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144 The relativistic theory of gravitation and electromaggmet

Since they first appeared, the classical relativisteéoties have profoundly modified
our understanding of the different physical fields and ouonaf field itself.

The special theory of relativity was based on elecagnetism. In the general
geometric case of an improperly Euclidian, four-dimendjoMinkowski space the
concept of arelectromagnetic fieldhat is represented by an antisymmetric terSgr
appeared, thanks to a detailed analysis of Maxwell's emmsti We know the
fundamental example of the unification of fields: eTdlectric and magnetic field vectors,
which were represented in the old spatial framework byuweators that varied in time,
appear — depending on the observer - to be two aspeotsecand the same physical
field, which is represented by the tensor fi€lg, in the Minkowski framework. One
might almost say that this example and this success defieedream of physicists for
the last fifty years.

By contrast, if dynamics and gravitation have acquiredea form in special
relativity, then this new form does not contribute ny progress in the explanation of the
phenomenon of gravitation. The gravitational field alwagpears as a singular
phenomenon that is superposed upon, but foreign to, the Buaclstructure of
Minkowski space and which does not interfere with thetedenagnetic field.

On the contrary, the classical general theory latigty is based on the gravitational
field. This field is represented with the aid of a syrrioetensorg,, — viz., the
gravitational potential tensor — on the spacetime mahifahd it thus provides this
manifold with a fundamental Riemannian metric of the hypkc normal type.
Dynamics, in the classical sense, disappears complatalthe gravitational phenomena
acquire a subtle and satisfactory explanation thdiased upon the consideration of
regular global metrics, which we sought to detail infitst part of this course.

In the framework of general relativity, the electrgmetic field continues to be
represented by an antisymmetric tensor field, and oleel i©5 adopt both the established
concepts of general relativity and equations that are deducedasonable inductions
from the ones of special relativity for electromagsm®ti Without appealing to the
concept of regularity, one may say that the fundameuuzhtions of electromagnetism in
general relativity are the following ones:

a) The Maxwell-Lorentz equations that govern the electgmatic field F,, ;
however, one will note that only one of the equationslves the spacetime metric. On
the other hand, the electric current appears as a ribabrs foreign to that of field.

b) The Einstein equations, in which the Einstein tei@grs found to be equal to the
energy-momentum tensadp, up to a factor. The electromagnetic field interveinethe
right-hand side of this equation by way of an expresdian is prudently induced by
starting with special relativity, although it not deduced frdme axioms of general
relativity, and remains largely foreign.

There is interference between the gravitationat feehd the electromagnetic field.
On the one hand, as we have seen, the propagationfitivesta/o fields are identical.

If such a theory of electromagnetism is mostlyaanance on the former state then
one will see that what remains in it is unsatisfactorthe spirit of our theory and merits
the name that we give to it of the “provisional” theof electromagnetism. To say that
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the difficulties undoubtedly lead to quantum mechanicsthatlit is not convenient to
pursue them further in the classical context is an igmgadttitude to impose on relativity.

*

Very early on, theoreticians were therefore ledttempt to elaborateumitary theory
that would realize the unification of the gravitatiomald electromagnetic field into a
single hyperfield whose data are equivalent to thoserméggeometrical structure for the
universe. To a certain degree, the “mesonic” field has lbembined with the problem
in recent years.

Since 1919, which was the year when Hermann Weyl devekbgefirst attempt at
such a theory, the efforts have multiplied, but, orterahe other, they have revealed
aspects that are not strictly satisfactory to eitiewpoint. The first — rather maladroit —
sketches have nevertheless great importance in the gevatd of contemporary
differential geometry in general. Without a doubt, ¢hare the efforts of Hermann Weyl
and Eddington®}, which led Elie Cartan to construct his general ephof a space with
a connection in a Lie group, starting in 1924. The geomet@atepts of Elie Cartan
that were recently restated and developed in a globakxioby Ehresmann, Chern,
André Weil, and myself actually constitute the genersé¢ ad differential geometry.

By contrast, the latter attempts becoming much moeeasting and refined from the
physical viewpoint, and the actual discussion about therpretation in quantum
mechanics have made them increasingly important.

Grosso modopne may classify the different theories that hasenbproposed into
two broad categories:

1. Thefive-dimensionatheories, which are also sometimes cafiegjectivetheories,
somewhat improperly. It was Kaluz3,(who presented the first inkling of such a theory
in 1921, which was a theory that was reprised in 1926 by On Kde As we confirm,
this theory, in the form of O. Klein, leads only to explanationfor the provisional
theory of electromagnetism, and suggests no new equatiblese, the formalism is
essentially one that is appropriate to a five-dimensiBremannian manifold that admits
a one-parameter group of isometries.

The formalism that is callegrojective was introduced by Veblen*)(in 1933,
developed by PaulP and Schouten, and used again quite recently by Jotdan1©47,
and leads to essentially equivalent results. The diflgrences are in their choices of
mathematical representation. One may account fdrlyastating that identical field
equations have been simultaneously elaborated by Jordansaschbol in the projective
formalism by Yves Thiry and myself in the formalismeofive-dimensional Riemannian
manifold.

() H. WEYL, Raum, Zeit, MaterieEddington.
() KALUZA, “Zum Unitats problem der PhysikSitzungsber. Preuss. Akad. Wiss., (1921), 966.
() O, KLEIN, Z. Physik 73 (1926), . 895.
) O. VEBLEN, Projective Relativitéts theori€erlin, Springer (1933).
() W. PAULI, Ann. Physik]18(1933), 305.
(®) P. JORDAN, Ann. Physik,(1947), 219; P. JORDAN-MULLER, ZtNforschg.2a (1947), 1. See
also I. BERG.
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2. The theories that one may call theovigh affine connectionlt is appropriate to
include the attempts of Weyl and Eddington, the numerownpts of Einstein in
collaboration with various students of his, and finahgse of Schrédinger, as well as
Einstein’s last theory, which produced restricted regtjits

In the second part of this course, we will study anmga of each category, and
naturally we will choose theories that are recemt @nthe-point for examples. For the
first category, this will be the theory that | haveprsed to callhe Jordan-Thiry theory
(®). We will study it in the formalism of moving framess | have suggested here, and
which seems to me, at least for the projective fosngliadapted to understanding the
profound geometrical and physical realities of the thedfor the second category, this
will be the Einstein-Schrédinger theoryn a form that is appropriate to the one they
actually used.

We are forced to point out advantages and disadvantagesch theory.Grosso
modo,one may say that the first category leads to elegaotids in which the physical
interpretation is clear, but which can be criticizedddeing insufficiently unitary. On the
contrary, the second category amounts to a theotységans to be as unitary as one may
demand; however, this unitary character itself corapdis the comparison with the
theory of electromagnetism in classical general refgtii.e., it complicates the correct
physical interpretation of the geometric quantities tete introduced.

*

As far as this mysterious unitary character | spokes aoncerned, | would like to
make several remarks.

First of all, as Thiry observed, it is less ambiguausmploy the epithet of “unitary”
in a negative proposition than in an affirmative onehat\bne intends by saying that the
provisional theory of electromagnetism in classicalegal relativity isnot unitary is
sufficiently clear; the gravitational field is defined the geometric structure defined for
the universe, and the electromagnetic field interveordg by making a sufficiently
arbitrary modification of the purely gravitational thgothanks to a contribution from the
energy-momentum tensor.

In the positive sense, we may hope to realize intdte ef our conceptions a physical
fusion that is just as complete as the one thaeadized by the electric and magnetic
fields. In order to do this, it is possible to transmilme one into the other in a simple
manner by a suitable choice. As far as the gravitdtiand electromagnetic fields are
concerned, these things are certainly less simple.

One may agree to say that a theory is unitaryhe large senséf it makes the
gravitational and electromagnetic fields play symmaetiles in the representation of the
fields and the formation of the equations; in particutamce the gravitational field is
related to the geometrical structure of the universbdrconcepts of general relativity, it
is convenient to choose a structure such that the twe f@glde from the same geometry.

() See the corresponding bibliography in the second part.

(® BERGMANN, Ann. Math.49 (1948), 255, which contains a grave error. On the oths, lsze: A.
LICHNEROWICZ and Y. THIRY, C.R. Acad. Sc224 (1947), 529; Y. THIRY, C. R. Acad. S226
(1948), pp. 216 and 1881, aimtiése Parig1950).
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A theory will be called unitaryn the strict sensen the case where the rigorous
equations regulate a non-decomposable hyperfield, and mdiyiled into propagation
equations for the gravitational field and the electromtgreld only approximately
when the physical conditions are such that one of #ldsfidominates the other. One
may think that only the theories of the second categonay be clearly unitary in the
strict sense.



|. — THE JORDAN-THIRY THEORY

FIRST CHAPTER

THE TRAJECTORIES OF A CHARGED PARTICLE AND
THE INTRODUCTION OF A FIVE-DIMENSIONAL SPACE

. — ELECTROMAGNETISM IN CLASSICAL GENERAL
RELATIVITY

1. —The equations of electromagnetism. We recall the equations that are satisfied
by electromagnetism in classical general relativity. o Tacilitate our ultimate
comparisons with these equations, we suppose that theisgaoganifoldV, is referred
to systems of local coordinates) ((i, any Latin index = 1, 2, 3, 4) and that the index 4
has a temporal character. The metri¥/pis of hyperbolic normal type and is written:

(1-1) ds’ = g; dxX dX.
If R; is its Ricci tensor then the associated Einsteirotend| be:

(1-2) S =R, -39;R.

1

Having said this, in the presence of an electromagnetitH; the Einstein equations
take the form:

(1-2) Si=xTi,

in which the energy-momentum tensd; contains the terms that relate to the
electromagnetic field:

(1-4) Ty =39 FsF" —FF,

which are terms that come from special relativity.
The electromagnetic field satisfies taxwell-Lorentz equations

(1-5) O.F =7,

in which Oy is the covariant derivative operator of the Riemannian ection, andJ
denotes the electric vector-current. The second groaquaitions may be written:
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(1'6) %gjk" aJ Fk| = O,
or in the invariant form:
(1-7) %/7""" O0,F = 0,

and expresses the local existence of a vector-potensach that:
(1-8) F, =0,¢,-0,¢.

Indeed, in the sequel we will assume the existence lobalgvector-potentia$ such
that (1-8) is satisfied. Equations (1-3) [with (1-4)], (1-8nd (1-8) may then be
considered to be the equations of the provisional thefogleotromagnetism. In the case
of a “pure electromagnetic” scherfiawill reduce toz; andJ' = 0.

2. —The trajectories of charged particle. —In (I, sec.33), we established that the
motion of a charged particle, whose charge to massisati

k =— = const.,

£
m
in the presence of an electromagnetic field is givernbyejuations:

2. | i
dxl.;.ri]%%:kpi dk.
ds’ " ds ds ode

(2-1)

From (I, sec. 56), the trajectories of our particletamne-oriented lines that realize the
extremum of the integral:

(2-2) 5= .[:(d8+ ke) :L?[(gij %5 )% + ke )]du (Xi _dx j |

" du

in which ¢ is the vector-potential form andis an arbitrary parameter.
These equations suggest various remarks:

a) In the purely gravitational case, the traje@siof a material particle are provided by
the time-oriented geodesics of a Riemannian mahifél seems desirable to extend this
“geodesic principle” to the context of a unitargthy and to choose a geometric structure
such that the motion of a charged particle is djoselated to the geodesics of the
geometric structure that represents the field.

b) One may remark that equations (1-2) say thattifectories envisioned are the
geodesics of the Finslerian manifold that admigsrtietric:
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L, X¥) = (g, XX ) + k¢ %.

It may appear during the study of the geometrguwh a space. However, we know
that there exist particles in our universe for viahibe ratiok takes different values. We
are therefore led to envision a family of Finsleases, which seems much less satisfying.

We may then demand that it is possible to intérfire preceding trajectories, which
correspond to different values &f by making recourse to a unique, 5-dimensional,
Finsler space whose metric is independeri, ahd the new local coordinatis related
in some way to the variable That question, or an equivalent question, isialbt
encountered — in various forms — in Classical Ma@® as in relativity. In 1947, in
collaboration with Thiry, |1 posed the correspondagmneral problem in the calculus of
variations whose very simple solution assures tmthesis of well-known results.
Without a doubt, the corresponding general mathiealgirocedure suggests, at best, the
introduction of a penta-dimensional manifold.

[I. — A PROBLEM IN THE CALCULUS OF VARIATIONS

3. —Finslerian manifold. — Let V,.+1 be a differentiable manifold of cla€®*!, and
let Wo(h+1y be the fiber bundle of tangent vector§ita. A point of W1y consists of the
combination of a point of V,,+1 (namely, its projection ontd,.1) and a tangent vectar
that is tangent t&,.; atx. If (x") (@ and any Greek index = 0, 1, .n), denote a system
of local coordinates oN,.; then the union of thex{) and the componentz” of the

vector in the natural frame that is associated whi *) provide a system of local
coordinates oWMhn+1), that space is therefore naturally endowed withgtructure of a
differentiable manifold of class’.

We give ourselves a functiahwith scalar values and cla€8% onWs .1y, such that if
x remains fixed andix is substituted fox then one will have:

LOGAN=AL(% X).

Locally, £ is therefore a function of thej and the(x“ )that is homogenous and of
degree one in theY).

When this is true, we will say that the given lod functionl endowsWs,.1) with a
Finslerian structure. A Finslerian manifold will be calletegular if the function( leads
to a regular problem in the calculus of variations\s s+ 1).

4. —Lie derivatives of L. — Suppose we are given a vector fiéld 0, of clas<C® on

a neighborhood o¥,.s; this field is the generator of a one-parameteotig”’ of local
transformations on the manifold. These transfoionatare defined in local coordinates
by integrating the differential system:
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dx?
dt

(4-1) =&7.

The trajectories of the vector fiefwill be the trajectories of the group.

We givet a sufficiently small value; integrating (4-1) for thetial conditiongx;)
gives:
(4-2) x? = FA(x¢ 1),

and the transformation that corresponds to that vafuetakes the point whose local
coordinates aré€xg ) to a pointx that belongs to the domain of the local coordinatets tha

we envision and has local coordinatef).( This transformation may be extended to
Wor+1) IN an intrinsic manner; it will suffice to make thectorx, atx, correspond to the

vectorx, atx with the components:
B
o8 = of” _,
oxg

since this correspondence is obviously invariant under a clidigeal coordinates.
We associate the geometric object that is defined bystalar field{ with the

t
transformed objeat , which is, by definition:

t
L(%, %)= L(X X.
One will note that:

L(% %) = AL (%, %)

The Lie derivative o with respect to the field at (x,, X, ) is, by definition:

t
XL, = Itlfr(l) TKO :
t
This is easy to evaluate upon finding the principal partCef’,; (4-2) may be
written:
xP =xf +t(&f +€f) (ef -~ O whent - 0).
From this, one deduces:

0%, 5%) = £06 9= L0, K+ 1650,L,+0,88 K3,LJ+ § (7 O whert - 0).

It results from this, upon suppressing the O inslitleat:
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a . 0 0
(4-3) XE = £ 0,L,+0,E0 ¥4 0,L, [6[, gl a_j

If £ is invariant under the transformations that aneegated by then we say thaf

is the generator of a local group of isometriethefFinslerian manifold. In order fdrto
be the generator of a local isometry group, iteisgssary and sufficient th&t = 0.

5. —Quotient manifold. The problem.— We consider a Finslerian manifold1
and suppose that it admits a connected one-parametap of global isometries that
leaves no point oY, invariant. The trajectories of the group will designated by;
Vh+1is therefore generated by the We further assume that:

a) Thezare homeomorphic to the real liReor the circleT;

b) One may find a differentiable manifol, of classC™* such that there exists a
differentiable homeomorphism of class from the rwddiV,.1to the topological product,
Vi Xz, under whiclez is mapped to the linear factor.

We say that the manifold, is the quotient manifoldof V,.1 by the equivalence
relation that the group defines. _

Consider a system of local coordinate} {, any Latin index = 1, 2, ..n). We may
define local coordinatex) in V.1 in the following manner: The given of) determines
a trajectoryz. In order to determine a point on that trajectevg choose the manifoid
= const. to which it belongs, since these manifewisbe the manifolds homeomorphic
to V, that defined by the homeomorphisin Let £ be the infinitesimal generator of the
group of isometries; since no point\4f.;1 is invariant,£ is # 0 at any point oVp+1. In
the preceding local coordinates, the trajectorieg will be the lines,x = const.; as a
result, the components éfwill be:

&=0, &z0,

and it will always be possiblé)(to modify the homeomorphism bf and the manifolds
X’ = const. in such a way thaf = 1. The systems of coordinate &) such that = 0,
& = 1 will be calledadaptedto the one-parameter group of isometries. Thedipate
changes will take us from an adapted system tchanoine of the form:

(5-1) X' =gt (x)), xT =X+ (x),

in which they are arbitrary functions of the').
In an adapted system of coordinates, formula (@k8)ously reduces to:

() Seel, seci4.
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XL=0,L.

From this, it results that the functiahis then expressed as a functig(x', ¥ , ),

which is homogenous and of first degree with respectdoxth Unless stated to the
contrary, we will use adapted coordinated in all of thiedahg sections.
We may then pose the followingroblem Is it possible to endow the quotient

manifold V,, with the structure of a Finslerian manifold by meansiatfions. in such a
way that the geodesics 4, which are the extremals of the integral:

Xy dx
5-2 L(X, X) du X=—
(5-2) [ £x% [ duj
correspond to the extremals of:

2y . dz
(5-3) j%L(z,a du [Z"duj

by projection ontd/,.
In the following sections, | will confine myset exclusively locatonsiderations.

6. —Determination of the function £ (*). — 1. Suppose we are given an extremal of

(5-2) with the parametric representatiqn), in whichu denotes an arbitrary parameter.
It is well-known that the differential system fdretextremals:

dx* _ .,
(6-1) 0w
in whichx? satisfies:
oL
admits the relative integral invariaf):(
oL ., ,
(6-3) W= Za: o dx“ .

The converse is truegnd may be verified directly in the following mamnSuppose
that the differential system (6-1) admits the he&tintegral invariant (6-3), or — what
would be equivalent — the absolute integral invaria

() Cf. A.LICHNEROWICZ and Y. THIRY, C.R. Acad. S@24(1947), 529.
(®) See E. CARTANLecons sur les invariants intégrawhap. XVIII andEspaces de FINSLERp. 8-
9.
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6[,

dw=

1( 0°C 0L
= Od¥ + d¥X [0 df
Z{ ”axﬂ (ax"a)é’ 00 %j }

The characteristic systemdd is obtained by annulling the coefficient of thentein
A dx? in the last expression of (6-4). That will give:

PL . L, Of _
Z{ax”axﬂdx *oxi0d X “axax df} 0

(6-4)

Namely, upon dividing bdu:

o (ac\d¥® o (oL 0 P =
(65) ;{axﬂ(ax”j du+a>€(6%j dLJ ;_ﬁ(_j -0

On account of the homogeneity &€ /dx" , (6-5) may be written:

doc_or_,
duox' ox
which proves the property.

On account of the homogeneity @f / 9x*, (6-5) may be written:

duax ax
which proves the property.

2. We return to the abbreviated notation and Hijeotheses of se®; in what
follows, | will assume that:

(6-6) 9,,L#0.

The differential system of the extremals of (5a29y therefore be characterized by
the fact that it admits the relative integral inaat:

W=0,LAXK+0,L dX.

Moreover, under the hypotheses we mage=0, and one will have the first
integral:
(6-7) 0.L=h.

0

When this relation is solved foe®, it will be locally equivalent to the relation:
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(6-8) 0 = g(x, %', h),

in which ¢ is a function that is homogenous and of first degrek' jrand depends om
essentially.

Consider the familyH;,) of extremals of (5-2) that correspond to a definiteieafh.
For this family, the last term abwill have the valuéh dX, and will defines a relative
invariant. It will result from this that this familyf @xtremals admits the relative integral
invariant:

(6-9) 0, Ldx:.
Now, from the homogeneity df:

X0.L+X0,L=L.

As a result, for any solution of (6-7) or (6-8), the qimr»'("akﬁ may be expressed as
a functionZ of the variablegx*,x',h )

(6-10) L(X5, %, h)y= L X, X,@(X, % Bl- B( % % )
and one will have:
0L=0L+0.L0.¢-hdp=0L.

Therefore, from (6-9), the projections of tl#&)(ontoV, are defined by a differential
system that admits the relative integral invariant:

@w=0,Ldx .

In other words, these projections are extremals oihtlegral:
Z I
(6-11) [Le¢ %, 0 du (x' :d_xj,
Z,

in whichh has the chosen value. We state:

THEOREM —For any functionZ(x*, X, h) that is homogenous and of degfewith
respect to the’x and is such thadt, L # 0, the extremals of the integréh-2) on Vi1
that correspond to the valdreof the first integral:

(6-7) d.L=h,

project onto Y along the extremals of the integf&l-11),in whichh has the same value,
andL is given by:
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(6-10) L(x*, X', h) = L[x*,x", @(x*, X' ,h)] —hg(x*, X', h),

in which ¢ denotes the function that is obtained by sol\{J) with respect tol.

7. —The inverse problem.— We call the correspondence that makes the function
L(x*, %, h) correspond to the functidr{x*,x',h that we just determineddescent

Conversely, if we are locally given a functiofx*,x',h oh V, that is homogenous

and of degree 1 with respect to #hethen we will propose to find out whether there
exists a functiorf (x*, X', h) that comes back to by descent.

1) If there exists a solutiod to this problem then it will be easy to determine it.
Indeed, upon differentiating (6-10), one will necessarily get

o _, 000 30,
oh oh dh
which will reduce to:
oL K el
— =—¢(X", X, h),
m o( )

for any solution to (6-7) or (6-8). The functighis therefore known wheneveér is
2

known, and since depends essentially dn will be non-zero. If one solves the

h2
relation:
x° =g(x*,x',hy,
with respect td then it will become:
(7-1) h=g(x*,x',x°),

in which ¢ is homogenous and of degree 0 with respegt’to, anjl depends essentially
on(x’). Therefore, from (6-10), the functiofi will necessarily be expressed in the
variables(x*, x', x° )by the relation:

(7-2) LXK, %,50)= UX, X0 (X, %, )]+ (% %K.

2) If one is given a functiob such thatd*L/oh* # 0 then consider the functiofi
that is defined by (7-2), in whicly is obtained by solving the relation:

(7-3) x° = _g_lr_](xk X', h)

with respect td. One will thus have:
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oL
X% = ——[x*, %", (x*, %', x%)].
ah[ W( )]
We apply the descent procedurelto One first obtains:

9,L s%[xk, X.plogy+Xog+y,

namely, from the preceding identity:
0.L=yY.

One deduces from this that the functithat is associated with is essentially:

oL

¢ = %

When we pass to the variab(@$, X', h , We will get the result:
L(x*,x", h) = L[x*, %", @ (x*, %", x°)] + X% (x*, X', x°)
from (7-2), in whichy/ is obtained by solving the equation:
x° = ot
oh
with respect tdn.

We shall call the correspondence that makes theifum€ that was defined by the

preceding theorem correspond to a functimanascent. We note two circumstances that
occur frequently when one wants to use the ascent procedure

a) One is interested only idifferent families of curvegs,) that depend on a
parameteh and may be defined as the extremals of a function:

L(x*,x", h).
These curves may also be considered as extremdis ffriction:
x(h)L(x,x',h),

in which x(h) is an arbitrary function, and the ascent procedure rélates to these
different functiond leads naturally to different functions
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b) It may also be the case that one is interested ibnthe extremals &) of a
function:

Lo (X, %)

that does not depend on any paramete®ne may then introduce a functitx*,x',h )
such that for a definite valde=hy:

L(x*, %', h) = L, (x*,x"),

and apply the ascent procedurelto The curves that are considered will then be
interpreted as projections of the extremals that correspm the valudn of the function

L. Naturally, there will be a great degree of arbitesgiwhen the ascent procedure is

applied in these cases.

A case that is particularly interesting — in Mechanasswell as in relativity — is the
one in which the ascent procedure allows us to pass thengeodesics of a Finslerian
metric to those of a Riemannian metric, since suchtaane much easier to work with.
Conversely, we shall therefore apply the descent proegdua Riemannian metric in
order to characterize the problems that may be encodnidttethis procedure.

8. —Case in which £ defines a Riemannian metric. First case-—- Consider the
function £ that is defined by the relation:

L=y, X % A, u=0,1,..n),

in which they;, are the components of a symmetric tensovef that does not depend
upon the variable in adapted coordinates. The descent procedure will leadao
different results, depending on whethgyis zero or non- zero.

We first suppose thagso is not annulled in the domain in questioli. 5o > 0 then we
will restrict ourselves to values of the parametemfbich:

h? < min yo
for anyx that belongs to that domain.
We suppose that the fordf is non-degenerateso g = det(@s,) # O] — but we do not

assume that it is positive-definite. At each pajnve confine ourselves only to values of
x for which the right-hand side is positive. It is wkHown that it suffices that a
geodesic of the Riemannian manifold should render this hghtt side positive at one
point in order for it that to be true all along the gearl€s.

Having posed that, the descent procedure will lead us totfemquation:

(8-1) 10,07 = Yo X0+ o, X = hC G,j=1,2 ...0

() For example, see |, sekb.
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and eliminatex between this equation and:
(8-2) L=C- h°.

It is possible to next expregsas a function of the variableg,x',h with the aid of

(8-1). Upon decomposing? into squares, beginning with the directrix variatlewe
will obtain:

(8-3) =2 10,07 + 07,
Yoo
with
(8-4) q)zzgij)-(i)-(j, gij:Mj_ y0iyoj .
Yoo

If 160 Z O then since the fornf? is non-degenerate, the forh® will be non-

degenerate, argl= det@;) # 0. Conversely, ifoo# 0 andg # O then the form£? will be
non-degenerate. One deduces from (8-1) and (8aB) t

._h 2
L=—L+D7,
Yoo

and®? will be positive for the values of the variablésttwe envisioned. It results from
this that:

, h2
(8-5) £ -—= q) H
yOO

which gives ug as a function of the desired variables.
One then obtaing® as a function of and the(x',x' )from (8-1):

(8-6) 0= p SoX
yOO yOO

one then deduces from this and (8-2) that:

2 o
L =[1—h—jc+h—”°ix ,
Yoo Yoo
and from (8-5), that will give:

2 ol
(8-7) L:\/(l—h—jg”)'d'xi + WX

00 yOO
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Conversely, any function of the type (8-7) (wjta # O, g = det(;) # 0) corresponds
a non-degenerate Riemannian metric of the first casesdsnt. Conforming to remaloi

of sec.7, we note thal presents itself, relative to the variablés asthe sum of the
square root of a non-degenerate quadratic form anthear form. Only functiond., of
this type may lead to Riemannian metrics of the firs¢ tgsascent.

9. —Case in whichL defines a Riemannian metric. Second case.We now put
ourselves in the situation wheypg = 0. One then has:

(9-1) L2=2)X K +p R

We assume thay, X' # 0, h# 0. The descent procedure leads us to elimifated x°
from the relations (9-1):

(9-2) Vo X =hL,
and:
(9-3) L=C- h°.
One infers from (9-2) that:
h

If one refers to (9-1) then this will become:

<iy 2
(inl-l): ) :2y0IXIXJ +J/|] XIXJ
One deduces from this that:

-0 :J/Oi)'(i _ijixj
2h? 2y X

Therefore, the functioh will be given by:

:VOi)‘(i _VOi)'(i +hmixix_j ’
h 2h )5 X'

namely:
L:y0le+hJ/|]XIXJ

9-4 -
(3-4) 2h 2)u X

Conversely, any function of the type (9-4) cormags to a Riemannian metric of the
second case by ascent. Conforming to rerbaidf sec.7, we note that presents itself
asthe quotient of a quadratic form by a linear fowith respect to the variablgs. Only
functions of this type may lead to Riemannian nostaf the second case by ascent.
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10. — Examples from classical dynamics. Hamilton’s principé. — In order to
familiarize ourselves with these procedures and resméisshall study several examples
from classical dynamics. We will then confirm thhey indeed reduce to well-known
procedures in some interesting particular cases.

Consider a dynamical system with bilateral perfeclommmic constraints and
degrees of freedom. Suppose, moreover, that this systeomservative. The possible
configurations of this system will depend on time, in gdnexad the differentiable
manifold that we agree to introduce in the general cadlebe the configuration
spacetimeof the systentk,.;, which will be the set of possible configurations atos
instants.

