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 I propose to study that particular case of the Einstein gravitational equations that corresponds 

to static phenomena, namely (always from the standpoint of general relativity), the motion of a 

material point in a static field under the hypothesis that the modification of the field that is 

produced by the point is negligible. 

 In §§ 1-2, I shall endow the aforementioned equations with a form that is invariant with respect 

to the ds2 of the ambient space.  With that, the metric nature of that space will be connected directly 

with the phenomena of equilibrium that are based in it, while in the general Einstein form (which 

is valid for phenomena that vary with both position and the instant), the measures of space and 

time are fused together into a quadri-dimensional form. 

 An immediate consequence of the equations thus-transformed is that in the static regime, the 

mean curvature of the physical space is necessarily positive or zero. 

 We then pass on (§§ 3-4) to the equations of motion of a material point, as well as simply 

highlight the particular properties that are due to the static regime of the field.  The variational 

equation of the trajectory figures in that, which is essentially the expression for the principle of 

minimal action that is appropriate to the case.  The transformation by which one succeeds in 

eliminating time is also perfectly applicable to the usual mechanics of holonomic systems and 

allows one to pass (assuming conservative forces) from Hamilton’s principle to that of minimal 

action with a great spontaneity and simplicity that is not present in the classical procedure (1). 

 

 

1. – The Einstein equations in the static case. 

 

 When one treats static phenomena, the quaternary differential form ds 2 that encompasses the 

measures of space and time is presented in the form: 

 

(1)      
 

 

 
 (1) Cf., e.g., the following treatises: Appell, Traité de mecanique rationelle, tome 2, 3rd ed., Gauthier-Villars, Paris, 

1911, pp. 483-487.  Maggi, Principii di stereodinamica, Hoepli, Milan, 1908, §§ 102-103.  Whittaker, Analytical 

Dynamics, Cambridge University Press, 1904, secs. 99-100. 
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in which x0 represents time, and: 

 

(2)    

 

is the square of the line element in the ambient physical space.  The coefficients aik , like V, must 

be considered to be functions of only x1, x2, x3 .  V is interpreted as the speed of light and is therefore 

considered to be essentially positive. 

 When one gives the symbols the obvious significance, one will have: 

 

 

 

(3)  

 

 

 

 

 We agree to label the Christoffel and Riemann symbols  that relate to the quaternary form (1) 

with a prime, while reserving the usual notation without a prime for the analogous symbols that 

relate to (2). 

 On the basis of (3), one immediately gets from the defining formulas that: 
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 The following doubly-covariant system has fundamental importance in Einstein’s theory: 
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 If one introduces the analogous system: 

 

(6)     

 

which relates to the ternary form (2), then after reductions, one will find that: 

 

 

 

(7)   

 

 

 

in which the Vik represent second covariant derivatives, and 2 is the second-order differential 

parameter that refers to the spatial ds2 (2). 

 Based upon those formulas and (3), one will have: 

 

 
 

for the linear invariant of the system ikG .  If one then sets: 

 

(8)     

 

 

in which  represents the mean curvature of the ambient space, as will be verified in § 3, it will 

result that: 

 

(9) 

 

 

which provides the static expression for the invariant G. 

 Given the above, recall (1) that the gravitational equations are: 

 

 
 

in which  is constant and Tik denotes the energy tensor. 

 Under static conditions, the Tik are, like everything else, independent of time x0 .  In addition, 

the Ti0 = T0i are annulled, and (after previously dividing by – 00 iig g− = − iiV a ) they will 

 
 (1) Cf., e.g., the paper “Sulla espressione analitica spettante al tensore gravitationale nella teoria di Einstein,” in 

this volume of the Rendiconti, pp. 381-391.  
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represent the components of the energy flux.  That is because when one recalls (3) and (7), three 

of the desired equations will reduce to just identities, and the remaining seven (which correspond 

to the non-zero indices) will be: 

 

(10) 

 

as well as (for i = k = 0): 

− V 2V – 1
2

G g00 = −  T00 , 

 

or, when one keeps (9) in mind: 

 

(I)       

    

As is the nature of things, the seven equations (10) and (I) reduce Einsteinian statics to the three 

dimensions of the ambient space.  It has an invariant form with respect to the metric on that space, 

and with the nomenclature of the absolute differential calculus, it acts as the fundamental form that 

relates to ds2.  In addition, the two (invariant) functions V and T00 appear as elements that are 

associated with the fundamental form, along with the doubly-covariant system Tik (i, k = 1, 2, 3).  

That latter characterizes the distribution of forces, while T00 / V
2 can be interpreted as the energy 

density [cf., § 3 of my paper, loc. cit.], and V represents the speed of light, as was said before. 

