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FOREWORD
TO THE FRENCH TRANSLATION

Now that | am presenting this French translation ofregent boolCaratteristiche e
propagazione ondos@ologna, 1931) to the public, | would like to fulfill a vepleasant
obligation in vigorously thanking the “Comité pour I'expamsidu livre scientifique,”
and especially its illustrious president Emile Picarbdpwraciously took the initiative, as
well as the eminent director & Revue Bleuand theRevue Scientifigyd®aul Gaultier,
Member of the Institute, who could not have been morediyemor more obliging in his
functions as Secrétaire du Comité. | would also likethank Marcel Brelot, who
accomplished his task as translator with competenceeatidisiasm. One must thank
him for the presentation, as well as some additiodguicious modifications that made
many delicate details much clearer and more precisehoWitwishing to enumerate all
of them, let me confine myself to pointing out the sumyva the interesting notes of
Lampariello on elastic waves (cited in the Prefacah Italian edition) that Brelot
inserted into the text as a supplementary paragraph (8

| would also enjoy this opportunity to emphasize, in a ggdmeanner, the elementary
character of the mathematical viewpoint of the costenthis little volume. At no point
does it deal with difficult questions of existence or t@struction of new algorithms,
but solely with the consequences that follow easily #byargument that is entirely
analytical) from the notion of characteristic matdfowhich permits one to recognize
whether this or that type of discontinuity wave is $ble, and when that is the case, it
provides one with laws of propagation in a simple and atefgam.

Rome, 1 April 1932

TULLIO LEVI-CIVITA




PREFACE

The board of directors of the mathematical seminathat University of Rome
(presided over by Professor ENRIQUES) organized two cyafleonferences for the
school year 1930-31 on the theory of characteristics. fifsieof them, which was
entrusted to me, had the goal of briefly reviewing the giered that theory in relation to
the general existence theorems and pointing out somecatps, which are truly
grandiose in their simplicity, that began with HUGONI@nd include applications to the
propagation of discontinuity waves to acoustic, elastjatical, electromagnetic, and
many other kinds of waves.

The second cycle, which was originally entrusted to VERRRA and was developed
in his place by ELENA FREDA, was dedicated to the mettuddstegration by the use
of characteristics. They brought to light the ex&§msubstantial contribution of
VOLTERRA and the formulas that solved some celebrptedlems that he knew how to
infer.

The present volume reproduces my lectures, which weefudlg transcribed by
GIOVANNI LAMPARIELLO.

Having recalled the existence theorems, one then intesdiie general notion of
characteristics according to the well-known ideadH&DAMARD. There is nothing
essentially new in them. Nonetheless, | think thatveh@aade the development simpler
and more symmetric, and a result, | have succeeded iwenglthe formation of the
partial differential equations that define characteristjpations, such as obtaining and
discussing the compatibility conditions, with greater algmic elegance, which also
translates into a certain simplification in the pr@stion.

That is confirmed in the particular applications to hygrainics, electromagnetism,
and more especially to the propagation of sound and tigtitwill be studied heré')
On the contrary, the other classical meanings to themof wave, which are still often
considered in mechanics and physics, are hardly medtesereliminaries.

Naturally, a study, as summary as it might be, afatteristic manifolds will imply a
study of the corresponding bicharacteristic lines. Thathy | was led to recall (before
passing on to the applications), in general and in a faghat is more directly associated
with canonical systems, CAUCHY’s method for the intg¢gm of a first-order partial
differential equation with an arbitrary number of vareshl

Returning to the applications, | would like to point ché general observations in the
last paragraph in regard to the characteristics and bictieaistics that relate to a given
differential system%). Some definitive physical examples will be used then#ustrate
and underscore how, in the case where the sysBepe(mits one to make an adequate
analytical representation of an arbitrary physicalnomeenon, one can associate the
phenomenon itself with wave-like aspectipon crossing theharacteristic manifoldf
the system&) and acorpuscular aspeatipon traversing thbicharacteristic lines One

() LAMPARIELLO adopted the same viewpoint in the studyelzfstic waves, and that led to several
notes to the Rendiconti della R. Accademia dei Linwhich are collected in § of the French translation).

The case of EINSTEIN’s gravitational equations (whiclespnt some features that are a bit more
complicated) was the first one that | took under comata® in order to apply HADAMARD's theory.
Cf., “Caratteristiche e bicaratteristiche delle egoaizgravitazionali di Einstein,” Rend. Acc. Lincei (8)
(1931), 3-11, 113-121.



iii Preface

will then have a comprehensive mathematical model ithperfectly satisfying in its
agnosticism for the duality between waves and corpusblass inspired the brilliant
intuitions of DE BROGLIE, while he himself, along withhers, have sought in vain to
find a more concrete representation that is truly coetwith the observed facts.

For more precise information on the contents of Ithisk, one can consult the Table
of Contents.

Finally, I would also like to express my gratitude to LAMBELLO, who has
amicably performed the cumbersome task of editing the scaipti and has assisted me
in revising the proofs, and to the firm of ZANICHELLI, whamdertook and completed
this publication with laudable alacrity.

Rome, 20 July 1931

TULLIO LEVI-CIVITA
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8 1. — Review of the existence theorem for the integrals
of a system of partial differential equations.

1. Normal systems— A system oim partial differential equations im unknown
functionsg,, ¢,, ..., ¢m0f n + 1 independent variablesg, xi, ..., X, has the type:

(1) E,=0 w=1,2,...m,

in whichE, is a function of the, the ¢, and the partial derivatives of tigewith respect
to x.

Such a system is calletbrmal relative to the variablg, if one can put it into the
form:

. "¢, _ _
(1) — = X|gl¥ln (v=1,2,..m),
Xy

in which they on the right-hand side are the partial derivativesaahg, with respect to
only X that are of order less thap, and they are the other partial derivatives of the
with respect to all of thg, except forg,, which has a global order that is equal to at most
r,and a partial order ixy that is less than, .

Observe that if the system'(1is normal relative to the variabig then it cannot be
normal relative to another variable.

2. Qualitative hypotheses—~ The functionsd, are supposed to be analytical and
holomorphic in a neighborhood of a system of values feratiguments (viz., the initial
values). Under those conditions, one has a fundamdmatem for the existence of
unknown functiongps, @, ..., ¢mthat is due to CAUCHY and was made more precise by
SOPHIE KOWALEVSKY.

3. Existence theorem for ordinary differential systems.— Before stating the
CAUCHY-KOWALEVSKY theorem, and with the goal of unde&nsding its content
better, it is convenient to recall the existence tbeofor integrals of a system of ordinary
differential equations.

If one supposes that the unknown functigasgs, ..., #m depend upon only the one
variablexo , which we shall now denote Wy then the differential system’f1lcan be
written:

d“g, _ _
(2) W_CDV(”mw) v=1,2,..m).
As one knows, the differential system (2) can be put the form of a system of first-
order differential equations, or as one says, normai {in the strict sense).

Indeed, it suffices to take the derivatives with respetiup to order, — 1 inclusive
to be auxiliary unknowns, along with tige . Upon setting:
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¢n d¢|5rv_2) - ¢(I‘V—l)
14 dt 14 ’

dg, _

- a4, _
dt

4 dt

equations (2) can be written:

(1)
d¢(;t =0, (oY v=1,2,..m),

and if one lety, denote the general element of the table:

) 2] Pm
¢ 8 [
. ]F n-1) . érl -1) . ¢r(nrl -1)

then the system (2) will take on the schematic form:
d
(2) —==Y,(t| ¥ (r=21,2,..r;r=ry+ry+ ... +rp).

Under the hypothesis that tiigare analytic and holomorphic in a neighborhoot of
=to, Yp =Dy, there will exist a unique system of analytic funcsigpof the variablet
that are holomorphic in a neighborhood eft, and take on the valuég fort =to .

According to CAUCHY, the proof of that celebrated tleors accomplished by the
method of majorants.

First observe that the differential equations permé tancalculate the derivatives of
all order for each unknown functionp at the pointt = to by successive differentiations,
and as a result, to write the Taylor developmeneéahy, that relates to that point.

In that development, the term that is independertt iefb, , and the coefficients

%(ddti/pj (n=1, 2, ...) of the various powers ot { will generally depend upon the
t=t,
b andtp .

The essential point of the proof, which was assumetowi justification before
CAUCHY, consists of showing that those series cayeén a suitable neighborhoodtof
=10 . Upon choosing certain majorizing functions of yhethe differential system that
corresponds to (R which can then be integrated by elementary means,define
functions that are analytic and holomorphic in a neighbod oft = t, and whose Taylor
developments are majorizing for those ofype

CAUCHY'’s theorem for differential systems’)4s also valid when the right-hand
sides of equations (Rand the initial valueb, depend upon a certain (finite) number of
parameters that we can denotexyc, ..., X, and which vary in the domain where the
are holomorphic.
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One can then state the following theorem, while liaasuming in an essential way
that everything must behave regularly in a neighborhodldeo¥alues considered:

Theorem.—If one is given a differential system:

d¢(rv_l)
d

3 " =0, (t|x|gly (v=1,2,...m)

then if one chooses the value of e@ghor t =ty arbitrarily, along with its successive
derivatives up to order, — linclusive as functions of the parametgss x., ..., X, then
there will exist a unique system of functighthat are analytic int and the parameters
that satisfy the equatior{8) and reduce to the chosen functionstfert, .

4. — That theorem extends to normal systems (1) of pditfarential equations. The
novel feature that it presents is that the right-haidés of equations (3) also include
derivatives of the unknown functions with respecthe parameters in such a way that
one will also have differential equations that arelomger ordinary, but partial. For
reasons of symmetry, we recall the notatipm place ot.

The theorem that was stated in Basserts that if one is given the values ofgland
¢ (as holomorphic functions of the, ..., X, in a certain domai) that relate to a value
ap of xo arbitrarily then the functiong that are holomorphic in the, xi, ..., X, will be
determined (viz., they will exist uniquely) in a neighborhod&,e= ay and in the domain
C of the other arguments.

The CAUCHY problem consists precisely in determiningghbat satisfy the normal
system (1) and the preceding initial conditions, which are, wegeet, the values of the
unknown functions and their partial derivatives withpexs tox, of order less than the
maximumr, for eachg, .

That determination — i.e., that of the coefficiemsthe Taylor developments in a
neighborhood of a system of initial values for the is obtained by starting from the
initial values and successively differentiating equati¢ty). Now, the same calculation
will apply to the case in which thyecontain derivatives of thg, , always of partial order
in Xo that is less than,, but of total order that is greater than except that one can then
effectively arrive at the possibility that the develats that one finds will not converge;
i.e., one will not have a holomorphic solution.

We shall call a system’jlquasi-normal(relative toxy) when they are once more
partial derivatives of the, with respect tog and of order less than , but they are the
other derivatives with respect toof arbitrary total order, but of partial orders less
thanr, for ¢, .

For the same initial givens, one will not have a mlitity of holomorphic solutions
for a quasi-normal system, but one will not necesshsle that they existence, either.

In what follows, we shall speak of only normal systerMieanwhile, since the notion
of a discontinuity wave that we shall study is maspeeially linked with the property of
uniquenessn the CAUCHY problem, as we shall see, it is inténg to point out that
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some entirely similar considerations can be developedh®ranalogous questions in
which systems that are only quasi-normal are involveentisdly.

5. Geometric statement of Cauchy’s theorem and its gendization. — Let S be
the space of variables, xi, ..., Xn. To fix ideas, we suppose that it is endowed with a
Euclidian metric upon interpreting the as Cartesian coordinates. Consider the
hyperplane = ag, which we denote bgo.

The existence theorem asserts that one can detetminalues of the functiongin
a neighborhood of the hyperplaoe(which is called thesuppor), when one is given the
(initial) values of thep and they at any point otoarbitrarily.

It is clear that thg result from the givens o and the differential equations.

That theorem can be easily generalized by substitutimgparsurfaces in S for the
hyperplaneaw. The generalization can be realized by a simple gdhasf variables,
moreover.

Indeed, let:

Z (X0, X1, +++, Xn) =Xo (X constant),

for example, be the equation for It will then suffice to replace the with (n + 1)
independent combinations of thase namely,z, z, 2, ..., Z, — one of which (say) is
rightfully the left-hand side of the equation far

Naturally, in order for the determination of the unkndwnctions¢ to be possible, at
least in a neighborhood @f it will be necessary that the normal differentgstem (1)
must become normal relative raunder the change of variables. That is what we shall
now address.

6. Change of variables— Thus, imagine a change of variab@s0 )2 );’j
under whichw will transform into a hypersurfaae

The normal or quasi-normal differential system) ({tansforms into a system of
unknown functionsp of the variablez, z, 2, ..., z,. However, one cannot assert its
normal or quasi-normal charactarpriori. We then limit ourselves to those particular
normal systems for which there is a maximum total ocdeterivation that is the same
for all of the functions.

If we denote that maximum order byhen the differential system, which is assumed
to be normal with respect t@, can be written more simply:

ﬂ:

(4) o

®, (x| 4| ) v=1,2,..m).

In the right-hand side of this, it is unnecessary to enaky distinction between the
derivativesy of the ¢ with respect to only, and the derivativeg of ¢ with respect to
the X0 , X1, ..., Xo» , as one does in (1 If one performs a transformation
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(xo X ... X
z 7 .. 7
the same maximum orderwith respect taz We shall soon see that it is precisely a
normal system, at least, as long as a certain detantndoes not vanish.

Upon temporarily assuming that one finds oneself inrcds® in which that is not the
case, one will not have the multiplicity of the ftioas ¢ in a neighborhood of the
hypersurfaceo (which is called thesuppor) to begin with when one is given the values
of the unknown functions oaarbitrarily, along with their partial derivativesth respect
to the xof order less than the maximwsn Without developing the transformation of the
CAUCHY problem for g and the variablex, which would be useless here, we
nonetheless once more point out that if one can sbkeequation fos for X, then its
existence and unigueness relativegtoan be stated with only the derivativesnas in
the case of the hyperplarg=ag .

Finally, we observe that one can always get backaadise in which the derivatives
of maximum ordes (at most of ordes — 1 with respect tap) occur linearly in the right-
hand side of equations (4).

Indeed, if that were not true then it would suffice tifedentiate the two sides of each
of equations (4) with respect # . If ¥ is a general partial derivative of ordethen

one will have:

j on the variableg then the system (4) will transform into a system of

09, _ zaCDV i,
™ ax ox,

Theod® / dy and the terms that were neglected do not contain pddialatives of
order higher thas; the dy/ dxo have ordes + 1 and enter linearly.




8 2. — Characteristic manifolds.

1. In what follows, we shall generally consider onlyfeliéntial systems of the
preceding type for which the maximum order of differatmn iss= 1 ors= 2.
Such a system can be put into the explicit forms:

(1) E=3YE P vo,00p=0  wml2.m

or

@) £=3YE 9l o, xh=0  @w=12 .m
H =~ v a)ﬂ 6)(‘ H y Ly eeny )

respectively.
The E,,, and®, in (1) depend upon theand theg, while the Ej;, and®, in (2)
depend upon the and theg, along with the first-order partial derivatives of tfevith

respect to the.
We suppose (as one can do with no loss of generdiay) t

E.=En (i,k=0,1,..n;v=1,2, ..m).

