"Die Störungstheorie und die Berührungstransformationen," Arch. for Math., Christiania 2 (1877), 129-156; Gesammelte Abhandlungen, art. XX, pp. 296-319.

Perturbation theory and contact transformations

By SOPHUS LIE

Translated by D. H. Delphenich

In perturbation theory, one addresses the solution of the following problem:
Problem I: Determine the most general transformation:

$$
\begin{aligned}
& x_{k}^{\prime}=X_{k}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right), \\
& p_{k}^{\prime}=P_{k}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right) \quad(k=1, \ldots, n)
\end{aligned}
$$

that simultaneously takes all simultaneous systems of the form:

$$
d x_{k}=\frac{d F}{d p_{k}} d t, \quad d p_{k}=-\frac{d F}{d x_{k}} d t \quad(k=1, \ldots, n)
$$

into system of the same form in the new variables.
As is known, Jacobi and Bour have found that the most general transformation of the desired type is defined by the equations:

$$
\begin{equation*}
\left(X_{k} X_{i}\right)=\left(X_{k} P_{i}\right)=\left(P_{k} P_{i}\right)=0, \quad\left(P_{k} X_{i}\right)=1 . \tag{0}
\end{equation*}
$$

On the other hand, in my opinion, the following problem is at the basis for the theory of contact transformations:

Problem II: Determine $2 n$ quantities $X_{1}, \ldots, X_{n}, P_{1}, \ldots, P_{n}$ as functions $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$ in the most general way such that a relation of the form:

$$
P_{1} d X_{1}+\ldots+P_{n} d X_{n}=p_{1} d x_{1}+\ldots+p_{n} d x_{n}+d V
$$

exists, in which one assumes that V is regarded as an undetermined function of x_{1}, \ldots, p_{n}.

For me, one will obtain the most general solution to that problem when one takes an arbitrary system of quantities X_{k}, P_{k} that fulfills the relations (0) $\left(^{1}\right)$.

With that, one discovers a more precise connection between two apparently-different problems. That connection was so clear a priori in my synthetic way of looking at things that I have referred to Problem II as only a different form of Problem I on a different occasion $\left({ }^{2}\right)$. However, it has been my experience that even outstanding mathematicians have yet to clearly see the intrinsic basis for that connection. Thus, I regard it as useful to thoroughly prove, by analytical considerations, that the problems in question can actually be converted into each other in a reciprocal way. At the same time, I will show that my prior investigations into contact transformations will solve two general problems that can be regarded as generalizations of Problem I.

In connection with the foregoing, I will then prove, by some new considerations, that the differential equations of mechanics, as well as those of the calculus of variations, can be brought into the canonical form. Perhaps the celebrated Hamilton-Jacobi theory will take on a greater simplicity than before in that way.

In the last section, I will solve the following problem:
Problem III: Determine the most general transformation that takes a given system of the form:

$$
d x_{k}=\frac{d F}{d p_{k}} d t, \quad d p_{k}=-\frac{d F}{d x_{k}} d t \quad(k=1, \ldots, n)
$$

into a similar system.
The transformations in question, which are no longer independent of the form of F, are not contact transformations, in general.

Finally, I shall give (without proof) a general case in which the integral of a given simultaneous system will admit some simplifications that correspond to those of a canonical system.

§ 1. - General canonical system.

1. $-2 n$ equations of the form:

$$
\left\{\begin{array}{rl}
x_{i}^{\prime}-x_{i} & =\delta x_{i}=Y_{i}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right) \delta t \tag{1}\\
p_{i}^{\prime}-p_{i} & =\delta p_{i}=Q_{i}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right) \delta t
\end{array} \quad(i=1, \ldots, n),\right.
$$

in which δt denotes an arbitrary infinitesimal quantity, determine an infinitesimal transformation between the variables $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$.

[^0]I now demand that, in particular, this transformation should be an infinitesimal contact transformation, so analytically speaking, that the difference:

$$
p_{1}^{\prime} d x_{1}^{\prime}+\cdots+p_{n}^{\prime} d x_{n}^{\prime}-\left(p_{1} d x_{1}+\cdots+p_{n} d x_{n}\right)
$$

should be a complete differential $d \Omega$. That gives the condition equation:

$$
\frac{\delta}{\delta t} \sum p_{i} d x_{i}=d \Omega
$$

or when written out:

$$
\sum_{i}\left(\frac{\delta p_{i}}{\delta t} d x_{i}+p_{i} \frac{\delta}{\delta t}\left(d x_{i}\right)\right)=d \Omega
$$

from which, when one switches the symbols δ and d, one will get:

$$
\sum_{i}\left(\frac{\delta p_{i}}{\delta t} d x_{i}+p_{i} d \frac{\delta x_{i}}{\delta t}\right)=d \Omega
$$

When we replace the values of δx_{i} and δp_{i} in (1) here, we will find the equation:

$$
\sum_{i}\left(Q_{i} d x_{i}+p_{i} d Y_{i}\right)=d \Omega
$$

which is equivalent to the $2 n$ following ones:

$$
\frac{d \Omega}{d x_{r}}=Q_{r}+\sum_{i} p_{i} \frac{d Y_{i}}{d x_{r}}, \quad \frac{d \Omega}{d p_{\rho}}=\sum_{i} p_{i} \frac{d Y_{i}}{d p_{\rho}}
$$

That will give:

$$
\begin{gathered}
\frac{d}{d x_{\rho}}\left(Q_{r}+\sum_{i} p_{i} \frac{d Y_{i}}{d x_{r}}\right)=\frac{d}{d x_{r}}\left(Q_{\rho}+\sum_{i} p_{i} \frac{d Y_{i}}{d x_{\rho}}\right) \\
\frac{d}{d p_{\rho}}\left(Q_{r}+\sum_{i} p_{i} \frac{d Y_{i}}{d x_{r}}\right)=\frac{d}{d x_{r}} \sum_{i} p_{i} \frac{d Y_{i}}{d p_{\rho}} \\
\frac{d}{d p_{\rho}} \sum_{i} p_{i} \frac{d Y_{i}}{d x_{r}}=\frac{d}{d p_{r}} \sum_{i} p_{i} \frac{d Y_{i}}{d p_{\rho}}
\end{gathered}
$$

and after dropping the terms that cancel:

$$
\frac{d Q_{r}}{d x_{\rho}}=\frac{d Q_{\rho}}{d x_{r}}, \quad \frac{d Q_{r}}{d p_{\rho}}=-\frac{d Y_{\rho}}{d x_{r}}, \quad \frac{d Y_{\rho}}{d p_{r}}=\frac{d Y_{r}}{d p_{\rho}}
$$

from which it will follow that Y_{r} and Q_{ρ} are the partial derivatives with respect to p_{r} and - x_{ρ} of a function of $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$:

$$
Y_{r}=\frac{d F}{d p_{r}}, \quad Q_{\rho}=-\frac{d F}{d x_{\rho}} .
$$

That gives:

Theorem 1:

Any infinitesimal contact transformation between x, p will possess the form:

$$
\delta x_{i}=\frac{d F}{d p_{i}} \delta t, \quad \delta p_{i}=-\frac{d F}{d x_{i}} \delta t \quad(i=1, \ldots, n),
$$

in which F denotes an arbitrary function of $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\left({ }^{1}\right)$.
2. - Conversely, I shall now seek the most general expression:

$$
W=\sum_{k=1}^{n} X_{k}\left(x_{1}, \ldots, p_{n}\right) d x_{k}+\sum_{k=1}^{n} P_{k}\left(x_{1}, \ldots, p_{n}\right) d p_{k}
$$

that possesses the property that the expression:

$$
\frac{\delta W}{\delta t}=\sum_{k}\left(\frac{d W}{d x_{k}} \frac{d F}{d p_{k}}-\frac{d W}{d p_{k}} \frac{d F}{d x_{k}}\right)
$$

is always a complete differential, no matter what the function F might be.
When one expands the condition equation:

$$
\frac{\delta W}{\delta t}=d \Omega\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right)
$$

it will take the form:

$$
d \Omega=\sum_{k} X_{k} d \frac{d F}{d p_{k}}+\sum_{k}\left(F X_{k}\right) d x_{k}-\sum_{k} P_{k} d \frac{d F}{d x_{k}}+\sum_{k}\left(F P_{k}\right) d p_{k},
$$

which will give:

[^1]\[

$$
\begin{aligned}
& \frac{d \Omega}{d x_{u}}=\sum_{k} X_{k} \frac{d^{2} F}{d p_{k} d x_{u}}-\sum_{k} P_{k} \frac{d^{2} F}{d x_{k} d x_{u}}+\left(F X_{u}\right), \\
& \frac{d \Omega}{d p_{u}}=\sum_{k} X_{k} \frac{d^{2} F}{d p_{k} d p_{v}}-\sum_{k} P_{k} \frac{d^{2} F}{d x_{k} d p_{v}}+\left(F P_{v}\right) .
\end{aligned}
$$
\]

We now define the identity:

$$
\frac{d}{d p_{v}} \frac{d \Omega}{d x_{u}}=\frac{d}{d x_{v}} \frac{d \Omega}{d p_{u}},
$$

and when we drop the terms that cancel, we will then find that:

$$
\begin{aligned}
& \sum_{k} \frac{d X_{k}}{d p_{v}} \frac{d^{2} F}{d p_{k} d x_{u}}-\sum_{k} \frac{d P_{k}}{d p_{v}} \frac{d^{2} F}{d x_{k} d x_{u}}+\left(\frac{d F}{d p_{v}}, X_{u}\right)+\left(F, \frac{d X_{u}}{d p_{v}}\right) \\
- & \sum_{k} \frac{d X_{k}}{d x_{u}} \frac{d^{2} F}{d p_{k} d p_{v}}+\sum_{k} \frac{d P_{k}}{d x_{u}} \frac{d^{2} F}{d x_{k} d p_{v}}-\left(\frac{d F}{d x_{u}}, P_{v}\right)-\left(F, \frac{d P_{v}}{d x_{u}}\right)=0 .
\end{aligned}
$$

That relation must be true for any F. If we then combine those terms that include the same differential quotients of F then the coefficients that emerge for each such differential quotient must be zero. That will give the following equations:

$$
\begin{align*}
\frac{d X_{k}}{d p_{v}}-\frac{d P_{v}}{d x_{k}} & =0 \quad \text { for } \quad k \neq v, \tag{2}\\
\frac{d X_{v}}{d p_{v}}-\frac{d P_{v}}{d x_{v}} & =\frac{d X_{u}}{d p_{u}}-\frac{d P_{u}}{d x_{u}}, \tag{3}\\
\frac{d X_{u}}{d x_{k}}-\frac{d X_{k}}{d x_{u}} & =0, \tag{4}\\
\frac{d P_{u}}{d p_{k}}-\frac{d P_{k}}{d p_{u}} & =0, \tag{5}\\
\frac{d}{d x_{k}}\left(\frac{d X_{u}}{d p_{v}}-\frac{d P_{v}}{d x_{u}}\right) & =0, \quad \frac{d}{d x_{k}}\left(\frac{d X_{u}}{d p_{v}}-\frac{d P_{v}}{d x_{u}}\right)=0 . \tag{6}
\end{align*}
$$

The last two equations show that the quantity:

$$
\frac{d X_{v}}{d p_{v}}-\frac{d P_{v}}{d x_{v}}
$$

is constant, and at the same time, independent of the number v, due to (3). If we then let A denote an absolute constant then we can set:

$$
\frac{d X_{v}}{d p_{v}}-\frac{d P_{v}}{d x_{v}}=A
$$

from which, it will follow that:

$$
\begin{equation*}
\frac{d\left(X_{v}-A p_{v}\right)}{d p_{v}}-\frac{d P_{v}}{d x_{v}}=0 \quad(v=1, \ldots, n) \tag{7}
\end{equation*}
$$

On the other hand, it is clear that equations (2) and (4) can be written as follows:

$$
\begin{array}{ll}
\frac{d\left(X_{k}-A p_{k}\right)}{d p_{v}}=\frac{d P_{v}}{d x_{k}} & k \neq v, \\
\frac{d\left(X_{k}-A p_{k}\right)}{d x_{v}}=\frac{d\left(X_{v}-A p_{v}\right)}{d x_{k}} .
\end{array}
$$

Those equations, together with (5) and (7), show that the quantities $X_{k}-A p_{k}$ and P_{i} are the partial derivatives with respect to x_{k} and p_{i}, resp., of a function of $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$:

$$
X_{k}-A p_{k}=\frac{d U}{d x_{k}}, \quad P_{k}=\frac{d U}{d p_{k}} \quad(k=1, \ldots, n) .
$$

That will imply that the desired expression W possesses the form:

$$
\sum_{k}\left(A p_{k}+\frac{d U}{d x_{k}}\right) d x_{k}+\sum_{k} \frac{d U}{d p_{k}} d p_{k}
$$

or what amounts to the same thing, the form:

$$
A \sum_{k} p_{k} d x_{k}+d U
$$

Conversely, one easily proves that this expression will always possess the desired property, no matter what the constant A and the function U might be. That is because:

$$
\begin{aligned}
\frac{\delta}{\delta t} \sum_{k} p_{k} d x_{k} & =\sum_{k} \frac{\delta p_{k}}{\delta t} d x_{k}+\sum_{k} p_{k} d \frac{\delta x_{k}}{\delta t} \\
& =-\sum_{k} \frac{d F}{d x_{k}} d x_{k}+\sum_{k} p_{k} d \frac{d F}{d p_{k}},
\end{aligned}
$$

so:

$$
\frac{\delta}{\delta t} \sum_{k} p_{k} d x_{k}=d\left(-F+\sum_{k} p_{k} \frac{d F}{d p_{k}}\right)
$$

On the other hand:

$$
\frac{\delta}{\delta t} d U=d \frac{\delta U}{\delta t}
$$

We can then express the following theorem:

Theorem 2:

If a given expression:

$$
W=\sum_{k} X_{k} d x_{k}+\sum_{k} P_{k} d p_{k}
$$

possesses the property that ($F W$) is always a complete differential in $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$, which might also be the function F, then W will possess the form $A \sum_{k} p_{k} d x_{k}+d U$.
3. - Assuming that, I would like to think that one has introduced new variables into the simultaneous system:

$$
\begin{equation*}
\delta x_{k}=\frac{d F}{d p_{k}} \delta t, \quad \delta p_{k}=-\frac{d F}{d x_{k}} \delta t \quad(k=1, \ldots, n) \tag{8}
\end{equation*}
$$

and the expression:

$$
p_{1} d x_{1}+\ldots+p_{n} d x_{n}
$$

in place of $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$, say, $y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$. In so doing, y_{k} and q_{k} shall initially be subject to no other restriction than the obvious one that they should be independent functions of $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$. Let:

$$
\delta y_{k}=\eta_{k} \delta t, \quad \delta q_{k}=\kappa_{k} \delta t \quad(k=1, \ldots, n)
$$

be the new form of the simultaneous system (8), and let:

$$
\sum_{k} p_{k} d x_{k}=\sum_{k} Y_{k} d y_{k}+\sum_{k} Q_{k} d q_{k}=W,
$$

where Y_{k} and Q_{k} are certain functions of $y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$. Now, from the foregoing:

$$
\frac{\delta W}{\delta t}=\sum_{i}\left(\frac{d W}{d x_{i}} \frac{d F}{d p_{i}}-\frac{d W}{d p_{i}} \frac{d F}{d x_{i}}\right)=d \Omega .
$$

When we also introduce the new variables here, that will give:

$$
\sum_{i}\left(\frac{d W}{d y_{i}} \eta_{i}+\frac{d W}{d q_{i}} \kappa_{i}\right)=d \Omega .
$$

