“Equations canoniques. Application a la recherche de légeildes fils flexibles et des courbes
brachystochrones,” Mem. Acad. Sci de Toulouse/ (@385), 545-570.

CANONICAL EQUATIONS

Application to the study of the equilibrium of flexible filaments
and brachistochrone curves

By A. LEGOUX (%)

Translated D. H. Delphenich

One supposes that the number of variables that defingoigons of the points of a
material system has been reduced to the minimum nymbde taking into account the
constraints, and one calls that minimum number of ks, gz, s, .., O« While g,

... , g, are their derivatives with respect to time. In additiif one letsT denote the

total vis vivaof the system, whil€, Q, ... denote some well-defined functions of the
variables then one will know that the equations of nmotian be put into the following
form, which is due to Lagrange:

d dT dT d dT dT
1 _——= , ey —_——= .
(1) dtdd  dg Q: Qx

Upon transforming those equations, which lane number and which have second order,
one can put them into another form that was pointed otitayilton and that one calls
the canonical form.

In all of what follows, we will suppose that the prplel ofvis vivais valid and that
there exists a force functiod ; i.e., a function such that the quantit@s, Q. , ...,
represent the partial derivativesldfwith respect to the variables, gz, ...

If one sets:

dql_ ! dOQ_ ]
2 —=q, —==0,, ...
2) ol il

and regardsy, q,, ... as unknowns, while combining equations (2) with equatidps

then the latter will be of first order, and one viidlve a system ofklsimultaneous first-
order equations.

() Read at the session on 18 June 1885.
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Instead of taking the:, gz, ..., ¢, @,, ... to be the variables, take, gz, ... andp; =

dr o _dr 4T
dqi, 2 d%,..., k dq(

We examine what the system of equations (1) and (Rpadome after changing the
variables.

Equations (1) will take the forngﬂ— Gl =Q1, ..., when one let Gl denote
dt | dq dg
what the derivatived—T will become when one replaces the varialgesa,, ..., g, 0,,

dg
. with the variablesy; , 02, ...,p1, p2, ... in the expression for.
Now, T is a homogeneous function of second degree in the \esigblbecause if
one supposes that the points are first represented layygedar coordinate axes then one

will have:
T=3) mX*+y*+ 29,
and by hypothesis, if the constraints are independdmnefthen one will have:

' = _d)ﬂ qi+—d)'( g, +
dq = dg -
and similarly:
! dy| ] dy !
=g+ +
Yi dq G dg, 4

Hence, from the substitution of variables/, zandx', y’, Z as functions of the variables
g andq’, T will become a linear function that is homogeneous oéseé order. One will
then get a homogeneous function from the theorem:

2T = qid—-lz+q’2£+ .+ ql’(d—T

dg 2 ddg dd,

Upon subtracting from both sides, this can be written:

T=pg+pd+..-T

Now, theT that is found in the left-hand side is a function otla variablesy , gz, ...,
q,q, ..., as well agj, gz, ...,k -
If one takes the total variation ®fwhile considering it to be a function of all those

variables then upon suppressing the terms that cancelp g and—j—;éq;, one will

have:
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dM=qop+dop+..- 3—;5‘11‘£5q2‘

dg,

from which, one deduces that:

and

One remarks that the two expressions ddr/ dop are equal and of opposite sign.
Introduce that hypothesis into equations (1), and alsace@ with dU / dq, ... One
can replace systems (1) and (2) with the following one:

- dp_du_dT  dp_du_dT
dt dg dg' ' dt dg dq’
dT _ ,_dq dT _dq

4 —=q=—1, =

“) o dn,  dt

Finally, if one setd) — T =H and remarks thdd does not contain the variables p, ...
then the system will take the following form:

d dH d dH

(A) Tplz & AR
t dgq dt dg,
dg _ _dH qu:_dH

dt dp  dt dp,’

(B)

Integrating the canonical equations

One calls any equation:

p=a

anintegral of equations (A), (B), in whickp is a function of, p2, ..., P G1, G2, ---» Gk
andt, a is an arbitrary constang does not includer, and that functio® is such that its
total derivative with respect toreduces to zero, when one can eliminate the derigative
of the functiong andq with respect to time by means of equations (A) and (B).

