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 Assume that an electric mass in motion has a density  and a velocity u and produces the same 

field as a conduction current of intensity u  at each point. Upon preserving the notations of a 

preceding article (1), we will get the following equations for determining the field: 
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with the analogues that are deduced by cyclic permutation, and in addition, the following ones: 
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 One easily deduces the following relations from that system of equations: 
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 Now let four functions , F, G, H be defined by the conditions: 

 
 (1) “La théorie de Lorentz,” L’Éclairage Électrique 14, pp. 417. , ,  are the components of the magnetic force, 

and f, g, h are those of the displacement in the ether. 
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One satisfies the conditions (5) and (6) by taking: 
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 As for equations (1) to (4), in order for them to be satisfied, it is necessary that, along with (7) 

and (8), one must have the condition: 
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 We first address equation (7). We know that the most general solution is the following one: 
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 , , , /x y z t r V

d
r
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in which r is the distance from a point ( , , )M x y z     of the volume element d  to the point M (x, 

y, z) where we would like to find the value of  at the instant t, the density  is not taken at the 

instant t, but at the time t – r / V, and the integral is extended over all space (1). 

 Suppose that we have only one electrified mass that occupies the volume . Outside of it,  is 

zero, and the corresponding integral elements are zero. It then seems that it will suffice to reduce 

the field of integration to the volume  of the electric mass. However, one must note that the value 

of r at the different points in space must be taken at different epochs. 

 Imagine a sphere S of arbitrary radius r and center M (Fig. 1), and let  be the corresponding 

position of the electrified mass, i.e., its position at the instant t – r / V. If S and  do not meet then 

the integral elements will be zero for all the points of S, but if a region AB of S is found inside of 

 
 (1) LORENTZ, Archives néerlandaises, 1892. 
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 then the integral elements will be non-zero for all points of AB. The domain of integration will 

then be the volume generated by AB, when one varies the radius of the sphere S, and at the same 

time, the position of . 

 
 Let e be the total charge of , which we assume has very small dimensions, in such a way that 

u has essentially the same value at all points, and that r has essentially the same value and direction 

everywhere in the domain of integration. For an increase dr in r, the corresponding displacement 

in  in the normal direction to the sphere and towards the interior will be equal to 

( / ) cos( , )dr V u u r− u , if one takes the positive direction for r to be the direction from  to M. 

 As a result, whereas the elementary volume that is actually swept out by AB will be equal to 

the area AB  dr, the volume that is swept out by  will be equal to only: 
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one takes u and r to have a mean value, and one will get the following value for  : 
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 We can now suppose that all of the charge is concentrated at a point. I shall represent its 

position at the instant t by P (Fig. 2), and its position at the instant t –  by P0 (x0, y0, z0), in which 

 is such that P0M = r = V . x0, y0, z0 will functions of (t – ), and one will have: 
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t
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t
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. 

 

 u cos (u, r) will then be equal to: 
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 Trace out a length P0 A that is equal to u  along the tangent to the trajectory of the point P at 

P0 that points in the direction of motion. In order to represent the position of the point P0 at time 

t, upon starting at time t – , one must maintain a uniform rectilinear motion. Draw AM and let B 

be the projection of A onto P0 M. One will immediately have: 
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and as a result, (12) can be written: 

 = 
( )

e

B M
.      (12) 

 

 Equations (8) differ from (7) by only the change from  to  ux ,  uy ,  uz . Moreover, in order 

to solve (7), we will not have to make any assumption on the constancy or variation of e in time, 

and from the algebraic viewpoint, the value (12) of  will be variable, even if e is variable, on the 

condition that we must take its value at the instant t – . We will then obtain the solutions to (8) 

by simply changing e into e ux , e uy , e uz , which will give: 
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and two analogous expressions for G and H. 
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 We must now calculate f, g, h, , ,  using equations (9) and (10), but first, we must verify 

that the condition (11) is satisfied, and in order to do that, we shall calculate the derivatives 
d

dt


,

dF

dx
, 

dG

dy
, 

dH

dz
. 

 , F, G, H depend upon x directly and by the intermediary of . Indeed,  is determined by the 

condition that P0 M is equal to V , so one has the relation: 
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 Differentiate this while supposing that y, z, and t are constant, but x, and as a result, , are 

variable. Upon suppressing a factor of 2, one will get: 
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 One will get d / dy and d / dz similarly. In order to get d / dt, it will suffice to differentiate 

(14) while keeping x, y, z constant, but recalling that x0, y0, z0 are functions of t –  : 
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 Let W be the acceleration of P at the instant (t – ). One can write the following equalities: 
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 All that remains is to calculate the values of f and  that are given by (9) and (10): 
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e
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 We remark that ux (P0 M) / V is equal to  ux and represents the projection of P0 A onto the x-

axis. As a result, x – x0 – ux (P0 M) / V represents the projection of AM onto Ox . Geometrically, 

upon letting D  represent the displacement and letting H  represent the magnetic force, one can 

write: 

D  = 
2 2

0 0

2 3

[ ] ( )( )
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H  = 
2 2

0 0 0

2 3
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e
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 More generally, we shall let X Y  represent the scalar geometric product of the two vectors ,X  

Y , i.e., the quantity X Y cos (X, Y),  and let X Y  represent the vectorial product, i.e., a vector that 

is equal to X Y sin (X, Y) and is perpendicular to the two vectors X  and Y , in a sense that makes 

the projection of Y  onto a plane normal to X  coincide with the direction of the vectorial product 

under a rotation of 90o in the direct sense [here, that would be right to left, from the way that the 

axes were supposed to be oriented in formulas (1) and (2)]. 

 Formula (18) shows, first of all, that the magnetic force H  is normal to 
0P M . If we consider 

the sphere with its center at P0 that passes through M then the point P0 will play the same role as 
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M for all points on that sphere. Therefore, at the instant t, the magnetic force flux across that sphere 

will be zero. 

