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 Einstein’s gravitational equations were integrated rigorously by Schwarzschild (1) in a case of 

fundamental importance (viz., symmetry around a center) that included the Newtonian attraction 

of the Sun (with corrections that were derived from general relativity), which accounted for the 

secular precession of the perihelia of the planets exactly, and notably, the perihelion of Mercury: 

That celebrated result had previously been obtained by Einstein by means of an approximate 

integration (which was perfectly adequate for the numerical evaluation of the discrepancy). 

 I shall indicate a new case of integration that is not devoid of physical interest and is based 

upon my deduction of the gravitational equations that are already reduced to a form (spatially-

invariant) that agrees with the static case that was the subject of my preceding communication (2). 

 Conceptually, this is what is treated: Suppose that a uniform (and constant with respect to time) 

electric or magnetic field exists in the vacuum.  One wishes to know if and how such a field will 

influence the geometric nature of the ambient space.  One finds that the space does not remain 

Euclidian (as it would be in the absence of the field), but becomes a normal Bianchi manifold (3) 

with two principal curvatures equal to zero, while the third one (which corresponds to the normal 

section (giaciture) to the field lines) is positive and proportional to the square of the field intensity.  

Naturally, the proportionality factor is very small.  When the non-zero curvature is 1 / R2, it will 

result, e.g., that for a magnetic field of 25000 Gauss, R has the order of a tenth of a Syria meter 

(siriametro) (one Syria meter = one million times the distance between the Earth and the Sun).  

Despite that, it is not out of the question that some consequences (e.g., the way that the velocity of 

light varies along the force lines) will become amenable to the observations of cosmic physics. 

 One will be led to a final type of rigorous solution that is even more elementary (no. 5) when 

one assumes that the space has constant curvature and that purely-normal forces are exerted.  That 

type is connected with a question that is much-debated in stellar statistics, and which attracted the 

attention of Einstein (4). 

 
 (1) “Ueber das Gravitationsfeld eines Masspunktes nach der Einstein’schen Theorie,” Sitz. Kgl. Preuss. Akad. 

Wiss. (1916), 189-196.  Also see the recent paper by Hilbert “Die Grundlagen der Physik (zweite Mitteilung) Nachr. 

der Kön. Ges. der Wiss. zu Göttingen (1917). 

 (2) “Statica einsteiniana,” in this volume of the Rendiconti, pp. 458-470. 

 (3) “Sugli spazi normali a tre dimensionali colla curvature principali constanti,” in these Rendiconti 25 (1st sem. 

1916), 59-68.  

 (4) “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,” Sitz. der Kgl. Preuss. Akad. Wiss (1917), 

142-152. 
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1. – STATIONARY ELECTROMAGNETIC FIELDS. 

 

 Let: 

(1)      ds2 = 
3

, 1

ik i k

i k

a dx dx
=

  

 

be the expression in general coordinates x1, x2, x3 for the square of the line element of the physical 

space in a region that one supposes to be the basis for electromagnetic phenomena.  According to 

Einstein’s theory, those phenomena influence the metric character of space, so the ds2 will not be 

rigorously Euclidian, in general.  However, under static conditions, it follows that the ordinary 

electromagnetic picture is valid when referred to the metric (1), even in the aforementioned theory. 

 We will address the elementary case in which the field consists of just one of the two forces: 

electric or magnetic.  Let Xi (x1, x2, x3) (i = 1, 2, 3) denote the system of covariant coordinates of 

that force.  Its components (in general, non-orthogonal) along the trihedron of the coordinate lines 

will agree with /i iiX a .  Also denote the reciprocal elements by: 

 

X(i) = 
3

( )

, 1

ij

j

i k

a X
=

   (i = 1, 2, 3), 

and set: 

 

(2)      8 u =
3

( )

, 1

i

i

i k

X X
=

 . 

 

 The measurement is intended to refer to the absolute electrostatic system, in the Gauss-Hertz 

sense (1) (in which the dielectric constant and the magnetic permeability are considered to be pure 

numbers that are unity for the vacuum).  With that, inside of an unpolarizable medium (air or 

vacuum), u will represent the energy density that is due to the force Xi , while the relative 

Maxwellian tensor of the forces is still defined by the (covariant system): 

 

(3)     Tik = u aik – 
1

4
Xi Xk  (i, k = 1, 2, 3) . 

 

 The individual specific forces (which are treated as pressures) prove to have the ratios 

/ik ii kkT a a , whose significance for a given pair of indices is that they are the orthogonal 

components along the line xk of the force that is exerted upon a surface element that is normal to 

the line xi (or vice versa). 