 In regard to the energy density, it must be said that, at least within the scope of the phenomena 

that are well-known nowadays (such as electromagnetic materials in the broad sense), there are no 

examples of negative energy density (1), so one can keep the right-hand side of (I)  0.  That leads 

to this geometric corollary: 

 

 The mean curvature  (which is the sum of the three principle curvatures) that one determines 

in the physical space as an effect of purely-static phenomena is positive or zero in any case. 

 

 

2. – Ricci’s ik . The definitive form for the equations of statics. 

 

 For three-dimensional manifolds, the Riemann symbols (of the first kind) aij, hk (i, j, h, k = 1, 

2, 3) essentially reduce to the following schema ai+1 j+2, h+1 k+2 (with the convention that one regards 

two indices as equivalent when they differ by 3), and one can opportunely replace them with the 

ratios: 

 

 
 (1) Indeed, if matter at rest is distributed with a density of  at a given position then it will carry an energy of 

material origin V 2, which will dominate over all the other possible contributions at great distances (under ordinary 

conditions).  On the other hand, the contribution to the energy density that is of electromagnetic origin happens to be 

 0, because even in the absence of matter, the energy density does not seem to be capable of taking on negative 

values. 
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(11) which Ricci introduced and which constitute a symmetric, doubly-contravariant system, as he 

showed (and as one can verify materially in an obvious way). 

 Naturally, one intends ik to mean the reciprocal covariant system, by virtue of which, the  (ik) 

can be expressed in the form: 

 

(12)     

 

 

 We would like to establish the relations that link the ik to the Gik (
1). 

 Proceeding by the direct route, one can start from (6) and replace the symbols {ih, hk} in the 

right-hand side with the ones of the first kind, and write: 

 

(6)  

 

 

Develop the right-hand side, while giving j the values i, i + 1, i + 2 and giving h the values k, l + 

1, k + 2.  When one takes into account the identity: 

 

aij, hk = aji, hk = − aij, kh , 

along with (11), one will have: 

 

Gik = a {− a (i+1 k+1)  (i+1 k+1) + a (i+1 k+2)  (i+2 k+1) + a (i+2 k+1)  (i+1 k+2) − a (i+2 k+2)  (i+1 k+1)} , 

 

or based upon (12): 

 

 
 

 In the summation, one should group the first term with the second and the third with the fourth, 

while attributing the values i, i + 1, i + 2 to h . 

 Since the algebraic complement to a(ik) in the determinant of that quantity is equal to aik / a, it 

will result that: 

 
 

and upon adding and removing ji aik a (ik) (inside the summation), that can be written more simply 

as: 

 

 
 (1) These relations were already pointed out by Ricci in the paper “Direzioni e invarianti principali in una varietà 

qualunque,” Atti del. R. Istituto Veneto, 63 (1904), pp. 1235. 
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Multiply this by a (ik) and sum over the two indices i and k.  Taking into account that 
3
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(13)     

 

so the relations that were obtained between the Gik and the ik will assume the form: 

 

(14)     ik = Gik +  aik   (i, k = 1, 2, 3), 

 

which is more convenient to our purpose (1). 

 (13) justifies the meaning of  as the mean curvature of the manifold.  Indeed, the principal 

curvatures are, by definition, the (necessarily real) roots 1, 2, 3 of the cubic equation (2): 

 

|| ik –  aik || = 0 , 

 

and the right-hand side of (13) is precisely the sum of those roots (viz., the coefficient of 2 divided 

by – a, where – a is the coefficient of 2 in the left-hand side of that cubic equation). 

 
 (1) One can arrive at this more elegantly by recalling the systems E that belong to our ternary ds2 [cf., Ricci and 

Levi-Civita, Méthode de calcul différentiel absolus et leurs applications,” Math. Ann. 54 (1900), pp. 135. Ricci, “Sulle 

superficie geodetiche…,” in these Rendiconti 12 1st semester (1903), pp. 410].  In the first place, by means of the 

covariant E, one can write (12) in the form: 

 
with which (6) will assume the form: 

 
 

 On the other hand, by means of the contravariant E, the definition of a(jh) will translate into the formula: 

 
Substitute that in Gik, while keeping in mind the identity (whose proof is immediate): 

 
along with the other one (which differs only by the notation of the indices): 

 
in which the  with two indices represent zero when the indices are distinct and unity when they coincide, as usual. 

 One then notes that the expression (13) for  will now be equivalent to: 

 
which gives (14) precisely. 
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 One introduces the ik into the gravitational equations (10) by means of (14).  If one also writes 

down (I) then one will have, by definition, the system: 

 

(I)     

 

(II)  

 

 

in which the mean curvature  has the expression (13). 