Complete solution of the canonical equatiorsThe complete solution of those
equations is composed df distinct integrals that includek2rbitrary constants.
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Remark: Since the variablé does not enter intbl, one can eliminate it by writing
the canonical equations in the form:

dp _dp,_ dp._ dgq _ _ dq
dH dH "dH - _dH T _dH”
dg dg, dg, dp, dp,

Upon integrating that system completely, one will hake expressions fork2— 1
variables as functions of each other — for exanmlend X — 1 arbitrary constants, ap,
..., ax-1 . If one substitutes these values in the equation:

dp, _ dH

dt dqg
then one can infer that:

SO:

in such a way that one can represent the complegraitef the system by the following
equations, which are supposed to be solved for the constants

d

dg
@1, @2, ..., $do not contairt explicitly.

Condition equation that one of the functighmust satisfy

From the definition of an integral, it is necessarat tie total derivative of with
respect td must be identically zero when one takes the canoa@ations into account.
Now, one has:

d¢_dgdp, |, dédn

dt dp dt ~  dp dt
L0da dgdy
dg dt dg, dt

and upon replacing thép / dt anddq/ dt with their values:
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df _ dpdH  dp dH _  dg dH

dt dpdg dpdg ' dp dq
_dpdH_odp dH _ _ dg dH
dq dg dg dp ~  dqg dp

= (¢, H), if one adopts Poisson’s notation.

One sees that this equation is satisfieddor H ; i.e., thatH = const. is an integral,
which one knows in advance.

FUNDAMENTAL THEOREM. —If one knows k 1 integrals:
pr=a, ¢r=a, ..., Pk-1 = -1,

in addition to the integral of vis viva Hh, in which ¢, , ¢», ..., ¢«1 do not contain time
t explicitly and are such that, in addition, for i oranl, 2, ...,k — 1,the values of { p,

..., pxthat one deduces must satisfy the relatiéjrgé: zpm , or rather (@1, ¢m) = 0,then
O G

one will get the k remaining integrals of the equations that were posed:
1. Upon integrating the differential expression:
prdag +podep + ... +pcdg + H dt,

after one has replaced:p p2, ..., px with their values that are inferred from the
equations H= h, ¢1: ai, ¢2: a, ..., ¢k—l: = ak-1.

2. Upon equating the derivatives of the function thus found with respegt @ a
..., &-1, h to constants.

By hypothesis, the values pfsatisfy the integrability conditions, so the expressi

Py doy +p2dcp + ... +px dok

will be the exact differential of a certain functi%vy. | say, moreover, that one will also
dH _ dp
have—= —.
dq dt
Indeed, when one replacgs, p2, ..., px in H with their values as functions of thyg
..., Ok, H reduces td, sodH / dq is identically zero, and sing® does not contait)y one
will also havedp / dt = 0, so the preceding expression is indeed the tofaleiiftial of a

certain functiom?, such that:

dQ =dvV+hdt Q=V+ht
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| now say that th& remaining integrals will be:

dQ _dv _

d dg
dQ _dv _
4 da
O
dQ _ dv
= :q(_ ,
da_, da, '
dh dh ’

in whichbg, by, ..., b1, 7are new constants.
In order to prove the second part of the theorem, litswffice to see that, from the
definition of the integral, one will have:
ddv _

dt da

identically fora=ay, ay, ..., a-1, h.
dV / da containst only implicitly by the intermediary of the variables; one will
then have:

av q.9v q9v
ddv_ dgdq _dg dg . dq dq
dtda da dt da dt da dt’