In the particular case of just one unknown funcgprequations (2) will reduce to just
one:
(3) E= Zn:Eikﬂ+q>(x|¢|Ax):o,
0x, 0x;

i.k=0

in which they denote the first partial derivatives gfwith respect tog , X1 , ..., X .
A remarkable equation of type (3) #:(

1 92
(4) D¢:W6_§_A2¢:0’
in whichV is a constant, and:
3 2
Az = —_—.
= 0X’
The operator:
1 0%
“vior

is called thad’ Alembertianor Lorentzian.

() We have put the symbbin place ofx, ; we shall sometimes do that in what follows withoaking
note of that fact.



8 2. — Characteristic manifolds. 7

Equation (4) occurs in many equations of mathematical gdyyand it is called the
canonical equation of small motions D’ALEMBERT's equation; we shall develop its
genesis a bit later.

2. Conditions for the systems (1) and (2) to be normalk The equations that
constitute the systems (1) and (2) are not solved frpHrtial derivatives of first or
second order, resp., relative to the variable

We propose to determine the conditions for such a soltbide possible, which will
be conditions under which those systems will be nomital respect tog .

First consider the system (1).

Since only the first partial derivatives with respectitare important, we write:

ZEO a¢ .=0 w=1,2,...m).

That system is soluble for tlag / 0%, if the determinant of thEﬁV IS hon-zero:

(5) Q:H E° wv=1,2, ..m,

and one will observe that this determinant containsritiependent variables , xi, ...,
X, and (generally) the unknown functiogs, @-, ..., ¢,, as well.

We now pass on to the system (2).

Equations (2) are written:

0’4, _
ZE28 il .=0 w=1,2,..m).

and can be solved for ti#ég / 9x; if the determinant of th&, is non-zero:

(6) H Eoo

wv=1, 2, ..m),
In order for (3) to be normal, it is necessary anficgent that one must have:
(6) E®%0.

The determinant” E.

of the ¢ with respect to thg.

If the conditions that were found previously are $afisthen one can apply
CAUCHY'’s theorem to given a (supporting) hyperplaxe = a and the unique
determination of the functiong, (or the single functiong, in particular) in a
neighborhood of the hyperplane will result.
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We shall now seek the conditions under which the norhaacter will be preserved
éo X, e X
z 7 .. 7
a hypersurfacerin the spac& whose equation is:

under a change of variabl€ j that transforms the hyperplarge= ao into

Z(Xo, X1, .-, Xn) =20,

and starting from which, it should be possible to deterrthirefunctionsg (at least in a
certain neighborhood).

3. Conditions for having a normal character relative to the argurent z. — Set:

pFE i=0,1,..n).
0x
One has:
n 0z
%:%pi+2%i v=1,2, ...m)
0X 0z =0z 0X
which we abbreviate in the form:
(7) %: 99, p+... v=1, 2, ..m),
ox 0z

upon exhibiting only the derivative with respectzto
Upon substituting that into equations (1), they will become

Zm:6¢V2”:Eva +..=0 w=12 ..m.

= 02 155
Upon setting:

(8) Wy = z E;i,., B
the condition for the transformed system to be nokmilhbe written:
9) Q=|auul||20 w,v=1,2,...,m.

As far as the system (2) is concerned, one will have:

o’g, _0°9,
ox dx 07

Pipxt ...,
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in an analogous fashion, and equations (2) will transfatm i

62¢V $ ik _ _
072 'kZ_OEWpipﬁ..._o @wv=1,2, ..m

i
v=1

Upon setting:

n

(10) wv=Y E5pR,

i,k=0
the condition for the system to be normal will bpressed by:
(11) Q=|wyuy|20 w,v=1,2,...,m.

In the determinant (9), they,, are linear forms imo, ps1, ..., Pn, and as a resul will be
a form of degreen in its arguments. In the determinant (11), épe are quadratic forms
in thep in such a way thd will be a form of degreerin its argumentgyo, pi, .., pn.

In the case of a single equation (3), the determindhtasiuce to the single element:

Q:Zn:E"‘pg(.

i.k=0

We conclude: Any functiorz (xo, X1, ..., X,) for which Q is not identically zero
corresponds to a family of hypersurfa@es z, such that if one starts from any of them
then the CAUCHY problem will admit a unique solution aindparticular, there will not
be a multiplicity of holomorphic integral functiong for the given values o in the
hypersurface, as well as the first derivatives in thersgecase (2). Moreover, that will
be true by virtue of the fact that the transformed syssemrmal with respect to

4. — When the functioa (Xo, X1, ..., Xn) Satisfies the equation:
(12) Q =0,

one can no longer apply CAUCHY’s theorem upon startirgmfthe supporting
hypersurfaceg = 7, for anyz,. One then says that those hypersurfaceshaecteristic
manifolds.

Equations (12) encompass the manifolds for which the unkrfanctions (if they
exist) are determined in a unique manner when one is giegrnviidues on the manifold,
along with the values of their partial derivatives widspect tax, whose order is less
than the maximum. It even permits one to specify thempletely in certain cases that
we shall examine.

In the case of equation (3), the characteristic mamsifal@ the ones that satisfy the
equation:
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Zn:E"‘pg(:O.

i.k=0

If one supposes that the coefficients are Eathen they can be real or imaginary.
They will necessarily be imaginary when the quadratimfon the left-hand side is well-
defined; otherwise, they will be real if the initial gins are real.

In particular, consider the characteristic manifaldishe canonical equation of small
motions. They are the integrals of the partial défeial equation:

V2 pO zp

i=1

whose left-hand side is an indefinite quadraticrfor

5. Partial differential equations for the characteristic manifold in a particular
case— The determination of the characteristic manga&lidentified with the problem of
integrating the first-order partial differential weaion Q = 0, in which the unknown
function isz

That problem will present some special difficidti@hen the coefficientEl‘, or E;”fv

in the determinanQ also depend upon the unknown functighsof the differential
system considered.

The question will simplify when one can narrow daowhe search foz to the
integration of the given normal system. That sitrapresents itself when the equations
of the system are linear in the derivatives of maun order, because thewill then
depend upon only the

In that caseQ2 will contain only thex and thep, and the equation will have the type:

Q(x|p)=0

in whichp;=dz/0x (i =0, 1, .., n). We stress the fact that the functiotloes not enter
explicitly; we shall return to that equation muekek.

6. Mechanical genesis of the canonical equation of small motions The
fundamental equation of pure hydrodynamics in theecof an irrotational motion of a
(perfect) fluid under the action of conservativects is written®):

a¢ 142 _ _ -
(13) E+5v U-Vv) =g

() Cf., T. LEVI-CIVITA and U. AMALDI, CompendioMeccanica razionalePart 2a, Chap. XII,
Zanichelli, Bologna, 1928 or P. APPELLraité de mécanique rationelle. Ill, Chap. XXIV, no. 733,
Gauthier-Villars, Paris, 1921.
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upon denoting the (vectorial) velocity of a particlevby grad¢, as usual, the time ly
the Cartesian coordinates Ry x, X3, the velocity potential by (t | xi, X2, X3), and the
force function per unit mass dy. The right-hand side is constant in the Xz, Xs .

Finally:

P:jd—pp,

in which p and p are the pressure and density, resp., at the same arimtrat of the
fluid, and by hypothesis they satisfy a relation thaiaided characteristic for the fluid (or
the supplementary equation or the equation of state).

In order to determine the motion of the fluid, one nemtsider not only equation
(13) and the characteristic equation, but also the catytiequation:

do o
ot + pdivv =0,

which translates analytically (according to the EUL&RIviewpoint) into the
conservation of mass during the motion. In that equatimntermdp / dt denotes the
substantial derivative (i.e., the one that follows thetigda) of the density with respect to
time.

In regard to that, recall that in the study of the iorobf a continuous system, one
will be led to consider the manner by which some saalarectorial quantities depend
upon either the position of the point in the domain wheee ghrticle exists (the
EULERIAN viewpoint) or that of the moving particléM of the system (the
LAGRANGIAN viewpoint) at each instant. Iff is such a quantity then its local
derivative will be defined to be the derivativecpivith respect ta by considering® to be
fixed; one denotes it yq / ot.

On the contrary, one defines the substantial devevaif g like the derivative ofj
with respect td by considering the same partidlethat one follows.

In the first case, one envisions the local variabbqg with time. In the second case,
one envisions the fashion by whiglvaries when it is referred to the same patrticle.

One sees immediately that the two derivatives aked by the relation:

3
dq_2q, 500,
dt ot 4ZFox
in whichu; are the components wfalong thex-axis.

Having said that, consider, more especially, the o&seperfect gas in the adiabatic
regime. Each particle of the gas (in which, the teafpee can vary) will then be
isolated from any exchange of heat with the neighboringcfes, and as one knows
from thermodynamics, one will have the relation:

p=cp
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betweenp and p, in whichc; depends exclusively upon the initial state of the particle
considered (it will reduce to a constant if the tempeeatund the density are initially
uniform), and in whichy is the ratio of the two specific heats at consfaessure and
constant volume){= 1.41 approximately for air and the most common gases).

The system of equations that serves to determine ttiemis then:

a¢ 14,2
Y +ivv-(U-P)=
e ( )=¢

(14) %wdivv:o,

P=jd7f, p=go’,

in which the unknown functions ag o, p.
Now suppose that the gas is removed from any actidoroés, and thap and ¢
differ little from their values under normal conditgymn particular:

pP=m(1+0),

in which ois a pure number (i.e., a dimensionless quantity) thatconsiders to be a
first-order infinitesimal. Sinceo = (0 — ) / p, one quite naturally calls it the
concentrationof the gaseous particle.

In addition, we suppose that the differences betwebstautial derivatives and the
local derivatives (with respect tpof the functiongp andp are negligible at any point of
the gaseous mass.

It will then follow, in particular, that one can regt the term%\/2 in the first equation

in the system (14). Indeed, sincés the gradient of:
A

d¢ 04 _ 504
dt ot ;axu‘

Now:

So
d9 _0¢_.p
dt ot

will be negligible in comparison @¢ / ot .
One will then have:
divv = div gradg = A, ¢,
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and as a result, by virtue of the hypotheses that wede,ntiae differential system will
take the form:

%+P:C,
ot
(14) 9 ap=0
dt ? ’
d
P=]= (p=a0"),

Now:

dp=c, yp"* dp, %§=clypV2¢a

o714 const. =X P+ const.

P=c
y-1 y-1p

On the other hand, if one neglects the terms amder higher than 1 then one will
deduce fronp = (1 + 0) that:

% =cp’ =g P 1+0) = ¢ Py L+ (y-1)0]

=21+ (- 1)d.

0

One will then find that:
P=V20g+k,

in whichk is an irrelevant constant, and:

vi=y P,
Po

With the same approximation, one will find that:

16_,0: alogp: 6Iog(1+a): do
0 ot ot ot ot

Observe once more thatis defined only up to an additive constant witbpect tox.
One can then replagg with ¢ + ¢ (t) in equations (14, in which @y (t) is an arbitrary
function of onlyt. Ax¢ will not change then, while the left-hand sidetwd first equation
dg,

dt
In particular, if one choose# in such a way that:

will be augmented bya(% =
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d
ﬁ =c-k
dt
then the system (1Awill reduce to the final form:

99 v = 0,
ot

(15) ol
—+0,¢=0.

Upon eliminatingo; one will find that:

10

vZor De#=0

which is the canonical equation for small motiovi$;has theconstanty'po / 16 in it.



8 3. — The canonical equation of small motions. Notion of wave. gelties of
displacement and propagation of a wave surface or discontinuity.

1. Acoustic interpretation. — The equation that was previously established:

1 9%

1 — — TN p=0
@) vior M2?

is applicable to sound vibrations in air or anyestbaseous mass, in particular, because
one can neglect all dissipative action, to a fqgproximation that is already quite good,
SO one can suppose that the motion is irrotatiandl that there is no exchange of heat
between particles (viz., the adiabatic regime).

Suppose that the velocity potentfatelates to sound vibrations in air.

%, % 99 then represent the components of the velocithefair molecule that
ox 0%, 0%
is at the pointX, Xz, X3) at the instant.
Furthermore, suppose, more precisely, that aindéyer of air that is found between
two surfaces:

(2) z(t|x) =cp, z(t|x) =¢

is in vibration at the arbitrary instant
It is at rest [which corresponds to the zero sofupp’ = O for (1)] outside the layer.
The phenomenon is characterized by a non-zeroi@olat(t | X) inside of it.

2. — We shall now leave aside the acoustic interpogtaf the solutions to equation
(1) and suppose that(t | X) and¢ (t | x) are solutions of (1) inside and outside the layer
that is determined by the surfaces (2), resp. flmnomenon that is represented by
equation (1) is characterized by two distinct fionts depending upon whether one is
located inside or outside the layer. The deriestiof ¢ of various order are generally
subject to sharp variations across the surfaces @) that is why they are called
discontinuitysurfaces.

Now, it can happen that such a surface varies twith. One will then say that the
discontinuitypropagatesand it will take on the name ofnaave more specifically.

Therefore, if one interprets equation (1) as bewagable of characterizing the
propagation of a wave then the discontinuity swe$a¢or, as we also say, theve
surface$ bound a layer that displaces and possibly defavitistime.

If one assumes that no molecular interpenetratborgavitations are produced during
the motion then the normal components of the vitaifi a particle cannot be subject to
any discontinuity upon crossing a wave surface. shal also exclude the phenomenon
of molecule sliding across such a surface, whichildvamply tangential discontinuities
for the velocities.

We remark here that from the postulate of thedsr@in particular, the pressures)
upon which the mechanics of continuous media igdyagnder normal conditions, the
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pressure cannot be subject to any sharp jump, even ietgmme of the motion varies
sharply.

Observe further that the denspyis coupled with the pressure by the characteristic
equation (which is the same on both sides of the diseoty surface).

The continuity inp will then result from that op. On the other hand, from the first
equation (15) of the preceding paragraph, the derivatives afd ¢ with respect tat
represent the density up to a constant factor. They thestfore be exempt from any
discontinuity upon crossing the wave surface.

The preceding considerations lead us to conclude thatder dor equation (1) to
define the propagation of a wave, one must assume thawthsolutionsp andg’, which
are assumed to exist and characterize the phenomede @l outside the layer, agree;
i.e., that their first derivatives in space and time nbeséqual to each other on the wave
surfaces that bound the layer at each instant.

On the contrary, the second derivatiae subject to sharp variations. We shall
address them later when we extend the present congderab an arbitrary normal
system of partial differential equations. We can akse then how the wave surfaces are
characterized from the analytical viewpoint.

Figure 1

3. Velocities of displacement and propagation— Consider a wave surface that
bounds a layer that is the site of a perturbationairtstantt, and letn be the normal at
an arbitrary poinP that is oriented outward (Fig. 1).

