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 The question that is the topic of the present note and some others that will follow is posed 

physically thus: 

 A region in space is the seat of a force field (in ordinary mechanics, it will certainly be 

Newtonian) that is due to the action of masses external to the field.  Suppose that the mass is not 

displacing and that no other perturbing circumstance intervenes, so (while Einstein’s new 

mechanics are valid) a static regime will be established that differs little from the one that the 

classical tradition answers to, so the conditions of equilibrium will be inferred from Einstein’s 

gravitational equations.  Our scope is precisely that of discussing the main consequences of those 

equations in the simple case that was just specified. 

 Since the quantitative deviation from the usual scheme is only observable in the more refined 

experiments, we are compelled intuitively to presume that any ordinary Newtonian potential is 

associated with a solution of the aforementioned differential system, since the degree of 

arbitrariness in its general integral will be that of harmonic functions.  That will be exhibited, one 

might say, almost automatically, when one limits oneself to treating the differential equations in 

the first approximation.  The Newtonian potential – c2  (where c is the well-known universal 

constant) then keeps its ordinary significance in regard to statics (where one requires the work 

done to be the positional energy, with a change of sign, of a hypothetical material point that moves 

in the field), and the metric of the ambient space submits to only a formal alteration (with respect 

to the Euclidian metric that exists in the absence of the field) of modulus 1 –  that is very close to 

unity and has the line element: 

dl = (1 – ) dl0 , 

with dl0 Euclidian. 

 In this note, we shall first take this occasion to recall some preliminaries (nos. 1 and 2) for a 

mechanical observation of a general character.  It is that in Einstein statics, the customary 

elementary notions of force function (for a conservative field) and positional energy (of a material 

point that moves in the field) still persist, but they are generally distinct.  It is only in the first 

approximation that one is the opposite of the other, at least up to an inessential additive constant, 

as in ordinary mechanics. 
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 I shall then (no. 3) write the fundamental equations and occupy myself exclusively with their 

approximate integration (nos. 4-8), with the result that was indicated already. 

 I refer to a subsequent note for the rigorous study of the differential system.  In my next 

communication, I will obtain the integrability conditions, as illustrated by their geometric aspect. 

 

 

1. – REVIEW OF THE MOTION OF A MATERIAL POINT IN A STATIC FIELD. 

 

 Let S be an arbitrary region in physical space. Let: 

 

(1)      dl2 = 
3

, 1

ik i k

i k

a dx dx
=

  

 

be the expression for the square of the line element, and let V be the speed of light at a generic 

point P of S. 

 The hypotheses that the fundamental quaternary form in Einstein’s theory is free from cross 

terms in dt or has the type: 

 

(2)      ds2 = V 2 dt2 – dl2, 

 

and that the coefficients V 2, aik are functions of position P (i.e., of the coordinates x1, x2, x3) that 

are independent of t, translate mathematically into limiting oneself to phenomena of a static 

character. 

 The motion of a material point (as usual, suppose that one can ignore its action on the field) is 

governed by the variational equation: 

ds   = 0 . 

 For brevity, set: 

xi = idx

dt
  (i = 1, 2, 3), 

 

v2 = 
2

2

dl

dt
 =

3

, 1

ik i k

i k

a dx dx
=

 , L = 
2 2c V v− , 

 

in which c is a constant that arbitrary a priori, and one infers the equivalent Lagrange equations 

(1): 

 

(3)     
i i

d L L

dt x x

 
−

 
 = 0 (i = 1, 2, 3) . 

 

 
 (1) Cf., the note “Statica einsteiniana,” in these Rendiconti 26 (1st sem. 1917), pp. 465. 
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 Since L does not contain t explicitly, it will admit the well-known integral: 

 

(4)     L −
3

1

i

i i

L
x

x=




  = E (E constant), 

 

which expresses the principle of conservation of energy.  Indeed, the function of position and 

velocity of the moving point that appears on the left-hand side and that keeps its value during the 

motion can be interpreted as the energy (per unit mass) of that moving body: It is enough to 

attribute the value c to the constant (which is called canonical), which is the speed of light in the 

absence of any perturbing action, and to take the elementary case (V = c and dl Euclidian) to be 

normal (1). 