 Since the field in question is supposed to be essentially stationary, we must assume that the Xi 

are derived from a potential  (Xi = −  / xi), which will be excluded from our considerations 

when we treat a magnetic force in those regions of space in which there are possibly currents. 

 
 (1) Cf., e.g., Abraham, Theorie der Elektrizität, v. I, § 61, 4th ed., Leipzig, Teubner, 1912. 
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 In particular, assume that  = − C x1 , with C constant.  We will have: 

 

X1 = C,     X2 = X3 = 0 , 

 

which corresponds to a force whose intensity | C | points along the line x1 . 

 If one supposes, in addition, that the coordinate lines are orthogonal, or that ds2 has the form: 

 
2 2 2 2 2 2

1 1 2 2 3 3H dx H dx H dx+ +  

 

then one will have from (2) and (3) that: 

(2)  u = 
2

2

18

C

H
, 

 

(3)  

3311 22

2 2 2

1 2 3

, ,

0, ( ),ik

TT T
u u

H H H

T i k


= − = =


 = 

 

 

which reflects the characteristic distribution of the Maxwellian force, which are tensions along the 

normal elements and pressures along the elementary parallels to the lines of force and have the 

common intensity u . 

 

 

2. – BIANCHI (B) SPACES. 

 

 Bianchi has called spaces normal when the three congruences that are composed of the 

principal lines of curvature prove to be normal (to the other families of surfaces), and he 

characterized all of the normal spaces by the three constant principal curvatures.  Among them, 

apart from the classical case of three equal curvatures (i.e., a space of constant curvature), there is 

only one type that exhibits positive mean curvature , which is called type (B) (1). 

 Two principal curvatures are zero in them, and the third one is positive, which is then denoted 

by .  Set: 

 = 
2

1

R
 (with R > 0), 

 

and one can attribute the following expression to the square of the line element: 

 

(B)  
2 2 2 22
1 2 3sin

x
dx dx dx

R
+ + , 

 
 (1) Bianchi, loc. cit., page 68.  
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when it is referred to the triply-orthogonal system whose coordinate lines form the principal 

congruences. 

 Assuming that, when one recalls that, in general, whenever the principal congruences are 

normal, when one lets i denote the three principal curvatures and lets 2

iH  denote the coefficients 

of the ds2 in the orthogonal form that corresponds to the aforementioned congruence, one will have 

the canonical expressions for Ricci’s ik (
1): 

 

  ik = 0  (i  k),  ii =
2

i iH  (i = 1, 2, 3) . 

 

 For the ds2 in (B), which reflects the curvatures 1 = 1 / R2, 2 = 3 = 0, one will get, in 

particular: 

 

(4)    ik = 0  (i  k),  11 = 
2

1

R
, 22 = 33 = 0 . 

 

 It will be convenient to imagine that a (B) space is represented in ordinary Euclidian space by 

interpreting the x1 , x2 , x3 / R as cylindrical coordinates: Ordinarily, they are z, , , and the 

meaning of the last one is obvious.  They establish a bijective correspondence between the points 

of the two spaces, although their two metrics are different.  One can compare the expression (B) 

for ds2 for the representative space with the Euclidian expression in cylindrical coordinates: 

 
2

2 2 22
1 2 3

x
dx dx dx

R

 
+ +  

 
. 

 

 The two forms tend to coincide for very large R ; more precisely, the discrepancy becomes 

negligible when the ratio x2 / R is sufficiently small since it can coincide with the trace of the arc.  

In any case, the lines x1 and x2 (which are lines parallel to the z-axis and lines that will meet 

normally in the representative space) are geodetics for the metric (B), as well. 

 

 

3. – MAGNETIC OR ELECTROSTATIC PRODUCTIONH OF A (B) SPACE. 