The surface displaces, and at the instamdt, it cuts that normat at a pointQ.

Let dn be the algebraic measure of the segnf&pt which is regarded as positive
outward.

The ratioa = dn/ dt is called thedisplacement velocitpf the wave surface at the
point P at the instant considered. In ordinary situati@ns,0 at all points of one of the
surfaces that bound the layer, an& O at all points of the other one. The surfaces are
then called théeadingandtrailing wave fronts.

Much later, we shall give explicit expressions #oby utilizing the equation of the
wave surfacex .

The differencec = a — d¢ / dn between the displacement velocity and the normal
component tog; of the velocity of the fluid particle that if found & at the instant
considered is called tHaormal) velocity of propagatioaf ¢ at the poinf.
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From the principle of relative motion, that differenabviously measures the velocity
with which the surface displaces, not with respecheofixed axes, but with respect to
the medium.

If it is at rest outside the layer then one willé@ = 0, and since, as one segsnd
¢ must agree ow, one will havedg / dn= 0, soc = a.

In that case, the velocity of propagation will be idEaitwith that of displacement.

4. — Now consider the hypersurfacez (t | X) = const. in space-time that corresponds
to the wave surfacex in the space of only the It is essential to remark thatis a
characteristic manifold relative to equation (1); tleatzis an integral of the equation:

1 2 <2
(3) WDO‘ZH =0.

i=1

Indeed, assume that one can argue as if the funsatiin question were holomorphic
ono; if gis not a characteristic then there will be a cadhtition between the uniqueness
property in CAUCHY’s theorem and the existencevad solutionsg that take the same
values ong, as well as their first-order partial derivativésit present discontinuities in
the higher-order derivatives an

The propagation of waves is possible then onlyoag as the wave surfaces
correspond to characteristic manifolds

Moreover, a particular case of equation (1) shtvas in order for one to be able to
once more solve the CAUCHY problem upon startinghva characteristic manifold,
certain conditions must be satisfied; there wilk h@ a single solution then, but an
infinitude of them.

In order to explain that, suppose tlfadepends upoh and justx;, which we now
write asx. Equation (1) will become:

2 2
109 _0%_

1 — 27
(&) V2 ot ox?

Recall how one integrates that celebrated equati@ne remarks that it can be

written:
(£i+ij(_lg_ij¢ =0,
Vot ox)\Vot 0x

in which the left-hand side naturally amounts t® pihoduct of operators that is applied to

é.

Introduce the variables z;, which are linked with the old ongsx by the relations:

z=xXx-Vt Zz1=X+Vt
SO
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1
X=1(z+z), t= E(Zl_Z).

From the theorem on the derivation of composed funstione has:

0z 2\ox Vot) ’

and equation () transforms into:

0°¢ =0,
020z
which is integrated by inspection.
The general integral is:
(4) ¢=a(2+[L(n)

in which a and g are two arbitrary differentiable functions o&ndz, respectively. One
will see forthwith (and as one might expect, moexdthat one cannot generally solve
the CAUCHY problem for a supporting lizs= c, but it is necessary that the givens must
satisfy a compatibility condition. When it is viexd, there will be an infinitude of
solutions.

Indeed, it follows from (4) that:

#(c.z)=a(9+pB(3),

o) _
(EL:"@'

One cannot give the functioglg and ¢; of the variablez; arbitrarily then, which must
reduce tog anddg¢ / 0z for z=c. The functiong; (z) must be a constant, and in that
case, there will be an infinitude of forms for 8w@ution ¢ to the problem.

Those remarks show how essential the considerationaracteristic manifolds is.

Up to now, we have only addressed the negativecasmf such things, but it is
appropriate to point out that their importance Isoavery great from the constructive
point of view. Indeed, they serve to solve the @XY problem precisely for
supporting manifolds that are not characteristic.

That idea is due to B. RIEMANN, who successfulhgated the problem of
integrating the second-order linear equation ofehngplic type in two independent

variables:

2
0z +aa—z+ba—z+cZ:O
oxdy 0x 0y

in a celebrated presentation to the Goéttingen Acgdef Science (1860).
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RIEMANN'’s method was reprised by DARBOUX) (and others. Some important
research on partial differential equations of hyperldgfie in three or more variables, as
well as on the mathematical expression for HUYGHEN&®ciple ¢), which was
formulated for the first time by KIRCHHOFF for the nmmical equation of small
motions, was done by VOLTERRA)(@nd HADAMARD (*) since 1892.

() Cf., G. DARBOUX,Lecons sur la théorie des surfacesll, Gauthier-Villars, Paris, 1889.

() One will find some bibliographic references, and dsflgcfor the Italian contributions, in the
Lezioni di meccanica razionaley LEVI-CIVITA and AMALDI, vol. Il, Part Two, pp. 468. @nichelli,
Bologna, 1927.

() Cf., V. VOLTERRA, Lecons sur l'intégration des équations différentielles auxvéés partielles
taught in Stockholm, Paris, Hermann, 1912ectures delivered at the celebration of the twentieth
anniversary of the foundation of Clark Universigcond lecture, 1912.

(%) Cf., HADAMARD, Lecons sur la propagation des ongdétermann, Paris, 1903 Lectures on
Cauchy’s Problem in linear partial differential equatiomdew Haven, 1921. A French edition is currently
in press at Hermann.

For the bibliography of the subject, the reader carswid the interesting pamphlet by R. D’ADHEMAR,
Les des équations aux dérivées partielles a caractéristiqubegéeoll. Scientia, Gauthier-Villars, Paris,
1907.



8 4. — Extension of the concept of wave propagation to an arbitraryonmal system.

1. — The considerations that were originally developed dquation (1) of the
preceding paragraph can be easily extended to the systemgquations that were
considered in nal of § 2.

Once more, introduce the variablesa, Xo, ..., X, in the spaceé, and suppose that
inside and outside the layer that is bounded by hwmersurfacegwhich we shall even
call simplysurfaceswhen it will create no ambiguity):

(1) Z=C, Z=Cy,
one of the two systems:

@) £= 33 e, Per 0,9 =0 w=12, ..m
or

o, 04, _ _
) = 33 6L 2% 0191020 w=12, ..m

is satisfied by two groups of functiogs, @, ..., gm and@;, ¢, ..., §, respectively.

Upon using the considerations that were introduced ircoiméext of the canonical
equation for small motions as our basis, we shall supdugeupon crossing some
hypersurfaces (1) that bound a layer that displaces amdaforms in the course of time
in the space&’ of only (X1, X2, X3), certain first-order partial derivatives [in the cases =
1 - i.e., equation (2)] or second-order ones [in the chse=@ — i.e., equation (3)] will
be subject to sharp variations (i.e., jumps).

We also suppose that the functiopsand ¢ are continuous upon traversing the
hypersurfaces (1) and that in the cases ef2, the same thing is also true for the first
derivatives.

Those hypotheses correspond to a type of wave phenonf@nevhich the wave
surfaces are the ones that bound the layer.

In the case of a general system of maximum osdéne functionsg and ¢ must
agree on the wave surfaces, along with their derivativerder less thas

On the contrary, themsill be discontinuities for the derivatives of order

Upon assuming, as above, that one can argue asgfahe ¢ were holomorphic in
(x | t) on the surfaces (1), they must characteristic matsfotlue to the uniqueness
property of CAUCHY'’s theorem.

We shall address the problem of determining the two grofupskmown functionsp
and¢ here. Such a study would oblige us to discuss the CAUMtdlem that relates
to the characteristic manifolds.
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That study was carried out, at least in certain gpeaises, by HADAMARD and
advanced by RIQUIER" and DELASSUS. Following CARTAN, it will bring us back
to the PFAFF equatiorf)(

On the contrary, we assume the existence of furetioand ¢ at the same time as
the existence of a propagation of waves and proposetarnhte some properties.

2.—If z=c is a characteristic surfaeethen the functioz must satisfy the equation:

Q (x]p) =0,
in which:

pi = — i=0,1,...n.

In reality, that was established only on; i.e., forz equal to a particular value
However, since the argumentloes not enter int@ explicitly, the restriction t@ = c is
not essential; i.eQ must be zero as long as one taketie be equal to the derivatives
of that functionz. One will then be dealing with a true (first-order)térdifferential
equation forz

When the functionk that figure in system (2) or (3) depend upon onlyxthéat will
characterize one and only ome However, before advancing the study of that case, we
shall consider the wave surfacein the Euclidian spac8&’ with Cartesian coordinates
(X1, X2, ..., Xy) that corresponds t@and extend the notion of the velocity of displacement.

The surfacea of the equatiore (t | X) = ¢ divides the neighboring space into two
regions | and II, which generalize the interior anteagr of the layer to the case where
& is the wave surface of a vibrating wave that moves nmedium that is at rest. Orient
the normal in the direction that points from the regdido the region Il. Since one can
always replace with — z, one can suppose that the direction for the nornaalish> O is
that of increasing.

Now consider two wave surfaces at the instaatglt + dt :

(4) z(t|x) =c zZ(t+dt|x =c.

The normaln to & at P meets the second surfaceq: at a pointQ. If dnis the
algebraic measure of the segmBQ on the oriented normal then the ratie- dn/ dt is
called the displacement velocity of the wave surfatethe pointP at the instant
considered.

3. Calculating the displacement velocity— We seek an expression farthat
involves the elements of the surfaze

() Cf., Ch. RIQUIER Les systémes d’équations aux dérivées partjgBesithier-Villars, Paris, 1910.
Furthermore, M. JANETLecons sur les systémes d’équations aux dérivées parti€itghier-Villars,
Paris, 1929.

(®) Cf., E. GOURSATLecons sur le probléme de Pfaffermann, Paris, 1922.
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One knows that the quantities:

(5) ai=— (=12, ..n),

(5) g=n,

constitute a system of direction cosines for the mbmto ¢ at P; that is the one that
corresponds to the normal that is oriented in the seinsereasing.
If x; andx; + dx are the coordinates of the poiftsQ, resp., then from equations (4),
one must have:
z(t|x)=c, z(t+dt|x+dx =c,

so when one takes the difference:
(6) dz=podt+ > p dx=0.
i=1

Since thedx are the components of the vecR® and the normal is oriented in the
sense of increasing
(7) dx =adn (=12, ..,n).

Upon substituting those expressions in (6) and then takingnd (5 into account,

one will get:

podt+dn > a n =podt+gdn=0,

i=1

o)
a=s @ :_&
dt g
and
dn
®) ja=| 4] = IR ]
dt g

That is the formula that we have in mind. It exhiihe manner by which the
displacement velocity varies on each surface ®idmd time.

4. An application of formula (8). — Let us apply the formula that was just fouod
equation (1) of 8, which corresponds, as we said, to the phenomehthre propagation
of sound.

From equation (% of the preceding no., equation (3) 03 & written:
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1
v P =d.,
SO

g

One then finds that the constanhis nothing but the propagation velocity of a wave
surface that bounds a layer that is the site oidmibrations at the instant
For perfect gases in the adiabatic regime, we baga that:

V2: y&,
o

in which y; po, & have the significance that given inZ8no.6), and in particularpg is
the rest pressure.

Upon considering the case in which there is eouuim outside of a certain vibrating
layer, one can conclude that the formula:

Po
£

V= |y

must give the propagation velocity for sound.

Let us adopt the practical system of units (metsesonds, kg-weight): 1 %of air
weighs 1.29 kg.po , viz., atmospheric pressure, is around 1 kg pér so it amounts to
10" units in the system. The acceleration of graisit9.8, and:

10°x 9.8
1.29

VZ=141

One will then find that the velocity is around 331 m /s, which is in good agreement
with experiments.

The calculation of the propagation velocity of sdywhen we imagine the simplest
case of plane waves) was done for the first tim&lBWTON, who found that:

v= |2
Po

when one assumes that the phenomenon is isothermal.

In the case of air, that expression will ge= 280 meters per second 8t @n the
contrary, experiments yield the value of 333 naf €.

LAPLACE gave the reason for the disagreement betvitbeory and experiment by
noting that the variations of pressure that argh® propagation of waves produce
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variations in temperature that imply warming in the pogssed layers and cooling in the
dilated ones.

By taking that into account, he then showed that ideorto obtain the true
propagation velocity theoretically that agrees with expent, it would suffice to regard
the phenomenon considered to be adiabatic, which wouldleatb multiply the ratig,

/ po by y.




§ 5. — Digression on the general conception of wave motidi.

1. What is a wave motion? One can perhaps restrict the motion of a fluid to one
for which the displacements of its particles implyeaen more marked motion for some
particular elements that are present, such as aurées or a separation surface.

However, that would not be a property that clearlgrilisinates, as one can show in
a classical example.

Consider a rectangular channel with a horizontal badevertical walls, and take the
case in which the motion of the gravitating liquid thatastained in the channel (say,
water, to be precise) always takes place parallelg@tils and in an identical fashion in
all of the longitudinal sections of the channel; i.e.the various vertical planes that are
parallel to the ends. The study of the phenomenohta@h come down to the two-
dimensional case in an arbitrary longitudinal section.

y Y

O Q X X
Figure 2.

The base (Fig. 2) will be represented by a horizontalKeand the free surface by
a line |, which generally varies with time, but in such a whgttit is only slightly
different from a horizontal ling = h (at least, under ordinary conditions); that will be t
level line under static conditions, whirs the (mean) depth of the channel.

Let L denote the domain of the motion — i.e., the indefingted (which generally also
varies in time) that is found between the base antirthé

Having said that, the general problem of hydrodynamicshfmset moving planes can
obviously be formulated in the following way: At the testt = O, one is given a
perturbation; i.e., the configuration dfand the distribution of the velocities In
Characterize the appearance of the later motion, apdrticular, the law of variation of
l.

The question thus posed (all details aside) belongs wetteral problem of waves in
channels if one says “wave propagation” to mean, more sglgcithe evolution of
motion according to a certain law when one startl wigiven perturbation. From such a
viewpoint, one can focus on the general integral dyeethd it is only then that it can
present a wave-like aspect in the ordinary senseeowtird, and almost by accident in
certain applications. That is what one sees in thly eesearch by LAGRANGE, who

() Cf., T. LEVI-CIVITA, “Questioni di meccanica classi@ relativista, 1l Conferenze. Le onde dei
liquidi. Propagazione nei canalZanichelli, Bologna, 1924.
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reduced problem of the equation of the vibrating string by o#gde the vertical
acceleration of the motion of each particle in conger to g (the acceleration of
gravity). The most important application that he mads @gancerned with the tides.

POISSON and CAUCHY proceeded in an analogous fashion wh#dedoning the
too-restrictive hypothesis on the acceleration anditiggamall motions in deep channels
in general. The notion of wave appeared by itself imaaner that was at least very
expressive in regard to question whose physical nature ighgosé a notion, if not quite
Clear.

That is what will happen, for example, in the cabahat one calls emersion waves,
which are produced when a solid, such as a floating bedwgjsed briefly and removed
from contact with the fluid mass, which then tendsetmver its equilibrium.

