−

′
= Qk . 

 
Upon transforming those equations, which are k in number and which have second order, 
one can put them into another form that was pointed out by Hamilton and that one calls 
the canonical form. 
 In all of what follows, we will suppose that the principle of vis viva is valid and that 
there exists a force function U ; i.e., a function such that the quantities Q1 , Q2 , ..., 
represent the partial derivatives of U with respect to the variables q1 , q2 , ... 
 If one sets: 

(2)     1dq

dt
= 1q′ , 2dq

dt
= 2q′ , … 

 
and regards 1q′ , 2q′ , … as unknowns, while combining equations (2) with equations (1), 

then the latter will be of first order, and one will have a system of 2k simultaneous first-
order equations. 

                                                
 (1) Read at the session on 18 June 1885.  
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 Instead of taking the q1 , q2 , ..., 1q′ , 2q′ , … to be the variables, take q1 , q2 , ... and p1 = 

1

dT

dq′
, p2 =

2

dT

dq′
, …, pk =

k

dT

dq′
. 

 We examine what the system of equations (1) and (2) will become after changing the 
variables. 

 Equations (1) will take the form 1

1

dp dT

dt dq

 
−  
 

= Q1 , …, when one lets 
1

dT

dq

 
 
 

 denote 

what the derivative 
1

dT

dq
 will become when one replaces the variables q1 , q2 , ..., 1q′ , 2q′ , 

…  with the variables q1 , q2 , ..., p1 , p2 , … in the expression for T. 
 Now, T is a homogeneous function of second degree in the variables q′, because if 
one supposes that the points are first represented by rectangular coordinate axes then one 
will have: 

T = 2 2 21
2 ( )i i i im x y z′ ′ ′+ +∑ , 

 
and by hypothesis, if the constraints are independent of time then one will have: 
 

ix′  = 1 2
1 2

i idx dx
q q

dq dq
′ ′+  + …, 

and similarly: 

iy′  = 1 2
1 2

i idy dy
q q

dq dq
′ ′+  + … 

 
Hence, from the substitution of variables x, y, z and x′, y′, z′ as functions of the variables 
q and q′, T will become a linear function that is homogeneous of second order.  One will 
then get a homogeneous function from the theorem: 
 

2T = 1 2
1 2

dT dT
q q

dq dq
′ ′+

′ ′
+ … + k

k

dT
q

dq
′

′
. 

 
Upon subtracting T from both sides, this can be written: 
 

T = 1 1 2 2p q p q′ ′+ + … − T. 

 
Now, the T that is found in the left-hand side is a function of all the variables q1 , q2 , ..., 

1q′ , 2q′ , …, as well as q1 , q2 , ..., qk . 

 If one takes the total variation of T while considering it to be a function of all those 

variables then upon suppressing the terms that cancel, like 1 1p qδ ′  and − 1
1

dT
q

dq
δ ′

′
, one will 

have: 



Legoux – Canonical equations 3 

δT = 1 1 2 2q p q pδ δ′ ′+ + … − 1 2
1 2

dT dT
q q

dq dq
δ δ− − …, 

 
from which, one deduces that: 

1

dT

dq

 
 
 

 = − 
1

dT

dq
, … 

and 

1

dT

dp
= 1q′  = 1dq

dt
, … 

 
One remarks that the two expressions for dT / dq1 are equal and of opposite sign.  
Introduce that hypothesis into equations (1), and also replace Qi with dU / dq1, …  One 
can replace systems (1) and (2) with the following one: 
 

(3)    1dp

dt
= 

1 1

dU dT

dq dq
− , …, kdp

dt
= 

k k

dU dT

dq dq
− , 

 

(4)    
1

dT

dp
= 1q′ = 1dq

dt
, …, 

k

dT

dp
= kdq

dt
. 

 
Finally, if one sets U – T = H and remarks that U does not contain the variables p1, p2, … 
then the system will take the following form: 
 

(A)     1dp

dt
=   

1

dH

dq
, 2dp

dt
=   

2

dH

dq
, … 

(B)     1dq

dt
= −

1

dH

dp
, 2dq

dt
= −

2

dH

dp
, … 

 
 

Integrating the canonical equations 
 

 One calls any equation: 
ϕ = α 

 
an integral of equations (A), (B), in which ϕ is a function of p1, p2, …, pk, q1, q2, …, qk, 
and t, α is an arbitrary constant, ϕ does not include α, and that function ϕ is such that its 
total derivative with respect to t reduces to zero, when one can eliminate the derivatives 
of the functions p and q with respect to time by means of equations (A) and (B). 
 
 Complete solution of the canonical equations. – The complete solution of those 
equations is composed of 2k distinct integrals that include 2k arbitrary constants. 
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 Remark: Since the variable t does not enter into H, one can eliminate it by writing 
the canonical equations in the form: 
 

1

1

dp
dH

dq

= 2

2

dp
dH

dq

= … k

k

dp
dH

dq

= 1

1

dq
dH

dp
−

 = … = k

k

dq
dH

dp
−

. 