 

 Suppose that in some region of the ambient space that is devoid of ponderable matter one 

produces a uniform field; for example, a magnetic one, as it might be realized conveniently inside 

of a solenoid that is traversed with constant current.  One must expect (assuming Einstein’s general 

relativity) that the space that is occupied by the field is not rigorously Euclidian, since the 

modification of the geometric structure of the space can imply, in turn, a (tenuous) distortion of 

the lines of force until complete equilibrium is reestablished.  One the addresses the determination 

 
 (1) In three-dimensional spaces, those ik can advantageously substitute for the four-index Riemann symbols.  I 

have already had occasion to point that out in § 2 of the preceding note.  
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of the nature of the space and the final arrangement of the phenomenon when equilibrium is 

reached. 

 Naturally, the solution to the problem must be deduced from the general equations of 

Einsteinian statics, in which one attributes the determinations of the energy density and the force 

that correspond to the specified case. 

 To begin with, here are the static equations (in the spatially-invariant form that is in § 2 of the 

preceding note): 

 

(I)        =  u , 

 

(II)    ik + ik ik
ik

V V
a

V V


−  = −  Tik  (i, k = 1, 2, 3) , 

 

in which u is the energy density (which was denoted by T00 / V 2 in the preceding communication), 

V is the velocity of the propagation of light, Vik and 2V denote the second covariant derivative 

and second-order parameter, resp., when referred to the ds2 of the ambient space.  The ik are the 

corresponding Ricci symbols,  = 
3

( )

, 1

ik

ik

i k

a 
=

  is the mean curvature, and finally, the Tik constitute 

the force tensor, and the constant: 

(5)        = 
4

8 f

c


, 

 

in which f is the universal gravitation constant and c is the speed of light in vacuo, in the absence 

of perturbing actions. 

 We say that in the regime that was defined, the basis for our uniform field is a (B) space whose 

lines of force (which are reasonably straight) constitute the principal (geodetic) congruence x1, 

which corresponds to non-zero curvature. 

 To prove that, it is enough to verify that (I), (II) will still be satisfied when: 

 

 1. One introduces the expressions for the aik , ik that they acquire for the metric (B). 

 

 2. One attributes the expressions (2) and (3), with the values 1, 1, sin2 (x2 / R) for 2

1H , 2

2H , 

2

3H , resp., to the energy density u and the forces Tik (which are provided by the field exclusively 

under the assumed absence of matter). 

 

 3. One determines the function V opportunely. 

 

 Based upon (2), in which one sets H1 = 1, so  will then coincide with 1 / R2, (I) will then 

yield: 
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(6)      
2

1

R
 =  u = 

2

8

C


, 

 

and one will then determine the curvature of the space normal to the lines of force (which are the 

only ones that remain non-zero) as a function of the field intensity.  With the desired value (5) for 

, one will get: 

(6)      R = 
2c

f C
. 

 

 It follows from the general expression for the second covariant derivative: 

 

Vik = 
2 3

1li k l

i kV V

lx x x=

  
−  

   
  

 

that the sum will be annulled for the fundamental form (B) and for a function of only x1, such that 

the second covariant derivatives will not differ from the ordinary ones, and they must all be zero, 

with the exception of V11, which reduces to V (the prime indicates derivation with respect to the 

argument x1).  One has [with the values of a(ik) that correspond to (B)]: 

 

2V = 
3

( )

, 1

ik

ik

i k

a V
=

  = V. 

 

 With that, those of (II) that correspond to distinct indices i, k prove to be simple identities.  

Based upon (3) and (4), the other three, or: 

 

ii + 2ii
i

V V
H

V V


−  = −  Tii  (i, k = 1, 2, 3) , 

give: 

2

1

R
=  u (i = 1),  

V

V


=  u (i = 2, 3) . 

 

 The first one coincides with (6), and when one introduces the value 1 / R2 in place of  u and 

integrates, the second one will yield: 

 

(7)      V = 1 1/ /

1 2

R R
c e c e

 −
+   (c1, c2 constants). 
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4. – ORDER OF MAGNITUDE OF R. 