For a specific choice of axes, the configuration ofsystem may be defined locally
at each instant by meansroparameters| (i, any Latin index = 1, 2, ..r). Indeed, the
set of ¢f) and timet define a local system of coordinates for the configomagpacetime
of the systent, . . _

One usually determines the motion of the system byirsgés determine the' as a

function of timet. In terms of Lagrange variablé¢q',q',t , the differential equations of
motion can be written:

dd _ g(a_Aj_a_Azo

dt dt\adq' ) oqg'

in which A denotes the Lagrangiai ¢ U) of the system, with the classical notations.
The differential equations of motion may be consideceddfine the extremals of the
Hamiltonian action:

W :f/\(qi 4,¢)dt,

and they may also be characterized by the existeric€artan’s relative integral
invariant:
oN | |
w= ) —dqg - Hdt,
2oq ™

in whichH designates the Hamiltoniam,(— To — U) of the system.

This type of procedure presents the inconveniehc®t being invariant with respect
to the changes of local coordinates that are ptxdhtty mechanics on the configuration
spacetime. As far as the parametgi@ae concerned, one must transform them by:

(10-1) q'=1"(q’,t)

As far as time- which presents an intrinsic character in classmoathanics- is
concerned one has only:
(10-2) t'=At+u,

in which A andy are constantsi(z 0).
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The preceding technique is not invariant with respect ® dhanges of local
coordinates, and as a result, it does not recommeeld tits theoretical studies. It is
preferable to introduceas essentially the ¢ 1) coordinate of;.1:

and to define the motion by looking for a parametric repregiong®(u) (a, any Greek
index =1, 2, ...r + 1) as a function of an arbitrary parameterThe ¢°) will therefore
be a system of local coordinatesEn;, and theq” will be the components of a tangent
vector relative to the natural frame of these coordmatf:

dg” _ .4
du -

(10-3)

then one will have:

g _d9 _ ¢
g dt g™’

Upon adopting the variable as the integration variable in the Hamiltonian action,
one will obtain:

(10-4) W= [L(a%.¢)du,

in which we have introduced the function:

(10-5) L(a®.q%) =/\(qi 3 q?ﬂjqrﬂ,

which is homogenous and of degree 1 with respect”to Upon differentiating (10-5),
one will immediately have:

oL _ aA

oL
aqi aq:i ! aqr+l

N\ )
=A= T =,

and the Cartan integral invariant will be none othan:

N
w= ;:q” dg”.

It is easy to specifl, by starting withU and the expression for thes viva

2T :a-ijq'iq'j +2hbq" + 2T,
in which:
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a = detg;) # 0.
It becomes:

A[qhq’“,q‘?;j d“=%6“q‘ilq sha+(T+ V) b

One deduces from this that:

8 d & +2bg q"+2(T+ U)('h”)z_

10-6 L(a®, ¢) =
(10-6) (@, q") 24"

Therefore, the trajectories of our dynamical systewonfiguration spacetime will be
defined as intrinsically extremals of the integral (104, .1, in which the functior. is
given by (10-5) or (10-6). In this manner, the formalisnil e invariant under the
changes of local coordinates on configuration spacet{@@®.1) and (10-2), that are
permitted by mechanics.

11. —The ascent from Hamilton’s principle to Eisenhart'sds. — As a function of
(q“), L is the quotient of a quadratic form with a linear forhhis therefore possible to
interpret the trajectories of our dynamical systenthasprojections of certain geodesics
of an ¢+2)-dimensional Riemannian manifold..,, for which o = 0 in adapted
coordinates. Sinck is devoid of any parameter that would play the rolé,offle must
identify this function with the value that the functi@®-4) becomes for a definite value
of the parameteh; for example, 1. We must write the function (9-4) byanw of the
(r+1) coordinatesg”. From the looks of (10-6), we limit ourselves to denonoirsatvith
a linear formyOrqur+l that consists of only one term. We will then get:

Vapd70” + (v, 0"

o F+1

250

L(q?,q" ) =

When we identify this expression with (10-6), wi get:

& = yi" b =D ,
y0r+l y0r+l
Voia T Vo)’
2(TO + U) — r+lr+1 Or+1 ]

or+1

One may choose the function of e y — = ¢, of theq” arbitrarily. One will then

or+l
have:
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Wi = ¢ ai, yiﬁl:l/’bi’ Vmﬁlzzw(ToJfU)—l/’,
J'{)O:J'éizol yom_:l/l'

One will deduce from this that faf .1 the ascent envisioned leads to the following

ds:

oy | #ZET 800

=¢{a dddd +2 b dg dq”+2( J+ Y-¢i( d§)°+2 dy b

This d$’ generalizes a< that was obtained by a direct study by EisenHrt One
will obtain Eisenhart'sls’ by starting withy = const. =, which will lead to:

(11-2) ds” =22(d, d, d§)

=k g dd dd +2 p do dg"+2( J+ Y( d§)*+2 dy bep,
in which one has set:
(11-3) Up=U- k?

The geodesics of (11-2) coincide with those of:
(11-4) ds? =a,dg'dg’ +2b.dg'dg™ +2(T, +U,)(dq™™)? + 2dq°dq ™,

which is Eisenhart'sls. One immediately verifies that the determinanthef quadratic
form that appears in the right-hand side of (11s4)othing buta # 0; as a result, thigs’
will be non-degenerate. It is not obviously pastdefinite.

We propose to evaluate the variation of the patamw® along a trajectory of the
motion in the configuration spacetime. First df &le equationd,£L=h = 1 may be
written:

10.0=CL
here.

We suppose that the trajectory envisioned is dened to be the projection of a
geodesic along which this? of (11-2) is non- zero. One will explicitly obtai

IKdd ™ =ds
namely:
(11-5) ds’ = k*dt.

Along the geodesic envisioned, i that is defined by (11-2) is certainly positive.
The expression fods’ that is given by (11-2) may be recast in the form:

() EISENHART, Ann. of Math.30 (1939), 591.
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ds? dq°
11-6 == =2k} A, +——
(11-8) dt’ ( toodt j
in which one has set:
2
AN=T+U=L- k—.
2

One infers from (11-5) and (11-6) that:

0 2
A9 _K A =K -A.
dt 2

One deduces from this that:
(11-7) P=Kt+C- I;Adt .

o’ is therefore related to the Hamiltonian actioredlly. Suppose we choose the
constants’ andC; one may evaluate the functigf(t) along any trajectory of the motion
in the configuration manifold by means of (11-Mhe expressions far’(t) andd(t) that
correspond to the motion will provide a parametejresentation of a geodesic of (11-2)
(or (11-4, for that matter), along which tle considered is positive, as a functiort of

r+1

g ~. We state:

THEOREM - The trajectories of a conservative holonomic dymamsystem with
bilateral perfect constraints on a configurationasptime E;.; may be obtained as
follows: if one is given two constarksand C then consider the topological produét,

= E+1 x R, which is endowed with Eisenhart’'s Riemannian mefric4),in which® is

the abscissa of a point &. These trajectories will be the projections ole; of the

geodesics of that Riemannian manifold along wiidshis positive and satisfies:
ds? =k?dt?.

Conversely, if one associates each point of sutthjectory with that point oV ., that
projects onto it and is defined l§§1-7) then that point will describe a geodesic that
satisfies the preceding conditions.

This theorem permits us to recover the Hamiltaceba theory as a simple
consequence of some well-known facts of Riemang&osmetry. It also permits us to
treat questions of stability in the Riemannian eahtoy means of the technique of the
“geodesic chart.”

12. — The descent from Hamilton’s principle to de Maupertuiss principle. —
Suppose that the Finslerian manifédd; admits a one-parameter group of isometfiles
the sense of se&) such that for an adapted coordinate system, teifolds that are
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defined by the homeomorphidoy of that section may be defined to be the manifokds
constant.

Let E; be the quotient manifold. In the sequel, we shall cteitonfiguration space
of the system. Letq) (i, any Latin index = 1, 2, ..r) be a system of local coordinates
on E; . From the hypotheses made, the sgttf will define a system of adapted
coordinates onE;.;; because of the restrictions on time, the adaptedersgstof
coordinates that answer the question are defined up @angelof coordinates here by:

q' =¢" (@), t=t+u,

in which the¢ are arbitrary functions and is a constant. In such a system of adapted
coordinates, one will have the isometry property:

oL
12-1 —=0.
(12-1) 3t

Now, upon differentiating (10-5), one will get:

al— T +1 a/\ i ri
— = —(q t, .
ot q ot (a'.t,q")

One will deduce from this that (12-1) is equivalent to:

LAY
ot

The Lagrangiam\ does not depend on time explicitly. We say that veevaorking
underthe Painlevé hypothesis.

Under these hypotheses, it is possible to apply the descmrgdure with respect to
the variablet = g** to the functionA that is defined by (10-6). One obtains a first
integral:

o __ a9q

12-2 =
( ) aqr+l 2(qr+l)

2 +(T0+U):h’

which is nothing but the well-known first integral of eger

H=T,-To=-h=E.
One infers from this that:
a qq

(12-3) @) :m-
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Since the formg, g ¢ is positive-definite, one must restrict oneself ttuga ofh for

which the denominator is positive. One must thereforeimdte g between (12-3)
and the relation:

L;=L- hqr+l,
with:
i
L= SR A (T 6"

From (12-3), this gives:
L=(T+U-hd"+hd+(T+ U-h g =2(T+ U- h'g + b'c

Hence:

(12-4) L=yM+U-hgdd+ba.

We state:

THE PRINCIPLE OF De MAUPERTUIS - In the case where the dynamical
system envisioned satisfies the Painlevé hypothesis, the trageadbrthe motion in the
configuration manifold that correspond to the total energy E are projected beto t
configuration manifold Ealong extremals of the Maupertuisian action integral:

j:[\/Z(TO+U+E) g dddd + p dd,

in whichz, andz are two points oE,. Conversely, if one associates each point of such
an extremal of Ewith the point ofE ., that projects onto it and moves according to the
law (12-3) h = - E) then that point will describe a motion in the cgufiation spacetime
that corresponds to the energy.

In the case wherb = 0, the Mauperuisian action given &ngives a Riemannian
metric for each value of the energy

13. —The ascent from the principle of de Maupertuis to a Rimannian ds. — The
functionL; that defines the Maupertuisian action presengdf ies not only a function of
thed', but also as the sum of the square roots of argtiadorm and a linear form. For a
fixed value ofE, it is therefore possible to interpret the trajeiets of our dynamical
system in the configuration manifold as the pragawt ontoE, of geodesics of am ¢ 1)-
dimensional Riemannian manifold.; for which jso # O in adapted coordinates. It is not
E that will play the role of this parameter, becaukat would only lead back to
Hamilton’s principle. Sinc& has a fixed value, we will identify; with the function that
(8-6) reduces to for a definite value of the comista- for example, 1.

Therefore, consider the function:
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(13-1) I-l(qi’qi11):\/ a; dd+ bq’

in which:
(13-2) aj=2To+U+E)g.
On the other hand, from (8-6):

Ll(q‘,d,h)=J[1—h—j g dd+ o9

00 00

By identification, one obtains:

2
aij = [1—h_j gij ) :ﬁ_
Yoo Yoo

It is therefore possible to choose the functn# 0 arbitrarily, and one will have,
conversely, that:

Yo
Yoo -1

¥ = yobi, O = aj

and as a result:

, = yOO L+ bb
K yoo_lyooo(u i0)-

Upon substituting the values (13-2) fa; one will then obtains the Riemannian metric:

d§=mo{{%qj +h q} dddd+2 b dy dip ( o‘bz}

by ascent, namely:

ds’ = yo {Z(TL:LE)% dgdd +(dd+ b d‘c)z}

Yoo
In order to have d< that is as simple as possible, we may tgke 2. We will thus
Q(Jf;.-B) ds=2[2 Mo +U +E)q dddd + (do’ +h dd)*] = £(d, dd, ddf),
whose geodesics will coincide with those of:

(13-4) d$ =2 To+U+E)adgdg’ + (do +1 dd)’.

We propose to evaluate the variation of the paramg along a trajectory in the
configuration manifold. From (13-3), the equatigyC =h =1 may always be written:
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(13-5) 2 @’ +1p dd) =ds
Now, again from (13-3):

ds’

0 {\2
g7 AU+ E)2T+ o(dd’ + hdd)”

dt*

One deduces from this relation and (13-5) (wité ¢hassical mechanical notations)
that:

(dg® +bdq')” _
— 2(T, +U + E) [2T,.
Now, from the Painlevé integral:

2T, = 2(To +U+ E)
We therefore obtain:

0
M =2 +U+E)=(L+ T+ U+ B=A-T+ §
namely:
0 i
L N
dit dt

One deduces from this by integration that:
0_ [ e i
(13-6) o = jo/\dt Iobidq +Et+C.

We suppose that the energy constaand the constar@ have been chosen; one may
evaluateq’(t) by means of (13-6) along any trajectory in tonfiguration space that
corresponds a motion with enerBy The expressions faf(t) andq'(t) that correspond
to the motion provide a parametric representatioa geodesic of (13-3) (or (13-4), for
that matter). We state, in a form that related 84):

THEOREM - Under the Painlevé hypothesis, the trajectoriea diynamical system
in a configuration space tEnay be obtained as follows: If the motion that esponds to
an energ)E and a constan€ has been chosen then consider the topological mtoduy

= E; x R endowed with the Riemannian mettk3-4), in whichq’ is the abscissa of a

point of R. These trajectories are the projections ontp dE the geodesics of the
Riemannian manifold along which:

2

dg’ +bdg = 7ds.



17C The Jordan-Thiry theory

Conversely, if one associates each point of such a trajectory thatspomds to the
energyE with the point of \; that projects onto it and is defined (1/3-6) then that
point will describe a geodesic that satisfies the preceding conditions.

Despite the extent of the geometric research igt@muhics, thels in (13-4) has not
been brought to our attention. It may be put to ushentheory of dynamical systems
that satisfy the Painlevé hypothesis.

[ll. —APPLICATION TO THE RELATIVISTIC TRAJECTORIES
OF CHARGED PARTICLES.

THE PRIMARY POSTULATES OF THE UNITARY THEORY.

14. — Theds of Kaluza-Klein. — We leave behind the examples that are implied by
classical dynamics and return to the differential systd the trajectories of charged
particles in spacetim¥, . We have seen that there exists a global vector-miten
whose trajectories may be defined to be the time-odee&remals of the integral that is
associated with the function:

(14-1) f(x,%)=(g % X)? + kg X (i, j, any Latin index = 1,2, 3, 4),

in whichk denotes the charge-to-mass ratio:

e
m
of the particle.

As a function ok’ , f takes the form of the sum of the square root qi@ratic form
and a linear form. It is therefore possible t@iptet the trajectories of charged particles
in V4 as the projections of geodesics of a five-dimaraidRiemannian manifol¥s for
which g is # 0 in adapted coordinates. When we started theedéprocess with the
function:

(14-2) L2 =y, X %P (a, B, any Greek index = 0, 1, 2, 3),
we saw that the geodesics that satisfy the fitegial that were defined by:

10.02=hL
project onto the extremals of:

(14-3) L(xX, %, h)= \/ (1—h—2j g XX+ B

yOO yOO
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in which:
_ Viooj
Yoo

g; =V

If we compare formulas (14-1) and (14-2) then the form quiadi@mg, x'x’ will
be multiplied by a factor:

which depends upon both the paramétand thex, in general, by the intermediary of
o The same thing is not true forWe may avoid this difficulty by choosing:

(14-4) Joo = constant (the Klein hypothesis),

which is a constant that we will, moreover, be ledagsume to b@&egativein what
follows. We then couplk andh by the relation:

(14-5) k=—P"_
-

yOO

in which £ is a constant that we will allow to modify the nuroal value of o if the
need arises. If that is true then we will see thatdéxtremals off are also the extremals
of:

(14-6) EBLITR )=\/ [1—'1—2} g XX + 154 %
yOO yOO

If we identify the function (14-6) with(x',x',h }hen we will see that the symim
denotes the same quantities, and jhat 5 )o@ . We will therefore have:

J6o = const. < 0 Wi =5 Wodi, ¥i=0i + 5 o b 4y,
and the Riemannian metric that we envision is written:
(14-7) dd? = £%(X, dX, dX’) = g dX dX + jeo(dX° + B ¢ dX)>.

The quadratic form in the last expression is reduciblentalgebraic sum of 5
squares, one of which — viz., the one that corresponds tiadbx, 4 — is positive, and the
others of which are negative; the metde? will therefore be defined by a non-
degenerate form of the hyperbolic normal type.
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We propose to evaluate the variationddélong the trajectory of a charged particle in
V,. The necessary calculations for a geodesi€dhat corresponds to the valhéhave

been done beforand in the general case whegg may vary, moreoverFrom (8-5), one
has:

2
(14-8) L [1—“—} =g, X ¥,
00

and, from (8-6):
h

=Ny Yy N ~ yim—ﬁﬂ %,
00

yOO yOO

and if we introducé by way of (14-5) then we will get:

(14-9) =1 kds—p4.

Yoo

One deduces by integration that:
1 u k u
(14-10) xX°==| —ds-8| ¢+C,
B 'L" Yoo 'L"

in which u designates an arbitrary parameter. Suppose thatheose the consta@t
one evaluates the functiofiu) all along the trajectory of the charged particle/, by
means of (14-10). The expressionsx4t) andx(u) that correspond to that movement
provide a parametric representation for a geodefi(l4-7); since)o is negative, it
results from (14-8) that if the trajectory envissdnis oriented in time and? is

essentially positive along the geodesic envisicheddd® will be positive f). We state:

THEOREM - The trajectories of a charged particle in the sgane V, of general
relativity may be obtained as the follows: Giveooastant C consider a manifold that

is homeomorphic to a topological product ¥ R and endowed with the Riemannian

metric (14-7),and in whichy is a constant (which we assume to be negative)xaisd
the abscissa of a point &. The trajectories considered are the projectiong@bdesics

of this Riemannian manifold along whick?ds positive ontd/, , and:

() The preceding argument showsalong the way- a result that we did not insist upon in I: If an
extremal of (14-1) is time-oriented€ > 0) at a point iV, then the same thing will be true all along this
extremal. Indeed, for constants < 0 andC, the extremal will be the projection of a well-defingeodesic
in V5. From (14-8), if the extremal is time-oriented at a pthieh £ will be positive at that point, and the

geodesic inVs will give a positive value tas at the corresponding point; hence, at every point.a As
result, from (14-7)ds > 0 at every point of the extremal.



The trajectories of a charged particle and the introducfianfive-dimensional space 17¢

=1 Kds—Bg.
3 s—-B¢

Voo

Conversely, if one associates each point of the trajectory of a chpaggéde with
ratio e/m = kwith the point ofVs that projects onto it and is defined (4-10)then that
point will describes a geodesic of Mat satisfies the preceding conditions.

15. —The postulates of a unitary theory.— 1. The preceding reasoning and results
lead us to introduce a five-dimensional Riemanmranifold Vs that is endowed with a
metric of hyperbolic normal type and to supposé ths manifold admits a connected,
one-parameter group of isometries (in the senseaf5) whose trajectories are oriented
in such a way thald? is negative along any one of them. These hypetheanslate into
what is called theylindricality hypothesis.The spacetim¥,; must be identified with the
guotient manifold oWs by the equivalence relation that the group defines

Conforming to the paper of Oskar Klein, in the rsguof sec.14 we supposed,
moreover, that:

Joo = constant.

What is the intrinsic significance of this hypatlseas far as the isometry group is
concerned? One immediately sees that it exprabeeslea that thérajectories of the
isometry group are the geodesics ef Vhdeed, in order for the differential systentud
geodesics oYs, which may be written:

d?x* ire dx* dx* _
do? M do do

. i L " . X2
to admit the solutiox' = const. it is necessary and sufficient thgt = O(smce(;— IS
o

constant along these lines). Now:
r&) = yaﬂ [00, 8] = _%yaﬂaﬂyoo .
One deduces from this that it is necessary arfeccsut that:

05V =0;
i.e., thatypo = const. orVs.

One sees that the two hypotheses we made —hazcylindricality postulate and the
hypothesis thajso = const. — are completely geometrically distin€he first hypothesis
was suggested to us by the form itself of the mmbbf the calculus of variations that we
solved and the need to obtain a geometric struthaeis independent of the factior=
e/m The second one, which was introduced in s&cmerely constitutes the simplest
means of remaining in plain accord with the pransil theory for the longest possible
time.
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2. In this provisional theory, in which we assume thestence of a global
electromagnetic vector-potentigl, the potentials of the fields are 14 in number, namely,
10 components for the tensor potential of gravitaignand 4 components for the
electromagnetic vector-potenti@l. On the other hand, there exist 14 field equations for
these potentials, 10 of which are provided by the Einsteiniegsand 4 more that come
from the Maxwell-Lorentz equations. The left-hand siddsthese equations are,
moreover, coupled by “conditions* or “conservation identities> which we have
studied in detail®) and which number five, here.

In a unitary theory that is based on a penta-dimensioaalfold, we are tempted to
introduce the natural extension of the Einstein equationg as the field equations;
these equations involve the symmetric tenSgy, and we must compare them to the
equations of the provisional theory. However, it is coraenio observe that we thus
obtain 15 field equations, which is the number of indepand®mponents of a
symmetric tensor oN’s, and not exactly 14, since the left-hand sides of thgsatens
will be, moreover, coupled by 5 conservation identitie &are provided by the Bianchi
identities. There is therefore a difference of urlitgtween the numbers of field
equations. We are therefore led to abandon the hypottiegigso = constant and
introduce 15 potentials for our unitary fietdviz., the 15 components of the tenggs —
and to compare the equations that they suggest at an ingthnequations of the
provisional theory of electromagnetism. Of course, mast study the physical
interpretation of the supplementary potential that soduced and see if such an
interpretation is compatible with experiment.

A difficulty presents itself when we reject the hypettis thats, = constant, and it is
a difficulty that will not be completely resolved irhat follows. It concerns the problem
of specifying the relativistic trajectories of charged ipka$ that have served as the basis
for our study up till now.

If the manifold Vs that satisfies the cylindricality postulate is givend an, is
identified with the quotient manifold, then we will be teegto obtain the trajectories of
charged particles by proceeding in the following mann&ke consider the geodesics of
Vs that give d” a positive value and satisfy the first integral that translates iheo t
relation:

10,02 =hC,

in which h is a definite constant. The projection of such a geodesid/pmiost define
the spatio-temporal trajectory of a charged particle. what follows, we shall prove that
this is essentially true as a consequence of the fieldtiegeaand the matching
conditions that we adopted.

Such a projection is an extremal VM of the integral that is associated with the
function:

L(x‘,X",h):\/{ jg]xx+hy—b< \/[ jgxx+ B
yOO yOO

so if we set:

() Seel, secl3 14, 15 and21, 22, 23, for example.
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then it will be an extremal of the integral thaassociated with the function:

(15-2) %1/ g, XX +¢ X.

One notes thdt is constant along the trajectory envisioned in (15-1), Hattygo may
vary. Therefore, (15-2) is not rigorously equivalent tmm the standpoint of extremals
in the general case. In fact, we confirm thgs varies very slightly; under these
conditions, if the ratik = e / mmust be considered to be variable for a specific partic
then we will confirm that this theoretical variatios very small in practice and
inaccessible to experiment or observation.

If the trajectories of a charged particle are thus defihen it will result from the
manner by which we carried out the calculations thastnificance of the coordinax®
is always given by the formula:

=1 —ds—ju $+C,

B

in whichk / 60 must be considered to be variable.

The theory thus-described will be satisfied to élkeent that the variations that were
introduced are sufficiently small for a genericrgoand our equations approach those of
the provisional theory for very weak variationsyed. Finally, we confirm that if one
starts with the field equations then one may estalthe “principle” itself for the
geodesics of charged particles that we just stattealhy point, the situation will therefore
be analogous that of general relativity in the pugeavitational case.



CHAPTER Il

THE FIELD EQUATIONS OF
THE JORDAN-THIRY THEORY

I. — THE RIEMANNIAN MANIFOLD Vs AND SPACETIME

16. —The Riemannian manifold Vs . — In this chapter, we propose to specify the
general principles of the Jordan-Thiry theory, as theysaiggested by the variational
problems that relate to the motion of charged partidias was studied in detail in the
first chapter.

a) The primitive element in the Jordan-Thiry theorgédined by a five-dimensional
differentiable manifold that satisfies the same d#feiability hypotheses as the
spacetime manifold of general relativit}):(In the intersection of the domains of two
admissible coordinate systems, the coordinates ofra paf Vs in one of the systems
must be 4-times differentiable functions with non-zexcobian of the coordinatesfn
the other system, such that the first and second dieasaare continuous, and the third
and fourth derivatives may present discontinuities efHladamard type.

We suppose that a Riemannian metisg which iseverywhere of hyperbolic normal
type, is defined on this manifold. The local expression fogs metric in a system of
admissible coordinates is:

(16-1) dd? = yap(x') dXd¥® (a, B all Greek indices = 0,1, 2, 3, 4).

The fundamental tensggg will determine the elementary unitary phenomenon, i.e
the motion of a charged material particle. Its companant callegpotentialsfor the
system of coordinates envisioned. We suppose that thesrt@amits components of
classC' onVs, and that the derivativésy,,; are functions of class piecewi€a-

The hypotheses we made on the type of metric amausts/ing thatld® may be put
into the form:

3
(16-2) do? = (w*)? =) (w*)? (A, any Latin capital = 0, 1, 2, 3)
A=0

at each point o¥/s, in which the«f are a linearly independent system of local Pfaff
forms. The framex( e;) that is associated with the dual basis is cadledonormalin
Vs.
One has:
(16-3) dx = ey,

() Seel, secl and2.
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and the scalar products of the frame vectors are sath th
(16-4) €,63=0 for a# es =-1; e =1

b) We suppose, moreover, that the Riemannian manNgldadmits a global,
connected, one-parameter group of isometriegsoffhose trajectorieg are oriented in
such a way thatld® < 0 and that leaves no point#f invariant, and the family of these
trajectories satisfy the following hypotheses:

a) The trajectories are homeomorphic to a cifgle

b) One may find a four-dimensional, differentiable maldifV,, which satisfies the
same differentiability hypotheses a¥s, such that there exists differentiable
homeomorphism of clagd? on the manifoldvs onto the topological produst, x T, in
which thez applies to the circular factor. This homeomorphisnmigreover, supposed
to be piecewise-continuous up to order 4.

We may naturally identifi’, with the space whose poirgsire trajectories. We have
called V4 the quotient manifoldof Vs by the equivalence relation that the group of
isometries defines.

We have seen that there consequently exist local cotedimaVs that are called
adaptedto the group and enjoy the following propertis (

1. TheX) (i, any lowercase Latin index = 1, 2, 3, 4) are an arbitrgstem of local
coordinates ofVs. The manifolds® = const. are globally-defined manifolds\#s and
are homeomorphic tv,. The homeomorphism di) may be assumed to apply to the
mlanifoldsx0 = const. on the manifolds that are homeomorphiéto the product, x
T.

2. Relative to the adapted coordinates, the potentglsaire independent of the
variablex’. The vector, which is the infinitesimal generator of the isomegrgup,
admits the contravariant components:

(16-5) &=0, £=1
The square of this vector is:
&= jpo < 0.
We set:
(16-6) =4 1&81>0 (o= - &).

3. These coordinates are defined, up to a chainggoodinates, by:

(16-7) X' =g (x) X% =x+y(x})),

() Seel, sect4and62 Il, sec.5.



17¢ The Jordan-Thiry theory

in which ¢ denotes the restriction to a local chart of an antyitfanction W(x) that is
defined onv..

In all of what follows, we will introduce onladaptedlocal coordinates. The
manifoldsx’ = const. of such a system of coordinates are calesktttionsof Vs that are
associated with the system. They are preserved byatite&fdrmation:

(16-8) X' =g (x)), X% =x°.
We call the change of adapted coordinates:
(16-9) X" =x!, X% =x+y(x})

a change of the system of section, change of gauge.

Let W, be a specific section &fs. It is a manifold that is homeomorphic Vg for
which the ) define local coordinates. On ea®, the metric ofV,, along with its
group of isometries, defines tensors; it is therefowe that they; define a symmetric
tensor, they;, a covariant vector, angso or & a scalar, since these quantities will
transform according to the tensorial law under thadformation (16-8).

Among these tensors, certain ones (of which, th&rscgo or & are the simplest
examples) must be applied to the same tensWj of all of the maps that are induced by
the homeomorphisms of the sections of the differestiesys ontd/,. The image tensors
are said to bantrinsically-definedon the quotient manifolY,. In order for a tensor of
W, to generate an intrinsically-defined tensor\anit is necessary and sufficient that it
must be invariant under a change of gauge (16-9).