 
Upon integrating that system completely, one will have the expressions for 2k − 1 
variables as functions of each other – for example, p1 and 2k – 1 arbitrary constants a1, a2, 
…, a2k−1 .  If one substitutes these values in the equation: 
 

1dp

dt
= 

1

dH

dq
 

then one can infer that: 

dt = 1

1

dp
dH

dq

, 

so: 

t + a2k = 1

1

dp
dH

dq

∫ , 

 
in such a way that one can represent the complete integral of the system by the following 
equations, which are supposed to be solved for the constants: 
 

ϕ1 = a1 , ϕ2 = a2 , …, ϕ2k−1 = a1 , ϕ2k = a2k + t = 1

1

dp
dH

dq

∫ , 

ϕ1 , ϕ2 , …, ϕ2k do not contain t explicitly. 
 
 

Condition equation that one of the functions ϕ must satisfy 
 

 From the definition of an integral, it is necessary that the total derivative of ϕ with 
respect to t must be identically zero when one takes the canonical equations into account.  
Now, one has: 

  
d

dt

ϕ
= 1

1

dpd

dp dt

ϕ
+ … + k

k

dpd

dp dt

ϕ
 

  + 1

1

dqd

dq dt

ϕ
 + … + k

k

dqd

dq dt

ϕ
, 

 
and upon replacing the dp / dt and dq / dt with their values: 
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d

dt

ϕ
= 

1 1 2 2

d dH d dH

dp dq dp dq

ϕ ϕ+ + … + 
k k

d dH

dp dq

ϕ
 

  − 
1 1 2 2

d dH d dH

dq dp dq dp

ϕ ϕ−  − … − 
k k

d dH

dq dp

ϕ
 

 
  = (ϕ, H), if one adopts Poisson’s notation. 
 
One sees that this equation is satisfied for ϕ = H ; i.e., that H = const. is an integral, 
which one knows in advance. 
 
 FUNDAMENTAL THEOREM. – If one knows k − 1 integrals: 
 

ϕ1 = a1, ϕ2 = a2, …, ϕk−1 = ak−1 , 
 
in addition to the integral of vis viva H = h, in which ϕ1 , ϕ2 , …, ϕk−1 do not contain time 
t explicitly and are such that, in addition, for i or m = 1, 2, …, k – 1, the values of p1, p2, 

…, pk that one deduces must satisfy the relations 1

m

dp

dq
= 

1

mdp

dq
, or rather (ϕ1, ϕm) = 0, then 

one will get the k remaining integrals of the equations that were posed: 
 
 1. Upon integrating the differential expression: 
 

p1 dq1 + p2 dq2 + … + pk dqk + H dt, 
 
after one has replaced p1 , p2 , …, pk with their values that are inferred from the 
equations H = h, ϕ1 = a1 , ϕ2 = a2 , …, ϕk−1 = = ak−1 . 
 
 2. Upon equating the derivatives of the function thus found with respect to a1 , a2 , 
…, ak−1 , h to constants. 
 
 By hypothesis, the values of pi satisfy the integrability conditions, so the expression: 
 

p1  dq1 + p2 dq2 + … + pk  dqk 
 
will be the exact differential of a certain function V.  I say, moreover, that one will also 

have 
i

dH

dq
= idp

dt
. 

 Indeed, when one replaces p1 , p2 , …, pk in H with their values as functions of the q1, 
…, qk , H reduces to h, so dH / dqi is identically zero, and since pi does not contain t, one 
will also have dpi / dt = 0, so the preceding expression is indeed the total differential of a 
certain function Ω, such that: 
 

dΩ = dV + h dt, Ω = V + ht. 
 



Legoux – Canonical equations 6 

 I now say that the k remaining integrals will be: 
 

(5)     

1
1 1

2
2 2

1
1 1

,

,

................

................

,

,

k
k k

d dV
b

da da

d dV
b

da da

d dV
b

da da

d dV
t

dh dh
τ

−
− −

Ω = =


Ω = =




 Ω = =

 Ω
 = + =


 

 
in which b1, b2, …, bk−1, τ are new constants. 
 In order to prove the second part of the theorem, it will suffice to see that, from the 
definition of the integral, one will have: 

d dV

dt da
= 0 

identically for a = a1, a2, …, ak−1, h. 
 dV / da contains t only implicitly by the intermediary of the variables qi ; one will 
then have: 

d dV

dt da
= 1 1 2 2

dV dV
d d

dq dq dq dq

da dt da dt
+ + … + k k

dV
d

dq dq

da dt
. 