 

 Observation. – In my cited note on Einsteinian statics, I adopted the definition 
2 2V v−  for 

L (without the inessential factor c), so the dimension of L will that of a velocity.  The same thing 

will happen in the left-hand side of the corresponding integral, which proves to be only 

proportional to the unitary energy of the moving body.  With the present L, the left-hand side of 

(4) will really represent the aforementioned energy. 

 

 

2. – MECHANICAL SIGNIFICANCE OF THE FUNCTION – 21
2
V . 

 

 If one annuls the velocity of the moving body – i.e., any of the ix  (the case of incipient motion 

starting from rest) – at a given instant then one will get from (3), in particular, that: 

 

(5)     
3

1

ik k

k

a x
=

  = − 
21

2 i

V

x




  (i = 1, 2, 3), 

 

which defines the ix  (of course, the two dots above signify the second derivative with respect to 

t) as functions of position.  The right-hand side: 

 

(6)      Xi = − 
21

2 i

V

x




 

 

(as derivatives of the same function − 21
2
V ) obviously constitute a covariant system (under 

arbitrary transformations of the spatial coordinates).  The reciprocal contravariant system: 

 

 
 (1) Cf., A. Palatini, “La spostamento del perielio di Mercurio e la deviazione dei raggi luminosi secondo la theoria 

di Einstein,” Nuovo Cim. (6) 14 (1917), page 40.  



Levi-Civita – Einsteinian ds2 in Newtonian fields. 4 

 

( )iX  = 
3

( )

1

ik

k

k

a X
=

 , 

 

in which the ( )ika  denote the coefficients of the reciprocal quadric to dl2, as usual. 

 The solution to (5) implies precisely that: 

 

ix  = ( )iX , 

 

which exhibits the contravariant character of the incipient accelerations: I want to say, the ix  that 

are associated with a material point in a static field when one assumes that all of the ix  are equal 

to zero. 

 It is known (1) that one can associate a single vector F to the two simple reciprocal systems Xi, 
( )iX = ix (in the tangent Euclidian space that identifies any manifold with a first-order 

neighborhood of one of its generic points). 

 That vector F obviously implies the static measure of (unitary) force of the field (i.e., the 

incipient acceleration of a free material point, or if one prefers, the acceleration that it must gain 

in order to keep the point at rest). 

 Consider a point P the is near to the point P and has the coordinates xi + dxi , along with the 

(invariant) trinomial: 
3

1

i i

i

X dx
=

 = − 21
2
dV . 

 

 Let dl denote the line element PP, so −
21

2

dV

dl
will present itself as the derivatives (at P) of the 

function − 21
2
V  along an arc (of any line) that extends from P to P.  On the other hand, the ratios 

dxi / dt are the parameters that are associated with the direction PP, and the orthogonal projection 

(with the appropriate sign) of the vector F along that direction is expressed by the invariant: 

 
3

1

i
i

i

dx
X

dl=

  = − 
21

2

dV

dl
. 

 

That is because when one defines the elementary work done by F relative to the displacement PP, 

as in ordinary Euclidian space, to be the product of the displacement with the orthogonal projection 

of the force, the identity: 

− 
21

2

dV
dl

dl
 = − 21

2
dV  

 

 
 (1) Ricci and Levi-Civita, “Méthodes de calcul différentiel absolu, etc.,” Math. Ann. 14 (1900), page 137.  
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will show that − 21
2
V  constitutes the potential function for the force that is exerted in the field 

under static conditions. 

 It is worth noting that whereas in ordinary mechanics that potential function, with the opposite 

sign, can also be interpreted as an energy of position that is associated with a moving body is not 

generally true in Einstein’s theory.  Indeed, from (4), when the velocity is annulled, one will have 

the intrinsic (i.e., constant) and positional part of the energy of the moving body completely 

expressed by c V, which does not coincide with − 21
2
V , even up to an additive constant (which 

would be inessential with respect to the positional function − 21
2
V ).  The difference between the 

two expressions c V and 21
2
V  is constant only in the first approximation – i.e., when the difference 

between V and the value of c is sufficiently small – because if one were to take V = c (1 + ) then 

it would be legitimate to regard  as a first-order quantity (i.e., a pure number).  One would then 

have: 

c V = c2 (1 + ), 21
2
V = 21

2
c (1 + 2), 

which differ by 21
2
c . 