The proper motion (at least, theoretically i.e., the ideal case of absolute
incompressibility) of the liquid will begin immediateiy the entire mass of water and
change in the height of the free surface will displaalong the channel with an
acceleration that is reasonable constant (if onedisei dealing with acceleration and not
velocity). There is something that propagates, but adthahat constitutes a highlight, it
does not seem to be a law that can clearly charaetdre& motion as a wave motion.
Things are entirely different for the propagation otdigtinuities that we are addressing
systematically here.

2. — It is important to emphasize that although the casehich discontinuities are
involved is indisputably the most striking one, the quantiasiudy of wave phenomena
in fluids and elastic media was not originally posedhat form, but was developed
without relinquishing the principle of continuity.

In reality, one takes the simplest cases as moitkelshich one can limit oneself to
the consideration of just one dimension, which istwiagpens for vibrating strings.

Let s denote the position parameter of the vibrating partrclhe one-dimensional
region in question (e.g., the initial rectilinear configima of the vibrating string), and let
t denote time, whilg denotes the displacement.

First of all, one considers the solutiopgs, t) to the differential equation that models
the phenomenon that depend upon a unique argusaents — Vt, in whichV is a
constant. The binomial =s — Vtis called theophaseof the corresponding phenomenon.

When the phase is constant — i.e., when one imaginelation of the type:

s =S — Vi= const.

between the argumengs@ndt, which are independeatpriori, the characteristig (s;) of
the vibratory phenomenon will remain constant. In otherds, for an observer that
displaces along the string (or more generally, aloegstipport of the argumeskt with
the constant velocity Vthe phenomenon will appear to be stationary. Thathy the
constantv can be interpreted agpeopagation velocityor the vibratory state of the string
relative to the solutions of the particular typés;). That is precisely the sense in which
one refers tavaves that propagate with velocity V.
More generally, even in the case of three-dimensiosalind, elastic, or

electromagnetic phenomena, the study of waves is @@ Iby the search for particular
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classes of solutions (of the systems of partial diffeal equations that correspond to the
phenomena) that depend upon a single argument that neax liunction of the three
spatial coordinates, x, X3, and timet = xp; i.e., just one argument of the type:

=2

GX,

in which thec; are constants that are arbitrarpriori.

We suppose that we are dealing with solutions that dep&atie¢ly upon the point
(X1, X2, X3) (i.e., which are not just functions of time). lilihen be necessary that one of
the three coefficients;, c;, cz must be non-zero, or rather, that the vecowrhose
components along the coordinate axes@res,, ¢z must be non-zero. One can then
regards; = ¢/ ¢ (c is the length of the vect@) as the unique spatial element upon which
the solution in question depend, insteadf.ofWe remark that the /c=a; (i = 1, 2, 3)
are the direction cosines of the veotaand set €,/ ¢ =V. The unique argument upon
which the determining parameters of the phenomenon are sgppo depend is then
once more present in the fosn=s — Vt in which:

3

s=3ax

i=1

is virtually a spatial coordinate along the direction, (a2, as) and can then be denoted
more simply by with no essential restriction (and by taking gexis for its direction,
for example).

One will then be dealing with plane waves, in the setgt the vibratory state
depends upon onlyg for any value ot, and as a result, it will be identical to the same
planes; = const. at all points.

It will follow further that the phenomenon will béasonary for an observer with
respect to whicls; = const.; i.e., for whick displaces with velocity, etc.

One poses a more general problem by takibg be an arbitrary function (and not
necessarily a linear one) xif X2, X3 and supposing that the determining parameters of the
phenomenon are functions of not osly= s — Vi but also of another purely-spatial
argument.

The latter type includes the waves that one callsrg@athevaves. Some types of
waves that are even more general, but conceived in dagana fashion, have been
studied from various viewpoints by BATEMAN and MAGG).(

() H. BATEMAN, Electrical and optical wave motigi€ambridge University Press, 1915.
G. A. MAGGI, “Sulla propagazione delle onde di formalsjiiraglia nei messi isotropi,” Rend. Acc.
Lincei (5)29 (2" sem, 1920), pp. 371-378.



8 6. — The Cauchy method for integrating a first-order partialdifferential equation.

1.— As we saw in &, (no.4), for the two systems that were considered therelno
the characteristic manifolds:
Z (Xo, X1, ..., Xn) = CONSL.

annul a certain determinaf that generally contains the unknown functiofs in
addition to thex andp = 0z / ox. However, as was pointed out Z8no.5), there is an
important class of normal systems for whi@hcontains only the< and thep. It is
comprised of the systems of order= 1 ands = 2 whose coefficientsg,, or E,,

v
respectively, are functions of only tke
Similarly, for the normal systems of maximum ordetiCh is the same for all
variables)s > 1, one will have an equation of the same type fod#termination of the
characteristic manifolds provided that the coefficieritahe derivatives of maximum
order depend upon theexclusively.
Since we propose to study the equation:

(1) Q (x|p) =0,

in which:

(2) psg (i=0,1,2,..n),
0%

we shall present CAUCHY’s method for the integratida dirst-order partial differential
equation, and in particular, equation (1), in which the nomh z does not enter
explicitly. However, we are sure that at least ohthep figures inQ — for examplepo .
Upon solving (1) foipo, we can write:

(3) Po+H(t X, ...s X | P1, P2y -+ Pr) =0,
in which:
DZE i=0,1,2, ..n).
0x

It is convenient to first treat the linear case.

2. Case of the linear equation- It is well-known that iH is a linear function of the
p then the problem of the integration of (3) will amotmthe integration of an ordinary
differential system.

It is nevertheless good to recall that result, whichwike applies to the general case.

Equation (3) will then have the type:

(@) po+Ao+iAn=0,



§ 6. — The Cauchy method for integrating a first-ordetigdatifferential equation. 29

in which theA are functions of only the variablesq, ..., X, . Consider the spa&:; of
n + 2 variables, x;, ..., X, Z and a hypersurface= ¢ (t | x), namely, g; that is an
integral of equation (4).

Draw reference axes in the sp&e (which we assume to be Euclidian, for the sake
of convenience), while exhibiting just one variakl®r more clarity.

4

Figure 3.

Let I' be the section of the hypersurfacby the hyperplané = O; i.e., the locus of
points oft = 0 that are defined by the equation:

z=¢(0|x) or, more briefly Z=¢o (X).

The fundamental idea that will guide us in what follmessists of regarding as the
locus ofw" curves that are obtained by integrating a convenient aydsywstem of the

type:

dx _ ., L _
(5) - P (t]X) (=12, ..n),
dz _

of rank f + 1), whose unknown functions pbérex, ..., X,, andz. The system (5), (6)
introducesn + 1 arbitrary constants, but it will diminish theumber by 1 if one wishes
that the system should be compatible with the equatog (t | x) for o.

The essential hypothesis that justifies the consideraf that system is that it must
be independent of the previous integration of equation (6).

Upon regarding as a function of andx, one will deduce from (6) and (5) that:

dz 5 dx .
——=7= + —= + -
& Po ;p.dt Po ;p.x

SO upon taking (4) into account:
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Z:—Ao+zn:p,(xi—A;).

Since one desires that the differential system (),should be independent of the
integration of (4) — i.e., valid for any integral hypersoefa- the coefficients gf must be
zero, SO:

Xi=A,
and therefore, it will follow that:

The desired differential system is then:

, dx _ L _
(5) y A =12, ..n),
, dz_

or, if one prefers the classical form:

d_Xlzd_XZ: :%:_gzdt

which permits one to determine the integral hypersurfacés) of

Indeed, in order to solve the CAUCHY problem that relatea given curve in the
hyperplana = 0, it will suffice to first consider the totalityf the (") integral curves of
the system (%, in whichz does not occur.

The integration of the remaining differential equati6f, which amounts to a simple
guadrature when one has already integrated the systBmtlign completes the
determination of the curves in the sp&e [of (t | x | 2)]. If one wishes that among
those curves there are ones that are supportédtbgn one must write out thattakes
the valuegy (x) for t = 0, in which thex correspond to the same value O and can then
be identified with then arbitrary constants that are introduced by the integraifathe
system (5. Hence, there will ba arbitrary constants, and each integral hypersuréace
of (4) will appear to be the locus ab") integral curves of (3, (6) that issue from the
points off".

3. General case-— The process that consists of converting the integratf a linear
first-order partial differential equation into thatar ordinary differential system, which
is due to LAGRANGE, was generalized to nonlinear equationsAyRANGE himself,
and then by CHARPIT, CAUCHY, and JACOBI. Here, wellshgazve CAUCHY’s
method in a form that will best show the principlenisavhat better than what appears in
the usual presentations).
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We recall the general equation:

(3) Po+H( X, ... X | P2, - Pn) =0

and investigate whether it is possible to determine thergleinéegral hypersurface (viz.,
the one that is provided by CAUCHY’s theorem with arbytraitial data) as the locus of
integral curves of a suitable differential system.

One easily recognizes that, in general, one can ngefoassociate (3) with a
congruence of curves in the spaSe, that agrees with any integral hypersurface.
However, one must pass to an auxiliary space withggdarumber of dimensions. It will
be precisely useful to consider the arguments to bepdhps, ..., pn that define the
tangent element & geometrically, in addition to the coordinatesf the running point
on the integral hypersurfacg If one wishes that thp should have a concrete metric
significance then it will suffice (as one has doreealy for ease of description,
moreover) to attribute a Euclidian metric on the sga¢gand regard thé x, andz as
Cartesian coordinates. Henpg pi1, ..., pn, and — 1 are proportional to the direction
cosines of the normal tawith respect to the axes of theq , X2, ..., X, Z respectively.

Having said that, we seek to associate (3) with a difteal system of the type:

%—X(t x| p),

(7) dn i=1,2,..n),
B - Rl p)
dz _

®) -2 x1p).

If one knows the; as functions of, x, p then one can easily define the expression for
Z. Indeed, since is a function ot by the intermediary of, =t and the othex, one will

have:
—=po Z p

so, thanks to the first of equation (7):
9) ——Z(tXIp) po+zp>§

Observe that equation (8), in whighis given by (9), must be considered only after
integrating the system (7) becausavill then be given as a function ofoy a simple
guadrature.

Once more, consider the sp&e and a hypersurfade of the hyperplané= 0. Let
Mo andaw be a point of and the hypersurface that is tangerlato the hypersurfacg
which is the integral of (3) that passes throligh
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We shall express the idea that the integral c@yef the system (7), (8) that issues
from Mp and is tangent tey belongs to the integral hypersurfagavhile respecting the
equations:

pFE i=0,1,...,n; % =t),
0%

and that this is true for adythat passes throud¥, .

Upon passing frormtot + dt, p; will be increased bgp, in such a way that:
(10) dp =P dt

On the other hand, in order for the relations:

-
| aXI

to persist, it is necessary that one must have:

(11) dp = > p, dx (i=0,1,..n),
i=0
in which:
0%z .
i = Pii = i,]=0,1, ...n).
Pij = Py ox 6Xi @i, )

One must realize the equality of the expressionshiedp that are provided by (10) and
(11). Observe that the quantitigswith non-zero indices j depend upon the choice of
" (which is arbitrary, by hypothesis), while thethat have at least one zero index satisfy
some relations that are deduced from (3) by differeatianamely, then+ 1) relations:

"oH  0H
P

(12) Poi + P; +
= 0p :

halliN) i=0,1,...n).
j 0%
Since there aré (n + 1)(n + 2) quantitieg; , in total:
in+1)n+2)-+1)=in(n+1)
of them will remain arbitrary, while the quantitiestthae available are:

X1, X2, ooy Xn, P, P2, ..., Pn,

which are & in number, which will be less thagn (n + 1) whem > 3.

The preceding conditions will then lead one to think thatould be impossible to
determine thé; in such a way:
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Pidt=>"p, dx
=0

are independent of ths .

Nevertheless, the following developments will assume success of CAUCHY’s
idea:

Upon differentiating with respect tpthep; =0z / 0% will become:

dp n dX- n
=P =p+ —L=pio+ L X
& Pio ;”'m Pio ;p,J

Upon eliminating they; o = poi by means of the relations (12) and taking into account
the symmetry of the; in their indices, the preceding relations will become:

oH & oH .
P=——+ X—-—1|p (=12, ..n).
0x ;{ WJH( )

J

These will also be satisfied independently ofghé:

Xi:a—H,
ap,
p=-M =12 ..
0%

It will then seem that if one starts from the adiy point My of the integral
hypersurfacerand attributes increments to the, p, zthat satisfy the differential system
(7), (8), which will henceforth be characterized in fwen:

ax _oH
dt  op,’
(13) i=1,2,..n),
dp _ _9H
dt  9x
dz_ & oH
14 —= - - H,
(14) dtféman

then one will pass to an infinitely-close poMt that again belongs to and for which
thep; + dp will determine the direction of the normal ¢cat that point.

The same considerations can be repeated immedialely wne starts froml;, and
that will exhibit the essential fact that the sysi{@d), (14) was formed in such a fashion
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that is will be valid for all integral hypersurfacesthat pass through, with a given
orientation to the normal — i.e., with givpn

We then find (for the integral hypersurfacg the same conditions &, that we
found atMp .

One then deduces that the entire cutuvat is defined unambiguously by (13), (14)
under the condition that the p, z take values fot = 0 that correspond tigl, belongs to
the integral hypersurface in question, which one should nafl is any of the integral
hypersurfaces that pass throughand admitzp as a tangent hyperplane there.

One will then obtain the important geometric comylidnat:

If two integral manifolds touch at a point then they will touch all along aec@rthat
passes through that point.

CAUCHY called the curve€ “characteristics.” Following HADAMARD, we shall
call them bicharacteristics while reserving the word *“characteristics” for the
hypersurfaces (in the spaBeof t, x) that behave in an exceptional way in regard to the
CAUCHY problem.

4. Solving the Cauchy problem— The method that was just presented permit one to
solve the CAUCHY problem; i.e., to determine the inte¢gmglersurfaces in the space
S+ that passes through a given hypersurfagethe pland = 0.

Indeed, it will suffice to consider the integral cusvef the system (13), (14) that
issue from the points df. They will constitute an integral hypersurfagef equation

3).

5. The Hamiltonian system that is associated with the equatioQ = 0. — The
system (13) has the Hamiltonian form. The charatkefisnctionH depends upon X,

p, in general.

Now, one sees th& is a form of degreen or 2m with respect to the according to
whetherQ = 0 is the equations of the characteristic manifold enadhses = 1 ors = 2,
respectively.

From that homogeneity, if theverify the equatio2 = 0 then the same thing will be
true for theA pi , in which A is arbitrary. Upon solving fops, one will then see that if
one multipliesps, p2, ..., pn, and alsqyo by A then the same thing will be true et In
other wordsH is a homogeneous function of degree one with respelog fo t

The Hamiltonian system for which the functidns homogeneous of degree one with
respect to the enters into some questions of geometrical optjcs (

It is important to observe that in this case, from EBIs theorem on homogeneous
functions, the right-hand side of (14) will be identligalero. Hence:

dz _

—=0, SO Z = const.
dt

() Cf., T.LEVI-CIVITA and U. AMALDI, loc. cit. (see above, pp. 19), pp. 456-469.
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That must say that, in this case, the integral cun¥élse system (13), (14) belong to
the hypersurfacez= const. In particular, they are effectively plangves ifn = 1 (i.e.,
if there is only one variable besideg).