Now, from the way tha¥ was defined, one will obviously have:

dv dv
6 = —, =—,
(6) P1 dg Px dq,

S0, upon substituting this in the equation above and takganonical equations (A)
and (B) into account, one will get:

ddv_ dHdp dHdp _dH dp,

dt da dp da dp da dp da
__d(H)

da

in which (H) denotes whald will become after one has replagad pz, ..., px with their
valuesdV/daq, ...,dV/do, or rather, what amounts to the same thing, their geatlost
one infers from the first integrals. However, after that substitutidh,will become
equal toh, so if one gives one of the valugs ay, ..., ax-1 to a, one will haved(H) / da =
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0. If one seta = h thend(H) / da=dh/dh =1, in this case, an%%: - 1. Ifone

differentiates the last of equations (5) with respetthen that will give:

adv - 1+1=0.
dt dh

Hence, thek equations (5) will represerk integrals of equations (A) and (B) and
complete the integrals of the system.

Remark I. — The values ofy that are provided by equations (6) are obviously the
same as the ones that are given by the equagions , ..., ¢-1 = a-1, H = h, and that
results from the way that was formed. Hence, one can say that the complaiBsobf
equations (A) and (B) is represented by equations (5) and (6).

Remark Il. — If the functionV is known then if one replaces tpein the equation
=f(pr, P2, .-+, P O1, U2, --., G) = h with their values that one infers from equations (6)
then that equation will become an identity. Hence, ftimctionV is such that it will
make the equation:

o— 40,0 |=h

((av v - av
dg 'dg " dg

into an identity, and since it contaiksarbitrary constants, it will be @mplete integral

of that first-order partial differential equation.

JACOBI's THEOREM. —Conversely, any complete integral — i.e., one that satisfies
the preceding partial differential equation and contains k arbitrary constamtijding
the constant h of the vis viva integral — will enjoy the same propsrtige function V. It
will provide the complete solutions of equatioid§ and (B). Those solutions are
represented by equatiofs) and(6).

| shall first say that one can deduce equations (B) filee equatiord =f = h, (7),
and equations (5). Indeed, if one differentiates (7 waspect t@y, ..., a-1, h and (7)
with respect td then one will have, on the one hand, sinceatlaee included irH only
by the intermediary of the:

dh_dh_  _dh o d_2:1’

da da, 7 da, d

SO:
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d_Hd_pl+ dH dQ +..+ dH dpk =0

dp dg dp da dp da
dHdp ,dHdp, , dHdp _
dp dg dp dg dp da

@ )
dH dp +dH dp, +m+dH dp, _
dp dg_, dp da, dp da,
dHdp dHdp , , dHdp _
dp, dh dp dh dp dh

and on the other hand, if one differentiad®s da with respect td then one will have:

gdv o gav gV

da dq, da dg, ., dadq _
dg dt dg dt dg dt
dv ddV
&d—ql'f' +&ﬂ:o
dg dt dgdt
av 4av

dh d4 , ~dhdd__
dg dt dg dt

becausalV / da is, in general, a function @, ¢, ..., k. Upon inverting the order of
differentiation, while taking equations (6), ondlwave:

d_plﬂ.i- dg dq++dﬂ< da‘:O
da dt dag dt da dt

I
dp dq, dp dg, , dn da_
dg_, dt da_ dt dg, dt
d—plﬂ+ dQ dq+...+dg< dq =-1
dh dt dh dt dh dt
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Now, if one considerglH / dp;, dH / dp,, ... to be the unknowns in equatiorsy &nd
considers - / dt, —da / dt, ... to be the unknowns in equatiotg then one will see

that the coefficients of the unknowns are the saonene will havej—H: —O(Ij—(:l. These
0]

are equations (B).
One can deduce equations (A) from the equattbr= h and equations (6).
DifferentiateH = h with respect taj, o, ...:

@) dH)_dH dHdp, dHdp, ~ dHdp _
dg) dg dp dg dp dg dp, dq

while letting (Z—Hj denote the total derivative bf with respect ta; . Differentiate the
G

first of equations (6) with respectto

v qav q v
dn__dqdg, dgdg, ~, dqdg
dt dp dt dp dt dg dt

Sincet enters intodV / dg only by the intermediary of the variablgs gy, ..., upon
inverting the order of differentiation and taking equatif8)sinto account, one will have:

(b") dp_dp dq, dp dg, , dp dq
dt dgq dt dq dt dg dt

Now, if one takes equations (B) into account, since thesatisfied, then one will infer
from equation &) that:

dH_dp dq dp dg - dp dq

dg dg dt dg dt =~ dg dt’
so:
dp, _dH
dt dg
and similarly:
dp, _dH
E_E’

These are equations (A) precisely.

Jacobi’s theorem is paramount in this theory. Indégugrmits one to write down
the integrals of a dynamical problem immediately with@erforming any other
operations than simple differentiation when one kn@amg complete integral of the
partial differential equatiofl = h. In what follows, we will see that in a large numbé
cases, one can find a complete integral of that equatimediately, and consequently,
integratethe equations of the problem by inspectias Bour so cleverly phrased it.
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In order to write down the partial differential eqoatupon which the solution of the
problem depends, it will suffice to know the force functidnand thevis viva as
functions of the variableg, when they are reduced to their minimum number, and thei
derivatives with respect to time. One introduces nevalbasp into T suchp; = dT/ dq

in place of the variable and one finally replaces, pz, ... withdV/dg, dV/dg, ... In
equationd — T=h.

ON THE EQUILIBRIUM OF FLEXIBLE, INEXTENSIBLE FILAME  NTS

In a note that appeared in t@®mptes rendus de I'’Académie des Sciengpgell
showed that one could reduce the equations of equilibrama fflexible filament to
canonical form, and consequently, apply the theoremdamfilton and Jacobi to the
integration of those equations. One can present tattien in a slightly different and
slightly simpler form that will provide the value dfet arc length, expressed by means of
one quadrature, at the same time that it provide theieqgaaf the funicular curve.

As one knows, the equations of equilibrium of a filatree:

d(T% + X ds=0,
ds

() d( dy +Y ds=0,
ds

d(Td—Z +Z ds=0.

ds
Let:
X=01, y=0, Z=03
Set:
(2) T%S( =p1, T%Z:pz, Tg—z=p3,
SO
() T?=pi+pi+ .

Suppose that one has a force functibs i.e., a function such that:

—dU =X dx+Y dy+Z dz.
One will have:
—d_U: —d_U: X’
dx dg

—d_U: —d_U: Y
dy dg,
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—d_U = —d_U =7
dz dg,
One infers from equations (1) that:

dT=-(Xdx+Ydy+zdl=dU,

So:

- T+ U =h = constant.
Set:
(4) U-T=H

and remark that will be a function of only the variableg, gz, gz, T, and that the
variablespi, p2, ps, and in turrH, will be functions of the variablgsandg.
With that, equations (1) will take the form:

dp _ dU dp, _ dU dp, _ dU
ds dgq ds dg  ds dg’

or rather, sinceU /dg. =dH /da; :

dp _dH
ds dq’
(A) d_pzzd_H,
ds dg
dp; _dH
ds dq’

and equations (2), which define the varialgesan be written, upon taking into account
equation (3), which gives(,jl: &:
dp, T

dq _dT
ds dp
dg, _ dT
ds dp,
However, from equation (4)(,j—T: —d—H, SO:

dp  dp



Legoux — Canonical equations 12

dg _ dH
ds  dp’
(B) d_qZ:—d_H,
ds dp
dg, _ dH
ds  dp’

Equations (A) and (B) form a system of six simultaredirst-order differential
equations that can replace the system (1). They gpoeesaknted in canonical form.