17. —SpacetimeV, and its sections— We associate each poinbf a neighborhood
on Vs with an orthonormal frame whose first vecwris a tangent vector at to the
trajectory z(x) that passes through and has square 1. Such a frame will be called
adapted. Relative to the adapted frame, the metric is expdessd the aid of local Pfaff
forms &, ¢, where the are zero along the trajectories:

(17.1) dd? = - (w°? + d<,

in which:

(17-2) o = —%(y00 dx’ + y, dt)

and:

(17-3) d2 = (') - (") - (@92 - () = [ yi]. —Mj dx d¥ .

It results from this that the quadratic fodsf determines a Riemannian metric \én
that is of hyperbolic normal type. The quantities:
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_ Voo
Yoo

(17-4) 9i =

are the components of an intrinsically-defined tensovonThe associated contravariant
tensor iy = ) .

In what follows, we will always assume that the geiatimanifoldV, and the section
W, are endowed with the structure of a Riemannian manif@itis defined byls’ (17-
3).

18. —The electromagnetic field tensor— In Vs, we consider the vectaf, and the
vectorg@, , which is collinear to it and is defined by:

(18-1) Boy=-22=Yo B = 1),

in which S denotes a numerical constant whose value we shatiatdtly fix. The ¢
define a covariant vector field oW, and, up to a change of gauge, these quantities
transform according to the formula:

(18-2) Be =p¢ +oy.
The rotatiorf,, of ¢, is such that:
(18-3) Foa= 0,0, =0,$,=0,

and, from (18-2), th&;; are invariant under change of gauge, so they intringidafine
a tensor on ¥ The vanishing of this tensor says that the trajeztafx) are orthogonal
trajectories to the local sections.

In summation, we find an intrinsically-defined scajaa metric of hyperbolic normal
type: o
(18'4) d52 = Gij dx d)é,

and an antisymmetric tensbj on the manifold/4. Other than these elements, a vector
field ¢ is defined on eacW, (which is canonically homeomorphic Q) such that one
one has:

(18-5) Gi=H-B ot =y+B°Edg, Fij=0,¢;-0,¢.

We are therefore led to identify the quotient manifdidendowed with the metric
(18-4) withthe spacetime of general relativigo the tensog; becomes thgravitational
tensor. The non-canonical reciprocal image \dnof the covariant vector fielg; that is
associated with a section & may be interpreted as thelectromagnetic vector-
potential under a change of the system of sections, this insafgeind to be transformed
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according to (18-2), which is none other than a changgaode in the initial sensé)(
By abuse of language, we say that the vegtas the vector-potential. The tendey,
which is intrinsically-defined oW,4, must then be interpreted as gtectromagnetic field.

II. — THE FIELD EQUATIONS IN Vs

19. — The system of field equations— Having specified the geometrical context of
our theory, the next step for us to make consists aisihg a system of “field equations”
- i.e., a tensorial system of partial differentigliations that refer to the potentigdg —
and to relate these potentials to the mass and chatgiuwtions in spacetime.

The most natural idea consists of formally generaizihe Einstein equations of
general relativity, and to set:

(19-1) Sop =04,

in which S,z and©,z are two symmetric tensors. The ten€gp must describe, at best,
the state of the distribution of masses and chargéseapoints ofVs (interior, unitary
case), so that in the regions \&f that do not contain any such distribution, it must be
identically zero (exterior, unitary case). Natural®.z is zero in the region that is
envisioned when one finds oneself in the presence ofdtgji@nal and electromagnetic
field, but in the absence of masses and charges; thadefine an essential difference
with the energy-momentum tensor of classical gemetativity, which is non-zero in the
presence of an electromagnetic field. It is the puretr@magnetic field schema of
general relativity that corresponds to the exterior,anpitase here. We shall return to
the choice of this right-hand teng®gz in a later part of this chapter.

As for the tensorS,s that depends only upon the structure of the Riemannian
manifold Vs, it is natural to restrict it with the same corawlis as in general relativity.

1. The componentS,z do not depend on their potentials and their derivatives of the
first two orders, and are linear with respect to the second ordevakéres.

2. The tensofS,z satisfies the “conservation conditions or identitfes
(19-2) Y*PDaSas= 0,

in which D, denotes the covariant derivative operator for the Riemannian connection of
Vs (we reserve the notatidn for the covariant derivative operator for the connection on
the spacetime y.

The existence of such conservation identities is, assaw in detail apropos of
general relativity, intimately related to the facttttize arbitrary local coordinate changes
make it possible to restrict five of the convenientlys#o potentials to take given local
values, and that the system (19-1) must not be over-deestnainder these conditions.

() Seel, sec20.
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Indeed, such conservation identities, which are relatethéopossibility of adopting
arbitrary local coordinates, must exist in any field tigeo

Cartan’s theorent) shows that the preceding conditions imply that wistntakeS,s
to be a tensor of the form:

Sep=Rap— 3 Vap(R+K),

in which k is a constant that generalizes the cosmologicaltaohs In the sequel, we
shall setk = 0. Now, as we know, the equations in whiak a non-zero constant do not
possess the gauge invariance that we introduced, duegquhgons that we adopted). (
Henceforth, we set:

(19-3) Sup=Rap= 3 VapR,
and with these notations, the equations of the extentary case may be written:
(19-4) Sy = 0.

Like the homologous quantities in general relativity,gbantitiesS,z in the left-hand
side of the field equations can be constructed by stasily simple variational
processes Since such processes play a fundamental roleerEthstein-Schrodinger
theory, and in order to permit easy comparisons, we, shate course of the following
two sections, specify the variational consideratidreat provide one of the points of
departure for the Einstein-Schrodinger theory.

20. Variations of the curvature tensor.— Suppose that the Riemannian meggjein
a domain ofVs is varied in the sense of the calculus of variaticared denote the
variation of y,z by )z, the dy,p are obviously the components of a symmetric tensor.

This variation of the metric tensor results in a vasatof the componentﬁjv of the
Riemannian connection, which are variations that we deabte byd, .

It is well known that under a change of local coordiggt’ = x'*(x”) the
componentd jv of a connection transform according to the formula:

(20-1) Co, =ALATNTL, + A0, A,
in which one has set:
ox” ox?
A L —
. = ~, A = )
A ox“ N N

One deduces from (20-1) that:

() Seel, secs.
(® Nevertheless, it is not completely without inteffestus to study the structure of the equations with a
non-zero constarkon W, .
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(20-2) &) =M RIS,

and therefore the¥,, are components of tensor that is once contravaeadttwice

covariant. Moreover, one will note that the oper@gtoommutes with the ordinary partial
derivative with respect to a local coordinate.

It is easy to obtain the corresponding variationshefdurvature tensor and the Ricci
tensor. One deduces from the explicit expression:

Rlaws =05 =0, +T 5 -T2 Ts

uap pu' ap au
by variation, that:

Rau = al/d_;ﬂ _aﬂd_;ﬂ + r;ﬂd_cz? + rcf%d_fw _r;ﬂd_czl - rcfld_f»ﬂ-
We calculate the covariant derivatives of the tedég . They are:

o P P P P
Dl/d_ﬂﬂ - al/d_ﬂﬂ + rpﬂd_cz? - rpﬂd_czz - r[[?;zd_ap’
and similarly:
o P P P P
Dﬂd_ﬂﬂ - aﬂd_ﬂﬂ + rpﬂd_czl - rcz?d_pﬂ - r[;;d_

ap !

if we take the symmetry df in its lower indices into account. Upon subtractiegn-
by-term, we will get{):
(20-3) Rlaw =D, & -Dd .

Upon contracting over the indicelsand i, one obtains the variation of the Ricci

tensor:
(20-4) R, =D, -D;d,.

Multiplying by y"ﬁ leads to an interesting relation. Sirtib,ey"ﬂ: 0, we first obtain:
yP Ry =D, (y X 3) =D, (v d ).
We are then led to introduce the vector:
N =y Rl -y .
We will thus obtain:

(20-5) y* R, =D, A?,

and the scalar that appears in the left-hand side ie®&sgul as the divergence of a vector.

() The preceding calculations are much simpler in normmidinates. However, we are ultimately led
to make analogous calculations in the absence of noouoedinates.
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21. —The variational principle. — Consider a five-dimensional, differentiable chain
C in the manifold, and vary the metric in such a way thatvariations of the potentials
and their first covariant derivatives are zero oa boundarydoC of the chain. As a

result, the d;, will also be zero on this boundary. We propose tiadys the
corresponding variation of the integral:

0
(21-1) | :jc £dx O---Od¥,

in which £ is the tensor density:

(21-2) L =RagVap /|y |-

The differential element is therefore a 5-foRwl 7 that is the product of the volume
elementd7r onVs with the scalar Riemannian curvatie By variation, one obtains:

ol :ICJRHﬂyaﬂ /—IVIdXOD"'Dd)é’LL R, 60/ [y 1) dxo-0 dk
Now, from formula (20-5), one has:
[_OR, [Tyl dx D0 o = flux,cA =0,

since”A” = 0 on the boundary €. On the other hand:

%:%ymdyﬂﬂ :_%VA;ICSVM-

One deduces from this that:

Ry O/ Iy D=1R ” -2 Ry vV v, V" W1 |,

so, upon changing the names of the indices in ¢sersl term in the brackets, we will

get:
R, 00”17 1)= (R -2 RV 1y |

Therefore, the variation in question becomes:

(21-3) o1 =[S, 0/\Tyldx OO d¥.

On the other hand, from a well known formula conaeg the differentiation of?”:
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oy’ =-y?y*oy,,.

If we substitute this in (21-3), we obtain:
0
(21-4) ol :—jcs”ﬂ 3, 1y dx O--- 0 dX.

If £ is expressed with the aid of tbé” then the tensoB,s will be related to the
variational derivative of for the variations envisioned by the relation:

S :iﬁ
» = livior

Similarly, if £ is expressed with the aid of thgs then:

(21-5)

(21-6) sw=__1 oL

\/mayaﬂ .

In order forl to be an extremum for such variations, it is necessadysufficient that
Spz= 0. We may state:

THEOREM - In the exterior, unitary case, the field equations may be charaeteriz
by the following variational principle: They define an extremum foritkegral of the
variations of the potentials over a five-dimensional, differentiab&ncC, and their first
derivatives will be zero on the boundary of C.

[Il. — DEFINING THE EQUATIONS IN SPACETIME V,

22. — Case of &1 with a positive-definite metric. Passing from an orthonomal
frame to a natural frame. — Apropos of the theory of stationary spacetimes ireggn
relativity, we have been led to study a Riemannian manifolatmtrary dimensioV,.;
that admits a 1-parameter group of isometries and sattbgesame hypotheses ¥s
We have denoted the manifolds that are homologo¥s smdWs by V, andW,. Since
the calculations are purely local, they have beenethiwut while supposing thaf, is
reduced to a neighborhood. Finally, in order for tleadeulations to be easily adaptable
to the various hypotheses on the sighature of the ar@t¥i,.1 and the orientation of the
trajectories of the isometry, they have been caroetd while supposing tha¥,.: is
endowed with gositive-definitanetric. We have therefore set:

do? =Y (af)? :(a)°)2+Z(cJ)2 (@=0,1,..ni=1,..,n)
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in which thew' are annulled along the trajectories, and perform thrilegions in the
adapted, orthonormal frame that corresponds to thid3&).

dx =dx" ey = of e,.
Since thew' are local Pfaff forms with respect to tthe, one will have:
(22-1) % =& DX + B¢ dX), ¢ =Ajdx’

upon substituting the quantitigh ' for theg ' in 1, sec.65.
We denote the inverse matrix ¢&) by (A). One has:

(22-2) dxX = A,

and the passage from local coordinates to the orthondramads that are associated with
the forms @') onV, or W, is performed with the aid of the matrices}) and (Kji) :

If ¢i represents the components of the vector-potentiaivel&d thew', then one
has:

(22-3) dx’ :%— B .

Therefore, the passage from the natural frame toowotimal frame iNVy.1 is
performed with the aid of the matricé#\;), (ﬂ;’) whose purely Latin part was just

introduced and whose other elements are given by:

A(()):g’ Aiozgﬁ¢i’ A\;:O,

and:

A=, A =-pp, A=0.

M|

23. — Components of the Ricci tensor and the Einstein tensowof V,.1 in an
orthonormal frame. — Let R, be the Ricci tensor of the manifoldd and letS; be its
Einstein tensor. We denote the covariant derieatyperator onV, by [0; and the

Laplacian ofé in V, by A. Under these conditions, if one substitufds; for F; in
formulas | (69-5) then they will take the form:

() See |, sed36and following.
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R=k-LErE-1000,
(23-1) Ro= e (E°F)
RM%M“@ F?,
with:
(23-2) F? =%Fle"',

in which the different components that were introduced detned relative to the
orthonormal frame and the » sign is defined relativVéto

From formulas (23-1), one easily deduces the expressiothdocomponents of the
Einstein tenso,; in an orthonormal frame with the aid of tensors thatiatrinsically
defined ornv,,. One has:

Saﬂ = Raﬂ _%JaﬂR’

and, on the other hand:
R=6"R +3"R,.

Therefore, from (23-1), one has:
N ﬁZg{Z

_B5_ 2_2
(23-3) R=R-Z_—F 5A5.

From this, one deduces the expression for thereift components (ﬁaﬂ :

S =52 [1oFr-FE]-0QO- g
(23-4) §0= 20 (E°F)
5, :_% ﬁz+§ BER

We note that the left-hand sides of (23-1) and4P®volve only tensors that are
defined intrinsically onV,, and as a result, they themselves will definarisic tensors on
Vh . We letP; denote the symmetric tensor field & whose components in the
orthonormal frame ar®; = §; ; similarly, we letQ; designate the covariant vector field
on V, whose components are in the orthonormal fram&areS,. Finally, the left-hand
side of the last equation in (23-4) is a scdlathat is defined orV, , and in the
orthonormal frame it will equal: = Syp.
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24. —Divergence formulas on a sectioW, . — Suppose tha¥,.; is referred to an
adapted system of local coordinates, angbe a section that is referred to this system.

With the aid of formulas (23-1), it is possible to evédudne component®’ of the Ricci
tensor in the natural frame that is associated widsd local coordinates. In the
difference of the tensors that appear in (23-1) and (23é)quantity RY presents a

scalar character precisely 04, but not gauge invariance, and, as a result, it will not
constitute an intrinsically-defined scalar gn
One deduces from the classical tensorial transformé&tionulas that:

in which theA are given by the results of s@2 SinceAl =0, A? = & we will get:
R=¢AK,

or, more specifically:

(24-1) R=R-&¢ R.

Since the metric oW1 is positive-definite, one will hav®® =R, R} =R,. It will

then be possible to evaluate the left-hand side of (24ith)the aid of formulas (23-1).
A calculation that does not differ from the one isd¢.71 will give:

(24-2) RO :—ég"ﬂ,—wia

ﬁZg{Z
2

¢k|:ki].

We are therefore led to introduce the vector fretsh W, which is defined by:

(24-3) h :ai5+ﬁ;‘(2 o.FY,

and we will get:
(24-4) R = —%divh :

in which the divergence is evaluated on the RiensammanifoldW, that is endowed
with the metriads’.

It is possible to deduce another interesting digace formula from this formula,
which does not differ from the one in |, séd. One has:

R00 :Agpéjﬁoo :52§00 :y00§00

for the componenRy, of the Ricci tensor relative to the natural frame.
Upon evaluating the difference:
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&_RgzﬁQR(i)’

00

with the aid of the last formulas of (23-1) and (24-2), ob&ins:

(24-5) §9R-LF=-g D Vg 4 Fk}

If we introduce the vector field onW,, with the components:

3
(24-6) p=EgF
then we will get the formula:
(24-7) EHR _AE F? =—di
- R — P =-divp,

in which the divergence is again evaluated on tleenBnnian manifold\, .

25. — Applications to the manifold Vs with isometry trajectories that are oriented
so that do < 0. — Recall the manifolifs, which admits the metric of the hyperbolic
normal type:

(25-1) do’ = - (&)* + (&) - ()* - () - (@)7],

(in adapted orthonormal frames), in which thé)(are zero along the trajectories of the
isometries:

(25-2) o =AdxX,

and in which, from (17-2) and (18-1):

(25-3) aﬁ=—§(yoodx°+ya d@=—%(d>?+ﬁ¢i dY = &( dk+ g dy.

Without modifying the local coordinates, we dedacguadratic form from (25-1)
that is the sum of five squares by performing thkowing transformation on the Pfaff
forms:

(25-4) o =i (A=0,1,2, 3), w’ = w?,

and we express the metric in the new form:

do? => (@")?.
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In this new form, we may apply the formulas that wealled or established in the
course of the last three sections. Now, the comgenetative to the elliptic form of the
metric (i.e., relative to thet) are deduced from those relative to the hyperbolic form
(i.e., relative to thews) by the following rule: Any contravariant index= 0, 1, 2, 3,
corresponds to multiplication by, and any covariant indeX corresponds to
multiplication by —; the index 4 corresponds to multiplication by 1. Moreps#rce:

@® = E(dx°+ B¢ dX), o = EAX + B ¢ dX),

one deduces that=ié and, as a resuff,” = —&2 = y,.

We are therefore led to write the formulas of 22;.23, 24 in barred notation and,
thanks to the preceding rule, to transform them in suehy that we obtain formulas that
are valid forVs and its isometry trajectories that are orientedhsodc® < 0. One first
confirms that the formulas of se@2 that relate to the passage from an adapted,
orthonormal frame to an adapted, natural frame and itgseveansformation do not
suffer any modification.

When formulas (23-1) are transformed by the precediteg tiey will take a form
that we will use from now on:

R :ﬁhﬁzzfz F _%Dj @&,
) 5 -_ B 4 2Ei
(25-5) Ro = 2525;(5 F),
5 oLl B¢
Roo_gAf'*' > F,
with:
F?=1iF, F“.

We note thaE? is no longer necessarily positive-definite or zero.
Similarly, when formulas (23-4) are transformed by ale,rthey will become:

5= eFP-FF]-F0Q0- pad
(25-6) 5, = —z—ﬁz 0, (& F)

o 1~ 3 272 =2

S00 E +Z,3§( F

Finally, we transform the divergence formulas thetre given in sec24. After
transformation, formula (24-2) will become:
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(25-7) RY =-—-9'0,[0,¢ P Fh].

'3

1 B¢
2

One deduces from this that upon introducing thetoreh of W, with the covariant
components:

(25-8) h :aif—ﬁ;‘ﬁ =

they will become:
(25-9) R = —%divh :

in which the divergence is evaluated on the Riengmmanifold of hyperbolic normal
typeW,.
Similarly, when the transformation is performedformula (24-5), it will give:

|E¢R0+|’852F2—|9”D {'&(2

o]

namely, upon dividing by and introducing the vector field on W; whose covariant
components are:

(25-10) =ﬁ7‘(3¢kﬁk ,
the relation:
(25-11) 5¢R)+'3‘( F> =divp,

in which the divergence is evaluated under the saonditions.

26. —Formulas in local coordinates.— Conforming to a remark in se23, the left-
hand sides of equations (25-6) define a symmaetnsdr fieldP, a covariant vector field
Q, and a scaldr onV,, respectively. The components of the vector fald tensor field
in local coordinates are immediately expressed i aid of their components in

orthonormal frames, i.e§,j andS,. They become:

(26-1) Pi=AAS,
and:
(26-2) Q= AS,.

Upon referring all of the tensors that we havardef onV, to local coordinates, one
will deduces from this that:
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R=§-Z[tgEF-FE]-7000- paq
__ B g
(26-3) = ZgZDi(ﬂ:i ),
_1- 3 o2
L—§R+Z,[>’EF.
with:
FZ2=1F,F".

One will note thakE " = g“F, = y“F, = y*F,, sinced" = ' andFs = 0. It is
therefore pointless to indicate whether the comptmef the electromagnetic field tensor
are mixed or contravariant and whether this tefistat is defined orVs or V.

Similarly, the vector$é andp that appear in the divergence formulas may be ééfin
by their components in local coordinates:

(26-) h=06+2 5 g rr
and:
(26-5) P =%¢ka :

27.The field equations in the exterior, unitary case- In the exterior, unitary case,
the field equations oN’s translate into the fifteen equatior;z = 0. It is possible to
specify them with the aid of the tensors that wagéned onV, or W, in several ways
that might possibly be interesting.

a) First of all, in orthonormal frames, one has skstem:
(27-1) S, =0, S, =0, Sy =0,
or, in an equivalent manner, in adapted, local dmates:
(27-2) P =0, Q =0, L=0,
in which the values of the left-hand sides are gikg (25-6) and (26-3). One will note
that P; is distinct from the components & and Sy in local coordinates. On the
contrary, one will hav®’ =3, since:
(27-3) P=AAP=AAYE=5

On the other hand, upon performing a change afdrane will get:
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AN 4 N ¢ 1 [
SRR WAS = Qpg e
One deduces from this that:

(27-4) Q =¢(S°+ B 4SY).

The introduction of the componen&, So, So on V4 would give only complicated
expressions that are of no interest.

b) One may substitute the following system for slgstem (27-1):
(27-5) S, =0, R, =0, R, =0

which is equivalent to it. As far as notation ancerned, this system differs from (27-1)
only in its fifteenth equation. In order to establthe equivalence of (27-5) with the
system (27-1), we first evaluate the sc&awhich is the contraction &, as a function
of R.

One deduces from the relation:

the relation:
(27-6) S=R-3R=-3R.

Now we seek to evaluatg,, as a function ofR, for a solution of the first ten
equations§,j = 0 that are common to the two systems. For awssiution:

S=J7ij§.j +J700§00 :_§00-
Now:

S00 = I:200 _%VOOR: Roo +%R: Roo _%S: Roo +%Soo-
One deduces from this that:
Roo:§ 0

for any solution of the ten equations that we @awiswhich assures the equivalence of
(27-1) and (27-5).
In adapted, local coordinates, the system (27i#brarrespond to the system:

(27-7) Pj =0, Q =0,
and:

] 1 B*E* Lo
(27-8) 5AE+ > F2=0.
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c) Finally, it is possible to substitute the equatijr= 0 for the fifteenth equation of

system (27-5), namely (27-8), relative to an adapted systelocal coordinates. In
equation (24-1), which is valid without any hypothesis orstgeature:

R =Ry ~¢{BPR;.
and which may be written:

R(()) = _R(()) _5,3¢|R(|)

with the adopted signature, one sees that for any solofidthe equation®, =0 the

equationR’= 0 andR,, =0 will be equivalent. One deduces from this that one may

substitute the equation:
(27-9) divh=0

for (27-8), which is an equation that is equivalent foolatoon of R, =0.
Finally, one will note that one will have the redarti

(27-10) div p :/;7‘(2 F?,

as a consequence of the field equations in theiextanitary case.

28. —The equations of the Kaluza-Klein theory — The equations of the Kaluza-
Klein theory are deduced from the preceding catmria immediately. In that theory,
the geometric context is the one that we specifiddst part of this chapter, but with the
supplementary hypothesis that the trajectorieshef isometry group oWs must be
geodesics of this manifold that are oriented sinettdo® < 0, and that as a resyfo =
constant in local coordinates, or, in an equivateanner, = constant. We may choose
the infinitesimal generatafin such a way thaf = 1. As a resultyso = 1.

Conforming to the variational processes that wiaddcated in sec2l, the field
equations will be obtained by annulling the vadatof the integral:

| = [ Ry [Iy1d® 0---0 ¥

for the variations of the potentials that presethe fixed valueyy, = -1, and therefore
annul their first derivatives on the boundary®f Sincedysp = 0, one obtains from (21-
4):

ol ='[CS”ﬂ5yaﬂ\/|_y| Al O--- 0 dt
==[ Sy Iy1dR 00 dt =2 Say, 1y | o0 o,
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From this, one deduces that in the Kaluza-Klein theibwy,field equations may be
written: ) _
(28-1) g =0, s°=o.

By virtue of (27-3) and (27-4), this system is equivalentthe system of 14
equations:
(28-2) Pij =0, Qi =0.

If one setsf = 1 in the expressions (26-3) for the left-hand sides dnenwill obtains
explicitly:

s _B. u
(28-3) %“3&&ﬁﬁ FE)

O
M

I
o

which are equations that will coincide rigorously witlesa of the provisional theory of
electromagnetism for the pure electromagnetic fiedd.(§ if one sets:

(28-4) %:Xo,

in which xo will henceforth denote Einstein’s gravitationahstant (a constant that was
denoted byyin 1). Except for the formalism that was employde “projective” theories
that were due to Veblen, Hoffman, and Pad)j tespectively, do not differ from the
preceding penta-dimensional theory, which was du€aiuza and Klein, in substance.

One therefore confirms that in order to deduceetngations of electromagnetism in
classical general relativity from the Jordan-Thaguations, it will suffice to suppress the
fifteenth equation (27-8), and to give the valu® ¥ in the remaining 14 equations (27-
7).

IV. — THE EQUATIONS OF THE INTERIOR CASE.
PHYSICAL INTERPRETATION OF THE THEORY

29. —The equations of the interior, unitary case and conservationonditions in
Vs. — The tensor on the right-hand side of the equ&i,z that we will now introduce is
intended to represent the distribution of the mass®l charges at the spacetime point
envisioned. We suppose that this tensor formadlgegalizes the energy-momentum
tensor of classical general relativity in the alogeaf an electromagnetic field. Although
it might be interesting to take the “perfect fluis€Chema as our point of departure, here
we confine ourselves to generalizing the “pure eratschema of general relativity by
setting:

() VEBLEN, Projektive RelativitatstheorieSpringer (1933); W. PAULI, Ann. d. Physik8 (1933),
305-337.
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(29'1) eaﬂ =r Va Vﬂ,

in whichr denotes a positive scalar, and denotes a unitary vector of3 (which is a
vector that is oriented so that? > 0 and has square +1). Moreover, one will note that
the passage from the tensor (29-1) to the more contpleter:

is effected in the various equations that follow inimpée manner, and will lead to an
analysis that is analogous to that of Part I, Chapker V

Once we have adopted the tensor (29-1), by reasoningsthatlogous to that in I,
sec.45, we will easily establish that KX denotes the infinitesimal transformation that is
generated by the isometry group then ee will necesdaig:

in whichr andv are invariant under the transformations of the groupdiapted, local
coordinatesy and the components, of v will be independent of the variabkg. The
trajectories irVs of the vector fields will be called thepenta-dimensional streamlines.

One immediately deduces some simple consequences heneduations of the
interior, unitary case:

Sop = Ogg,

in which O, is provided by (29-1). Since the left-hand side ter&grsatisfies the
conservation identities, one will necessarily have:

(29-2) D,0%s= Dga(rvivp =0.
Upon developing (29-2), one will obtain:

(29-3) Do (r v¥) vg+1viDgovs= 0.
Now, sincev, is unitary, one will have:

(29-4) VD, vs=0.

Upon multiplying both sides of (29-3) by and taking (29-4) into account, one will
obtain the relation:

(29-5) Dy (rv9 =0,
and (29-3) will reduce to:
(29-6) VD4V =0.

Equation (29-5) presents the aspect of a continuity equatie shall interpret this
equation in a moment. As for equations (29-6), they salythiea penta-dimensional
streamlines are the geodesicd/gfwhen they are oriented so thif’ > 0. We state:
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THEOREM - The streamlines in the manifolds \are the geodesics of that
Riemannian manifold, which are oriented so ttiat > 0.

30. —The vector v and the unitary velocity vector oiVs. — From cylindricality, and
by virtue of (8-1), the penta-dimensional streamlines, alamgh:

dax*
=V,
do
will be such that along one of them:

wo\P + J6i V' = const. =h,
namely:
(30-1) Vo=h.

Since o = — & is negative, it will result from the consideratiorfssec.8 and (8-5)
that these penta-dimensional streamlines project @ntong lines — which are called
spacetime streamlines that are oriented in time such that along one okthess:

(30-2) (1+ ?—zjdaz =ds’,

which is an extremal of the integral:

(30-3) Lo [ /1+?—zds+ ,[5h¢},

in which ¢ designates the vector-potential form, for a chofcescotor-potential.

Letu be theunitary velocity vectori.e., the unitary vector in the metds® of V, that
is tangent to the spacetime streamlines. Once onesktieswector, the scaldr and the
constanth, it is easy to determine the vectdronVs. Indeed, along a streamline one

has:
. _dX _dX ds _ ; ds _ z
V=—"-=——=u—=_[1+—=uUu".
do dsdo do &?

If one passes to adapted, orthonormal frames ftloem the form of the relations for
the frame change one will obtain:

which is equivalent to:

2
(30-4) v = 1% q.
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On the other hand, one obviously has:

v0:'3{))\/0: VO’

M

namely:
_ _h
(30-5) v, = ? :
We have therefore determined the compongntsf the vector we just introduced by
starting withh, & and the unitary velocity vector M.