6. Applications. — Suppose thaf;, or Ej;, are constants, which will physically

correspond to the case ohamogeneous mediumthe case of = 3.
Q will then depend upon only the and as a result, the functiehwill depend upon

only theps, p2, ..., Pn -
The Hamiltonian system becomes:

d_xza_H i=1,2, ..n).
dt op

The first of them gives the integrals:
pi=p’ (i=12,..n),

which, when substituted in tlo#d / dp; , will render them constant in such a way that
if one letsx’ denote the initial values of tixethen the second equation will give:

oH .
- = f—4+ X =
(13) X tap? X i=12..n
upon integration.

Hence, it will emerge that the bicharacteristics laves in either the spac® of the
variablest = xp, X1, ..., X, Or, upon eliminatind, in the geometrical spa& of only the
X1y veey Xn -

As far as the determination of the wave surfacescaneerned (always under the
hypothesis of a homogeneous medium), we fix our attenfgmm their configuration,
instant-by-instant, in the geometric sp&:¢of only x).

In fact, we are dealing with a particular case of gemmetric solution of the
CAUCHY problem, which was pointed out already in #pupon taking into account the
two facts that no longer has the significance of a geometric coorejrait that of time,
and that the bicharacteristics are lines.

Let us see what a wave surfagethat was given arbitrarily at the instant 0 will
become at the instant

Draw the line through each poinf of g (which corresponds to the instant 0)

that is defined parametrically by equations (15). One $esgt$ direction will depend
upon the manner by whidh is a function of the.

The pointMo with coordinatesx’ at the instant = 0 will go to the points/ whose
coordinates are (15) at the instant
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The locus of point is the wave hypersurfaee at the instant

7. Plane waves— Formulas (15) highlight the fact that if the wave scefis planar at
the instant = 0 then that will continue to be true in the coursemé.

It will then follow that plane waves are always gibfe in an arbitrary homogeneous
medium and for a phenomenon of an arbitrary nature.

8. Epicentral waves— In particular, suppose tha is infinitely small around a point
O (which we take to be the origin, so it will followat x° = 0) at the instartt= 0.
That is the case of a perturbation that is initiaithyited to a very small neighborhood

of the pointO. If one extends a term that is used in seismology the poin®O will be
called theepicenterand the waves that emanate from it will be cadlpdtentral.

Now takedp to be infinitely small and’ = 0. From (15), one will see that the wave

surfaces will be enlarged homothetically arohoh the course of time.

Furthermore, recall th&l is homogeneous and of degree one with respect {o gt
dH / dp will be homogeneous of degree zero. One will therntlsatethedH / dp depend
upon only the direction cosines:

Equations (15) will then give:

X =ty (n, az, ..., an) i=1,2,...,n),

and for each value af that will constitute a parametric representation @& wWave

n
surface as a function of timevariablesa; , when they are coupled by the relat@af =
i=1
1, and will provide some other ones with 1 independent parameters.
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1. Geometrico-kinematical compatibility conditions.— Suppose that (t | X) =
const. is a wave surface in the space af the instant, and consider the corresponding
surfaceo in the space-tim&of (t, X). Letg, ¢ be two groups of functions that satisfy
the normal system of partial differential equations.

By analogy with the linking conditions, which are fadated in conformity with the
mechanical problem, in the case of the canonical equatismall motions, we suppose
that theg and¢" take the same values onas well as their partial derivatives up to order
s — 1, but that some of the partial derivatives of ordegeresent discontinuities upon
traversingo. Theg andg will then define a wave phenomenon on one side afd the
other.

We shall determine the compatibility relations thatseh jumps must verify upon
crossing the surface.

Case of s= 1. Suppose thdtis a continuous and differentiable function of the
variablest = xg, X1, ..., X, , and set:

of )
fi=— 1i=0,1, ...n).
ox ( )

In the case of = 1, the first derivatives df- i.e., thef; — will generally be subject to
jumps.

Figure 4.

Let us label the two parts of space that are sepdgtéie surface by + and — and
let f * andf ~ denote the limiting values of a functibwhose point-argument tends to a
point of the surface from each side of it. In genesetl,

Af =f " andf ~.

In particular, if one is dealing with a functidrthat is continuous upon crossiiag
then:

fo= fo,

in which P is a point on the surface.
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If Q is another point of the surface then one will alaweh

fo= 15,
SO
fo- fo=fo- fs.

Upon takingQ infinitely close toP, one will get:
dfy = df;,

or since the derivatives have limits and if we dertbgecoordinate differentials yx

then we will have:
Do frdx= ) fdx
i=0 i=0

upon passing fror® to Q, so:

n

M (- f)dx= Zn:Afi dx=0
i=0

i=0

for all dx that correspond to infinitely-small displacemethizt are tangent to the surface;
i.e., ones for which:

n

dz= ) p dx =0.
i=0
Upon applying LAGRANGE's classical procedure (vithe method of undetermined
multipliers), the condition will become:
Z(Afi -Ap)dx=0.

i=0

Upon supposing tha, # 0, one can chooskin such a fashion that:

Afo—A o = 0,
SO
A:A_fo
Po

and as a result, since tte, dx, ..., dx, are arbitrary, one will have:

A =Ap i=1,2,...,n).
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If the f are assumed to be continuous then one will then remetindethen + 1
jumps in the first derivatives dfupon crossing the surface are coupled topthg the
relations:

(1) A =Ap (i=1,2,..,n),

in which A is undetermined priori.

Case of s= 2. The functionf and its first derivatives must be continuous upon
crossing the surface, in such a way that the precedmgufas will apply to the second
derivatives.

Since eaclh is continuous, one will then have:

Afij :/]i g:)ljp,

if A; denotes the multiplier (which is characteristic of dicontinuity in the derivatives)
that corresponds tp, and:

O _ o o

ox 0% Ox  ox

ij

The coefficientsd generally vary when one passes from one first devivab the
other. One infers, moreover, that:
A_A_
_ = - = p’
Y j
SO
2) My =pppy (.j=0,1,...0).

We shall give the name @eometrico-kinematical compatibility conditiots the
conditions (1) or (2) (which are independent of the fiaat we are dealing with solutions
to a given normal system, so in the physical interpogtait will be independent of the
special mechanism of the phenomenon that is governdthbgystem).

2. Dynamical compatibility conditions. — On the contrary, the dynamical
compatibility conditions are deduced from the partial défifeéial equations directly, and
their name comes from the fact that one considerdifferential system to be one that
defines a certain physical phenomenon (in particuldynamical one).

Fors= 1, the equations are written:

m n . 6
E/,EZZE;N i"+CD,,: w=1,2,..m).

Since theE!‘w and®, are continuous, the jumps in the partial derivatdgs / 0x;
upon crossing the surfaeemust satisfy the relations:



40 Characteristics of differential systems and wave pradjmsaga

n

iZELVA%zo w=1,2,..,m.
v=li=0 ]

However (nol), if A, is the multiplier that corresponds ¢othen:

Aa¢”=)lvpv v=1,2, ..m).
0x

It will then result that:

3) > w,A,=0 w=1,2, ..m.

Those relations constitute a system maf homogeneous linear equations 1
parameters:

A1, A2y o An,

which characterize the discontinuities in the fastivatives upon crossing the surfaze
Such a system admits non-zero solutions because téenieant of thew),, is zero
for a characteristic manifold (viz., the surfage
In the concrete applications, one must often spewtyonly the nature of the wave
surfaces, but also the dynamical compatibility condgio®ne will then form the linear
equations (3), and when their determinant is equal to zbkab, will permit one to
determine the wave surfaces. One will then deduce libeving rule:

Practical rule: The partial differential equationf dhe characteristic manifolds is
obtained by annulling the determinant of the systefndynamical compatibility
conditions.
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1. — The fundamental equations of hydrodynamics are:

v =a= F—igradp :
dt P
@) dp 3, 0u,
—+p) —=0.
dt p; 0x%

In this system, the unknown functions are the(i = 1, 2, 3), which are the
components of the velocity of the fluid particle and the densigy The independent
variables are, x;, X, X3, While p denotes the pressure, dnds the force per unit mass.

As one knows, the substantial derivativedt is expressed by:

Upon excluding the case of homogeneous liquids for whigha constant, one can

regardp as a function op.
The first of equations (1) is equivalent to three soadmations:

d_q+£@a_’0 =X

i (i=1,23),
dt pdpadx

in which theX; are the components of the fofe@long the axes.
The system (1) can then be written:

a4, 1dp0p _y (121,23
dt o dpox

(2)
do 3, du,
—E+pY —=0.
dt p; 0x%

Form the corresponding equatio? = 0. Under the change of variables

(t EZXO’ );l )z )%j the system (2) will become normal onl\fz 0.

Since:
(G=0,1,2,3

for an arbitrary functiom (t, X), the transformed equations of (2) will be written
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ou 3 1dp _o0p
b i +§u. +—- " pL+..=0 =12, 3),

0p 3 3 du
— (Pt up)+ —+...=0,
5, P ,Z;' ip) p;paz
or rather, sincelz/ dt=po+ > u; p; :
]

oudz 1 dp_ o0p
__+__pi_+..
) oz dt pdo 0z
@) 0p dz 3, du
i  — L +...=0.
oz a PP s

=0 (i=12,3)

The determinan® is that of the coefficients of the thrée / 0z anddp/ 0z
Hence, the equation that must be satisfied bywaawe surface is:

2 o 1dp,
dt pdp
dz 1 dp
a0 pdp™
3) pEP- =y,
0 dz 1 .dp
dt pdp >
dz
PR PP, PR a
or, after developing:
CIEREE
dt dt do ’
upon once more setting:
g2 — z p|2 .
The equation the splits into:
dz
| — =0,
(1 ot
(1 (d_zjz_gzﬁ):o
dt dp

Equation (1) expresses the idea that one is dpalith a discontinuity surface that is
fixed with respect to the mediyme., it always involves the same fluid particles
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As for equation (ll), if we suppose (as is always theecfr real fluids) that the
pressure increases with the density and set:

ﬂ:v2

Vreal >0
do
then we will get:
dz
—=+q9V
a9
Now:
& o+ Yun
dt —
_ po pJ'
[9 Z : gj

so if we preserve our conventions48no. 3) and leta andv,, denote the displacement
velocity and the normal componentwthen:

d
Ef=g(:a+vn):—g(a—vn),

in whicha — v, is the propagation velocity.

The two possible signs ofz/ dt = ¥ g Vthen corresponds to the two cases in which
the velocities of propagation and displacement do araddwave the same sign, resp.; i.e.,
in which those two velocity vectors have the same or sippsense, resp. Moreover,
one will have:

V=la-wl

which shows thaY is the absolute value of the propagation velocity.
Hence, that propagation veloc¥will have the formula:

4) V= —,

and in the adiabatic case 18n0.6), one will have:

p=c s, - P hichwillgiver V= /yB.
do " p o

These results were stated for the first time by HWBODI and presented
systematically by HADAMARD in hid.econs sur la propagation des ondegich we
cited above on pp. 19.

Here, one can get a new simplification, thankshtorepresentation in the spsef
t, X, which will permit one to treat the four independent \@eia on the same basis.
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2. The dynamical compatibility conditions. Discontinuity parameers. — If we let
hy, hy, hs, k denote the parameters that characterize the disodgtin the first partial
derivatives ofz as functions ofl;, Uy, us, & then the first equations in (2) will give:

®) h—+———-pk=0 (=1,23),

from the preceding §, n@.

The condition that one deduces from the fourthaéiqo (2) is a consequence of the
preceding ones, from (l1).

Sincedz/ dt # 0, one will infer from (5):

L
p  dz/ dt

If one takes into account thdf = dp/ dp anddz/ dt = + g Vthen one will get:

h=sivP oKV, (=12 3),
P 9 Y
in which:
a="
g
as always.

As a result, ifn denotes the unit vector along the oriented nortih@h one can
condense the preceding formulas into the singléoviat relation:

(6) h:$k—vn:—LGd—zn,
P pg dt

in whichh denotes the vector whose componentshare,, hs .
Let us also calculate the discontinuity in thetoea that represents acceleration. Its
componentsy are given by:

a = d_q: %+za_qu,

dt ot S'ox '
and since:
ou. )
A—=h i=1, 2, 3),
P Po (i )
ou .
A—=h i,ji=1,2,3),

]

dz
Aai=hi (po+ > u;p) = h—,
j
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SO
(7) Aa:ith:—EgVZn.
0

This shows that the discontinuity in the acceleratiector is parallel th, so from
(6), it will be normal to the wave surface; i.e., ithwe longitudinal.

3. — We have excluded the case of liquids from this discassite study of that case
can be deduced from general considerations by passing limithehendo / dp tends to
zero; i.e., whemlp / dp, which is the square of the speed of propagation, goesdayinf
If we then recall equation (1) then we will see thatyathe two extreme cases are
possible in liquids: Fixed discontinuity or instantaneowppgation. In reality, even in
the case of liquids, there is a finite propagation spgade they are also compressible.

4. Viscous fluids. Impossibility of wave propagation— In order to show that
impossibility, which goes back to P. DUHEM, we shallde LAMPARIELLO (%) in
our application in the application of the preceding gdnm@raciples.

We shall show that the viscosity is incompatible Wit presence of discontinuities
that vary in time.

The differential equations of slow motion in viscolusds are ?):

du _ _1@6_p+_1viza_t{<+vA2q (i=1,2,3),

@®) dt ' popdx 3 0x50x%
dp ou,
4 _:O’
dt p;axk

in whichuy, Uy, Uz, p are the components of the velocity and density oflthe particle,

p is the mean pressure, is the coefficient of kinematic viscosity, arXl are the
components of the force per unit mass alongxhaxes, resp. The system (8) in the
unknown functions;, Uy, us, p of the four variables = X, X1, X2, X3 IS quasi-normal with
respect tot. One then performs an arbitrargal transformation on the independent
variables and examines whether the transformed systeuaisi-normal with respect to
the new variable.

Letz= const. be a wave surface and further set:

pi:E i=0,1, 2, 3).

ox

() Cf., G. LAMPARIELLO, “Sull’ impossibilita di propagaani ondose nei fluidi viscosi,” Rend. della
R. Accad. dei Lincei (6), vol. XIll, Lsem. (1931), 688-691.