If we then demand, in particular, that η_{k} and κ_{k} should possess the form:

$$
\eta_{k}=\frac{d \Phi}{d x_{k}}, \quad \kappa_{k}=-\frac{d \Phi}{d y_{k}} \quad(k=1, \ldots, n)
$$

no matter what the form of the function F might be, then from Theorem 2, W must be regarded as a function of $y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$ that possesses the form:

$$
W=A \sum_{i} q_{i} d y_{i}+d V
$$

and one then has:

$$
\sum_{k} p_{k} d x_{k}=A \sum_{i} q_{i} d y_{i}+d V,
$$

which comes from the fact that our transformation must be a contact transformation between x_{1}, $\ldots, x_{n}, p_{1}, \ldots, p_{n}$ and $y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$. Thus:

Theorem I:

If a given transformation between $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$ and $y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$ possesses the property that it takes every simultaneous system of the form:

$$
\delta x_{k}=\frac{d F}{d p_{k}} \delta t, \quad \delta p_{k}=-\frac{d F}{d x_{k}} \delta t \quad(k=1, \ldots, n)
$$

into a similar system in $y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$ then it will be a contact transformation, and there will then exist a relation of the form:

$$
\sum_{k} p_{k} d x_{k}=A \sum_{i} q_{i} d y_{i}+d V
$$

4. - I shall now postulate, in particular, the most general contact transformation between x_{1}, $\ldots, x_{n}, p_{1}, \ldots, p_{n}$ and $y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$ that takes a given canonical system:

$$
\delta x_{k}=\frac{d X_{1}}{d p_{k}} \delta t, \quad \delta p_{k}=-\frac{d X_{1}}{d x_{k}} \delta t \quad(k=1, \ldots, n)
$$

to another well-defined system:

$$
\delta y_{k}=\frac{d Y_{1}}{d q_{k}} \delta t, \quad \delta q_{k}=-\frac{d Y_{1}}{d y_{k}} \delta t \quad(k=1, \ldots, n)
$$

Otherwise speaking, I will look for the most general constant transformation that takes the expression:

$$
\left(X_{1} f\right)
$$

to

$$
\left(Y_{1} f\right)
$$

From my theory of contact transformations, that comes down to the search for the most general contact transformation that takes X_{1} to Y_{1}. One will find the same thing when one looks for two maximally-general canonical groups:

$$
\begin{aligned}
& X_{1}, \ldots, X_{n}, P_{1}, \ldots, P_{n}, \\
& Y_{1}, \ldots, Y_{n}, Q_{1}, \ldots, Q_{n}
\end{aligned}
$$

in the variables x, p and y, q, respectively, and into which X_{1} and Y_{1} enter. If one sets:

$$
X_{k}=Y_{k}, \quad P_{k}=Q_{k} \quad(k=1, \ldots, n)
$$

then those equations will define the most general transformation of the desired type.
In particular, one can demand that Y_{1} should be the same function of the y_{k}, q_{k} that X_{1} is of the x_{k}, p_{k}. The solution to that special problem will follow from what was just said with no further discussion.
5. - When several equations of the form:

$$
\begin{equation*}
\left(F_{1} F\right)=0, \quad \ldots, \quad\left(F_{r} F\right)=0 \quad\left(x_{1}, \ldots, p_{n}\right) \tag{9}
\end{equation*}
$$

are given at the same time, one can look for the most general contact transformation that takes them to:

$$
\left(\Phi_{1} F\right)=0, \quad \ldots, \quad\left(\Phi_{r} F\right)=0 \quad\left(y_{1}, \ldots, q_{n}\right),
$$

respectively. That comes down to the search for the most general contact transformation that takes F_{1}, \ldots, F_{r} to $\Phi_{1}, \ldots, \Phi_{r}$, respectively. In my invariant theory of contact transformations (Math. Ann., Bd. VIII, pp. 272) $\left(^{1}\right.$), I showed that one can decide whether it is possible to solve a given problem of this kind by operations that can be performed. If that is the case then one will find the desired transformation by integrating ordinary differential equations.

In particular, if equations (9) define a complete system then one can look for the most general contact transformation that takes it to another complete system:

[^2]$$
\left(\Phi_{1} F\right)=0, \quad\left(\Phi_{2} F\right)=0, \ldots
$$
in the $y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$. As I said (Math. Bd. VIII, pp. 251 et seq.)(${ }^{1}$), F_{1}, \ldots, F_{r} and $\Phi_{1}, \Phi_{2}, \ldots$ must define groups with just as many terms and just as many distinguished functions. If that requirement is fulfilled then one can put those two groups into their canonical forms:
\[

$$
\begin{aligned}
& X_{1}, \ldots, X_{\rho}, P_{1}, \ldots, P_{r-\rho}, \\
& Y_{1}, \ldots, Y_{\rho}, Q_{1}, \ldots, Q_{r-\rho}
\end{aligned}
$$
\]

and then look for two canonical systems of quantities:

$$
\begin{gathered}
X_{1}, \ldots, X_{n}, P_{1}, \ldots, P_{n}, \\
Y_{1}, \ldots, Y_{n}, Q_{1}, \ldots, Q_{n}
\end{gathered}
$$

in the most general way. The equations:

$$
X_{k}=Y_{k}, \quad P_{k}=Q_{k} \quad(k=1, \ldots, n)
$$

will then define the most general transformation of the required kind.

§ 2. - Canonical systems whose characteristic functions possess the form

$$
p+f\left(x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right)
$$

I will now turn to the case that is important in the applications to mechanics and the calculus of variations in which the characteristic function possesses the form:

$$
p+f\left(x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right) .
$$

In the corresponding simultaneous system:

$$
\frac{\delta x}{1}=\frac{\delta x_{k}}{\frac{d f}{d p_{k}}}=\frac{\delta p}{-\frac{d f}{d x}}=\frac{\delta p_{k}}{-\frac{d f}{d x_{k}}}=\delta t
$$

we do not need to include the term:

$$
\frac{\delta p}{-\frac{d f}{d x}}=\frac{\delta p_{k}}{-\frac{d f}{d x_{k}}}
$$

[^3]since the remaining terms do not include p at all. Moreover, it should be noted that the auxiliary variable t is equal to x now.
6. - We seek the most general system of equations:
\[

$$
\begin{aligned}
& \delta x_{k}=\xi_{k}\left(x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right) \delta x, \\
& \delta p_{k}=\eta_{k}\left(x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right) \delta x
\end{aligned}
$$ \quad(k=1, ···, n)
\]

by means of which the expression:

$$
\frac{\delta}{\delta x}\left(p_{1} d x_{1}+\cdots+p_{n} d x_{n}\right)
$$

will assume the form:

$$
d \Phi+\omega\left(x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right) d x
$$

That demand will be expressed by the equation:

$$
\sum_{k=1}^{n} p_{k} d \xi_{k}+\sum_{k=1}^{n} \eta_{k} d x_{k}=d \Phi+\omega d x
$$

from which:

$$
\begin{aligned}
\sum_{k} p_{k} \frac{d \xi_{k}}{d x_{r}}+\eta_{r} & =\frac{d \Phi}{d x_{r}} & (r=1, \ldots, n) \\
\sum_{k} p_{k} \frac{d \xi_{k}}{d p_{\rho}} & =\frac{d \Phi}{d p_{\rho}} & (\rho=1, \ldots, n) \\
\sum_{k} p_{k} \frac{d \xi_{k}}{d x} & =\frac{d \Phi}{d x}+\omega &
\end{aligned}
$$

When we proceed as before, that will yield:

$$
\frac{d \eta_{k}}{d x_{i}}=\frac{d \eta_{i}}{d x_{k}}, \quad \frac{d \eta_{k}}{d p_{i}}=-\frac{d \xi_{i}}{d x_{k}}, \quad \frac{d \xi_{k}}{d p_{i}}=\frac{d \xi_{i}}{d p_{k}}, \quad \frac{d \eta_{k}}{d x}=-\frac{d \omega}{d x_{k}}, \quad \frac{d \xi_{k}}{d x}=\frac{d \omega}{d p_{k}} .
$$

There is then a function U of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$ such that:

$$
\xi_{k}=\frac{d U}{d p_{k}}, \quad \eta_{k}=-\frac{d U}{d x_{k}} \quad(k=1, \ldots, n), \quad \omega=\frac{d U}{d x} .
$$

Thus:

Theorem 3:

If the expression $\frac{\delta}{\delta x}\left(p_{1} d x_{1}+\cdots+p_{n} d x_{n}\right)$, which is defined by means of the equations:

$$
\delta x_{k}=\xi_{k} \delta x, \quad \delta p_{k}=\eta_{k} \delta x \quad(k=1, \ldots, n)
$$

possesses the form $d W+\omega d x$ then there will be a function U of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$ such that:

$$
\xi_{k}=\frac{d U}{d p_{k}}, \quad \eta_{k}=-\frac{d U}{d x_{k}} \quad(k=1, \ldots, n), \quad \omega=\frac{d U}{d x} .
$$

7. - We then look for the most general expression:

$$
\sum_{k=1}^{n} X_{k} d x_{k}+\sum_{k=1}^{n} P_{k} d p_{k}+X d x=W
$$

whose differential quotient with respect to x (viz., $\delta W / \delta x$), which is defined by the equations:

$$
\delta x_{k}=\frac{d K}{d p_{k}} \delta x, \quad \delta p_{k}=-\frac{d K}{d x_{k}} \delta x \quad(k=1, \ldots, n),
$$

possesses the form $d \Omega+\omega d x$. It is not assumed that K is a well-defined quantity in that, but rather, it is regarded as an undetermined function of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$.

When one expands the condition equation:

$$
\frac{\delta W}{\delta x}=d \Omega+\omega d x
$$

it will assume the form:

$$
d \Omega+\omega d x=\sum_{k} X_{k} d \frac{d K}{d p_{k}}-\sum_{k} P_{k} d \frac{d K}{d x_{k}}+\sum_{k}\left(p+K, X_{k}\right) d x_{k}+\sum_{k}\left(p+K, P_{k}\right) d p_{k}+(p+K, X) d x,
$$

from which, one will get:

$$
\begin{aligned}
& \frac{d \Omega}{d x_{u}}=\sum_{k} X_{k} \frac{d^{2} K}{d p_{k} d x_{u}}-\sum_{k} P_{k} \frac{d^{2} K}{d x_{k} d x_{u}}+\left(p+K, X_{u}\right), \\
& \frac{d \Omega}{d p_{v}}=\sum_{k} X_{k} \frac{d^{2} K}{d p_{k} d p_{v}}-\sum_{k} P_{k} \frac{d^{2} K}{d x_{k} d p_{v}}+\left(p+K, P_{v}\right),
\end{aligned}
$$

$$
\frac{d \Omega}{d x}=\sum_{k} X_{k} \frac{d^{2} K}{d p_{k} d x}-\sum_{k} P_{k} \frac{d^{2} K}{d x_{k} d x}+(p+K, X)-\omega .
$$

We now establish the identity:

$$
\frac{d}{d p_{v}} \frac{d \Omega}{d x_{u}}=\frac{d}{d x_{u}} \frac{d \Omega}{d p_{v}}
$$

and then find, when we drop the terms that cancel, that:

$$
\begin{aligned}
& \sum_{k} \frac{d X_{k}}{d p_{v}} \frac{d^{2} K}{d p_{k} d x_{u}}-\sum_{k} \frac{d P_{k}}{d p_{v}} \frac{d^{2} K}{d x_{k} d x_{u}}+\left(p+K, \frac{d X_{u}}{d p_{v}}\right)+\left(\frac{d K}{d p_{v}}, X_{u}\right) \\
- & \sum_{k} \frac{d X_{k}}{d x_{u}} \frac{d^{2} K}{d p_{k} d p_{v}}+\sum_{k} \frac{d P_{k}}{d x_{u}} \frac{d^{2} K}{d x_{k} d p_{v}}-\left(p+K, \frac{d P_{v}}{d x_{u}}\right)-\left(\frac{d K}{d x_{u}}, P_{v}\right)=0 .
\end{aligned}
$$

That relation should exist no matter what the function K might be. If we then combine the terms that contain the same differential quotients of K then the coefficient of each such differential quotient that arises in that way must be equal to zero. That will give the relations:
(α)

$$
\begin{gathered}
\frac{d X_{k}}{d p_{v}}-\frac{d P_{v}}{d x_{k}}=0 \quad \text { when } \quad k \neq v, \\
\frac{d X_{v}}{d p_{v}}-\frac{d P_{v}}{d x_{v}}=\frac{d X_{u}}{d p_{u}}-\frac{d P_{u}}{d x_{u}}, \\
\frac{d X_{u}}{d x_{k}}-\frac{d X_{k}}{d x_{u}}=\frac{d P_{u}}{d p_{k}}-\frac{d P_{k}}{d p_{u}}=0, \\
\frac{d}{d x_{k}}\left(\frac{d X_{u}}{d p_{v}}-\frac{d P_{v}}{d x_{u}}\right)=0, \quad \frac{d}{d p_{k}}\left(\frac{d X_{u}}{d p_{v}}-\frac{d P_{v}}{d x_{u}}\right)=0, \quad \frac{d}{d x}\left(\frac{d X_{u}}{d p_{v}}-\frac{d P_{v}}{d x_{u}}\right)=0 .
\end{gathered}
$$

The last three equations show that the quantity:

$$
\frac{d X_{v}}{d p_{v}}-\frac{d P_{v}}{d x_{v}}
$$

is constant, and indeed, due to (α), that constant is independent of the number v. One will then have:

$$
\frac{d X_{v}}{d p_{v}}-\frac{d P_{v}}{d x_{v}}=A=\text { const. }
$$

or

$$
\frac{d\left(X_{v}-A p_{v}\right)}{d p_{v}}=\frac{d P_{v}}{d x_{v}}
$$

$$
(v=1, \ldots, n) .
$$

When we then proceed as in number 2 , we will see that the quantities $X_{k}-A p_{k}$ and P_{i} are the partial derivatives with respect to x_{k} and p_{i}, resp., of a function of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$:

$$
X_{k}-A p_{k}=\frac{d U}{d x_{k}}, \quad P_{i}=\frac{d U}{d p_{i}},
$$

which makes:

$$
X_{k}=A p_{k}+\frac{d U}{d x_{k}}, \quad P_{i}=\frac{d U}{d p_{i}},
$$

and therefore W will possess the form:

$$
A \sum_{k} p_{k} d x_{k}+d U+\varphi d x .
$$

Conversely, it is easy to see that this expression always possesses the desired property (that is, no matter what the constant A and the functions U and φ might be). That is because:

$$
\begin{aligned}
\frac{\delta}{\delta x} \sum_{k} p_{k} d x_{k} & =d\left(-K+\sum_{k} p_{k} \frac{d K}{d p_{k}}\right)+\frac{d K}{d x} d x \\
\frac{\delta}{\delta x} d U & =d \frac{\delta U}{\delta x} \\
\frac{\delta}{\delta x}(\varphi d x) & =\frac{\delta \varphi}{\delta x} d x
\end{aligned}
$$

We can then express the following theorem:

Theorem 4:

If the expression:

$$
\left(p+K, \sum_{k} X_{k} d x_{k}+\sum_{k} P_{k} d p_{k}+X d x\right),
$$

in which X_{k}, P_{k}, and X denote given functions of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$, while K is an undetermined function of the same quantities, always possesses the form $d \Omega+\omega d x$, no matter what the function K is, then $\sum_{k} X_{k} d x_{k}+\sum_{k} P_{k} d p_{k}+X d x$ can take the form:

$$
A \sum_{k} p_{k} d x_{k}+d U+\varphi d x .
$$

In that, A is an arbitrary constant, while U and φ are arbitrary functions of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots$, p_{n}.
8. - I will now imagine that one has introduced new variables, say, $x, y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$, in place of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$ in the simultaneous system:

$$
\delta x_{k}=\frac{d K}{d p_{k}} \delta x, \quad \delta p_{k}=-\frac{d K}{d x_{k}} \delta x \quad(k=1, \ldots, n)
$$

and in the expression $W=p_{1} d x_{1}+\ldots+p_{n} d x_{n}$. In so doing, the quantities y_{k} and q_{k} shall initially be subject to only the restriction that they are independent with respect to $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$. Let:

$$
\begin{equation*}
\delta y_{k}=\eta_{k} \delta x, \quad \delta q_{k}=\zeta_{k} \delta x \quad(k=1, \ldots, n) \tag{10}
\end{equation*}
$$

be the new form of our simultaneous system, and let:

$$
\sum_{k} p_{k} d x_{k}=\sum_{k} Y_{k} d y_{k}+\sum_{k} Q_{k} d q_{k}+Y d x=W
$$

in which Y_{k}, Q_{k}, and Y are certain functions of the new variables.
Due to the form of W in the old variables, there exists an equation of the form:

$$
\frac{\delta W}{\delta x}=d \Omega+\omega d x
$$

If we introduce the new variables here then that will give:

$$
\sum_{i}\left(\frac{d W}{d y_{i}} \eta_{i}+\frac{d W}{d q_{i}} \zeta_{i}\right)=d \Omega+\omega d x
$$

in which the expression on the left is understood to mean what it usually does.
Now, if the transformed system (10) always possesses the canonical form:

$$
\delta y_{k}=\frac{d \Psi}{d q_{k}} \delta x, \quad \delta q_{k}=-\frac{d \Psi}{d y_{k}} \delta x \quad(k=1, \ldots, n)
$$

in particular, no matter what the function K might be, then, from the foregoing theorem, W must possess the form:

$$
A \sum_{k} q_{k} d y_{k}+d V+\varphi d x
$$

in the new variables. One then has:

$$
\sum_{k} p_{k} d x_{k}=A \sum_{k} q_{k} d y_{k}+d V+\varphi d x .
$$

If we add the quantity $p d x$ to the right-hand side and the left-hand side and then denote the sum $\varphi+p$ by $A q$ then that will give:

$$
p d x+p_{1} d x_{1}+\ldots+p_{n} d x_{n}=A\left(q d x+q_{1} d y_{1}+\ldots+q_{n} d y_{n}\right)+d V .
$$

With that, we have proved that our transformation can be regarded as a contact transformation.

Theorem II:

If a given transformation between $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$ and $x, y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$ possesses the property that any system of the form:

$$
\delta x_{k}=\frac{d K}{d p_{k}} \delta x, \quad \delta p_{k}=-\frac{d K}{d x_{k}} \delta x \quad(k=1, \ldots, n)
$$

will go to a similar system in the new variables, in which one assumes that K denotes an arbitrary function of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$, then our transformation will be a contact transformation, that is, it will consist of a relation of the form:

$$
p d x+p_{1} d x_{1}+\ldots+p_{n} d x_{n}=A\left(q d x+q_{1} d y_{1}+\ldots+q_{n} d y_{n}\right)+d V
$$

9. - Now let a well-defined system be given:

$$
\delta x_{k}=\frac{d X}{d p_{k}} \delta x, \quad \delta p_{k}=-\frac{d X}{d x_{k}} \delta x \quad\left(x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right)
$$

that one wishes to transform into another well-defined system:

$$
\delta y_{k}=\frac{d Y}{d q_{k}} \delta x, \quad \delta q_{k}=-\frac{d Y}{d y_{k}} \delta x \quad\left(x, y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}\right)
$$

by means of a contact transformation. Under the desired transformation, the equation:

$$
\frac{d f}{d x}-\sum_{k}\left(\frac{d X}{d x_{k}} \frac{d f}{d p_{k}}-\frac{d X}{d p_{k}} \frac{d f}{d x_{k}}\right)=0=(p+X, f)
$$

will go to:

$$
\frac{d f}{d x}-\sum_{k}\left(\frac{d Y}{d y_{k}} \frac{d f}{d q_{k}}-\frac{d Y}{d q_{k}} \frac{d f}{d y_{k}}\right)=0=(q+Y, f)
$$

in which f denotes an unknown function of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$ or also $x, y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$.
Here, one can conclude with no further analysis that $p+X$ goes to $q+Y$ under the transformation. Therefore, let:

$$
q+U\left(x, y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}\right)
$$

be the function into which $p+X$ converts. From the theorem of contact transformations, $(p+X, f)$ will then go to $(q+U, f)$. Thus:

$$
(q+Y, f)=(q+U, f)
$$

from which, it will follow that:

$$
(Y-U, f)=0
$$

This equation must be true when f is set equal to an arbitrary function of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$ that is in involution with $p+X$. We can then conclude that $Y-U$ is a constant:

$$
U=Y+A
$$

The desired transformation then takes $p+X$ to $q+Y$.
In order to determine it in the most-general way, one defines two canonical groups is the mostgeneral way:

$$
\begin{align*}
& x, X_{1}, \ldots, X_{n}, p+X, \quad P_{1}, \ldots, P_{n} \tag{11}\\
& x, Y_{1}, \ldots, Y_{n}, q+Y+A, Q_{1}, \ldots, Q_{n} \tag{12}
\end{align*}
$$

in which the X_{k}, P_{k} are functions of $x, x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$, while the Y_{k}, Q_{k} are functions of x, y_{1}, $\ldots, y_{n}, q_{1}, \ldots, q_{n}$. The equations:

$$
x=x, p+X=q+Y+A, \quad P_{k}=Q_{k}, \quad X_{k}=Y_{k} \quad(k=1, \ldots, n)
$$

will then define the desired transformation.

Moreover, it should be remarked that the quantities (12) will always define a canonical group when A is set equal to zero. One will then find the desired most-general transformation between x, $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$ and $x, y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$ when one takes $p+X$ to $q+Y$ in the most-general way by means of a contact transformation.

§ 3. - Applications to mechanics and the calculus of variations.

It is known that Jacobi was the first to show that the integration of the so-called simultaneous canonical system:

$$
\begin{equation*}
\delta x_{k}=\frac{d F}{d p_{k}} \delta t, \quad \delta p_{k}=-\frac{d F}{d x_{k}} \delta t \quad(k=1, \ldots, n) \tag{13}
\end{equation*}
$$

admits some specialized simplifications. After that, Weiler, Mayer, and myself developed even simpler methods for integrating such systems.
10. - Therefore, if any simultaneous system is given then it would be natural to ask the question of whether one can put it into canonical form. It is known that Hamilton had put the differential equations of mechanics into that form in a far-reaching class of cases. Jacobi pointed out the importance of that reduction and, at the same time, showed that there exists an even-moregeneral category of mechanical problems that can take the form in question.

I will now derive that Hamilton-Jacobi theory in a new way that is based upon the foregoing developments. In that way, I will first consider the simple case of a number of free points that move as a result of their mutual attraction or also as a result of their attraction to a fixed point.

Let x, x_{1}, \ldots, x_{n} be the coordinates of our point. Let U be the force function, which might also include time. As is known, the motion will then be determined by the equations:

$$
\frac{\delta}{\delta t} \frac{\delta x_{k}}{\delta t}=\frac{d U}{d x_{k}} \quad(k=1, \ldots, n)
$$

If we set:

$$
\begin{equation*}
\frac{\delta x_{k}}{\delta t}=y_{k} \quad(k=1, \ldots, n) \tag{14}
\end{equation*}
$$

then that will give:

$$
\begin{equation*}
\frac{\delta y_{k}}{\delta t}=\frac{d U}{d x_{k}} \quad(k=1, \ldots, n) . \tag{15}
\end{equation*}
$$

In order to put equations (14) and (15) into canonical form, as one can see in this simplest of cases with no further analysis, it will only be necessary to set:

$$
\frac{1}{2}\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)-U=T .
$$

Our equations will then, in fact, assume the form:

$$
\frac{\delta x_{k}}{\delta t}=\frac{d T}{d y_{k}}, \quad \frac{\delta y_{k}}{\delta t}=-\frac{d T}{d x_{k}} \quad(k=1, \ldots, n) .
$$

That is just how Jacobi arrived at the first result.
Now, in order to generalize that theory, it is useful to look for the intrinsic basis for what was found already.