 We shall likewise look for the displacement flux across that sphere. In order to get the 

component of D  that is normal to the sphere (i.e., along P0 M), it suffices to replaces AM  and W  

with their projections (BM) and W cos (w, r), resp., onto the radius in the expression for D . As a 

result: 

Dx = 
2 2

0 0

2 2

[ ]( ) ( )( ) cos ( , )
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e
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V u
e

r V u 

−

−
 , 

 

when we let  denote the angle AP0 M. We shall take the surface element dS of the sphere to be 

the zone that is bounded by the two cones with half-openings of  and  + d. We will have: 

 

nD dS  = 
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 − −
 

− 
 = e . 

 

Moreover, that result will an obligatory consequence of (3). 

 The two vectors D and H are at right angles, and the ratio of H to the projection Dt of D onto 

the plane normal to P0M is constant and equal to 4 V. 

 In order to get Dt, it suffices to replace the vectors AM  and W  with the components normal 

to P0M in (18): 

tD  = 0

2 2

[ ] ( )( )

4 ( )

tAB P M BM w

V BM

−
 . 

 Moreover: 

0u P M  = − 0P M u  = − 0 0

1
P M P A


  = 0

1
P M AB


 , 

 

because one can replace the second factor − 
0P A  with its projection AB  onto a plane that is normal 

to the first one. The vectorial product considered is then numerically equal to (P0 M) /  (AB) = 

V(AB), and the direction of AB turns through a right angle around P0 M in the direct sense. 

 Similarly: 

0V w P M  = − 0V P M w  = − − 0 tV P M w  

 

is the vectorial product whose numerical value is – V (P0 M) wt , and the direction is that of tw  

turning through a right angle around P0 M in the direct sense. 
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 Having established those relations, it will result immediately from a comparison of the values 

of H and Dt that H is equal to 4 V Dt , and the direction of 
tD  turns through a right angle around 

P0 M in the direct sense, i.e., from right to left for an observer that has his feet at P0 and his head 

at M. 

 Since H is perpendicular to the two components Dt and Dn of D, it will be perpendicular to D 

itself a fortiori. 

 In the case where the motion of P is uniform and rectilinear, formulas (17) and (18) will 

simplify. First, the terms in W will disappear. In addition, the points P and A will coincide, and it 

will be possible to express the values D  and H  in terms of the current position P or A without 

introducing P0 . Indeed, one first has: 

 

0u P M  = 0u P A u AM +   = u AM , 

 

because the vectorial product 
0P A  is zero, since its two factors have the same direction. In addition, 

if one lets  and  denote the angle P0MA and the angle between AM and the prolongation of P0A, 

resp., then one will have the equalities: 

 

sin

sin




 = 0

0

P A

P M
 = 

n

V
, 

 

BM = AM cos  = 
21 sinAM −  = 

2 2

2

sin
1

u
AM

V


−  , 

and (17) and (18) will become: 

D = 
2 2

2 2 2 2 3/2

( )

4 ( ) [ sin ]

V V u
e

AM V u 

−

−
,    (17) 

 

H = 
2 2

2 2 2 2 3/2

( ) sin

( ) [ sin ]

V V u u
e

AM V u





−

−
,    (18) 

 

where the first vector points along AM and the second one points along the common perpendicular 

to AM and u. 

 Equations (17) and (18) will again reduce to (17) and (18) when one supposes that the points 

P0 and M are infinitely close and that one confines oneself to principal values. 

 On the contrary, at a great distance from the point P0, those are the most important terms in w, 

and D will essentially reduce to its component that is normal to P0 M. 
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APPLICATIONS OF THE PRECEDING FORMULAS 

 

 I. – As a first application, we shall calculate the electric and magnetic field that are produced 

by a circuit that carries a constant linear charge density and slides along itself with a constant 

velocity u. 

 Let S be a point of the circuit C that is defined by the length S of an arc of the circuit when 

measured by starting from a fixed origin O (Fig. 3) in the sense of the velocity u (1). The action of 

the charge  ds of an element of length ds that neighbors on the point P will depend upon its 

position at P0 (s0) at time that is  earlier. 

 
 Upon always letting x, y, z denote the coordinates of M, while x0, y0, z0 denote those of P0 , 

which are supposed to be given as functions of s0,  will be equal to (s – s0) / u and will be given 

by the condition that V  = P0 M, or: 

 
2

2

V

u
(s – s0)

2 = (x – x0)
2 + (y – y0)

2 + (z – z0)
2 .    (19) 

 

 The components of the velocity u at P0 will be 0

0

dx
u

ds
, 0

0

dy
u

ds
, 0

0

dz
u

ds
, and those of the 

acceleration will be 
2

0 0

2

0

d x s
u

ds t




 = 

2
2 0

2

0

d x
u

ds
, and similarly 

2
2 0

2

0

d y
u

ds
, 

2
2 0

2

0

d z
u

ds
,  because u is constant. 

 If one takes that into account then one will have: 

 

d = 

2 2
2 2 20 0 0 0

0 0 0 02 2

0 0 0 0

2 3

1 ( ) ( ) ( ) ( ) ( )

( )

d x dy dz d z
u V u x x z z y y V u BM z z

ds ds ds ds
ds

V BM


       
− − − − − − + − −      

       


. 

 

 However: 

 
 (1) In the figure, the line P0 A must be tangent to the arc OP0, and the line AB is perpendicular to P0M. 

M A 

B P0 

O 

C 

P 

Figure 3. 
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0

( )d BM

ds
 = 

0
0

0

0

( )
dxu

d r x x
V ds

ds

 
− − 

 


 = − 
2

0 0
0 02

0 0

1
( ) 1 ( )

dx d xu
x x x x

r ds V ds

 
− + − − 

 
   , 

 

because: 
2

0

2

0

d x

ds
  = 

2 2 2

0 0 0

2

0

dx dy dz

ds

+ +
 = 1 . 