 

 

3. – VACUUM FIELDS. INDEFINITE EQUATIONS. 

 

 Suppose that the region S in space to which we refer our considerations is completely vacuous, 

so it has an energy density (and therefore a matter density) that is everywhere zero.  In addition, 

suppose that the specific forces are everywhere zero inside of S.  Under those conditions, all of the 

elements of the energetic tensor (forces, density, and energy flux) will obviously be annulled. 

 The Einsteinian ds2 (and with it, the spatial dl2) will be rigorously Euclidian as long as the 

aforementioned tensor is zero in all of space (1).  We now propose to indicate, more generally, the 

limitations that are derived from simply annulling it locally (i.e., in a finite region S of space). 

 The indefinite equations that were just discussed are obviously those of Einsteinian statics, 

with its right-hand side equal to zero (to be sure, the energetic tensor is zero); i.e., they are the 

seven following ones (2): 

 

(I)        = 0, 

 

(II)      ik + ikV

V
 = 0  (i, k = 1, 2, 3) . 

 

 
 (1) The physical aspects of the statement are intuitive, and one can say that they reflect the starting point for 

Einstein’s speculative construction.  From the mathematical standpoint, however, it can be proved rigorously on the 

basis of the equations that now include the entire theory.  I do not know if that proof exists but permit me to point out 

the observation that the theorem in question reduces to the constancy of any regular harmonic function in all of space 

in the limiting case of ordinary mechanics. 

 (2) Page 464 of the note cited above “Statica einsteiniana.”  
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One considers the spatial dl2 (rather than Einstein’s quadri-dimensional ds2) to be fundamental in 

them: The ik are the Ricci symbols (which advantageously replace those of Riemann for the 

ternary form): 

 = 
3

( )

, 1

ik

ik

i k

a 
=

  

is the mean curvature of space.  Since it is known that: 

 

2V = 
3

( )

, 1

ik

ik

i k

a V
=

 , 

 

(I) will be equivalent to the harmonicity condition: 

 

(I)      2V = 0, 

 

by virtue of (II). 

 

 

4. – FIRST APPROXIMATION.  

RESULTING LINEARITY OF THE DIFFERENTIAL SYSTEM. 

 

 If one supposes that the expression (I) for ds2 is very close to the Euclidian type, when referred 

to Cartesian spatial coordinates: 

  c2 dt2 −
3

2

1

i

i

dx
=

 , 

then one should also set: 

 

(5)      V = c (1 + ) , 

 

(6)      aik = ik + eik  (i, k = 1, 2, 3), 

 

with the usual meaning for the symbols ik (viz., 0 for i  k and 1 for i = k).  One then has: 

 

(6)     dl2 = 
3

, 1

ik i k

i k

a dx dx
=

  = 
3

2

0

, 1

ik i k

i k

dl e dx dx
=

+  , 

 

in which 2

0dl  is the elementary line element of Euclidian space when referred to Cartesian 

coordinates. 

 The eik are pure numbers, along with , and the assumed qualitative behavior of ds2 is 

equivalent, in the first approximation, to treating all of those seven quantities as infinitesimal. 
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 The Riemann symbols aij, hk relative to the form (6) [and therefore, to the coefficients (6)] 

reduce to (1): 

aij, hk = 

2 22 2

1
2

jh jkik ih

i k j h j k i h

e ee e

x x x x x x x x

   
+ − −          

  (i, j, h, k = 1, 2, 3) , 

accordingly. 

 Since the ( )jha  keep their Euclidian values jk , at least up to first-order terms, it will follow 

that: 

Gik = 
3

( )

,

, 1

jh

ij kh

j h

a a
=

  = 
3

,

1

ij jk

j

a
=

 = 

2 2 22

1
2

jj ij jkik

i k j j j k i j

e e ee

x x x x x x x x

   
+ − −          

 . 

 

 In general, the Gik are coupled with Ricci’s ik by the relation [(14) in the note “Statica 

einsteiniana,” that was cited twice above]: 

 

ik = Gik +  aik . 