 A noteworthy consequence of (II) happens when one multiplies it by a(ik) and sums over the 

two indices.  When one recalls (13) and (I), one will get: 
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in which 
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obviously represents the linear invariant of the system of forces with respect to our ds2 (in the 

ambient space).  Incidentally, that invariant must not be confused with the scalar of the quadri-

lateral tensor: 
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the equations of motion of a material point are included in the variational principle: 

 

(16)       ds = 0 . 

 

 Under static conditions, ds will have the form (1), such that when one sets: 

 

(17)   x0 = t,  idx

dt
= ix  (i = 1, 2, 3), 

2

2

ds

dt
= v2, 

 

2 ( , 1,2,3),ik
ik ik ik

V V
a T i k

V V
 


+ − = − =

002 1
2 2

,
TV

V V


  
= + 

 

3
( )

, 1

ik

ik

i k

a T
=

= 

00

2
,

T
T

V
= −

3
( )

, 0

,ik

ik

i k

T g T
=

= 

00

2
,

T

V
=



Levi-Civita – Einsteinian statics. 8 

 

in order to make it easier to compare with the usual notations, the preceding can be written (1): 

 

 
 

 In order to remain in the real and regular domain, one must exclude the motions in which the 

velocity exceeds the critical value V and set (with the arithmetic value of the radical) (2): 
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and thus get the variational equation of motion: 
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integration by parts), that will give rise to a fourth equation: 
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velocity, which is true in ordinary mechanics): 
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(19)   

 

 One can eliminate dt from (16) by exploiting that equation, with all due formality, and obtain 

a formula that is also variational and corresponds to the principle of minimum action and includes 

the equations of the trajectory.  Here is how one proceeds: 

 One first assumes that the variations  xi ,  t in (16) are kept arbitrary, but zero at the limits.  

One then notes that when one regards V0 as a constant that is fixed beforehand (so V0 = 0), one 

can replace (16) with the formula: 
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which is essentially equivalent to it, because it gives rise to the same Lagrange equations.  It then 

has the advantage over (16) that there is no longer any need to impose the condition on  t that it 

must be annulled at the extremes [provided that one intends that the constant on the right-hand 

side of the integral (19) has the prearranged value V0].  That follows directly from the observation 

that when one puts  under the sign, one will essentially have: 

 

 
 

as the contribution that is provided by the variation of t, which will be annulled by virtue of (19). 

 That being the case, it becomes legitimate to consider the xi , t in (16) and subject their 

variations to (19), rather than let them be independent.  In truth, nothing prevents one a priori from 

introducing constraints at will in either (16) or (16), provided only that one still respects the limit 

conditions for the  xi ,  t .  How does (19) behave in that regard?  One can say that its variation 

provides  dt (or what amounts to the same thing, d  t) in terms of the  xi , which remain arbitrary 

(but functions of t), except that they are annulled at the limits.  Consistent with that, the  t will 

result from a quadrature, and therefore one can make it zero at one of the extremes of the 

integration interval, but not generally at the other one.  That is because the introduction of the 

constraint (19) is perfectly legitimate in (16), which does not require the annulment of  t at the 

limits; however, that is not true for (16). 

 In order to clarify that concept, let us make the calculations explicit. 

 When (19) is multiplied by L, it can be written: 

 

 
 By virtue of (18): 

L2 = ± (V 2 – v2) , 

 

3

0

1

i

i i

L
dt x L V

x


=

 
− − + 

 


3
21

02

1

.i

i i

L
x L V L

x=


− =




3

0 0

1

(  constant).i

i i

L
x L V V

x=


− =






Levi-Civita – Einsteinian statics. 10 

 

whose sign must be chosen in such a way that L2 will be positive.  One then deduces (when v2 is 

homogeneous in the ix  of degree two and V 2 is a function of only the xi): 

 

 
 

in which one adopts the upper or lower sign according to whether the one sign or the other is true 

for L2, resp.  With that same convention, the preceding [i.e., essentially the integral (19)] can be 
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That appears to coincide (when one intends that to mean, for each value of the constant V0 that 

appears implicitly in U) with the geodetic of a space with a line element 2U ds , or also (1) with 

a congruence of trajectories for a conservative problem in ordinary mechanics in the physical 

space of the line element ds.  The congruence is characterized as follows: Its vis viva is 
2
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Its total energy is 
2

2

1

2

ds

dt
 – c4 U = 0 .  Keeping in mind the expression (20) for U, one can also say 

that the force function is 
4

22

c

V
 and the total energy is 

4

2

02

c

V
 .  

 

 

4. – Limiting cases. Optical interpretation. 