 
Now, from the way that V was defined, one will obviously have: 
 

(6)     p1 = 
1

dV

dq
, …, pk = 

k

dV

dq
, 

 
so, upon substituting this in the equation above and taking the canonical equations (A) 
and (B) into account, one will get: 
 

 
d dV

dt da
 = − 1 2

1 2

dp dpdH dH

dp da dp da
− − k

k

dpdH

dp da
 

 = − ( )d H

da
, 

 
in which (H) denotes what H will become after one has replaced p1, p2, …, pk with their 
values dV / dq1, …, dV / dqk , or rather, what amounts to the same thing, their values that 
one infers from the k first integrals.  However, after that substitution, H will become 
equal to h, so if one gives one of the values a1, a2, …, ak−1 to a, one will have d(H) / da = 
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0.  If one sets a = h then d(H) / da = dh / dh = 1, in this case, and 
d dV

dt dh
= − 1.  If one 

differentiates the last of equations (5) with respect to t then that will give: 
 

d dV

dt dh
+ 1 = − 1 + 1 = 0. 

 
Hence, the k equations (5) will represent k integrals of equations (A) and (B) and 
complete the integrals of the system. 
 
 Remark I. – The values of pi that are provided by equations (6) are obviously the 
same as the ones that are given by the equations ϕ1 = a1 , …, ϕk−1 = ak−1 , H = h, and that 
results from the way that V was formed.  Hence, one can say that the complete solution of 
equations (A) and (B) is represented by equations (5) and (6). 
 
 Remark II.  – If the function V is known then if one replaces the pi in the equation H 
= f (p1 , p2 , …, pk, q1, q2, …, qk) = h with their values that one infers from equations (6) 
then that equation will become an identity.  Hence, the function V is such that it will 
make the equation: 

1 2
1 2

, , , , , , , k
k

dV dV dV
f q q q

dq dq dq

 
 
 

… … = h 

 
into an identity, and since it contains k arbitrary constants, it will be a complete integral 
of that first-order partial differential equation. 
 
 JACOBI’s THEOREM.  – Conversely, any complete integral – i.e., one that satisfies 
the preceding partial differential equation and contains k arbitrary constants, including 
the constant h of the vis viva integral – will enjoy the same property as the function V.  It 
will provide the complete solutions of equations (A) and (B).  Those solutions are 
represented by equations (5) and (6). 
 
 I shall first say that one can deduce equations (B) from the equation H = f = h, (7), 
and equations (5).  Indeed, if one differentiates (7) with respect to a1, …, ak−1, h and (7) 
with respect to t then one will have, on the one hand, since the a are included in H only 
by the intermediary of the p: 
 

1

dh

da
=

2

dh

da
= … =

1k

dh

da −

= 0 and 
dh

dh
= 1, 

so: 
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(a)    

1 2

1 1 2 1 1

1 2

1 2 2 2 2

0,

0,

...........................................................

...........................................................

k

k

k

k

dpdp dpdH dH dH

dp da dp da dp da

dpdp dpdH dH dH

dp da dp da dp da

dH

+ + + =

+ + + =

⋯

⋯

1 2

1 1 2 1 1

1 2

1 2

0,

1,

k

k k k k

k

k

dpdp dpdH dH

dp da dp da dp da

dpdp dpdH dH dH

dp dh dp dh dp dh

− − −












+ + + =



+ + + =


⋯

⋯

 

 
and on the other hand, if one differentiates dV / dai with respect to t then one will have: 
 

 1 1 1 2 1

1 2

k

k

dV dV dV
d d d

dqda dq da dq da

dq dt dq dt dq dt
+ + +⋯ = 0, 

 
 ……………………………………………. 
 ……………………………………………. 
 

 1 1

1

k

dV
d

da dq

dq dt
− + …             + 1k k

k

dV
d

da dq

dq dt
− = 0, 

 

 1

1

dV
d dqdh
dq dt

+ …             + k

k

dV
d dqdh
dq dt

= − 1, 

 
because dV / dai is, in general, a function of q1, q2, …, qk .  Upon inverting the order of 
differentiation, while taking equations (6), one will have: 
 

(b) 

1 1 2 2

1 1 1

1 1 2 2

1 1 1

0,

..........................................................

..........................................................

k k

k k

k k k

dp dadp dq dp dq

da dt da dt da dt

dp dadp dq dp dq

da dt da dt da dt− − −

+ + + =

+ + + =

⋯

⋯

1 1 2 2

0,

1,k kdp dadp dq dp dq

dh dt dh dt dh dt











 + + + = −

⋯
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Now, if one considers dH / dp1, dH / dp2, … to be the unknowns in equations (a) and 
considers – dq1 / dt, – dq2 / dt, … to be the unknowns in equations (b) then one will see 

that the coefficients of the unknowns are the same, so one will have 
1

dH

dp
= − 1dq

dt
.  These 

are equations (B). 
 One can deduce equations (A) from the equation H = h and equations (6).  
Differentiate H = h with respect to q1, q2, …: 
 

(a′ )   
1

dH

dq

 
 
 

= 1 2

1 1 1 2 1

dp dpdH dH dH

dq dp dq dp dq
+ + + … + 

1

k

k

dpdH

dp dq
= 0, 

 

while letting 
1

dH

dq

 
 
 

 denote the total derivative of H with respect to q1 .  Differentiate the 

first of equations (6) with respect to t : 
 

1dp

dt
= 1 1 1 2

1 2

dV dV
d d

dq dq dq dq

dp dt dp dt
+ + … + i k

k

dV
d

dq dq

dq dt
. 