() Cf., e.g., H. LAMB,Hydrodynamics 5" ed., Cambridge University Press, 1924, pp. 546. — M.
BRILLOUIN, Lecons sur la viscosité, et®art I, chap. I, Gauthier-Villars, Paris, 1907.
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From the known relations:

0,0
ax 0z
(i,k=0,1, 2, 3),
9° 62
0% OX, - PRz az

we will find that:

RS
0x% & 0%

2
Z 0, :zpip(

0%, 0%,
+...=D +
—ox 0% % 07’ p,zk: 57

2 2 2
AZUi:zauzk:zaLj p|f+--.ZGUizp|f +o

0%, . 0z 07 <
d o0 0 0
—=——+d) Uy —-= + — + ...
il ;ka (P Zpkuk)az
_dz 6
Codt 62

Hence upon neglecting to write the terms thahabcontain one of the derivatives

6 BBL so they do not influence the quasi-normal charathe transformed system of
¢ 0z

(8) will take the form:

1 62uk 1d :

—Vp -————p+---=0 (i=1,2,3).
3p.;pKazz k ,odoazp ( )
d_26_p+ =

dt 0z

Upon discarding the case dtz/ dt = 0, in which the wave surface is fixed in the
medium, the fourth equation of the system can heeddorodp/ 0z, in such a way that it

would suffice to consider the third-order determinthat is formed from the coefficients
2

... 0%U . )
of the three derlvatlvesa—z". It will be written:
z

P +3> 1} e nR
k 2
R B3 PR =36(Zp§j,
k
N SN} g+3) §
k




§ 8.— Application to the equations of hydrodynamics. a7

up to a trivial factor.
If z= const. represents a wave surface that propagatesnbkemust have:

>, pc =0,
k
which will imply that:
P1=pP2=ps=0,

which will yield the impossibility of wave propagation.

Meanwhile, one should not believe that it is only thecaesity that is at fault. One
should consider the following example:

The vibration of a string in a medium that exerts miscresistance (air, for example)
obeys a second-partial differential equation of the:type

10% 3% .0¢
9 =~ 99 9P, 2% -
®) V2ot axt ot

The unknown functionp of the variableg, x, y denotes the displacement of the
particle (at the instarty of the vibrating string. The termA% (A > 0), which has the
dimensions of the inverse of a length, translatesyéically into the resistance of the
medium.

However, although we are dealing with a dissigatystem here, there is still a
possibility of wave propagation, since the chanasties of equation (9) coincide with
those of the equation:




§ 9. — Application to elastic media.

1. - In a more general way than the one that was feliblby BELTRAMI and others,
we shall adopt the same guiding principle and follow LAMPRR.O (%) in our study of
the propagation of waves in an elastic medium fonitgly-small deformations.

2. Wave propagation in an isotropic medium (homogeneous or not: We shall
see that one can have two types of waves — viz., ladig&l and transverse — that

displace with velocities/ A+au and \/Z resp., in whictp denotes the density, and
P P

M are the Lamé parameters (which are possibly congtaathomogeneous medium),
which satisfy the conditions > 0, 31 + 2u > 0.

3. = If u, v, w denotes the displacement of the poity( 2) at the instant then the
deformation will be characterized by the parameters:

g _% g :ﬁ g = aW
1 aX, 2 ay, 3 a )
ow ov ou ow ov odu
NW=—=+t—, =—+—, =—+—,
oy 0z 0z 0X ox oy

and the elastic energy, within the limits of validior Hooke’s law, will be expressed by
the positive-definite quadratic form:

(1) W=3[A (a+a+&) + u(2el + 265+ 265+ i+ +y )l

The differential equations of elastic motion arenthitten:
0(OW) 0(0W)| 0(dW 0°u) _
— | —|+—| — |+=—| — |+ p| X—-——"|=0,
ox\ dg, | ay\ay, ) 0zl ay, at
2
(2) i M +i 6_VV +i 6_VV +p0 Y_a_v :0’
ox\ oy, ) ay\de, | 0z\ day, ot

2
O[OW ) O[OW) O[OW), [y O W_g
ox\ dy, ) ay\ ay, ) o0zl ae, at

() Cf., G. LAMPARIELLO, Rend. della R. Acc. dei Linceiol. XlII, fasc. 11 (June 1931); vol. XIV,
fasc. 7-8 (October 1931); vol. X1V, fasc. 9 (November 1931).
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4. — Letx, u, X (i =1, 2, 3) denote the quantities ¥, 2), (u, v, w), (X, Y, 2), to
abbreviate. Upon writing out only the terms in the seasri/atives, equations (2) will
take the form:

. 0N
(2) A +4) &kz;

(3]

2
Yerppu- p2% =0 (=12 3).
% ot

(o]

The wave surfaces are given by the characteristidghi®fsystem in the unknown
functionsu; of the variablesy =t, X, X2, X3 .

If one sety; = 9%z (G =0, 1, 2, 3) then the change of varlab[)é 5% ij
0x; Z 4 5 3

will give:

(A +ﬂ)prK

=0 (=12, 3),

. +(u2 - pnﬁj

by a calculation that is entirely analogous to the orteé preceding paragraph @ .so
the differential equation of the characteristics et

3
Q=@+ p P+ &k [ﬂpr—ppéj =0

k=1

upon settingsi = 0 ifi # kandg, = 1 ifi =k, and can then be put into the fort (

3 3 2
a=| 02wy pi -t [ 43 -] =0
k=1 k=1
The characteristics will then be given by one ordter of the two equations:

3
(A+2u)> pi-ppi=0,
(3) k;l

K pi—pPp; =0,
k=1
which have the type:

Vz pO zpk O

k=1

which is nothing but the characteristic equation flee canonical equation of small
motions:

() One appeals to the following property: The determinantasrm : a = ||ay + & X ||, in whichg, = 0
if i #kandg, = 1ifi =k, is developed into:
a=xX"+ i X o X L L X
in which g4 is the sum of the principal minors of ordgn the determinant gy ||.
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10
ara

in which V is a function of position (which is constant in a li@®neous medium,
moreover) that is always the displacement velaaiitthe wave.
One then concludes the possibility of waves displairan isotropic elastic medium

with the velocities / A+2u , \/Z from that.
P P

5. — It remains for us to see the longitudinal charadtéheformer kind of wave and
the transverse character of the latter. One witiceed in that by looking for the
dynamical compatibility conditions for the two motioimat agree along a wave surface
a but have second-order discontinuities.

The u; and their first derivatives are continuous. Introdube second-order
discontinuity parametelts, hy, hs, which correspond ta;, up, us . From formula (2) in 8
7, no.1:

0%,
0X, 0%

A

=hvpp (v=1,2,3).

Now, one infers from (2 that:

AP, ‘?”k py s -pasd =0
SO.
A+ hp R+ h, §-p§) =0 (=1.23)

which is a system of linear equationsinwvhose determinant is rightfull = 0.

3
Setg® = z p? , leth andn be the vectors whose componentstarand ax = p« / g.
k=1
h, will then be the normal componentho

zhkpk: ngkak:ghh-
k=1 k=1

The compatibility conditions condense into theglnvectorial relation:

(g -pp5)h+@A+4) g hn=0.
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For the first type of wave [first equation (3): velgci{/ 1/ p], the compatibility

condition reduces td, = 0. It expresses the idea that the discontinuitytorels is
transverse.

6. Case of an anisotropic medium with three rectangular symntey planes. —
With the notations of nd3, the equations of motion will once more be the eqnat{@),
with the condition that one must take the expression:

(4)  W=3[Ag +Be; +Cej+2 Ac£,+2Be g+ Ceg ,+ Ai+ By Cyf)
for the elastic energy, in which the nine coefficieAts, ..., C" are functions ofx, y, z,

t) that reduce to constants when the medium is homogsne
If we keep only the second derivatives then the equatiometon will be written:

9°u 62u 6 u a°%v a°w  d°%u
+C’ +(C+C + B+ - =0,
x> ay2 + ) ( )6 z '063[
0°v 0% 9°v 9°u 0°w  9°%v
5 C"— B—+A—=+(C+C + A+ A —+---=0
(5) o Bayt Aoz ( ) ( ) 0y 2 P37
o°w 9°w 6 w, 9°w a°v _d°w
B" + A +C B+ B + A+ A +..-=0,
ox’ ay? 07 + ) ( ) dyoz p6t2
and when we set:
_9¢ _9¢ 9¢ 9
Po =5t =% P PTG
_ Xy z t) .
the change of varlable{s j will lead to the transformed system:
¢ & ¢ 4
Ap +C +~--=O,
(Ap B B p%7
%) ! AR p 97 =0,
9°u *w
(B+B") e +(A+ A) p Q—+( B p+ A p+r Cp- =0.

The characteristic equations and wave surfatés vy, z t) = { are obtained by
9°v  9*w
a7’ ag*

annulling the determinant of the coefﬁments—e;i

, hamely:
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Q (Po, p1, P2, P3) = 0.

It is interesting to remark thahis equation is, up to a change of symbols, the
equation for YS= p p?) that corresponds to the search for the axes oéltipsoid (of
propagation).

Exy,2)-1= (ApP+Cpg+Bg) X
+CE+BEg+ AR Y,
+BE+Ag+CH 7

+2Q +A")p2psy z
+2 @B +B")psp1zX
+2C+C)pp2xy—1=0.

BELTRAMI started out by considering that ellipsoid in hesnarkable paper on the
theory of waves’. In it, he supposed that the waves were planar atdthp,, ps
denoted the direction cosines of the normal to theeglaf those waves.

The geometric interpretation &f = 0 shows that the equation jif has degree three

and its three roots are positive. Solving it gemwill then lead us to conclude that there is
a triple infinitude of possible wave surfaces, with tweckions of propagation.

Moreover, the displacement velocities of the didcwity waves will be identical for
a homogeneous medium (and in particular, an isotropii asevell as the displacement
velocities of the plane waves of a vibratory chamathat BELTRAMI studied. The
same thing is not true in the most general case diclagdia, for which BELTRAMI
showed the impossibility of such vibratory plane wavemwever, as we shall see, the
preceding results for (second order) discontinuity wavesonce more true; in particular,
one can have plane waves in a homogeneous medium.

7. The case of the most general elastic media. The differential equations of
motion are once more given by equations (3) when one thkedollowing expression for
the elastic energy:

W= 30 AL+ By +2D CeNy).

Upon arguing in exactly the same way as in thecqumg, one will obtain a
characteristic equation:

Q (Po, Pz, P2, P3) = O,

which will once more have degree three jij, and its three roots will be real and

positive. Each of them will correspond to an infide of wave surfaces with two
possible directions of displacement.

()  Cf., E. BELTRAMI, Opera t. IV, pp. 224-235.



8 10. — Application to Maxwell's equations for electromagnetic f[penomena.

1. — The functionsp of the system of partial differential equations dareirs number
in this case, namely, the three components of theriekscforce E and the three
components of the magnetic foride

Further introduce the electric displacemBrand the magnetic inductidh One has
E =D, H =B, in vacuo In a homogeneous and isotropic dieledrie €E, B = ¢/ H, in
which € and i are two positive constantse (s the dielectric constant, and is the
magnetic permeability.)

In general, in an arbitrary medium (at rest), the poments ofD andB are linear
forms of the components & andH, respectively. We then write:

D=¢E, B=uH,

while agreeing this time that the symbelandy represent two vectorial homographies.
Be that as it may, the differential equations ofdleetromagnetic field are written:

(1) Ea—D=rotH + ...
c ot

(2) Ea—Bz—rotE+
c ot

(3) divD = ...,

(4) divB = 0,

in whichc is the speed of light, and the omitted terms can deppod charges, currents,
electromotive forces, etc. In summary, they are tues that are either completely
independent of the field (i.e., the vect&sandH) or at the very least (if they do depend
upon them essentially), they are independent of thealams of those vectord)(

Since one supposes that the medium (viz., the ethat)rést, one can use the terms
“displacement velocity” and “propagation velocity” intkangeably.

We shall first address only the first two equations, Witionstitute a normal system
of ordere = 1. One will recognize that the results to whichwit arrive are compatible
with the last two equations of the differential system

We must consider the componeBtsH; of the electrical and magnetic forces, as well
as the homographies and i, and as a result, the polarization vectBrs D, to be
continuous upon crossing the surfaca space-time that corresponds to a possible wave
surfaceq .

As far as the homographies are concerned, we also @asbhatrtheir coefficients and
all of the first derivatives will remain continuous upanssingo.

() Cf., H. HERTZ,Gesammelte Werk8d. Il, pp. 220.
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On the contrary, one will have to presume that tlaeesdiscontinuities in the first
derivatives ok, H (hence, irD, B, as well).

Lete, h (i =1, 2, 3) be the six discontinuity parameters uponsergsx , which
correspond to the componeni, Hi, which are parameters that characterize the
discontinuities in the derivatives of those functionem 8§ 7, no.1. It will be useful to
consider them to be the components of two veaphs(relative to an arbitrary point of
the discontinuity surfacey).

Having said that, we seek the dynamical compatibibiyditions that the vectoes h
must satisfy.

SinceD = ¢E, one will get:

©) 19D _1,0E 10,
c ot c Ot cot

by derivation, so if one lets* denote the inverse homographyet@which will reduce to
arithmetic inverse of the constanin the isotropic case) and refers to equation (1) then
one will have:
(5) }6_E+_1(£_16_£jE =lrotH + ...
cot c ot

Similarly, it results fronB = /H that:

c ot c ot cot

so, thanks to (2) and with the obvious notafich

10H 1( _,0u 1 4
6 S+ L H == rotE + ...
(©) c ot c(’u atj c’u

Now introduce the limiting values &, H on ¢ into equations (1), (2), namel§,,

H”, relative to one side andl”, H™ relative to the other side. Upon subtracting the

corresponding sides of the equations, and takitmaancount (5), (6) and the fact that the

continuous terms (in particular, the unwritten Qraisappear in the subtraction, we will

get:

(7) Ee(Aa—Ej—A rotH =0,
c ot

1

(8) ,U(Aa—Hj+ ArotE=0.
c ot
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Having said that, apply the formulas (1) of $ the various functions; , H;, while
replacing the factod in those formulas with, , h;, respectively. One will then obtain the
scalar relations:

o0E. OE.
A—= , A—= ,
ot 9 Ro ax,. aB
(9) ,]=1, 2, 3),
oH. oH.
A—L=nh , —L=h
ot Fo o0x B

The two groups on the left can each be condensed sitgla vectorial equation:

10 A_: el

(10) T
oH

11 A—=poh.

(11) il

Thanks to (10), if one agrees to regard indices thigrdify three as identical then (7)
will yield the equivalent scalar equations:

(12) Po gy 40 a2 _g (212 3)
C

0%, 0%,y

Similarly, (8) will give the three equations:

(13) Pouny +a%52 p%8a _g (=12 3)
c 0%, 0%

Upon taking the relations (9) and replacing phé = 1, 2, 3) by the products g, in

which:
3
g= ‘ 1/ > P
i=1

and in which thea; are the direction cosines of the vectoithat is normal toc ,
equations (12), (13) will be written:

% £e—g0 (hi+2 Ai+1 — hivt a’i+2) =0,
P 1 o =
o nh+g (@2 dir1 —6+1 ais2) =0,

or, in vectorial form:
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(14)

&,UH +gn Ue=0.
9

The equations that must be satisfied by the chematic vectorse, h of the
discontinuities in the derivatives of the eleciiocd magnetic force exhibit the fact that,
contrary to what happens in hydrodynamics, theorsat e, 1 h are normal ta; i.e.,
they aretangentto the discontinuity surfaces. One will then lealthg withtransverse
discontinuities as one is accustomed to say. However, more galgciit is not the
vectorse andh (which characterize the discontinuities in theiives of the electric
and magnetic forces) that are transverse, but eébtorss e and i h, which relate to the
derivatives of the electric polarization and magnetduction.