31. —The electromagnetic tensors and the variation of the gra\ational factor. —
In an adapted, orthonormal frame, the equatiortheinterior, unitary case may be put
into the following form:

(31-1) éj‘ﬁ; 9% _Fk'—_Fk_JFk]—%(DJQE—gAf):rI—T,
(31-2) 0,(E°F) :Z—;r A2
(31-3) S =1(%)°.

We examine equations (31-2), to which we musttaddconstraint that the tensgar

must be derived from a vector-potential. The farfrthe equations (31-2) leads us to
introduce inductions into the vacuum that are destfrom the field. The tensdf;, may
be interpreted as representing the two space weofdhe magnetic inductioB and the
electric field E for the space and time that is associated withottieonormal frame

envisioned (I, sec3). From Maxwell's equations, one knows that theresponding
tensor always has zero exterior derivative. Undke same conditions, the

tensorﬁij :.52!?". will then be interpreted as representing the magrield H, and the

electric inductiorD. In order for this to be the cas®, (t will be necessary and sufficient
that we attribute dielectric constant and amagnetic permeability such that:

(31-4) £= &3, r= A (eT1= 1),

which are quantities that vary slightly, in accorda with the field equations. With these
conditions, equations (31-2) take the form:

(31-5) O,(H') =7,

() Cf. BECKER,Théorie des électronfcan, (1938), pp. 358-365.
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in which the electric current vector is currentlly givay:

(31-6) J —2—;2 r

AV

<

One knows?) that a purely electromagnetic energy-momentursctenorresponds to

F, andH, , and it is defined by:

r, =30, FY -1 (F, +F,),
namely, sincéd; = ¢&°F;:
o - ehuRe-FE,).

We are therefore led to put equations (31-1) énfeinm:

(31-8) § =20 CELR TR
and to interpret the factor:
B° _ Xo
31-9 =£ 40
(31-9) X=05 =%

as a “gravitational factor,” a variable that redud® the valuey, of Einstein’s
gravitational constant fof = 1.

32. —Matter density and charge density.— A tensor orV, that is proportional to
V, V. —hence, from (30-4), t§, v, — appears in the last term of the right-hand sidgbf

8). We are thus led to set:
(32-1) r'vv=xoVv,

in which p is theproper matter density.Upon substituting the values &f and v, that
are inferred from (30-4), one will get:

h2
32-2 =r |1+—=|;

namely, upon introducingp, instead ofy :

() SCHOUTEN,Tensor Analysis for Physicis®xford, (1951), pp. 225-226.
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h2
(32-3) XoP =& [1+?j :
Similarly, the expression (31-6) for the electric catneector leads us to set:
(32-4) J=—rvyy, =4y,

in which u is the proper charge density. Upon substitutmgalues ofv, and Vv, that
are inferred from (30-4) and (30-5), one will obtai

(32-5) U :%(hr 1+?—z ,

namely:

(32-6) XU = phr / 1+?—z :

Upon dividing (32-6) by (32-2), one will obtain:

(32-7) k=H=_F"
0

which is a formula that does not differ from (15-ib) essence. With the notati@rthus-
introduced, one sees that the spacetime streamiimdsch are extremals of the integral
(30-3)— will be extremals of the integral:

(32-8) LO (é ds+ ¢j .

One will note that the sign of the consthrdetermines the sign of the charge density
M. Inthe presence of matter and the absence ofehane will havén = 0.

In summation, the first 14 equations of the imterunitary case may be put into the
form:

A _ 2
(32'9) S|j :%[Tij +F(Djaig_gijAa+miuj],
(32-10) OHL=pu,

in whichH; = &Fy, and7; is given by (31-7).
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As for the fifteenth equation, we may put it into anfothat is convenient for
calculating the value oR,, when starting with the right-hand sides. From (27-6% on

has:

0=-3r
One deduces from this that:
ﬁ00 = §00 +%_00R = §00 _%R = §00 +%@
Now:
2
Se =T (V) =r—, O=r
Therefore, one obtains:
— 1 h?
Roo = r(:—g +?j )
and from the expression(32-3) for
2
113"
ﬁo — XoP 3
0 3F h2
1+
This results in the equation:
h2
1+3—
1 2
(32-11) A&+ x,E°F? :é)(op—é .
1+?

One may deduce from this equation and the corresponding ayumatihe exterior,
unitary case by an approximation method (upon whose detaihall not insist) that the
variation due taf in spacetime remains numerically quite small, antttir@esame will be
true for the variation due ta

33. —Conservation conditions inV4. — The conservation conditions (29-5) and (29-
6) in Vs may be easily translated into spacetvhe Equations (29-6) are expressed/in
by the fact that the spacetime streamlines are exisemf (30-3) and by the
supplementary condition:
(33-1) Vo = h.
(33-2)

We now propose to translate the condition:

(33-3) Dy (r V%) =0
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into V. To that effect, we establish the following lem(ha in which we systematically
use adapted, orthonormal frames:

LEMMA —If the vector fieldy on a manifoldv,.1 with a positive-definite metric that
admits a one-parameter isometry group, is invariant under that isometry gtwerpthe
divergence D77 of that vector field orV,.1 can be expressed by starting with the

divergence of the vectd@ ' in V, by the formula:
D,77° =40,(£7").
Indeed, in coordinates and an adapted frame, one has:
Mo = Atly =376,

and sincen is invariant under the isometry grouf, will be independent of the
coordinate’. One deduces from this that:

Having said that, one obtains from the expressions(Bi7t5) for the coefficients of
rotation y,, that:

Dy77° = Dyfly = 0470 — =%
of1 ofTo =0ollo = VoyoT " == 17"

On the other hand, from the same formulas I, (67-5):

Dj’7j =D,77; :ajﬁj _yjkjﬁk_yjojﬁozajﬁj _yjkjﬁk :Djﬁj'

One will also obtain:
_ . 0 .
D,7¢ =0,7" +—§‘( ',

namely:
(33-3) D79 =30,(7"),
which proves the lemma.

This formula (33-3), which was established for a positiieade signature, remains
valid by the rule of se@5 that permits us to translate it onto the manifdidhat has a
hyperbolic normal signature whose isometry trajecsosie oriented so thd? < 0. In
order to translate (33-2), we may thus apply this forrmmilthe vecton® =rv® onVs.
Therefore, orV,, (33-2) translates into the relation:

() This lemma is completely related to the result et established in |, sez2
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0,(érv') =0;

namely, upon substituting the valueséafand V' that one infers from (32-3) and (30-4),
one will get:

0| 229 |-,
1+?2

which is a relation that may be written in locabodinates iV, as:

(33-4) 0|2 |=o.

On the other hand, if one takes the contractecriant derivative of both sides of
(32-10) then one obtains the condition of the coraen of electricity:

(33-5) Oi (uu) = 0.

On account of (33-4), this equation is equivalenthe fact that along a spacetime
streamline:
2
H 1+h—2 = const,
P $

which is in accord with (32-7), since the valuetlid constant igh. On account of (33-
4), equation (33-5) will be, moreover, deduciblenir the conditionv, = h along a
streamline. Therefore, we have the fact that gaeatime streamlines are extremals of
(32-8), and the two equations (33-4) and (33-5)nfarset that is equivalent to the set of
the five conservation conditiom, ®“4in Vs.

One will note that fo€ = 1 equations (32-9) and (32-10) reduce to:

(33-6) S, =xo (5 +puu),
(33-7) OF =y,

in which 7; is the classical energy-momentum tensor of thetrelmagnetic field. As for
eqguations (33-4) and (33-5), they may be written:

Oi(pu) =0, Oi (u U) = 0.
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For{=1-ie., in the case of the Kaluza-Klein theorpne sees that the equations
that were described reduce to the equations of electreetiam in general relativity for
the “pure electromagnetic field-matter” schema in theecfor which one admits the
equations of Lorentz transport (see |,.s2§. Upon adopting a more complete tensor
©% one may, moreover, obtain the equations of the tgtrperfect fluid” schema that
were developed in I, Chap. VI.

The physical interpretation of the Jordan-Thiry equatitha we just gave here
differs very appreciably from the one that was suggestethdse authors, and seems
more satisfactory to us. In the interpretation thas given by Jordan and Thiry, the
introduction of a dielectric constant and a magnetreneability, with the aid o, was
not envisioned, and the law of variation for the graiteal factor as a function ofwas
different. The present interpretation, which seem$don precise analogy with the
viewpoint that was developed directly in electrodynaniigsBorn and Infeld, seems
more interesting. Here, we touch upon one of the &atdifficulties that presents itself
in the study of any unitary theory; it consists in thetiplicity of physical interpretations
that may be assigned to “field equations” that were deddcmu mathematical
conditions,a priori.

V.- THE CAUCHY PROBLEM AND THE GEODESIC PRINCIPLE

34. —The Cauchy problem in the exterior, unitary case— In this section and the
ones that follow, we will confine ourselves to locahsiderations. We may, in turn,
assume that the spacetime manif@dichas been reduced to a neighborhood.

The Cauchy problem in spacetime that relates to the Jdiuanequations (27-7)
and (27-8) in the exterior, unitary case may be statéukeifollowing manner:

PROBLEM - If we are given the gravitational potentiadg, a vector-potentiakp; ,
and the scalak, as well as their first derivatives, on a hypersurf&ia V, then how do
we determine these quantities outsideSoassuming that they satisfy the Jordan-Thiry
equationg27-7)and(27-8)for the exterior unitary case.

We assume th&is not tangent to the elementary con&/péind that if X) denotes a
system of local coordinates W then it will be represented locally by the equatidr
0. One will then have®* # 0 (here the variablg* is not assumed to correspond to a
specific orientation in space and time). We assuntettieavalues o§;, ¢, ¢, and their
derivative® ,g; ,0,¢,,0,§ are known orS. These quantities, which are the “Cauchy
data” of our problem, are assumed to be at least thmees tand twice-continuously
differentiable with respect to the variabl&$ (u, v = 1, 2, 3), respectively. One
determines the values 06f g; ,0,¢,,0,¢ onSby differentiation on that hypersurface.

Having said that, we assume that we are given the nfdinfipas the topological

productV, x T If (X) is a system of local coordinates ¥n andx’ is the canonical
coordinate on the circl& then a point o¥s will admit the local coordinates(x°), and
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the manifolds® = const. will be the factor manifoldd, of Vs; the “trajectories” will be
the factor linex' = const.

Consider the hypersurfack in Vs that is generated by the projections of the
trajectories onto the points &f = is defined locally invs by the equatiox* = 0 in the
local coordinates envisioned. From (18-1) and (18-3), the gireg€auchy data oh
will provide us with the values of the quantities:

(34-1) Yo =— &, wi=—B¢&, v=-6L& ¢,

and their first derivatives, since these quantitiedaretions of only X°). One will note,
moreover, that:
(34-2) yir=g“=#o0.

The following problem in/s will therefore correspond to the problem that we ithtia
posed:

PROBLEM - If we are given the potentialg;4x") and their first derivatives
9, VadX") on a hypersurfac& in Vs that is generated by the trajectories then how do we

determine the values of these potentials outside ibfwe assume that they satisfy the
Jordan-Thiry equationS,s = 0.

From (34-2), the hypersurface is assumed to baon-tangent to the elementary
conesof V5. The valueg,s(x") andd,, yus (X') onZ are the new Cauchy data. The study

that we made in general relativity, (I, séd), leads us to replace the syst8gp = 0 with
the equivalent system that is formed by the union ofdh@wing two systems:

(34-3) Rag 77— 1 0, yas+Fag=0 (A,B=0,1, 2, 3),
and
(34-4) S; =0,

in which theFag and theS; do not contain any derivative &t with the index 2 and, in

turn, admit values o that are deduced from the Cauchy data by algebraic operations
and differentiations o#.

We propose to study the values of the derivatives ofrdridder than the first ok.
First of all, since’* # 0, equations (34-3) will provide the values of thg yaz (x) onZ.

No equation contains the derivativeg, y4s. This fact is related to the existence of

changes of local coordinates that conserve the noahealues of the coordinates at any
point ofZ, as well as the Cauchy data, and they will be coomlicladnges of the form:

(34-5) X =x +$[¢”(x4) +&(xM)] (A'= A, numerically),
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in which &' goes to 0 wher* goes to 0. The derivative8,f, yag)s Wwill not be modified
by such a change of coordinates, whereas dhgi4s)s can pick up an arbitrary function
of (x'). Upon using an adapted, local coordinate transformatfathe type (34-5), in
which the¢i are different on either side af which is permitted by the structure \&,
one will see that one can make the possible discatgiswf these second derivatives
appear or disappear, which are discontinuities that am@dlie¥ any physical sense then.
In particular, one may restrict the f, y4)sto be continuous when they crasdor the

admissible systems of adapted coordinates.

Up to this restriction, one sees that the secondvaderes of the potentials are
continuous upon traversing. The same conclusions may possibly be extended to the
successive derivatives of the potentials by differentiagongations (34-3) with respect to
x*. At the conclusion of that operation, one will seely equations (34-3), to the
exclusion of equation (34-4).

Having said that, we consider Cauchy data that satisfivéaeonditions:
(SH,=0,

and assume that we knowda? that corresponds to these Cauchy data and satisfies
equations (34-3). It results from the conservation itiesti

Dasa/]zo

that equations (34-4) are then satisfied outsid&.ofThe problem of integrating the
Jordan-Thiry equations thus divides into two problems here:

a) The search for Cauchy data that satiSfy= 0 onS

b) The integration of the systeRys = O for Cauchy data that satisfy the conditions of
a).

Suppose for the moment (which is an abuse, of sortisaliraf the data real-analytic.
With the aid of the Cauchy-Kowalewska theorem, one ¢agdy establishes that, up to a
change of local coordinates and assuming that (34-5) pesstire coordinates and the
Cauchy data at any point bf the system (34-3) will admit one and only ayéindrical
analytical solutiony,s(x). The coordinate change permits us to give arbitrary vates t
the y4(X) outside ofZ that are compatible with the Cauchy data. The correspgpnd
“physical” theorem of existence and uniqueness has bstablished by Mme. Fourés
under simple differentiability hypotheses.

It results from this study that theharacteristic manifoldsS of the Jordan-Thiry
equations oV, will always be manifolds that are tangent to the eletawry cones o¥,.

Ihe characteristic manifold& in Vs are the manifolds that are generated by the
projections of the trajectories onto deand are, in turn, tangent to the elementary cones
of V5. InV, andVs, these manifolds play the roleswéve surfacesf the unitary field,
respectively. It is the traversing @f that can produce discontinuities in the second
derivatives of these potentials.
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In our penta-dimensional formalism, the phenomenacdbaespond physically to the
pure electromagnetic field schema are completely goak to the ones that appear in
general relativity in the exterior case.

35. —The Cauchy problem in the interior, unitary case — The Cauchy problem
may also be posed in the presence of a non-zero rigdtdide. On the manifolds, we
are therefore led to the following problem:

PROBLEM - If we are given the potentiala/;(xi) and their first derivatives
2, yaﬁ(x‘) on a hypersurface in Vs then how do we determine the values of these
potentials, as well as thoseméndv,, in a neighborhood ok, assuming that they satisfy
the Jordan-Thiry equationS,;z=r vsVs.

The hypersurfacg is always assumed to be non-tangent to the elenyssdae ofVs
(y**# 0). From the relation:
R —

wln

S=-2r,
one deduces that:
Raﬂ = Saﬂ +%yaﬂR: r(VaVﬂ _%yaﬂ)'

The study we made in general relativity (I, SE). led us to replace the initial system
of the interior, unitary case with an equivalent systbat is composed of the union of
the following two systems:

(35-1) R = _%y44a44yAB +Fpg =1 (VaVs =3 Vas)
and:
(35-2) Sy =y,

in which Fag andS; do not contain derivatives with respectfowith the index 2. We

agree to add the equation:
(35-3) Vi, =1

and the inequality > 0.

Any solution {45 W, r) of this system will also satisfy equations (29-5) andgR9
which express the conservative character of the té&gar These equations may be put
into the form:

(35-4) ViDLVP =V, v + D (C.d.,vs,0,w) =0 (C.d. = Cauchy data),

(35-5) Dy (rv® =Vv*a,r +ra, v + F(C.d.,vy, d,Vvy,r,0,r) =0.
4 4 A A

Having said that, we assume that the Cauchy gaté&’) andd, y,s (X) are three and
two-times continuously differentiable &) respectively. The values of tH&' will be

determined ofx once they are given. It will then be possible tedaine the values of
and thev, onZ. From (35-2) and (35-3), one will first have:
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(rv)?=y*s/ $
The right-hand side must therefore be positive. We set:

y¥s;s; = @%*>0,
in such a way that:
(35-6) rvt=Q%

With the aid of (35-2), one deduces from this that:

_S oS @4*

(35-7) V”_E’ \Y; o r= o

One will note that the right-hand sidesand, in turn, the left-hand sides as well
depend only upon the variables)( which confirms thénvariance of r and the vectar
with respect to the group of isometries @f. VSince the scalar must be positive, one
must also hav&™ > 0. On the other hand, the Cauchy data deterthize, up to sign,
namely, the indeterminacy in the sign®f We assume that this sign has been chosen
once and for all.

Equations (35-1) then provide values for the deiesd,, y,; on; SinceS* > 0 -

and, in particular, it is non-zerowe have that* # 0. As a result, equations (35-4) and
(35-5) will provide values for the derivativesv, ando,r on Z, respectively. It results
from this that the quantitieg, r, d,, yas,r, d,Vva, 0,r will have well-defined values on
a hypersurfac& that satisfies the hypotheses we madecamot be discontinuous when
traversingZ. The same conclusions will possibly extend to vhkies of the higher
derivatives of a solutionygs, va, r) on S by differentiating either (35-1) or (35-5) and
(35-5) with respect”.
One deduces the values of the quantitiesp, i on the hypersurfac& in V,

immediately from the values ofandv, . Sinceh = v, the formulas of se®0 and32
will imply that:

: % A A
u'= = Xp={1+5—2j, Xﬂ=ﬁvom/1+5—%-

1+-2

52

Having said that, consider a s¢t4 Vi, r) that satisfies equations (35-1), (35-4), and
(85-5) in a neighborhoodf = and equations (35-2) and (35-@&) Z. Because of the
conservation conditions, an argument that is idahto the one that was made in I, sec.
18 will show that (35-2) and (35-3) are then satsfoeitside ok. From the viewpoint of
integrating equations (35-1), (35-4), and (35-9tthas preoccupied us, this fact will
therefore suffice for us to establish that theraimgxists a “physically” unique solution
to the Cauchy problem, provided that our are hypsgh are satisfied, namely:
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Y20, Q@Y =y*¥s' g >0, s*>o0.

We now examine what sort of hypersurfacenight produce discontinuities when
one traverses ivith a given interior, unitary fieldr finite # 0). One will observe this
phenomenon:

a) WhenZ is tangent to the elementary coné/ebr is acharacteristic manifold, (j**
=0).

b) WhenQ* = 0, which, from (35-6), entails thaf = 0, and, in turr§;= 0. The

surfaceZ will be tangent to a penta-dimensional streamlingviirbe generated by
such streamlines

If S* = 0, withr remaining finite, then one will hav@* = 0, and one will come back
to the preceding case. Therefore, other tharthe exceptional hypersurfaces here will
consist of the hypersurfac&s that are generated by the penta-dimensional streanline
They will have corresponding hypersurfa@sn V., along whichu® = 0; i.e., they will
be generated by spacetime streamlines.

The phenomena that were studied here that correspond cahysto the
electromagnetic field-pure matter schema are therefom@letely analogous i to the
ones that appeared in general relativity in the pure medse.

36. —Matching conditions and the prolongation of the interior to the exterior. —
We propose to present a model on a manifgldhat involves several distributions that
are connected to charged matter. Each distribution geseaalomain that is bounded by
a hypersurfac&. On one side df, there exists a cylindrical metrit that satisfies the
Jordan-Thiry equations for the interior, unitary cas& each of these domains, the
potentials are continuous relative to an admissible coatelisystem, as well as their first
derivatives.

What happens when we traverse a hypersurkite Conforming to the general
axioms of the theory (see seib, a), we must impose the following conditions, which
generalize the Schwarzchild conditions of general kettati

MATCHING CONDITIONS. - For any point xof S there exists an admissible
coordinate system whose domain containgnd issuch that the potentials that are
defined by @ relative to this system are continuous, as well as their diesivatives,
when one traverses

Since the differentiable manifold/s, is twice-continuously differentiable, the
potentials and their first derivatives are, of coursentiouous for any admissible
coordinate system and any point\@f. On the contrary, since the field equations take
different forms on either side df, the second derivatives of the potentials will be
discontinuous upon traversiag
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We give ourselves ald® that corresponds to a domain that is bounded by a
hypersurfaceX that is generated by the trajectories in the interiutaty case. We
propose to find under what condition there would exisexteriordd® on the other side
of 2 that agrees with the given interide?, in the preceding sense, Bn We say that we
are treating the problem pfolonging the interior to the exterior.

Therefore, suppose that there exists such an exteriorSince the hypersurfageis
defined locally byx* = 0 in an admissible adapted coordinate system, the desafit
that are associated with the exteribs® are identically zero. Now, their values &n
depend upon only the potentials, their first derivatived, thrir second derivatives with
respect toc* with an index that is at most 1. From the matching ofiritexior do and
the exteriordd?, the quantitieS; that are associated with the interior field musb e

zero onz, and one will have:
Q) =rv', =0

onZ. One deduces from this tHais necessarily such that:
V'=0;

i.e., that>, which is generated by trajectories, is also generateédebgenta-dimensional
streamlines of the interior field.

Conversely, assume that this is true. Since the hygace >~ is generated by
streamlines, it will admit tangent plane that cutsdlgnentary cone ofs ; we say that it

is time-oriented. On the other hand, Digx* = 0), the quantitiesS; that are associated

with the interior field are zero. An exteridr? that agree with the interiatd® on X is
therefore a solution of the exterior Cauchy problentikeldo = and the Cauchy data that
are provided oix by the interior field, which are data that satisfy ¢baditions:

S‘ =0

onZ. One knows that under these conditions this probldhadinit a physically unique
solution locally.
We state:

THEOREM - In order for the prolongation of the interior to the exterior when one
traverse a hypersurfacg that is generated by the trajectories of the interior field to
admit a solution, it is necessary tlabe generated by the penta-dimensional streamlines
of the interior field. That condition is sufficient for the locaistence of an exterior
solution.

37. —Geodesic principle in the Jordan-Thiry theory. — Suppose that there exists an
interior, unitary field and an exterior, unitary fieltat agree on a hypersurfacewhich
is generated by trajectories. The hypersurfaosill then be generated by the penta-
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dimensional streamlines of the interior field, whiclk atreamlines that are geodesics of
the interior field, and which are oriented so tief® > 0, and from the matching
conditions, they will also therefore be geodesicshef exterior field that are oriented
such thadd® > 0. Thusthe hypersurfac& will necessarily be generated by geodesics of
the exterior field that are oriented so that’d> 0.

We consider a small charged particle in a given exteuoitary field. InVs, this
particle will describe a domain that is boundedbgnd has a very small section\ip
that is generated, on the one hand, by trajectoriegs,obnd, on the other hand, by
exterior geodesics that are oriented such tlidt< 0. If one passes to the limit and
neglects the section M, then one will sees th&reduces to a two-dimensional surface
in Vs that is always generated, on the one hand, by traestofVs, and, on the other
hand, by geodesics of the exteritr® that are oriented such thét? > 0. One will note
that in order for this condition to be satisfied, itllveuffice that the trajectories that
generate& sweep out a geodedicof the given exteriodd? that is oriented such thdt?
> 0. Indeed, lex be a point of, and letxr be the point of that projects onto the same
point asx onV,. Apply the canonical isometry &% that takes¢ toxto > andl. X is
invariant under this isometry, amdis transformed into a geodesic of the same type that
passes through One sees that in order to determine the motion of Igetaarticle in
Vs, it will suffice to start with a geodesic &% that is oriented such thai® > 0 and
project it ontoVs, conforming to the considerations of the preceding chapér state:

GEODESIC PRINCIPLE —The geodesics i¥s of an exterior unitary field that are
oriented so thadd® > 0 may be interpreted as the penta-dimensional trajectories of
charged particles in this unitary field.

One sees that, as in general relativity, this prinaple consequence of, on the one
hand, the conservation conditionis.e., the field equations and, on the other hand, the
matching conditions. We therefore find ourselves in detapagreement with the
statements of sed5.



CHAPTER I

GLOBAL STUDY OF UNITARY FIELDS

38. — Global propositions in unitary theory. — In the Jordan-Thiry theory, a
spacetime modatonsists of a Riemannian manifdld that the hypotheses of sed$
and19. In particular, we note the following circumstances:

a) In the domains oY¥s that are swept out by a matter distribution — chargeabor
and bounded by the frontier hypersurfagethat are generated by the trajectories, the
metric that describes the field will satisfy the Jorddiry equations of the interior
unitary case.

b) In the domains 0¥s that are not swept out by any matter distribution,ntleg¢ric will
satisfy the Jordan-Thiry equations of the exterior upitaise, viz. Sz = 0.

c) The potentials and their first derivatives will bentinuous upon traversing a
hypersurfac&, in accord with the matching conditions.

Upon starting with this notion of a spacetime model, sl be led to look for
hypotheses under which the following propositions are vahd, for the same reasons as
in general relativity:

PROPOSITION (AU) —The introduction of a matter distribution — charged or not —
into a given exterior, unitary field may be performed only in domaimnghioh that field
is not regular.

PROPOSITION (BU) —An everywhere-regular, exterior, unitary field is trivial.

By trivial, we mean a field that is described by a metric thically-Euclidean on
Vs, so its electromagnetic field will be zero, as veallthe locally-Euclidian metric o,
(in such a way that one may say that the gravitatifieldl is locally zero).

In this chapter, we propose to establish the preceding gitmms in the case of
stationary fields and under hypotheses that will beiipéddn detail along the way. We
commence by occupying ourselves with proposition (BU), whglboth the more
interesting one and the more delicate to achieve.

I. — STATIONARY, EXTERIOR, UNITARY FIELDS

39. —Notion of a stationary, unitary field. — In accord with the considerations that
were developed in general relativity, a stationary, unifealg will be described by a
Riemannian manifol&/s that satisfies the following hypotheses:
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a) The manifoldVs is homeomorphic to the topological product of a maniféjaf
classC* with a circleT" under a homeomorphism of cla€8. It is endowed with a
Riemannian metric of clas®’ that is of the hyperbolic normal type:

(39-1) dd? = yap X d¥® (@, =0, 1, 2, 4)

and admits a global, one-parameter group of isometriessevtrajectories, which are
oriented so thaic® < 0, are the images of the factor lines. One useselapbrdinates
60, X) G, j, ... =1, 2, 3, 4) such that the Killing vect&r which is the infinitesimal
generator of this isometry group admits the components:

f=1, &=o, (=123, 4),

and the sections’ = const. will be images of the factor manifolds aasla result, they
will be homeomorphic toVa. The yzs will be functions of only thex) in these
coordinates.

The guotient manifol&/, is endowed with the structure of a Riemannian manifold of
classC? and hyperbolic normal type by way of the quotient metric:

(39-2) ds’ = g dxX d¥ (,j=1,2 3, 4),

that was defined in secl7. We find the intrinsically-defined scalaf and the
antisymmetric tensdf; onV, . If W, denotes an arbitrary section that is associated with
¢ in a system of adapted coordinates then this manifold cacobsidered to be a
Riemannian manifold with the metric (39-2). Other than pheceding elements (or
rather, their images), one finds the vector-potegtiadefined it.

b) LetW, (0 = 0) be a section of a well-defined system of adapted) wordinates.
We suppose that/, admits a global, one-parameter group of isometries that leave the
scalar £ and the vector-potential; invariant. The manifoldW, is assumed to be

homeomorphic to the topological product of a maniféif classC* and the real lin®

by a homeomorphism of cla€¥ in such a way that the group trajectories refer to the
linear factors. For a system of local coordinat&san W, (and, as a result, ov), we
choose a system of coordinate$ &) (u, v = 1, 2, 3) that are adapted to the group action
onW,. The manifoldV; is endowed with the structure of a Riemannian manifolchby t
quotient metric of clas€®:

(39-3) d$’ = g, dX dx u,v=1,2,3).