 

 With the expression for Gik that was just obtained, given that  = 0 in the present case 

according to (I), it will result that: 

(7)     ik = 

2 2 22

1
2

jj ij jkik

i k j j j k i j

e e ee

x x x x x x x x

   
+ − −          

 . 

 

 The determination of the unknowns , eik must be deduced from (I), (II), or if one prefers, from 

their equivalents (I), (II). 

 It is important to recall that, at least up to terms of order higher than one (in the , eik), the 

covariant derivatives Vik of V = c (1 + ) with respect to the form (6) will coincide with the 

corresponding ordinary derivatives of c  .  With that: 

 

  2V = 0

2c  , 

 

in which 0

2  represents the ordinary second-order differential parameter with respect to 2

0dl , i.e., 

the operator 
23

2
1i ix=




 .  (I), (II) can then be written: 

(8)      0

2   = 0, 

 

(9)     ik = −
2

i kx x



 
  (i, k = 1, 2, 3) , 

 
 (1) Bianchi, Lezioni di geometria differentiale, v. I, Pisa, Spoerri, 1902, page 73, or Ricci and Levi-Civita, loc. cit., 

page 142.  
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in which the ik are the linear combinations (second-order differentials) (7) of the unknowns eik . 

 

 

5. – ISOLATIING THE STATIC PROBLEM. 

 

 Recall from no. 2 that − 21
2
V , or what amounts to the same thing, − 1

2
(V2 – c2) = − c2 , 

constitutes the (static) potential of the field, while (8) shows that (as in the classical theory of 

Newtonian attraction outside of the gravitating body) it is subject to the restriction that it must be 

a harmonic function, as well as, of course, being regular in the field.  That field [when given the 

form (8)] will behave, in regard to the law of variation of the potential, as if it were Euclidian and 

referred to Cartesian coordinates. 

 (9) (if we accept it for the moment) implies no ultimate constraint on the function .  Therefore, 

conversely, any  that is harmonic and regular in S will give rise to a possible field.  That is in 

perfect agreement with the ordinary picture, according to which the gradient of any function that 

is harmonic and regular in a field can be realized (in an infinitude of ways) by means of the 

attraction of a mass that is external to the field. 

 

 

6. – THE GEOMETRIC PROBLEM. PARTICULAR SOLUTION. 

 

 Now let us turn to (9).  We note that in the first place, we can take a particular solution to be: 

 

(10)     eik = − 2 ik   (i, k = 1, 2, 3) . 

 

 The proof is immediate, from the expression (7) for the ik and the harmonicity of  . 

 Since (3) then constitutes a linear, but not homogeneous, system in the e, the general integral 

is certainly composed (by way of a sum) of the more general solutions to the equations when they 

have a vanishing right-hand side: 

ik = 0 . 

 

Since  no longer intervenes, that proves the statement in the preceding no. regarding the isolation 

of the static problem. 

 The general integral of the system ik = 0 is well-known.  However, as will be clarified below, 

it has not importance for us, since it corresponds to only a change of the reference coordinates. 

 

 

7. – INESSENTIAL CHARACTER OF THE ARBITRARINESS 

FORMALLY REFLECTED IN THE GENERAL INTEGRAL. 

 

 Annulling the ik (rigorously, not just in our order of approximation) expresses the necessary 

and sufficient condition for the corresponding (ternary) dl2 to be Euclidian, or reducible to the form 
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3
2

1

i

i

dy
=

  with a suitable choice of parameters.  That is because when one is given the reference 

coordinates x1, x2, x3 generically, the most general manner of defining a dl2 that is Euclidian with 

respect to those x coordinates is obviously to introduce an arbitrary transformation between the y 

and x : 

yi = yi (x1, x2, x3)  (i = 1, 2, 3), 

 

and to take the coefficients aik to be the ones that result from expressing 
3

2

1

i

i

dy
=

  in terms of the 

differentials of the x.  Assuming, as is always permissible, that the functions yi (x1, x2, x3) have the 

form: 

xi + i (x1, x2, x3) , 

 

 (after actually introducing the corresponding differentials into the trinomial 
3

2

1

i

i

dy
=

 ) one will 

have: 

dl2 = 
3

, 1

ik i k

i k

a dx dx
=

 , 

with 

aik = ik + 
3

1

1

2

j ji k

jk i i kx x x x

  

=

   
+ + 

    
  . 