 
Since t enters into dV / dqi only by the intermediary of the variables q1, q2, …, upon 
inverting the order of differentiation and taking equations (6) into account, one will have: 
 

(b′ )   1dp

dt
= 1 1 2 2

1 1

dp dq dp dq

dq dt dq dt
+ + … + 

1

k kdp dq

dq dt
. 

 
Now, if one takes equations (B) into account, since they are satisfied, then one will infer 
from equation (a) that: 

1

dH

dq
= 1 1 2 2

1 1

dp dq dp dq

dq dt dq dt
+ + … + 

1

k kdp dq

dq dt
, 

so: 

  1dp

dt
=

1

dH

dq
, 

and similarly: 

  2dp

dt
=

2

dH

dq
, … 

These are equations (A) precisely. 
 Jacobi’s theorem is paramount in this theory.  Indeed, it permits one to write down 
the integrals of a dynamical problem immediately without performing any other 
operations than simple differentiation when one knows any complete integral of the 
partial differential equation H = h.  In what follows, we will see that in a large number of 
cases, one can find a complete integral of that equation immediately, and consequently, 
integrate the equations of the problem by inspection, as Bour so cleverly phrased it. 
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 In order to write down the partial differential equation upon which the solution of the 
problem depends, it will suffice to know the force function U and the vis viva as 
functions of the variables q, when they are reduced to their minimum number, and their 
derivatives with respect to time.  One introduces new variables p into T such pi = / idT dq′  
in place of the variables q, and one finally replaces p1, p2, … with dV / dq1, dV / dq2, … in 
equation U – T = h.  
  
 

ON THE EQUILIBRIUM OF FLEXIBLE, INEXTENSIBLE FILAME NTS 
 

 In a note that appeared in the Comptes rendus de l’Académie des Sciences, Appell 
showed that one could reduce the equations of equilibrium for a flexible filament to 
canonical form, and consequently, apply the theorems of Hamilton and Jacobi to the 
integration of those equations.  One can present that reduction in a slightly different and 
slightly simpler form that will provide the value of the arc length, expressed by means of 
one quadrature, at the same time that it provide the equations of the funicular curve. 
 As one knows, the equations of equilibrium of a filament are: 
 

 
dx

d T
ds

 
 
 

+ X ds = 0, 

 

(1) 
dy

d T
ds

 
 
 

+ Y ds = 0, 

 

 
dz

d T
ds

 
 
 

+ Z ds = 0. 

Let: 
x = q1 ,  y = q2 ,  z = q3 . 

Set: 

(2)    
dx

T
ds

 = p1 ,  
dy

T
ds

 = p2 , 
dz

T
ds

= p3 , 

so 
(3)      T 2 = 2 2 2

1 2 3p p p+ + . 

 
Suppose that one has a force function U – i.e., a function such that: 
 

− dU = X dx + Y dy + Z dz . 
One will have: 

 − dU

dx
= −

1

dU

dq
= X, 

 

 − dU

dy
= −

2

dU

dq
= Y, 
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 − dU

dz
= −

3

dU

dq
= Z . 

One infers from equations (1) that: 
 

dT = − (X dx + Y dy + z dz) = dU , 
so: 

− T + U = h = constant. 
Set: 
(4)  U – T = H 
 
and remark that U will be a function of only the variables q1, q2, q3, T, and that the 
variables p1, p2, p3, and in turn H, will be functions of the variables p and q. 
 With that, equations (1) will take the form: 
 

1dp

ds
= 

1

dU

dq
, 2dp

ds
= 

2

dU

dq
, 3dp

ds
= 

3

dU

dq
, 

 
or rather, since dU / dq1 = dH / dq1 : 

(A)  

1

1

2

2

3

3

,

,

,

dp dH

ds dq

dp dH

ds dq

dp dH

ds dq


=




=



=


 

 
and equations (2), which define the variables p, can be written, upon taking into account 

equation (3), which gives 
1

dT

dp
= 1p

T
: 

 

 1dq

ds
 = 

1

dT

dp
, 

 2dq

ds
 = 

2

dT

dp
, 

 …………… 
 …………… 
 

However, from equation (4), 
1

dT

dp
= −

1

dH

dp
, so: 
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(B) 

1

1

2

2

3

3

,

,

.

dq dH

ds dp

dq dH

ds dp

dq dH

ds dp


= −




= −



= −


 

 
 Equations (A) and (B) form a system of six simultaneous first-order differential 
equations that can replace the system (1).  They are all presented in canonical form. 
 One can remark that these equations have the same form as the equations of motion 
of a unique material point, with the difference that the variable t, which represents time in 
the latter equations, is replaced here with the variable s, which represents the length of 
the arc in such a fashion that these six equations will determine the six variables q1, q2, 
q3, p1, p2, p3 as functions of s in the present case.  However, of the three equations that 
determine q1, q2, q3 as functions of s, two of them will be equations of the curve, and the 
third one must be a consequence of the first two, by virtue of the relation ds2 = 

2 2 2
1 2 3dq dq dq+ + . 

