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FOREWORD 

TO THE FRENCH TRANSLATION 

 

 Now that I am presenting this French translation of my recent book Caratteristiche e 
propagazione ondosa (Bologna, 1931) to the public, I would like to fulfill a very pleasant 
obligation in vigorously thanking the “Comité pour l’expansion du livre scientifique,” 
and especially its illustrious president Émile Picard, who graciously took the initiative, as 
well as the eminent director of la Revue Bleue and the Revue Scientifique, Paul Gaultier, 
Member of the Institute, who could not have been more friendly nor more obliging in his 
functions as Secrétaire du Comité.  I would also like to thank Marcel Brelot, who 
accomplished his task as translator with competence and enthusiasm.  One must thank 
him for the presentation, as well as some additions and judicious modifications that made 
many delicate details much clearer and more precise.  Without wishing to enumerate all 
of them, let me confine myself to pointing out the summary of the interesting notes of 
Lampariello on elastic waves (cited in the Preface to the Italian edition) that Brelot 
inserted into the text as a supplementary paragraph (§ 9). 
 I would also enjoy this opportunity to emphasize, in a general manner, the elementary 
character of the mathematical viewpoint of the contents of this little volume.  At no point 
does it deal with difficult questions of existence or the construction of new algorithms, 
but solely with the consequences that follow easily (by an argument that is entirely 
analytical) from the notion of characteristic manifold, which permits one to recognize 
whether this or that type of discontinuity wave is possible, and when that is the case, it 
provides one with laws of propagation in a simple and elegant form. 
 
 Rome, 1 April 1932 
 
  TULLIO LEVI-CIVITA 
 

_____________ 



 

PREFACE 
 

 The board of directors of the mathematical seminar at the University of Rome 
(presided over by Professor ENRIQUES) organized two cycles of conferences for the 
school year 1930-31 on the theory of characteristics.  The first of them, which was 
entrusted to me, had the goal of briefly reviewing the genesis of that theory in relation to 
the general existence theorems and pointing out some applications, which are truly 
grandiose in their simplicity, that began with HUGONIOT and include applications to the 
propagation of discontinuity waves to acoustic, elastic, optical, electromagnetic, and 
many other kinds of waves. 
 The second cycle, which was originally entrusted to VOLTERRA and was developed 
in his place by ELENA FREDA, was dedicated to the methods of integration by the use 
of characteristics.  They brought to light the extremely substantial contribution of 
VOLTERRA and the formulas that solved some celebrated problems that he knew how to 
infer. 
 The present volume reproduces my lectures, which were carefully transcribed by 
GIOVANNI LAMPARIELLO. 
 Having recalled the existence theorems, one then introduces the general notion of 
characteristics according to the well-known ideas of HADAMARD.  There is nothing 
essentially new in them.  Nonetheless, I think that I have made the development simpler 
and more symmetric, and a result, I have succeeded in endowing the formation of the 
partial differential equations that define characteristic equations, such as obtaining and 
discussing the compatibility conditions, with greater algorithmic elegance, which also 
translates into a certain simplification in the presentation. 
 That is confirmed in the particular applications to hydrodynamics, electromagnetism, 
and more especially to the propagation of sound and light that will be studied here (1).  
On the contrary, the other classical meanings to the notion of wave, which are still often 
considered in mechanics and physics, are hardly mentioned as preliminaries. 
 Naturally, a study, as summary as it might be, of characteristic manifolds will imply a 
study of the corresponding bicharacteristic lines.  That is why I was led to recall (before 
passing on to the applications), in general and in a fashion that is more directly associated 
with canonical systems, CAUCHY’s method for the integration of a first-order partial 
differential equation with an arbitrary number of variables. 
 Returning to the applications, I would like to point out the general observations in the 
last paragraph in regard to the characteristics and bicharacteristics that relate to a given 
differential system (S).  Some definitive physical examples will be used there to illustrate 
and underscore how, in the case where the system (S) permits one to make an adequate 
analytical representation of an arbitrary physical phenomenon, one can associate the 
phenomenon itself with a wave-like aspect upon crossing the characteristic manifold of 
the system (S) and a corpuscular aspect upon traversing the bicharacteristic lines.  One 

                                                
 (1) LAMPARIELLO adopted the same viewpoint in the study of elastic waves, and that led to several 
notes to the Rendiconti della R. Accademia dei Lincei (which are collected in § 9 of the French translation). 
 The case of EINSTEIN’s gravitational equations (which present some features that are a bit more 
complicated) was the first one that I took under consideration in order to apply HADAMARD’s theory.  
Cf., “Caratteristiche e bicaratteristiche delle equazioni gravitazionali di Einstein,” Rend. Acc. Lincei (6) 11 
(1931), 3-11, 113-121. 



iii  Preface 

will then have a comprehensive mathematical model that is perfectly satisfying in its 
agnosticism for the duality between waves and corpuscles that inspired the brilliant 
intuitions of DE BROGLIE, while he himself, along with others, have sought in vain to 
find a more concrete representation that is truly in accord with the observed facts. 
 For more precise information on the contents of this book, one can consult the Table 
of Contents. 
 Finally, I would also like to express my gratitude to LAMPARIELLO, who has 
amicably performed the cumbersome task of editing the manuscript and has assisted me 
in revising the proofs, and to the firm of ZANICHELLI, who undertook and completed 
this publication with laudable alacrity. 
 
 Rome, 20 July 1931 
 
  TULLIO LEVI-CIVITA 
 

_____________ 
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§ 1. – Review of the existence theorem for the integrals 
 of a system of partial differential equations. 

 
 

 1.  Normal systems. – A system of m partial differential equations in m unknown 
functions ϕ1, ϕ2, …, ϕm of n + 1 independent variables x0, x1, …, xn has the type: 
 
(1)     Eµ = 0  (µ = 1, 2, …, m), 
 
 in which Eµ is a function of the x, the ϕ, and the partial derivatives of the ϕ with respect 
to x. 
 Such a system is called normal relative to the variable x0 if one can put it into the 
form: 

(1′)     
0

r

rx

ν

ν

νϕ∂
∂

= Φv (x | ϕ | ψ | χ) (v = 1, 2, …, m), 

 
in which the ψ on the right-hand side are the partial derivatives of each ϕν with respect to 
only x0 that are of order less than rν , and the χ are the other partial derivatives of the ϕ 
with respect to all of the x, except for ϕν , which has a global order that is equal to at most 
rν and a partial order in x0 that is less than rν . 
 Observe that if the system (1′) is normal relative to the variable x0 then it cannot be 
normal relative to another variable. 
 
 
 2. Qualitative hypotheses. – The functions Φv are supposed to be analytical and 
holomorphic in a neighborhood of a system of values for the arguments (viz., the initial 
values).  Under those conditions, one has a fundamental theorem for the existence of 
unknown functions ϕ1, ϕ2, …, ϕm that is due to CAUCHY and was made more precise by 
SOPHIE KOWALEVSKY. 
 
 
 3. Existence theorem for ordinary differential systems. – Before stating the 
CAUCHY-KOWALEVSKY theorem, and with the goal of understanding its content 
better, it is convenient to recall the existence theorem for integrals of a system of ordinary 
differential equations. 
 If one supposes that the unknown functions ϕ1, ϕ2, …, ϕm depend upon only the one 
variable x0 , which we shall now denote by t,  then the differential system (1′) can be 
written: 

(2)     
v

v

r

r

d

dt
νϕ

= Φν (t | ϕ | ψ)  (v = 1, 2, …, m). 

 
As one knows, the differential system (2) can be put into the form of a system of first-
order differential equations, or as one says, normal form (in the strict sense). 
 Indeed, it suffices to take the derivatives with respect to t up to order rν – 1 inclusive 
to be auxiliary unknowns, along with the ϕν .  Upon setting: 
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d

dt
νϕ

= νϕ′ , 
d

dt
νϕ ′

= νϕ ′′ , …, 
( 2)vrd

dt
νϕ −

= ( 1)vr
νϕ − , 

 
equations (2) can be written: 
 

( 1)vrd

dt
νϕ −

= Φν (t | ϕ | ψ) (v = 1, 2, …, m), 

 
and if one lets y0 denote the general element of the table: 
 
 ϕ1  ϕ2  …,  ϕm 
 
 1ϕ′  2ϕ′  … mϕ′  

  ⋮  ⋮  ⋮  
  1( 1)

1
rϕ −  1( 1)

2
rϕ −  … 1( 1)r

mϕ −  

 
then the system (2) will take on the schematic form: 
 

(2′)   
dy

dt
ρ = Yρ (t | ψ)  (r = 1, 2, …, r ; r = r1 + r2 + … + rm). 

 
 Under the hypothesis that the yρ are analytic and holomorphic in a neighborhood of t 
= t0 , yρ = bρ , there will exist a unique system of analytic functions yρ of the variable t 
that are holomorphic in a neighborhood of t = t0 and take on the values bρ for t = t0 . 
 According to CAUCHY, the proof of that celebrated theorem is accomplished by the 
method of majorants. 
 First observe that the differential equations permit one to calculate the derivatives of 
all order for each unknown function yρ at the point t = t0 by successive differentiations, 
and as a result, to write the Taylor development for each yρ that relates to that point. 
 In that development, the term that is independent of t is bρ , and the coefficients 

0

1

!

n

n

t t

d y

n dt
ρ

=

 
  
 

 (n = 1, 2, …) of the various powers of t – t0 will generally depend upon the 

b and t0 . 
 The essential point of the proof, which was assumed without justification before 
CAUCHY, consists of showing that those series converge in a suitable neighborhood of t 
= t0 .  Upon choosing certain majorizing functions of the yρ , the differential system that 
corresponds to (2′), which can then be integrated by elementary means, will define 
functions that are analytic and holomorphic in a neighborhood of t = t0 and whose Taylor 
developments are majorizing for those of the yρ . 
 CAUCHY’s theorem for differential systems (2′) is also valid when the right-hand 
sides of equations (2′) and the initial values bρ depend upon a certain (finite) number of 
parameters that we can denote by x1, x2, …, xn and which vary in the domain where the yρ 
are holomorphic. 
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 One can then state the following theorem, while tacitly assuming in an essential way 
that everything must behave regularly in a neighborhood of the values considered: 
 
 Theorem. – If one is given a differential system: 
 

(3)    
( 1)vrd

dt
νϕ −

= Φν (t | x | ϕ | ψ) (v = 1, 2, …, m) 

  
then if one chooses the value of each ϕv for t = t0 arbitrarily,  along with its successive 
derivatives up to order rv – 1 inclusive as functions of the parameters x1 , x2 , …, xn then 
there will exist a unique system of functions ϕ that are analytic in t and the parameters 
that satisfy the equations (3) and reduce to the chosen functions for t = t0 . 
 
 
 4. – That theorem extends to normal systems (1) of partial differential equations.  The 
novel feature that it presents is that the right-hand sides of equations (3) also include 
derivatives of the unknown functions with respect to the parameters in such a way that 
one will also have differential equations that are no longer ordinary, but partial.  For 
reasons of symmetry, we recall the notation x0 in place of t. 
 The theorem that was stated in no. 2 asserts that if one is given the values of the ϕ and 
ψ (as holomorphic functions of the x1, …, xn in a certain domain C) that relate to a value 
a0 of x0 arbitrarily then the functions ϕ that are holomorphic in the x0, x1, …, xn will be 
determined (viz., they will exist uniquely) in a neighborhood of x0 = a0 and in the domain 
C of the other arguments. 
 The CAUCHY problem consists precisely in determining the ϕ that satisfy the normal 
system (1′) and the preceding initial conditions, which are, we repeat, the values of the 
unknown functions and their partial derivatives with respect to x0 of order less than the 
maximum rv for each ϕv . 
 That determination – i.e., that of the coefficients in the Taylor developments in a 
neighborhood of a system of initial values for the x – is obtained by starting from the 
initial values and successively differentiating equations (1′).  Now, the same calculation 
will apply to the case in which the χ contain derivatives of the ϕv , always of partial order 
in x0 that is less than rv , but of total order that is greater than rv , except that one can then 
effectively arrive at the possibility that the developments that one finds will not converge; 
i.e., one will not have a holomorphic solution. 
  We shall call a system (1′) quasi-normal (relative to x0) when the ψ are once more 
partial derivatives of the ϕv with respect to x0 and of order less than rv , but the χ are the 
other derivatives with respect to x of arbitrary total order, but of partial order in x0 less 
than rv for ϕv . 
 For the same initial givens, one will not have a multiplicity of holomorphic solutions 
for a quasi-normal system, but one will not necessarily have that they existence, either. 
 In what follows, we shall speak of only normal systems.  Meanwhile, since the notion 
of a discontinuity wave that we shall study is more especially linked with the property of 
uniqueness in the CAUCHY problem, as we shall see, it is interesting to point out that 
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some entirely similar considerations can be developed for the analogous questions in 
which systems that are only quasi-normal are involved essentially. 
 
 
 5.  Geometric statement of Cauchy’s theorem and its generalization. – Let S be 
the space of variables x0, x1, …, xn . To fix ideas, we suppose that it is endowed with a 
Euclidian metric upon interpreting the x as Cartesian coordinates.  Consider the 
hyperplane x0 = a0 , which we denote by ϖ. 
 The existence theorem asserts that one can determine the values of the functions ϕ in 
a neighborhood of the hyperplane ϖ (which is called the support), when one is given the 
(initial) values of the ϕ and the ψ at any point of ϖ arbitrarily. 
 It is clear that the χ result from the givens on ϖ and the differential equations. 
 That theorem can be easily generalized by substituting a hypersurface σ in S for the 
hyperplane ϖ.  The generalization can be realized by a simple change of variables, 
moreover. 
 Indeed, let: 

z (x0, x1, …, xn) = x0  (x0 constant), 
 
for example, be the equation for σ.  It will then suffice to replace the x with (n + 1) 
independent combinations of those x – namely, z, z1, z2, …, zn – one of which (say, z) is 
rightfully the left-hand side of the equation for σ. 
 Naturally, in order for the determination of the unknown functions ϕ to be possible, at 
least in a neighborhood of σ, it will be necessary that the normal differential system (1′) 
must become normal relative to z under the change of variables.  That is what we shall 
now address. 
 

 6.  Change of variables. – Thus, imagine a change of variables 0 1

1

n

n

x x x

z z z

 
 
 

…

…
 

under which ϖ will transform into a hypersurface σ. 
 The normal or quasi-normal differential system (1′) transforms into a system of 
unknown functions ϕ of the variables z, z1, z2, …, zn .  However, one cannot assert its 
normal or quasi-normal character a priori.  We then limit ourselves to those particular 
normal systems for which there is a maximum total order of derivation that is the same 
for all of the functions. 
 If we denote that maximum order by s then the differential system, which is assumed 
to be normal with respect to x0, can be written more simply: 
 

(4)    
0

s

sx
νϕ∂

∂
= Φν (x | ϕ | χ)  (v = 1, 2, …, m). 

 
In the right-hand side of this, it is unnecessary to make any distinction between the 
derivatives ψ of the ϕ with respect to only x0 and the derivatives χ of ϕ with respect to 
the x0 , x1 , …, xn , as one does in (1′).  If one performs a transformation 
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0 1

1

n

n

x x x

z z z

 
 
 

…

…
 on the variables x then the system (4) will transform into a system of 

the same maximum order s with respect to z.  We shall soon see that it is precisely a 
normal system, at least, as long as a certain determinant does not vanish. 
 Upon temporarily assuming that one finds oneself in the case in which that is not the 
case, one will not have the multiplicity of the functions ϕ in a neighborhood of the 
hypersurface σ (which is called the support) to begin with when one is given the values 
of the unknown functions on σ arbitrarily, along with their partial derivatives with respect 
to the x of order less than the maximum s.  Without developing the transformation of the 
CAUCHY problem for σ and the variables x, which would be useless here, we 
nonetheless once more point out that if one can solve the equation for s for x0 then its 
existence and uniqueness relative to σ can be stated with only the derivatives in x0 as in 
the case of the hyperplane x0 = a0 . 
 Finally, we observe that one can always get back to the case in which the derivatives 
of maximum order s (at most of order s – 1 with respect to x0) occur linearly in the right-
hand side of equations (4). 
 Indeed, if that were not true then it would suffice to differentiate the two sides of each 
of equations (4) with respect to x0 .  If χ  is a general partial derivative of order s then 
one will have: 

1

1
0

s

sx
νϕ+

+

∂
∂

 = 
0x

ν χ
χ

∂Φ ∂
∂ ∂∑  + … 

 
 The ∂Φ / χ∂  and the terms that were neglected do not contain partial derivatives of 

order higher than s; the χ∂ / ∂x0 have order s + 1 and enter linearly. 
 
 

___________ 
 
 

 
 
 
 
 
  
 



 

§ 2. – Characteristic manifolds. 
 
 

 1. In what follows, we shall generally consider only differential systems of the 
preceding type for which the maximum order of differentiation is s = 1 or s = 2. 
 Such a system can be put into the explicit forms: 
 

(1)   Eµ ≡ 
1 0

m n
i

i i

E
x

ν
µν

ν

ϕ
= =

∂
∂∑∑  + Φµ (x | ϕ) = 0  (µ = 1, 2, …, m) 

or 

(2)   Eµ ≡ 
2

1 , 0

m n
ik

i j i j

E
x x

ν
µν

ν

ϕ
= =

∂
∂ ∂∑∑  + Φµ (x | ϕ) = 0 (µ = 1, 2, …, m), 

respectively. 
 The iEµν  and Φµ in (1) depend upon the x and the ϕ, while the ikEµν  and Φµ in (2) 

depend upon the x and the ϕ, along with the first-order partial derivatives of the ϕ with 
respect to the x. 
 We suppose (as one can do with no loss of generality) that: 
 

ikEµν = kiEµν  (i, k = 0, 1, …, n ; µ, v = 1, 2, …, m). 

 
 In the particular case of just one unknown function ϕ, equations (2) will reduce to just 
one: 

(3)    E ≡ 
2

, 0

n
ik

i k i j

E
x x

ϕ
=

∂
∂ ∂∑ + Φ (x | ϕ | χ) = 0, 

 
in which the χ denote the first partial derivatives of ϕ with respect to x0 , x1 , …, xn . 
 A remarkable equation of type (3) is (1): 
 

(4)     ϕ□  = 
2

2 2

1

V t

ϕ∂
∂

 − ∆2 ϕ = 0, 

in which V is a constant, and: 

∆2 = 
23

2
1i ix=

∂
∂∑ . 

 The operator: 

□  = 
2

2 2

1

V t

∂
∂

 − ∆2 

 
is called the d’Alembertian or Lorentzian. 

                                                
 (1) We have put the symbol t in place of x0 ; we shall sometimes do that in what follows without making 
note of that fact. 
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 Equation (4) occurs in many equations of mathematical physics, and it is called the 
canonical equation of small motions or D’ALEMBERT’s equation; we shall develop its 
genesis a bit later. 
 