 

 If one infers 1 − 
2

0

2

0

d x

ds
 (x – x0) from that equation and substitutes it in the expression for d 

then it will become: 

 

d = 

2
2 20 0 0

0 0 02

0 0 0 0

2 3

( ) ( ) ( ) ( )

( )

dx dy d zV u d BM
u V x x V u z z V u BM z z

r ds ds ds ds
ds

V BM


    
− − − − − + − −    

    


 

 

= 

0 0 0
0 0 02

0 0 0

0

( ) ( ) ( )

( )

dy dy dz
u z z z z y y

ds ds dsu d ds

r BM V ds BM B M



  
− − − − −  

   + 
 
 
 

. 

 

 In order to get , one must integrate the preceding expression along the complete circuit while 

recalling that s0 is a function of s that is defined by (19). However, it is more convenient to change 

the variable by taking s0 instead of s. 

 When (19) is differentiated, it will become: 

 
2

2

V

u
(s – s0) (ds – ds0) = − 0

0 0

0

( )
dx

x x ds
ds

− , 

 

or since (V / u) (s – s0) = P0 M = r : 

 

r (ds – ds0) = − 0
0 0

0

( )
dxu

x x ds
V ds

− , 

or 

ds

BM
 = 0ds

r
 . 

 

 The domain of integration with respect to s0 is obviously the same as it is for s ; therefore: 
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 = 

0 0 0
0 0 02

0 0 0
02

0

( ) ( ) ( )

( )

dy dy dz
u z z z z y y

ds ds dsu d
ds

r BM V r ds BM


  
− − − − −  

   + 
 
 
 

 . 

 Moreover: 

0

dr

ds
 = − 0

0

0

1
( )

dx
x x

r ds
−  , 

 

and the second terms in the parentheses can be written: 

 

20 0
0 02

0 0 0
03

0 0

( ) ( )

( )
( ) ( )

dy dx
z z u x x

ds ds dyu d
z z

V ds r BM V r BM ds

− −
 

− − − 
 


 , 

and  will become: 

 

 = 

0
0 2

0 0
0 03

0 0

( )

( )
( ) ( )C

dy
u z z

ds dxu u d
r x x ds

r BM V ds V ds r BM


  
− −  

    − − +  
  

 
 

  

 

= 

0 0 0 0
0 0 0 02

0 0 0 0
03

( ) ( ) ( ) ( )

( )C C

dy dz dy dz
z z y y z z y y

ds ds ds dsu
u ds d

r V r BM




 
− − − − − −  

+  
 
  

   . 

 

 The second integral is zero identically, and the magnetic field is the same as the one that is 

produced by a conducting current of intensity u  . 

 Similarly, one will find the following value for 
24 V f : 

 

24 V f  = 
2 0

02

( )

( )C C

x x uV AM
V ds d

r r BM




−
+  . 

 

 Here again, the second integral is zero, and the electric field is the same as when the circuit is 

at rest. 

 

 II. – Let us now look for the energy lost by radiation. In order to do that, we shall evaluate the 

energy flux during the time dt across the sphere whose center is P0 and radius is P0 M, which we 

shall call the position of the wave that is emitted by P0 at time t, to simplify. 
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 If Dt is the component of D in the tangent plane to the wave then the flux across the element 

dS will be equal to 
2

tV D H dS dt . However, Dt is normal to H and equal to H / 4 V, so that 

expression will be further equal to: 

 

21

4
V H dS dt


 = 24 tV V D dS dt  = 

2 2 21
2

8
tH V D dSV dt



 
+ 

 
. 

 

 Upon integrating over dS, one will get the total flux that passes from the interior of the wave 

surface to its exterior. 

 During the time dt, the radius of the wave surface will have increased by V dt, and the space 

that is swept out by the surface will contain an energy that is equal to: 

 

2 2 21
2

8
Vdt H V D dS



 
+ 

 
  = 

2 2 2 2 21
2 2

8
t nVdt H V D dS V dt V D dS 



 
+ + 

 
  . 

 

 Finally, the quantity of energy that traverses the wave surface, which is considered to be 

moving, is equal to: 

− 
2 22 nV dt V D dS . 

 

 However, Dn is infinitely small of order two when r is infinitely large of order one, i.e., when 

t increases indefinitely,  will vary at the same time in order for t –  to remain constant and the 

point P0 to correspondingly remain the same. As a result, the preceding integral will have order 
21/ r  and will tend to zero. Therefore, if we consider two wave surfaces S and S   that correspond 

to the same value of t, but different values of , and for t increasing indefinitely then the energy 

found between those two wave surfaces will tend to a constant value, and since all of that energy 

will go out to infinity, it will be found to have been lost by radiation. 

 In order to perform the calculation, I shall first suppose that S and S   correspond to values of 

 that differ by infinitely little, say,  and  + d. The surface S   will have a radius that is equal 

to V ( + d), and its center will not be at P0, but at 0P  , such that 
0 0P P  = u d. 

 As a result, a volume element that is found between those two surfaces will be equal to dS [V 

d – u cos  d] and the energy that is found between S and S   will be equal to: 

 

dE = 
2 2 21

2 ( cos )
8

d H V D V u dS  


 
+ − 

 
 . 

 

 Since we seek only the limiting value of dE for r infinitely large, we must keep only the terms 

in 
21/ r  in the parentheses, i.e.: 
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2 2 21
2

8
tH V D


+  = 

2

4

H


 = 

2 2 2

4

  



+ +
 . 

 

 To simplify, I will take the x-axis to be parallel to P0 A, i.e., the direction of the velocity at P0, 

and I will take Ox to be the axis of a system of polar coordinates r, , . As a result, upon taking 

only the terms in 1/r in , , , one will have: 

 

r

e V


 = 

2

sin sin sin cos

[ cos ]

y zw w

V u

   



−

−
, 

 

r

e V


 = 

3

[ cos sin cos sin sin ] sin sin [ cos ][ cos sin sin ]

[ cos ]

x y z z xw w w u V u w w

V u

          



− + + + − −

−
, 

 

r

e V


 = 

3

[ cos ] sin cos [ cos ][ sin cos cos ]

[ cos ]

x x yw u V u w w

V u

      



+ + − −

−
. 