 Indeed, one sees that only two of equations (B) are distinct, because if one adds their 
corresponding sides after squaring them then the first sum will be equal to unity, and 
similarly for the second sum, since: 
 

2 2 2

2 2 2
1 2 3

dH dH dH

dp dp dp
+ + = 

2 2 2

2 2 2
1 2 3

dT dT dT

dp dp dp
+ + = 

2 2 2
1 2 3

2

p p p

T

+ +
= 1. 

 
The system of canonical equations is then equivalent to a system of five equations, in 
reality.  Now, the integration of the canonical equations will introduce six arbitrary 
constants.  One can take one of those constants to be equal to unity. 
 One will determine the five constants from the initial givens – for example, by 
expressing the idea that the extremities are fixed and the length of the filament is given. 
 As one knows, the integration of equations (A) and (B) can be converted into the 
search for a complete integral of a certain first-order partial differential equation: 
 

(5)     
2 2 2

2 2 2
1 2 3

dV dV dV

dq dq dq
+ + = (U – h)2. 

 
 When one has found the value of V that satisfies that equation and contains two new 
constants g, f, in addition to the constant h, one will get the solution of the problem by 
means of the following equations: 
 

(6)  
dV

df
= α, 

dV

dg
= β, 

dV

dh
− s = γ, 
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in which α, β, γ represent three new constants.  In addition to equations (6), the six 
integral of the canonical system are: 
 

  p1 = 
1

dV

dq
= 1dq

T
ds

, 

 

(7)  p2 = 
2

dV

dq
= 2dq

T
ds

, 

 

  p3 = 
3

dV

dq
= 3dq

T
ds

. 

 
 The preceding method shows that one can find the arc length ds by a simple 
quadrature. 
 

Application to the case in which the filament is constrained  
to remain on a given surface in the absence of friction. 

 
 The partial differential equation upon which the solution of the problem depends is 
the same as the one that one will obtain by studying the motion of a material point in the 
case where the vis viva is represented by (U – h)2. 
 Now, we have seen that in this case, if one refers the position of the moving point to a 
system of curvilinear coordinates u, v, w, which are the parameters of three orthogonal 
surfaces, and if the square ds2 of the distance between two infinitely-close points is: 
 

ds2 = f 2 du2 + g 2 dv2 + k 2 dw2, 
 
in which f, g, k are given functions of u, v, w, then the left-hand side of equation (5) will 
take the form: 

2 2 2

2 2 2 2 2 2

1 1 1d V d V d V

f du g dv k dw
+ + , 

 
and the partial differential equation will become: 
 

2 2 2

2 2 2 2 2 2

1 1 1d V d V d V

f du g dv k dw
+ + = (U – h)2. 

 
In the case where one studies the motion of a point, or even in the case where one lays the 
filament on the surface w = const., the preceding equation will become: 
 

2 2

2 2 2 2

1 1d V d V

f du g dv
+ = (U – h)2. 
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One will arrive at this formula, moreover, by the usual formulas for the transformation of 
rectilinear coordinates into curvilinear coordinates. 

 
Case of a filament that rests upon a sphere. 

 
 Upon taking ordinary spherical coordinates, one will have: 
 

ds2 = r2 dθ 2 + r2 sin2 θ dψ 2. 
 
The partial differential equation will then be: 
 

2 2

2 2 2 2 2

1 1

sin

dV dV

r d r dθ θ ψ
+ = (U – h)2. 

 
 Suppose that U is a function of only θ.  One will satisfy that equation by setting V = 
V0 + Vψ , in which V0 and Vψ are two functions, one of which is a function of only θ and 
the other of which is a function of only ψ, and they are determined by the two equations: 
 

sin2 θ – r 2 sin2 θ (U – h)2 + k2 = 0, 
 

dV

dψ
= k, 

 
in which k denotes an arbitrary constant.  One infers from this that: 
 

Vψ = k ψ, V0 = 2 2 2 2sin ( )
sin

d
r U h k

θ θ
θ

− −∫ , 

so: 

V = kψ + 2 2 2 2sin ( )
sin

d
r U h k

θ θ
θ

− −∫ . 

The integrals are: 
dV

dk
= β, 

dV

dh
− s = γ, 

 
The first of them will be the equation of the curve in spherical coordinates, while the 
second one will give s by a quadrature.  That will be another form for the equation of the 
curve. 
 
 Example: Case in which the forces reduce to weight. 
 

dU = m dz, U = µ r cos θ, 
so one will have: 

V = kψ + 2 2 2 2sin ( cos )
sin

d
r h k

θ θ µ θ
θ

− −∫ . 
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The integrals are: 

 ψ − 
2 2 2 2sin sin ( cos )

k d

r r h k

θ
θ θ µ θ − −∫  = β, 

 

 s = − 2

2 2 2 2

sin ( cos )

sin ( cos )

r h d
r

r r h k

θ µ θ θ
θ µ θ

−
− −∫ − γ. 