 
 2. Conditions for the systems (1) and (2) to be normal. – The equations that 
constitute the systems (1) and (2) are not solved for the partial derivatives of first or 
second order, resp., relative to the variable x0 . 
 We propose to determine the conditions for such a solution to be possible, which will 
be conditions under which those systems will be normal with respect to x0 . 
 First consider the system (1). 
 Since only the first partial derivatives with respect to x0 are important, we write: 
 

0

1 0

m

E
x

ν
µν

ν

ϕ
=

∂
∂∑ + … = 0  (µ = 1, 2, …, m). 

 
 That system is soluble for the ∂ϕ / ∂x0 if the determinant of the 0Eµν  is non-zero: 

 

(5)    Ω = 0Eµν  ≠ 0  (µ, ν = 1, 2, …, m), 

 
and one will observe that this determinant contains the independent variables x0 , x1, …, 
xn and (generally) the unknown functions ϕ1 , ϕ2 , …, ϕn , as well. 
 We now pass on to the system (2). 
 Equations (2) are written: 
 

2
00

2
1 0

m

E
x

ν
µν

ν

ϕ
=

∂
∂∑ + … = 0  (µ = 1, 2, …, m). 

 
and can be solved for the ∂2ϕ / 2

0x∂  if the determinant of the 00Eµν  is non-zero: 

 

(6)    Ω = 00Eµν  ≠ 0  (µ, ν = 1, 2, …, m), 

 
 In order for (3) to be normal, it is necessary and sufficient that one must have: 
 
(6′)      E00 ≠ 0. 
 

 The determinant  00Eµν  contains the x and, in general, the ϕ and the first derivatives 

of the ϕ with respect to the x. 
 If the conditions that were found previously are satisfied then one can apply 
CAUCHY’s theorem to given a (supporting) hyperplane x0 = a0 and the unique 
determination of the functions ϕν (or the single function ϕ, in particular) in a 
neighborhood of the hyperplane will result. 
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 We shall now seek the conditions under which the normal character will be preserved 

under a change of variables 0 1

1

n

n

x x x

z z z

 
 
 

…

…
 that transforms the hyperplane x0 = a0 into 

a hypersurface σ in the space S whose equation is: 
 

z (x0 , x1 , …, xn) = z0 , 
 

and starting from which, it should be possible to determine the functions ϕ (at least in a 
certain neighborhood). 
 
 
 3. Conditions for having a normal character relative to the argument z. – Set: 
 

pi = 
i

z

x

∂
∂

  (i = 0, 1, …, n). 

 One has: 

ix
νϕ∂

∂
= 

1

n
j

i
j j i

z
p

z z x
ν νϕ ϕ

=

∂∂ ∂+
∂ ∂ ∂∑   (v = 1, 2, …, m), 

 
which we abbreviate in the form: 
 

(7)    
ix
νϕ∂

∂
= ip

z
νϕ∂

∂
+ …  (v = 1, 2, …, m), 

 
upon exhibiting only the derivative with respect to z. 
 Upon substituting that into equations (1), they will become: 
 

1 0

m n
i

i
i

E p
z
ν

µν
ν

ϕ
= =

∂
∂∑ ∑  + … = 0 (µ = 1, 2, …, m). 

 Upon setting: 

(8)      ωµν = 
0

n
i

i
i

E pµν
=
∑ , 

 
the condition for the transformed system to be normal will be written: 
 
(9)    Ω = | ωµν || ≠ 0  (µ, ν = 1, 2, …, m). 
 
 As far as the system (2) is concerned, one will have: 
 

2

i kx x
νϕ∂

∂ ∂
 = 

2

2z
νϕ∂

∂
pi pk + …, 
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in an analogous fashion, and equations (2) will transform into: 
 

2

2
1 , 0

m n
ik

i k

E
z

ν
µν

ν

ϕ
= =

∂
∂∑ ∑ pi pk + … = 0  (µ, ν = 1, 2, …, m) 

 
 Upon setting: 

(10)    ωµν = 
, 0

n
ik

i k
i k

E p pµν
=
∑ , 

 
the condition for the system to be normal will be expressed by: 
 
(11)    Ω = | ωµν | ≠ 0  (µ, ν = 1, 2, …, m). 
 
In the determinant (9), the ωµν are linear forms in p0, p1, …, pn , and as a result, Ω will be 
a form of degree m in its arguments.  In the determinant (11), the ωµν are quadratic forms 
in the p in such a way that Ω will be a form of degree 2m in its arguments p0, p1, …, pn. 
 In the case of a single equation (3), the determinant will reduce to the single element: 
 

Ω = 
, 0

n
ik

i k
i k

E p p
=
∑ . 

 
 We conclude: Any function z (x0, x1, …, xn) for which Ω is not identically zero 
corresponds to a family of hypersurfaces z = z0 such that if one starts from any of them 
then the CAUCHY problem will admit a unique solution and, in particular, there will not 
be a multiplicity of holomorphic integral functions ϕ for the given values of ϕ in the 
hypersurface, as well as the first derivatives in the second case (2).  Moreover, that will 
be true by virtue of the fact that the transformed system is normal with respect to z. 
 
 
 4. – When the function z (x0, x1, …, xn) satisfies the equation: 
 
(12)     Ω = 0, 
 
one can no longer apply CAUCHY’s theorem upon starting from the supporting 
hypersurfaces z = z0 for any z0 .  One then says that those hypersurfaces are characteristic 
manifolds. 
 Equations (12) encompass the manifolds for which the unknown functions (if they 
exist) are determined in a unique manner when one is given their values on the manifold, 
along with the values of their partial derivatives with respect to x0 whose order is less 
than the maximum.  It even permits one to specify them completely in certain cases that 
we shall examine. 
 In the case of equation (3), the characteristic manifolds are the ones that satisfy the 
equation: 
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, 0

n
ik

i k
i k

E p p
=
∑ = 0. 

 
 If one supposes that the coefficients are real Eik then they can be real or imaginary.  
They will necessarily be imaginary when the quadratic form on the left-hand side is well-
defined; otherwise, they will be real if the initial givens are real. 
 In particular, consider the characteristic manifolds of the canonical equation of small 
motions.  They are the integrals of the partial differential equation: 
 

Ω = 
3

2 2
02

1

1
i

i

p p
V =

−∑  = 0, 

 
whose left-hand side is an indefinite quadratic form. 
 
 
 5. Partial differential equations for the characteristic manifold in a particular 
case. – The determination of the characteristic manifolds is identified with the problem of 
integrating the first-order partial differential equation Ω = 0, in which the unknown 
function is z. 
 That problem will present some special difficulties when the coefficients iEµ  or ikEµν  

in the determinant Ω also depend upon the unknown functions ϕ of the differential 
system considered. 
 The question will simplify when one can narrow down the search for z to the 
integration of the given normal system.  That situation presents itself when the equations 
of the system are linear in the derivatives of maximum order, because the E will then 
depend upon only the x. 
 In that case, Ω will contain only the x and the p, and the equation will have the type: 
 

Ω (x | p) = 0, 
 
in which pi = ∂z / ∂xi (i = 0, 1, …, n).  We stress the fact that the function z does not enter 
explicitly; we shall return to that equation much later. 
 
 
 6. Mechanical genesis of the canonical equation of small motions. – The 
fundamental equation of pure hydrodynamics in the case of an irrotational motion of a 
(perfect) fluid under the action of conservative forces is written (1): 
 

(13)    21
2 v

t

ϕ∂ +
∂

− (U – V) = c, 

 

                                                
 (1) Cf., T. LEVI-CIVITA and U. AMALDI, Compendio Meccanica razionale, Part 2a, Chap. XII, 
Zanichelli, Bologna, 1928 or P. APPELL, Traité de mécanique rationelle, t. III, Chap. XXIV, no. 733, 
Gauthier-Villars, Paris, 1921. 
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upon denoting the (vectorial) velocity of a particle by v = grad ϕ, as usual, the time by t, 
the Cartesian coordinates by x1, x2, x3, the velocity potential by ϕ (t | x1, x2, x3), and the 
force function per unit mass by U.  The right-hand side is constant in the x1, x2, x3 .  
Finally: 

P = 
dp

ρ∫
, 

 
in which p and ρ are the pressure and density, resp., at the same arbitrary point of the 
fluid, and by hypothesis they satisfy a relation that is called characteristic for the fluid (or 
the supplementary equation or the equation of state). 
 In order to determine the motion of the fluid, one must consider not only equation 
(13) and the characteristic equation, but also the continuity equation: 
 

d

dt

ρ
+ ρ div v = 0, 

 
which translates analytically (according to the EULERian viewpoint) into the 
conservation of mass during the motion.  In that equation, the term dρ / dt denotes the 
substantial derivative (i.e., the one that follows the particle) of the density with respect to 
time. 
 In regard to that, recall that in the study of the motion of a continuous system, one 
will be led to consider the manner by which some scalar or vectorial quantities depend 
upon either the position of the point in the domain where the particle exists (the 
EULERIAN viewpoint) or that of the moving particle M of the system (the 
LAGRANGIAN viewpoint) at each instant.  If q is such a quantity then its local 
derivative will be defined to be the derivative of q with respect to t by considering P to be 
fixed; one denotes it by ∂q / ∂t. 
 On the contrary, one defines the substantial derivative of q like the derivative of q 
with respect to t by considering the same particle M that one follows. 
 In the first case, one envisions the local variation of q with time.  In the second case, 
one envisions the fashion by which q varies when it is referred to the same particle. 
 One sees immediately that the two derivatives are linked by the relation: 
 

dq

dt
= 

3

1
i

i i

q q
u

t x=

∂ ∂+
∂ ∂∑ , 

 
in which ui are the components of v along the xi-axis. 
 Having said that, consider, more especially, the case of a perfect gas in the adiabatic 
regime.  Each particle of the gas (in which, the temperature can vary) will then be 
isolated from any exchange of heat with the neighboring particles, and as one knows 
from thermodynamics, one will have the relation: 
 

p = c1 ργ 
 



12 Characteristics of differential systems and wave propagation 

between p and ρ , in which c1 depends exclusively upon the initial state of the particle 
considered (it will reduce to a constant if the temperature and the density are initially 
uniform), and in which γ is the ratio of the two specific heats at constant pressure and 
constant volume (γ = 1.41 approximately for air and the most common gases). 
 The system of equations that serves to determine the motion is then: 
 

(14)  

21
2

1

( ) ,

div 0,

, ,

v U P c
t

d

dt
dp

P p c γ

ϕ

ρ ρ

ρ
ρ

 ∂ + − − = ∂
 + =

 = =


∫

v  

 
in which the unknown functions are ϕ, ρ, p. 
 Now suppose that the gas is removed from any action of forces, and that p and ϕ 
differ little from their values under normal conditions; in particular: 
 

ρ = ρ0 (1 + σ), 
 
in which σ is a pure number (i.e., a dimensionless quantity) that one considers to be a 
first-order infinitesimal.  Since σ = (ρ – ρ0) / ρ, one quite naturally calls it the 
concentration of the gaseous particle. 
 In addition, we suppose that the differences between substantial derivatives and the 
local derivatives (with respect to t) of the functions ϕ and ρ are negligible at any point of 
the gaseous mass. 
 It will then follow, in particular, that one can neglect the term 12 v2 in the first equation 

in the system (14).  Indeed, since v is the gradient of ϕ: 
 

v2 = 
2

3

1i ix

ϕ
=

 ∂
 ∂ 

∑ . 

 Now: 
d

dt t

ϕ ϕ∂−
∂

= 
3

1
i

i i

u
x

ϕ
=

∂
∂∑ , 

so 
d

dt t

ϕ ϕ∂−
∂

= v2 

 
will be negligible in comparison to ∂ϕ / ∂t . 
 One will then have: 

div v = div grad ϕ = ∆2 ϕ, 
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and as a result, by virtue of the hypotheses that were made, the differential system will 
take the form: 

(14′)    2

1

,

0,

( ).

P c
t

d

dt
dp

P p c γ

ϕ

ρ ϕ

ρ
ρ

 ∂ + = ∂
 + ∆ =

 = =


∫

 

 Now: 

dp = c1 γ ρ γ−1 dρ, 
dp

ρ
= c1 γ ρ γ−2 dρ, 

 

P = c1 
1

γ
γ −

ρ γ−1 + const. =
1

pγ
γ ρ−

+ const. 

 
 On the other hand, if one neglects the terms in s order higher than 1 then one will 
deduce from ρ = ρ0 (1 + σ) that: 
 

 
p

ρ
 = c1 ρ γ−1 = 1 1

1 0 (1 )c γ γρ σ− −+ = 1
1 0 [1 ( 1) ]c γρ γ σ− + −  

  = 0

0

p

ρ
[1 + (γ – 1) σ]. 

 
 One will then find that: 

P = V 2 σ + k, 
 
in which k is an irrelevant constant, and: 
 

V 2 = γ 0

0

p

ρ
. 

 
 With the same approximation, one will find that: 
 

1

t

ρ
ρ

∂
∂

= 
log

t

ρ∂
∂

= 
log(1 )

t

σ∂ +
∂

= 
t

σ∂
∂

. 

 
 Observe once more that ϕ is defined only up to an additive constant with respect to x.  
One can then replace ϕ with ϕ + ϕ0 (t) in equations (14′), in which ϕ0 (t) is an arbitrary 
function of only t.  ∆2ϕ will not change then, while the left-hand side of the first equation 

will be augmented by 0

t

ϕ∂
∂

= 0d

dt

ϕ
. 

 In particular, if one chooses ϕ0 in such a way that: 
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0d

dt

ϕ
= c – k 

 
then the system (14′) will reduce to the final form: 
 

(15)     

2

2

0,

0.

V
t

t

ϕ σ

σ ϕ

∂ + = ∂
 ∂ + ∆ =
 ∂

 

 
 Upon eliminating σ, one will find that: 
 

2

2 2

1

V t

ϕ∂
∂

− ∆2 ϕ = 0, 

 
which is the canonical equation for small motions; V 2 has the constant γ p0 / µ0 in it. 
 
 

_________ 
 



 

§ 3. – The canonical equation of small motions.  Notion of wave. Velocities of 
displacement and propagation of a wave surface or discontinuity. 

 
 

 1. Acoustic interpretation. – The equation that was previously established: 
 

(1)      
2

2 2

1

V t

ϕ∂
∂

− ∆2 ϕ = 0 

 
is applicable to sound vibrations in air or any other gaseous mass, in particular, because 
one can neglect all dissipative action, to a first approximation that is already quite good, 
so one can suppose that the motion is irrotational and that there is no exchange of heat 
between particles (viz., the adiabatic regime). 
 Suppose that the velocity potential ϕ relates to sound vibrations in air. 

 
1x

ϕ∂
∂

, 
2x

ϕ∂
∂

, 
3x

ϕ∂
∂

 then represent the components of the velocity of the air molecule that 

is at the point (x1, x2, x3) at the instant t. 
 Furthermore, suppose, more precisely, that a certain layer of air that is found between 
two surfaces: 
(2)     z (t | x) = c1 ,  z (t | x) = c2 
 
is in vibration at the arbitrary instant t. 
 It is at rest [which corresponds to the zero solution ϕ* = 0 for (1)] outside the layer.  
The phenomenon is characterized by a non-zero solution ϕ (t | x) inside of it. 
 
 
 2. – We shall now leave aside the acoustic interpretation of the solutions to equation 
(1) and suppose that ϕ (t | x) and ϕ* (t | x) are solutions of (1) inside and outside the layer 
that is determined by the surfaces (2), resp.  The phenomenon that is represented by 
equation (1) is characterized by two distinct functions depending upon whether one is 
located inside or outside the layer.  The derivatives of ϕ of various order are generally 
subject to sharp variations across the surfaces (2), and that is why they are called 
discontinuity surfaces. 
 Now, it can happen that such a surface varies with time.  One will then say that the 
discontinuity propagates, and it will take on the name of a wave, more specifically. 
 Therefore, if one interprets equation (1) as being capable of characterizing the 
propagation of a wave then the discontinuity surfaces (or, as we also say, the wave 
surfaces) bound a layer that displaces and possibly deforms with time. 
 If one assumes that no molecular interpenetrations or cavitations are produced during 
the motion then the normal components of the velocity of a particle cannot be subject to 
any discontinuity upon crossing a wave surface.  We shall also exclude the phenomenon 
of molecule sliding across such a surface, which would imply tangential discontinuities 
for the velocities. 
 We remark here that from the postulate of the forces (in particular, the pressures) 
upon which the mechanics of continuous media is based, under normal conditions, the 
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pressure cannot be subject to any sharp jump, even if the regime of the motion varies 
sharply. 
 Observe further that the density ρ is coupled with the pressure by the characteristic 
equation (which is the same on both sides of the discontinuity surface). 
 The continuity in ρ will then result from that of p.  On the other hand, from the first 
equation (15) of the preceding paragraph, the derivatives of ϕ and ϕ* with respect to t 
represent the density up to a constant factor.  They must therefore be exempt from any 
discontinuity upon crossing the wave surface. 
 The preceding considerations lead us to conclude that in order for equation (1) to 
define the propagation of a wave, one must assume that the two solutions ϕ and ϕ*, which 
are assumed to exist and characterize the phenomena inside and outside the layer, agree; 
i.e., that their first derivatives in space and time must be equal to each other on the wave 
surfaces that bound the layer at each instant. 
 On the contrary, the second derivatives are subject to sharp variations.  We shall 
address them later when we extend the present considerations to an arbitrary normal 
system of partial differential equations.  We can also see then how the wave surfaces are 
characterized from the analytical viewpoint. 

 

P 
Q 

n 

 
Figure 1 

 
 
 3. Velocities of displacement and propagation. – Consider a wave surface that 
bounds a layer that is the site of a perturbation at the instant t, and let n be the normal at 
an arbitrary point P that is oriented outward (Fig. 1). 
 The surface displaces, and at the instant t + dt, it cuts that normal n at a point Q. 
 Let dn be the algebraic measure of the segment PQ, which is regarded as positive 
outward. 
 The ratio a = dn / dt is called the displacement velocity of the wave surface at the 
point P at the instant considered.  In ordinary situations, a > 0 at all points of one of the 
surfaces that bound the layer, and a < 0 at all points of the other one.  The surfaces are 
then called the leading and trailing wave fronts. 
 Much later, we shall give explicit expressions for a by utilizing the equation of the 
wave surface σt . 
 The difference c = a – dϕ / dn between the displacement velocity and the normal 
component to σt of the velocity of the fluid particle that if found at P at the instant 
considered is called the (normal) velocity of propagation of σt at the point P. 
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 From the principle of relative motion, that difference obviously measures the velocity 
with which the surface displaces, not with respect to the fixed axes, but with respect to 
the medium. 
 If it is at rest outside the layer then one will have ϕ* = 0, and since, as one sees, ϕ and 
ϕ* must agree on σ, one will have dϕ / dn = 0, so c = a. 
 In that case, the velocity of propagation will be identical with that of displacement. 
 