 

 1. Newtonian attraction. – Under the hypothesis that the quadri-dimension form ds2 = V2 dt2 

– ds2 is very close to the Euclidian type, one can set: 

 

(22) 

 

in which c is constant (viz., the speed of light in the absence of any perturbing circumstances), and 

the  are all pure numbers that must be treated as first-order quantities. 

 According to (18), the Lagrangian function for motion that is endowed with a velocity v < V 

is: 

 
 

or, when one multiplies by – c (which is permissible, since it will not change the equations of 

motion), recalls the first of (22), and neglects the  2 : 

 

 
 

 Suppose (as one can do for the motions of ponderable bodies, as a rule) that one can also 

neglect the square of the ratio v2 / c2.  When one develops the radical and drops the inessential 

additive constant – c2, the given Lagrangian function will assume the form: 

 

L = 1
2

v2 – c2  . 

 

 According to (21), one must intend that v2 = ds2 / dt2 should mean: 

 
 (1) Cf., e.g., the previously-cited Traité de mécanique rationelle by Appell, no. 487. 

2 2 ,V v−

2
2

2
1 2 .

v
c

c
− + −

3
2

, 1

(1 ), ( ) ,ik ik i k

i k

V c ds dx dx  
=

= + = +
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but it will quickly become clear that the ik can certainly be equal to zero, since they contribute to 

the equations of motion only to second-order. 

 We are therefore brought back (in the first approximation) to the ordinary mechanics of a 

material point in Euclidian space under the action of a unit potential (which is mean to be a force 

per unit mass): 

− c2  . 

 

 If we expect the expression c (1 + ) for V then (14), with the agreed-upon approximation, will 

become: 

 
 

which reduces, in substance, to the Poisson-Laplace equation that characterizes the Newtonian 

potential.  Indeed, at great distances, the intrinsic energy inside of ponderable bodies will dominate 

all other forms, since the energy density is roughly equal to c2  (where  is the density of matter), 

and  will prove to be negligible in comparison to c2  .   In empty space ( = 0), the entire sum 

 + T00 / V
2 will be negligible in comparison to the order of magnitude of the values that it has 

inside of matter.  One can then set: 

2  = 1
2

 c2  

in all of space. 

 Since 2  can be referred to the Euclidian ds2 (at least to second-order terms) and: 

 

 = 
4

8 f

c


  (f = constant of attraction), 

 

one will effectively recover the Poisson-Laplace equation for the potential – c2  . 

 It was by precisely that argument that Einstein fixed the numerical value of his universal 

constant . 

 

 2. | V0 | very large. Comparison with light rays. – If v assumes a value that is very close to V 

in the course of motion then the corresponding value of L will be very small, and therefore on the 

basis of (19), the constant V0 must stay very large in absolute value (and negative or positive 

according to whether v < V or v > V, resp.). 

 Suppose that 2 2

0/V V  is negligible compared to unity, so one will have from (20) that: 

 

2U = 
2

1

V
 , 

3 3 3
2

, 1 1 , 1

( ) ( ) ,ik ik i k i ik ik i k

i k i i k

x x x x x   
= = =

+ = + +  

001
2 2 2

,
T

V
 

 
 = + 

 
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so that from the equivalence theorem in the preceding paragraph, the trajectories will coincide with 

the geodetics of the line element ds / V, which form a congruence that is due to the force function 

c4 / 2V2. 

 The former result gives rise to an interesting optical approximation that was observed before 

along a different path by Caldonazzo (1) in the context of Abraham’s theory.  In order to arrive at 

it, it is enough to recall that one has attributed the meaning to V of the speed of light in our space 

(which is the realm of static phenomena) with the line element ds.  Preserving Fermat’s principle, 

even in the new mechanics, the course of light rays will still be contained in the formula: 

 

 
 

 As was pointed out before, (20) will reduce to that formula (i.e., to the geodetics of the line 

element ds / V) for | V0 | very large.  Therefore, the trajectories of material points will tend to 

coincide with light rays as V0 increases indefinitely, or what amounts to the same thing, when the 

velocity of motion converges to the velocity of light. 

 

 3. V0 very small. – According to (19) and (18), that case can occur only when v > V and very 

large.  (20) shows that 2U  is roughly constant then, so the equation (21) of the trajectory will 

reduce to: 

  ds = 0 . 

 

 One can infer from this that (as in ordinary mechanics, when the accelerating action of the 

force is negligible in comparison to the inertia) the trajectories in a gravitational field will tend to 

become geodetics as the velocity increases indefinitely. 

 

___________ 

 

 
 (1) “Traiettorie dei raggi luminosi e dei punti materiali nel campo gravitationale,” Nuovo Cimento (5) 5 (1913), 

267-300.  

0.
ds

V
 =