¢) Under these conditions, the manifédg which is homeomorphic to the prodiétx
T, will be homeomorphic t&/s x R x T%, and, as a result, it will be homeomorphic to

V,xR, in whichV, denotes the topological produds x T-. If (°, ¥, X") denotes the

system of coordinates o that just introduced then the lings= const.x" = const. are
the ones that must refer to the linear factors inlgtter homeomorphism. One will note
that in this coordinate system one has:
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(a4yaﬂ)X0:0 = O

onW,, and that, on the other hand, from the existence otdnenical isometries that
were described in):

604yaﬂ = O
One deduces from this that:
a4yaﬂ = O
on Vs. Thus, the lines® = const. A, B, ..., = 0, 1, 2, 3) will be the trajectories of a

global isometry group dfs. We assume that these trajectoriesogiented so thatld® >
0, and call them th#me linesof V5. One sees that since:

Qaa = Jaa + B2 EX(P 4)%,

the projections of these lines d4 are oriented so thas’ > 0 (i.e., in time). They are
called the spacetime timelines. By an argument thbased in the hyperbolic normal
type ofW,, it will immediately result that the metric (39-3) ¥nis negative-definite.

d) Letg be the Killing vector field that is the infinitesimgénerator of this new one-
parameter isometry group &, whose trajectories are oriented so hat > 0. In the
coordinatesx’, X", xs) that we introduced, this vector admits the components:

(39-4) {°=0, 7“=0, 7'=0,
while the vectog admits the components:
(39-5) =1, =0, =0,

The manifolds® = const. are images of the factor-manifolds thathameomorphic
to V, under the homeomorphism éf with V4 x T. The manifolds¢ = const. are images
of the factor-manifolds that homeomorphic\{p under the homeomorphism § with
V, xR.

We call systems of coordinates that enjoy the pregetivo propertiestotally-
adaptedcoordinates. A change of local coordinates that prese¢heevalues (39-4) and
(39-5) of the components §fand{ will necessarily have the form:

(39-6) XY= f"(x"), X?=x2+y(x"), X*=x'+6(x").

As a result, totally-adapted coordinates will be definedoughe change (39-6), in
which we lety and @ be the restrictions of the functions that were rafionVs to the
neighborhoods. It is these coordinates, which are wamedbusly adapted to both
isometry groups, that shall use in the sequel. jEhelepend upon only the'] in these
coordinates.
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e) As we have seen (see |, sBand63), the metric of the quotient manifold may be
defined conveniently in adapted coordinates with the aideoh#isociated contravariant
tensor. This is why one may define the medscof hyperbolic normal type o, by the
condition:

g'=y (i=1234),
and hence the negative-definite metds)® onVs by the condition:
gv=g"=y" uv=1,2,3).

Consider the manifoli,, which is the quotient manifold & by an isometry group
with trajectories that are oriented so tdaf > 0. It is endowed with the structure of a
Riemannian manifold with a negative-definite metric:

(39-7) ds = g,,dx* d¥ A B=0,1,2),

in which the associated contravariant tensor is dugth t

and it admits a global, one-parameter group of isometties x“, X’ — x° + h, whose
trajectories are homeomorphic Td. It is clear that the metr{ck)? on Vs can also be
defined by starting with the Riemannian manif¥lfl and its isometry group, since:

g'UV: VJV:g'UV.

40. — Complete, stationary, exterior, unitary fields— The stationary, unitary field
that was just described will be callsdatially-complete- or, more brieflycomplete- if
the Riemannian manifold; is a complete manifold.

In the sections that follow, we imagine that theictary fields are assumed to be
completeand exterior, in the sense of the Jordan-Thiry theory; i.e.ythatisfy the
equationsS,;z = 0 orRyz = 0 everywhere.

Thanks to the existence of the group of isometrie¥/with trajectories that are
oriented so thatld® > 0 (the stationary character\sf), we can begin the task of writing
down the equations by means of the tensors that are definéd &s we have remarked
(I, sec.70), equations [l, (69-5)] are not modified in form wheregmasses from the
positive-definite signature to the hyperbolic normalnaigre with trajectoties that are
oriented so thalc® > 0. We adopt the notations of |, sé8.by referring to the elements
that relate tov, and its metricds'® by a ‘ and not a We substitute the notation,
and H; for ¢' andH;;, and we must replacgwith ¢. Upon annulling the components

of the Ricci tensor o¥s relative to orthonormal frames that are adapted tetdtgonary
character o¥s, from (I, 69-5), one will thus obtain:
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=i 1 I 2 'l '
(40-1) RAB—?DAB(O AZ)—% H'S H,,=0,
(40-2) O, (¢%H,%)=0,
2
(40-3) —%A’Z +HTZ0, (HE SR 20,

in which the tensors that were introduced \6h are defined by their components in
orthornormal frames.

Let W, be a section< = const. ofVs. On this section, one has, moreover, as a
consequence of the field equations and from (24r€l)(24-7) (in which one sefs= 1):

3
(40-4) div'p' = % H'?,
with:
— ZS 11’ B
(40'5) pA :7¢'B HA :

41. —Another form for equation (40-3). — In totally adapted local coordinateg th

scalars{ andH'*depend only on the variables') They are therefore intrinsically
defined onVs as functions with scalar values. We proposeanstiorm equation (40-3)
in such a way that the only operations that arelired will be the ones that are defined
on V3. In order to avoid sign difficulties in the coersf calculation, we consider a
Riemannian manifold with a positive-definite metric

We shall therefore establish the following lemma:

LEMMA - LetV, be a Riemannian manifold with a positive-definitetin ds'?
that admits a one-parameter group of isometriesl lah\s be the quotient manifold with
the metriqd)?. If {is a scalar onV, that is invariant under the group of isometries

then the Laplaciam\'¢ of zonV, is related to the Laplaciathd on \4 by the relation:
[ A 1 Suv
(41-1) AZ: AZ+? g auzavz

We prove this in an orthonormal frame ®f that is adapted to the group of
isometries. The gradient vector §bnV, (d,{ =0, d,{) is invariant under the group

of isometries. As a result, its divergence\gnwill be given by the lemma of se83.
One will therefore have:
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N :% g 0,(¢ 0.0).

One deduces from this, upon expanding the devivahiat appears in the right-hand
side, that:

N =G0, am% gv0.0a,,
namely:
NE=A7 +% §°9,0 0.0,

and our lemma is proved.

In order to effect the passage from a positiventtef metric to a negative-definite
metric, one must substituté for ¢ and perform multiplications byor —i on all of the
indices, depending on whether they are contraviaoiaoovariant, resp. One will see that
formula (41-1) is not modified by that rule. Upaccounting for the expression faf{

in (40-3), one may put this equation into the form:

_A _1 Auv _Z_S 12

One will note that since z is positive the riglaint side of (41-2) is negative or null
for the signature envisioned.

42. — Case in which the spaceVs; is compact — Having said this, consider a
stationary field that is described on a Riemanmnaanifold Vs, whose spacé/s is

compact On this compact manifold, the functigtis such that-A¢ = 0. It attains its

minimum at a point o¥/s, and as a result, it will necessarily reduce twastant. One
therefore has:

= const. =, Hi\. =0,

and, from (40-1), the field equations will reduoe t

Therefore, there locally exist adapted coordinatesh that the metric 0w takes the
form:

do? =72(dx*)? + a&s'?,

and the manifold/;, with metric ds'> admits a zero Ricci tensor. Thanks to the exigten
of a group of isometries o, , we can express this last condition be meansrsts
that are defined oWs;. Here, we once more use equations of the typ@6P;5)]; in our
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notations, we substitutg (777 = = 0y) for £ and the antisymmetric tensér for the
antisymmetric tensoH. Since the signature is negative-definite and, assaltyeghe
trajectories are oriented so thét *< 0, these equations will give:

. 2
(42-1) R -1 @+ L K"K, =0,
n 2
(42-2) 0,(7°K,")=0,
2
(42-3) —%An:%Kz (K2= 1K, K2 0).

in an orthonormal frame oOv; .

Equation (42-3) shows us that the functipis such that A= 0 onVs.

It necessarily results from this that this funotieeduces to a constant and, in turn,
that K= 0. From (42-1), the manifold; will therefore have a zero Ricci tensor and

since it is three-dimensional, it will be locallp@idean. Sinc& = 0, there will exist
adapted coordinates &f locally, for which:

&5 = 772 (ch)? + ()7,

and, as a result, they will exist locally on thenif@d Vs over a neighborhood &4 in
totally-adapted coordinates such that:

do® =g (dx")* =175 (dX’)* +(B)*,

and one will see that the manifold is locally Euclidean. The electromagnetic fiehdit
is described by/s is zero, and the metric & may be locally written:

ds’ =2 (dx*)? +(db)?,

is locally Euclidean. The exterior unitary fieldat is envisioned is necessarily trivial.
We state:

THEOREM - In the case of a compact spaé¢ean everywhere regular stationary

exterior unitary field is necessarily trivial.

43. —Asymptotically-Euclidean behavior of a stationary, unitary field — We now
assume that the complete, Riemannian manWelddmits a domain at infinity
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Consider a three-dimensional Euclidean sp&gdhat admits a negative-definite

metric 8°. We assume that they are referred to a privileged auatedsystemyt), for
which:

&%= g dy'dy’,
in which:
Av=0foruzy, A =-1.

We say that the stationary field envisioned admits asymatigtEuclidean behavior
when, for a poina of V5 and a sufficiently large number:

1. There exists a homeomorphisnof classC? from the domairt(a, X > R of Vs

onto a domain ofé3 whose complement is homeomorphic to a closed ball (this

homeomorphism thus defines the structure of a Euclideare spache domain oYs;
envisioned);

2. One may find sectiond = const.,x* = const. ofVs such that for the privileged
system of totally-adapted coordinatgg’) that are defined on the domain\@fover the

domaind(a, ¥ > R of V3, the potentials and their first derivatives relatiwehis system
satisfy the inequalities:

M M
(43-1) |Vap = ap | < 10,Vap I<r—2 [r =d(a x); x 0 Vg],

in whichM is a positive number and in whidhz = 0 fora# B, &o=-1, s =+ 1.
It is clear that the poird plays only an auxiliary role here. Afis a point ofV; for

whichr = d(a, X) > R, and ify is its image inf; underh then one will establish, as in (I,

sec.89), that, by virtue of the inequalities (43-1) betweesnd the ordinary distange
fromy to the originO in &:

P=>(y")?,
one will have the inequality:
(43-2) P <Kr,

in whichK denotes a fixed number.

44. —Study of the flux vector p’ of W, . — Letrg be a fixed number that is greater
thanR, and letS, be the set of points &f such thatl(a, x) >ro. Consider a sphei, of

centerO and radiuso in &, and takeo sufficiently large that, will contain the image
of S, underh. We denote the image of the sphEgen V3 by Sp.
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Consider the compact sub&gtof Vs that is defined by:

a) The pointx of V5 for whichd(a, X) < ro;
b) The pointsx for whichd(a, x) = ro, whose image ir€s is interior to, or that
sphere.

The boundary 0B, is Sp, oriented outward.

Having said that, consider one of the sectids const. that was introduced in 2. of
the preceding section, which is a section that we wilbtie byW, . The points oW,

that project onto the points &, in V3 define a compact subset that is homeomorphic to
the productB, x T*, and whose boundad , is homeomorphic to the produsp x T

Let p’ be the vector ok, that was introduced in se4¢0, whose components are:
= ZS 1 g/
Pa :? ¢B HAB'

We propose to study the behavior of the fluxpdfupon traversingdC, when p

— 00,
As far as the modulusp’ of the vectorp' is concerned, it results from the

inequalities (43-1), by an argument that is ideitto the one in (I, se®9), that there
exists a fixed numbet; such that:

p'<—= (r =d(a, x); x = projection of the point ifV,),
and, as a result, from (43-2), that there will eai$inite numbelC, such that:

,_C
(44-1) Pz

On the other hand, the areads? ,under the metriads'> on W, , namely:

dz,

ac,

in which dX3 is the area element of this metric, satisfies&ations:

:‘ jacp {1+ OGH d¥ 0 &

(44-2) ‘ [ dz,

< Q.[Tl d)%[.‘jz d< ng’
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in which C; andC, denote a fixed number ardE is the Euclidean area element for the
metric— 6 on&;. One deduces from (44-1) and (44-2):

(44-3) lim flux aCﬂp’ =0,

paoo

since this flux is evaluated with the metids' on W, .

45. —Case in which the spacéd/; admits a domain at infinity. — For the case in
which the complete manifolf; admits a domain at infinity, we consider a statign
exterior field with asymptotically-Euclidean behawvi On the manifoldW, that was
introduced in sect4, one has:

s hA! ZS 12
divp'==—H".
P 2

By integrating oveC, whenpis sufficiently large, one will obtain:
flux,e p' = [ [[] & hear (H” 20)
% C 2 -

in which d7’ denotes the volume element\0f . Suppose thaH'? is positive at a point
of W,. It will then be positive in a certain neighbooldoD of that point, and for a
sufficiently largeo, one will have:

: (S
fluxse p 2“”D > H'“d7".

Now, the left-hand side goes to zero wlgen o, which is in contradiction with the
preceding inequality. One therefore kH$= 0. Equation (41-2) may then be written:

L(Z)E—AZ—(%Q'“VOVZJOUZ:O,

and the first theorem of (I, se82) may be applied to the functiofion the complete
Riemannian manifold/s, which tends to 1 in the domain at infinity. Otlerefore

necessarily hag§ = 1, and from (40-1)R;, = 0. Therefore, there will locally exist
adapted coordinates such that the metriv.ptakes the form:

do? = @dx)* + &7,
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and the manifold\, with the metric ds'* admits a zero Ricci tensor. We find ourselves
being within the scope of the conditions in s&¢.and we write equations (42-1), (42-2),
(42-3). Consider a sectidf, of W, that is defined by’ = const. There exists a vector

, on this section, with components:

in which ¢ plays the role o$, which is such that:

: n .,
divg="-—-K"~.
a 2

If B, denotes the compact subseMéf that projects ontd3 alongB,, and if S, is
its boundary then one will establish, as in (I,. 8, that:

Llfrlfluxs;]q =0.

One immediately deduces from this tH&t, = 0. Since equation (42-3) reduces to

An= 0, andsy goes to 1 uniformly in the domain at infinity \fs, one will necessarily
havern = 1, and that result will be obtained as in g&. We state:

THEOREM - An everywhere-regular, complete, stationary, esterunitary field
with asymptotically-Euclidean behavior is necedgdrivial.

II. — A THEOREM ON STATIONARY SPACETIME MODELS

46. —Matching stationary, unitary fields. — We now propose to study proposition
(AU). As in general relativity, an exterior, uniafield that prolongs a stationary field
upon traversing a hypersurfagethat is generated by the timelines of that fisldtself
locally stationary. Here, we therefore concernselwes with unitary fields that are
interior or exterior stationary.

In each domain where the field satisfies the JoiOairy equations of a particular
case- interior or exterior the differentiability hypotheses will be the ornbat we made
before. Upon traversing the hypersurfacéhat separates a domain\é&f that is swept
out by a matter distribution from a domain thahdd, the admissible coordinate systems
will now be only C?, piecewiseC?), and the metridd® is of class ', piecewisec?).

Let (x°) be a system of coordinates that are totally asthpd the interior field; for
example, ones witl defined locally by the equatioxt = 0. For the exterior, unitary
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field, one may obtain a system of adapted, local coakeBna a neighborhood &f that
presents a second-order contact with the precedingadmegZ; i.e., they satisfy:

(46-1) X' =x" +$[¢” (X)) +&* (x*)] (=0,2,3,4),

in which &' - 0 whenx! = 0. One may say that equations (46-1) expressagheement
of the isometries for the two fields an

47.- Study of R} for a section W, that is oriented so thatdc® < 0. — Consider a
stationary, interior, unitary field, and 18¥, be an arbitrary section of the timelines that

areoriented so thatld® < 0. The datum of this section determines tha déthe system
of sections that are deduced from it by isometoie¥s whose trajectories are timelines.
In an associated system of totally adapted coorenane will have:

(47-1) y*>0.

One recalls, moreover, that since the timelinesaaiented in time one hgsg, > 0,
and, as a result, that the quadratic form of treffiments y*® = g’ (which is none other

than the form that is associated wiff = d,, d¥' dX) is negative-definite.For such a

system of section®; will be strictly positive for the Ricci tensdrtbe field.
In order to establish this, we first observe that:

4 _ 4 1
R, =S, +3R.
However:

S, =y, R=-=0=-=r,

One deduces from this that:

We evaluate the quantity:
\/4\/4 _ % — y44(v4)2 + y4A VaVa _%[ y44(V4)2 + 2y4A VaVa + yAB Va VB],
in which we have accounted for the unitary characfeéhe vectow, in the right-hand

side. One thus obtains:
Viva— 1 = 1] yMv)? = v % va v,
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and, as a result:

r r
(47-2) R = E[ Y (va)? = y"® va vg] + ri

Sincer is strictly positive for an interior field, one se#t the componef; is
strictly positive.
Having said that, we may expressR; by means of the divergence that one

evaluates oW, . That equation will not be modified upon transformiagation (24-2)
by the rule that corresponds to the hyperbolic norngaladure for trajectories that are
oriented so thatic® > 0, and one may write an equation that relategstand W, that
differs only by the notations:

(47-3) divh'=-¢ R},

in which the vectoh’ onW, has the components in adapted coordinates:
;o ZZ ] B
(47-4) hA—aAZ+7¢BHA.

Formula (47-3) provides the equivalent of Gauis®rem in our theory of stationary
fields.

48. —Existence of singularities for the transition from theexterior to the interior
for the unitary field of a matter distribution. — Consider a domai® of Vs that is
bounded by a hypersurfage contains a stationary interior field, and is gated by the
time lines. In a neighborhood &f this field will induce a stationary, unitary fiethat
satisfies the Jordan-Thiry equations of the exterase, and agrees with themZn We
propose to show that this last case may not beressto be regular iD.

We therefore assume that this field is regulab iand letdo? and do’ be the two
corresponding metrics di that correspond to the interior and exterior fie@bpectively.

Let W,"' be a section relative to the interior field anéeor it so thatlo? < 0; it will
determine a three-dimensional domBinonZ. One may construct a hypersurfasg®
that passes throudbs that has a second-order contact vWﬁ” onD3 and is transversal

to the timelines of the exterior field ib;. We may adopW,® as a section for the

exterior field in D and adopt local adapted coordinates for the tvedddi in a
neighborhood that have a second-order contact.

The vectorsh’ onDs that relate to the two fields are identical sitloey depend only
on the potentials and their first derivatives. W@pplying formula (47-3) to the interior
unitary field, one will obtain:

fluxp b =~[[[[ ,¢Ri dr' <0,
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in which dr' is the volume element relative tds'®>. This flux is therefore strictly
negative, whereas the same formula, when applied texteeior field, will give:

flux, h'=0,
which leads us to a contradiction. We state:

THEOREM - If we are given a stationary, interior, unitary field that is bounded by
a hypersurfacé&that is generated by timelines then the stationary, exterior, urfigd/
that agrees with it on S may not be prolonged regularly to the entire domadire of
interior field.

[ll. - GLOBAL PROBLEMS IN THE KALUZA-KLEIN THEORY

49. — Global propositions in the Kaluza-Klein theory. — Propositions that are
completely analogous to the ones that were statedcir38 present themselves in the
theory of electromagnetism in general relativity, @guivalently, in the penta-
dimensional Kaluza-Klein representation of that thediye are therefore led to seek the
hypotheses under which the following propositions arelvali

PROPOSITION (AK) — The introduction of a matter distribution charged or not
—into a gravitational and electromagnetic field that satisfies the resic equations of
the pure electromagnetic field schema may be accomplished only in dorhanestiat
field is not regular.

PROPOSITION (BK) — If a gravitational and electromagnetic field satisfies the
relativistic equations of the pure electromagnetic field schemavbese then that field
will be trivial.

This latter proposition does not differ from the ohattwe pointed out in general
relativity in I, sec.33.  We begin by specifying the various equations that veel me
order to study proposition (BK). In order to permit usefnparisons with Book I, we
adopt, not the penta-dimensional viewpoint in the hypethesd statements, but the
same viewpoint as in the relativistic theory of electagnetism.

50. —The field equations for the pure electromagnetic field $eema — Consider a
spacetime on which we have defined a metric of hyperbofimal type:

ds’ = g; (X) dxX dx (,j=1,2 3, 4),
and a global vector-potentigk, whose rotatiorf; represents the electromagnetic field.

We assume that the gravitational field and the eleagmetic field thus-introduced are
stationary; i.e., we assume that spacetime admg®laal group of isometries whose
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trajectories are oriented so tif > 0, and which leaves the vector-potengiainvariant.
The quotient manifold will be designated gy.

We introduce a manifol¥fs that is the topological product of spacetime withralei
T If (x) is a system of local coordinates on spacetimex&n’rsjthe canonical coordinate
onT* then a point o¥s will admit local coordinatesd, x), and the variable® = const.
will be the factor manifolds ofs. The linear factors will be representedxby const.

We identify spacetime with one of the sectidisof Ws, and we endow/s with the
metric that is defined in the chosen local coordinbyes

wo=—45.  Wi=-B &, K=0i= 5688,

in which & designates a constant; sirgg is strictly positive in adapted coordinates on
spacetime, we may chooégto be sufficiently small thap, is strictly positive. We thus
obtain a Riemannian manifold fd that has the hyperbolic normal metric:

ds? = yup dX7 A,

which enjoys properties that are identical to the ohas were analyzed in se89. In
what follows, we shall use notations that are idahtc the ones in that section (wih=
&). For a convenient choice ¢ the equations of the Kaluza-Klein theory for the
exterior unitary case relative to orthonormal frame¥gthat are adapted to the isometry
trajectoriex' = const. can be put into the form:

(50-1) S, =0, S, =0.
Let W, be anx’ = const. section of the manifols. We propose to establish that

equation (40-4) is again a consequence of our new field equatirbat section.
Indeed, one obtains:
S=AKg

for the componentss]* (A = 0, 1, 2, 3) of the Einstein tensor \¢f in totally-adapted
coordinates; namely, from (50-1):

Si=KAS.
Now A" = 0. One deduces from this that equations (50-1) forighkentail that:
S}=R=0.

Now, from (24-7), when it translated into the form tbatresponds to a negative-
definite metric, one will have:

3
PR+ H =divp (7%= i),
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identically onW, , with:

G
(50-2) P ="5 7% HY.

One deduces from this that equations (50-1) ethtail

I Y A ZS 12
(50-3) div'p —?H
onW;,.

The field equations entail another interesting egunence that one may establish in
penta-dimensional formalism, but which is simpkeestablish directly. Letv, be an’
= const. section of the manifoldsVand letg; be the vector-potential oW, . From
equations (50-1), one arrives at the Maxwell equneti

OF'=o0.
One deduces from this that: ) )
O(¢iF") =1FF'=F

onW, . Therefore, ifp denotes the vector &k, whose components are:

(50-4) Yi=¢F
then one will obtain: _
(50-5) Oiy!'=F-2

Since the vectolp is invariant under the isometries @f,, one may express the
divergence that appears in the left-hand side 0f5)bby means of a divergence s

with the aid of the lemma of se@3. If ' denotes the componentsipfrelative to an

orthonormal frame oMV, that is adapted to the group of isometries ontieatifold, then
one must have:

(50-6) %iv (") =F? (7 = g

51. — Case in which the spaceV; is compact and orientable.— Consider a
gravitational and electromagnetic field that s&sthe relativistic equations of the pure
electromagnetic field schema everywhere on a sppaedhat has a compact spage.
Since the manifoldV, is homeomorphic to the produeg x T, it will also be compact

and, from (50-3), one will get:

'[MZ—;HQ:O.

One deduces from this thatl, ;= 0. Therefore, there locally exist adapted
coordinates such that the metric\@yimay be put into the form:
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dd? = 723 (dX¥)? + 2.
In these coordinategss = 0, @4 = 0, and, as a result:
Fi,=0.0,-0,8,=0
in these coordinates. It will then result from agliencalculation (see |, se@?) that:
F?=4FF" =4 ¢"g"FuFui,

and as a result, the scaff will be positive or zero, and it will be zero only for aae
electromagnetic field.

Now, since the manifol®/s is compact and orientable, one will deduce from (50-6)
that:

F2=0.

Vs

We deduces from this that the electromagnetic fiemiie, and we come down to the
same problem as in the absence of the electromadieddicwhich is a problem that was
solved in I, sec86. We state:

THEOREM - If a stationary, electromagnetic and gravitatiorfedld satisfies the
equations that relate to the pure electromagnetatdf schema then that field will
necessatrily be trivial in the case of a compactiable spac¥;.

52. — Asymptotically-Euclidean behavior. — Now assume that the Riemannian
manifold Vs is complete and admits a domain at infinity

If £& and §) denote the same elements as in 48¢hen we will say that a stationary,

gravitational and electromagnetic field admits asymptdyidaliclidean behavior when,
for a pointa of V3 and a sufficiently large numb&

1. There exists a homeomorphism of cla$®f the domaird(a, X) > Rin Vs onto a
domain off3 whose complement is homeomorphic to closed ball.

2. One can find_<4 = const. sections dlV, such that for the privileged system of
adapted coordinategY that we defined in the domaifi; over the domaiwi(a, X) >R in
Vs by (") andy’ = x*, the potentials and their first derivatives, the paaésit, and their
first derivatives relative to this system will séfishe inequalities:

M M
|gij_aij|<T’ |akgij|<r_2,

and:
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M M
| ¢ |<—, 10,8 1< —,
r r

in which the notations are identical to the onesm43.

It immediately results from this that the statignanitary field on the manifold/s
that is described by the metnigs (in which, one may assume tha = -1 by takingy® =
&x°), admits asymptotically-Euclidean behavior, in the sefisec.43.

53. —Case in which V3 admits a domain at infinity. — Therefore, consider a
stationary gravitational and electromagnetic field thdinits asymptotically-Euclidean
behavior in the case of a complete spsgeand presents a domain at infinity. One
deduces from equation (50-3), as in gektand45, that:

H'?2=0.
One deduces from this that:
F2>0,

in which equality is attained only for a zero efeatagnetic field. Since the notations
B, and S, are identical to the ones in séd, one will deduce from (50-6) that:

quxS/,an.mB,andr',

in which d7' is the volume element ¢f)*, and7t' = n¢/. On the other hand, from the
asymptotically-Euclidean behavior:

lim flux ;, = 0.
P - P

One deduces from this that = 0, and the result will be obtained as before.

THEOREM - If a stationary gravitational and electromagnetieldl satisfies the
relativistic equations of the pure electromagnétd schema for a complete manifolg V
that admits a domain at infinity and presents adwptngally-Euclidean behavior at
infinity then that field will necessatrily be trivia

54. — Proposition (AK) for stationary fields. — In the Jordan-Thiry theory,
establishing the proposition envisioned for statign fields will result from the

consideration of theR; component of the Ricci tensor afy for certain systems of

totally-adapted coordinates. This component wallZero for an exterior, unitary field
and strictly positive for an interior, unitary fiel
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That will not always be the case in the KaluzaiKkneory. Indeed, by an easy, but
somewhat lengthy, calculation one will obtain:

R =1 XoF” + o0 (U'u,=3) + xo0 U,

As a result, this component will not be zeroin theemce of a matter distribution, and
will not have a well-defined sign in the presence of sudhstribution. An argument that
is analogous to the one in sé8.cannot be carried out then.

Therefore, from this viewpoint, the Jordan-Thiry theprgsents a coherence that is
better than that of the Kaluza-Klein theory. We kbaé that the proposition envisioned
may nevertheless be proved for the two theories unddnybothesis of a charged matter
distribution for which the charge hagll-defined sigrover the entire distribution.

55. —Proposition (A) for matter distributions whose charge has a definite sig —
In this last section of the chapteve shall no longer assume thhe field envisioned is
stationary

In either of the two theories envisioned here, we dansihe Maxwell equations,
which we write on spacetime as: _
(55-1) OH" = .

We assume that we are carrying out our proof in a foueswkional domail, that is
homeomorphic to the topological produ@i x | of a tri-dimensional domaiBs; with an
interval . Let () be a system of local coordinatesDg, and letx* be the canonical
coordinate orl; (X, xX*) defines a system of local coordinates Eorthat we shall use.
Fori =4, (35-1) may be written: _

(55-2) OiHM =

Consider the vectde that has components:

kl=H"
in the coordinate system envisioned. One has:
OH* =0k + T H* =0k,

from the symmetry of in its lower indices and the antisymmetrytbf Equation (55-2)
may therefore be put into the form:
(55-3) Ok =p

in which the vectok has the components:

(55-4) K= H"“, K'=0.
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Consider an interior, unitary field that corresponda ttharge matter distribution for
which the charge density admits a well-defined sigand which is bounded by a
hypersurfaceS in spacetime, upon which it agrees with an exterior, yniiaid. We
assume that one may bound the domain that is swept otliebglistribution by two
sections of the neighboring streamlines in such a mamr obtain a domaild,, which
we refer to the local coordinated,(x*) that we introduced, since the liné's= const. will
be segments of the streamlinesDn and the coordinate changes will be furthermore
admissible and have the form:

X' =f""(x"), x'* =x* +const.