 
 4. – Now consider the hypersurface σ: z (t | x) = const. in space-time that corresponds 
to the wave surface σt in the space of only the x.  It is essential to remark that σ is a 
characteristic manifold relative to equation (1); i.e., that z is an integral of the equation: 
 

(3)     
3

2 2
02

1

1
i

i

p p
V =

−∑  = 0. 

 
 Indeed, assume that one can argue as if the functions ϕ in question were holomorphic 
on σ ; if σ is not a characteristic then there will be a contradiction between the uniqueness 
property in CAUCHY’s theorem and the existence of two solutions ϕ that take the same 
values on σ, as well as their first-order partial derivatives, but present discontinuities in 
the higher-order derivatives on σ. 
 The propagation of waves is possible then only as long as the wave surfaces σt 
correspond to characteristic manifolds σ. 
 Moreover, a particular case of equation (1) shows that in order for one to be able to 
once more solve the CAUCHY problem upon starting with a characteristic manifold, 
certain conditions must be satisfied; there will not be a single solution then, but an 
infinitude of them. 
 In order to explain that, suppose that ϕ depends upon t and just x1, which we now 
write as x.  Equation (1) will become: 
 

(1′)     
2 2

2 2 2

1

V t x

ϕ ϕ∂ ∂−
∂ ∂

= 0 

 
 Recall how one integrates that celebrated equation.  One remarks that it can be 
written: 

1 1

V t x V t x
ϕ∂ ∂ ∂ ∂  + −  ∂ ∂ ∂ ∂  

 = 0, 

 
in which the left-hand side naturally amounts to the product of operators that is applied to 
ϕ. 
 Introduce the variables z, z1, which are linked with the old ones t, x by the relations: 
 

z = x – V t, z1 = x + V t, 
so 
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x = 1
2 (z + z1), t = 

1

2V
(z1 – z). 

 
 From the theorem on the derivation of composed functions, one has: 
 

z

∂
∂

= 
1 1

2 x V t

∂ ∂ − ∂ ∂ 
,  

1z

∂
∂

= 
1 1

2 x V t

∂ ∂ + ∂ ∂ 
, 

 
and equation (1′) transforms into: 

2

1z z

ϕ∂
∂ ∂

= 0, 

which is integrated by inspection. 
 The general integral is: 
(4)      ϕ = α (z) + β (z1), 
 
in which α and β are two arbitrary differentiable functions of z and z1, respectively.  One 
will see forthwith (and as one might expect, moreover) that one cannot generally solve 
the CAUCHY problem for a supporting line z = c, but it is necessary that the givens must 
satisfy a compatibility condition.  When it is verified, there will be an infinitude of 
solutions. 
 Indeed, it follows from (4) that: 
 

1 1( , ) ( ) ( ),

( ).
z c

c z c z

c
z

ϕ α β
ϕ α

=

= +


∂   ′=  ∂ 

 

 
 One cannot give the functions ϕ0 and ϕ1 of the variable z1 arbitrarily then, which must 
reduce to ϕ and ∂ϕ / ∂z for z = c.  The function ϕ1 (z1) must be a constant, and in that 
case, there will be an infinitude of forms for the solution ϕ to the problem. 
 Those remarks show how essential the consideration of characteristic manifolds is. 
 Up to now, we have only addressed the negative aspects of such things, but it is 
appropriate to point out that their importance is also very great from the constructive 
point of view.  Indeed, they serve to solve the CAUCHY problem precisely for 
supporting manifolds that are not characteristic. 
 That idea is due to B. RIEMANN, who successfully treated the problem of 
integrating the second-order linear equation of hyperbolic type in two independent 
variables: 

2z z z
a b

x y x y

∂ ∂ ∂+ +
∂ ∂ ∂ ∂

+ c Z = 0 

 
in a celebrated presentation to the Göttingen Academy of Science (1860). 
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 RIEMANN’s method was reprised by DARBOUX (1) and others.  Some important 
research on partial differential equations of hyperbolic type in three or more variables, as 
well as on the mathematical expression for HUYGHENS’s principle (2), which was 
formulated for the first time by KIRCHHOFF for the canonical equation of small 
motions, was done by VOLTERRA (3) and HADAMARD (4) since 1892. 
 
 

___________ 
 

                                                
 (1) Cf., G. DARBOUX, Leçons sur la théorie des surfaces, v. II, Gauthier-Villars, Paris, 1889. 
 (2) One will find some bibliographic references, and especially for the Italian contributions, in the 
Lezioni di meccanica razionale by LEVI-CIVITA and AMALDI, vol. II, Part Two, pp. 468.  Zanichelli, 
Bologna, 1927. 
 (3) Cf., V. VOLTERRA, Leçons sur l’intégration des équations différentielles aux dérivées partielles, 
taught in Stockholm, Paris, Hermann, 1912.  Lectures delivered at the celebration of the twentieth 
anniversary of the foundation of Clark University, second lecture, 1912. 
 (4) Cf., HADAMARD, Leçons sur la propagation des ondes, Hermann, Paris, 1903.  Lectures on 
Cauchy’s Problem in linear partial differential equations, New Haven, 1921.  A French edition is currently 
in press at Hermann. 
 For the bibliography of the subject, the reader can consult the interesting pamphlet by R. D’ADHEMAR, 
Les des équations aux dérivées partielles à caractéristiques réelles, Coll. Scientia, Gauthier-Villars, Paris, 
1907. 



 

§ 4. – Extension of the concept of wave propagation to an arbitrary normal system. 
 
 

 1. – The considerations that were originally developed for equation (1) of the 
preceding paragraph can be easily extended to the systems of equations that were 
considered in no. 1 of § 2. 
 Once more, introduce the variables t, x1, x2, …, xn in the space S, and suppose that 
inside and outside the layer that is bounded by two hypersurfaces (which we shall even 
call simply surfaces when it will create no ambiguity): 
 
(1)     z = c1 ,  z = c2 , 
one of the two systems: 
 

(2)   Eµ ≡ 
1 0

m n
i

i i

E
x

ν
µν

ν

ϕ
= =

∂
∂∑∑ + Φµ (x | ϕ) = 0   (µ = 1, 2, …, m) 

or 

(3)   Eµ ≡ 
1 0

m n
ik

i i k

E
x x

ν
µν

ν

ϕ
= =

∂
∂ ∂∑∑ + Φµ (x | ϕ | χ) = 0  (µ = 1, 2, …, m), 

 
is satisfied by two groups of functions ϕ1 , ϕ2 , …, ϕm  and 1ϕ∗ , 2ϕ∗ , …, mϕ∗ , respectively. 

 Upon using the considerations that were introduced in the context of the canonical 
equation for small motions as our basis, we shall suppose that upon crossing some 
hypersurfaces (1) that bound a layer that displaces and even deforms in the course of time 
in the space S′ of only (x1, x2, x3), certain first-order partial derivatives [in the case of s = 
1 – i.e., equation (2)] or second-order ones [in the case of s = 2 – i.e., equation (3)] will 
be subject to sharp variations (i.e., jumps). 
 We also suppose that the functions ϕ and ϕ* are continuous upon traversing the 
hypersurfaces (1) and that in the case of s = 2, the same thing is also true for the first 
derivatives. 
 Those hypotheses correspond to a type of wave phenomenon for which the wave 
surfaces are the ones that bound the layer. 
 In the case of a general system of maximum order s, the functions ϕ and ϕ* must 
agree on the wave surfaces, along with their derivatives of order less than s. 
 On the contrary, there will  be discontinuities for the derivatives of order s. 
 Upon assuming, as above, that one can argue as if the ϕ and ϕ* were holomorphic in 
(x | t) on the surfaces (1), they must characteristic manifolds, due to the uniqueness 
property of CAUCHY’s theorem. 
 We shall address the problem of determining the two groups of unknown functions ϕ 
and ϕ* here.  Such a study would oblige us to discuss the CAUCHY problem that relates 
to the characteristic manifolds. 
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 That study was carried out, at least in certain special cases, by HADAMARD and 
advanced by RIQUIER (1) and DELASSUS.  Following CARTAN, it will bring us back 
to the PFAFF equation (2). 
 On the contrary, we assume the existence of functions ϕ and ϕ* at the same time as 
the existence of a propagation of waves and propose to illuminate some properties. 
 
 
 2. – If z = c is a characteristic surface σ then the function z must satisfy the equation: 
 

Ω (x | p) = 0, 
in which: 

pi = 
i

z

x

∂
∂

   (i = 0, 1, …, n). 

 
 In reality, that was established only on σ ; i.e., for z equal to a particular value c. 
However, since the argument z does not enter into Ω explicitly, the restriction to z = c is 
not essential; i.e., Ω must be zero as long as one takes the pi to be equal to the derivatives 
of that function z.  One will then be dealing with a true (first-order) partial differential 
equation for z. 
 When the functions E that figure in system (2) or (3) depend upon only the x, that will 
characterize one and only one z.  However, before advancing the study of that case, we 
shall consider the wave surface σt in the Euclidian space S′ with Cartesian coordinates 
(x1, x2, …, xn) that corresponds to σ and extend the notion of the velocity of displacement. 
 The surface σt of the equation z (t | x) = c divides the neighboring space into two 
regions I and II, which generalize the interior and exterior of the layer to the case where 
σt is the wave surface of a vibrating wave that moves in a medium that is at rest.  Orient 
the normal in the direction that points from the region I to the region II.  Since one can 
always replace z with – z, one can suppose that the direction for the normal that is > 0 is 
that of increasing z. 
 Now consider two wave surfaces at the instants t and t + dt : 
 
(4)    z (t | x) = c,  z (t + dt | x) = c. 
 
 The normal n to σt at P meets the second surface σt+dt at a point Q.  If dn is the 
algebraic measure of the segment PQ on the oriented normal then the ratio a = dn / dt is 
called the displacement velocity of the wave surface at the point P at the instant 
considered. 
 
 
 3.  Calculating the displacement velocity. – We seek an expression for a that 
involves the elements of the surface σ . 
                                                
 (1) Cf., Ch. RIQUIER, Les systèmes d’équations aux dérivées partielles, Gauthier-Villars, Paris, 1910.  
Furthermore, M. JANET, Leçons sur les systèmes d’équations aux dérivées partielles, Gauthier-Villars, 
Paris, 1929. 
 (2) Cf., E. GOURSAT, Leçons sur le problème de Pfaff, Hermann, Paris, 1922. 
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 One knows that the quantities: 
 

(5)     αi = ip

g
  (i = 1, 2, …, n), 

 
in which g is the positive determination of the square root of: 
 

(5′)      g2 = 2

1

n

i
i

p
=
∑ , 

 
constitute a system of direction cosines for the normal n to σt at P; that is the one that 
corresponds to the normal that is oriented in the sense of increasing z. 
 If xi and xi + dxi are the coordinates of the points P, Q, resp., then from equations (4), 
one must have: 

z (t | x) = c, z (t + dt | x + dx) = c, 
 
so when one takes the difference: 
 

(6)     dz = p0 dt + 
1

n

i i
i

p dx
=
∑ = 0. 

 
 Since the dxi are the components of the vector PQ and the normal is oriented in the 
sense of increasing z: 
(7)     dxi = αi dn (i = 1, 2, …, n). 
 
 Upon substituting those expressions in (6) and then taking (5) and (5′) into account, 
one will get: 

p0 dt + dn 
1

n

i i
i

pα
=
∑ ≡ p0 dt + g dn = 0, 

so 

  a ≡ 
dn

dt
 = − 0p

g
 

and 

(8)     | a | = 
dn

dt
 = 0| |p

g
. 

 
 That is the formula that we have in mind.  It exhibits the manner by which the 
displacement velocity varies on each surface with P and time. 
 
 
 4. An application of formula (8). – Let us apply the formula that was just found to 
equation (1) of § 3, which corresponds, as we said, to the phenomenon of the propagation 
of sound. 
 From equation (5′) of the preceding no., equation (3) of § 3 is written: 
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2
02

1
p

V
 = g2, 

so 

V = 0| |p

g
. 

 
 One then finds that the constant V is nothing but the propagation velocity of a wave 
surface that bounds a layer that is the site of sound vibrations at the instant t. 
 For perfect gases in the adiabatic regime, we have seen that: 
 

V 2 = 0

0

pγ
ρ

, 

 
in which γ, p0, ρ0 have the significance that given in (§ 2, no. 6), and in particular, p0 is 
the rest pressure. 
 Upon considering the case in which there is equilibrium outside of a certain vibrating 
layer, one can conclude that the formula: 
 

V = 0

0

pγ
ρ

 

 
must give the propagation velocity for sound. 
 Let us adopt the practical system of units (meters, seconds, kg-weight): 1 m3 of air 
weighs 1.29 kg.  p0 , viz., atmospheric pressure, is around 1 kg per cm2, so it amounts to 
104 units in the system.  The acceleration of gravity is 9.8, and: 
 

V 2 = 1.41 
410 9.8

1.29

×
. 

 
 One will then find that the velocity V is around 331 m /s, which is in good agreement 
with experiments. 
 The calculation of the propagation velocity of sound (when we imagine the simplest 
case of plane waves) was done for the first time by NEWTON, who found that: 
 

V = 0

0

p

ρ
 

 
when one assumes that the phenomenon is isothermal. 
 In the case of air, that expression will give V = 280 meters per second at 0o.  On the 
contrary, experiments yield the value of 333 m / s at 0o. 
 LAPLACE gave the reason for the disagreement between theory and experiment by 
noting that the variations of pressure that are to the propagation of waves produce 
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variations in temperature that imply warming in the compressed layers and cooling in the 
dilated ones. 
 By taking that into account, he then showed that in order to obtain the true 
propagation velocity theoretically that agrees with experiment, it would suffice to regard 
the phenomenon considered to be adiabatic, which would lead one to multiply the ratio p0 
/ ρ0 by γ. 
 

___________ 
 

 



 

§ 5. – Digression on the general conception of wave motion (1). 
 
 

 1. What is a wave motion? – One can perhaps restrict the motion of a fluid to one 
for which the displacements of its particles imply an even more marked motion for some 
particular elements that are present, such as a free surface or a separation surface. 
 However, that would not be a property that clearly discriminates, as one can show in 
a classical example. 
 Consider a rectangular channel with a horizontal base and vertical walls, and take the 
case in which the motion of the gravitating liquid that is contained in the channel (say, 
water, to be precise) always takes place parallel to the ends and in an identical fashion in 
all of the longitudinal sections of the channel; i.e., in the various vertical planes that are 
parallel to the ends.  The study of the phenomenon will then come down to the two-
dimensional case in an arbitrary longitudinal section. 

 

O Ω 

y Y 

x X 

l 

L 
C 

 
Figure 2. 

 
 The base (Fig. 2) will be represented by a horizontal line ΩX, and the free surface by 
a line l, which generally varies with time, but in such a way that it is only slightly 
different from a horizontal line y = h (at least, under ordinary conditions); that will be the 
level line under static conditions, when h is the (mean) depth of the channel. 
 Let L denote the domain of the motion – i.e., the indefinite band (which generally also 
varies in time) that is found between the base and the line l. 
 Having said that, the general problem of hydrodynamics for those moving planes can 
obviously be formulated in the following way: At the instant t = 0, one is given a 
perturbation; i.e., the configuration of l and the distribution of the velocities in L.  
Characterize the appearance of the later motion, and in particular, the law of variation of 
l. 
 The question thus posed (all details aside) belongs to the general problem of waves in 
channels if one says “wave propagation” to mean, more precisely, the evolution of 
motion according to a certain law when one starts with a given perturbation.  From such a 
viewpoint, one can focus on the general integral directly, and it is only then that it can 
present a wave-like aspect in the ordinary sense of the word, and almost by accident in 
certain applications.  That is what one sees in the early research by LAGRANGE, who 

                                                
 (1) Cf., T. LEVI-CIVITA, “Questioni di meccanica classica e relativista,” II Conferenze.  Le onde dei 
liquidi.  Propagazione nei canali. Zanichelli, Bologna, 1924. 
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reduced problem of the equation of the vibrating string by neglecting the vertical 
acceleration of the motion of each particle in comparison to g (the acceleration of 
gravity).  The most important application that he made was concerned with the tides. 
 POISSON and CAUCHY proceeded in an analogous fashion while abandoning the 
too-restrictive hypothesis on the acceleration and treating small motions in deep channels 
in general.  The notion of wave appeared by itself in a manner that was at least very 
expressive in regard to question whose physical nature imposed such a notion, if not quite 
clear. 
 That is what will happen, for example, in the case of what one calls emersion waves, 
which are produced when a solid, such as a floating body, is raised briefly and removed 
from contact with the fluid mass, which then tends to recover its equilibrium. 
 The proper motion (at least, theoretically − i.e., the ideal case of absolute 
incompressibility) of the liquid will begin immediately in the entire mass of water and 
change in the height of the free surface will displace along the channel with an 
acceleration that is reasonable constant (if one is indeed dealing with acceleration and not 
velocity).  There is something that propagates, but although that constitutes a highlight, it 
does not seem to be a law that can clearly characterize the motion as a wave motion.  
Things are entirely different for the propagation of discontinuities that we are addressing 
systematically here. 
 
