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On gravitational waves and radiation

Note byANDRE LICHNEROWICZ
Presented by Georges Darmois

Translated by D. H. Delphenich

Relations verified by the discontinuity tensor of tuevature tensor. General geometric study of those
relations. Definition of a state of total and purelg\gtational radiation. Deviation of the trajecasiof
charged particles.

1. In the case of a penta-dimensional Riemannian man#pttat is endowed with a
one-parameter group of isometries that is interpretedeims of gravitational and
electromagnetic fields, the study of discontinuitiek tbhe first derivatives of the
electromagnetic field is equivalent to that of thecdrginuities in one part of the
curvature tensor ofs .

Therefore, letVma be a differentiable manifold of clas€’( piecewiseC*) that is
endowed with a Riemannian metric:

d€ =ggpdd¥  (a,8=0,1,...m

that has normal hyperbolic type and cla€$, piecewiseC?). If a neighborhoodU in
Vme1 is referred to local coordinates®) then letf (x°) = 0 be the local equation of a
hypersurfaces that will produce discontinuities in the curvature tengoeon crossing it
(viz., awave front) If I, =0d,f () then one will have:

(1) la [Rpy 4 + 15 [Rya au + 1y [Rap ap] = 0,
in which the symbol [...] denotes the discontinuity uparssing the wave front.

Suppose that the metric &, satisfies the “generalized” Einstein equations with a
continuous right-hand side. One will then halRgg] = 0. If:

[04u 9agl = Aapla Iy

() 0,=0,/0x".
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then in order for one to hav&{g = 0, from a result of Bel, it will be necessarydan
sufficient thatl , should besotropic and satisfyags 1° = @/ 2) 1, (with a = g% a,z). One
will immediately infer from the preceding relationsttba a wave front:

(2) | [Rogad = 0.

2. Consider a tensdflg,, at the poinix of the manifoldVi,.; that presents the same
type of symmetry as the curvature tensor:

Hogiu == Hpgaau=—Hagu, Hogiu =Hayap,

and suppose that there exists a veltsuch that:

(3) la Hpypu + g Hyopu + 1y Hapau = 0
and
(4) 1 Hpyau = 0.

If is non-zero then, will be necessarily isotropic. An algebraic study of the
contracted tensor:

Hap = 9% Happo

will show that there will then exist a scalasuch that:

Conversely, (3) and (5) imply (4). Finallfpr m = 3 (viz., the case of general
relativity), one can establish that (4) and (5) imply. (3n that case, there exists an
orthonormal framesd;) whose vectoe,, which is time-oriented, can be chosen arbitrarily,
such that:

Hagiu =a myemy, + b ngg iy,

in whichm andn are bivectors that are defined bgnde,, | ande; , respectively. In

order to haveH,z = 0, it will be necessary and sufficient thatt b = 0. One then

recovers, in particular, the reduced form for thermatf discontinuities in the curvature
tensor that Pirani pointed od).(

3. On a space-time manifoM, of general relativity, we will then be led to turn our
attention to metrics for which there exists a veti@uch that the curvature tensyz .
# 0 satisfies the relations:

(6) la Rayau+ 15 Ry pu+ 1y Raparu=0
and

() PIRANI, Phy. Rev105(1957), 1089-1099.
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(7) 1“Ragau =0,

with |4 is isotropic andRyz = 7 I, 15, in which the right-hand side can be identified with
the Maxwell tensor of a singular electromagnetiafiel

If that were true at a pointof V4, then we would say that the metric describes a state
of pure total radiationat that point. It can then be true for all pointaafomain o/, .
If 1, dxX* = 0 is completely integrable then the radiation eowisd will said to have
integrable type.The metric:

ds’ = exp (#) (dt® —dx) — (£ dy’ + 17 d2),

in which ¢, £> 0,7 > 0 are three arbitrary functions of the single \Jaea =t — x will
provide an example of pure total radiation of integralpetyForé =uexp ¢£), n=u
exp (B, 2¢’=u B’?, one will have the Rosen metriRz = 0). If one is given a function
[’ (u) of classC! that is non-zero on only the interval Qi< u < u; then one can define
(®) an everywhere-regular exterior metric on the nicaéspace Rthat is non-Euclidian
for up <u <u; (pure gravitational radiation).

Consider a vector fieltl on V.1 such that (6) and (7) are satisfied. Fot O, it
results from the conservation identities ttia trajectories of are isotropic geodesics.
The same thing will also be true for= 0. Indeed, from the Bianchi identities, one can
deduce that:

Pagau=1° 0p Rapu

satisfies (3) and (4). Upon differentiating (6) and (fg will see tham®=1°0,17 once
more satisfies (6) and (7) and is therefore isotrofmcesit is orthogonal td?, it will be
collinear with it.

4. The trajectorie$ of charged test particles Wy that are subject to a gravitational
field and an electromagnetic fieflt,5 satisfy the equation of deviation:

0% e “ ., OV
d52 +Rap,/],uuavauuza(|]p|: ﬂUﬂVp'*' F ’BEJ,

in which u is the unit vector that is tangent g and the corresponding points on two
trajectories will be the ones with the sases can be assumed to be orthogonal @t a
point x that is determined along a trajectdry Suppose that wave front that is both
gravitational and electromagnetic passes thromgh For a convenient choice of
orthonormal frame at, the relations:

Ove | _ | OV _ O%v? | _ e OV | _ e
|:E:|—|:E:|—O, |:d32:|—0'\/2+aﬂ\/1, |:F:|— U\f’s+mUV1

) H. BONDI, Naturel79(1957), 1072-1073.
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will give the components of the discontinuity in tledative acceleration (with respect to
s) (). We can apply the preceding results togeta-dimensional theories.