One can remark that these equations have the samefothe equations of motion
of a unique material point, with the difference that vhariablet, which represents time in
the latter equations, is replaced here with the varigblehich represents the length of
the arc in such a fashion that these six equationsdet#rmine the six variableg, oy,

Os, P1, P2, P3 @s functions o in the present case. However, of the three equati@is
determineqs, gz, gs as functions o$, two of them will be equations of the curve, and the
third one must be a consequence of the first two, by vigu¢he relationds =

dgf + dgf + ddg.

Indeed, one sees that only two of equations (B) atmclisbecause if one adds their
corresponding sides after squaring them then the firstvgilinbe equal to unity, and
similarly for the second sum, since:

dH? dH® dH?_dT® dT° dFP_p+p+p

+ + = t——+t——= =1
dff dg dg dpf dg dg T?

The system of canonical equations is then equivaleat $gstem of five equations, in
reality. Now, the integration of the canonical equagiawill introduce six arbitrary
constants. One can take one of those constanesdqual to unity.
One will determine the five constants from the initgwlens — for example, by
expressing the idea that the extremities are fixed anigig¢h of the filament is given.
As one knows, the integration of equations (A) and &) be converted into the
search for a complete integral of a certain firgteorpartial differential equation:

2 2
dv2 dve AV e
df dg dg

When one has found the value\othat satisfies that equation and contains two new
constantgy, f, in addition to the constait one will get the solution of the problem by
means of the following equations:

(5)

av

dv _ dv _ dv
dh

o g P

(6)

S=W
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in which a, B, yrepresent three new constants. In addition to equaf@nghe six
integral of the canonical system are:

dv dg,

=—=T—,

= ds

dv dg,

7 =__ =T *
(7) P2 q ds
_dv _ _dg

= ds

The preceding method shows that one can find the agthlels by a simple
quadrature.

Application to the case in which the filament isstoained
to remain on a given surface in the absence dfidnc

The partial differential equation upon which the solutidrthe problem depends is
the same as the one that one will obtain by studyingndt®n of a material point in the
case where theis vivais represented byJ(— hZ2

Now, we have seen that in this case, if one referposition of the moving point to a
system of curvilinear coordinates v, w, which are the parameters of three orthogonal
surfaces, and if the squalé of the distance between two infinitely-close points is

ds’ =f2du + g2 dv + k2 dw,

in whichf, g, k are given functions af, v, w, then the left-hand side of equation (5) will
take the form:

1dV_ 1V, 1 dV
f2du® o dV I dw'

and the partial differential equation will become:

1dV_ 1V, 1 dV
f2du® ¢° dv K dw

=(U-h?

In the case where one studies the motion of a poirgven in the case where one lays the
filament on the surface = const., the preceding equation will become:

dvv 1 d*v
t—

- = —_ 2
du> ¢° dv U=h*~

1
2



Legoux — Canonical equations 14

One will arrive at this formula, moreover, by the udoaiulas for the transformation of
rectilinear coordinates into curvilinear coordinates.

Case of a filament that rests upon a sphere.
Upon taking ordinary spherical coordinates, one wiieha
ds’ =r* d@? +r? sirf 9dy?.
The partial differential equation will then be:

1 dv? 1 dv?

S—+ =U-h>
r’de* r’sin6dy? ( )

Suppose that is a function of onlyd. One will satisfy that equation by settiNg=
Vo + Vy , in whichV, andV, are two functions, one of which is a function ofyod and
the other of which is a function of ondy, and they are determined by the two equations:

sirf @—r ?sirf 8(U —h)>+Kk* =0,

av_
dy

in whichk denotes an arbitrary constant. One infers fromttiat:

Vy=kg Vo= I%\/rzsinzeu “hy—k2,

SO:

de :
V=ky+ I%\/rzsmzeu —h)2-k?2.

The integrals are:

d_V = ﬁ d_V -s=y

dk dh ’
The first of them will be the equation of the cunwespherical coordinates, while the
second one will give by a quadrature. That will be another form fae dguation of the
curve.