 
 2. – It is important to emphasize that although the case in which discontinuities are 
involved is indisputably the most striking one, the quantitative study of wave phenomena 
in fluids and elastic media was not originally posed in that form, but was developed 
without relinquishing the principle of continuity. 
 In reality, one takes the simplest cases as models, in which one can limit oneself to 
the consideration of just one dimension, which is what happens for vibrating strings. 
 Let s denote the position parameter of the vibrating particle in the one-dimensional 
region in question (e.g., the initial rectilinear configuration of the vibrating string), and let 
t denote time, while ϕ denotes the displacement. 
 First of all, one considers the solutions ϕ (s, t) to the differential equation that models 
the phenomenon that depend upon a unique argument s1 = s – Vt, in which V is a 
constant.  The binomial s1 = s – Vt is called the phase of the corresponding phenomenon. 
 When the phase is constant – i.e., when one imagines a relation of the type: 
 

s1 = s – Vt = const. 
 
between the arguments s and t, which are independent a priori, the characteristic ϕ (s1) of 
the vibratory phenomenon will remain constant.  In other words, for an observer that 
displaces along the string (or more generally, along the support of the argument s) with 
the constant velocity V, the phenomenon will appear to be stationary.  That is why the 
constant V can be interpreted as a propagation velocity for the vibratory state of the string 
relative to the solutions of the particular type ϕ (s1).  That is precisely the sense in which 
one refers to waves that propagate with velocity V. 
 More generally, even in the case of three-dimensional sound, elastic, or 
electromagnetic phenomena, the study of waves is developed by the search for particular 
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classes of solutions (of the systems of partial differential equations that correspond to the 
phenomena) that depend upon a single argument that is a linear function of the three 
spatial coordinates x1, x2, x3, and time t ≡ x0 ; i.e., just one argument of the type: 
 

ξ = 
3

0
i i

i

c x
=
∑ , 

 
in which the ci are constants that are arbitrary a priori. 
 We suppose that we are dealing with solutions that depend effectively upon the point 
(x1, x2, x3) (i.e., which are not just functions of time).  It will then be necessary that one of 
the three coefficients c1, c2, c3 must be non-zero, or rather, that the vector c whose 
components along the coordinate axes are c1, c2, c3 must be non-zero.  One can then 
regard s1 = ξ / c (c is the length of the vector c) as the unique spatial element upon which 
the solution in question depend, instead of ξ.  We remark that the ci / c = αi (i = 1, 2, 3) 
are the direction cosines of the vector c and set – c0 / c = V.  The unique argument upon 
which the determining parameters of the phenomenon are supposed to depend is then 
once more present in the form s1 = s – Vt, in which: 
 

s = 
3

1
i i

i

xα
=
∑  

 
is virtually a spatial coordinate along the direction (α1, α2, α3) and can then be denoted 
more simply by x0 with no essential restriction (and by taking the x3-axis for its direction, 
for example). 
 One will then be dealing with plane waves, in the sense that the vibratory state 
depends upon only s for any value of t, and as a result, it will be identical to the same 
plane s1 = const. at all points. 
 It will follow further that the phenomenon will be stationary for an observer with 
respect to which s1 = const.; i.e., for which s displaces with velocity V, etc. 
 One poses a more general problem by taking s to be an arbitrary function (and not 
necessarily a linear one) of x1, x2, x3 and supposing that the determining parameters of the 
phenomenon are functions of not only s1 = s – Vt, but also of another purely-spatial 
argument. 
 The latter type includes the waves that one calls spherical waves.  Some types of 
waves that are even more general, but conceived in an analogous fashion, have been 
studied from various viewpoints by BATEMAN and MAGGI (1). 
 
 

___________ 
 
 
 

                                                
 (1) H. BATEMAN, Electrical and optical wave motion, Cambridge University Press, 1915. 
  G. A. MAGGI, “Sulla propagazione delle onde di forma qualsivoglia nei messi isotropi,” Rend. Acc. 
Lincei (5) 29 (2nd sem, 1920), pp. 371-378.  



 

§ 6. – The Cauchy method for integrating a first-order partial differential equation. 
 
 

 1. – As we saw in § 2, (no. 4), for the two systems that were considered there (no. 1), 
the characteristic manifolds: 

z (x0, x1, …, xn) = const. 

annul a certain determinant Ω that generally contains the unknown functions ϕ, in 
addition to the x and p = ∂z / ∂x.  However, as was pointed out (§ 2, no. 5), there is an 
important class of normal systems for which Ω contains only the x and the p.  It is 
comprised of the systems of order s = 1 and s = 2 whose coefficients, iEµν  or ikEµν , 

respectively, are functions of only the x. 
 Similarly, for the normal systems of maximum order (which is the same for all 
variables) s > 1, one will have an equation of the same type for the determination of the 
characteristic manifolds provided that the coefficients of the derivatives of maximum 
order depend upon the x exclusively. 
 Since we propose to study the equation: 
 
(1)      Ω (x | p) = 0, 
in which: 

(2)     pi = 
i

z

x

∂
∂

 (i = 0, 1, 2, …, n), 

 
we shall present CAUCHY’s method for the integration of a first-order partial differential 
equation, and in particular, equation (1), in which the unknown z does not enter 
explicitly.  However, we are sure that at least one of the p figures in Ω – for example, p0 .  
Upon solving (1) for p0 , we can write: 
 
(3)     p0 + H (t, x1, …, xn | p1, p2, …, pn) = 0, 
in which: 

  pi = 
i

z

x

∂
∂

 (i = 0, 1, 2, …, n). 

 
 It is convenient to first treat the linear case. 
 
 
 2. Case of the linear equation. – It is well-known that if H is a linear function of the 
p then the problem of the integration of (3) will amount to the integration of an ordinary 
differential system. 
 It is nevertheless good to recall that result, which likewise applies to the general case. 
 Equation (3) will then have the type: 
 

(4)     p0 + A0 + 
1

n

i i
i

A p
=
∑  = 0, 
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in which the A are functions of only the variables t, x1, …, xn .  Consider the space Sn+2 of 
n + 2 variables t, x1, …, xn, z, and a hypersurface z = ϕ (t | x), namely, σ, that is an 
integral of equation (4). 
 Draw reference axes in the space Sn+2 (which we assume to be Euclidian, for the sake 
of convenience), while exhibiting just one variable x for more clarity. 

 

x 

t 

C 

z 

M0 

Γ 

 
Figure 3. 

 
 Let Γ be the section of the hypersurface s by the hyperplane t = 0; i.e., the locus of 
points of t = 0 that are defined by the equation: 
 

z = ϕ (0 | x) or, more briefly z = ϕ0 (x). 
 
 The fundamental idea that will guide us in what follows consists of regarding σ as the 
locus of ∞n curves that are obtained by integrating a convenient ordinary system of the 
type: 

(5)     idx

dt
= Xi (t | x)  (i = 1, 2, …, n), 

 

(6)     
dz

dt
= Z (t | x) 

 
of rank (n + 1), whose unknown functions of t are x1, …, xn , and z.  The system (5), (6) 
introduces n + 1 arbitrary constants, but it will diminish their number by 1 if one wishes 
that the system should be compatible with the equation z = ϕ (t | x) for σ. 
 The essential hypothesis that justifies the consideration of that system is that it must 
be independent of the previous integration of equation (6). 
 Upon regarding z as a function of t and x, one will deduce from (6) and (5) that: 
 

dz

dt
= Z = p0 + 

1

n
i

i
i

dx
p

dt=
∑ = p0 + 

1

n

i i
i

p X
=
∑ , 

 
so upon taking (4) into account: 
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Z = − A0 + 
1

n

i
i

p
=
∑ (Xi – Ai). 

 
 Since one desires that the differential system (5), (6) should be independent of the 
integration of (4) – i.e., valid for any integral hypersurface – the coefficients of pi must be 
zero, so: 

Xi = Ai , 
and therefore, it will follow that: 

Z = − A0 . 
 
 The desired differential system is then: 
 

(5′)    idx

dt
= Ai (i = 1, 2, …, n), 

 

(6′)    
dz

dt
= − A0 , 

 
or, if one prefers the classical form: 
 

1

1

dx

A
= 2

2

dx

A
= … = n

n

dx

A
= − 

0

dz

A
 = dt, 

 
which permits one to determine the integral hypersurfaces of (4). 
 Indeed, in order to solve the CAUCHY problem that relates to a given curve Γ in the 
hyperplane t = 0, it will suffice to first consider the totality of the (∞n) integral curves of 
the system (5′), in which z does not occur. 
 The integration of the remaining differential equation (6′), which amounts to a simple 
quadrature when one has already integrated the system (5′), then completes the 
determination of the curves in the space Sn+2 [of (t | x | z)].  If one wishes that among 
those curves there are ones that are supported by Γ then one must write out that z takes 
the value ϕ0 (x) for t = 0, in which the x correspond to the same value t = 0 and can then 
be identified with the n arbitrary constants that are introduced by the integration of the 
system (5′).  Hence, there will be n arbitrary constants, and each integral hypersurface σ 
of (4) will appear to be the locus of (∞n) integral curves of (5′), (6′) that issue from the 
points of Γ. 
 
 
 3. General case. – The process that consists of converting the integration of a linear 
first-order partial differential equation into that of an ordinary differential system, which 
is due to LAGRANGE, was generalized to nonlinear equations by LAGRANGE himself, 
and then by CHARPIT, CAUCHY, and JACOBI.  Here, we shall give CAUCHY’s 
method in a form that will best show the principle (somewhat better than what appears in 
the usual presentations). 
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 We recall the general equation: 
 
(3)     p0 + H (t, x1, …, xn | p1, …, pn) = 0 
 
and investigate whether it is possible to determine the general integral hypersurface (viz., 
the one that is provided by CAUCHY’s theorem with arbitrary initial data) as the locus of 
integral curves of a suitable differential system. 
 One easily recognizes that, in general, one can no longer associate (3) with a 
congruence of curves in the space Sn+2 that agrees with any integral hypersurface.  
However, one must pass to an auxiliary space with a larger number of dimensions.  It will 
be precisely useful to consider the arguments to be the p0, p1, …, pn that define the 
tangent element at P geometrically, in addition to the coordinates x of the running point 
on the integral hypersurface σ.  If one wishes that the p should have a concrete metric 
significance then it will suffice (as one has done already for ease of description, 
moreover) to attribute a Euclidian metric on the space Sn+2 and regard the t, x, and z as 
Cartesian coordinates.  Hence p0, p1, …, pn , and – 1 are proportional to the direction 
cosines of the normal to σ with respect to the axes of the t, x1 , x2 , …, xn , z, respectively. 
 Having said that, we seek to associate (3) with a differential system of the type: 
 

(7)    
( , | ),

( , | ),

i
i

i
i

dx
X t x p

dt
dp

P t x p
dt

 =

 =


  (i = 1, 2, …, n), 

 

(8)  
dz

dt
= Z (t, x | p). 

 
 If one knows the Xi as functions of t, x, p then one can easily define the expression for 
Z.  Indeed, since z is a function of t by the intermediary of x0 ≡ t and the other x, one will 
have: 

dz

dt
= p0 +

1

n
i

i
i

dx
p

dt=
∑ , 

 
so, thanks to the first of equation (7): 
 

(9)   
dz

dt
= Z (t, x | p) = p0 +

1

n

i i
i

p X
=
∑ . 

 
 Observe that equation (8), in which Z is given by (9), must be considered only after 
integrating the system (7) because z will then be given as a function of t by a simple 
quadrature. 
 Once more, consider the space Sn+2 and a hypersurface Γ of the hyperplane t = 0.  Let 
M0 and ω0 be a point of Γ and the hypersurface that is tangent at M0 to the hypersurface s, 
which is the integral of (3) that passes through Γ. 
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 We shall express the idea that the integral curve C0 of the system (7), (8) that issues 
from M0 and is tangent to ω0 belongs to the integral hypersurface σ while respecting the 
equations: 

pi = 
i

z

x

∂
∂

  (i = 0, 1, …, n; x0 ≡ t), 

 
and that this is true for any Γ that passes through M0 . 
 Upon passing from t to t + dt, pi will be increased by dpi , in such a way that: 
 
(10)     dpi = Pi dt. 
 
 On the other hand, in order for the relations: 
 

pi = 
i

z

x

∂
∂

 

 
to persist, it is necessary that one must have: 
 

(11)   dpi = 
0

n

ij j
j

p dx
=
∑   (i = 0, 1, …, n), 

in which: 

pij = pji = 
2

i j

z

x x

∂
∂ ∂

  (i, j = 0, 1, …, n). 

 
One must realize the equality of the expressions for the dpi that are provided by (10) and 
(11).  Observe that the quantities pij with non-zero indices i, j depend upon the choice of 
Γ (which is arbitrary, by hypothesis), while the pij that have at least one zero index satisfy 
some relations that are deduced from (3) by differentiation, namely, the (n + 1) relations: 
 

(12)   p0i + 
1

n

ji
j j i

H H
p

p x=

∂ ∂+
∂ ∂∑  = 0  (i = 0, 1, …, n). 

 
 Since there are 1

2 (n + 1)(n + 2) quantities pij , in total: 

 
1
2 (n + 1)(n + 2) – (n + 1) = 1

2 n (n + 1) 

 
of them will remain arbitrary, while the quantities that are available are: 
 

X1 , X2 , …, Xn , P1 , P2 , …, Pn , 
 
which are 2n in number, which will be less than 1

2 n (n + 1) when n > 3. 

 The preceding conditions will then lead one to think that it would be impossible to 
determine the Pi in such a way: 
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Pi dt = 
0

n

ij j
j

p dx
=
∑  

are independent of the pij . 
 Nevertheless, the following developments will assure the success of CAUCHY’s 
idea: 
 Upon differentiating with respect to t, the pi = ∂z / ∂xi will become: 
 

idp

dt
= Pi = pi 0 +

0

n
j

ij
j

dx
p

dt=
∑ = pi 0 +

0

n

ij j
j

p X
=
∑ . 

 
 Upon eliminating the pi 0 = p0i by means of the relations (12) and taking into account 
the symmetry of the pij in their indices, the preceding relations will become: 
 

Pi = −
1

n

i ij
ji j

H H
X p

x p=

 ∂ ∂+ −  ∂ ∂ 
∑  (i = 1, 2, …, n). 

 
 These will also be satisfied independently of the pij if: 
 

 Xi = 
j

H

p

∂
∂

, 

 

 Pi = − 
i

H

x

∂
∂

 (i = 1, 2, …, n). 

 
 It will then seem that if one starts from the arbitrary point M0 of the integral 
hypersurface σ and attributes increments to the t, x, p, z that satisfy the differential system 
(7), (8), which will henceforth be characterized in the form: 
 

(13)   

,

,

i

j

i

i

dx H

dt p

dp H

dt x

∂ = ∂


∂ = −
 ∂

  (i = 1, 2, …, n), 

 

(14)  
dz

dt
= 

1

n

n
j i

H
p

p=

∂
∂∑ − H, 

 
then one will pass to an infinitely-close point M1 that again belongs to σ and for which 
the pi + dpi will determine the direction of the normal to σ at that point. 
 The same considerations can be repeated immediately when one starts from M1, and 
that will exhibit the essential fact that the system (13), (14) was formed in such a fashion 
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that is will be valid for all integral hypersurfaces σ that pass through M0 with a given 
orientation to the normal – i.e., with given p. 
 We then find (for the integral hypersurface σ) the same conditions at M1 that we 
found at M0 . 
 One then deduces that the entire curve C that is defined unambiguously by (13), (14) 
under the condition that the x, p, z take values for t = 0 that correspond to M0 belongs to 
the integral hypersurface in question, which one should note well is any of the integral 
hypersurfaces that pass through M0 and admit ϖ0 as a tangent hyperplane there. 
 One will then obtain the important geometric corollary that: 
 
 If two integral manifolds touch at a point then they will touch all along a curve C that 
passes through that point. 
 
 CAUCHY called the curves C “characteristics.” Following HADAMARD, we shall 
call them bicharacteristics, while reserving the word “characteristics” for the 
hypersurfaces (in the space S of t, x) that behave in an exceptional way in regard to the 
CAUCHY problem. 
 
 
 4. Solving the Cauchy problem. – The method that was just presented permit one to 
solve the CAUCHY problem; i.e., to determine the integral hypersurface s in the space 
Sn+2 that passes through a given hypersurface Γ in the plane t = 0. 
 Indeed, it will suffice to consider the integral curves of the system (13), (14) that 
issue from the points of Γ.  They will constitute an integral hypersurface σ of equation 
(3). 
 
 
 5. The Hamiltonian system that is associated with the equation Ω = 0. – The 
system (13) has the Hamiltonian form.  The characteristic function H depends upon t, x, 
p, in general. 
 Now, one sees that Ω is a form of degree m or 2m with respect to the p according to 
whether Ω = 0 is the equations of the characteristic manifold in the case s = 1 or s = 2, 
respectively. 
 From that homogeneity, if the p verify the equation Ω = 0 then the same thing will be 
true for the λ pi , in which λ is arbitrary.  Upon solving for p0, one will then see that if 
one multiplies p1, p2, …, pn , and also p0 by λ then the same thing will be true for H.  In 
other words, H is a homogeneous function of degree one with respect to the p. 
 The Hamiltonian system for which the function H is homogeneous of degree one with 
respect to the p enters into some questions of geometrical optics (1). 
 It is important to observe that in this case, from EULER’s theorem on homogeneous 
functions, the right-hand side of (14) will be identically zero.  Hence: 
 

dz

dt
= 0,  so z = const. 

                                                
 (1) Cf., T. LEVI-CIVITA and U. AMALDI, loc. cit. (see above, pp. 19), pp. 456-469.  
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 That must say that, in this case, the integral curves of the system (13), (14) belong to 
the hypersurfaces z = const.  In particular, they are effectively plane curves if n = 1 (i.e., 
if there is only one variable x besides t). 
 
 
 6. Applications. – Suppose that iEµν  or ikEµν  are constants, which will physically 

correspond to the case of a homogeneous medium in the case of n = 3. 
 Ω will then depend upon only the p, and as a result, the function H will depend upon 
only the p1, p2, …, pn . 
 The Hamiltonian system becomes: 
 

   

0,i

i

i

dp

dt
dx H

dt p

 =
 ∂ =

∂

  (i = 1, 2, …, n). 

 
 The first of them gives the n integrals: 
 

pi = 0
ip  (i = 1, 2, …, n), 

  
 which, when substituted in the ∂H / ∂pi , will render them constant in such a way that 
if one lets 0

ix  denote the initial values of the xi then the second equation will give: 

 

(13)    xi = 0
0 i
i

H
t x

p

∂ +
∂

  (i = 1, 2, …, n) 

upon integration. 
 Hence, it will emerge that the bicharacteristics are lines in either the space S of the 
variables t ≡ x0 , x1 , …, xn or, upon eliminating t, in the geometrical space S′ of only the 
x1 , …, xn . 
 As far as the determination of the wave surfaces are concerned (always under the 
hypothesis of a homogeneous medium), we fix our attention upon their configuration, 
instant-by-instant, in the geometric space S′ (of only x). 
 In fact, we are dealing with a particular case of the geometric solution of the 
CAUCHY problem, which was pointed out already in no. 4, upon taking into account the 
two facts that t no longer has the significance of a geometric coordinate, but that of time, 
and that the bicharacteristics are lines. 
  Let us see what a wave surface σ0 that was given arbitrarily at the instant t = 0 will 
become at the instant t. 
 Draw the line through each point 0ix  of σ0 (which corresponds to the instant t = 0) 

that is defined parametrically by equations (15).  One sees that its direction will depend 
upon the manner by which H is a function of the p. 
 The point M0 with coordinates 0

ix  at the instant t = 0 will go to the points M whose 

coordinates are (15) at the instant t. 
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 The locus of points M is the wave hypersurface σt at the instant t. 
  
 
 7. Plane waves. – Formulas (15) highlight the fact that if the wave surface is planar at 
the instant t = 0 then that will continue to be true in the course of time. 
 It will then follow that plane waves are always possible in an arbitrary homogeneous 
medium and for a phenomenon of an arbitrary nature. 
 
 
 8. Epicentral waves. – In particular, suppose that σ0 is infinitely small around a point 
O (which we take to be the origin, so it will follow that 0

ix  = 0) at the instant t = 0. 