The boundary ob, is composed af (x* = 0), ' (xX* = h), and a subséf of S Letk
be the vector that is defined by (55-4) in these coordinadme will have:

fluxs k =0, flux,k =0,
and, in turn, from (55-3):

flux k :jjﬁmﬁm d¥ 0 d@ 0 dR0 dt

This flux is therefore essentially non-zero. K @xterior unitary field is regular Dy
then one will establish, as before, that:
fluxt k =0,

which implies a contradiction. We state:

THEOREM -If we are given a gravitational and electromagndield in a domain
D4 that corresponds to a distribution whose charge hawell-defined sign then an
exterior, unitary field that it agrees with canrize regular in Q.

This theorem is just as valid in the Jordan-Thiry theasyit is in the relativistic
theory of electromagnetism.
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CHAPTER IV
ll. - THE EINSTEIN-SCHRODINGER THEORY

NOTIONS ON SPACES WITH AFFINE CONNECTIONS

56. —Definition of an affine connection. —-a) Consider a differentiable manifol(
of dimensiom and clas<’ (r > 2). At each poink of V,,, one can define a vector space
Ty of vectors tangent t¥, atx and the vector spacg of linear forms ak that is dual to
it. One calls an ordered setmfinearly independent vectors ©f — namely,e, &,..., &
- aframe with origin x and one denotes it B¥. Two framesR, with vectorse, and
R, with vectorsez, may be deduced from each other by way of:

(56-1) e, =A; e,
in which the matrix:

A= ()

is an arbitrary, regulanxn matrix, and therefore, an element of the linear gréupf n
real variables. We may translate (56-1) into the abbeVi@irm:

(56-2) R*= RA.

By duality, every such a franf& in Ty corresponds to a frame iy , or co-frame,
namely& , which is an ordered set oflinearly independent linear forn®', 6 ..., 8"
at the pointx. If 8, and &, are the co-frames that are duaRband R*then one will

have:
(56-3) 6 =Ag,.

b) Having said this, consider an arbitrary coverinypby open neighborhoods.
In eachU, we are given an ordered setrolinearly independent Pfaff form#( (x)) of
classC™. For eachx in U, these forms will define a co-fram@’, and, by duality, a

frame R| . In other words, over each admissiblave may choose local sections of the

fiber space of coframes ¥f, whose structure group @, or the fiber space of frames.
If U andV are two neighborhoods of,, and ifx(OU n Vthen there will exist a

regular matrixA/ (x) of classC'™ such that:

(56-4) g =A 6 (xOU nV)
and:
(56-5) R=R &

and one will obviously have:
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(A = A
If U, V, Ware three neighborhoods\f, and if xOU nV n W then we will have:

& = A 6= A A

As a result, we will have:
(56-6) A=A A, (xOUnVnW).

In the sequel, it will be convenient to introduce k@ matrix of Pfaff forms that are
defined for eaclkJU n V by the relation:

(56-7) Ay =(A)NdA = A di =-dj 4.

Suppose thakOU nV n W. By differentiating (56-6), one will get:

dA,L\JI = d@ A\/N+ A\i d/%,.
If we multiply the sides of this relation by the tme
(A7) = (A7) (Ay

then it will become:
(56-8) Now = (A_l)\\jv/\ UVA\\;V+/\ vw-

c) In any neighborhood that is endowed with frajr@naffine connectioronV, is

defined by the data of a matriof Pfaff forms of clas€ 2 such that fox DU n V one
has:

(56-9) w, = (AT, A+,
Let U, V, W be three neighborhoods &}, . For xOU nV n W, one has three

matrices:ay, @y, wy . We seek to determine whether these matricesfysatlations of
the type (56-9) pair-wise. To that effect, we assuhat one has (56-9) and:

ay = (AW A+ A
We replaceaw, in this latter relation by its value from (56-9).becomes:
ay = (AW (AN @y A A+ (AN WA W AFA

so, from (56-6) and (56-8):
Wy = (AW WAy + A
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and our definition is therefore self-consistent.

There exist an infinitude of affine connections on dedéntiable manifoldV, .
Starting with a denumerable covering\@f one may construct one directly by induction
on the neighborhoods with the aid of the preceding tresnla moment, we shall confirm
that one affine connection o¥, may be deduced from another. A differentiable
manifold of clas<C' that is endowed with an affine connection of cla§$ is calleda
space with affine connectiaf classC ™.

57. —Explicit formulas. — We now propose to be more specific about some of the
preceding formulas that may be useful to us in the seqielthat effect, we introduce
the coframe matrices:

6, = (&) 6, =(6”).
If xOU nV then the matrice&’ and A/ have the elements:
A=) A=(A).
With these notations, (56-4) translates into:
(57-1) 07=A; 6"
The matrix/\yy of differential forms has the elements:
(57-2) Ny, = A dA].
We denote the elements of the connection matagesnd wy by:
w=(f)  w=(wy).
Relation (56-9) then implies:
(57-3) Wy =N N+ A di xOUNV).

In (57-3), we recognize the transformation law for theal forms that define a
Riemannian connection under a change of frame. Infohaivs, we will set:

(57-4) o = )26 xOU).

The y;, are called theoefficients of the affine connectienvisioned at the point

with the chosen frame# and R. From (57-3), these coefficients will transform
according to the rule:

(57-5) Vie =A K K v+ B0, K
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in which 0 , denotes the Pfaffian derivativesAfvith respect tag” .

58. — Passing from one affine connection to another— Consider two affine
connections o, with coefficients y;’y and ng, respectively, with respect to the same

frame. By passing to another system of frames, ondauk (57-5) and:
A — AN AB AT O !
Vie =P B By Vg * A§ 0y 5
Upon subtracting both equations one gets:
A _ A — A AB AT (0
Viip y;’p’ - Ab A)l A)? (yﬂy ng)
It results from this that the quantities:
T[g, = ng a ng
are the components of a tensor of rank 3 that is omeeavariant and twice covariant.
Conversely, by adding the components of such a tensoetoottfficients of an affine
connection one obviously obtains the coefficientaroaffine connection. We state the:
THEOREM - Given an affine connection afy, one obtains all of the other ones by

adding the coefficients of an arbitrary tensor of rank three that ie coatravariant and
twice covariant to its coefficients.

59. —Torsion of an affine connection— If ® and © are matrices whose elements
@g and ég are differential forms then we will set:

0" 8= (05 " &),
and letd® denote the matrix:
do = (d@;).

One obviously had(d®)) = 0. We still use the same notation if one of it rices
considered has only one row.
Having said this, ik U nV then one will have:
6V=n ¢

and, as a result, by taking the exterior derivativeath sides:

dgV=A/ dg" + d 06" = A’ dg” + dA A 06",
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namely:
(59-1) dgV=A/ dg" -A,, 06" .

On the other hand, from (56-9), after exterior multipdyby 8" one will have:
w8V = Aw, OA 6"+ Aoy 8",
namely:
(59-2) w8V = A @ 06°+ Aoy 8",
By (59-1) and (59-2) one obtains:

(59-3) dgV + w, "8V = A (d6° + ¢, 06").

In each neighborhood, consider the matrix with one row whose elementdaual
exterior quadratic differential forms:

>V =d8" + aw " 6.
(59-3) expresses the fact that fdflU nV :
(59-4) >V=A'3Y,

One may translate the result by saying that Zhdefine avector-valuedexterior
quadratic differential form. [E = (% and=" =(=#)then, from (59-4), one will have:

(59-5) > = AP35,
in whichZ% is given by:
(59-6) >7=do" + W .
If we set:
(59-7) 7=-55 6/ 6. (S5,=-S5)

then it will result from equation (59-5) th&;, are the components of a tensor of rank

three that is antisymmetric with respect to the lowelices. This tensor is called the
torsion tensoiof the connection.

60. —Curvature of an affine connection.— We now study the exterior derivative of
the connection matrix. By differentiating (56-9), onésge

day=A do, A+ dA 0w, A - Kw, 0 d&+dAyy,

namely, from (56-7):
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(60-1) day = A} dw, A + dA Ow, A - Kw, O di+ dA0 dA

On the other hand, we evaluate:

w oy =Aay Da A +a, A OANY +NY K Oaw, K+ Aoy Aoy

One gets from (56-7) that:
(60-2) w oy =Aa O A + Aw, DdA - dff D, K- di0 di.
By adding (60-1) and (60-2), one will obtain:
(60-3) day + "oy = Ay (day + ab “aw) A .

In each neighborhootl, consider thenxn matrix whose elements are quadratic
exterior differential forms:

Qu=dw+w ™ w .
One has:

(60-4) Qy = AQJ/ Qu Ay .

One may interpret this result by saying that thelefine a tensor-valued quadratic
exterior differential form of type (1, 1). 1Ry = (Q}) andQy = (Qj,',) then one will

obtain:

(60-5) Qj,ﬁ = AQA{j Q7

in which Q% is given by:

(60-6) Q} =dwj; + o) Owy.
If we set:

(60-7) Q4 =iR",, 0" 6"

then it will result from (60-5) that the“s,, are the components of a tensor of rank four
that is anti-symmetric with respect tb and x. It is the curvature tensorof the
connection.

61. —The Bianchi identities for an affine connection— We start with the formulas
that define the torsion and curvature of a connectioomMrow on, we shall write them
by suppressing the inded whenever the presence of that index is irrelevanth&
calculations being performed. One will then have:

(61-1) 2 =dé+ w" 8@
and:
(61-2) Q =dw+ w" w
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Take the exterior derivatives of both sides of (618ipced(dd = 0, one obtains:
dX =dw”" 8- w" db,;
namely, upon using the valuesdabanddé@ from relations (61-1) and (61-2):
Z=Q-wra"0-w"Z-w"0.
One deduces from this, after simplifying, that:
(61-3) dX=Q"6- w"%.
Similarly, take the exterior derivatives of bothesdf (61-2). Sincd(da) = 0, one
will obtain:
dQ =dw" w- w"dw
so by replacinglwwith its expression in (61-2):
dA=Q-w'W"w-w"(Q-w'd.
After simplifying, one will thus have:
(61-4) dQ =Q"w - w" Q.

Formulas (61-3) and (61-4) are called Bianchi identitiesfor an affine connection. In
explicit form, they may be written:

(61-5) dz’ =Qf 067 -af 05
(61-6) dQ§ = Q9 Dwf - o, 0Q5.

62. —Absolute differential and covariant derivative for an affine comection. —a)
Consider a contravariant vector field. Its componentsneighborhoodl are defined by
the matrix with one row" and by the analogous matsiX in a neighborhood, and for
x OU nV one has:

V=AW,
By differentiating, one obtains:
(62-1) dv/'= A dV +dA V.

On the other hand, from (56-9) one has:
v’ = A @ VN V= A @V - A A Y

namely:
(62-2) wV' = A @V’ - dA V.
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By adding (62-1) and (62-2), term-by term, one will get:
(62-3) v’ + ay v’ = A AV + ap V).
It results from this that the quantities:
(62-4) Dv =dv+ wv

define a contravariant vector-valued, linear, extadifferential form. The contravarinat
components are given explicitly by the Pfaff forms:

(62-5) DV’ = dv" + afiv*.

The form (62-4) is called thabsolute differentialof the vector field relative to the
connection. If one sets:
DVa = Dﬁv"H"

then one will see from (62-3) th&tzv® are the components of a tensor for which the
index S is a covariant index and which is called the covar@erivative ofv for the
connection. From (62-5), one will have:

Dpv? = 0,V +yo,v°,

in whicho represents the Pfaffian derivative.
One likewise establishes that if one considers ar@ntavector field that is defined
in each neighborhood by the matrix with one columwmy then the quantities:

Dw =dw — ww

will define a covariant vector-valued, linear, diffetiah form whose components are
Pfaff forms:

Dwg = dwy —wW,a))
and which defines the absolute differential of this fielhe corresponding covariant
derivative is:

DpWa = 0,W, =Yg W, .

b) LetT be a finite-dimensional vector space that servebeaspace of values for a
tensor of some particular type, andRé6G) be a linear representation@fin T. If one is
given a certain set of neighborhood% then a tensor will be defined in each
neighborhoodJ by the data of a functioty(x) (x J U) with values inT such that for
xdu nV:

(62-6) tb(9) = R(A') .
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For such a tensor field, by considering the linear reptaen R of the Lie algebra
of G that is induced by, one may establish that one may construct a tensoed;a
linear, differential form:

(62-7) Dty = R(ag,) tu
of typeR(G), i.e., it is such that:
(62-8) Dty = R(A') Dtv,

and which is called the absolute differential of thestenfor the affine connection
envisioned.

For example, if we consider a tensor field that mceo covariant and once
contravariant then formula (62-6) may be written eti:

taﬂ = A;I, A{; t/];,
namely, in matrix notation:

tu =AYt A =adi(A)t,
in which the linear representati®envisioned is made specific. One will then have:

Dty =dty + aut —tay
or, in explicit form:
(62-9) Dtaﬁ = dtaﬁ + Cdgtpﬁ —C()gtap )

and the general form for the absolute differential appear easily from (62-9). One
immediately passes to the covariant derivative. &lse sees that as far as the absolute
differential is concerned, the sum, tensor product,camiracted product satisfy the usual
rules of differentiation.

63. —Formulas in the natural frame of local coordinates— We say that we refer a
connection or the various tensors that we havedoted to a natural frame when we

adopt the co-frame?’ that is defined in each local coordinate neighborhood by the
differentials @x', dx, ..., dX") of the local coordinates?); the associated framd®’ are

called thenatural framesthat are associated with the local coordinated) #ndV are
the domains of the local coordinateg) (and(x” ), respectively, then one will have:

aﬁ

ox“ X
ox“?

= B —
& oxP’ A

for xOUNnV. Wih these values, one will always have (57-3) fax tonnection
matrices, namely:
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W =Ko K KA

7

In natural frames, we introduce the special notation:
—ra y
wfy =T dx

in order to denote the coefficients of the affine cotinec Under a change of natural
frame, these coefficients will always transformaciing to the formula:

(63-1) rjz”p’ = Ag A{j Ag rgy + A§ 0, 'g”

but one will note thad , now denotes the ordinary partial derivativeAjf with respect
tox” . From this, it results that:

(63-2) 0,A7=0,A,

I.e., that the last term in the right-hand side of1$3& symmetric in the indices.
Sinced(dx?) = 0, formula (59-6), which defines the torsion form, reduioea natural
frame to:
= afy " d¥X.
One thus has:
=9 dx Mo = =31, —T%) dX A dX.

One deduces from this that the torsion tensor that fsedke by (59-7) has the
components:

(63-3) S, =1, -T%) S =-5.

One may verify immediately with the aid of (63-1) and-&3hat under a change of
local coordinates the quantiti&€8s, that are defined by (63-3) will essentially transform
according to tensor laws. One will note, moreoveat if the F‘;y are the coefficients of

an affine connection in a natural frame then the shimg will be true for the quantities:
ra — ra
rﬂy_ rﬂy

since, from (63-3), th@‘gy are deduced from thi€, by adding a tensor of rank three that
is once contravariant and twice covariant.

Finally, from formulas (60-6) and (60-7), it is easy to dedilne explicit expression
for the curvature tensor as a function of the coeffits F‘[’,y of the connection. Indeed,

one has:

daf = d(Fg,dx)=d g, 0d¥ =0, dk0 dx=4(0,r

AL Bu

~9,re) dxd d.

A ﬂﬂ
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On the other hand:

of Oapy =T 9,17 o' Odx' =4(re,re, -rere,) dl 0 d.

pPAT Bu pAT Bu pu pA

One deduces from (60-7) that:

(63-4) Ry =0, -0, +ro,re, —rere

AT Bu u p PAT Bu pu BAt

64. — Tensors deduced by contraction.— a) One may deduce the following
covariant tensor From the torsion ten§f, by contraction:

(64-1) So=Fap.
From (63-3), one will thus have:
(64-2) By=T,,-T%,

in the natural frame that is associated with locakdmates.
From the anti-symmetry of the torsion tensor inloiser indices, the other possible
contraction will lead to the opposite covariant vecto

b) One may obtain two covariant tensors of rank 2 tgtracting the curvature

tensor that are essentially distinct. One of tisemstitutes the generalization of the Ricci
tensor of Riemannian geometry, so we also call iRticei tensor. It is defined by:

(64-3) R = Ra/l,a,u .

Its components in a natural frame are given expliatiyfunctions of the coefficients of
the connection by the formula:

(64-4) Ryw=0,r5, -0, +ro, s 1o rs,.

This tensor does not have any particular symmetry, nergé
The second tensor is obtained by contractingnd S in relation (63-4), and as a
result, it is anti-symmetric in the remaining lowediocesA andy. We set:

(64-5) Vau = Raa,A,u-
This tensor has the explicit expression:

(64_6) VA/I = a/lrg,u _a,urgﬂ :

It obviously reduces to zero in the case of a Riemargcoanection. In the case of an
arbitrary affine connectiorV,, will be therotation of a vector field.Indeed, if we give
the manifoldV,, a Riemannian structure with a positive definite metnighich is always



Notions on spaces with affine connections 24%

possible — and lef1% be the coefficients in a natural frame of the cqoesing
Riemannian connection then one will have:

a — a a
rﬂy_ nﬂy+Tﬂy’

in whichT is a tensor. By introducing the covariant vector:

T, =T2

ap !
one will obtain:
a —_ a a
Mo = Mo, +To,.

One deduces from this that:
Vou=09,T,-0,T,,
which expresses the stated property.
Suppose that the manifoldl, is orientable. It is easy to obtain a geometric
interpretation for the conditiox,, = 0. Suppose that there exists an exterior diffeaknt

n-form 77 onV, that is not annulled at any point. The componentsicti & form in local
coordinates may be written:
Mipyn, =N lg |5MZ...A“ ,

in which /| g | is the strict component of the form which is a component that one may
always assume to be positive, and in whigh , is the classical indicator of the

permutation. Under a direct change of local cowtdis,./ | g | will transform according

to the formula:
JIg'1 = Tglde( ;).

The covariant derivative af has the components:
D‘lﬂ/ll/l?m/ln = a/ﬂ/]l/lz"'/ln - rgﬂ ,7/]1/]2’"/1n !

D,u,7/11/12-~-/1n = (ay \/l g |_ rgu V |g |x/11/12.../1n .

If this derivative is zero then one will have:

ra — a,ll\/wI
au \/m !

and it follows from (64-6) tha¥,, = O.

namely:
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Conversely, iV,, = 0 then, starting with the transformation formulasit;, under a

local coordinate change, one easily proves that oryeconastruct am-form onV, that is
not annulled at any point and which has a zero covadanvative under the affine
connection considered.

65. — Symmetric connection associated with an affine connection. iriStein
tensor. — From now on, we will use the symbols () and [] as #ymbols of
symmetrization and anti-symmetrization, respectivelly.particular, if@,,... denotes a
system of quantities that depend on the two indicasd 17, and possibly other indices,
we have:

¢(,]/1)... :% (¢,]/1... + ¢/1,]...) ¢[,]/1]... :% (¢,]/1... - ¢/1,1...).

One immediately deduces that:
(65-1) ¢,]/1... = ¢(,]/1)... + ¢[,1/1]...

Now that we have introduced this notation, considectedficientsI'; of an affine
connection in a natural frame. From (65-1), one has:

a a a
U= Ty T
Now, by virtue of (63-3):
a —_
Mgy = Sy
One deduces from this that:
—-ra
Since theS5, are the components of a tensor, it will results ihat natural frame the
s, are the coefficients of an affine connection whassion is obviously zero. We

say that this connection is tegmmetric affine connectidiat is associated with given
affine connection. It is naturally possible to exprdss various tensors that were
introduced relative to the affine connection as funsti@i the torsion tensor and
elements relative to the symmetric connection. H@amethe corresponding formulas are
not particularly interesting.

In elaborating his theory, Einstein introduced a tetisatr we shall not use as a basis,
but which it is still convenient to point out. This tengq, is expressed as a function of

the coefficients™ of the affine connection by:

(65-3) Eau =0,15, =3[0, 0y +0,T (i1 ¥ T T 0, =T 0,0 5 -
We shall relate the quantiti&s,, to the preceding tensors that we introduced, and having

done this, we shall then establish thatEhgessentially define a tensor.
Start with the Ricci tensor of the connection:
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(65-4) Rw=0,r5, -0, +ro,re —rors,

and add the Ricci tensd®?,, of the affine connectio§, =¥, to it. One has:

R;M aarj,u _a,urja + rgarf:,u - r;urfa

H a .
or, by reverting to thE, :

(65-5) R,=0,I, -0,rg +rers -rore

AV ou Ap" ou*

By adding (65-4) and (65-5) term-by-term, one will obtain:
3(R,*R,)=E,-30,$-9, 9

We have thus obtained:

(65-6) En=3(R,*+R,)-3(0,%-0, 9,

which establishes th&t,, essentially defines a tensor.
On the other hand, one has:

Eru =R = 0,75, =3[0, (o) 0,7 (n] +T7,S,

AL (uo)

so, upon replacing the first term of the right-hand sided S, :

(uo) Au=p*

a

If W), denotes the contracted anti-symmetric curvature tengbeafonnectiorl”

then one will have:

in which the covariant derivatiig, always corresponds to the initial affine connection.

66. —Parallelism and geodesics- Let | be a continuously differentiable path\fh
that is defined parametrically by= x(t). In the local coordinate domair‘, we setx”
= dx?/ dt. If one is given a tangent direction\¥p at each point df (i.e., an equivalence
class of vectors whose origin is atthat is obtained by considering two non-zero
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collinear vectors as equivalent) then one knoshét this is what one intends by saying
that these directions are parallel relative to | and the connectand that this notion
does not depend on the parametric representation thHaigsrc foil.

In order for this to be true, it is necessary and efit that one must have:

(66-1) (dd—\f+r” vpxaj\ﬁ—(cij—\f+rgg\/’)€j\720

onl and for every pain, S, and for an arbitrary vectarthat admits this direction at each
point ofl.

We take the directions tangentltm be a system of directions alolpgvhich we may
define by the vectox®. If this system of directions is parallel relatied then the path
will be called ageodesiarc of the connection. One will then have:

(66-2) [dd—\f+ r‘;ﬂxpxﬂj %° —[CL—\f+ Mo, % )?j X =0,

and one will see that the geodesics of the affine adiamel;, depend upon only the
associated symmetric connectibfy,, .

Consider two affine connection &f) with the coefficientsi"‘;y and F‘[’;y, and look for

the conditions under which parallelism along any pathassame for both connections.
Starting from (66-1), one will easily establish that th@st general change of connection
that preserves parallelism is:

(66-3) =T +20;p,,

in which p, denotes an arbitrary covariant vector. (66-3) obviotisigslates into the
relations:
(66-4) ra

— a
w =T
and:

) TOs P, +0, 1y
Saﬂy: Sa/;y+5g P, *+ 9y Ps-

Such a change naturally preserves geodeaidsrtiori. An analogous argument
shows that the most general change of connectiorptbaérves geodesics is obtained by
performing the change (66-4) on the symmetric connectiannaodifying the torsion
tensor arbitrarily.

67. — Variational formulas for the curvature tensors. — Suppose that the
connection envisioned is varied in a domain of the maniéldin the sense of the

() Cf. EISENHART,Non-Riemannian Geometmmer. Math. Soc. Colloquiunpp. 12-13 and pp. 30-
31.
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calculus of variations, and Ieil“[’;y be the variation of the coefficierﬁt‘;y of the affine
connection. It is clear thadl” ‘[’;y defines a tensor that is once-contravariant and {wice

covariant: one may either reason as in 2@or observe that the definition of th# 7,

involves the difference of two connections, i.e., tanponents of a tensor of the
indicated type). Moreover, one recalls that the operadmommutes with the ordinary
partial derivative with respect to a local coordinate.

In what follows, we shall need the variations of tuevature tensor and the Ricci
tensor that corresponds to such a variation of theemtiam. We thus propose to extend
and adapt the calculations that were done in 2@for a Riemannian connection to the
case of an affine connection that has torsion. We \stén the explicit expression for the
curvature tensor:

R =0, -0, Mg, +10, 12, -rorg

AT Bu u B pAT Bu pu pre

One deduces from this by variation that:

Rigpu=0,d7, -0, 5+, a2 +00 a9 -7 0 -5,

pu’ pA

We then calculate the covariant derivative of theded ;,. We get:

D/‘d_gﬂ: aﬂd_gﬂ + rgﬂd_f?ﬂ - rfﬂd_gﬂ _rzﬂrzp
and:
Dyd_‘[’;/,: aﬂd';’u +r‘;ﬂd‘gﬂ —rgﬂd_‘;” -rere

A ot

By subtracting term-by-term, one obtains:
(67-1) d?alg/,]lu: D,]d_gﬂ— Dyd_fu— Zg]glu d_jp.

These formulas differ from the ones that were oletéhiin sec20 by the presence of
torsion terms.

68. — Local transformations on a differentiable manifold. — Let U be a
neighborhood ofV, and letf be a differentiable homeomorphism &f onto a
neighborhoodV. This differentiable homeomorphism induces an isomorplutithe
vector spacdy that is tangent tg [ U onto the vector spadey), and, more generally, an
isomorphism of the space of tensors of a definite typeoato the corresponding space

aty. We denote this isomorphism tf_y

() Of course, theb]/l;y are the components of the “variation of the connettiensor in an arbitrary

frame. However, since we shall have recourse to ancxipression for the curvature tensor, it is more
convenient to reason in local coordinates.
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Suppose that one is given a tensor f@jcon a domairD that coverd). We refer to
the transform of this tensor field by which we denote b)(f_e)x, when we mean the
tensor field orV that is defined by:

(68-1) (fo),=f1 0!

009t Inwhichx OV, f7(x)0U.

Let (x%) be local coordinates whose domain cowéend §) local coordinates whose
domain coverd). The magd may be defined in these local coordinates by the raktio

(68-2) X7 =1y) y7 = o (x9).

It is then easy to modify the local coordinates/ah such a way thaf is exhibited
in the simplest manner. It suffices to take new lacalrdinates foxk:

(68-3) x? = g/ (x).
The magf is then described by the relations:
xF'=yF

between the coordinateg’) of y 0 U and the coordinat¢s” )of x O V; f is then the

map that makes any tensolyahat is referred to the natural frame for the coorem#t)
correspond to the tensorathat has the same components relative to the hédtanae
for the coordinates” ).

By the same procedure, an affine connecfigrefined onU may be transformed
into an affine connection that is defined \drthat will have the same coefficients with
respect to the natural frame relative to the coordirfates

69. —Lie derivative. — Consider a non-zero vector fiefd in a neighborhood) to
which local coordinates are referred. One knows thatirttegration of the differential
system:

dx
E_Eaa

with the initial condition that the poigt must has the coordinateg’y att = 0, defines a
local transformation group of one paramettrat makes the poig{y“) correspond to the

point x = fi(y) whose coordinates arg“) in the same local coordinate system. Suppose
that one defines a field of geometric objects — tensatoonections — otJ. For a

sufficiently smallt, one thus finds the objeaétf_tCD)x defined atx. The Lie derivative of
® relative to the vector field, or the corresponding infinitesimal transformatXn=
£70,, is defined by:
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(69-1) X0, = m @, ~(7),].

One sees immediately that for the geometric objemtsidered her&®d, will always be a
tensor. One has:

(f,®), = Dy —t X Dy +tO,
in which the notatiorO will denote a term that goes to zero witin the sequel. The
relation X®, = 0 say that the fieldF is invariant under the local transformation group
considered.
In order to evaluate the Lie derivative in the variotsesawe must seek the principal

part att of the bracket that appears in the right-hand side e1}6%t the pointy(y“), the
transformatiorf; makes the point with coordinates:

XT=yT+t &(y) +tO
in the same local coordinate systems. As a result:
y'=x7-t&(x) +tO
and, conforming to (68-3), we perform the change of locatdinates:
(69-2) X =x"-t&+t0  (=a, numerically).
If §(X) denotes a scalar field then one will have:

(f.8)(X) = By) = (X) —t 70 ¢ + tO,
and, as a natural result:

X¢= %0 ,¢.

We now evaluate the Lie derivative of an arbitraryas@nt tensory,s of rank two.
It follows from the considerations of s&8 that:

(F)) e (D = 18u0Y) = yaX) —t&P 7, (X) + tO.

One deduces from this, as well as reverting to thedioates ), with the aid of
(69-2) that:

(f_t y)aﬂ(x) = A{: Ag(_t y)/],u()g

= (3 -t0, & +tO)(J 10, & +tO)(y,, —t&° 0y, +tO).
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As a result, by taking the coefficient of the termg& in the right-hand side, and
subtracting fronmy,4x), one will obtain:

(69-3): XYap= 70 Vs + Vpg0aE” + V)0 587 .