 

 Magnetic fields. – The intensity C that can be achieved in practice might amount to a few tens 

of thousands of Gauss; take 25000 as an estimate.  Also express c and f in CGS units, so (6) will 

give R in centimeters.  Now, c = 3  1010, f = 6.6  10−8, so one will have R = 3
2

  1020 cm = 3
2

  

1015 km, upon rounding.  If one notes that the distance between the Sun and the Earth is 3
2

  108 

km then one reach the conclusion that for a field of 25000 Gauss, the radius of curvature will be 

ten million times the distance from the Earth and the Sun, or ten Syria meters.  It varies inversely 

to the intensity of the field in a region but remains beyond any current experimental possibility of 

reducing it to dimensions that are observable in a laboratory.  However, one should not rule out 

the possibility that other predictions of the theory – e.g., the exponential variation of the speed V 

of light along the force lines that results from (7) – might become observable in cosmic physics. 

 

 Electrostatic fields. – For the numerical evaluation of R, formula (6) continues to apply, 

provided that the intensity C of the field is expressed in electrostatic units.  Let Cv denote the 

intensity in question, when expressed in volts per centimeter.  Let 108 Cv be its measure in CGS 

electromagnetic units.  Therefore, C = 
1

c
108 Cv = 

1

300
Cv is the number that must be introduced 

into (6) in order to get R in cm, as above. 

 When one simply attributes a value to Cv that is amongst the other ones that were achieved so 

far – say, 5  105 (which can be justified by imagining that one treats fields in vacuo, so one will 

not be preoccupied with disruptive static) – then one will have the value 35
3
10  for C , which is just 

one-fifteenth of the one that was considered in the preceding example of a magnetic field.  The 

radius R will prove to be 15 times larger. 

 

 

5. – PARTICULAR SOLUTIONS UNDER THE HYPOTHESIS THAT SPACE 

ASSUMES A CONSTANT CURVATURE K. 

 

 Above all, one has the fundamental geometric relations: 

 

(8)    
,

3 ,

ik ikK a

K

 =


=
  (i, k = 1, 2, 3), 

 

with which, (I) will become: 

 

(9)      3K =  u . 

 

 We infer that K  0, so we come back to the general observation in the preceding note that 

under static conditions, the mean curvature  will always be positive or zero.  (9) will then show 
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that u is necessarily constant, along with K, or that the medium must present a uniform distribution 

of energy. 

 Under the hypothesis that the distribution of forces is also uniform and that they are exerted 

normally, one will also have: 

 

(10)     Tik = p aik (i, k = 1, 2, 3), 

 

with p a positive or negative constant according to whether the normal force that is found to exist 

on an element of the medium has the character of a pressure or a tension, resp. 

 Taking (9) and (10) into account, (II) will become: 

 

(11)    2ik
ik

V V
K p a

V V


 
+ + − 

 
= 0  (i, k = 1, 2, 3), 

which can be satisfied in ways: 

 

 1. V constant. – In this case, it is necessary and sufficient to add the condition to (9) that: 

 

(12)     K +  p = 0 . 

 

A comparison will give p = − 1
3

u, and one will be led to the following statement: 

 Inside of a homogeneous medium that is uniformly stretched with a traction of 1
3

u (u is the 

energy density), space will assume constant positive curvature K = 
3


u, and the speed of light will 

remain constant. 

 Above all, one must notice that such a medium cannot be composed of ordinary matter in either 

the fluid state or the solid state.  It cannot be in the fluid state because the internal forces in that 

state always have the character of pressures, and it cannot be in the solid state because the order 

of magnitude of the traction u / 3 is much greater than the rupture limit.  One will get a numerical 

estimate immediately when one imagines that if one lets  denote the material density in a possibly 

solid medium in the assumed condition then one would have roughly u = c2 , and one would then 

be dealing with a traction of 1
3

c2  = 3  1020 dynes per cm2. 

 

 2. V variable. – When (11) is multiplied by a(ik) and summed over the two indices i and k, it 

will initially follow that: 

2 23
V V

K p
V V


  

+ − + 
 

 = 0 

or 

2V

V


 = K* aik = 0  (i, k = 1, 2, 3), 

in which we have set: 

K* = K – 1
2

(3K +  p), 
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for brevity. 

 It is easy to see that equations (13) prove to be effectively compatible for non-constant V, so 

they constitute a complete system with respect to that V, when considered to be an unknown 

variable, but even then only when K* = K (1). 

 That gives: 

(14)     3K +  p = 0, 

 

and when that is associated with (9), it will yield p = − u and give rise to the same qualitative 

considerations that were made a few moments ago. 