 That is the case of a perturbation that is initially limited to a very small neighborhood 
of the point O.  If one extends a term that is used in seismology then the point O will be 
called the epicenter and the waves that emanate from it will be called epicentral. 
 Now take σ0 to be infinitely small and 0ix  = 0.  From (15), one will see that the wave 

surfaces will be enlarged homothetically around O in the course of time. 
 Furthermore, recall that H is homogeneous and of degree one with respect to the p, so 
dH / dpi will be homogeneous of degree zero.  One will then see that the dH / dpi depend 
upon only the direction cosines: 
 

αi = ip

g
 (i = 1, 2, …, n). 

 
Equations (15) will then give: 
 

xi = t ψi (α1 , α2 , …, αn) (i = 1, 2, …, n), 
 
and for each value of t, that will constitute a parametric representation of the wave 

surface as a function of the n variables αi , when they are coupled by the relation 2

1

n

i
i

α
=
∑ = 

1, and will provide some other ones with n – 1 independent parameters. 
 
 

______________ 
 



 

§ 7. – Geometrico-kinematical and dynamical compatibility conditions. 
 
 

 1. Geometrico-kinematical compatibility conditions. – Suppose that z (t | x) = 
const. is a wave surface in the space of x at the instant t, and consider the corresponding 
surface σ in the space-time S of (t, x).  Let ϕ, ϕ* be two groups of functions that satisfy 
the normal system of partial differential equations. 
 By analogy with the linking conditions, which are formulated in conformity with the 
mechanical problem, in the case of the canonical equation of small motions, we suppose 
that the ϕ and ϕ* take the same values on σ, as well as their partial derivatives up to order 
s – 1, but that some of the partial derivatives of order σ present discontinuities upon 
traversing σ.  The ϕ and ϕ* will then define a wave phenomenon on one side of σ and the 
other. 
 We shall determine the compatibility relations that those jumps must verify upon 
crossing the surface. 
 Case of s = 1.  Suppose that f is a continuous and differentiable function of the 
variables t ≡ x0, x1, …, xn , and set: 
 

fi = 
i

f

x

∂
∂

 (i = 0, 1, …, n). 

 
 In the case of s = 1, the first derivatives of f – i.e., the fi – will generally be subject to 
jumps. 

 

− + 

P 

Q 

 
Figure 4. 

 
 Let us label the two parts of space that are separated by the surface s by + and – and 
let f + and f − denote the limiting values of a function f whose point-argument tends to a 
point of the surface from each side of it.  In general, set: 
 

∆f = f + and f −. 
 
 In particular, if one is dealing with a function f that is continuous upon crossing σ 
then: 

Pf
+ = Pf

− , 

in which P is a point on the surface. 
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 If Q is another point of the surface then one will also have: 
 

Qf
+ = Qf

− , 

so 

Qf
+ − Pf

+ = Qf
− − Pf

− . 

 
 Upon taking Q infinitely close to P, one will get: 
 

Pdf +  = Pdf − , 

 
or since the derivatives have limits and if we denote the coordinate differentials by dxi 
then we will have: 

0

n

i i
i

f dx+

=
∑ = 

0

n

i i
i

f dx−

=
∑  

upon passing from P to Q, so: 
 

0

( )
n

i i i
i

f f dx+ −

=
−∑ = 

0

n

i i
i

f dx
=

∆∑ = 0 

 
for all dxi that correspond to infinitely-small displacements that are tangent to the surface; 
i.e., ones for which: 

dz = 
0

n

i i
i

p dx
=
∑  = 0. 

 
 Upon applying LAGRANGE’s classical procedure (viz., the method of undetermined 
multipliers), the condition will become: 
 

0

( )
n

i i i
i

f p dxλ
=

∆ −∑ = 0. 

 
 Upon supposing that p0 ≠ 0, one can choose λ in such a fashion that: 
 

∆f0 – λ p0 = 0, 
so 

λ = 0

0

f

p

∆
, 

 
and as a result, since the dx1, dx2, …, dxn are arbitrary, one will have: 
 

∆fi = λ pi (i = 1, 2, …, n). 
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 If the f are assumed to be continuous then one will then remember that the n + 1 
jumps in the first derivatives of f upon crossing the surface are coupled to the p by the 
relations: 
(1)     ∆fi = λ pi (i = 1, 2, …, n), 
 
in which λ is undetermined a priori. 
 Case of s = 2.  The function f and its first derivatives must be continuous upon 
crossing the surface, in such a way that the preceding formulas will apply to the second 
derivatives. 
 Since each fi is continuous, one will then have: 
 

∆fij = λi pj = λj pi , 
 
if λi denotes the multiplier (which is characteristic of the discontinuity in the derivatives) 
that corresponds to fi , and: 

fij =
2

i j

f

x x

∂
∂ ∂

= i

j

f

x

∂
∂

= j

i

f

x

∂
∂

. 

 
 The coefficients λ generally vary when one passes from one first derivative to the 
other.  One infers, moreover, that: 

i

ip

λ
= j

jp

λ
= ρ, 

so 
(2)    ∆fij = ρ pi pj   (i, j = 0, 1, …, n). 
 
 We shall give the name of geometrico-kinematical compatibility conditions to the 
conditions (1) or (2) (which are independent of the fact that we are dealing with solutions 
to a given normal system, so in the physical interpretation, it will be independent of the 
special mechanism of the phenomenon that is governed by that system). 
 
 
 2. Dynamical compatibility conditions. – On the contrary, the dynamical 
compatibility conditions are deduced from the partial differential equations directly, and 
their name comes from the fact that one considers the differential system to be one that 
defines a certain physical phenomenon (in particular, a dynamical one). 
 For s = 1, the equations are written: 
 

Eµ ≡ 
1 0

m n
i

i i

E
x

ν
µν

ν

ϕ
= =

∂
∂∑∑ + Φµ = 0  (µ = 1, 2, …, m). 

 
 Since the iEµν  and Φµ are continuous, the jumps in the partial derivatives ∂ϕν / ∂xi 

upon crossing the surface σ must satisfy the relations: 
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1 0

m n
i

i i

E
x

ν
µν

ν

ϕ
= =

∂∆
∂∑∑ = 0  (µ = 1, 2, …, m). 

 
 However (no. 1), if λν is the multiplier that corresponds to ϕν then: 
 

ix
νϕ∂∆

∂
= λν pν  (v = 1, 2, …, m). 

 It will then result that: 

1 0

m n
i

i
i

E pµν ν
ν

λ
= =
∑∑ = 0, 

 
or, from the notation (8) of § 2 (cf., pp. 8): 
 

(3)     
1

m

µν ν
ν

ω λ
=
∑ = 0  (µ = 1, 2, …, m). 

 
 Those relations constitute a system of m homogeneous linear equations in m 
parameters: 

λ1 , λ2 , …, λn , 
 

which characterize the discontinuities in the first derivatives upon crossing the surface σ. 
 Such a system admits non-zero solutions because the determinant of the ωµν is zero 
for a characteristic manifold (viz., the surface σ). 
 In the concrete applications, one must often specify not only the nature of the wave 
surfaces, but also the dynamical compatibility conditions.  One will then form the linear 
equations (3), and when their determinant is equal to zero, that will permit one to 
determine the wave surfaces.  One will then deduce the following rule: 
 
 Practical rule: The partial differential equation of the characteristic manifolds is 
obtained by annulling the determinant of the system of dynamical compatibility 
conditions. 
 

_____________ 
 

 



 

§ 8. – Applications to the equations of hydrodynamics. 
 
 

 1. – The fundamental equations of hydrodynamics are: 
 

(1)     
3

1

1
grad ,

0.i

i i

d
p

dt

ud

dt x

ρ
ρ ρ

=

 = = −

 ∂ + =
 ∂

∑

v
a F

 

 
 In this system, the unknown functions are the ui (i = 1, 2, 3), which are the 
components of the velocity v of the fluid particle and the density ρ.  The independent 
variables are t, x1, x2, x3, while p denotes the pressure, and F is the force per unit mass. 
 As one knows, the substantial derivative d / dt is expressed by: 
 

d

dt
= j

j j

u
t x

∂ ∂+
∂ ∂∑ . 

 
 Upon excluding the case of homogeneous liquids for which ρ is a constant, one can 
regard p as a function of ρ. 
 The first of equations (1) is equivalent to three scalar equations: 
 

1i

i

du dp

dt d x

ρ
ρ ρ

∂+
∂

 = Xi  (i = 1, 2, 3), 

 
in which the Xi are the components of the force F along the axes. 
 The system (1) can then be written: 
 

(2)    
3

1

1
( 1,2,3)

0.

i
i

i

i

i i

du dp
X i

dt d x

ud

dt x

ρ
ρ ρ

ρ ρ
=

∂ + = = ∂
 ∂ + =
 ∂

∑
 

 
 Form the corresponding equation Ω = 0.  Under the change of variables 

0 1 2 3

1 2 3

, , ,

, , ,

t x x x x

z z z z

≡ 
 
 

, the system (2) will become normal only if Ω ≠ 0. 

 Since: 

jx

ϕ∂
∂

= jp
z

ϕ∂
∂

+ … (j = 0, 1, 2, 3) 

 
for an arbitrary function ϕ (t, x), the transformed equations of (2) will be written: 
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3

0
1

1
( )i

j j i
j

u dp
p u p p

z d z

ρ
ρ ρ=

∂ ∂+ +
∂ ∂∑ + … = 0 (i = 1, 2, 3), 

 

 
3 3

0
1 1

( ) i
j j i

j i

u
p u p p

z z

ρ ρ
= =

∂∂ + +
∂ ∂∑ ∑ + … = 0, 

 
or rather, since dz / dt = p0 + j j

j

u p∑ : 

 

(2′) 
3

1

1
0 ( 1,2,3),

0.

i
i

i
i

i

u dz dp
p i

z dt d z

udz
p

z dt z

ρ
ρ ρ

ρ ρ
=

∂ ∂ + + = = ∂ ∂
 ∂∂ + + =
 ∂ ∂

∑

⋯

⋯

 

 
The determinant Ω is that of the coefficients of the three ∂ui / ∂z and ∂ρ / ∂z. 
 Hence, the equation that must be satisfied by any wave surface is: 
 

(3)     

1

2

3

1 2 3

1
0 0

1
0 0

1
0 0

dz dp
p

dt d

dz dp
p

dt d

dz dp
p

dt d

dz
p p p

dt

ρ ρ

ρ ρ

ρ ρ

ρ ρ ρ

= 0, 

or, after developing: 
2 2

2dz dz dp
g

dt dt dρ
     −    

     
 = 0, 

upon once more setting: 
g2 = 2

i
i

p∑ . 

 The equation the splits into: 
 

(I)      
dz

dt
 = 0, 

 

(II)  
2

2dz dp
g

dt dρ
  − 
 

= 0. 

 
 Equation (I) expresses the idea that one is dealing with a discontinuity surface that is 
fixed with respect to the medium; i.e., it always involves the same fluid particles. 
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 As for equation (II), if we suppose (as is always the case for real fluids) that the 
pressure increases with the density and set: 
 

dp

dρ
= V 2, V real > 0 

then we will get: 
dz

dt
= ± g V. 

 Now: 

 
dz

dt
= p0 + i i

i

u p∑  

 = g 0 j
j

j

pp
u

g g

 
+ 

 
∑ , 

 
so if we preserve our conventions (§ 4, no. 3) and let a and vn denote the displacement 
velocity and the normal component of v then: 
 

dz

dt
= g (= a + vn) = − g (a – vn), 

 
in which a – vn is the propagation velocity. 
 The two possible signs of dz / dt = ∓ g V then corresponds to the two cases in which 
the velocities of propagation and displacement do or do not have the same sign, resp.; i.e., 
in which those two velocity vectors have the same or opposite sense, resp.  Moreover, 
one will have: 

V = | a – vn |, 
 
which shows that V is the absolute value of the propagation velocity. 
 Hence, that propagation velocity V will have the formula: 
 

(4)      V = 
dp

dρ
, 

 
and in the adiabatic case (§ 1, no. 6), one will have: 
 

p = c1 ργ, 
dp

dρ
= 

pγ
ρ

, which will give: V = 
pγ
ρ

. 

 
 These results were stated for the first time by HUGONIOT and presented 
systematically by HADAMARD in his Leçons sur la propagation des ondes, which we 
cited above on pp. 19. 
 Here, one can get a new simplification, thanks to the representation in the space S of 
t, x, which will permit one to treat the four independent variables on the same basis. 
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 2. The dynamical compatibility conditions. Discontinuity parameters. – If we let 
h1, h2, h3, k denote the parameters that characterize the discontinuity in the first partial 
derivatives of z as functions of u1, u2, u3, µ then the first equations in (2) will give: 
 

(5)     
1

i i

dz dp
h p k

dt dρ ρ
+  = 0  (i = 1, 2, 3), 

from the preceding §, no. 2. 
 The condition that one deduces from the fourth equation (2′) is a consequence of the 
preceding ones, from (II). 
 Since dz / dt ≠ 0, one will infer from (5): 
 

hi = − 
/

/i

k dp d
p

dz dt

ρ
ρ

. 

 
 If one takes into account that V 2 = dp / dρ and dz / dt = ± g V then one will get: 
 

hi = ipk
V

gρ
∓  = i

kV α
ρ

∓    (i = 1, 2, 3), 

in which: 

αi = ip

g
, 

as always. 
 As a result, if n denotes the unit vector along the oriented normal then one can 
condense the preceding formulas into the single vectorial relation: 
 

(6)     h = 
kV

ρ
n∓ = − 

k dz

g dtρ
⋅ n , 

 
in which h denotes the vector whose components are h1, h2, h3 . 
 Let us also calculate the discontinuity in the vector a that represents acceleration.  Its 
components ai are given by: 

ai = idu

dt
=  i i

j
j j

u u
u

t x

∂ ∂+
∂ ∂∑ , 

 and since: 

 iu

t

∂∆
∂

= hi p0  (i = 1, 2, 3), 

 

 i

j

u

x

∂∆
∂

= hi pj  (i, j = 1, 2, 3), 

 

 ∆ai = hi (p0 + j j
j

u p∑ ) = i

dz
h

dt
, 
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so 

(7) ∆a = ± gV h = − k

ρ
gV 2 n. 

 
 This shows that the discontinuity in the acceleration vector is parallel to h, so from 
(6), it will be normal to the wave surface; i.e., it will be longitudinal. 
 
 
 3. – We have excluded the case of liquids from this discussion.  The study of that case 
can be deduced from general considerations by passing to the limit when dρ / dp tends to 
zero; i.e., when dp / dρ, which is the square of the speed of propagation, goes to infinity.  
If we then recall equation (1) then we will see that only the two extreme cases are 
possible in liquids: Fixed discontinuity or instantaneous propagation.  In reality, even in 
the case of liquids, there is a finite propagation speed, since they are also compressible. 
 
 
 4. Viscous fluids. Impossibility of wave propagation. – In order to show that 
impossibility, which goes back to P. DUHEM, we shall follow LAMPARIELLO ( 1) in 
our application in the application of the preceding general principles. 
 We shall show that the viscosity is incompatible with the presence of discontinuities 
that vary in time. 
 The differential equations of slow motion in viscous fluids are (2): 
 

(8)   
2

1 1
( 1,2,3),

3

0,

i k
i i

ki i k

k

k k

du up
X u i

dt x x x

ud

dt x

ρ ν ν
ρ ρ

ρ ρ

∂∂ ∂ ∂ = − + + ∆ = ∂ ∂ ∂ ∂
 ∂ + =
 ∂

∑

∑
 

 
in which u1, u2, u3, ρ are the components of the velocity and density of the fluid particle, 
p is the mean pressure, v is the coefficient of kinematic viscosity, and Xi are the 
components of the force per unit mass along the xi axes, resp. The system (8) in the 
unknown functions u1, u2, u3, ρ of the four variables t ≡ x0, x1, x2, x3 is quasi-normal with 
respect to t.  One then performs an arbitrary real transformation on the independent 
variables and examines whether the transformed system is quasi-normal with respect to 
the new variable z. 
 Let z = const. be a wave surface and further set: 
 

pi = 
i

z

x

∂
∂

   (i = 0, 1, 2, 3). 

 

                                                
 (1) Cf., G. LAMPARIELLO, “Sull’ impossibilità di propagazioni ondose nei fluidi viscosi,” Rend. della 
R. Accad. dei Lincei (6), vol. XIII, 1st sem. (1931), 688-691.  
 (2) Cf., e.g., H. LAMB, Hydrodynamics, 5th ed., Cambridge University Press, 1924, pp. 546.  – M. 
BRILLOUIN, Leçons sur la viscosité, etc., Part I, chap. II, Gauthier-Villars, Paris, 1907. 
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 From the known relations: 

 
ix

∂
∂

= ip
z

∂
∂

+ …, 

  (i, k = 0, 1, 2, 3), 

 
2

i kx x

∂
∂ ∂

= 
2

2i kp p
z

∂
∂

+ …, 

we will find that: 
 

 k

ki k

u

x x

∂∂
∂ ∂∑ = 

2
k

k i k

u

x x

∂
∂ ∂∑ = 

2

2
k

i k
k

u
p p

z

∂
∂∑ + … = 

2

2
k

i k
k

u
p p

z

∂
∂∑ + …, 

 

 ∆2 ui = 
2

2
k

k k

u

x

∂
∂∑ = 

2
2

2
i

k
k

u
p

z

∂
∂∑ + … = 

2
2

2
i

k
k

u
p

z

∂
∂ ∑  + …, 

 

 
d

dt
= k

k k

u
t x

∂ ∂+
∂ ∂∑ = 0( )k k

k

p p u
z

∂+
∂∑  + … 

 = 
dz

dt z

∂⋅
∂

+ … 

 
 Hence, upon neglecting to write the terms that do not contain one of the derivatives 

2

2
ku

z z

ρ∂ ∂⋅
∂ ∂

, so they do not influence the quasi-normal character, the transformed system of 

(8) will take the form: 
 

 

2 2
2

2 2

1 1
0 ( 1,2,3),

3

0.

k i
i k k i

k k

u u dp
p p p p i

z z d z

dz

dt z

ρν ν
ρ ρ

ρ

 ∂ ∂ ∂+ − + = = ∂ ∂ ∂


∂ + =
 ∂

∑ ∑ ⋯

⋯

 

 
 Upon discarding the case of dz / dt = 0, in which the wave surface is fixed in the 
medium, the fourth equation of the system can be solved for ∂ρ / ∂z, in such a way that it 
would suffice to consider the third-order determinant that is formed from the coefficients 

of the three derivatives 
2

2
ku

z

∂
∂

.  It will be written: 

 

2 2
1 1 2 1 3

2 2
2 1 2 2 3

2 2
3 1 3 2 3

3

3

3

k
k

k
k

k
k

p p p p p p

p p p p p p

p p p p p p

+

+

+

∑

∑

∑

 = 
2

236 k
k

p
 
 
 
∑ , 



§ 8. − Application to the equations of hydrodynamics. 47 

up to a trivial factor. 
 If z = const. represents a wave surface that propagates then one must have: 
 

2
k

k

p∑  = 0, 

which will imply that: 
p1 = p2 = p3 = 0, 

 
which will yield the impossibility of wave propagation. 
 Meanwhile, one should not believe that it is only the viscosity that is at fault.  One 
should consider the following example: 
 The vibration of a string in a medium that exerts viscous resistance (air, for example) 
obeys a second-partial differential equation of the type: 
 

(9)     
2 2

2 2 2

1

V t x t

ϕ ϕ ϕλ∂ ∂ ∂− +
∂ ∂ ∂

 = 0. 