One has: 
T = U – h = µ r cos θ − h. 

 
 The preceding integrals are elliptic integrals. 
 The preceding formulas permit one to find the law that governs the force when the 
trajectory is given on a surface.  Indeed, take one of them (say, the first one) in the 
differential form: 

dψ −
2 2 2 2sin sin ( )

k d

r U h k

θ
θ θ − −

= 0. 

 
One infers the value of U from this: 
 

(U – h)2 = 
2 2

2 2 2 21
sin sin

k d

r d

θ
θ θ ψ
 

+ 
 

. 

 
 Application. – What must the value of the force F that is tangent to the meridian at 
each point be in order for the filament on the sphere to take the form of a loxodrome? 
 
 Let ϕ be the angle that the curve makes with the meridian, so one will have: 
 

tan γ = 
sin d

d

θ ψ
θ

. 

 
Upon substituting this, one will then have: 
 

(U – h)2 = 
2

2 2 2sin sin

k

r θ ϕ
,  U – h = 

sin sin

k

r θ ϕ
. 

 
 Now, the elementary work is represented by dU and also by Fr dθ.  One will then 
have: 

− dU = 
2

cos

sin sin

k d

r

θ θ
θ ϕ

+
= Fr dθ, 

so: 

F = 
2

cos

sin

C θ
θ

. 
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Equilibrium of a filament that rests upon a surface of revolution 
 

 One can suppose that the meridian of the surface is determined by an equation 
between the radius of the parallel r and the inclination θ of the meridian above the plane 
of the parallel at each of its points.  If one lets ψ denote the angle between the meridian 
and a fixed meridian then one will find the following expression for the length ds : 
 

ds2 = r2 dψ 2 + 
2

2cos

dr

θ
. 

 
 Suppose that the equation of the meridian is taken in the form θ = F (r), so the partial 
differential equation can be put into the following form: 
 

2 2
2 2

2 2cos
dV dV

r
d dr

θ
ψ

+ = r2 (U – h)2, 

 
and if U depends upon only r, one will see that one can write down the integrals of the 
problem immediately. 
 In the second place, suppose that the equation of the meridian is put into the form r = 
f (θ), so the partial differential equation will be: 
 

2 2 2

2 2 2 2

1 cos

[ ( )]

dV dV

r d f d

θ
ψ θ θ

+
′

= (U – h)2. 

 
One will find the known result that relates to the sphere upon setting r = a sin θ. 
 Upon following a path that is analogous to the one that was followed before in the 
preceding examples, one will find that: 
 

V = kψ + 
2

2
2

( )
cos

r d k
U h

r

θ
θ

′
− −∫ , r′ = f′ (θ). 

 
 The two integrals will be: 
 

β = ψ − 
2

2 2
2cos ( )

kr d

k
r U h

r

θ

θ

′

− −
∫ , s = − 

2
2

2

( )

cos ( )

r U h d

k
U h

r

θ

θ

′ −

− −
∫ + γ. 

 
 Application . – Upon taking the first equation in the following form: 
 

dψ = 
2

2 2
2cos ( )

kr d

k
r U h

r

θ

θ

′

− −
, 
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one will deduce: 

(U – h)2 = 
2 2

2 2 2 21
cos

k dr

r r dθ ψ
 

+ 
 

, 

 
which will give the value of the force as a function of the elements of the trajectory.  Let i 
be the inclination of the trajectory above the meridian, so one will have: 
 

tan i = 
cosr d

dr

ψ θ
, 

so: 

(U – h)2 = 
2

2 2sin

k

r i
, 

and 

U – h =
sin

k

r i
. 

 
 One will conclude from this that if U = 0 then one will have r sin i = constant, which 
is the well-known equation for geodesics that are traced on a surface of revolution. 
 One will remark that if one demands to know what would be the nature of the force 
that acts in the meridian plane and is capable of making the filament take the form of a 
loxodrome then that force will be independent of the meridian of the surface of 
revolution, because the force function depends upon only r, since sin i is constant.  That 
result was pointed out by Aoust. 
 

Equilibrium of a filament that rests upon an arbitrary ruled helicoid 
 

 The ruled helicoid is the surface that is generated by a line that turns around an axis in 
such a fashion that each of its points describes a helix that likewise has that given axis for 
their common axis. 
 If one considers a point of the generator then that point will always remain at the 
same distance from the axis, since it describes a helix on a cylinder that has the axis of 
the surface for its axis.  In particular, the foot of the common perpendicular to the axis 
and the line that is described by a helix that is located on a cylinder, such that the moving 
line is constantly tangent to it, and in turn, the helicoidal surface is also likewise tangent 
to it; that is the nucleus of the surface. 
 