 

Hence: 

 
2

[ cos ]
4

H
V u dS


−  = 

2 2 2
2[ cos ] sin

4
V u r d d

  
   



+ +
−  

 

= 

2 2 2

2 2

3

2 2 2 2 2

[ cos sin cos sin sin ] sin
sin

2 [ cos ][ cos ]{ cos [ cos ]}
4 [ cos ]

[ cos ] { [ cos ] }

x y z

x x x

x y z x

w w w u
e V d d

u w V u w w
V u

V u w w w w

     
  

   
 

 

 + +
 

+ + − − + 
−  + − + + − + 

 

 

= 

2 2 2

2 2

3

2 2 2 2 2

[ cos sin cos sin sin ] sin
sin

2 [ cos ][ cos ]{ cos [ cos ]}
4 [ cos ]

[ cos ] { [ cos ] }

x y z

x x x

x y z x

w w w u
e V d d

u w V u w w
V u

V u w w w w

     
  

   
 

 

 + +
 

+ + − − + 
−  + − + + − + 

 . 

 

 One must integrate over  from 0 to 2 and over  from 0 to . In the first integration, the 

terms that contain cos , sin , or sin  cos  disappear, while the ones that contain cos2  or 
2sin   will be found to be multiplied by , in one case, and 2, in the other. As a result: 

 

dE = 

2 2 2 2 2 2 2 2

2 2
2

30
2 2 2 2

( )[2 cos sin sin ]
sin

4 [ cos ]cos
4[ cos ]

2[ cos ] ( )

x y z

x

x y z

V u w w w
e V d

d u w V u
V u

V u w w w



  
 

  




 − − + +
 

+ − 
−  + − + + 

 . 

 

 To integrate this, I make the change of variables: 
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V – u cos  = x , 

so 

u sin  d = dx 

and 

cos  = 
V x

u

−
 . 

 

 The new limits of integration will be V – u and V + u. 

 

dE = 
2 2 2

2 2 2 2 2 2 2

3 2

( )
{ ( )[(2 ) ]

4

V u

x y z y z
V u

e V dx V x
d V u w w w w w

u x u


+

−

−
− − − − + +  

  + 2 2 2 2 24 2 ( )}x x y zV w x x w w w+ + +  

 

= 
2 2 2

2 2 2 2 2 2

3 3 4

( ) 2
{[2 ( )( )]

4

V u

x y z
V u

e V dx V x V
d w V V u w w

u x x x


+

−

 − −
− − + + 

 
  

  + 

2 2 2 2 2 2

2

( )( ) 2y z xV u w w V w

x

+ + − 



.        (20) 

 Now: 

  
5

V x

V x

dx

x

+

−  = 
4 4

1 1 1

4 ( ) ( )V u V u

 
− 

− + 
 = 

2 2

2 2 4

2 ( )

( )

uV V u

V u

+

−
 , 

 

  
4

V x

V x

dx

x

+

−  = 
2 2

2 2 3

2 (3 )

3 ( )

u V u

V u

+

−
 , 

 

  
3

V x

V x

dx

x

+

−  = 
2 2 2

2

( )

uV

V u−
 , 

 

and after all reductions have been made, the preceding expression will become: 

 

dE = 
2 6 4

2 2 2

2 2 3 2 2 2

2
( )

3 ( ) ( )
x y z

e V V
d w w w

V V u V u


 
+ + 

− − 
 

 

= 
2 4 4 2

2 2 2

2 2 3 2 2 3

2
cos ( , )

3 ( ) ( )

e V V u
d w w w u

V V u V u


 
+ 

− − 
.  (21) 

 

 When 
2u  is negligible compared to 

2V , one will have more simply: 
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dE = 
2 22

3

e w
d

V
 , 

 

which is an expression that was given by Larmor [Phil. Mag. 44 (1897), pp. 503]. Larmor 

calculated it simply by evaluating the energy that traversed a wave surface of infinite radius. That 

procedure, which is permissible when u is negligible, will be incorrect under the more general 

assumption, because the waves that the charge e emits are not concentric, and a sphere that is the 

wave surface at one moment will no longer be such a thing at the following instant. 

 Suppose that the charge is originally at rest and the field is invariable. One sets the charge into 

motion, only to bring it back to rest after a time . If the velocity u is less than V during all of the 

motion (as we have supposed implicitly up to now, moreover) then at a time t after the motion 

ends, the perturbation will be concentrated between two spheres, one of which has a radius of V ( 

+ t) and its center at the initial position, and the other of which has a radius of Vt and its center at 

the final position. Outside of that region, the field will be the same as it was originally, and inside 

of it, the field will be the same as if the charge had always been at rest in its present position. From 

the preceding calculation, the energy that is carried off to infinite by the perturbation will be equal 

to 
0

dE


  and essentially positive. That expression then represents the total work that is done on 

the charge during the motion. However, it would not be true to say that the work done at an 

arbitrary instant is equal to dE, because the work done is infinitely large when one supposes that 

the charge is concentrated at a point, but the difference must be an exact differential of an (infinite) 

function of u and w that will disappear when one starts at rest and returns to rest. 

 Let us also seek the total impulse of the force that is necessary to produce the motion. We have 

established (Écl. Él., t. XIV, pp. 45) that the projections of the forces developed by the field on the 

charges onto the impulsion axes during an arbitrary time are equal to the variations of the integrals: 

 

− ( )g h d  − , − ( )h f d  − , − ( )f g d  −  . 

 

 Here, the desired quantity will be equal and of opposite sign. Now, at the initial instant, , , 

 are zero and the integrals are zero. It will then suffice to have their values at the end of the motion. 