 
 The unknown function ϕ of the variables t, x, y denotes the displacement of the 

particle (at the instant t) of the vibrating string.  The term – 
t

ϕλ ∂
∂

 (λ > 0), which has the 

dimensions of the inverse of a length, translates analytically into the resistance of the 
medium. 
 However, although we are dealing with a dissipative system here, there is still a 
possibility of wave propagation, since the characteristics of equation (9) coincide with 
those of the equation: 

2 2

2 2 2

1

V t x

ϕ ϕ∂ ∂−
∂ ∂

= 0. 

 
___________ 

 



 

§ 9. – Application to elastic media. 
 
 

 1. – In a more general way than the one that was followed by BELTRAMI and others, 
we shall adopt the same guiding principle and follow LAMPARIELLO (1) in our study of 
the propagation of waves in an elastic medium for infinitely-small deformations. 
 
 
 2. Wave propagation in an isotropic medium (homogeneous or not). – We shall 
see that one can have two types of waves – viz., longitudinal and transverse – that 

displace with velocities 
2λ µ

ρ
+

 and 
µ
ρ

, resp., in which ρ denotes the density, and λ, 

µ are the Lamé parameters (which are possibly constant in a homogeneous medium), 
which satisfy the conditions µ > 0, 3λ + 2µ > 0. 
 
 
 3. – If u, v, w denotes the displacement of the point (x, y, z) at the instant t then the 
deformation will be characterized by the parameters: 
 

 ε1 = 
u

x

∂
∂

, ε2 = 
v

y

∂
∂

, ε3 = 
w

z

∂
∂

, 

 

 γ1 = 
w v

y z

∂ ∂+
∂ ∂

, γ2 = 
u w

z x

∂ ∂+
∂ ∂

, γ3 = 
v u

x y

∂ ∂+
∂ ∂

, 

 
and the elastic energy, within the limits of validity for Hooke’s law, will be expressed by 
the positive-definite quadratic form: 
 
(1) W = 1

2 [λ (ε1 + ε2 + ε3)
2 + 2 2 2 2 2 2

1 2 3 1 2 3(2 2 2 )]µ ε ε ε γ γ γ+ + + + + . 

 
 The differential equations of elastic motion are then written: 
 

(2)   

2

2
1 3 2

2

2
3 2 1

2

2
2 1 3

0,

0,

0.

W W W u
X

x y z t

W W W v
Y

x y z t

W W W w
X

x y z t

ρ
ε γ γ

ρ
γ ε γ

ρ
γ γ ε

       ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + − =       ∂ ∂ ∂ ∂ ∂ ∂ ∂     
        ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − =        ∂ ∂ ∂ ∂ ∂ ∂ ∂     
       ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − =      
 ∂ ∂ ∂ ∂ ∂ ∂ ∂      

 

 

                                                
 (1) Cf., G. LAMPARIELLO, Rend. della R. Acc. dei Lincei, vol. XIII, fasc. 11 (June 1931); vol. XIV, 
fasc. 7-8 (October 1931); vol. XIV, fasc. 9 (November 1931).  
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 4. – Let xi , ui , Xi (i = 1, 2, 3) denote the quantities (x, y, z), (u, v, w), (X, Y, Z), to 
abbreviate.  Upon writing out only the terms in the second derivatives, equations (2) will 
take the form: 

(2′)   (λ + µ) 
3

1

k

ki k

u

x x=

∂∂
∂ ∂∑ + µ ∆2 ui − 

2

2
iu

t
ρ ∂

∂
 + … = 0  (i = 1, 2, 3). 

 
 The wave surfaces are given by the characteristics of this system in the unknown 
functions ui of the variables x0 ≡ t, x1 , x2 , x3 . 

 If one sets pj = 
j

z

x

∂
∂

 (j = 0, 1, 2, 3) then the change of variables 0 1 2 3

1 2 3

x x x x

z z z z

 
 
 

 

will give: 

(λ + µ)
2 23 3

2 2
02 2

1 1

k i
i k k

k k

u u
p p p p

z z
µ ρ

= =

∂ ∂ + − ∂ ∂ 
∑ ∑ + … =  0 (i = 1, 2, 3), 

 
by a calculation that is entirely analogous to the one in the preceding paragraph no. 4, so 
the differential equation of the characteristics will be: 
 

Ω ≡ || (λ + µ) pi pk + εik 
3

2 2
0

1
k

k

p pµ ρ
=

 − 
 
∑  || = 0, 

 
upon setting εik = 0 if i ≠ k and εik = 1 if i = k, and can then be put into the form (1): 
 

Ω ≡ 
23 3

2 2 2 2
0 0

1 1

( 2 ) k k
k k

p p p pλ µ ρ µ ρ
= =

   + − −  
   

∑ ∑ = 0, 

  
 The characteristics will then be given by one or the other of the two equations: 
 

(3)  

3
2 2

0
1

3
2 2

0
1

( 2 ) 0,

0,

k
k

k
k

p p

p p

λ µ ρ

µ ρ

=

=

 + − =


 − =


∑

∑
 

which have the type: 
3

2 2
02

1

1
k

k

p p
V =

−∑ = 0, 

 
which is nothing but the characteristic equation for the canonical equation of small 
motions: 

                                                
 (1) One appeals to the following property: The determinant of order n : a = || aik + εik x ||, in which εik = 0 
if i ≠ k and εik = 1 if i = k, is developed into: 

a = xn + µ1 x
n−1 + µ2 x

n−2 + … + µn−1 x + µn , 
in which µs is the sum of the principal minors of order s in the determinant || aik ||. 
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2

2 2

1

V t

ϕ∂
∂

− ∆2 ϕ = 0, 

 
in which V is a function of position (which is constant in a homogeneous medium, 
moreover) that is always the displacement velocity of the wave. 
 One then concludes the possibility of waves displacing in an isotropic elastic medium 

with the velocities 
2λ µ

ρ
+

, 
µ
ρ

 from that. 

 
 
 5. – It remains for us to see the longitudinal character of the former kind of wave and 
the transverse character of the latter.  One will succeed in that by looking for the 
dynamical compatibility conditions for the two motions that agree along a wave surface 
σt but have second-order discontinuities. 
 The ui and their first derivatives are continuous.  Introduce the second-order 
discontinuity parameters h1, h2, h3, which correspond to u1, u2, u3 .  From formula (2) in § 
7, no. 1: 

2
v

i k

u

x x

∂∆
∂ ∂

 = hv pi pk (v = 1, 2, 3). 

  
 Now, one infers from (2′) that: 
 

(λ + µ) 
2 2 23 3

2 2
1 1

k i i

k ki k k

u u u

x x x t
µ ρ

= =

∂ ∂ ∂∆ + ∆ − ∆
∂ ∂ ∂ ∂∑ ∑  = 0, 

so: 

(λ + µ)
3 3

2 2
0

1 1

( )k i k i k
k k

h p p h p pµ ρ
= =

+ −∑ ∑  = 0  (i = 1, 2, 3), 

 
which is a system of linear equations in hi whose determinant is rightfully Ω = 0. 

 Set g2 = 
3

2

1
k

k

p
=
∑ , let h and n be the vectors whose components are hk and αk = pk / g.  

hn will then be the normal component to h: 
 

3

1
k k

k

h p
=
∑ = 

3

1
k k

k

g hα
=
∑ = g hn . 

 
 The compatibility conditions condense into the single vectorial relation: 
 

(µ g2 − 2
0pρ ) h + (λ + µ) g2 hn n = 0. 
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 For the first type of wave [first equation (3): velocity /µ ρ ], the compatibility 

condition reduces to hn = 0. It expresses the idea that the discontinuity vector h is 
transverse. 
 
 
 6. Case of an anisotropic medium with three rectangular symmetry planes. – 
With the notations of no. 3, the equations of motion will once more be the equations (2), 
with the condition that one must take the expression: 
 
(4)  W = 2 2 2 2 2 21

1 2 3 2 3 3 1 1 2 1 2 32 [ 2 2 ]A B C A B C A B Cε ε ε ε ε ε ε ε ε γ γ γ′ ′ ′ ′′ ′′ ′′+ + + + + + + +  

 
for the elastic energy, in which the nine coefficients A, B, …, C″ are functions of (x, y, z, 
t) that reduce to constants when the medium is homogeneous. 
 If we keep only the second derivatives then the equations of motion will be written: 
 

(5)  

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2

( ) ( ) 0,

( ) ( ) 0,

( ) ( )

u u u v w u
A C B C C B B

x y z x y x z t

v v v u w v
C B A C C A A

x y z x y y z t

w w w w v
B A C B B A A

x y z x z

ρ

ρ

∂ ∂ ∂ ∂ ∂ ∂′′ ′′ ′ ′′ ′ ′′+ + + + + + − + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂′′ ′′ ′ ′′ ′ ′′+ + + + + + − + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂′′ ′′ ′ ′′ ′ ′′+ + + + + +
∂ ∂ ∂ ∂ ∂ ∂

⋯

⋯

2

2
0,

w

y z t
ρ







 ∂− + =

∂ ∂
⋯

 

 
and when we set: 

p0 = 
t

ζ∂
∂

, p1 = 
x

ζ∂
∂

, p2 = 
y

ζ∂
∂

, p3 = 
z

ζ∂
∂

, 

 

the change of variables 
1 2 3

x y z t

ζ ζ ζ ζ
 
 
 

 will lead to the transformed system: 

 

(5′) 

2 2 2
2 2 2 2
1 2 3 0 1 2 1 32 2 2

2 2 2
2 2 2 2
1 2 3 0 2 32 2 2

2 2
2 2 2

2 3 1 2 32 2

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) (

u v w
A p C p B p p C C p p B B p p

u v w
C C C p B p A p p A A p p

u v
B B A A p p B p A p C p p

y

ρ
ζ ζ ζ

ρ
ζ ζ ζ

ρ
ζ

∂ ∂ ∂′′ ′′ ′ ′′ ′ ′′+ + − + + + + + =
∂ ∂ ∂

∂ ∂ ∂′ ′′ ′′ ′′ ′ ′′+ + + + − + + + =
∂ ∂ ∂
∂ ∂′ ′′ ′ ′′ ′′ ′′+ + + + + + −
∂ ∂

⋯

⋯

2
2
0 2) 0.

w

z







 ∂ + =

∂
⋯

 

 
 The characteristic equations and wave surfaces ζ (x, y, z, t) = ζ0 are obtained by 

annulling the determinant of the coefficients of 
2

2

u

ζ
∂
∂

, 
2

2

v

ζ
∂
∂

, 
2

2

w

ζ
∂
∂

, namely: 
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Ω (p0, p1, p2, p3) = 0. 
 
 It is interesting to remark that this equation is, up to a change of symbols, the 
equation for S (S = 2

0pρ ) that corresponds to the search for the axes of the ellipsoid (of 

propagation). 
 
 E (x, y, z) – 1 ≡ 2 2 2

1 2 3( )A p C p B p′′ ′′+ +  x2  

  + 2 2 2
1 2 3( )C p B p A p′ ′′+ +  y2, 

  + 2 2 2
1 2 3( )B p A p C p′ ′′+ +  z2, 

  + 2 (A′ + A″) p2 p3 y z 
  + 2 (B′ + B″) p3 p1 z x 
  + 2 (C′ + C″) p1 p2 x y – 1 = 0. 
 
 BELTRAMI started out by considering that ellipsoid in his remarkable paper on the 
theory of waves (1).  In it, he supposed that the waves were planar and that p1, p2, p3 
denoted the direction cosines of the normal to the planes of those waves. 
 The geometric interpretation of Ω = 0 shows that the equation in 20p  has degree three 

and its three roots are positive.  Solving it for p0 will then lead us to conclude that there is 
a triple infinitude of possible wave surfaces, with two directions of propagation. 
 Moreover, the displacement velocities of the discontinuity waves will be identical for 
a homogeneous medium (and in particular, an isotropic one), as well as the displacement 
velocities of the plane waves of a vibratory character that BELTRAMI studied.  The 
same thing is not true in the most general case of elastic media, for which BELTRAMI 
showed the impossibility of such vibratory plane waves.  However, as we shall see, the 
preceding results for (second order) discontinuity waves are once more true; in particular, 
one can have plane waves in a homogeneous medium. 
 
 
 7. The case of the most general elastic media. – The differential equations of 
motion are once more given by equations (3) when one takes the following expression for 
the elastic energy: 

W = 1
2

, , ,

( 2 )rs r s rs r s rs r s
r s r s r s

A B Cε ε γ γ ε γ+ +∑ ∑ ∑ . 

 
 Upon arguing in exactly the same way as in the preceding, one will obtain a 
characteristic equation: 

Ω (p0, p1, p2, p3) = 0, 
 
which will once more have degree three in 2

0p , and its three roots will be real and 

positive.  Each of them will correspond to an infinitude of wave surfaces with two 
possible directions of displacement. 

____________

                                                
 (1) Cf., E. BELTRAMI, Opera, t. IV, pp. 224-235.  



 

§ 10. – Application to Maxwell’s equations for electromagnetic phenomena. 
 
 

 1. – The functions ϕ of the system of partial differential equations are six in number 
in this case, namely, the three components of the electrical force E and the three 
components of the magnetic force H. 
 Further introduce the electric displacement D and the magnetic induction B.  One has 
E = D, H = B, in vacuo.  In a homogeneous and isotropic dielectric D = ε E, B = µ H, in 
which ε and µ are two positive constants. (ε is the dielectric constant, and µ is the 
magnetic permeability.) 
 In general, in an arbitrary medium (at rest), the components of D and B are linear 
forms of the components of E and H, respectively.  We then write: 
 

D = ε E, B = µ H, 
 
while agreeing this time that the symbols ε and µ represent two vectorial homographies. 
 Be that as it may, the differential equations of the electromagnetic field are written: 
 

(1)      
1

c t

∂
∂
D

= rot H + …, 

 

(2)      
1

c t

∂
∂
B

= − rot E + …, 

 
(3)      div D = …, 
 
(4)      div B = 0, 
 
in which c is the speed of light, and the omitted terms can depend upon charges, currents, 
electromotive forces, etc.  In summary, they are quantities that are either completely 
independent of the field (i.e., the vectors E and H) or at the very least (if they do depend 
upon them essentially), they are independent of the derivatives of those vectors (1). 
 Since one supposes that the medium (viz., the ether) is at rest, one can use the terms 
“displacement velocity” and “propagation velocity” interchangeably. 
 We shall first address only the first two equations, which constitute a normal system 
of order ε = 1.  One will recognize that the results to which we will arrive are compatible 
with the last two equations of the differential system. 
 We must consider the components Ei , Hi of the electrical and magnetic forces, as well 
as the homographies ε and µ, and as a result, the polarization vectors B = D, to be 
continuous upon crossing the surface σ in space-time that corresponds to a possible wave 
surface σt . 
 As far as the homographies are concerned, we also assume that their coefficients and 
all of the first derivatives will remain continuous upon crossing σ. 

                                                
 (1) Cf., H. HERTZ, Gesammelte Werke, Bd. II, pp. 220. 
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 On the contrary, one will have to presume that there are discontinuities in the first 
derivatives of E, H (hence, in D, B, as well). 
 Let ei , hi (i = 1, 2, 3) be the six discontinuity parameters upon crossing σt , which 
correspond to the components Ei, Hi, which are parameters that characterize the 
discontinuities in the derivatives of those functions, from § 7, no. 1.  It will be useful to 
consider them to be the components of two vectors e, h (relative to an arbitrary point of 
the discontinuity surface σt). 
 Having said that, we seek the dynamical compatibility conditions that the vectors e, h 
must satisfy. 
 Since D = ε E, one will get: 
 

(5)     
1

c t

∂
∂
D

 = 
1 1

c t c t

εε ∂ ∂+
∂ ∂
E

E  

 
by derivation, so if one lets ε−1 denote the inverse homography to ε (which will reduce to 
arithmetic inverse of the constant ε in the isotropic case) and refers to equation (1) then 
one will have: 

(5′)  11 1

c t c t

εε −∂ ∂ +  ∂ ∂ 

E
E  = ε−1 rot H + … 

 
 Similarly, it results from B = µ H that: 
 

(6)   
1

c t

∂
∂
H

 = 
1 1

c t c t

µµ ∂ ∂+
∂ ∂
H

H , 

 
so, thanks to (2) and with the obvious notation µ−1: 
 

(6′)  11 1

c t c t

µµ −∂ ∂ +  ∂ ∂ 

H
H  = − 1

c
µ−1 rot E + … 

 
 Now introduce the limiting values of E, H on σt into equations (1), (2), namely, E+, 
H+, relative to one side and E−, H− relative to the other side.  Upon subtracting the 
corresponding sides of the equations, and taking into account (5), (6) and the fact that the 
continuous terms (in particular, the unwritten ones) disappear in the subtraction, we will 
get: 

(7)     
1

c t
ε ∂ ∆ ∂ 

E − ∆ rot H = 0, 

 

(8)     
1

c t
µ ∂ ∆ ∂ 

H + ∆ rot E = 0. 
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 Having said that, apply the formulas (1) of § 7 to the various functions Ei , Hi , while 
replacing the factor λ in those formulas with ei , hi , respectively.  One will then obtain the 
scalar relations: 

 iE

t

∂∆
∂

= ei p0 , i

j

E

x

∂∆
∂

= ei pj , 

(9)  (i, j = 1, 2, 3), 

 iH

t

∂∆
∂

= hi p0 , i

j

H

x

∂∆
∂

= hi pj . 

 
 The two groups on the left can each be condensed into a single vectorial equation: 
 

(10)     
t

∂∆
∂
E

= p0 e , 

 

(11)     
t

∂∆
∂
H

= p0 h . 

 
 Thanks to (10), if one agrees to regard indices that differ by three as identical then (7) 
will yield the equivalent scalar equations: 
 

(12)   0 1 2

2 1

( ) i i
i

i i

p H H
e

c x x
ε + +

+ +

∂ ∂+ ∆ − ∆
∂ ∂

 = 0 (i = 1, 2, 3). 

 
 Similarly, (8) will give the three equations: 
 

(13)   0 2 1

1 2

( ) i i
i

i i

p E E
h

c x x
µ + +

+ +

∂ ∂+ ∆ − ∆
∂ ∂

 = 0 (i = 1, 2, 3). 