 

 In order to reflect the limitation of the difference aik – ik to first order, with the ultimate 

specification that the difference between the Cartesian coordinates of the y and the (curvilinear) 

ones of x has the same order (1), it is sufficient (and necessary) that one can treat the functions  as 

infinitesimal (along with their derivatives).  It will result that: 

 

(11)     eik = 
1

2

i k

k ix x

   
+ 

  
, 

 

which constitute the formal expression for the general integral of the homogeneous system ik = 0 

[the ik depend upon the e linearly according to (7)]. 

 
 (1) In the absence of that specification, one demands only that the (numerical) quantity: 

 

eik = 
3

1

1

2

j ji k

jk i i kx x x x

  

=

   
+ + 

    
  

 

proves to be infinitesimal, and can therefore be obtained, as was shown by prof. Almansi [“L’ordinaria teoria 

dell’elasticità e la teoria delle deformazione finite,” in these Rendiconti, 26 (2nd sem. 1917), 3-8.], even without the  

being infinitesimal. 
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 However, it is not that formal expression that is important to retain, but rather the fact that the 

terms (11) [which get added to (10) in order to have the general integral of the system (9) with a 

non-zero right-hand side] can always be made equal to zero by means of an opportune change of 

coordinates: That is, when one replaces the x with the combinations: 

 

(12)     yi = xi + i (x1, x2, x3) , 

 

by which the expression for dl2 will reduce to 
3

2

1

i

i

dy
=

 , by construction, all of the differences aik – 

ik will be annulled. 

 If one chooses the variables to be the y then one must naturally subject the particular solution 

(10) to the transformation (12), as well.  However, when one considers (10), (12) (when one 

regards the  as infinitesimal to the same order as ) will reduce to the material substitution of the 

y for the x.  The expression (11) for the particular solution, when also referred to y, will then remain 

unaltered, which is all that is interesting. 

 In addition, one should note that the elementary form (viz., the sum of second derivatives) of 

the parameter 2

0   will likewise remain unaltered. 

 

 

8. – CANONICAL FORM FOR THE ds2. 

 

 One sees from the preceding that inside a vacuum field, the static potential (in the first 

Newtonian approximation) – c2  is associated with a metric alteration of the ambient space.  When 

the reference coordinates (the y in the preceding no., which are denoted by x there) are chosen 

opportunely,  can be kept as a solution of the Laplace equation: 

 
2 2 2

2 2 2

1 2 3x x x

    
+ +

  
 = 0 . 

 

The coefficients aik in the square of the line element (to the same order of approximation) take on 

the expressions aik – 2ik , which makes: 

 

dl2 = (1 – 2) 2 2 2

1 2 3( )dx dx dx+ + . 

 

 As one sees, space does not generally remain Euclidian, not even in the first approximation, 

but is merely (in that approximation) representable as conformal to a Euclidian space. 

 By definition, Einstein’s global ds2 that is due to an assigned Newtonian force field with the 

potential – c2  is given by: 

 

(13)    ds2 = c2 (1 + 2) dt2 – (1 – 2) 2

0dl . 

(dl0 is the line element of a Euclidian space.) 
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 The expression (13) for ds2 for the field of a single mass (so – c2  is inversely proportional to 

the distance from the mass) was already indicated explicitly by de Sitter (1).  The case of as many 

masses as one desires (which corresponds substantially to an arbitrary harmonic function ) was 

then implicit in a noteworthy formula in the second approximation that was established by J. Droste 

(2).  With all of that, it would seem opportune to me to propose the systematic study of vacuum 

spaces and to also pose the results in the first approximation, and all the more so as they relate to 

an illuminated medium, and to obtain them in a more spontaneous manner without having to 

develop the calculations substantially. 

 

___________ 

 

 

 
 (1) Cf., Einstein, “Näherungweise Integration der Feldgleichungen der Gravitation,” Sitz. Kgl. Preuss. Akad. Wiss. 

(1916), page 692. 

 (2)  “The field of n moving centres in Einstein’s theory of gravitation,” Kgl. Akad. van Wet. te Amsterdam, 

Proceedings 19 (1916), 447-455. 