2.— Now letd = ¢ h, h = £ e, denote the characteristic vectors of the deneatpbfD
andB, and apply then to the (conservation) equatiohs(@3, so the preceding process
will yield the dynamical compatibility condition op starting from (1) and (2); one will
then get:

dxn=0,
hxn=0.

Now, those relations can also be deduced frompdh scalar-multiplying them by
n. They show that the transversal character of/éotorsd andb that was recalled and
underlined above contains the compatibility cowodisi that are derived from equations
(3) and (4), which we have left aside, but whichstmbe associated with the normal
system (1), (2) in order to produce the completeragentation of electromagnetic
phenomena according to the MAXWELL-HERTZ theory.

3. Forming the equationQ = 0in a magnetically-isotropic medium. Application
to the electromagnetic theory of light— In general, the preceding considerations will be
valid even when the homographiesnd  depend upon the electromagnetic field — i.e.,
upon the electric and magnetic forces. Meanwml&jew of the ultimate developments,
we shall suppose from now on that those homograpdme constants and even that the
magnetic homography reduces to an ordinary mutapbn.

We also suppose that the homographyg a dilatation that reduces to its canonical
form by a convenient choice of reference axes. aRégat the dilatatiorz is associated
with a quadric that is called thedicatrix and that one calls the planes of the indicatrix
quadric theprincipal planes of the dilatatiof’). We shall take them to beference
planes in what follows.

The coefficients of the homography will then reeltic threes, &, & .

() Cf., R. MARCOLONGOMeccanica razionalevol. I, 3 ed., Hoepli, Milan, 1922, pp. 24-25.
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The equations of the electromagnetic theory of ligldrystalline media are included
within this schema, in particular. We shall limit ourgshto considering the case of
media that are callebiaxial, in which the constants are distinct, and we can then
suppose that:

& >&>6>0.

One gets from the second equation (14) that:

h=——9 (nne),
HPylcC

so when one substitutes this in the first one,wiliget:

2
(13) Po jcer@nr(nre=o.

k3
Decompose the vecterinto two vectorsg, which is normah, ande’ = (e x n) n,
which is parallel ton, in such a way thag =€ + €". Hence:
n“e=n”(E+€e)=n"¢€.

The vecton ”~ € is nothing but the vector that is obtained whee starts frong and
rotates it 90 aroundn. As a result:

nNn*"n"e)=—-e=—-(e-€)=—-[e—-(Exn)n],

and equation (15) will become:

2
(16) %,uee—gZe+(e’\gn)gn:0.
Now set:
£ .
(17) -d=a (=129
and
2
(18) Vi= =,
HE
in such a way that:
2
(19) A= % -g.

Since the components gin are nothing bupi, p2, ps, equation (16) is equivalent to
three scalar equations:
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(p+pf)e+ ppet RRE=O,
p,pg+(p.+ B) 6+ B REO,
g+ pRe+(p,+ B &=0.

From the practical rule of B no.2, the differential equation of the wave surfaces is
obtained by equating the determinant of the coefficiehts, @, e; to zero.
One will then find the equation:

J2 R R o SR o
QE=| B P+ B |=0,

R BR Pt
and after developing this:

(20) Q (D) = 2, P P; + P30, P+ 010, P53+ PLP203= 0.

Upon replacing th@ with their values (19), that equation will be the despadial
differential equation for the unknown functiathat defines the wave surfaces.

If the a; are direction cosines of the normal, as alway thpon dividing both sides
of (20) byg?, one will get:

1 1
(20) ?Q P =p, pgaf+pgplai+plpzaé+?plpzps= 0.

That equation will shed light upon the importahai@cteristics of the phenomenon,
and independently of any integration of (20), meszp insofar as it will permit us to
show, as we shall see, how the speed of propag@tdhe normal sense) of an arbitrary
element of the wave surface will vary with the otaion of that element.

4. Law of variation for the speed of propagation— In order to make the speed of
propagationV appear, it will suffice to replacgy with the producttx V g in the
expressiong that are defined by (17).

However, it will first be useful to examine thesean which equation (20) is found to
be verified, due to the fact that cert@are annulled.

One will remark immediately that since thare distinct, by hypothesis, it will not be
possible for two of th@to be zero simultaneously, from their expressiar{d7).

It will then suffice to examine only the case irhigh o, and p, are annulled.
Equation (20) then implies that = 0, i.e., that the normal to the wave surfacetrbes
parallel to the plane, x3). On the other hangy = 0 implies that:

p§ 2 _
o _ 2=,
V12 g
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Po

soV; = (in which po is a function of position), which permits one interptie¢

constantV; as a possible velocity of propagation for light in dirgction that is normal
to thex;-axis.

One can make some analogous considerations for see@a= 0 orp; = 0. It is then
established in that way thaf, V,, V3 are the propagation velocities in the directions
parallel to the coordinates place, respectively, whichtheeprincipal planes of the
electric homography (viz., dilatation), since thatasvione chose them.

Having treated the case in whi¢his annulled at the same time as one ofghee
shall now move on to the general case in wkilch 0, while all of thep are non-zero.

The left-hand side of (20) can then be written:

3 pZ
Q :plpzm[“Z?Oj.

Now:
2 2.2 2
P-9a - Zai i=1,23)
A A %7‘1
g”V

in which p?/g® represents the square of the propagation speéteofiave surface in
guestion. Hence:

a’?
2

3
Q=000 1+2V
i=li_1

Upon taking the identit)z a’ =1 into account, one can finally write our equatio

the form:

a?
(21) Q(p)EvzplpzpsZW:o

In the first place, this is satisfied for= 0 —i.e., sinc@, =V g if:

That is the case of a fixed discontinuity surface.
However, from now on, we shall consider the equmathat we obtain upon annulling
another factor:
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2

a.
(22) sz ~7=0
Set:
a’
(23) f(v?= %erlz

and examine the issues for equation (22), which can alewitben:
(22) f(V%=0.

When put into entire form, that equation will have dedveinV 2, and will then admit
two roots that will both be real and positive, as wel Steed.
The quantitie®/; will satisfy the inequalities:

V1>V, > Vs,

from their expressions (18) and the order of magnitudeedd by > & > &).

First consider the general case of a direcprithat is not parallel to any of the
principal (coordinate) planes.

The functiorf (V ) will then be everywhere regular, except for the valoBV ? that

are equal to one of thé?, and the ones for which it is infinite.
If we give V ? values from the interva(V2,V7?) and close toV; then the term
as
2 —\/32
positive values. On the contrary, if we give valued/td from the same interval, but
2

closer toV;? then the term\% will have a negative sign and dominate the others, so
V2

f (V %) will take on a negative sign. Equation ‘(2®ill then admit a root in the interval
(VZ,V}); one proves that it will admit a root in the inter¢ef,\,?) in the same way.

One will then see that there are two possible propagapeeds (in absolute value),
and they will be found betwean andV, andV, andVs, respectively.

Now, if one of the direction cosines is zero — for examplay — then equation (2D
will be satisfied foro, = 0, and one of the possible velocities of propagatidnbeiV; .
The same equation (30when stripped of the fact@s , will then show that the equation
that defines the possible velocities, other tHanv/,, Vs, will reduce to:

will have a positive sign and dominate the other oses$,(V %) will take on

2 2
a, a5

V2 _sz V2— \/32

which will have one rooYV that is found betweew, andVs.
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5. Geometric construction of the roots of the equatiofi (V %) = 0. — Consider the
ellipsoid:

(24) p= DV =1,
and let:
Y= Zai x=0

be the equation of an arbitrary plane that passes thrthaylorigin, in which the
coefficients a; denote the direction cosines of the normal to theeplavhen oriented
arbitrarily.

In order to find the lengths of the semi-axes of thipsa that is the intersection of
the ellipsoidg = 1 and the plang/= 0, it will obviously suffice to look for the maximum

and minimum of the distange= Z)gz (or, what amounts to the same thing, the square

of the distanced = Z)gz) when the pointx varies in the ellipse — i.e., when the

variablesx are linked by the two relations:

9=1, ¢=0.

Upon applying the classical method of LAGRANGE multiidjewe will be led to
write:
(25) Olp?+A(p—1) +A 4] =0,

in which A and A; are undetermined priori, and the variation must be zero for any
choice of thedx; .
Upon dividing by 2, in addition, it will result that:

(26) X (1+AV2) + 1 ha=0 (=12 3).

Upon multiplying this bya; and summing, from (24) and the fact tlyae Zaq X =

0, one will get:
p%+1=0.

We note thato (viz., a semi-axis of an effective ellipse) is eswsdigt supposed to be
greater than zero.

On the other hand, upon first taking the general caséich 1 /p? is different from
each of theV?, equations (26) can be solved for gheand when one replacgswith the

value —p? that is found for it, that will give:

1 Ag

27 . L
(27) X 21 PV

(=12, 3)
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Hence, upon substituting this gh= Zai X = 0 (and exhibiting the factor 10°):

1A a,

S S E—— 0
2 p* 1 p*-V?

Observe tha#l; cannot be zero, because from (27), the same thindd be true for
all of thex;, and thus, th@, which is not true. We can then neglect the faetd, / p?,
and what will remain is:

1 a
- — 1 =0
221/;72—\42

which will be identified with the equatidn(V ) = 0 that defines the possible propagation
velocities, on the condition that one must set:

1
2 _
\/ T

Yo,

Thus, one gets the geometric construction of tlepgyation velocities that relate to an
arbitrary directiona; , which will remain valid even in the previouslyedxded case in
which 1 /p? takes one of the valuas’.

One draws the plane that is normal to the diractip through the center of the
ellipsoid ¢ = 1. The inverses of the semi-axes of the ellipse is its section will give
the absolute values of the two possible propagagdocities.

6. Fresnel wave surfaces— We refer to the general considerations that were
developed in nos5-8 of § 6 on the subject of integrating the equatmn+ H = 0 by
means of bicharacteristics. Suppose that3, to begin with. The parametric equations
of the configuration that is taken at the instiby the wave surface that reduces to an
epicentelO, which is chosen to be the coordinate originhatihstant = 0, will then be:

(28) X = t["’—Hj (=12 3),
ap ),

in which one can take the ratios of {hé¢o one of them to be the parameters. (The left-
hand sides depend upon only those ratios beddusehomogeneous and of degree one
with respect to the.)

Upon regarding thg as functions of, equations (28) will be those of light rays and
will exhibit a rectilinear progression (in a homoageus medium).

As we have already seen, the wave surfaces (2Bg atarious instantisare mutually
homothetic to each other. It will then sufficedonsider any of them. Ordinarily, one
chooses the one that corresponds=dl. One calls it the wave surface, more espgciall
and its parametric equations will be written:
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(29) x = 20 i=12 3).

In the case that we are presently addressing, we kel tfind the celebrated
FRESNEL wave surface (discovered in 1827), whose analgiodly led HAMILTON
to discover the phenomenon of conical refraction. Wall denote it byF in what
follows.

We now propose to determine the Cartesian equatiof, oivhich is obtained
theoretically by starting from (29) and eliminating theapagters?).

To that end, it is convenient to first evaluate theadse o from the origin to the
tangent plane at a running poin(x) onF.

If a; is the direction cosine of the normalRa@t P then that will give:

= a,%;

i.e., upon taking into account the parametric equationsg@®)he values p; / g of the
a; (which correspond to the chosen positive sense al@gaimal):

oH 1 oH
0=Yag -2y
2% 5 T ¥ 2P o

(with the usual convention on the sign of the dis&)).
Due to the homogeneity of degree Himnd the equatiop, + H = 0, one will have:

o=t% H. 1& =+ V.
g g

In order to simplify the writing, take one of theo signs (the + sign, for example),
but observe immediately that one will arrive at Hagne result by taking the other sign.
The equation of the tangent plane will then betesmit

(30) Zaix—V:O,

in which thex represent the running coordinates, this time, eviile o; andV are

coupled by the equation:

1 a’?
22 f V2 == I =0
(22) (V3 22 Vv

Equation (30) will give:
(31) > x da-dv=0

() M. BOGGIO gave an ingenious way of obtaining the Camesipuation by vectorial methods quite
recently. See his note “Sulle superficie d’'onda di FeESRend. Acc. Lincei (614 (1932), 551-556.
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upon differentiation with respect to the parametemsndV.

Set:
of a? .

32 fiz—=—"— =1, 2, 3),
(32) rakvoanv: ( )
of

(33) f():a—V:_VZ fiz.

Upon differentiating (22, one will get:

(34) > fida +fodv=0.

The relations (30), (31), (34) permit us to eliminate thepatersa; , V and thus
obtain the Cartesian equation fer
Upon differentiating the identity:

> at=1,
one will deduce that:
(35) > a da, = 0.

On the other hand, upon replacidy by its expression that one infers from (31) in
(34), one will get:

2 (fi+fya)da =0.

That must be true for any direction cosirmgs- i.e., for allda; that satisfy (35). It
will result that:
(36) fi+foa=ka,

in whichk is a proportionality factor that is undetermirgedriori. It is easy to calculate,
because from the expressions (32)ffand due to (22, one will have:

(37) S f,da; = 0.
Multiply the two sides of (36) by and sum. That will give:

kY af=) fida + 1> ax;
i.e., from (30) and (37):

(38) k=fy V.
Now observe that:
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Z fiZ\/iZ: z fiZ(\/iZ_V2)+VZZ f2.

The first of the terms on the right-hand sideasoz due to equations (32) and (22
so:

(39) >RV VIY 62

Moreover, one has:
2 favi=3 fa Vv -V)+Vy fq,
and from (37) and (32):

(40) 2 favi=3 fiag -V == a’=-1

Return to equations (26). Multiply the two sidgs f V> and sum; that will give:

Z fizviz+ foZX f\(z: kz fiaiviza
SO

% V7 =k fa V=3 f2V°

The right-hand side is annulled, as one will resbg directly when one takes (39),
(33), (40), and the value (38) binto account; sinck # 0, what will then remain is:

(41) 2% fve=0.

Now, one infers from (36) that:
foxi =k ai —fi,

SO upon squaring both sides of this and summing:

fep’=K-2k> fa, +> £?, inwhich pP=> %,

By virtue of (37), (33), (38), that relation widecome, in turn:

f f f
f202=12 - 0 =— 04+ kfV=—"2(kVi-1),
0:0 v vV 0 V( )

SO

(42) 1-kV?=-fVp?=-kp?