However, since the charge is no longer subject to any force, because it is isolated in the field, then 

the integrals will no longer vary, and we can seek their values for t infinite. We shall operate as 

before by first seeking the values of the integrals for the space that is found between the two wave 

surfaces S and S  . 

 g  – h , …, represent the components of the vectorial product D H , which is equal to the 

resultant of the following two tD H  and nD H . For the same reason as before, the product 

containing Dn will be negligible, and as for the first one, as we have seen, it will be equal to 
2 / 4H V  and point in the direction of P0 M. Therefore, if dIx, dIy, dIz represent the desired 

integrals then their expression will differ from those of dE only by suppressing a factor of V and 

introducing the factors cos , sin  cos , sin  sin  under the  sign, which represent the direction 

cosines of the line P0 M. 
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 We first address dIx . (1 / V) cos  is equal to 
1

1
x

u V

 
− 

 
 . 

 Let dE  denote the value that dE takes when one multiplies the quantity under the  sign by x, 

which amounts to changing the integrals: 

 

5

dx

x , 
4

dx

x , 
3

dx

x  

 

in equation (20) into the following ones: 

 

4

dx

x , 
3

dx

x , 
2

V u

V u

dx

x

+

−  = 
2 2

2u

V u−
 . 

 

 One easily finds that dE  = 
2 2( ) /V u V dE−  and as a result: 

 

dIx = 
1 1

dE dE
u V

 
− 

 
 = 

2

u
dE

V
 = 

2 2
2 22

3 2 2 2 2 2

cos ( , )
1

( )

u w u V d
e u w

V u V u

 
+ 

− − 
. 

 

 As for Iy and Iz , I say that they are zero. Here, since we introduce a factor sin  cos  that 

contains , it is necessary to perform the integration over . In that integration, the terms in cos ,  

cos3 , sin2  cos , cos2  sin , sin  cos  will disappear, and all that will remain are the terms 

that contain cos2 , i.e., upon dropping the constant factors: 

 
2

2 2

5

sin
{ 2( ) cos sin 2 [ cos sin ]}

[ cos ]
x y x y

d
V u w w u w w V u

V u

 
   


− − + −

−
 , 

 

and upon introducing a factor of 
4

2 x y

u

V w w

−
, the identity to be verified will become: 

 

 0 = 
2 2 3

5

( cos ) sin

[ cos ]u

V u u u d

V u

   



−

−  

 

  = 
2 2 2 2 2

5

( )[ ( ) 2 ]V u

V u

V u V x V u V x x dx

x

+

−

− − − − + −
  

 

  = 
2 2 2 2 2 2 2

5 4 3 2

( ) 3 ( ) 3V u

V u

V u V V u u V V
dx

x x x x

+

−

 − − − −
+ + + 

 
 , 

 

which one does immediately upon replacing the integrals with their given values. 
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 If one considers dIx, dIy, dIz to be the components of a vector dI  then one will see that dI  is 

equal to 
xdI , and one will have the direction of Ox, i.e., of u , and as a result: 

 

dI  = 
2 2

2 22
3 2 2 2 2 2

cos ( , )
1

( )

u w u V d
e u w

V u V u

 
+ 

− − 
,   (22) 

 

which is an expression that will be true independently of the particular choice of the axes that were 

adopted in order to simplify the calculation, and upon taking the geometric integral of dI  over the 

duration of motion, one will get the total impulse during the time that the force produced the 

motion. One sees that it will not be zero, in general. 

 As we did before in regard to dE, we must point out that dI  does not represent the elementary 

impulse of the force that acts upon the charge e, but the difference (which is infinite) will be an 

exact differential of a function of u and v that will disappear when one starts out at rest and returns 

to it. 

 

  A. LIÉNARD, 
  Professor at the School of Mines 

  in Saint-Étienne. 

 

____________ 

 

 
(continuation, pp. 53-59) (1) 

 

 III. – Force exerted by a charged body of very small dimensions on itself when it is animated 

by a translatory motion. 

 Let u be the velocity of the body at the instant t. I will take Ox to be parallel to that direction. 

Let ( , , )P     and M (x, y, z) be two points of the body (Fig. 4). I shall first look for the action of 

a charge de that surrounds P on a charge de  that surrounds M. 

 
 At a previous time , the point P was at P0, whose coordinates were: 

 

 
 (1) See L’Éclairage Électrique on 2 July, pp. 5.  

P0 

B 
A 

M 

P 

Figure 4. 
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x0 =  – u  + 21
2 xw   + …,      y0 =   + 21

2 yw   + …,      z0 =   + 21
2 xw   + …,      (23) 

 

and at that moment, the components of the velocity were: 

 

u0x = u – wx  + …,      u0y = – wy  + …,      u0z = – wz  + …  (24) 

 

 We determine  from the condition that P0 M is equal to V, and we will then get the equation: 

 
2 2V   = (x – )2 + (y – )2 + (z – )2 + 2 u (x – ) + 2 2u  

− 2  [wx (x – ) + wy (y – ) + wz (z – )] − 3 u wx + …  (25) 

 

 If one considers PM to be infinitely small then  will have the same order as PM, and the terms 

in the right-hand side of (25) to be neglected will be of order higher than three. 

 Since the velocity of M is parallel to Ox, the component dX along that direction of the force 

that de exerts upon de  will reduce to 24 V f de  (1), or upon replacing f with its value (17): 

 

dX

de de
 = 

2 2

0 0 0 0 0 0

3

[ ( )][ ] ( )( )

( )

x x xV u w x x x x u w P M BM

BM

− + − − − −
 . 

 

 We seek only the principal value of dX. We will first be led to neglect terms in the expression 

for dX for which w has order higher than the ones in 2 2

0V u− , and in those terms, we take only the 

principal value by setting u0 = u, and equating points A and P in the calculation of BM when their 

distance is equal to 21
2

w  + … However, to that degree of approximation, the value of dX    

relative to the action of M on P will be equal and opposite to that of dX, and those two terms will 

cancel in the integration. It will then be necessary to calculate dX to a higher degree of 

approximation, and in order to do that, we must keep the terms in w (although we can calculate 

them to the first degree of approximation) and calculate the term 
2 2

0

3( )

V u

BM

−
 while taking into account 

the difference between u0 and u and between the points A and P. 