Since the introduction of the quantities $x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}$ as independent variables of the given simultaneous system will put it into canonical form, from the foregoing section, the expression:

$$
\frac{\delta}{\delta t}\left(y_{1} d x_{1}+\cdots+y_{n} d x_{n}\right)
$$

must possess the form $d \Omega+\rho d t$. One verifies that as follows: One has:

$$
\frac{\delta}{\delta t} \sum_{k} y_{k} d x_{k}=\sum_{k} \frac{\delta y_{k}}{\delta t} d x_{k}+\sum_{k} y_{k} d \frac{\delta x_{k}}{\delta t},
$$

so, from (14), (15):

$$
\begin{aligned}
\frac{\delta}{\delta t} \sum_{k} y_{k} d x_{k} & =\sum_{k} \frac{d U}{d x_{k}} d x_{k}+\sum_{k} y_{k} d y_{k} \\
& =d\left\{U+\frac{1}{2} \sum y_{k}^{2}\right\}-\frac{d U}{d t} d t,
\end{aligned}
$$

which will lead to the proof.
We shall now turn to the general case in which the coordinates x_{1}, \ldots, x_{n} are constrained by several relations that might also include time t :

$$
\begin{equation*}
f_{1}\left(x_{1}, \ldots, x_{n}, t\right)=0, \quad \ldots, \quad f_{q}\left(x_{1}, \ldots, x_{n}, t\right)=0 \tag{16}
\end{equation*}
$$

We always assume the existence of a force function U in that. According to Lagrange, the motion will be determined by the equations:

$$
\begin{equation*}
\frac{\delta}{\delta t} \frac{\delta x_{k}}{\delta t}=\frac{d U}{d x_{k}}+\sum_{i} \lambda_{i} \frac{d f}{d x_{k}} \quad(k=1, \ldots, n), \tag{17}
\end{equation*}
$$

together with (16).
It is now only natural to examine whether:

$$
\frac{\delta}{\delta t} \sum_{k} y_{k} d x_{k}
$$

can also take the form $d \Omega+\rho d t$. One finds that:

$$
\frac{\delta}{\delta t} \sum_{k} y_{k} d x_{k}=\sum_{k} \frac{\delta y_{k}}{\delta t} d x_{k}+\sum_{k} y_{k} d \frac{\delta x_{k}}{\delta t}
$$

so from (17):

$$
\begin{aligned}
& \frac{\delta}{\delta t} \sum_{k} y_{k} d x_{k}=\sum_{k}\left(\frac{d U}{d x_{k}}+\sum_{i} \lambda_{i} \frac{d f_{i}}{d x_{k}}\right) d x_{k}+\sum_{k} y_{k} d \frac{\delta x_{k}}{\delta t} \\
& \quad=d\left(U+\frac{1}{2} \sum y_{k}^{2}\right)+\sum_{k} \lambda_{i} d f_{i}-\left(\frac{d U}{d t}+\sum_{i} \lambda_{i} \frac{d f_{i}}{d t}\right) d t
\end{aligned}
$$

However, all $d f_{i}$ vanish, such that one will now find that:

$$
\frac{\delta}{\delta t} \sum_{k} y_{k} d x_{k}=d\left(U+\frac{1}{2} \sum y_{k}^{2}\right)-\left(\frac{d U}{d t}+\sum_{i} \lambda_{i} \frac{d f_{i}}{d t}\right) d t
$$

which justifies our conjecture.
Now, in the expression $\sum y_{k} d x_{k}, x_{k}$ and $y_{k}=\delta x_{k} / \delta t$ are coupled by the equations (16). We will, in fact, dispose of the dependent quantities y_{k} and $d x_{k}$ by introducing the quantities t and $d t$. It is convenient to think of the $f_{i}=0$ as being solved for q of the quantities x, say, x_{n-q+1}, \ldots, x_{n} :

$$
x_{k}=\varphi_{k}\left(x_{1}, \ldots, x_{n-q}, t\right) \quad(k=n-q+1, \ldots, n)
$$

That will give:

$$
\begin{equation*}
d x_{k}=\sum_{r=1}^{n-q} \frac{d \varphi_{k}}{d x_{r}} d x_{r}+\frac{d \varphi_{k}}{d t} d t \quad(k=n-q+1, \ldots, n) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{k}=\sum_{\rho=1}^{n-q} \frac{d \varphi_{k}}{d x_{\rho}} y_{\rho}+\frac{d \varphi_{k}}{d t} \quad(k=n-q+1, \ldots, n) . \tag{19}
\end{equation*}
$$

If one substitutes those values in $\sum y_{k} d x_{k}$ then that will make:

$$
\sum_{k=1}^{n} y_{k} d x_{k}=\sum_{r=1}^{n-q} y_{r} d x_{r}+\sum_{k=n-q+1}^{n}\left(\sum_{\rho=1}^{n-q} \frac{d \varphi_{k}}{d x_{\rho}} y_{\rho}+\frac{d \varphi_{k}}{d t}\right)\left(\sum_{r=1}^{n-q} \frac{d \varphi_{k}}{d x_{r}} d x_{r}+\frac{d \varphi_{k}}{d t} d t\right)
$$

or

$$
\sum_{k=1}^{n} y_{k} d x_{k}=d t \sum_{k=n-q+1}^{n} \frac{d \varphi_{k}}{d t}\left(\sum_{\rho=1}^{n-q} \frac{d \varphi_{k}}{d x_{\rho}} y_{\rho}+\frac{d \varphi_{k}}{d t}\right)+\sum_{r=1}^{n-q} d x_{r}\left\{y_{r}+\sum_{k=n-q+1}^{n} \frac{d \varphi_{k}}{d x_{r}}\left(\sum_{\rho=1}^{n-q} \frac{d \varphi_{k}}{d x_{\rho}} d x_{\rho}+\frac{d \varphi_{k}}{d t} d t\right)\right\} .
$$

With that, one will then find an equation of the form:

$$
\sum_{k=1}^{n} y_{k} d x_{k}=Y_{1} d x_{1}+\ldots+Y_{n-q} d x_{n-q}+Y d t
$$

If we then determine the quantities λ_{i} by means of equations (16), (17), (19) as functions of the x_{k}, y_{k}, and t and then introduce the quantities:

$$
x_{1}, \ldots, x_{n-q}, Y_{1}, \ldots, Y_{n-q}, t
$$

into our simultaneous system as variables then, from Theorem 3, it will assume the canonical form:

$$
\delta x_{k}=\frac{d W}{d Y_{k}} \delta t, \quad \delta Y_{k}=-\frac{d W}{d x_{k}} \delta t \quad(k=1, \ldots, n-q)
$$

The function W can obviously be determined in each individual case.
The new variables Y_{i} are the partial derivatives of a certain quantity. In fact, if one sets:

$$
\frac{1}{2}\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)=\Omega
$$

then that will give:

$$
\Omega=\frac{1}{2} \sum_{k=1}^{q} y_{k}^{2}+\frac{1}{2} \sum_{k=n-q+1}^{n}\left\{\sum_{\rho=1}^{n-q} \frac{d \varphi_{k}}{d x_{\rho}} y_{\rho}+\frac{d \varphi_{k}}{d t}\right\}^{2}
$$

from which, one will have:

$$
\frac{d \Omega}{d y_{r}}=y_{r}+\sum_{k=n-q+1}^{n} \frac{d \varphi_{k}}{d x_{r}}\left\{\sum_{\rho=1}^{n-q} \frac{d \varphi_{k}}{d x_{\rho}} y_{\rho}+\frac{d \varphi_{k}}{d t}\right\}
$$

for $r=1, \ldots, n-q$, such that:

$$
Y_{1}=\frac{d \Omega}{d y_{1}}, \ldots, Y_{n-q}=\frac{d \Omega}{d x_{n-q}}
$$

11. - If one seeks to determine the quantities x_{1}, \ldots, x_{n} as functions of t in such a way that the integral:

$$
\int \varphi\left(t, x_{1}, \ldots, x_{n}^{\prime}, \ldots, x_{n}^{\prime}\right) \delta t
$$

in which $x_{k}^{\prime}=d x_{k} / d t$, will become a minimum then, as is known, it will be necessary that the equations:

$$
\begin{equation*}
\frac{d \varphi}{d x_{k}} \delta t-\delta \frac{d \varphi}{d x_{k}^{\prime}}=0 \quad(k=1, \ldots, n) \tag{20}
\end{equation*}
$$