From (36) and (32), one will also have:
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fox =ka—fi=kf(V2-V?) -,
so
foxi =—F (l—kV2+ kvlz)

Upon replacing 1 %V ? with its value (42), one will finally get:

fox =fikp?—fi kV?=kf (0% - V?),
SO

Upon substituting this in (41), one will finally have:

vZ 2
(43) Z v2I_>;2 = 01

which is the point-wise equation for the FRESNEL wawdage.
As one will see immediately upon clearing the denommsatb is a fourth-degree
algebraic surface.

7. Tangent planes to the surfacé&. — We saw above that the tangent planes that
relate to an arbitrary directios (i.e., the ones that admit tlag for the direction cosines
of their normals) are at (algebraic) distanced sft V from the origin, in whichV is one
of the propagation speeds.

The geometric construction & that was pointed out in n& will permit one to
determine only the four tangent planes that are perpendiculan arbitrary direction
upon taking those distances@ato be equal to the two propagation velocit®s @s one
sees, the FRESNEL surface enjoys the special propéftyaving both order four and
class fzour [while an algebraic surface of orddras clas$ (n — 1),in genera) andvice
versa()].

8. Optical axes.— One calls the direction for which the two correspog
propagation velocities are equal (cf., no. 4)dapacal axes.

() For a geometric study of the FRESNEL surface, theereadn consult G. SALMONTraité de
géométrie analytique a trois dimensidfsench translation by O. CHEMIN), part three, GautMilars,
Paris, 1892, Chap. XVI, pp. 117-119. G. DARBOWXcons sur la théorie des surfaceslV, pp. 466,
Gauthier-Villars, Paris, 1986. D’OCAGNEpurs de géométrie pure et appligée de I'Ecole polytechpique
ibidem 1930. DRUDE,Précis d'optiquet. Il, Chap. IV., Gauthier-Villars, Paris, 1912. Antensive
bibliography can be found in a book by GINO LORIWpassato e il presente delle principali teorie
geometriche2™ ed., Cedam, Padua, 1931, pp. 99-102, and also in the Enz. therWiss., Bd. IIl, 10b,
pp. 1740-1744.

() Cf., e.g., ENRIQUES and CHISINT,eoria geometrica delle equazioni e delle funzioni algebyiche
vol. Il, Zanichelli, Bologna, 1918, pp. 152.
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Before everything else, we shall show that such axgéd&&ong to a principal plane.
Indeed, for any optical axis that has a directmrthat is not parallel to the principal
planes, the relation between its direction cosimelsthe possible propagation speeds will

be expressed by (22
f(V?) =0,

and for the two roots to coincide, their common value ralsst satisfy the equation:

Now, by virtue of (33):
it will follow immediately that:

ie.:

which is absurd.

Hence, one must seek the optical axes only in theipahplanes.

Consider the plane that is perpendicular to xhexis (@ = 0), with the usual
convention for the indices+ 1,i + 2.

The equation:

Q (P) = 0, P3P} + P3P P5+ PO, P5H PLP2 3= 0,

when one annuls the (or p;) and divides by?, will give:
2 2 1
pl(:@+2@+1+g+1q+2+?ﬁ+1ﬁ+ 2} =0.

As we know, one of the two roo” is alreadyV,?, which annuls the factga , while
the second one must annul the other factor, and furtmerrsioce we are dealing with an
optical axis, it must also be equalNg .

From that, upon considering the expressions (19) tloaid® thep, dividing the left-
hand side by 0, 03/ ¢, and replacingp?/ g with V,?, one will get:

Qi G
2 2
ViV

-1
Vi V.

i+2

+1=0;

i.e., upon taking the identitE a’ = 1 into account, which will then reduce to:



68 Characteristics of differential systems and wave pradjmsaga

2 2
ai+l+ai+2_ l’

2 2
Viz{ 20'i+12 + 20'i+22}:0
Vit-VL Y- Vh

one will get:

That relation will be satisfied by real values of tlaio ai.1 / ai+2 only if the two
denominators have opposite signs. By virtue of the iregmpsa

VlZ > VZZ > V32 ,

which can be true only for = 2; i.e., for the principal plane that correspondshi®
propagation velocity, that is intermediate between the largest and thdeshanes.
There are effectively two directions in tlkg x;-plane that correspond to the two

\VARAYA
values*, | 2—= of the ratioas / a; .
Vi'-V;

9. Case in which the Fresnel surface degenerates. The case that we have
excluded in which two (and only two) of the propagation vékesiV; are equal
corresponds to the media that are callachxial, in which there is only one optical axis.
From the algorithmic viewpoint, one must recall the pdewg calculations upon taking
into account the fact that two of thé are equal. However, if one envisions a well-
defined result or a geometric relation that is valid nva# of theV, are distinct then one
will have the right to pass to the limit that makes tfohoseV; coincide.

For example, one can assert that in that caseuwkigary ellipsoidg = 1 (no.5) will
become one of revolution and will then have an equat@iausR that is inverse to the
common value of the two equal velocits

An arbitrary semi-diameter will always remain betwéleat equatorial radius and the
inverse of the third velocity; .

For any section by a diametral plane, one of the-aees will necessarily coincide
with the equatorial radiuR, in such a way that any plane that is at a distanéefaim
the center will belong to the set of tangent planeB.toln other words, the surfade
must contain the sphere of radias

SinceF has order four, it will then decompose into that sphaaca quadric (viz., an
ellipsoid). That is easy to verify by means of thet€aan equation df by supposing
that two of thev; are equal and clearing the denominators.




8 11. — The wave-corpuscle duality of modern physics according de Broglie.

1. — Ever since YOUNG and FRESNEL, all light phenomers tiere known for
some times seemed to take place in a wave-like schiesta,by means of an elastic
representation, and then by means of MAXWELL'’s elecagnetic equations (viz., the
electromagnetic theory of light). However, one daogtill not succeed in reconciling the
wave theory in any simple way with the observed falotd pertained to photoelectric
phenomena, which go back to HERTZ.

Here is essentially what one is dealing with: Whenabef light strikes a metallic
surface, it will very often liberate electrons. Qtslvely, one models that phenomenon
by supposing that part of the incident light energy iszetilito do a certain amount of
work | (which depends upon the metal in question) that is neges$s liberate the
electron and part of it also communicates kinetic gyner

The intensity of the incident light will be includedtime energetic evaluation, but not
its frequency. Now, one can experimentally exhibit taet that below a certain
frequency, and for any intensity, of the incident lighg photoelectric effect will not be
produced (LENARD), while the maximum velocity that is coumcated to the electrons
will depend upon its frequency exclusively (MILLIKAN).

That aspect of the phenomenon, which is inexplicable fiee standpoint of wave
optics, has, on the contrary, found a brilliant quatitie representation with
EINSTEIN’s quantum, corpuscular hypothesis (1905), accordinghioh, any sheaf of
light rays of frequency must be considered to be composed of a cloud of photons, or
light quanta (viz., particles of energy) that each pgss@ energf that is proportional
to the frequency, and is precisely:

E=hy,

in whichh is the celebrated PLANCK constant.

To the extent that the photoelectric effect is lated to the collisions of those
photons, it is clear that wherehg will remain less than the woikthat is done by the
extraction that we spoke of, it will not produce the sswin of any electrons, no matter
how large the intensity of the light considered, anel Yarious observed facts agree
remarkably with that corpuscular hypothesis.

It likewise served to account for a phenomenon thatdisovered by COMPTON
in 1923, according to which a beam of X-rays that meets tipmaterial elements will
generally be scattered with a reduction in its frequewtyle there will once more be an
emission of electrons. All of that is explained ie tbllowing fashion, as was shown by
COMPTON, DEBYE, FERMI, and PERSICO, by associating &EIIN’s hypothesis
with the principle of the conservation of the quantifynaotion, in addition to the
principle of the conservation of energy.

How the wave theory and the return to the corpusculpothesis might be founded
in some advanced theory cannot be explained completgsesent. It will suffice for us
to remark that if modern physics wishes to explainatemptical phenomena then it will
need to include both wave concepts and corpuscular otfes same time. An analogous
situation presents itself in the study of electrons, whsc based, above all, upon the
properties of cathode rays and some celebrated expesiaetite end of the Nineteenth
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Century that are due, above all, to J. J. THOMSON, KRIANN, and H. A. WILSON,
who characterized electrons completely as pure aesftarges of the same value.

However, that exclusively corpuscular viewpoint will tn@account for the
phenomenon of the diffraction of electrons in crigstéghat was discovered by
DAVISSON and GERMER in 1927, and ultimately confirmed by éxperiments of
RUPP and G. P. THOMSON.

The inverse of what we saw previously in the interpimsiabf phenomena will
present itself here; i.e., the electronic phenomeatadbuld, up to these latter years, take
place in the context of an exclusively-corpuscular thewmw seem to demand some
complementary developments of wave type as a rebnéve experimental observations.

That sort of duality for which the most remarkable fadtsnodern physics demand
the simultaneous intervention of waves and corpuscles@egnized and proposed as a
general law of nature by the physicist LOUIS DE BROGI4dEg that was even before it
was so admirably illustrated by the diffraction of elens.

He first of all sought to give a more concrete formtsoconception by associating
any moving corpuscle with a well-defined group or packet of wavel®wever, he
himself recognized the difficulty in such an associa(fyn

Another remarkable idea regarding the correspondencepemated out by MAGGI
(®) as an application of HAMILTON's principle of leasttion. However, no matter how
seductive it might be theoretically, it does not se&m permit a quantitative
representation of the many observed facts.

We again point out that a very interesting dynamicacaptreconciliation was
proposed by PERSICO)(in order to justify the SCHRODINGER equation, althohgh
did not provide the true law of correspondence betweewétledefined corpuscular and
wave aspects of a given phenomenon either.

The considerations that were developed before for Haystems that associate them
with, on the one hand, characteristic manifolds (wmaye surfaces) and on the other
hand, characteristic lines (viz., trajectories) offareay broad paradigm that will reflect
both the wave and corpuscular aspects of the same ipkeno as soon as one is in
possession of a differential system that is appropiasite

That is what appears clearly in the case of the SCHRGER equation (from the
admirable spectroscopic verifications of SCHRODINGE Rsfil).

Recall the equation in question, by way of example (

2 0ip P a4
(1) 5= SU+E)TE ~0:4=0,

() Cf., L. DE BROGLIE,Introduction a I'étude de la mécanique ondulatpiHermann, Paris, 1930
(Preface).

() Cf., G. A. MAGGI, “Sul significato nel passato ellfmennire delle equazioni dinamiche,” Rend.
del Sem. mat. e Fis. di Milar®(1930), 53-72.

() Cf., E. PERSICOl ezioni di Meccanica ondulatorigith.), 2" ed., Cedam, Padua, 1930, pp. 29-40.

() Cf., E. SCHRODINGERAbhandlungen zur WellenmechanBarth, Leipzig, 1927, pp. 38. See
also pp. 40 of the lectures of prof. PERSICO that wited i the preceding footnote.
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in which the constariE represents a unitary energy and will take on a quaiffdum a
posteriori by means of the eigenvectors (i.e., characteristitovecof (1), which are
defined by convenient regularity condition. i§ the unitary electrostatic potential.)

Recall once more that the solutiogsto equation (1) that are utilized in wave
mechanics are generally complex and that it is omlyf| and notg, that has a direct
physical interpretation, moreover, as a quantity thgtregportional to a certain local
probability (viz., the probability of the presence of #lectron in a neighborhood of a
given point).

From the mathematical viewpoint, which has been at#sis of the considerations,
or better still, thedivinationsthat led SCHRODINGER to equation (1) for the firstejm
we shall retain only the fact that a very importaat ef phenomena, such as the
distribution of the BALMER spectroscopic lines and theéfstructure” of the hydrogen
atom, are admirably interpreted and condensed by equation (1)

2
If suffices to denote the coefficients B ¢ U) / E ? of ng by 1 /V 2 in order to

convert it into the form of the canonical equationroad motions ) (§ 2, nos.1 and6),
whose characteristic manifolds:
Z (Xo, X1, X2, X3) = const.

are defined, as we saw 88no.4) by the homogeneous equation of degree two:

V2 pO zp O

i=1
Upon solving this fopg in the form:

Po+H=0,

H:—v\/ﬂ,

which constitutes the Hamiltonian function of theharacteristics, as we know.

All of that is quite simple. We wished to statexplicitly in order to draw attention
to the following general fact, thanks to that clegeastic example: If one knows a
theoretical representation of a phenomenon as malosystem of partial differential
equations in the parameteps(viz., the SCHRODINGER equatid®= 0, in the present
case) then one can immediately deduce the equdatiangiefine the characteristics and
bicharacteristics from it, i.e., the partial wavelacorpuscular aspects that they are linked
to. On the contrary, if one knows only one or ¢kleer of those aspects in some situation
(i,e., Q or H, analytically) then one cannot get back to the mlete law of the
phenomenon- in other words, to the normal systemnrdpresents it without knowing
more.

one will get:

() In truth, the coefficienV denotes a constant in this. However, the manner by vanietobtains the
characteristics would not suffer any modification eveviere an arbitrary function of space and time.
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If one consider the SCHRODINGER equation, more espgcibén one will observe
that knowingQ will not suffice to determin&, since that would result easily from the
fact that if one adds a functidghto Sthat depends arbitrarily upon tlkethe ¢, and the
first derivatives ofp, then, from the rule in g, no.2, the equatiors + F = 0 will possess
the same characteristics and bicharacteristics.

In certain cases for which one knows one of the twtigbaspects of a particular
phenomenon from ordinary macroscopic physics — i.e.yt@rally, the functionQ of the
p and thex — it can suffice to replace eaphwith the operator:

— k=0,1,2,3i=.-1)

Q(x Lij¢ =0

for the equation:
271 0x

to provide the corresponding partial differentiglation of micro-mechanics, but such a
rule is not general.

Indeed, it will suffice to think that a term ofetllypea p p1, in whicha is a function
of position and time, can just as well give ris@be of the four expressions:

L, T 2 o8

0X, 0%~ 0% 0% 0% | 0X ox | 0x,
2
which all have the second-order term%in common, but differ by terms that
% 0%

depend upon the, the ¢, and first derivatives, and which have no influsrponQ, as
was remarked above.

The formal rule that was given previously can tihewe only a heuristic valué)(
[which is still admirably in the work of SCHRODINGEand DIRAC )], but it does not
seem possible to infer a systematic method of coctstn from it that will reflect a true
physical reality.

As for the purely mathematical paradigm that piesithe theory of characteristics,
we shall further point out a remarkable applicattbat M. RACAH €) made to the
DIRAC equations, which generalize that of SCHRODBRGand which constitute what
one can presently consider to be the most comptet¢hematical synthesis of
electromagnetic and optical micro-phenomena. Hieicked an instructive justification of
HEISENBERG's uncertainty principle as a consequeotehe equationQ = 0 that
defines the characteristics in a very expressiegiapcase.

() Especially if the normal system in question mussgatiome special conditions, such as invariance
under a group or even conditions that relate to any tanation of thex.

() The Principle of Quantum Mechanj@larendon Press, Oxford, 1930.

() “Caratteristiche delle equazioni di Dirac e princigidndeterminazione,” Rend. Acc. Lincei (63
(1931), 424-427.