 
 Upon taking the relations (9) and replacing the pi (i = 1, 2, 3) by the products αi g, in 
which: 

g = 
3

2
0

1i

p
=
∑ , 

 
and in which the αi are the direction cosines of the vector n that is normal to σt , 
equations (12), (13) will be written: 
 

 0p

c
ε ei – g (hi+2 α i+1 − hi+1 α i+2) = 0, 

 

 0p

c
η hi + g (ei+2 α i+1 − ei+1 α i+2) = 0, 

or, in vectorial form: 
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(14)  

0

0

0,

0.

p
g

g

p
g

g

ε

µ

 − ∧ =


 + ∧ =


e n h

H n e
 

 
 The equations that must be satisfied by the characteristic vectors e, h of the 
discontinuities in the derivatives of the electric and magnetic force exhibit the fact that, 
contrary to what happens in hydrodynamics, the vectors ε e, µ h are normal to n; i.e., 
they are tangent to the discontinuity surfaces.  One will then be dealing with transverse 
discontinuities, as one is accustomed to say.  However, more precisely, it is not the 
vectors e and h (which characterize the discontinuities in the derivatives of the electric 
and magnetic forces) that are transverse, but the vectors ε e and µ h, which relate to the 
derivatives of the electric polarization and magnetic induction. 
 
 
 2. – Now let d = µ h, h = ε e, denote the characteristic vectors of the derivatives of D 
and B, and apply then to the (conservation) equations (3), (4), so the preceding process 
will yield the dynamical compatibility condition upon starting from (1) and (2); one will 
then get: 
 d × n = 0, 
 h × n = 0. 
 
 Now, those relations can also be deduced from (14) upon scalar-multiplying them by 
n.  They show that the transversal character of the vectors d and b that was recalled and 
underlined above contains the compatibility conditions that are derived from equations 
(3) and (4), which we have left aside, but which must be associated with the normal 
system (1), (2) in order to produce the complete representation of electromagnetic 
phenomena according to the MAXWELL-HERTZ theory. 
 
 
 3. Forming the equation Ω = 0 in a magnetically-isotropic medium. Application 
to the electromagnetic theory of light. – In general, the preceding considerations will be 
valid even when the homographies ε and µ depend upon the electromagnetic field – i.e., 
upon the electric and magnetic forces.  Meanwhile, in view of the ultimate developments, 
we shall suppose from now on that those homographies are constants and even that the 
magnetic homography reduces to an ordinary multiplication. 
 We also suppose that the homography ε is a dilatation that reduces to its canonical 
form by a convenient choice of reference axes.  Recall that the dilatation ε is associated 
with a quadric that is called the indicatrix and that one calls the planes of the indicatrix 
quadric the principal planes of the dilatation (1).  We shall take them to be reference 
planes in what follows. 
 The coefficients of the homography will then reduce to three: ε1, ε2, ε3 . 

                                                
 (1) Cf., R. MARCOLONGO, Meccanica razionale, vol. I, 3rd ed., Hoepli, Milan, 1922, pp. 24-25.  
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 The equations of the electromagnetic theory of light in crystalline media are included 
within this schema, in particular.  We shall limit ourselves to considering the case of 
media that are called biaxial, in which the constants ε are distinct, and we can then 
suppose that: 

ε3  > ε2 > ε1 > 0. 
 
 One gets from the second equation (14) that: 
 

h = − 
0 /

g

p cµ
(n ^ e), 

 
so when one substitutes this in the first one, one will get: 
 

(13)    
2
0
2

p

c
µ ε e + g2 n ^ (n ^ e) = 0. 

 
 Decompose the vector e into two vectors: e′, which is normal n, and e″ = (e × n) n, 
which is parallel to n, in such a way that e = e′ + e″.  Hence: 
 

n ^ e = n ^ (e′ + e″) = n ^ e′. 
 
 The vector n ^ e′ is nothing but the vector that is obtained when one starts from e′ and 
rotates it 90o around n.  As a result: 
 

n ^ (n ^ e′) = − e′ = − (e − e′) = − [e – (e × n) n], 
 
and equation (15) will become: 
 

(16)  
2
0
2

p

c
µ ε e − g2 e + (e ^ g n) g n = 0. 

 Now set: 

(17)    2
02

i p
c

µ ε − g2 = ρi (i = 1, 2, 3) 

and 

(18)     2
iV = 

2

i

c

µ ε
, 

in such a way that: 

(19)     ρi = 
2
0
2

i

p

V
 − g2. 

 
 Since the components of g n are nothing but p1, p2, p3, equation (16) is equivalent to 
three scalar equations: 
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2
1 1 1 1 2 2 1 3 3

2
2 1 1 2 2 2 2 3 3

2
3 1 1 3 2 2 3 3 3

( ) 0,

( ) 0,

( ) 0.

p e p p e p p e

p p e p e p p e

p p e p p e p e

ρ
ρ

ρ

 + + + =
 + + + =
 + + + =

 

 
 From the practical rule of § 7, no. 2, the differential equation of the wave surfaces is 
obtained by equating the determinant of the coefficients of e1, e2, e3 to zero. 
 One will then find the equation: 
 

Ω (p) = 

2
1 1 1 2 1 3

2
2 1 2 2 2 3

2
3 1 3 2 3 3

p p p p p

p p p p p

p p p p p

ρ
ρ

ρ

+
+

+
 = 0, 

and after developing this: 
 
(20)   Ω (p) = 2 2 2

2 3 1 3 1 2 1 2 3p p pρ ρ ρ ρ ρ ρ+ +  + ρ1 ρ2 ρ3 = 0. 

 
 Upon replacing the ρi with their values (19), that equation will be the desired partial 
differential equation for the unknown function z that defines the wave surfaces. 
 If the αi are direction cosines of the normal, as always, then upon dividing both sides 
of (20) by g2, one will get: 
 

(20′)  2

1

g
Ω (p) = 2 2 2

2 3 1 3 1 2 1 2 3 1 2 32

1

g
ρ ρ α ρ ρ α ρ ρ α ρ ρ ρ+ + + = 0. 

 
 That equation will shed light upon the important characteristics of the phenomenon, 
and independently of any integration of (20), moreover, insofar as it will permit us to 
show, as we shall see, how the speed of propagation (in the normal sense) of an arbitrary 
element of the wave surface will vary with the orientation of that element. 
 
 
 4. Law of variation for the speed of propagation. – In order to make the speed of 
propagation V appear, it will suffice to replace p0 with the product ± V g in the 
expressions ρ that are defined by (17). 
 However, it will first be useful to examine the case in which equation (20) is found to 
be verified, due to the fact that certain ρ are annulled. 
 One will remark immediately that since the ε are distinct, by hypothesis, it will not be 
possible for two of the ρ to be zero simultaneously, from their expressions in (17). 
 It will then suffice to examine only the case in which ρ1 and ρ2 are annulled.  
Equation (20) then implies that α1 = 0, i.e., that the normal to the wave surface must be 
parallel to the plane (x2, x3).  On the other hand, ρ1 = 0 implies that: 
 

2
0
2

1

p

V
− g2 = 0, 
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so V1 = 0p

g
 (in which p0 is a function of position), which permits one interpret the 

constant V1 as a possible velocity of propagation for light in any direction that is normal 
to the x1-axis. 
 One can make some analogous considerations for the cases ρ2 = 0 or ρ3 = 0.  It is then 
established in that way that V1, V2, V3 are the propagation velocities in the directions 
parallel to the coordinates place, respectively, which are the principal planes of the 
electric homography (viz., dilatation), since that is how one chose them. 
   Having treated the case in which V is annulled at the same time as one of the ρ, we 
shall now move on to the general case in which Ω = 0, while all of the ρ are non-zero. 
 The left-hand side of (20) can then be written: 
 

Ω = ρ1 ρ2 ρ3

23
0

1

1
i i

p

ρ=

 
+ 

 
∑ . 

 Now: 
2
0

i

p

ρ
= 

2 2
i

i

g α
ρ

= 
2

2
0
2 2

1
1

i

i

p

g V

α

−
  (i = 1, 2, 3), 

 
in which 2 2

0 /p g  represents the square of the propagation speed of the wave surface in 

question.  Hence: 

Ω = ρ1 ρ2 ρ3

23

2
1

2

1
1

i

i

i

V

V

α
=

 
 
 +
 − 
 

∑ . 

 
 Upon taking the identity 2

i
i

α∑ = 1 into account, one can finally write our equation in 

the form: 

(21)    Ω (p) ≡ V 2ρ1 ρ2 ρ3 

2

2 2
i

i iV V

α
−∑  = 0. 

 
 In the first place, this is satisfied for V = 0 – i.e., since p0 = V g, if: 
 

p0 = 
z

t

∂
∂

 = 0. 

 
 That is the case of a fixed discontinuity surface. 
 However, from now on, we shall consider the equation that we obtain upon annulling 
another factor: 
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(22)     
2

2 2
i

i iV V

α
−∑ = 0. 

 Set: 

(23)     f (V 2) = 
2

1
2 2 2

i

i iV V

α
−∑ , 

 
and examine the issues for equation (22), which can also be written: 
 
(22′)     f (V 2) = 0. 
 
When put into entire form, that equation will have degree two in V 2, and will then admit 
two roots that will both be real and positive, as we shall see. 
 The quantities Vi will satisfy the inequalities: 
 

V1 > V2 >  V3 , 
 
from their expressions (18) and the order of magnitude of the ε (ε1 > ε2 > ε3). 
 First consider the general case of a direction αi that is not parallel to any of the 
principal (coordinate) planes. 
 The function f (V 2) will then be everywhere regular, except for the values of V 2 that 
are equal to one of the 2iV , and the ones for which it is infinite. 

 If we give V 2 values from the interval 2 2
3 2( , )V V  and close to 2

3V  then the term 
2
3

2 2
3V V

α
−

 will have a positive sign and dominate the other ones, so f (V 2) will take on 

positive values.  On the contrary, if we give values to V 2 from the same interval, but 

closer to 2
2V  then the term 

2
2

2 2
2V V

α
−

 will have a negative sign and dominate the others, so 

f (V 2) will take on a negative sign.  Equation (22′) will then admit a root in the interval 
2 2

3 2( , )V V ; one proves that it will admit a root in the interval 2 2
2 1( , )V V  in the same way. 

 One will then see that there are two possible propagation speeds (in absolute value), 
and they will be found between V1 and V2 and V2 and V3, respectively. 
 Now, if one of the direction cosines αi is zero – for example, α1 – then equation (20′) 
will be satisfied for ρ1 = 0, and one of the possible velocities of propagation will be V1 .  
The same equation (20′), when stripped of the factor ρ1 , will then show that the equation 
that defines the possible velocities, other than V1, V2, V3, will reduce to: 
 

22
32

2 2 2 2
2 3V V V V

αα +
− −

= 0, 

 
which will have one root V that is found between V2 and V3. 
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 5. Geometric construction of the roots of the equation f (V 2) = 0. – Consider the 
ellipsoid: 
(24)     ρ ≡ 2 2

i i
i

V x∑ = 1, 

and let: 
ψ ≡ i i

i

xα∑ = 0 

 
be the equation of an arbitrary plane that passes through the origin, in which the 
coefficients αi denote the direction cosines of the normal to the plane, when oriented 
arbitrarily. 
 In order to find the lengths of the semi-axes of the ellipse that is the intersection of 
the ellipsoid ϕ = 1 and the plane ψ = 0, it will obviously suffice to look for the maximum 

and minimum of the distance ρ = 2
i

i

x∑  (or, what amounts to the same thing, the square 

of the distance ρ2 = 2
i

i

x∑ ) when the point xi varies in the ellipse – i.e., when the 

variables xi are linked by the two relations: 
 

ϕ = 1,  ψ = 0. 
 
 Upon applying the classical method of LAGRANGE multipliers, we will be led to 
write: 
(25)    δ [ρ 2 + λ (ρ – 1) + λ1 ψ] = 0, 
 
in which λ and λ1 are undetermined a priori, and the variation must be zero for any 
choice of the δxi . 
 Upon dividing by 2, in addition, it will result that: 
 
(26)    xi (1 + 2

iVλ ) + 1
2 λ1αi = 0  (i = 1, 2, 3). 

 
 Upon multiplying this by αi and summing, from (24) and the fact that ψ ≡ i i

i

xα∑ = 

0, one will get: 
ρ 2 + λ = 0. 

 
We note that ρ (viz., a semi-axis of an effective ellipse) is essentially supposed to be 
greater than zero. 
 On the other hand, upon first taking the general case in which 1 / ρ 2 is different from 
each of the 2

iV , equations (26) can be solved for the xi , and when one replaces λ with the 

value – ρ 2 that is found for it, that will give: 
 

(27)    xi = − 1
2 2

1

2 1
i

iV

λ α
ρ−

 (i = 1, 2, 3) 
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 Hence, upon substituting this in ψ ≡ i i
i

xα∑ = 0 (and exhibiting the factor 1 / ρ 2): 

 

1
2 2 2

1

2 1/
i

i iV

αλ
ρ ρ −∑ = 0. 

 
 Observe that λ1 cannot be zero, because from (27), the same thing would be true for 
all of the xi , and thus, the ρ, which is not true.  We can then neglect the factor − λ1 / ρ 2, 
and what will remain is: 

2 2

1

2 1/
i

i iV

α
ρ −∑ = 0, 

 
which will be identified with the equation f (V 2) = 0 that defines the possible propagation 
velocities, on the condition that one must set: 
 

V 2 = 2

1

ρ
. 

 
Thus, one gets the geometric construction of the propagation velocities that relate to an 
arbitrary direction αi , which will remain valid even in the previously-excluded case in 
which 1 / ρ 2 takes one of the values 2iV . 

 One draws the plane that is normal to the direction αi through the center of the 
ellipsoid ϕ = 1.  The inverses of the semi-axes of the ellipse that is its section will give 
the absolute values of the two possible propagation velocities. 
 
 
 6. Fresnel wave surfaces. – We refer to the general considerations that were 
developed in nos. 6-8 of § 6 on the subject of integrating the equation p0 + H = 0 by 
means of bicharacteristics.  Suppose that n = 3, to begin with.  The parametric equations 
of the configuration that is taken at the instant t by the wave surface that reduces to an 
epicenter O, which is chosen to be the coordinate origin, at the instant t = 0, will then be: 
 

(28)    xi = 
0i

H
t

p

 ∂
 ∂ 

   (i = 1, 2, 3), 

 
in which one can take the ratios of the p to one of them to be the parameters. (The left-
hand sides depend upon only those ratios because H is homogeneous and of degree one 
with respect to the p.) 
 Upon regarding the xi as functions of t, equations (28) will be those of light rays and 
will exhibit a rectilinear progression (in a homogeneous medium). 
 As we have already seen, the wave surfaces (28) at the various instants t are mutually 
homothetic to each other.  It will then suffice to consider any of them.  Ordinarily, one 
chooses the one that corresponds to t = 1.  One calls it the wave surface, more especially, 
and its parametric equations will be written: 
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(29)    xi = 
i

H

p

∂
∂

   (i = 1, 2, 3). 

 
 In the case that we are presently addressing, we will then find the celebrated 
FRESNEL wave surface (discovered in 1827), whose analytical study led HAMILTON 
to discover the phenomenon of conical refraction.  We shall denote it by F in what 
follows. 
 We now propose to determine the Cartesian equation of F, which is obtained 
theoretically by starting from (29) and eliminating the parameters (1). 
 To that end, it is convenient to first evaluate the distance δ from the origin to the 
tangent plane at a running point P (xi) on F. 
 If αi is the direction cosine of the normal to F at P then that will give: 
 

δ = i i
i

xα∑ ; 

 
i.e., upon taking into account the parametric equations (29) and the values ± pi / g of the 
αi (which correspond to the chosen positive sense along the normal): 
 

δ = i
i i

H

p
α ∂

∂∑ = 
1

i
i i

H
p

g p

∂±
∂∑  

 
(with the usual convention on the sign of the distance δ). 
 Due to the homogeneity of degree 1 in H and the equation p0 + H = 0, one will have: 
 

δ = ± 
H

g
= 0p

g
∓  = ± V. 

 
 In order to simplify the writing, take one of the two signs (the + sign, for example), 
but observe immediately that one will arrive at the same result by taking the other sign.  
The equation of the tangent plane will then be written: 
 
(30)     i i

i

xα∑ − V = 0, 

 
in which the xi represent the running coordinates, this time, while the αi and V are 
coupled by the equation: 

(22′)    f (V 2) = 
2

2 2

1

2
i

i iV V

α
−∑ = 0. 

 Equation (30) will give: 
(31)     i i

i

x dα∑ − dV = 0 

                                                
 (1) M. BOGGIO gave an ingenious way of obtaining the Cartesian equation by vectorial methods quite 
recently.  See his note “Sulle superficie d’onda di Fresnel,” Rend. Acc. Lincei (6) 14 (1932), 551-556. 
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upon differentiation with respect to the parameters αi and V. 
 Set: 

(32)    fi = 
i

f

α
∂
∂

= 
2

2 2
i

iV V

α
−

  (i = 1, 2, 3), 

 

(33)    f0 = 
f

V

∂
∂

= − 2
i

i

V f∑ . 

 
 Upon differentiating (22′), one will get: 
 
(34)    i i

i

f dα∑  + f0 dV = 0. 

 
 The relations (30), (31), (34) permit us to eliminate the parameters αi , V and thus 
obtain the Cartesian equation for F. 
 Upon differentiating the identity: 

2
i

i

α∑ = 1, 

one will deduce that: 
(35)     i i

i

dα α∑  = 0. 

 
 On the other hand, upon replacing dV by its expression that one infers from (31) in 
(34), one will get: 

0( )i i i
i

f f dα α+∑ = 0. 

 
 That must be true for any direction cosines αi – i.e., for all dαi that satisfy (35).  It 
will result that: 
(36)     fi + f0 αi = k αi , 
 
in which k is a proportionality factor that is undetermined a priori.  It is easy to calculate, 
because from the expressions (32) for fi  and due to (22′), one will have: 
 
(37)     i i

i

f dα∑  = 0. 

 
Multiply the two sides of (36) by αi and sum.  That will give: 
 

2
i

i

k α∑ = 0i i i i
i i

f d f xα α+∑ ∑ ; 

i.e., from (30) and (37): 
(38)     k = f0 V. 
 Now observe that: 
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2 2
i i

i

f V∑ = 2 2 2 2 2( )i i i
i i

f V V V f− +∑ ∑ . 

 
 The first of the terms on the right-hand side is zero, due to equations (32) and (22′), 
so: 
(39)     2 2

i i
i

f V∑ = 2 2
i

i

V f∑ . 