Example:Case in which the forces reduce to weight.

du=mdz U=yurcosé
so one will have:

dée .
V=ky+ Iﬁ\/rzsmze(,ucosﬁ—h -k,
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The integrals are:

k d@ _
d J.sine\/rzsinzef,u co¥-h j-k? ~h

sin@ (ru co¥—h dé _y
2sin®@ ( ucof-h ¥-k?

s:—rz.[\/r

One has:
T=U-h=urcosé-nh.

The preceding integrals are elliptic integrals.

The preceding formulas permit one to find the law thatgus the force when the
trajectory is given on a surface. Indeed, take onen@int(say, the first one) in the
differential form:

kdo

dy - =0
d sinG\r?sif 6 U —h p-k?

One infers the value &f from this:

U-p2= K [1 2 j

+
r’sin’@ sif gdy?

Application. ~What must the value of the force F that is tangent to the meridian at
each point be in order for the filament on the sphere to take thedfocarntoxodrome?

Let ¢ be the angle that the curve makes with the meridiaone will have:

tany= smé?dz//.
dé

Upon substituting this, one will then have:

2
(U—h)zzz.zk—.z, U—h:+-
resin“gsin“¢ r sind sing

Now, the elementary work is representeddby and also byFr d6. One will then
have:

_du= TKCoBdI 4
r sin® @sing
so:
F- Ccosf

sin@
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Equilibrium of a filament that rests upon a surface of revolution

One can suppose that the meridian of the surface endeed by an equation
between the radius of the paraliednd the inclinatioré of the meridian above the plane
of the parallel at each of its points. If one Igtslenote the angle between the meridian
and a fixed meridian then one will find the following eagsion for the lengttis:

Suppose that the equation of the meridian is takéme form&=F (r), so the partial
differential equation can be put into the followifagm:

2
av ~+r co§9 —r (U =h?

and if U depends upon only one will see that one can write down the integadlthe
problem immediately.

In the second place, suppose that the equatitimreaheridian is put into the form=
f (6), so the partial differential equation will be:

1 dv? N cosd dV?

2 2 1 2 2:(U_h)2'
redy” [f(6)]° do

One will find the known result that relates to #pdere upon setting=a sin 6.
Upon following a path that is analogous to the tra was followed before in the
preceding examples, one will find that:

r'dé@ k?
V=ky+ cose’/(u_h)z_F’ r'=f'(8).

The two integrals will be:

kr'do _ ' —h)dé

,321//—'[ 2! S=- 2
rzcose,/ 0] —hf—l:z cose,/ U- h)z—k

Application. — Upon taking the first equation in the followifaym:

kr'd@

dy = _
r cose,/ U - hf—k
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one will deduce:

2 dl’2
U-hp2=" |1+ |
L-h rz( rzcoszé?dz/lzj

which will give the value of the force as a functiortlod elements of the trajectory. Let
be the inclination of the trajectory above the mangliso one will have:

tani = rdwcosé?,
dr
SO:
k2
U-h?=
( ) r?sin’i
and
U-h= k —
rsini

One will conclude from this that @ = O then one will have sini = constant, which
is the well-known equation for geodesics that eaegd on a surface of revolution.

One will remark that if one demands to know whauld be the nature of the force
that acts in the meridian plane and is capable akimg the filament take the form of a
loxodrome then that force will be independent oé timeridian of the surface of
revolution, because the force function depends upiyr, since sin is constant. That
result was pointed out by Aoust.

Equilibrium of a filament that rests upon an arhbity ruled helicoid

The ruled helicoid is the surface that is generatea line that turns around an axis in
such a fashion that each of its points descridedia that likewise has that given axis for
their common axis.

If one considers a point of the generator them paant will always remain at the
same distance from the axis, since it describeslia on a cylinder that has the axis of
the surface for its axis. In particular, the fodtthe common perpendicular to the axis
and the line that is described by a helix thab@ated on a cylinder, such that the moving
line is constantly tangent to it, and in turn, tiedicoidal surface is also likewise tangent
to it; that is thenucleusof the surface.