 In order to integrate (13), one must take ds2 (which has constant curvature K, by hypothesis) 

to have the typical form (2): 

 
 (1) In order to establish that, it is convenient to recall [Ricci and Levi-Civita, Math. Ann. 54 (1900), pp. 143] that 

the second covariant derivative of any simple system Vi verifies the relations: 

Vikl – Vilk =
3

( )

,

, 1

jk

kl ji h

j h

a a V
=

  (i, k, l = 1, 2, 3) . 

Appeal to the systems (E), and on one side replace the Riemann symbols with Ricci’s  (pq) according to the formula: 

ahl, jk =
3

( )

, 1

pq

phl qji

p q

a  
=

 . 

On the other side, take into account that in the present case  (pq) = K a (pq), so one can also set: 

 (pq) =
3

( ) ( )

, , , 12

p qK
a a  

 
   

 
=

 . 

 Keeping in mind the identity: 
3

( )

( )

1

p

q

p



 
=

  =  k  l –  l  k (, , k, l = 1, 2, 3), 

which can also be presented in the form: 
3

( )

( )

1

q

qji

q

 
=

  = k  l  – l  j (, , j, i = 1, 2, 3), 

in which, of course, the  with two indices equal zero or one according to whether those indices are distinct of coincide, 

resp., and it will result that: 

Vikl – Vilk = 
3

( )

, , , , , 12

jh

j h

K
a a a 

    =

 Vh ( k  l –  l  k) ( j  i –  i  j) = K (ail Vk − ail Vk)2. 

 Under the hypothesis that the Vi are the derivatives of a function V that verifies (13), one will infer from (13) itself, 

after multiplying by V and covariant differentiating, that: 

 

Vikl = − K* aik Vl , 

 

and when that is introduced into the preceding, it will give rise to the integrability conditions: 

 

(K − K*) (ail Vk − ail Vk) = 0 

for any triple of indices i, k, l. 

 Hence, by hypothesis, V will be an effective function, and one of its derivatives – say, e.g., Vh – will be non-zero.  

Fix that value of k in the equations that were just established and a value of l that is different from k.  Then multiply 

by a (ik) and sum over the index i.  That will give: 

(K − K*) Vh = 0, 

so one has K − K* = 0 precisely. 

Q. E. D. 

 (2) Bianchi, Lezioni di geometria differenziale, vol. I, Pisa, Spoerri, 1902, page 345. 
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(15)     2 2 2

1 2 32

1
( )dx dx dx


+ + , 

with 

(16)     = 1 + 2 2 21
1 2 34

( )K dx dx dx + + . 

 

 One gets the explicit expressions for the covariant derivatives Vik directly (from the defining 

formulas): 

Vik = 
2 3

1

1 ik

li k k i i k l l

V V V V

x x x x x x x x

  

  =

       
+ + − 

        
 , 

 

with the usual meaning for the ik (viz., 0 for i  k, 1 for i = k). 

 Upon substituting that in (13) and recalling the form (15) of ds2, as well as (16), one will first 

have: 
2

i k

V

x x



 
= 0  (i  k), 

so it seems that: 

W =  V 

 

must be a separable variable (viz., the sum of three functions, one of which is a function of only 

x1, one is a function of only x2, and one is a function of only x3). 

 The remaining (13), in which, of course, one sets K* = K, will give: 

 
2 3

2

2
1li i i l l

V V V
KV

x x x x x

 
  

=

    
+ − +

    
  = 0, 

or 
2

2 2 3 3

2 2
1 1l li i l l l

W W W
W K

x x x x x

  


= =

       
− − + +  

       
   = 0 . 

 By virtue of (16): 

2

2

ix




 = 1

2
K ,  K + 

2
3

1l lx



=

 
 

 
 = K  , 

 

so, by definition, the auxiliary variable W (with separated variables) is found to be subject to the 

three conditions: 
2 3

1
22

1li i l

W
KW

x x x

 


=

  
− +

  
 = 0 (i = 1, 2, 3), 
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with  = 1 + 2 2 21
1 2 34

( )K x x x + + .  When one is given that form for , any 
2

2

i

W

x




 will reduce to a 

constant, and it will result immediately that the most general solution is: 

 

W =  2 2 21
0 1 2 3 1 1 2 2 3 34

( ) 1b K x x x b x b x b x + + − + + + , 

 

in which the b denotes an arbitrary constant.  With that expression for W : 

 

V = 
1

W


 

 

will constitute the general integral of (13) accordingly. 