should exist. Those equations, together with:

$$
\frac{\delta x_{k}}{\delta t}=x_{k}^{\prime} \quad(k=1, \ldots, n),
$$

define a simultaneous system with $2 n$ terms, and according to Jacobi, it will assume the canonical form when one introduces the quantities:

$$
\begin{equation*}
x_{k}, y_{k}=\frac{d \varphi}{d x_{k}^{\prime}}(k=1, \ldots, n), t \tag{21}
\end{equation*}
$$

as variables.
In order to verify that fundamental theorem in a simple way, I shall form the differential quotients of $\sum y_{k} d x_{k}$ with respect to t :

$$
\frac{\delta}{\delta t} \sum y_{k} d x_{k}=\sum \frac{\delta y_{k}}{\delta t} d x_{k}+\sum y_{k} d \frac{\delta x_{k}}{\delta t},
$$

from which, due to (21) and (20):

$$
\frac{\delta}{\delta t} \sum y_{k} d x_{k}=\sum \frac{d \varphi}{d x_{k}} d x_{k}+\sum \frac{d \varphi}{d x_{k}^{\prime}} d x_{k}^{\prime},
$$

or

$$
\frac{\delta}{\delta t} \sum y_{k} d x_{k}=d \varphi-\frac{d \varphi}{d t} d t
$$

which will lead to the verification.

§ 4. - Solution to Problem III.

12. - Allow me to now assume that a well-defined canonical system:

$$
\begin{equation*}
\delta x_{k}=\frac{d F_{1}}{d p_{k}} \delta t, \quad \delta p_{k}=-\frac{d F_{1}}{d x_{k}} \delta t \quad(k=1, \ldots, n) \tag{22}
\end{equation*}
$$

can, upon introducing the variables $y_{1}, \ldots, y_{n}, q_{1}, \ldots, q_{n}$, where:

$$
\begin{aligned}
& y_{k}=y_{k}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right), \\
& q_{k}=q_{k}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right) \quad(k=1, \ldots, n)
\end{aligned}
$$

assume the form:

$$
\delta y_{k}=\frac{d \Phi_{1}}{d q_{k}} \delta t, \quad \delta q_{k}=-\frac{d \Phi_{1}}{d y_{k}} \delta t \quad(k=1, \ldots, n) .
$$

If that transformation is not a contact transformation then let:

$$
\sum q_{k} d y_{k}=\sum X_{k} d x_{k}+\sum P_{k} d p_{k}=W
$$

There exists (Theorem 1) a relation of the form:

$$
\frac{\delta}{\delta t} \sum q_{k} d y_{k}=\left(\Phi_{1}, \sum q_{k} d y_{k}\right)=d \Omega
$$

so one will have:

$$
\frac{\delta}{\delta t}\left\{\sum_{k} X_{k} d x_{k}+\sum_{k} P_{k} d p_{k}\right\}=d \Omega
$$

On the other hand, let an arbitrary expression be given:

$$
\begin{equation*}
\sum X_{k}^{\prime} d x_{k}+\sum P_{k}^{\prime} d p_{k} \tag{23}
\end{equation*}
$$

that has a normal form with n terms, and whose differential quotient with respect to t is a complete differential:

$$
\begin{equation*}
\frac{\delta}{\delta t}\left\{\sum X_{k}^{\prime} d x_{k}+\sum P_{k}^{\prime} d p_{k}\right\}=\left(F_{1}, \sum X_{k}^{\prime} d x_{k}+\sum P_{k}^{\prime} d p_{k}\right)=d \Omega . \tag{24}
\end{equation*}
$$

If one then puts $\sum X_{k}^{\prime} d x_{k}+\sum P_{k}^{\prime} d p_{k}$ into its normal form:

$$
\sum X_{k}^{\prime} d x_{k}+\sum P_{k}^{\prime} d p_{k}=q_{1}^{\prime} d y_{1}^{\prime}+\cdots+q_{n}^{\prime} d y_{n}^{\prime}+d \Theta
$$

then when one introduces the $y_{k}^{\prime}, q_{k}^{\prime}$ (which are assumed to be independent) as variables, the system (22) will obviously assume the canonical form:

$$
\delta y_{k}^{\prime}=\frac{d \Psi}{d q_{k}^{\prime}} \delta t, \quad \delta q_{k}^{\prime}=-\frac{d \Psi}{d y_{k}^{\prime}} \delta t \quad(k=1, \ldots, n),
$$

in turn.
If one would then like to find the most general transformation that lets the system (22) take on its canonical form then one must look for the most general expression (23) that fulfills a relation of the form (24), and then put that expression into its normal form in the most general way. After that, the transformation in question can be exhibited with no further discussion.

I shall next look for a $2 n$-parameter canonical group that includes F_{1} :

$$
F_{1}, \ldots, F_{n}, G_{1}, \ldots, G_{n}
$$

and then introduce those quantities as variables. One then deals with the search for the most general expression:

$$
\begin{equation*}
\sum L_{k} d F_{k}+\sum M_{k} d G_{k} \tag{25}
\end{equation*}
$$

that fulfills a relation of the form:

$$
\left(F_{1}, \sum L_{k} d F_{k}+\sum M_{k} d G_{k}\right)=d \Omega .
$$

However, that equation must assume the form:

$$
\sum \frac{d L_{k}}{d G_{1}} d F_{k}+\sum \frac{d M_{k}}{d G_{1}} d G_{k}=d \Omega,
$$

from which:

$$
\frac{d L_{k}}{d G_{1}}=\frac{d \Omega}{d F_{k}}, \quad \frac{d M_{k}}{d G_{1}}=\frac{d \Omega}{d G_{k}} \quad(k=1, \ldots, n),
$$

and upon integrating over G_{1} :

$$
\begin{equation*}
L_{k}=\int \frac{d \Omega}{d F_{k}} d G_{1}, M_{k}=\int \frac{d \Omega}{d G_{k}} d G_{1} \quad(k=1, \ldots, n) . \tag{26}
\end{equation*}
$$

In those expressions for the quantities L_{k} and M_{k}, the integration constants are arbitrary functions of $F_{1}, \ldots, F_{n}, G_{2}, \ldots, G_{n}$, while Ω denotes an arbitrary function of all F_{k} and G_{k}. If one then expresses F_{k} and G_{k} as functions of the x_{k} and p_{k} in (25) then one will get the most general expression:

$$
\sum X_{k} d x_{k}+\sum P_{k} d p_{k}
$$

that fulfills a relation of the form:

$$
\left(F_{1}, \sum X_{k} d x_{k}+\sum P_{k} d p_{k}\right)=d \Omega .
$$

After that, one will find the desired transformation from the rules that were set down before.
13. - In order to explicitly verify that the transformations that are found in that way are not contact transformations, in general, I shall make the following argument:

When I denote arbitrary functions of $G_{2}, \ldots, G_{n}, F_{2}, \ldots, F_{n}$, by λ_{k} and μ_{k}, formulas (26) can be written as follows:

$$
\begin{equation*}
L_{k}=\frac{d}{d F_{k}}\left(\int \Omega d G_{1}\right)+\lambda_{k}, \quad M_{k}=\frac{d}{d G_{k}}\left(\int \Omega d G_{1}\right)+\mu_{k} \quad(k=1, \ldots, n) . \tag{27}
\end{equation*}
$$

Now should the transformation in question be a contact transformation then the relation:

$$
\sum L_{k} d F_{k}+\sum M_{k} d G_{k}=\sum p_{k} d x_{k}+d \Psi=\sum G_{k} d F_{k}+d \Pi
$$

must exist, so:

$$
\begin{equation*}
L_{k}=G_{k}+\frac{d \Pi}{d F_{k}}, \quad M_{k}=\frac{d \Pi}{d G_{k}} \quad(k=1, \ldots, n) . \tag{28}
\end{equation*}
$$

When we set:

$$
\Pi-\int \Omega d G_{1}=S
$$

those formulas, together with (27), will give the equations:

$$
\lambda_{k}=G_{k}+\frac{d S}{d F_{k}}, \quad \mu_{k}=\frac{d S}{d G_{k}} \quad(k=1, \ldots, n)
$$