Take the planes of projection to be a plane pelipatar to the axis (horizontal plane)
and a plane that is parallel to the axis (vertahe) that cuts the first one along a line
LT. LetO be the projection of the axis and @P be the shortest distance between the
line and the axis. Take the axis to beZkaxis itself, take th&-axis to be a parallel, and
take theY-axis to be a perpendicular to the land lihgne de terré.

Let a point of the line project horizontallyMtand vertically aM’. Suppose that one
starts from a position of the line that is tangen® at the circumferenc®A = R, in
whichR is the radius of the central nucleus. One drdedihe from its initial position to
the present position by a rotatiemaround that axis and a shift. The three consthats
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determine the surface are the radius of the nudReube step that is common to all
helicesh’, and the constant andthat the line makes with the axis.

Take the coordinates of the horizontal projection ofathiat to be the anglaOP= w
and the lengttMP = p. In the initial position, the height of the pointer\the horizontal
plane isp cotb ; let the shift byo. One will haveéz ﬁ, S00 = h_a) Hence, the

h 2 2

height of the point above the horizontal plane ingaeond position will beg—w+ p cot
T

b, and one will have:
X=Rcosw—-psina
y=Rsinw+ pcosq

U

zZ= h—c')+,ocotb .
2

One infers from this that:

dsZ:[RZ h* jda}+(1+cofb) dp2+2(R+L’cotbjdpEUw
T 21T

= (m’ + o) ddf + 2 dp dw+ n® dF,

in which one has set:

12 r
n12:R2+h—, n’> =1+ cof b, c:R+hCOtb.
A1 2r

Upon applying the Jacobi method, one will findtttee solution to the problem of the
equilibrium of a filament that lies on that surfaegll depend upon the following
equation:

2 2
(. + ) dV2+n2 dv dv dv

iyl CRl R UG Rt

One will get a complete solution of that equatignon takingV =V, + V, (with U a
function ofp), in whichV, andV, are integrals of the following two equations:

(1) L/ : Vo=9 g constant,
dw
V2 dv
() (m2+p2) ” +n°g 4cgd—;—(U—h)2{n2 (" + ) =} =0,

2cgt4c g - (nf+p ) f d-(U- L A rpj- §

m2+,02

Vp:jdp
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The two integrals of the problem will be:

dv _

dg

A

s=y

The problem is found to reduce to quadratures whengvem function of only or
a function of the distance from a point on the surface to the axis, by virtue hef t
relationr 2 = R + p?,

Special cases:

1. cotb=0,b=90C helicoid with a director plane
2. cotb=0,R=0 surface with a square-threaded screw
3. R=0 surface with a triangular-threaded screw
4. h'=0 helicoid of revolution
5. h"=0,R=0 cone of revolution
6. h'=0,1+tahb=0 sphere
7. ——cotb developable helicoid
2R
8. cotb=o0,p=0 right cylinder

Upon supposing thdtl = 0 in the preceding formulas, one will get the equatwn f
geodesic lines on the most general ruled helicoidal ssfac
The equation:

dv _ av _
a P YT
will become;
. adw T g’ [nA(n? + p?) -4 42
{(’“ i )dp”‘:} T AP P G- PR o3+ R§
in this case.

One will get an elliptic integral in the generabe.

APPLICATION OF JACOBI'S METHOD TO THE STUDY OF
BRACHISTOCHRONE CURVES

The search for brachistochrone curves comes douimet search for the minimum of
the integral that is defined b.f/d—S . Suppose that the integral of this viva exists —
%

namely,mV’ = 2U, in whichU is the force function — and that the point is ¢oaised to
remain on a surface such that the expression édigtance between two infinitely-close
points will be:
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(1) ds =f 2 di? + ¢ dV,

in which u andv are two variable parameters that define the positioa pbint on the
surface.