 From (24), 2

0u  is equal to 
2u  – 2 u wx + …, and one can write: 

 
2 2

0 0 0

3

( )( )

( )

xV u x x u

BM

− − −
 = 

2 2

0 0 0 0

3 3

( )( ) 2 ( )

( ) ( )

x x xV u x x u u w x x u

BM BM

  − − − − −
+ , 

 

or rather, upon replacing x0 and u0x with their values in the first term, the preceding will become: 

 

 
 (1)  See L’Éclairage Électrique, t. XIV, pp. 456. 
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2 2 22 2 1
0 02

3 3

( ) 2 ( )( )( )

( ) ( )

x x xw V u u w x x uV u x

BM BM

   − + − −− −
+  . 

 

 In the latter term, the numerator has order two, while the first term has order one. The second 

term can then be calculated by taking only the principal values. All that remains is to calculate 

1/(BM)3 to the second degree of approximation. By definition: 

 

BM = r − 
0 0

1
( )xu x x

V
−  = V  − 

21
2

( )( ) ( ) ( )x x y zu w x u w w y w z

V

       − − + − − − − −
, 

or 

V (BM) = 
2 2 23

2
( ) ( ) ( ) ( )x y xV u u x w x w y u w      − − − + − + − + + +   

 

Taking the square will give: 

 

 2 2( )V BM  = 
2 2 2 2 2 2 2( )[( ) 2 ( )] ( )V u V u u x u x   − − − − + −  

+ [
2 2( )V u−   – u (x – )] {2 [wx (x – ) + …] + 23 }xu w  + …, 

 

in which we always confine ourselves to the second degree of approximation, i.e., we neglect 

fourth-order terms since (BM) has order two. 

 I replace the first parenthesis with its value: 

 

(x – )2 + (y – )2 + (z – )2 + 2 [wx (x – ) + …] − 3

xu w  , 

 

which is inferred from equation (25), and get: 

 
2 2( )V BM  = 

2 2 2 2 2 2 2( )[( ) ( ) ( ) ] ( )V u x y z u x   − − + − + − + −  

  + [
2 2 2( )V u − – 2  u (x – )] [wx (x – ) + …] + 2 2 2[2( ) 3 ( )] xV u u x u w   − − − . 

 

 Up to the coefficient 
2V , the terms in the first row represent the value of (BM)2 to the first 

degree of approximation. As a result, if one lets  denote the distance PM and lets  denote the 

angle between PM and O then that quantity will be equal to 
2 2 2 2[ sin ]V u − . 

 In the last two products, I again replace 
2 2 2( )V u −  with its value (25), but while pointing out 

that here I am confining myself to the first degree of approximation, since 
2 2 2( )V u −  is found to 

be multiplied by an infinitesimal. Finally: 

 
2 2( )V BM   

= 2 2 2 2 2 2[( sin ] [ ( ) ( ) ( )] [2 ( )]x y z xV u w x w y w z u w u x         − + − + − + − + + −  . 
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 Let  be the angle between the plane of PM and Ox and the xy-plane. 

 One will easily find that: 

 

(x – ) =  cos  , (y – ) =  sin  cos  , (z – ) =  sin  sin  , 

 

and to the first degree of approximation: 

 

P0 M = 
2 2 2

2 2

sin cosV u u
V

V u

 


− +

−
, 

 

   = 
2 2 2

2 2

sin cosV u u

V u

 


− +

−
. 

 As a result: 

 
2 2( )V BM  = 2 2 2 2[ sin ]V u −  

 

+
4 2

2 2 2 2

2 2 2 2 2 2

cos 3 cos 2
[ cos sin cos ] sin

( ) ( )
x y x x

u u
w w w u w V u

V u V u

 
    

 + 
 + + − + −  − −  

 , 

 

and finally: 

 

3 3

1

( )V BM
 = 

3/2
3 2 2 2

1

sinV u  − 

 

 

3 3 2 2 2

2 2 2

3
2 2 2 2

cos [ sin ](3 cos 2 )
[ cos ]

( )
1

sin

x x

u V u u
w u w

V u

V u

  





 − − +
+ − 

− −
 −
 
 

 . 

 

 When one combines the various calculated terms, one will then have, to the assumed degree 

of approximation: 

dX

de de
 = 

4 3
2 2

2 2 2 2
3 33

23 2 2 2 3/2 2 2 2 5/2

cos
[ cos ]( )

( )cos ( )
cos

[ sin ] [ sin ]

x
x

u w
w V u

V u V u
V V

V u V u







   

+ − −
− −

−
− −

 

 

− 
3 2 2 2 2

33 1
2 22 2 2 3/2 2 2 2 2 2 3/2 2 2

(3 cos 2 )cos (cos sin ) 2 cos

[ sin ] ( ) [ sin ]

x
x

u w u V V u u
V w

V u V u V u V u

    

   

+ + − +
+ 

− − − −
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+ 
2 2 2

2 2 2 2

cos sin cos
3 cos [ cos ]cosx x x

u V u u
u w w w

V u V u

  
  

+ − + 
+ + − 

− − 
 . 

 

 In the preceding expression, one can suppress all terms that change sign when one inverts the 

roles of the points P and M, which amounts to changing  into  –  and  into  + , or rather, 

to changing the signs of cos , sin  cos , and sin  sin . As we have said, the terms in 21/ 

will disappear, and among the other ones, the only ones that will remain are the ones that do not 

contain the radical in the numerator: Moreover, the latter have a sum that is identically zero. As a 

result: 

dX

de de
 = − 

2
2 2 2 2 2

2 2 2 5/2

[ cos ]cos
[ sin 3 cos ]

2 [ sin ]

xV w
V u u

V u

 
 

 

+
− −

−
 

 

− 
3

2 2 2 2 2

2 2 2 5/2
{ sin 3 cos }

2 [ sin ]

xV w
V u u

V u
 

 
− −

−
 . 