However, since λ_{k} and μ_{k} are generally arbitrary functions of $G_{2}, \ldots, G_{n}, F_{2}, \ldots, F_{n}$, we have actually proved that our transformations are contact transformations only in exceptional cases. That gives:

Theorem III:

In order to convert any canonical system:

$$
\delta x_{k}=\frac{d F_{1}}{d p_{k}} \delta t, \quad \delta p_{k}=-\frac{d F_{1}}{d x_{k}} \delta t \quad(k=1, \ldots, n)
$$

into a similar system in the most general way, one proceeds as follows: One satisfies the equation:

$$
\sum p_{k} d x_{k}=\sum G_{k} d F_{k}+d V
$$

in the most general way and then sets:

$$
L_{k}=\lambda_{k}+\frac{d U}{d F_{k}}, \quad M_{k}=\mu_{k}+\frac{d U}{d G_{k}} \quad(k=1, \ldots, n),
$$

in which U is an arbitrary function of the F_{k} and G_{k}, while the λ_{k} and μ_{k} denote arbitrary functions of $G_{2}, \ldots, G_{n}, F_{1}, \ldots, F_{n}$. One will then put:

$$
\sum L_{k} d F_{k}+\sum M_{k} d G_{k}
$$

into the form:

$$
Q_{1} d Y_{1}+\ldots+Q_{n} d Y_{n}+d Y
$$

in the most general way. The equations:

$$
q_{k}=Q_{k}, \quad y_{k}=Y_{k} \quad(k=1, \ldots, n)
$$

will determine the most general transformation of the required kind.

Note.

14. - If any Pfaff expression:

$$
X_{1} d x_{1}+\ldots+X_{m} d x_{m}=\sum X d x
$$

is given then one can pose the problem of finding the most general infinitesimal transformation:

$$
A f=\xi_{1} \frac{\delta f}{\delta x_{1}}+\cdots+\xi_{m} \frac{\delta f}{\delta x_{m}}
$$

that fulfills a relation of the form:

$$
A\left(\sum X d x\right)=d \Omega,
$$

or also gives:

$$
A\left(\sum X d x\right)=0
$$

Those problems can always be solved. If $m=2 n$, in particular, and the normal form of $\sum X d x$ has n terms in $2 n$ independent functions, as a result, then the first problem will require only performable operations.

Conversely, let a complete system be given:

$$
A_{1} f=0, \quad \ldots, \quad A_{q} f=0
$$

I shall assume that I know an expression:

$$
X_{1} d x_{1}+\ldots+X_{m} d x_{m}
$$

that fulfills q relations of the form:

$$
A_{i}\left(\sum X d x\right)=d \Omega_{i} \quad(\text { or }=0)
$$

I now pose the problem of exploiting that situation as much as possible. In particular, if $q=1, m$ $=2 n$ and the normal form of $\sum X d x$ then includes $2 n$ independent functions then the integration of $A_{i} f=0$ will require only $2 n-2,2 n-4, \ldots, 6,4,2$ operations.

On another occasion, I will extend all of my investigations into first-order partial differential equation to the Pfaff problem.

Christiania, January 1877.

Voluntary disclosures about this article.

1. - Repertorium, Bd. II, pp. 408. Leipzig 1879.

The most general transformation:

$$
\begin{equation*}
x_{k}^{\prime}=X_{k}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right), \quad p_{k}^{\prime}=P_{k}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right) \tag{1}
\end{equation*}
$$

that simultaneously converts all simultaneous systems of the form:

$$
\begin{equation*}
d x_{k}=\frac{d F}{d p_{k}} d t, \quad d p_{k}=-\frac{d F}{d x_{k}} d t \tag{2}
\end{equation*}
$$

into systems of the same form, was determined by Jacobi and Bour from the equations:

$$
\begin{equation*}
\left(X_{i} X_{k}\right)=\left(X_{i} P_{k}\right)=\left(P_{i} P_{k}\right)=0, \quad\left(P_{k} X_{k}\right)=1 \tag{3}
\end{equation*}
$$

From the author's investigations of contact transformations, the relations that were just written down likewise determine the most general system of quantities X, P_{i} that fulfill a condition equation of the form:

$$
P_{1} d X_{1}+\ldots+P_{n} d X_{n}=p_{1} d x_{1}+\ldots+p_{n} d x_{n}+d \Omega
$$

The treatise seeks the intrinsic basis for that connection between perturbation theory and the theory of contact transformations.

If one requires the most general transformation that converts only one system (2) into a similar system then the relations (3) will no longer be necessary. All transformations that fulfill such a requirement will then be determined.

This voluntary disclosure agrees almost exactly with one that was written in French in volume XIV of the Bulletin des Sciences mathématiques et astronomiques [Ser. (2), t. III], Sec. 2, pp. 185-186, Paris, November 1879, except that the sentence "The treatise seeks, etc." reads as:
"The present treatise explains the deep reason for that dependency between the theory of perturbations and that of contact transformations."

$$
\text { 2. - F. d. M., Bd. IX, Jahrg. 1877, pp. 259-261. Berlin } 1880 .
$$

In the theory of perturbations, one solves the following problem:
Problem I: Determine the most general transformation:

$$
x_{k}^{\prime}=X_{k}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right), \quad p_{k}^{\prime}=P_{k}\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right)
$$

that simultaneously takes all simultaneous systems of the form:

$$
d x_{k}=\frac{d F}{d p_{k}} d t, \quad d p_{k}=-\frac{d F}{d x_{k}} d t
$$

to systems of the same form.
Jacobi and Bour have shown that the most general transformation of the desired kind is defined by:

$$
\begin{equation*}
\left(X_{i} X_{k}\right)=\left(X_{i} P_{k}\right)=\left(P_{i} P_{k}\right)=0, \quad\left(P_{k} X_{k}\right)=1 \tag{1}
\end{equation*}
$$

On the other hand, from the author's previous work, the following problem is at the basis for the theory of contact transformations:

Problem II: Determine $2 n$ quantities:

$$
X_{1}, \ldots, X_{n}, P_{1}, \ldots, P_{n}
$$

as functions of:

$$
x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}
$$

in the most general way such that a relation of the form:

$$
P_{1} d X_{1}+\ldots, P_{n} d X_{n}=p_{1} d x_{1}+\ldots, p_{n} d x_{n}+d V
$$

exists, in which one assumes that V is regarded as an undetermined function of x_{1}, \ldots, p_{n}.

As is known, one gets the most general solution of that problem when one takes an arbitrary system of quantities X_{k}, P_{k} that fulfill the relations (1).

With that, one verifies that there is a more precise connection between two apparently-different problems. In the present article, the intrinsic basis for that identity is present by way of analytical considerations. At the same time, several analogous problems are presented and resolved. In particular, the following new problem was solved:

Problem III: Determine the most general transformation that takes a given system of the form:

$$
d x_{k}=\frac{d F}{d p_{k}} d t, \quad d p_{k}=-\frac{d F}{d x_{k}} d t
$$

into a similar system.

It was shown that the transformations in question, which were all determined, are not contact transformations, in general.

[^0]: (${ }^{1}$) Jacobi considered Problem II, and added the further demand that the equations $X_{1}=a_{1}, \ldots, X_{n}=a_{n}$ can be solved for p_{1}, \ldots, p_{n}. He recognized the necessity of the relations (0) in his statement of the problem, but their existence is not sufficient.
 $\left(^{2}\right)$ [Art. VII, pp. 49, nos. 1-7.]

[^1]: $\left({ }^{1}\right)$ By means of that theorem, Problem I will take the form: Determine the most general analytical conversion under which all infinitesimal contact transformations will remain the same. Obviously, any contact transformation will be such a conversion.

[^2]: $\left.{ }^{1}{ }^{1}\right)$ [Ges. Abh., vol. IV, art. I, § 16, no. 36.]

[^3]: $\left.{ }^{1}{ }^{1}\right)$ [Ges. Abh., vol. IV, art. I, §§ 10-13, nos. 23-29.]