Set:
d_S :dsl,
v
o)
mf? mgf
2 ds = du® + dv= f2du?+ g2 dV,
(2) s 2 2 ) 9

in which f; andg, are given functions af andv. One will be reduced to the search for
the minimum of the integrdlds, . However, equations (1) and (2) each defineaascof
surfaces that can be mapped to each other, arskéneh for the brachistochrones on the
surfaces (1) is found to come down to the searchhdodesic lines on the surfaces (2).

Now, one knows that the solution to the problengeddesic lines on the surfaces (2)
depends upon a knowledge of a complete integrdleofacobi equation:

1dv? 1 dv®_
—Zaat -4
f2 du* ¢ dv
or rather:
1dv? 1 dv¥ mh
(3) =

- =
f2du* ¢°d/ U

If U is constant then one will find the geodesic lineshe surface, which should be
obviousa priori.

Application to the case of surfaces of revolution

One has:
2

dr
d¢=——
cos @

+ r2 d¢ 2,

in which ¢ denotes the azimuth of an arbitrary meridian &nsl the angle between the
tangent to the meridian at a point and the radiuth® corresponding parallef is a
function ofr. The preceding formula is deduced from the gdrermula (1) by setting
u=pv=¢g,g=r,f=1/cosfd. We suppose thét is a function of only. In that case,
the partial differential equation will become:

dv? 1 dV®_ mh

+= —_.
dr® r’dg¢® U

cos 6

One will effortlessly find the following completategral:
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2

mh a
V=ag¢+ |dr - :
y J \/Uco§€ r’ cosd

in which a represents a constant.
If one letsf andr denote two new constants then the integrals optablem will be:

dr av
——t=r

h a? ’ dh
r2cogd,| 0 -
\/U cos @ r?cosd

B=¢-a|

Upon calling the angle between the curve and thédmei and remarking that one has:
dr=cosfdcosids rdp=sinids

one will easily infer from the first one that:

a’* _ mr’h
sini u ’
and sincenV = 2U:
r sini =——

This is the equation for the brachistochrones saréace of revolution that was found by
Roger Thesis.

Corollary. — Let P be the force that acts upon a moving body. Theesponding
elementary work that is done is represented, cm@tie hand, bydU / dr) dr, and on the
other hand, by? dscosi ; hence:

du 2h

P dscosi = —dr= —rsini d(r cosi)
dr a
and
p sini = 211 G € i)
a® cos ds

However, if one denotes the angle of geodesiamgency by, then one will have:

_ d(rsini) and

_ds
r sini '

g

P

lg

in which gy is the radius of geodesic curvature. One wilhthave:
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psini = 20 Siri _mv
a p A

That formula leads to a theorem that is analogous uter& theorem for planar
brachistochrones, and which consists of saying that theal@omponent to the force is
equal to the centrifugal force. In the case that cosaesnthe radius of curvature of the
curve is replaced by the radius of geodesic curvature.

If one agrees to call the quantity/ I py thegeodesiaentrifugal force then one can
state the following theorem:

THEOREM . — For the brachistochrones that are traced on a surface of revolution,
the component of the force along the perpendicular to the tangent that is draie i
tangent place is equal to the geodesic centrifugal force.

The Jacobi method then permits one to determine tlehibtachrone curves in all
cases where one can find a complete integral of th@bpdifferential equation (3). In
particular, one can apply it to the curves that areettaam an ellipsoid and on arbitrary
ruled helicoid, and upon observing the complete analod\ettists between that problem
and the problem of the equilibrium of a filament thas lon those surfaces.

Absolute brachistochrones. The Jacobi method is also applicable in the case where
the brachistochrone is not constrained to be found iivengsurface. Upon always
taking curvilinear coordinatas v, w, one will have:

ds’ =f2duf + ¢ dVf + I dw?,

and one will easily prove that the solution to the qaeswill depend upon one’s
knowledge of a complete integral of the following padifferential equation:

1dv?, 1dv? 1dV_mh
f2d? ¢ df K d# U’