 

 Now,  is the angle between the two directions  and u, and the expression wx cos  + … is 

equal to  cos (w, ), in such a way that one can write: 

 

dX

de de
 = − 

3 3 2 2

2 2 2 3/2 2 2 2 5/2

[cos( , )cos( , )] 3 cos ( , )[cos( , )cos( , ) cos( , )]

2 [ sin ] 2 [ sin ]

V w w u V wu u w u w u

V u V u

    

   

−
+

− −
 . 

 

 We can now suppose that the axes are arbitrary. We need only replace dX with dFu, since the 

component of the calculated force is the one that is parallel to u. If we multiply by u dt and remark 

that the direction  remains fixed, since the motion is one of translation, then we can write: 

 

d

dt
u cos (u, ) = w cos (w, ) , 

2d
u

dt
 = 2 u w cos (w, u) , 

which will give: 

udF u dt

de de
 = − 

2 2 2 2 2
3

2 2 2 3/2

sin ( , ) cos ( , )

2 [ sin ( , )]

V u u u u
d V

V u u

 

 

− +

−
. 

 

Return to the particular axes and operate with g as we did for f. That will give: 

 
24 V g de

dede

 


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= − 

4 3
2 2

2 2
3 33 3

2 22 2 2 5/2 3/2 2 2

cos
[ cos ]( )

cos( )
sin cos sin cos

[ sin ] [ ] ( )

x
x

x

u w
w V u

u wV u
V V

V u V u





   

  

+ − −
−

−
− −

 

 

+ 
3 2 2 2 2

1
23/2 2 2 2 2

(cos sin ) cos
3 sin cos

[ ]
y x

V V u u u u
w u w

V u V u


 



 + −
+

− −
 

 

+ [wx cos  + …] sin  cos  − 
2 2 2

2 2

sin
y

V u
w

V u

 −


− 
 . 

 The calculation for  is analogous: 

 

de

de de

 


  = 

2 2

0 0 0 0 0 0 0 0 0

2 3

[ ( )[ ( ) ( )] ( )[ ( ) ( )]

( )

x x y x yV u w x x u y y u x x V BM w y y w x x

V BM

− + − − − − + − − −
 

 

= 

2 2

0 0 0

2 3

( )[ ( ) ( ) ( )]

( )

x yV u u y y w y y w x x

V BM

 − − − − + −
 + … 

 

= 

2 2 2 2 22 2 1
0 020

2 3 2 3 2 3

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

y y yV u u w V u w y y w x xV u u y y

V BM V BM V BM

 − − − − − −− −
+ −  . 

 

 The first term is the only one for which the numerator has order one and in which one must 

replace (BM) with its exact value. In the other two and all of the unwritten ones, the numerator has 

order two. It will suffice to take the principal value of each factor. 

 As a result, upon combining the terms in wx (y – y0) – wy (x – x0), one will have (upon 

immediately suppressing all terms that vanish): 

 

de

de de

 


   

= − 

4 3
2 2

2 2

3 3
2 22 2 2 5/2 3/2 2 2

cos
[ cos ]( )

(3 cos )( )
sin cos sin cos

[ sin ] [ ] ( )

x
x

x

u w
w V u

u w uV u
V u V u

V u V u





   

  

+ − −
−

−
− −

 

 

+ 
3 2 2 2 2 2

1
23/2 2 2 2 2

(cos sin ) cos
cos sin cos cos

[ ]
y x y

V V u u u u
u w u w w

V u V u


   



   + −
− − − +   

− −   
 

 

+ 
2

2 2

cos
3 sin cos [ cos ] sin cosx x

u
u w w u

V u


    


+ + 

− 
 . 

Finally: 
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dY

de de
 = 

2(4 )V g u de

dede

  −


  

 

  = − 
2 2 2 2 2 2 2

5/2

( )[ cos ][ sin 3 cos ]
sin cos

2 [ ]

xV V u w V u u  
 



− + − −
 

− 
2

2 2 2 2 2 2 2 2 2 2

5/2 3/2

cos sin cos
[ sin 3 cos ] [ sin cos ]

2 [ ] 2 [ ]

x xV u w V w
V u u V u u

  
   

 
− − − − +  . 

 

 Upon observing that cos (u, y) is identically zero, one can further write: 

 

dY

de de
  

= 
2 2 2

2 2 2 2 2

2 2 2 5/2

{( )cos( , ) cos( , )cos( , )}
[ sin ( , ) 3 cos ( , )]cos( , )

2 [ sin ( , )]

V w V u w u w u u
V u u u u y

V u u

 
  

 

− − +
− −

−
 

 

− 
2 2 2 2 2

3/2

[ sin ( , ) cos ( , )]
cos( , )

2 [ ]

V w V u u u u
w y

 



− +
 

 

− 
2 2 2 2 2 2

5/2

cos( , )cos( , )[ sin ( , ) 3 cos ( , )]
cos( , )

2 [ ]

V u w w u V u u u u
u y

   



− −
 

 

− 
2 2 2 2 2 2

5/2

cos( , )[ sin ( , ) 3 cos ( , )]
cos( , )

2 [ ]

V u w w u V u u u u
u y

 



− +
 . 

 

 If one changes the y in that expression into x then one can confirm (after some reductions) that 

one will return to the value of 
dX

de de
. Moreover, in their new forms, the expressions will be 

preserved unchanged under a rotation of the coordinate axes. The new form is then valid without 

one needing to suppose that the x-axis is parallel to u. We can then suppose that the axes are fixed 

in space. 

 Since the angle (, y) is fixed, the preceding expression can be written: 

 

dY

de de
 = − 

2 2 2 2 2 2 2

3/2

( )cos( , )cos( , ) [ sin ( , ) cos ( , )]cos( , )

2 [ ]

d V u u y V u u u u u y
V u

dt

   



− + − +
 . 