 Take the planes of projection to be a plane perpendicular to the axis (horizontal plane) 
and a plane that is parallel to the axis (vertical plane) that cuts the first one along a line 
LT.  Let O be the projection of the axis and let OP be the shortest distance between the 
line and the axis.  Take the axis to be the Z-axis itself, take the X-axis to be a parallel, and 
take the Y-axis to be a perpendicular to the land line (ligne de terre). 
 Let a point of the line project horizontally at M and vertically at M′.  Suppose that one 
starts from a position of the line that is tangent to A at the circumference OA = R, in 
which R is the radius of the central nucleus.  One draws the line from its initial position to 
the present position by a rotation ω around that axis and a shift.  The three constants that 
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determine the surface are the radius of the nucleus R, the step that is common to all 
helices h′, and the constant angle b that the line makes with the axis. 
 Take the coordinates of the horizontal projection of the point to be the angle AOP = ω 
and the length MP = ρ.  In the initial position, the height of the point over the horizontal 

plane is ρ cot b ; let the shift by δ.  One will have 
h

δ
′
= 

2

ω
π

, so δ = 
2

hω
π
′

.  Hence, the 

height of the point above the horizontal plane in the second position will be 
2

hω
π
′

+ ρ cot 

b, and one will have: 
 x = R cos ω – ρ sin ω, 
 y = R sin ω + ρ cos ω, 

 z = 
2

hω
π
′

+ρ cot b . 

 One infers from this that: 
 

 ds2 = 
2

2 2
24

h
R ρ

π
′ 

+ + 
 

dω2 + (1 + cot2 b) dρ2 + 2 cot
2

h
R b

π
′ + 

 
dρ ⋅⋅⋅⋅ dω 

 
 = (m2 + ρ2) dω2 + 2c dρ dω + n2 dρ2, 
 
in which one has set: 
 

m2 = R2 + 
2

24

h

π
′

,  n2 = 1 + cot2 b,  c = R +
cot

2

h b

π
′

. 

 
 Upon applying the Jacobi method, one will find that the solution to the problem of the 
equilibrium of a filament that lies on that surface will depend upon the following 
equation: 

(m2 + ρ2) 
2 2

2
2 2 4

dV dV dV dV
n c

d d d dρ ω ρ ω
+ − = (U – h)2 {n2 (m2 + ρ2) – c2}. 

 
 One will get a complete solution of that equation upon taking V = Vω + Vρ (with U a 
function of ρ), in which Vω and Vρ are integrals of the following two equations: 
 

(1)     
dV

d
ω

ω
= g, Vω = g ω, g constant, 

 

(2)   (m2 + ρ2) 
2

2 2
2 4

dV dV
n g cg

d d
ρ ρ

ρ ρ
+ − − (U – h)2{ n2 (m2 + ρ2) – c2} = 0, 

 

Vρ = 
2 2 2 2 2 2 2 2 2 2 2

2 2

2 4 ( ){ ( ) [ ( ) ]}cg c g m n g U h n m c
d

m

ρ ρρ
ρ

± − + − − + −
+∫ . 
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 The two integrals of the problem will be: 
 

dV

dg
= β, 

dV

dh
− s = γ. 

 
 The problem is found to reduce to quadratures whenever U is a function of only ρ or 
a function of the distance r from a point on the surface to the axis, by virtue of the 
relation r 2 = R2 + ρ 2. 
 
 Special cases: 
 
 1. cot b = 0, b = 90o helicoid with a director plane 
 2. cot b = 0, R = 0 surface with a square-threaded screw 
 3. R = 0 surface with a triangular-threaded screw 
 4. h′ = 0 helicoid of revolution 
 5. h′ = 0, R = 0 cone of revolution 
 6. h′ = 0, 1 + tan2 b = 0 sphere 

 7. 
2

h

Rπ
′

cot b developable helicoid 

 8. cot b = ∞, ρ = 0 right cylinder 
 
 Upon supposing that U = 0 in the preceding formulas, one will get the equation for 
geodesic lines on the most general ruled helicoidal surfaces. 
 The equation: 

dV

dg
= β 

dV
d

dg
= 0 

will become: 
 

2

2 2( ) 2
d

m c
d

ωρ
ρ

 + + 
 

= 
2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

[ ( ) 4 ]

4 ( ){ ( ) }

g n m c

c g m n g n h m h c

ρ
ρ ρ

+ −
− + − + +

 

 
in this case. 
 One will get an elliptic integral in the general case. 
 