One establishes in an identical manner thgfifs a contravariant tensor of rank two
then one will has:

(69-4) XPP =800,y = y?0,8" = y"0,8",

and the rule that gives the Lie derivative of a tenstb@come apparent.
Finally, we propose to evaluate the Lie derivative o&fine connectiorl";y. If one

affects the transformed connection with indélxen one will first obtain:

t A

Cuv =19, (y) =T, (X)) —t&°0 ), +tO.

P

The coefficients of the transformed connection in ithigal local coordinates will be
given by:

ta e ’
[rﬂy}Aﬁ A A [rwj(xw Ao, A
or, explicitly:
ta
[Fﬂyjz(df +10,£7 +10)(95 ~ 10,4 +10)(d) ~9," +10)
(M, —t &0, I, +t0)+(d) +10,” +tO)(~t0,0,&" +10).
One deduces from this that:

(69-5) X9 =§°9 % —T5 9 & +T

P By

0,6”+,0,E7+0,0,&7.

a
124
One will observe that one can express the right-Bates of the preceding formulas

as the sums of tensors with the aid of an affine cdimmec For example, by substituting
covariant derivatives for the ordinary partial derivagiue (69-3), one will obtain:

Xyap=EDpVap + ToVis + T hVor) + Vi5(Dad =T4,E7)+ yin (D& =T 7,67 .
By introducing the torsion tensor of the connection, wilthen deduce that:

(69-6) XVap=EDp Vop + V/wDaf/‘ 727 D,BQZA +2& (y/]ﬂs/lap VY gﬂp) :




CHAPTER V

THE FIELD EQUATIONS OF EINSTEIN'S THEORY

|. — STUDY OF THE TENSOR g3

70. —The tensorsggz and g” . — Starting with the four-dimensional vector spage
we give ourselves a real covariant tensor of rank with no particular symmetry
propertiesthat satisfies some hypotheses that we shall spedffy propose to first give a
certain number of elementary results that conceentéinsors that one may deduce by
symmetrization, anti-symmetrization, and passing to sncted tensor.

For the tensog,s we suppose that:

a) g =det@qp % 0;

b) The quadratic fornd(X) = gaﬁx"xﬁ Is a non-degenerate form of hyperbolic normal
type with one positive square and three negative ones.

Sinceg # 0, the matrix g5 will always be invertible and admit an inverse matrix,
which we denote bygf®), such that:

(70-1) 9ap9” = 9pag’P = 6F (0P=0foraz B =1forB=aq).
(Y /Y a a

The g are obviously the components of a contravariantoten$ rank two. The
tensorgy,s andg® are called thassociatedensors. One obviously has:

det@®® :%¢ 0.

In the sequel, we let the same root lettgr kere — denote both tensors, one of which
is covariant and the other of which is contravarian
We also introduce the tensorial density:

(70-2) g” =g”lgl.

One will note that:

a 1
|det@™ ) |= IQZIE' =1gl.

It will then result that one may substitute theegi of the tensorial densitg”ﬂ for the
given of a tensog,; or the associated tenggf¥’ ; for example, one has:
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1

J1det@” )|

gaﬁ — gaﬁ

71. —The tensors that are deduced by symmetrization and anti-symrtrezation.
— Henceforth, we set:

(71-1) Jap = Nap + Kap; g% =19 + m,
in which:
(71-2) haﬁ =0(ap ka,B =0aa; |9F = g(a,b), mé? = g[aﬂ;

are symmetric (anti-symmetric, resp.) tensor.
We propose to study the relations that exist betwbe various tensors that were just
introduced.
First observe that, from (71-1), the quadratierfar(X) may be written:
D(X) = hgpXT X,
From hypothesib, one will thus have:

h = det fig) < O,

and in particular it will be non-zero. We shai@introduce the associated teris®t
From (70-1), one has the obvious relation:

(71-3) 9% = 09" Q.

Upon symmetrizing this, one will obtain:
1% =1 (949" Ous + 9T 7 9p) =3 (Qau + 9u) 9797

One will thus have:

(71-4) 1% = h,, g7 g,
and one will likewise establish that:
(71-5) 19 = h,,,g™ g

Upon anti-symmetrizing (71-3), one will obtain:

(71-6) m” =k, 79" = ki, g™ g*.
On the other hand, set:
Ya=giaX’, X' =g'Y,.
For X" andY, that are related in this way, one sees that:

WY) =17°Y, Y = hy, XA XH = d(X).
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It results from this that the quadratic form:
(71-7) W) =gV, Y= 17Y, Y

will also be non-degenerate and of hyperbolic nornmge tyin particular: det{?) < 0.
One will likewise establish that:

(71-8) hep = |/wg/1ag/1ﬂ , Kap = nf‘yg/lagyﬁ = W”Qm\ Opu -

72. —Explicit expression forg with the aid of the hpzand kys. — LetG, H, K denote
the matrices whose general elementsgageh.s Kas respectively. If denotes a scalar
constant then one will obviously have:

(72-1) K+ AH = (KH™ + Al) H.
By makingA = 1 in (72-1) and multiplying b ™, it will follow that:
(72-2) GH =KH™ +1.

We propose to evaluate the determinant in the right-eam@dof (72-2), and, to that
effect, to evaluate:
WUA) = det KH™ + Al).
One first sees that:

detK + AH) = det kap + Ahgp) = det Kpa + Ahgp) = det CKgp + Ahgp)
= det (K + AH).

Since the matrices envisioned ar&l4ne thus has:
det K + AH) = det K — AH).
As a result, by virtue of (72-1)AA) will be an even function of. One will thus have:

W) = A* +cA? +%,

so it will suffice for us to evaluate the coefficiemt It will be the sum of the diagonal

minors of order two in the matrix:

KH™ = (a,?) as” = kg .
One will note that:
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One of these minors corresponds to any i) (a # f):
a,"af - af a” (no summation).

Twice the sum of these minors is therefore:

2C:zaaaaﬁﬁ—2aaﬁaﬁ”: —Z(aa”)z_zaaﬁaﬁ”: _azﬁaﬂﬁaﬁa'

azp azp a azp
One then deduces that:
2C = = Kap WP Kpo W% = Kap kosh™HF,
By taking the determinants of both sides of (72-2), dstains:
9 1) = 1 43 kopkuoh™H 5,

and, as a result:

(72-1) g=h +2 Kag koo™ W7 +Kk.

73. —Explicit expressions forl?” and m* as a function of the tensors,z and Kyp.
— In order to evaluatg™ one may remark that:

0
gg’=_2-.
agaﬁ
As a result:
glr=2] 99 , 09 gnff=t[ 99 _ 99 |
2 agaﬁ agﬁn 2 agﬂﬁ agﬁ”

Considerg to be a function ofi,z andk,s by the intermediary of thg,s. One will get:

0 1{ 0 0 1{ 0 0
dg=— = 9 (dhog + disp) = —{—9+ < jdhaw —{—g-—gjdkaﬂ-

gaﬁ 2 agaﬁ agﬁn 2 agaﬁ agﬁa

One deduces from this that:

(73-1) g 1% :6_9, 9 rrf"ﬂ:a_g,

oh,,
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which provides a convenient way of evaluating lffeandm?®.
We begin with then®, whose expression is simplest. One deduces from (72-1) by
derivation that:
ag
ok

A

ok

= h ko?H7 +
L ok,

Y

If K* denotes the minor dfrelative to the elemeti,, then one will have:

0K _
ok, "
and one will obtain:
(73-2) =l kpgh/‘ph"”+£ KM,
g g

In the case where# 0, ks will admit an associated tensdf’, and one will have:

(73-3) v =1 kpah/‘ph"”+gk"”.
g

From (72-1), in order to evaluate thé“, we shall need to evaluate the
aB
derivativeng—. It follows from the relation:
yolea
al -
h* hg =9,
by derivation and inversion that:

ah hUM hﬂ,u 1/1 —_1 (haA h,B,u haH h,BA) ahﬂ# ’

oh,, oh,, oh,,,
namely:
ap
(73-4) o _ —1 (h%PhP + W),

oh

oo

By differentiating (72-1) with respect tg,, one will obtains, from (73-4):

99 = M (1 11k h‘”’h””)——ka koo (N7 W + % ) B,
on ah g g

Au Au

There naturally exist inverse formulas that arda@gaus to (73-3) and (73-5) and express
has andkgs as functions of** andnt™.
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[I. —DEFINING THE FIELD EQUATIONS

74. —The fundamental manifold. —The primitive element of our formula consists of
a four-dimensional spacetime manifold that is endowed with the same structure of a
differentiable manifold that one finds in general relyiviV, is first assumed to be of
classC?. One denotes an admissible coordinate system®yd, any Greek index = 0,
1, 2, 3). In the intersection of the domains of two adihle coordinate systems, one
assumes, moreover, that the second derivatives aoihrelinate change are functions of
class piecewis€’. This is what we mean when we say that the manifalds a
differentiable manifold of clas<C{, piecewisec?).

We assume that two geometric elements are definedomémifoldVa:

1. A tensor field gs of class C', piecewisec®), i.e., whose components are
continuously differentiable and whose derivativésg,; are functions of class

piecewise€?. At each poink of V,, the tensog,g satisfies the hypotheses of sé@; in
particular, the determinagtis non-zero. The tensggsis called thdundamental tensor.

2. An arbitraryaffine connectiorwhose coefficientd™, are continuous and have
class piecewis€&?.

These are the elements that we shall restrict thieh“field equations,” which we
shall derive from a variational principle, by analogy wittegal relativity or with the
Jordan-Thiry theory (see sexl)

75. —Several derivation formulas — Before we specify this variational principle, we
propose to point out several elementary derivatiomidas that relate to the tensgyp,
the associated tensg?, and the determinant

Suppose that thg,s are differentiable functions of one variable One deduces from
the relation:

g/]nga:J; ,
by derivation, that:
dg/w Ao dgpif
75-1 + =
(7>-D) du s 70 du

By multiplying both sides of the preceding relationgdy, one will obtain:

Ap d
(75-2) 907 - _grogn Do
du du

Likewise, one will deduce from (75-1) that:
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dg,, _ dg™
du - g/kfgpp du .

(75-3)

We evaluate the logarithmic derivative af |. From a well-known formula on the
derivative of a determinant, one will get:

dlog|g|_ s 9%

75-4
( ) du du

d
By replacing% with its value from (75-3), one will get:
u

dloglg|__ as dg* .
du g gap g/w du !
namely:
dlog|g | dg"
75-5 ———=-g,,— -
(75-3) du *du

We shall use these formulas in what follows. antipular, we apply (75-4) and (75-
5) to the case where=x". We set:

9,419
|9

Aol =30,log|g].
It will thus follow that:

(75-7) ¥p=2970,0,; ==10as 9,9%.

(75-6) Vo=

76. —The variational principle. — Let C be a four-dimensional, differential chain in
the manifold and arbitrarily vary the fundamentahdor and the connection in such a
fashion that the variations will be zero on the rtmaryoC of the chain envisioned.
Consider the corresponding variation of the scedded integral:

(76-1) I:.[Cg”ﬂﬂ,ﬁﬂ/|g|dx°’\...’\dx3,
in which Rq denotes the Ricci tensor of the affine connecfig.

The field equations of the theory are the onetsdbéine the extremum of the integral
| vis-a-vis all variations of the fundamental tenamd the connection that are restricted
by only the requirement that they should vanisitherboundary of C
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We evaluate the variation 6fwhile distinguishing the contribution that is made by
the variation of the connection, as well as the tha is made by the variation of the
fundamental tensor. We obtain:

(76-2) d :jcg"ﬂaa,ﬁ\/mw Y s +jcg”ﬂa,ﬁ LG gl A ...~

We set:
(76-3) al = jcg”ﬂaa,ﬁ\/m AL Ade
and:
(76-4) & =] g”RyA o\l gl dd~ ... ~dxX.

We first occupy ourselves with the evaluatiordgfby making the variatiorI ;, of
the affine connection appear explicitly.

77. —First form of the field equations — By evaluating the variation of the Ricci
tensor as we did in se@7, one has:

Rop = Dpd“gﬂ—Dﬂd‘gp— 255 d‘f,’ﬂ.
One deduces from this that:

9”oR, = D,(d’d 5;) - D(d"d 7)) - D g°d s,

(77-1) { a
+D,g ﬂargﬁ -25 a7, d”.

We will thus be led to introduce the vector:

(77-2) A=g¥P T2 -g%a

ao !

and we note that since the variation of the conoeds zero on the boundary 6f one
will have X = 0on that boundary.Formula (77-1) will then become:

(77-3) 9% Rap=DpA° - D,g” N Dpg” ag-2 KA T
We therefore propose to evaluate the integral:

JI :jCDpApuu g| d A . A,

One has:

DAL g | =(0,A +T 5, A1 gl = 0,(AJIgN)+ T —y,) X\ 19l
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in which y, is defined by (75-6). Under these conditions, one obtains:
J9) :jcap(Afau gl) A ... ~rdé+ jc(rgg —y)A gl dCn L~ dX

By applying Stokes’s formula, the first integralthre right-hand side will be transformed
into an integral that is taken over the boundargoivhich will be zero sincé’ is zero
on that boundary. One deduces from (76-3) andB{hat:

(77-4) al :jCM,/|g|dx°A...Ad>8,
with:
(77-5) M =D,g% &2, ~Dpg® &2, ~(F, —y,) N+ 297 X5,

in which A” is given by (77-2). We propose to exhibit the flicient ofd /;in the
various terms of the scallt. One has:

(77-6) M =[D,g% -3, Dag™ =(F5, = ¥,) 9% +3, (F5, ;) 9"+ 29" o] [ G,
Given a scala#, which we shall choose in a moment, consider tlantities:
G¥p(8 =Dpg% ~(T%, ~¥,) 9% + 26 8 g™°Sy.
By contraction, we will obtain:
G™4(8 =Dag™ ~(M5, 1)) 9" + 7 S,(46~ 1).
One deduces from this that:
[G%,(6) ~3° G4 (9] A £,= M + 26~ 46+ 1)8° ¢S, A%, .
We thus tak&g =1 and set:
(77-7) G, =D,og” = (15, = ¥,) 97 + S +3 7 g*S,.
Thanks to the introduction of these quantitie® will have the simple formula:
M =[G%,- 35 G| a2,
Thus,for any variation of the affine connection that isdres o@C one will have:

(77-8) ol ==[ [G%,-37G", | o [Igl d~ ... ~dX.
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On the other hand, from the considerations of 8@ct amounts to the same thing to
impose arbitrary variations ayz or g"ﬂ, and ong,, org”ﬂ. Therefore, for an arbitrary

variation of the tensorial densitg”ﬂ, one has:
(77-9) ol = jc R, 0% d . ndxX.

Suppose that we vary the coefficients of the affinenection without varying the
fundamental tensor or the tensorial dengjf§f. Conforming to the variational principle,

one must haveél = gl = 0 for any variation of the affine connection thazeso on the
boundary ofC. One deduces from (77-8) by a classical argument thanasehave:

(77-10) G%,- 55G", = 0.
One obtains by contraction that:
GMA _ 4Ga/1A - _ 3Ga/1A =0.
It results from this that the system (77-10) thus obtami#éde equivalent to the system:
(77-11) G%,=0,

in which theG"ﬁp are given by equations (77-7).
On the contrary, if we vary thg”ﬁwithout varying the affine connection then we

must haved = &l = 0 for any variation of thg” that is zero on the boundary®f The
following system of equations will result from this linetsame classical argument:

(77-12) Rys= 0.

The set of the two systems (77-11) and (77-12) constitubes system of field
equations.” In the following sections, we shall transfahese systems — mainly (77-11)
—in such a fashion that we will obtain a system ihatfinitely more manageable.

78. —Introduction of a new connection. -n order to simplify the form of equations
(77-11), we shall replace the original connectidfy with a new affine connection with

coefficientsLy, , which will be defined by the following lemma:

LEMMA — Given an arbitrary affine connectioh;, , there exists one and only one

affine connectionLy, that defines the same parallelism and whose comariarsion
vector is zero.
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Indeed, from (66-3), let:
Ly = g + 204 P,

be an affine connection that defines the same parall@lsthe connectioh. Its torsion
tensor is:

sy =S’y +35P,~9; Py
and, as a result, its covariant torsion vector et
2p=Spt Pp—4p= - Jp.
In order forzzto be zero, it is necessary and sufficient that:
Ps=3

One deduces from this that the only affine connectionathswers the question is:
(78-1) Ly, =T% +59;S,,
and that connection will be such that:

(78-2) Zp=19,-19,=0.

Having said that, we specify ti&s, with the aid of the new connectidtf,, . Upon
specifying the covariant derivatives, we will first get:

G =0,9%+ T 9%+ T2 g%+ 297y - ([%,— 1) 97 + 205 97°Sy.

If we take into account that:
B _ — 8
M2 -2 =T%,
then it will follow that:

G%, = 0,97+ 5,97+ 15,0~ (N9, ~ ) g% + 207 ¢™Ss.
By introducing the. instead of thé’, one will deduce that:

G%= 9,97+ (L5, ~25:S,) ” +(L5, ~397S,) f* ~ (L%, ~ 1) 0
+%gaasp+ %Jggaasa
After simplification, one will obtain:

(78-3) G% =0,9%+ L 9%+ L5, g% - (L9, - 1) g
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One will deduce an expression for theimmediately from the field equations (77-
11) - namely,G%, = 0, in which the€c%, may be provided by the formulas (78-3vith
the aid ofL. Indeed, by multiplying the two sides of (78-2) ¢y, one will have, as a
consequence of (77-11):

-2+ L+ L, —4(L,— 1) =0,
namely:
Vo = Lo

from (78-2). It will result from this that equations (77-&hfail the equations:

(78-4) 0,9%+ Lg%+ 5,97 = 0.

Conversely, suppose that we are given an affine connetfjp with zero torsion

vector and a covariant vect8y. If equations (78-4) are satisfied then upon multiplying
both sides of (78-4) by, one will get

(78-5) Y =12+ L2,

If one now takes into account the fact that the ¢arsector is zero then one will get:

(78-6) Vo =L,
and for:
(78-7) re,=L5,-295S

one will see from (78-3) that equations (77-11) are salisfie
Thus,the first system of field equatio(&/-11)will be equivalent t¢78-4) when the
connection Lis restricted to admit a zero torsion vector.

79. —New form of the field equations. -From now on, we shall try to replace the
connectionl"% with the connectiorL} , which satisfies equations (78-4) and admits a

zero torsion vector.

a) If one takes (78-4) into account then one may reqlaEdour conditions (78-2),
23= 0, with four interesting conditions that involve thedamental tensor. Consider an
affine connectionLy, that satisfies (78-4), but we make no hypothesis oroitsion

vector. One will then get (78-5). One deduces from (78-£pbiraction that:

(79-1) 0,9%+ Lg%+ L,

o

g”=0.

On the contrary, the other possible contraction gwié:
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(79-2) 0,9%+ L5 g%+ L2, g7 =0.
By subtracting the last two equations, one will obtain:

(Bl 4 |0 PB_ |0 ~BP —
20,9+ L7 9" - L;,0”=0.
Now:
L‘;U:Lj',p+2p.

One deduces from this that:
L7, 9% - 15,07 = (L2, + Z (17 + M) =L, (1 + M) = 5,17 + (2L, + =) m”;

namely, from (78-5):
L7,9% = L2, = 5,17 + 2y, m?.
One will thus obtain:
(79-3) apg[pﬂ] + ypg[/’/ﬂ =-1 meﬁ.

Since det®) # 0 (see sec7l), it results that in order for the torsion vecky of the
connection envisioned to be zero, it is necessary afidisof that one have:

(79_4) apg[pﬂ] + ypg[/’/ﬂ =0:
namely:
9 g =0.

=4

Therefore the search for a connectlbpy that satisfies the first system of field equations
is equivalent to the following problem: Find a connectigp that satisfies the equations:

(79-5) 0,97 + 15,97+ L, g% =0,

while the derivatives of the fundamental tensor aseimed to satisfy the four relations:

(79-6) apg“’ﬂ] =0.
The formula:
(79-7) Mos = Los=3597 s,

in which Sz is an arbitrary covariant vector, will then gives tesired connection.
One may replace formulas (79-5) with the equivalennidas that are obtained by
multiplying both sides of (79-5) ¥4 It will then follow from (75-3) that:

(79_8) ap g/lp - Lt/lTpga,u - Zpg/la =0.
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b) LetPysdenote the Ricci tensor of the connection. It &/da evaluate the tensor
Rap by starting withP,z. Indeed, one has:

Pas= 0,5, 04, +L7 L0, —L7 L0, .

On the other hand, one gets from (79-7) that:

Rop=0,(MGs =507 S) —0,(M5,=597S)
+ (M5 =30, S5 =507 S) — (T, =397 (TG —5 07 So).

One deduces from this that:

Rap=Pap =5(0,5,70,9)~35( b §+ b 3~ & 5 b S5 o555 2 9):

namely:
(79-9) Rap=Pas — £(0,5,-0,3)-

It results from this that one may replace equationsl1@)y which relate to the
connectiod, with the equations:

(79-10) Pas — 2(0,S,-0,S) =0.

¢) We are thus led to adopt as our new quantities thetrdime the unitary field, not

the fundamental tensogg, but the affine connectioh‘;y, which is arbitrarya priori, and

the covariant tensds,. The field equations will then be given by equations (797
8), and (79-10).
The field quantities consist of the sixteggy, sixty-four L% , and fourS,, and we

effectively have the four equations (79-6), the sixty-feguations (79-8), and the sixteen
equations (79-10) at our disposal. We ultimately establishtiese equations are not
independent, but that there exist four “conservation itlesitithat insure the role that is
played by the admissible coordinate changes, exactheggo in general relativity.

One may remark that the system of equations (79-10) isaqunt to the set of the
two systems:

and:
(79-12) Plag = %(aasﬂ _aﬂ )

If P denotes the quadratic exterior differential form whosefficients aréP 44 then
it clearly must follow as a consequence of (79-12) that:

(79-13) 0sRpy +0,Rq +0,P =0.
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Conversely, equation (79-13) entails only the local existesfca vector-potential.
That is why it is preferable to use equations (79-12) inste@tPel3).

80. —The contracted, anti-symmetric, curvature tensor and Einsti& tensor of L.
— Consider a solutiog,s L, ;0f equations (79-6) and (79-8). As we saw in §8cfrom

it results these equations that the torsion veEtasf the connectioih is zero, and, as a
result, from (78-5), that one will have:

0,4/
(80-1) P9 L7, =L

J{D = gp ~ “po-
Jlg
If the manifoldV, is orientable then there will exist an exteridfedential form onV,

.(80-2) n=ylgldl» ... ~rdé

that has zero covariant derivative for the conoecti/;, as well as the associated

. L)
symmetric connectio ﬂ_(aﬂ) .

curvature tensor¥,, andW,, relative to the connectionk;, and L, are identically
null:
(80-3) Vi =0, W, = 0.

In any event, from (80-1), the contracted, agtametric,

In what follows, we shall denote the covariantivhive relative to the connection
L5, byd,. If Ey, is the Einstein connection of this connection tbee sees that (65-7)

may be written here:
E/l,u = P/l,u + d,uzA - WA,u y

which reduces, with the conditions (79-6) and (79@&
(80-4) Eiu =P
On the other hand, with the same conditions, (6§h\&s:
Ew =P+ P,)-400,%,-0,%,)=1 (P + P,).
In particular, one sees from (80-4) that one neplace equations (79-10) with the

equations:
(80-6) Eos—300,5,-0,%) =0.

81. — A symmetry theorem. —We make the following tensor correspond to the
fundamental tensagy:
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(81-1) gaﬂ =0ap= ha'g— ka,B-

The tensorg,; obviously satisfies the same hypotheses as the tepgorin
particular,g =det(g,; )=g# 0. The associated tensor is:

gaﬁ — gaﬁ: Ia,B _ maﬁ.
We have attached any affine connectldj to the affine connection with coefficients:
(81-2) Lo, = L5,

If T/,denotes the affine connection that thus correspondgtcthen its torsion tensor
will be:
Spaﬂ =~ S

and, as a result, its torsion vector will be:
(81-3) S,=-%.
Having said that, we propose to establish the followhnegitem:

THEOREM —If (gas L;,, Se) define a solution to the field equatiof®®-6), (79-8),
(79-10)then the same is true f(@,;, L2;,S, ).

The field equations are, as we have seen, defined byttb&thece systems:

(81-4) 0,9=0
(81_5) apg/ip - Ljp gqu - LL;T;;/ Q0= 0
(81-6) Pas— 2(0,S,-9,5)= 0.

If (gaﬂ,[{,’ﬂ,s,) is the set of quantities that that are deduced fromdhgien Qs
L‘Zﬂ, Sy) by the operations that we just introduced then onefinsll have, from (81-4),
and sincg = g, that:

(81-7) apglpﬂ] - apg[pﬂ] - 0.
On the other hand:

apgﬂp - L/LiTp gqu - L;u g/w: apg/ip - Ljp gqu - LL;T)p g/la'
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Now, the right-hand side differs from the left-hamdesof (81-5) only by the exchange of
the letterst andy. One deduces from this that:
(81_8) apg/ip - E;T O ~ [Z,u g/w: 0.

o Gou

Finally, since (80-5) gives us that:

Paﬂ = Pﬁa y
it will follow from (81-6) that:

(81'9) lsaﬂ_ %(aaéﬂ _ap_%) = Pﬁa_ %(aasﬂ _aﬂ %) =0.

Our theorem is thus proved. Einstein assigned the narfpsedido-Hermiticity” to the
property that this theorem suggests.

82. —Tensorial form of the field equations.- It is easy to exhibit the tensorial form
of the first group of field equations (81-4) and (81-5). Tda #ifect, we are thus led to
introduce the tensor:

(82-1) Fau= 3 €9 =3 €03 191017,

in which &5 is the classical indicator of the permutation. Mié= denote the quadratic
exterior form that is defined by,,. In order to facilitate the evaluation of its enr
differentialdF, we calculate:

1 ~Auvp — 1 oAuvp [aB] — 1 oo ap
2€ avF/l,u =4€ ‘g/lpaﬂa Q =3¢ aﬂav_d J

1%
namely:

1 ~Auvp -1 [ap]
2€ avF/l _3aag .

Y]
One deduces from this that the system (81-4) isvatpnt to:
(82-2) dF = 0.

On the other hand, we evaluate the covariant aeverd,g,, of the fundamental
tensor for the connectidn We will get:

dpg/Vl = apg/lp - Lt/lTp gqu - LL;T);/ g/la .
One deduces from this that equations (81-5) mgyubénto the form:

dpgA,u + (LZp - I—Zﬂ)gw: 0;
namely:
(82'3) dpg/]/j = Zsapllgﬂa-
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[ll. — CONSERVATION IDENTITIES

83. —First form of the conservation identities.— The fact that we used a variational
procedure that involves the integral of a scalar densityder to form the field equations
offers two advantages: This process leads to equationsatkainvariant under
admissible coordinate changes, and the left-hand sidesnatitally satisfy four
conservation identities, which we shall form by a mdttiat is due to Hermann Weyl, in
principle.

Recall the integral:

| = .[CRaﬂg”ﬁ\/|_g| dl A~ Ade = jCRn,

in which one has set:

R =Ryz9%, n=yJlg|dl"..~rdé

Consider an arbitrary vector fielff on a chairC that iszero on the boundary of.C
That field will define an infinitesimal transforman. If X(R#7) denotes the Lie derivative
of the formR# then we will set:

X| = jc X(Rn).
From (69-4), one has the following expression ff@r lLie derivative of the tensgf’ﬁ :
(83-1) Xg¥'=¢%0,9% - g¥0,&" - ¢0,¢”.

One deduces from this and the formula for the Itigaic derivative ofg that:

X4/
lgl__igaﬁxgaﬁ:_%[fpgapapgaﬂ —26/]5/]] ;

- 2
Vigl
namely:

XJ19l 3,(67\191)
83-2 = @pp+0,r =L L=
(832 Jiol " Jig|

One deduces from this that:

X(R7) = ([TgIXR+RXJ[g]) d ..Ad¥¢

=[& 19| ,R+RI,(E°[Ig NI ¥~ .. dx;

namely:

X(R7) =0, R gl) d A ..AdX.

X :jcap(prJ|_g|) Al A LA dR.

One thus has:
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By applying Stokes'’s formula to the integral in the tigand side, one will transform
that integral into an integral that is taken over theralary ofC, and it will be zero since
& =0o0noC. One will thus havel = 0 for any field that satisfies the hypotheses that
were made.

Let (@as, L;5) be a solution of equations (81-4) and (81-5)Sdtlenotes an arbitrary
covariant vector then we have seen that one can dedwféree connection:

(83-3) M= Los—500S,
that satisfies the equations:
(83-4) G%,=0.