 Moreover, one has: 
 

2
i i i

i

f Vα∑ = 2 2 2( )i i i i i
i i

f V V V fα α− +∑ ∑ , 

 
and from (37) and (32): 
 
(40)   2

i i i
i

f Vα∑ = 2 2( )i i i
i

f V Vα −∑  = − 2
i

i

α∑ = − 1. 

 
 Return to equations (26).  Multiply the two sides by 2

i if V  and sum; that will give: 
 

2 2 2
0i i i i i

i i

f V f x f V+∑ ∑ = 2
i i i

i

k f Vα∑ , 

so 
2

0 i i i
i

f x f V∑  = 2 2 2
i i i i i

i i

k f V f Vα −∑ ∑ . 

 
 The right-hand side is annulled, as one will recognize directly when one takes (39), 
(33), (40), and the value (38) of k into account; since f0 ≠ 0, what will then remain is: 
 
(41)     2

i i i
i

x f V∑ = 0. 

 Now, one infers from (36) that: 
f0 xi = k αi – fi , 

 
so upon squaring both sides of this and summing: 
 

2 2
0f ρ = k2 − 22 i i i

i i

k f fα +∑ ∑ , in which  ρ 2 = 2
i

i

x∑ . 

 
 By virtue of (37), (33), (38), that relation will become, in turn: 
 

2 2
0f ρ = k2 − 0f

V
 = − 0f

V
+ k f0 V = 0f

V
(k V 2 – 1), 

so 
(42)     1 – k V 2 = − f0 V ρ 2 = − k ρ 2. 
 
 From (36) and (32), one will also have: 
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f0 xi = k αi – fi = k fi (V 2 − 2
iV ) – fi , 

so 
f0 xi = – fi (1 − kV 2 + 2

ik V ). 

 
 Upon replacing 1 – k V 2 with its value (42), one will finally get: 
 

f0 xi = fi k ρ 2 – fi 
2

ik V = k fi (ρ 2 − 2
iV ), 

so 

fi = − 0
2 2

i

i

f x

k V ρ−
. 

 
 Upon substituting this in (41), one will finally have: 
 

(43)     
2 2

2 2
i i

i i

V x

V ρ−∑  = 0, 

 
which is the point-wise equation for the FRESNEL wave surface. 
 As one will see immediately upon clearing the denominators, it is a fourth-degree 
algebraic surface. 
 
 
 7. Tangent planes to the surface F. – We saw above that the tangent planes that 
relate to an arbitrary direction αi (i.e., the ones that admit the αi for the direction cosines 
of their normals) are at (algebraic) distances of d = ± V from the origin, in which V is one 
of the propagation speeds. 
 The geometric construction of V that was pointed out in no. 5 will permit one to 
determine only the four tangent planes that are perpendicular to an arbitrary direction 
upon taking those distances to O to be equal to the two propagation velocities (1).  As one 
sees, the FRESNEL surface enjoys the special property of having both order four and 
class four [while an algebraic surface of order n has class n (n – 1), in general, and vice 
versa (2)]. 
 
 
 8. Optical axes. – One calls the direction for which the two corresponding 
propagation velocities are equal (cf., no. 4) the optical axes. 

                                                
 (1) For a geometric study of the FRESNEL surface, the reader can consult G. SALMON, Traité de 
géométrie analytique à trois dimensions (French translation by O. CHEMIN), part three, Gauthier-Villars, 
Paris, 1892, Chap. XVI, pp. 117-119.  G. DARBOUX, Leçons sur la théorie des surfaces, t. IV, pp. 466, 
Gauthier-Villars, Paris, 1986.  D’OCAGNE, Cours de géométrie pure et appliqée de l’École polytechnique, 
ibidem, 1930.  DRUDE, Précis d’optique, t. II, Chap. IV., Gauthier-Villars, Paris, 1912.  An extensive 
bibliography can be found in a book by GINO LORIA, Il passato e il presente delle principali teorie 
geometriche, 2nd ed., Cedam, Padua, 1931, pp. 99-102, and also in the Enz. der Math. Wiss., Bd. III, 10b, 
pp. 1740-1744. 
 (2) Cf., e.g., ENRIQUES and CHISINI, Teoria geometrica delle equazioni e delle funzioni algebriche, 
vol. II, Zanichelli, Bologna, 1918, pp. 152. 
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 Before everything else, we shall show that such axes will belong to a principal plane.  
Indeed, for any optical axis that has a direction αi that is not parallel to the principal 
planes, the relation between its direction cosines and the possible propagation speeds will 
be expressed by (22′): 

f (V 2) = 0, 
 

and for the two roots to coincide, their common value must also satisfy the equation: 
 

f0 =
f

V

∂
∂

= 0. 

 Now, by virtue of (33): 
f0 = − V 2

i
i

f∑ , 

it will follow immediately that: 
 

fi = 0  (i = 1, 2, 3); 
i.e.: 

αi = 0, 
which is absurd. 
 Hence, one must seek the optical axes only in the principal planes. 
 Consider the plane that is perpendicular to the xi-axis (αi = 0), with the usual 
convention for the indices i + 1, i + 2. 
 The equation: 

Ω (p) = 2 2 2
2 3 1 3 1 2 1 2 3p p pρ ρ ρ ρ ρ ρ+ + + ρ1 ρ2 ρ3 = 0, 

 
when one annuls the αi (or pi) and divides by g2, will give: 
 

2 2
1 2 1 1 2 1 22

1
i i i i i ig

ρ ρ α ρ α ρ ρ+ + + + + +
 

+ + 
 

 = 0. 

 
 As we know, one of the two roots V 2 is already 2

iV , which annuls the factor ρi , while 

the second one must annul the other factor, and furthermore, since we are dealing with an 
optical axis, it must also be equal to 2

iV . 

 From that, upon considering the expressions (19) that provide the ρ, dividing the left-
hand side by ρ1 ρ2 ρ3 / g

2, and replacing 2 2
0 /p g  with 2

iV , one will get: 

 
2 2

1 2
2 2

1 2

1 1

i i

i i

i i

V V

V V

α α+ +

+ +

+
− −

+ 1 = 0; 

 
i.e., upon taking the identity 2

i
i

α∑ = 1 into account, which will then reduce to: 
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2 2
1 2i iα α+ ++ = 1, 

one will get: 
2 2

2 1 2
2 2 2 2

2 1

i i
i

i i i i

V
V V V V

α α+ +

+ +

 
+ − − 

= 0. 

 
That relation will be satisfied by real values of the ratio αi+1 / αi+2 only if the two 
denominators have opposite signs.  By virtue of the inequalities: 
 

2
1V > 2

2V  > 2
3V , 

 
which can be true only for i = 2; i.e., for the principal plane that corresponds to the 
propagation velocity V2 that is intermediate between the largest and the smallest ones. 
 There are effectively two directions in the x3 x1-plane that correspond to the two 

values 
2 2

2 3
2 2

1 2

V V

V V

−±
−

 of the ratio α3 / α1 . 

 
 
 9. Case in which the Fresnel surface degenerates. – The case that we have 
excluded in which two (and only two) of the propagation velocities Vi are equal 
corresponds to the media that are called uniaxial, in which there is only one optical axis.  
From the algorithmic viewpoint, one must recall the preceding calculations upon taking 
into account the fact that two of the Vi are equal.  However, if one envisions a well-
defined result or a geometric relation that is valid when all of the Vi are distinct then one 
will have the right to pass to the limit that makes two of those Vi coincide. 
 For example, one can assert that in that case, the auxiliary ellipsoid ϕ = 1 (no. 5) will 
become one of revolution and will then have an equatorial radius R that is inverse to the 
common value of the two equal velocities Vi . 
 An arbitrary semi-diameter will always remain between that equatorial radius and the 
inverse of the third velocity Vi . 
 For any section by a diametral plane, one of the semi-axes will necessarily coincide 
with the equatorial radius R, in such a way that any plane that is at a distance of R from 
the center will belong to the set of tangent planes to F.  In other words, the surface F 
must contain the sphere of radius R. 
 Since F has order four, it will then decompose into that sphere and a quadric (viz., an 
ellipsoid).  That is easy to verify by means of the Cartesian equation of F by supposing 
that two of the Vi are equal and clearing the denominators. 
 
 

____________ 
 

 
 



 

§ 11. – The wave-corpuscle duality of modern physics according to de Broglie. 
 
 

 1. – Ever since YOUNG and FRESNEL, all light phenomena that were known for 
some times seemed to take place in a wave-like schema, first, by means of an elastic 
representation, and then by means of MAXWELL’s electromagnetic equations (viz., the 
electromagnetic theory of light).  However, one could still not succeed in reconciling the 
wave theory in any simple way with the observed facts that pertained to photoelectric 
phenomena, which go back to HERTZ. 
 Here is essentially what one is dealing with: When a beam of light strikes a metallic 
surface, it will very often liberate electrons.  Qualitatively, one models that phenomenon 
by supposing that part of the incident light energy is utilized to do a certain amount of 
work l (which depends upon the metal in question) that is necessary to liberate the 
electron and part of it also communicates kinetic energy. 
 The intensity of the incident light will be included in the energetic evaluation, but not 
its frequency.  Now, one can experimentally exhibit the fact that below a certain 
frequency, and for any intensity, of the incident light, the photoelectric effect will not be 
produced (LENARD), while the maximum velocity that is communicated to the electrons 
will depend upon its frequency exclusively (MILLIKAN). 
 That aspect of the phenomenon, which is inexplicable from the standpoint of wave 
optics, has, on the contrary, found a brilliant quantitative representation with 
EINSTEIN’s quantum, corpuscular hypothesis (1905), according to which, any sheaf of 
light rays of frequency v must be considered to be composed of a cloud of photons, or 
light quanta (viz., particles of energy) that each possess an energy E that is proportional 
to the frequency v, and is precisely: 

E = hv, 
 

in which h is the celebrated PLANCK constant. 
 To the extent that the photoelectric effect is attributed to the collisions of those 
photons, it is clear that whereas hv will remain less than the work l that is done by the 
extraction that we spoke of, it will not produce the emission of any electrons, no matter 
how large the intensity of the light considered, and the various observed facts agree 
remarkably with that corpuscular hypothesis. 
 It likewise served to account for a phenomenon that was discovered by COMPTON 
in 1923, according to which a beam of X-rays that meets up with material elements will 
generally be scattered with a reduction in its frequency, while there will once more be an 
emission of electrons.  All of that is explained in the following fashion, as was shown by 
COMPTON, DEBYE, FERMI, and PERSICO, by associating EINSTEIN’s hypothesis 
with the principle of the conservation of the quantity of motion, in addition to the 
principle of the conservation of energy. 
 How the wave theory and the return to the corpuscular hypothesis might be founded 
in some advanced theory cannot be explained completely at present.  It will suffice for us 
to remark that if modern physics wishes to explain certain optical phenomena then it will 
need to include both wave concepts and corpuscular ones at the same time.  An analogous 
situation presents itself in the study of electrons, which is based, above all, upon the 
properties of cathode rays and some celebrated experiments at the end of the Nineteenth 
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Century that are due, above all, to J. J. THOMSON, KAUFMANN, and H. A. WILSON, 
who characterized electrons completely as pure electric charges of the same value. 
 However, that exclusively corpuscular viewpoint will not account for the 
phenomenon of the diffraction of electrons in crystals that was discovered by 
DAVISSON and GERMER in 1927, and ultimately confirmed by the experiments of 
RUPP and G. P. THOMSON. 
 The inverse of what we saw previously in the interpretation of phenomena will 
present itself here; i.e., the electronic phenomena that could, up to these latter years, take 
place in the context of an exclusively-corpuscular theory now seem to demand some 
complementary developments of wave type as a result of new experimental observations. 
 That sort of duality for which the most remarkable facts of modern physics demand 
the simultaneous intervention of waves and corpuscles was recognized and proposed as a 
general law of nature by the physicist LOUIS DE BROGLIE, and that was even before it 
was so admirably illustrated by the diffraction of electrons. 
 He first of all sought to give a more concrete form to its conception by associating 
any moving corpuscle with a well-defined group or packet of waves.  However, he 
himself recognized the difficulty in such an association (1). 
 Another remarkable idea regarding the correspondence was pointed out by MAGGI 
(2) as an application of HAMILTON’s principle of least action.  However, no matter how 
seductive it might be theoretically, it does not seem to permit a quantitative 
representation of the many observed facts. 
 We again point out that a very interesting dynamico-optical reconciliation was 
proposed by PERSICO (3) in order to justify the SCHRÖDINGER equation, although he 
did not provide the true law of correspondence between the well-defined corpuscular and 
wave aspects of a given phenomenon either. 
 The considerations that were developed before for normal systems that associate them 
with, on the one hand, characteristic manifolds (viz., wave surfaces) and on the other 
hand, characteristic lines (viz., trajectories) offer a very broad paradigm that will reflect 
both the wave and corpuscular aspects of the same phenomenon as soon as one is in 
possession of a differential system that is appropriate to it. 
 That is what appears clearly in the case of the SCHRÖDINGER equation (from the 
admirable spectroscopic verifications of SCHRÖDINGER himself). 
 Recall the equation in question, by way of example (4): 
 

(1)     S ≡ 
2

2 2

2
( )U E

E t

ϕ∂+
∂

 − ∆2 ϕ = 0, 

 

                                                
 (1) Cf., L. DE BROGLIE, Introduction à l’étude de la mécanique ondulatoire, Hermann, Paris, 1930 
(Preface).  
 (2) Cf., G. A. MAGGI, “Sul significato nel passato e nell’avennire delle equazioni dinamiche,”  Rend. 
del Sem. mat. e Fis. di Milano 3 (1930), 53-72. 
 (3) Cf., E. PERSICO, Lezioni di Meccanica ondulatoria (lith.), 2nd ed., Cedam, Padua, 1930, pp. 29-40.  
 (4) Cf., E. SCHRÖDINGER, Abhandlungen zur Wellenmechanik, Barth, Leipzig, 1927, pp. 38.  See 
also pp. 40 of the lectures of prof. PERSICO that were cited in the preceding footnote. 
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in which the constant E represents a unitary energy and will take on a quantum form a 
posteriori by means of the eigenvectors (i.e., characteristic vectors) of (1), which are 
defined by convenient regularity conditions. (U is the unitary electrostatic potential.) 
 Recall once more that the solutions ϕ to equation (1) that are utilized in wave 
mechanics are generally complex and that it is only | ϕ |2, and not ϕ, that has a direct 
physical interpretation, moreover, as a quantity that is proportional to a certain local 
probability (viz., the probability of the presence of the electron in a neighborhood of a 
given point). 
 From the mathematical viewpoint, which has been at the basis of the considerations, 
or better still, the divinations that led SCHRÖDINGER to equation (1) for the first time, 
we shall retain only the fact that a very important set of phenomena, such as the 
distribution of the BALMER spectroscopic lines and the “fine structure” of the hydrogen 
atom, are admirably interpreted and condensed by equation (1). 

 If suffices to denote the coefficients 2 (E + U) / E 2 of 
2

2t

ϕ∂
∂

 by 1 / V 2 in order to 

convert it into the form of the canonical equation of small motions (1) (§ 2, nos. 1 and 6), 
whose characteristic manifolds: 

z (x0, x1, x2, x3) = const. 
 
are defined, as we saw (§ 3, no. 4) by the homogeneous equation of degree two: 
 

Ω = 
3

2 2
02

1

1
i

i

p p
V =

−∑ = 0. 

 
 Upon solving this for p0 in the form: 
 

p0 + H = 0, 
one will get: 

H = − 2
i

i

V p∑ , 

 
which constitutes the Hamiltonian function of the bicharacteristics, as we know. 
 All of that is quite simple. We wished to state it explicitly in order to draw attention 
to the following general fact, thanks to that characteristic example: If one knows a 
theoretical representation of a phenomenon as a normal system of partial differential 
equations in the parameters ϕ (viz., the SCHRÖDINGER equation S = 0, in the present 
case) then one can immediately deduce the equations that define the characteristics and 
bicharacteristics from it, i.e., the partial wave and corpuscular aspects that they are linked 
to.  On the contrary, if one knows only one or the other of those aspects in some situation 
(i.e., Ω or H, analytically) then one cannot get back to the complete law of the 
phenomenon– in other words, to the normal system that represents it − without knowing 
more. 

                                                
 (1) In truth, the coefficient V denotes a constant in this.  However, the manner by which one obtains the 
characteristics would not suffer any modification even if V were an arbitrary function of space and time.  
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 If one consider the SCHRÖDINGER equation, more especially, then one will observe 
that knowing Ω will not suffice to determine S, since that would result easily from the 
fact that if one adds a function F to S that depends arbitrarily upon the x, the ϕ, and the 
first derivatives of ϕ, then, from the rule in § 7, no. 2, the equation S + F = 0 will possess 
the same characteristics and bicharacteristics. 
 In certain cases for which one knows one of the two partial aspects of a particular 
phenomenon from ordinary macroscopic physics – i.e., analytically, the function Ω of the 
p and the x – it can suffice to replace each pk with the operator: 
 

2 k

h

i xπ
∂

∂
  (k = 0, 1, 2, 3; i = 1− ) 

for the equation: 

2

h
x

i x
ϕ

π
∂ Ω ∂ 

 = 0 

 
to provide the corresponding partial differential equation of micro-mechanics, but such a 
rule is not general. 
 Indeed, it will suffice to think that a term of the type a p0 p1, in which a is a function 
of position and time, can just as well give rise to one of the four expressions: 
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0 1
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x x

ϕ∂
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,      
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x x
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∂ ∂

,      
0 1

a
x x
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,      
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 ∂ ∂ 

, 

 

which all have the second-order term 
2

0 1

a
x x

ϕ∂
∂ ∂

in common, but differ by terms that 

depend upon the x, the ϕ, and first derivatives, and which have no influence upon Ω, as 
was remarked above. 
 The formal rule that was given previously can then have only a heuristic value (1) 
[which is still admirably in the work of SCHRÖDINGER and DIRAC (2)], but it does not 
seem possible to infer a systematic method of construction from it that will reflect a true 
physical reality. 
 As for the purely mathematical paradigm that provides the theory of characteristics, 
we shall further point out a remarkable application that M. RACAH (3) made to the 
DIRAC equations, which generalize that of SCHRÖDINGER and which constitute what 
one can presently consider to be the most complete mathematical synthesis of 
electromagnetic and optical micro-phenomena.  He deduced an instructive justification of 
HEISENBERG’s uncertainty principle as a consequence of the equation Ω = 0 that 
defines the characteristics in a very expressive special case. 

___________ 
                                                
 (1) Especially if the normal system in question must satisfy some special conditions, such as invariance 
under a group or even conditions that relate to any transformation of the x.  
 (2) The Principle of Quantum Mechanics, Clarendon Press, Oxford, 1930. 
 (3) “Caratteristiche delle equazioni di Dirac e principio di indeterminazione,” Rend. Acc. Lincei (6) 13 
(1931), 424-427.  