 

 

6. – ADDITIONAL TERMS RECENTLY PROPOSED BY EINSTEIN. 

 

 Statistical reflections on the asymptotic distribution of matter in the stellar universe induced 

Einstein (1) to test the introduction of a small correction term (which is perfectly compatible with 

the postulates of general relativity) into his fundamental equations.  They were (when referred to 

the quadri-dimensional ds2): 

 

(E)     Gik – 1
2

G gik = −  Tik  (i, k = 0, 1, 2, 3), 

 

and must be modified as follows: 

 

(E)    Gik – ( 1
2

G + ) gik = −  Tik , 

 

in which  denotes a positive universal constant. 

 Under static conditions, the quaternary form: 

 
3

, 0

ik i k

i k

g dx dx
=

  

will reduce to: 

2 2 2

0V dx ds−  = 
3

2 2

0

, 1

ik i k

i k

V dx a dx dx
=

−  , 

 

and it is worthwhile to exhibit the spatial metric. 

 
 (1) That hypothesis of a quasi-uniform distribution of matter in the world suggested some interesting specifications 

to Almansi that were positive and formal and could be classified in the Newtonian picture.  Cf., “Le equazioni 

fondamentali della Dinamica e la legge di gravitazione” in the Memorie of this Academy 9 (1913), 473-502. 



Levi-Civita – The physical reality of some normal Bianchi spaces. 12 

 

 If one accepts (E), in place of (E), then one will have the following static equations in place 

of (I) and (II) (1): 

 

(I)       –  =  u , 

 

(II)   ik + 2ik
ik

V V
a

V V


 
− + 

 
 = −  Tik  (i, k = 1, 2, 3) . 

 

 Since  > 0, (I) will show that the complementary term insures that the general property of 

physical space that it cannot assume negative mean curvature under static conditions (that we 

observed in § 1 of the preceding note) is verified a fortiori (excluding the limiting case  = 0). 

 If one then introduces the special hypotheses of no. 5, while supposing that one treats a space 

of constant curvature K that is subject to normal forces with which (8) and (10) are valid then (I) 

and (II) will assume the appearance: 

 

(9)      3K –  =  u, 

 

(11)   2ik
ik

V V
K p a

V V
 

 
+ + − + 

 
 = 0 (i, k = 1, 2, 3) . 

 

 They obviously correspond to (9) and (11) in the preceding section when one identifies  = 0 

in them.  The discussion proceeds in the same way, with the advantage that the presence of the 

constant  leaves a certain margin for positive values of p. 

 In particular, let us occupy ourselves with solutions for which V is constant.  We must 

associate: 

 

(12)     K +  p =  

 

with (9), since when we eliminate K, we will get: 

 

(17)     3 p = 2 –  u . 

 

For p = 0, one has Einstein’s particular solution: 

 

u  = 
2


, K  =  , 

 

 
 (1) The passage from (E) to (I), (II) is accomplished exactly it was in the original form for the passage from (E) 

to (I), (II) (§§ 1-2 in the prec. note that was cited many times already).  All that is necessary is to take into account the 

additional term in  . 
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which characterizes the mean distribution u  of energy (and therefore of matter) in all of space, 

which supposes that it is (except for local divergences) endowed with constant curvature and filled 

with incoherent matter, between which the particles exert no molecular forces. 

 (17) shows that one can generalize Einstein’s solution by assigning the value u (constant and 

 0) at will.  With that, one will preserve all of the uniformity in the geometric and mechanical 

characteristics, but not the absence of normal forces.  They are exerted as pressures for u < u  and 

tensions for u > u .  Reasonable inductions on the behavior of matter, no matter how diffuse, will 

lead one to exclude the second possibility: u  therefore presents itself as an upper limit on the mean 

density of energy that is attributable to the stellar universe.  Because of both the absence of forces 

and its very character, Einstein’s solution undoubtedly presents the greatest speculative interest. 

 

____________ 

 

 

 

 

 

 