Suppose that the field vanishes on the boundary Gf along with its first-order
derivatives. From (69-5), one has og :

Xro,=0.
With these hypotheses, one has, from (77-8), that:

[ XRys Dgpi/I gl .. =0,

and X! will then reduce to:

XI=[ Ry Xg? dr..hdé.
Now, by virtue of (83-1) and (83-2), it will followhat:

Xg"'=¢70,9" + g70,¢” - 970,87 - ¢10,¢”,
and, as a result:

(83-5) Rap Xg”'= §°R,;0,9" +0,°R, " - (R, ¢ - B ©)0,¢”.
In the sequel, we set:

(83'6) z_p/‘ - Rpgg/‘a"' Rg'pga/‘, 2|__p/1 - Rpg_g/kf + %p_gﬂ )

One deduces from this, by contraction, that:

(83-7) L =Ry g® L™= Raﬂ_g”ﬁ.
One will thus obtain:

0,6" R,z g"=0,(L7)-¢%,L," .

The relation (83-5) may then be expressed inaha:f
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Raﬁx gaﬂ:a/] (g/]l_-rr - ng al_-p/1 )+ nga/l (I:p/1 - 25; I_‘rr )+ EPRI,E ap_gaﬂ *
We are thus led to introduce the tensor and tensorialtglen

(83-8) M/ =L/ 1L, M =L/~

P P

A T
o,L".

N

One obtains:
RapX g%=-20,(E°M ")+ 28°0,M ' +E°R .0, o7

Now, by applying the Stokes formula:

jcaﬁ (&M ,1) d¥~ .. ~rd = 0.
It results from this that:

XI=[ &10,M," +1R,;0,g"] d~..ndxX.

SinceXI = 0 for any& that satisfy the hypotheses made, it will resuihf a classical
argument that one must necessarily have:

(83-9) oM, +iR,0,9% =0.

We have thus established thia¢ identitieg83-9)are satisfied for any s€tss, L;;)
that is deduced b83-3)for a solution(gas, L,) of the equation$31-4), (81-5);Mp” IS
given by starting witly” and the Ricci tensor by (83-6) and (83-8).

84. — Second form of the conservation identities. -With (gas, Ly;) always
denoting a solution of the system (81-4), (81-%,new start with the integral:

J= jc P,9% gl dX~..AdX.
Since the connectioln admits a zero torsion vector, one will have moszov
jcxe,ﬂ | g| d@~ ..~Ad¥ = 0.

One deduces from this that:

XJ=[ PpXg” d~..Adé=0,
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and an argument that is identical to the preceding dhdead to a new form for the
conservation identities (83-9). We set:

(84-1) Hy' = Ppog'? + Popg”, 2H," =P, g + R, ¢",
and:
(84-2) K/ =H/ -1 H,", K =H/ -13H,.

For any solution dgs, L‘Zﬂ)of equations (81-4), (81-5), one will thus obtain the four
identities:
(84-3) 0,K,"+1P ;0,97 =0.

One may expreslsp” in @ more convenient way by writing:

2H," = [Pioo) + Piaalll g7 + ¢ + [Py = Proal[ 8 — o).

After reduction, it will follow that:

(84-4) Hs' = Pooy 92+ Procy g7
One will note that since:
Pap=Rap+ £(0,5,-0,3),
one will have:
Ho' =L, + 2(0,S,-0,%)d".
One deduces from this that:
Ks' =M+,
with:
S =2000,S,-0,9) 9" -1,(9,5,-9,9) ¢ .

One easily sees in a direct manner that for any v&gtone will have the identity:
6/1 (Sp/1 \/l g|)+% (aa % _aﬁ §)ap_6ﬂ] = 0
If 945 is @ symmetric tensor and, is the associated Riemannian connection then

one will verify immediately that the identities (33 reduce to the classical conservation
identities of general relativity.



CHAPTER VI

THE CAUCHY PROBLEM FOR THE FIELD EQUATIONS

85. —The equations that couple the fundamental tensor with theonnection.—
Among the explicit field equations in (81-4), (81-5), and (81-6¢ fivst occupy
ourselves with equations (81-5), namely:

(85_1) apg/ip - LZp gqu - LZ;/ Qi = 0’

which couple the fundamental tensgy, and its first-order derivatives with the affine
connectionl;,. It is clear that these equations constitute an erters the classical

relations that determine the coefficients of a Riemano@nection by starting with the
metric to the case of an asymmetric tergg@rand an asymmetric connection.

Given a tensor field,, on a manifoldv,, consider the system of equations (85-1) as a
system of equations with the coefficients of the emtion as the unknowns. By very
long-winded calculations (which we shall not detail), ong establish that this system
admits a unique solution, except in some exceptionalscéke In the case of our
manifold V4, and for a tensog,, that satisfies the hypotheses that were made in7égec.
Hlavaty and SaenZ)(have shown that the only exceptional case is thanghich one
has both:

(85-2) k=det ki) =0 and g =2h.

If we discard this case in what follows then we magfecm that the system (85-1),
when given our hypotheses, admits one and only one soluWiéa will thus be led to
introduce the quantities that define the field in the fofrthe fundamental tensgy,, and
the covariant tensds,, which satisfy the equations:

(85-3) 9,9""=0,

=4

(85-4) Pos— 2(0,5,-0,S) =0,

in which the L, are considered to be the functions of ghgand their first derivatives
that are defined by the unique solution to the system (85-1).

() See HLAVATY, Journ. of Rat. Mech. and Ana2, (1953), 2-52; see also M. A. TONNELAT.,
Journ. de Phys12 (1951), . 81-88.
(® HLAVATY and SAENZ, Journ. of Rat. Mech. and Andl.(1953), 523-536.
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86. —The Cauchy problem for equations(85-3), (85-4). — We are thus led to study
the following purely local problem, which generalizes theic®g problem of general
relativity (see I, secl4).

CAUCHY PROBLEM - Given the components of the fundamental tensor and their
first derivatives on a hypersurface S, as well as the componerite cbvariant vector

Sy, determine the fundamental tensor and the vectan & neighborhood of S, assuming
that they satisfy equatiori85-3)and (85-4).

We assume that the hypersurf&is represented locally by the equatidr= 0, and
that it satisfies the relation:
(86-1) g% 0.

It is easy to interpret this hypothesis geometricallf.S is represented locally by the
equatiorf(xX’, x*, X4, %) = 0 then that hypotheses will say that:

(86-2) Aqf = g”ﬂaafaﬂf = I”ﬂaafaﬂf

is non-zero If 1,5 represents the tensor that is associated with tisoit&” then thar
relation will say that the hypersurface i$ not tangent to the cong that has the
equation:

| op dx7d¥’ = 0.

Moreover Aif is nothing but the first-order differential parametethaf functionf in
the metric of hyperbolic normal type:

(86-3) ds’ =145 dX" A,
In the sequel, we will make the following convention:
I, j, any Latin index =1, 2, 3.
Having said that, we establish the following theorem:

THEOREM -In the neighborhood of a hypersurface S that is represe_nted locally by
x” = 0and has the property thaf® # 0, knowing the system of quantitigs g°’, g is
equivalent to knowing the fundamental tensgr.g

Consider the system of local coordinates for wiidh represented locally by = 0.
One hasg®™ # 0 in a certain neighborhood in which we shall place oueselvFirst,
observe that knowing the quantitieg, g™, g’ will give us the quantitiesy;,
g”,9'°,g%# 0. We must therefore show that the knowledge of theaetities leads to
the knowledge of the componeigks go, Joo. One deduces from the relations:

0% +d%;i =0, %% +d"g =0, 9% 0o+ g =1,
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upon multiplying by/| g |, that:

(86-4) 9%y +9"°g, =0, 9%9,,+9%9;=0,
and:
(86-5) 9%00+ 9" %= +/191.

Relations (86-4), in which™# 0, give us the values @ andgp. On the other
hand, one may observe théi g | is given by the relation:

Jlgl =

det(g, )‘
00 "

One may then deduce the valugygffrom (86-5). Our theorem is thus established.
We are thus led to take our Cauchy data on the hypers@facke the values of the
following quantities ors

(86'6) Jijs Q[Oi] ’Q(OA),aogij ’aog(m)’ S S,

As we confirm, the values of the quantidgsS,, d,,,S,, etc., onSdo not result from

the field equations. This seems to suggest that we shestidct the vectofs, by an
invariant auxiliary condition, for example:

(86-7) 0,(3“S;/1 gl)=0.

That is what we shall do from now on.

87. —A theorem that is deduced from the conservation identids. —We shall
deduce the following theorem from the conservaii@mtities (84-3):

THEOREM - For any solution of the syste(@5-3),the four quantitiestO will be
expressed uniquely as functions of the quantitieg’, g*”, 9,9,, 9,9°", and their
derivatives with respect to the variablgs).

Indeed, one first has that the quantitzg®! may be expressed in terms of the

0,9™ with the aid of equations (85-3). On the othemchasince the coefficients of the

connection are functions of the components of theddmental tensor and their first
derivatives— or the quantitieg;;, g, g and their first derivatives the components

Igp” (like the componentB,) will be, a priori, functions of the following quantities:
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(87 1) lﬁp/‘ = q)pﬂ[gij,g[Oi]’_g(O/‘)’ ak gj ’ak_dOi]’ak_éO/‘) 1akl 9 ’akl _&i] ’akl _6)/‘) ’
060,009,059 ,04 §™,050g 10 50d™"]-
Consider the four quantitielgpo. The conservation identities (84-3) may be put into
the form:

9,K 0 = —aklgp°+iP apg"ﬂ.

o 2 ap

It results from this that the four quantitié§lgp° depend upon only the arguments of
the functionSCDp” and the first derivatives of these arguments with iespe the x*.
Those quantities are thus independent of the argumépts; andd,,,g®”, whose

numerical arguments will be arbitrary & One deduces the following identities from
this:
0P po 0 0P po
a(aoogij ) , a(aooog((m)

0.

Thelgp0 and, as a result, thép0 depend only upon the arguments that were indicated

in our statement. Therefore, for any solution84-8), one will have:
7.2 Ko =19 9% 9% 0cg.0. 4.0, 8,
aklgij’aklg[Oi]’aklgO/l)’ao g 160_(‘3101)160( 9 aau_ém)]-

88. — A theorem about coordinate changes upon crossin§ — Our purely local
study is carried out in the domain of a certainrdowte system. However, being given
the Cauchy data o8 in the domain envisioned leaves open the pogsilafi coordinate
changes that preserve the numerical values ofdbelmates at any point & as well as
the Cauchy data. As in general relativity, we whlis be led to consider the coordinate
changes that are defined by the formula:

(88-1) x" = x* +(X—;)3 [§D(X) + €1 (A" = A numerically),

in which ¢! goes to zero whexf goes to zero.
Recall that the partial derivatives of our new rclimates orS with respect to the old
ones are such that:

(88-2) (A)s =2, @0A)s =(0,4) =0,
(88-3) (00A" )s = (0,04 )s= 0,

in such a way that of the second derivativeA,ainly the derivative® A, are non-zero
onS
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(88-4) (000”5 = 8.
Under a coordinate change, one will obviously have:
(88-5) S=A'S, Ow=AA Gy, 97 = AT A 9",
and, by derivation:
(88-6) 000, = AT A K0, Gy +0, K UK g +0, £ A gy,
(88-7) 0,9 = A/ A Ko, d"+ /50, K K ¢+ po, A A 4.
Having said that, we shall establish the following theore

THEOREM -The coordinate chang@8-1):

a) preserves the numerical values of the coordinates of any point afrfg, \&ith the
Cauchy data.

b) preserves the numerical valuesdfg, andd,g™ on S

c) allows one to give arbitrary values to tidg,g“’on S

Propertya) results from equations (88-2), (88-5), and (88-6) in an obweas In
order to establish propertib} andc), we begin by differentiating (88-6) and (88-7). We
thus obtain:

(88-8) 000y = A A K K0,0, Gp+0 AOK g+0, A A g+ ¢

af — pAO 4 L ' .
(88-9) { 000" = A A K K0,0,d" +KB K, A R ¢

tAAO, A K g"+Q

in which O denotes terms that contain first derivativesofnd which will be, as a result,
annulled ors. One first deduces from immediately (88-8) that:

(88-10) 0000 = 0gg iy -
On the other hand, one will have:

(88-11) 00095 =050 9o + #7Gs,  0008i6= 05 Gio*+ 4 ip,
and:
(88-12) 050900= Dyg 900+ 9+ ¢ Gop.
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We now study howd /| g | gets modified. One has:

aO\/lgl_l ap
__g aga
Jlgl 7

One deduces from this that:

2
(88-13) 600\/ |g |_{60\/ |g |} = %gaﬂaoogﬂ+%aogaﬂaogﬂ.
VIgl Nkl

By writing relation (88-13) for the derivatives xffwith respect tQ/| g |and subtracting
term-by-term, one will obtain:

D =600\/E|_60'0\/|9'| -1

= , (9000905 =% 977 055 Yo ) ;
N T T

namely, from (88-10):
D= %(gmaoogo - gdi’aoo Oy * goa w00~ éoa oo Got Q?Oa 00 Sog” (306 00 Yo) -
By virtue of (88-11) and (88-12), one will have:

D=2("0: ¢ +d°0, 8 + g0, 8°) ;
namely:
D =1(g"gm ¢ +¢'° g1 8% = 4,

since\/|g'| =4/ |9 |, from which, one will deduce that:

(88-14) 000y 19 1-055/19" 1= #9191

Now consider formulas (88-4) for the coordinataraye (88-1). It follows that:

60'0 90’i’ = aooga + ¢(O) go + ¢ 0 gooa
0909'° =0,g° +9?d°+¢ V9"
Oy 90’0 = aoogoo +2¢ (0)goo_

One deduces from this that:
0000 =0504"" =4 ¢,
0509 =04, ~ 9" g,
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and, from (88-14):
(88-15) aoog[Oi] _adog[o’i’] - _¢(0)_dOi] +_d0i]¢(0) — 0’

(88-16) 6009(01) _6009(0’1') — _¢(0)9(0/1)_¢(ﬂ )_gOO+¢ (0)_9(01 = ¢(/‘) gOO_

(88-15) succeeds in establishing propdity From (88-16), it results that singe’ # 0,
one may attribute arbitrary values to thg,g°" on S by choosing the functiong.
Our theorem is thus established.

Recall once more the definition of the index of a\d#ive with respect to the local
coordinatesx’) to whichSis referred, which will be the number of times ti index 0
appears in it. For any affine connection that is a saiuboequations (85-1), it is clear

that the Ricci tensoP,s will be expressed as a function of e g™, g, and their
derivatives up to order two. On the other hand, underaagehof coordinates (88-1),
one will have:

Pa’ﬂ’ = Paﬁ
on S and the coordinate change allows us to arbitrarily modify values of
thed,,g®” onS One thus deduces from the preceding theorem that:

COROLLARY - In order for any affine connectioh, to be a solution of85-1) ,

the only derivatives of index two that may appear in the components Rfcttigensor
Py are the?oogij andaoog[oi] . but notthe aoog(m) .

89. —Decomposing the problem of integrating the field equations-= We first
propose to show that the system (85-4) is equivalentsist@m such that one part of it
involves the quantitiek ;' that figure in the conservation identities.

THEOREM - In the neighborhood of S the systé3&-4)is equivalent to the system
composed of the following equations:

(89-1) Prijj = 0,

(89-2)0 P[ij] - %(aisj —aj $) = 0,

(89-2) Prio) — $(0,$,-0,9) =0,

and:

(89-2) My =K, - 2[(9,S,-9,S) g - 189(0,S,-9,S) ¢ =0.

Indeed, set:
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Rop=Pap— 5(0,5,-0,3)-
The system (85-4) is equivalent to the system:
Rap=0,  Rag=0.
Now, equations (89-1) may be written:
(89-3) Ri) = 0, Riag =0,
and it will suffice for us to show that for any solutiof (89-3), the equations:
My’ = Rip) §°7 + Ripot 077 = 38, [Rio0) §7 + Ripo ¢7] = 0

imply the equations:
Rpo = 0.

M:° = Rog) §°7 + Riooy g°%.

Forp=1i, one first has:
For a solution of (89-3):
M = Rio) a”,

and sincag® # 0, the equation®® = 0 will imply thatR; = O.
Forp=0, one has:

Mo’ = Roo) §°? + Roat §°7 = 4 [Roey g7+ Ripey ¢,
and for a solution of (89-3), it will follow from the preding analysis that:
Mo’ = Roo §° — £ Roo g°° =1 Roo ¢,

andMg’ = 0 entails thaRoo = 0, which proves our theorem.
One will observe that equations (89-2) may be expliaititen as:

(89-4) MP=K%-2(0,S -90,9)d™=0
and:
Mo’ =Ko’ - 50(0,S. -0, Q) g[Ok] — (0,5 -0,]) g[Ok] _%(aisj -0, 9) g[ij]] =0;
namely:
(89-5) Mo’ =Ko’ - 2(0,S, -9, $)g" = 0.

By virtue of the theorem in se87, we see that the left-hand sides of equations (89-2)
take values o that depend upon only the Cauchy data and their derivativiesegpect
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to thext, and, as a result, these equations will provide conditibat must be satisfied by
the Cauchy data of
Likewise, the system (85-3) may be divided into the aeopusit

(89-6) apg[pi] = 609{0” +ak_dki] =0
and:
(89-7) 0,9 =0,d =0.

Equations (89-6) provide the values of thgg'' as functions of the fundamental

tensor with respect to thé. The last equation provides a condition that must tifisa
by the g™ ons

We are thus led to decompose the system of field egeat@3) and (85-4) into
two systems of equations that are defined in the follgwiranner: The first system is
composed of equations (89-1) and (89-6), and the second ocomp®sed of equations
(89-2) and (89-7).

On the subject of this decomposition, we propose tdkstahe following theorem:

THEOREM - Given a solution(g,., Ss) of the systen{89-1), (89-6)on S that
satisfies equation§89-2), (89-7)the sef(gy., Sy) satisfies(89-2)and (89-7)outside ofS

Indeed, first of all, the left-hand sidé;g“’”] of equations (85-3) satisfy the relation:
0,[0,9"1=0
identically. It results from this identity that forsalution of (89-6) one will have:
0,[0,9""1=0,

and sinced pg“’o] IS zero onS it is also zero outside & The system (85-3) is thus
satisfied. It results from this that one can deduce @ge %) from the set envisioned
(9., S) that satisfies the conservation identities (83-9nelst:

(89-8) oM, +1R;0,d"=0,
or:
0M,’+0M, +3R,;0,97 =0.
Now:
Ms = R §'? + R 0" = 10, [Riap % + Riag ).

For a solution of (89-1):
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M} = Rj0)g"? =13, R0y g™, M;' = Roy g™

It results from the calculations of the precedingotben that the conservation
identities (89-8) imply that one will have relationsloé form:

(89-9) M =A"9M,°+B M,°

for a solution to (89-1), in which th& andB are regular functions. For giveM £)s that
are zero org, the system (89-9) will admit no other solution tha@ tero solution. It
will result from this thaM,’ = 0 outside of.

The problem local integration of the field equation$isstfound to come down to:

a) The search for Cauchy data that satisfy equation2)&ad (89-7) oi$,
b) The study of the system (89-1) and (89-6) for such Cauchy dat

This situation is completely analogous to the one in gémefativity that we have
encountered in various forms already.

90. —Remarks on the search for Cauchy data. # is possible to make several
remarks concerning the search for Cauchy data that suggssbifity conditions and the
order of difficulty for the problem. Suppose that weehalilosen Cauchy data relative to
the fundamental tensor such that:

9,9"= 0.

We discard the case in which @& are all zero. The quantitiés are known or§,
and in order to determine the componentS,afone has the relations:
(90-1) g S = 3K,
(90-2) s =- 3K,
in which one has set:

Slj = aiSj —aj $

One obviously has the following possibility condition émuations (90-1):

(90-3) K°g% = 0.

If this condition is satisfied then equations (90-1) wiibvide a solution for th&;
that depends on one scalar paramételf u; denotes a covariant vector such thaf°! =
1 then one will have the explicit solution:

Sk= 32 (K w—Ku) + A &0 g7,
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in which &y is the indicator of the permutation. Equation (90-2) fittes value ofA
uniquely in the case for which:

i.e., the one for which:
m = det m™) £ 0.

If this is not the case then the problem of determiriegsk by means of (90-1) and
(90-2) might be impossible or undetermined. In any caséll ibe convenient to impose
the requirement upon tig that are obtained that they must define a quadraticiexter
form with zero exterior differential. If this is thease then th& will be found to be
defined locally up to a gradient, whig naturally remains arbitrary.

91. —Relations between the derivatives of indef of the fundamental tensor and
the derivatives of the coefficients of the connection. ka order for us to proceed with
the study of the system of equations (89-1), (89-6), wi falsh analyze certain relations
that exist between the derivatives of order 2 of timelfumental tensor and the derivative

d,L5, of the coefficients of the connection.

In the present section, we suppose that the fundantentdr and the connectian
satisfy:

1. The connecting relations (85-1):
2. Equations (89-6) and (&) equation (89-7).

It will result from the argument that was given grs89 that the system (85-3) is
then satisfied; as a result, the connectigp will admit a zero torsion vector. Equations
[Oi

(89-6) will provide the values of thé,g'™ and, by derivation, those of tlig,g'" , as a

function of the Cauchy data and their derivatives witpeet to thext). We will always
suppose in what follows that one has replace the gieandjfg"™’ and d,,g™" with their

expressions as provided by (89-6).
By solving the connecting relations (85-1), one will e thel; are expressed by

linear functions of the first derivatives of the compats of the fundamental tensor
whose coefficients are functions of these components.

In order to simplify the notation, we shall use angrmence symbol (~); this
congruence is intended to mearodulo functions of the Cauchy data relative to the
fundamental tensor and their first derivatives witlpees to theX). One deduces from
the expression for the components of the Ricci tethsdr

(91-1) Pjj ~ ao'—ﬁ :
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From the theorem in se88, and on account of equations (89-6), the only derivatives
of index 2 that will appear in tH®; are thed,,g,,. One will then have:

(91-2) ao'—ﬁ - ;d 000% -

We propose to establish thequationg91-2) are, in general, soluble with respect to
the 9,0, ; in other words, the matrik that figures in (91-2) is generally invertible.

To that end, we use the following relations that arelyededuced by deriving
relations (85-1) or, equivalently, relations (78-4)with respect to’:

(91-3) 009~ 9oLk Gnj + 9oLy Gin +0,L5 o + 9Ly Gio

(91-4) 9,,9%°~ -9,L°% g"° -9, g" -9, g”°- 09, g
(91-5) 0,,9% ~ - 0,L°% g" - a,L, g - a,L% g” - 9,L,,g%
(91-6) 9,9°~ -9,L°%g"-9,L,g"°-0,L% g°-a,L g%

On the other hand, by the same process, one will get:
0,9%~ - 9,%,g" - a,L', g™ - 9,%,0" - 9,L',,g”°
0,,9°~ - 9,L%.d"-9,L 9" - 0,.%,9°- a,L,g".
Upon subtracting term-by-term, it will follow that:
(91-7) 200,9" ~ = 3,90+ 9,L%,g" - 9,L%, ™" - 9,L,,09™ — 20,L%,0°".

On the other hand, from (78-6):
=211,
Jigl

One deduces from this that:

0609 ~ 0600y 1 9 1+ 9,15, d°.
It will then follow from (91-7) that:
(91-8) 26009[0” - aol-?m th + aOL%h QOh - aOLiOh QOh - aol-iho Qho - Zaol-g)j Q[Oi] :

Finally, one has, from (85-1):
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(91-9) aoogij - aol—iho Onj + aOL?)j Qin + aol—(i)o Qo + aOL%j Gio-

Having said that, one will note that equations (91-3), viheg are considered to be
equations in the unknowrg L}, , have a form that is identical to the connectingti@ia
(85-1), since the coefficients of the unknowns aregjHfer which:

det(gi,-) =g d)0¢ 0.

From the cited results of Hlavaty, one deduces thatsistem is invertible, except
for the exceptional case that we discard®d Qne will thus obtain:

(91-10) oLy ~ Ty,

in which the lettefT will henceforth denote terms that depend linearly upordth .
Sinceg®™ # 0, one will then have, from (91-4), that:

(91-11) 0,0, + 9,15, ~Tk.
Now take equations (91-5) and (91-6). They may be written:
. gOi .
(91-12) OoLio ~ aoL%kW+Tl<l ’
. giO .
(91'13) 60L'0k -~ aOLiO?'*'Tk”.
One deduces from this, by contraction, that:
- - o 9" o 9%
OoLio = 0oLy, ~ 0oLy =g+ T ~ =0l =5 +T'.
g g
By replacingaOL‘}O with its value in (91-11), it will follow that:

) ) [0j]
(91-14) OoLlo = OpLh; ~ - aoL%j%T'*_T"'

Upon substituting the values &}, 9,L,,, d,L}; that one finds in (91-12), (91-13),
(91-14) into (91-8), one will obtain a system in the unkr®ayly, of the form:

() That case has been studied B MISON.
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i0 0

] 0] _
aL%h(g +g" gg gngGLOhg{ggl ~ 2T,

00 00
9"

which, by a simple calculation, can be put into the form

_ g(omg(ou .
(91-15) OLon {g('h) & | T,
namely:
0,0 1"~T",
in which we have set:
I'ih B Iih _IOhl 0i
- | 00
One obviously has:
det(I™) # 0,

since the quadratic forfi Y; Y, is deduced from the forrhﬁ’ﬁYaYﬁ by suppressing the
square that is associated with the direction varighleOne deduces from this that one
may solve equations (91-15) and obtain relations of tira:fo

(91-16) 9,L% ~ Th, 9,0, ~T. .

By substituting the values af,L, , d,L°, into (91-9), as well as those @fL", and
d,Lh that are deduced from (91-12), (91-13), the following relatiossie:

(91-17) aoogij - Buid a0 LSI 1

which realize the inversion of relations (91-2).

Therefore, provided that equations (91-3) in the unknodyhs are invertible,one
may express thé,,g, as linear combinations of th@ L, up to the addition of a
function of the Cauchy data and their derivativéthwespect to théx").

92.—The integration of the field equations— Now consider a solution of equations
(89-1), (89-6) that corresponds to the Cauchy dat& and satisfies (89-2) and (89-7).
We propose to evaluate the valuesSof the successive derivatives of the fundamental

tensor and the vect&;.
First of all, as we have already observed, equat@®5) provide the values dhof

the derivativesd,g'! and 9,,g'™’. Equations (89-1)and (89-1) then provide the
values orSof theP;, and, as a result, those of thgL . One will then deduce the values
of the 0,,g; from the preceding analysis and (91-17) for these value$,
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Conversely, it results from our analysis that thé-teihd sides of (89-1)and (89-1)
have the values that were imposed for these valuég,gf .

Equations (89-1)then provide the values @S . As for thed,S, they are provided
by the auxiliary condition (86-7).

Conforming to the theorem of se&8, no equation will contain thé,,g®’, which
corresponds precisely to the possibility of the coordimtdianges that we studied. The
0,,9" may admit discontinuities upon crossigout, from the differential structure of
V4, these discontinuities will be devoid of any intrmsignificance, and may be annulled
by an admissible coordinate change.

Therefore the second derivatived,,g; and aoog

hypersurface §xX° = 0) for which §° # 0, and the same thing will be true for the
derivativesd,S, 0,S,. These results may be extended to derivatives othigfder by

differentiating equations (89-1), (89-6), and the auxilianydition with respect ta’.
One sees that, except for a singular case that wéeplobutthe Cauchy problem that

relates to the field equatior(85-3), (85-4)and the Cauchy datéy;, g*°', g“”, 9,g;,
9,9Y, S, S), which are defined on the hypersurfacex& = 0, g” # 0) and satisfy

equationg(89-2) and (89-7) on S admit a unique solutidat least for the analytic cage
up to an admissible coordinate changh.seems, moreover, that the method of Mme.
Fourés may be extended to this case, as well.

The results will be totally different whesis tangent to the cor@, that was defined
in sec.86. The hypersurfaces that are tangent to this coneamikar to be theave
surfaces of the unitary field envisione@he associated rays will be the characteristics of
the equation:

(92-1) Nf =01%0,f0,f=0;

T are continuous upon crossing a

i.e., they will be thenull-length geodesicsf the Riemannian metric of hyperbolic normal

type:
(92-2) ds’ =145 dX" A,

We are thus led to consider that, in the present yh&as the tensor Jz (or a tensor
that is proportional to it that defines the gravitational part of the unitary fiedahd that it

is the behavior of such a tensor that must be comparedt of the gravitational tensor
0qp Of general relativity.
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