 

APPLICATION OF JACOBI’S METHOD TO THE STUDY OF 
BRACHISTOCHRONE CURVES  

 
 The search for brachistochrone curves comes down to the search for the minimum of 

the integral that is defined by 
ds

v∫
.  Suppose that the integral of the vis viva exists – 

namely, mv2 = 2U, in which U is the force function – and that the point is constrained to 
remain on a surface such that the expression for the distance between two infinitely-close 
points will be: 
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(1)     ds2 = f 2 du2 + g2 dv2, 
 
in which u and v are two variable parameters that define the position of a point on the 
surface. 
 Set: 

ds

v
 = ds1 , 

so 

(2)    2
1ds = 

2 2
2 2

2 2

mf mg
du dv

U U
+ = 2 2 2 2

1 1f du g dv+ , 

 
in which f1 and g1 are given functions of u and v.  One will be reduced to the search for 
the minimum of the integral ∫ ds1 .  However, equations (1) and (2) each define a class of 
surfaces that can be mapped to each other, and the search for the brachistochrones on the 
surfaces (1) is found to come down to the search for geodesic lines on the surfaces (2). 
 Now, one knows that the solution to the problem of geodesic lines on the surfaces (2) 
depends upon a knowledge of a complete integral of the Jacobi equation: 
 

  
2 2

2 2 2 2
1 1

1 1dV dV

f du g dv
+ = 2h, 

or rather: 

(3)     
2 2

2 2 2 2

1 1dV dV

f du g dv
+ = 

mh

U
. 

 
 If U is constant then one will find the geodesic lines on the surface, which should be 
obvious a priori. 
 

Application to the case of surfaces of revolution 
 

 One has: 

ds2 = 
2

2cos

dr

θ
 + r2 dϕ 2, 

 
in which ϕ denotes the azimuth of an arbitrary meridian and θ is the angle between the 
tangent to the meridian at a point and the radius of the corresponding parallel; θ is a 
function of r.  The preceding formula is deduced from the general formula (1) by setting 
u = ρ, v = ϕ, g = r, f = 1 / cos θ .  We suppose that U is a function of only r.  In that case, 
the partial differential equation will become: 
 

cos2 θ 
2 2

2 2 2

1dV dV

dr r dϕ
+ = 

mh

U
. 

 
One will effortlessly find the following complete integral: 
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V = α ϕ + 
2

2 2 2cos cos

mh
dr

U r

α
θ θ

−∫ , 

in which α represents a constant. 
 If one lets β and τ denote two new constants then the integrals of the problem will be: 
 

β = ϕ – α 
2

2 2
2 2 2cos

cos cos

dr

mh
r

U r

αθ
θ θ

−
∫ ,  

dV

dh
− t = τ. 

 
Upon calling the angle between the curve and the meridian i and remarking that one has: 
 

dr = cos θ cos i ds, r dρ = sin i ds, 
 
one will easily infer from the first one that: 
 

2

2sin i

α
= 

2mr h

U
, 

and since mv2 = 2U: 

r sin i =
2

v

h

α
. 

 
This is the equation for the brachistochrones on a surface of revolution that was found by 
Roger (Thesis). 
 
 Corollary.  – Let P be the force that acts upon a moving body.  The corresponding 
elementary work that is done is represented, one the one hand, by (dU / dr) dr, and on the 
other hand, by P ds cos i ; hence: 
 

P ds cos i = 
dU

dr
dr

= 
2

2h

α
r sin i  d (r cos i) 

and 

P sin i = 
2

2

2 sin ( sin )

cos

h r i d r i

i dsα
⋅ ⋅ . 

 
 However, if one denotes the angle of geodesic contingency by lg then one will have: 
 

lg = 
( sin )

sin

d r i

r i
 and  ρg = 

g

ds

l
, 

 
in which ρg is the radius of geodesic curvature.  One will then have: 
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P sin i = 
2

2

2 sin

g

h r i

α ρ
⋅  = 

2

g

mv

ρ
. 

 
That formula leads to a theorem that is analogous to Euler’s theorem for planar 
brachistochrones, and which consists of saying that the normal component to the force is 
equal to the centrifugal force.  In the case that concerns us, the radius of curvature of the 
curve is replaced by the radius of geodesic curvature. 
 If one agrees to call the quantity mv2 / ρg the geodesic centrifugal force then one can 
state the following theorem: 
 
 THEOREM . – For the brachistochrones that are traced on a surface of revolution, 
the component of the force along the perpendicular to the tangent that is drawn in the 
tangent place is equal to the geodesic centrifugal force. 
 
 The Jacobi method then permits one to determine the brachistochrone curves in all 
cases where one can find a complete integral of the partial differential equation (3).  In 
particular, one can apply it to the curves that are traced on an ellipsoid and on arbitrary 
ruled helicoid, and upon observing the complete analogy that exists between that problem 
and the problem of the equilibrium of a filament that lies on those surfaces. 
 
 Absolute brachistochrones. – The Jacobi method is also applicable in the case where 
the brachistochrone is not constrained to be found in a given surface.  Upon always 
taking curvilinear coordinates u, v, w, one will have: 
 

ds2 = f 2 du2 + g2 dv2 + k2 dw2, 
 
and one will easily prove that the solution to the question will depend upon one’s 
knowledge of a complete integral of the following partial differential equation: 
 

2 2 2

2 2 2 2 2 2

1 1 1dV dV dV

f du g dv k dw
+ + = 

mh

U
. 
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