 

Then again, geometrically, the elementary impulse is equal to: 
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− 

2 2 2 2 2

2 2 2 3/2

( ) [ cos ( , )]

2 [ sin ( , )]

V u u V u u u
V dede d

V u u

 

 

− + −


−
, 

 

in which u  represents the component of u  along . 

 Suppose, in particular, that the body is spherical and confine oneself to the first approximation, 

while supposing that 2u  is negligible compared to 2V . The value of impulse of the force that acts 

on the body will be: 

− ( )
2

de de
u u




+  = − 

2 2

u dededede
u



 


−  . 

 

 Now, in electrostatics, 
2

de de




  represents the potential energy of the sphere with respect to 

itself – namely, 
23

5

e

a
 − if a is the radius of the sphere and the charge is distributed uniformly 

throughout the entire volume of the sphere. As for the second integral, by reason of symmetry, it 

will represent a vector that has the same direction as u , and as a result, in order to evaluate it, one 

can replace u  with its projection onto u, namely, u cos2 (, u). The second integral is then equal 

to the factor u , up to: 

 
2cos ( , )

2

u dede




  = 

2cos ( , )

2

u dede



 
  = 

2cos ( , )

2

u dede



 
  

 

= 
2 2 2

1
3

cos ( , ) cos ( , ) cos ( , )

2

u u u
dede

  



 + +
  

 

= 1
3

2

de de




  = 

21

5

e

a
, 

 

by reason of symmetry, upon letting u  and u  denote two directions that form a tri-rectangular 

trihedron with u. Finally, the impulse is equal to − 
24

5

e
u

a
, and its derivative is − 

24

5

e
w

a
, which is 

the resultant of the forces that are developed by the sphere on itself, constitutes what one can call 

the electric inertia of the sphere. 

 The expression that is obtained by the work done by electric forces will lead to the same result. 

Indeed, that work is equal (to the same degree of approximation) to: 

 
2 2 2 2 21

2
[ sin ( , ) cos ( , )]

2

V u u u u dede 



− −
 . 
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 One can drop the constant term 2

2

de de
V




 , and all that will remain is simply: 

 

− 
2 21 cos ( , )

2 2

u u
dede





+
 = − 

2
22

5

e
u

a
, 

 

whose differential, namely, − 
24

5

e

a
u w cos (u, w) dt, indeed represents the work done by the electric 

force of inertia. 

 If one supposes that the charge is only on the surface then the integral 
2

de de




  will be equal 

to 
2

2

e

a
, and as a result, the electric inertia will have the value − 

22

3

e
w

a
, which is the expression 

that Larmor gave before. 

 

 IV. – We examine the particular case in which the velocity u becomes greater than or equal to 

the velocity V of the radiation. 

 

 Up to now, we have always supposed that u was much smaller than V. Indeed, in order for the 

expressions that were found to not be infinite, it was necessary that the quantity BM, or 

0( / )( cos )P M V V u − , that appears in the denominator could not go to zero, and in order for that 

to be true, u had to be much smaller than V. It is appropriate to examine what happens in the 

opposite case, and in particular, to see if it is true, as Larmor (1) and Searle (2) asserted, that it is 

impossible to give an electrified body a velocity that is greater than or equal to V. 

 
 When u is greater than V, our point A will be exterior to the sphere, which we have called a 

wave, with its center at P0 and a radius of P0M (Fig. 5). If we consider the cone whose summit is 

A and which circumscribes the sphere then the contact circle CC  will divide the sphere into two 

regions. 

 In the one that is furthest from A, V – u cos  will be positive, and the preceding calculations 

will be valid without modification. 

 
 (1) LARMOR, “On a dynamical theory of the electric and luminiferous medium,” Phil. Trans. A (1894), pp. 809.  

 (2) SEARLE, “On the steady motion of an Electrified Ellipsoid,” Phil. Mag. 44 (1897), pp. 341.  

C B 

A 
M 

P0 

 

Figure 5. 
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 In the other one, which closest to A, V – u cos  will be negative, but finite. Under those 

conditions, I say that one must change all of the signs in the expression that were found for D and 

H or their components. 

 Indeed, refer to the determination of the function  that is defined by the integral (12). d  is 

essentially positive, as well as d, which represents the volume that is swept out by the surface 

AB with respect to , while d  represents the volume that is actually swept out. We have seen 

that: 

d  = 

1 cos ( , )

d

u
u r

V



−

 . 

 

 Since d  and d are necessarily positive, one must change the relation into the following 

one: 

d  = − 

1 cos ( , )

d

u
u r

V



−

 

 

when the denominator is negative. Hence, there must be a change of sign for  and for all of the 

expressions that enter into the rest of the calculations. Moreover, that is the only modification that 

that must be made, as one easily convinces oneself by reviewing the calculations. 

 Finally, BM is zero on CC , and everything is infinite. 

 We should point out that as long as one supposes that u is less than V, each position of the 

point M will correspond to one and only one value of  and a unique position for the point P0 . 

Indeed, when  increases from 0 to infinity, the sphere of center M and radius V  will dilate with 

a velocity V that is greater than that of the charge, and as a result it will necessarily be attained and 

can no longer meet itself again. 

 On the contrary, if u takes values that are greater than V then the number of positive real roots 

 of equation (14) can be zero or even greater than 1. In that case, one must consider the various 

corresponding positions for the point P0 and add (geometrically) the values of D and H that 

correspond to each other them. 

 Consider the state of the field at an instant that is determined when the charge is at P. Each 

value of  then corresponds to a sphere and a circle CC . The locus of those circles when  varies 

will be the envelope E of the spheres of the wave S. That envelope will divide the space into two 

(or a much greater number of) regions. For the points of one of them, the values of  will be 

imaginary, i.e., the perturbation will not have arrived at it yet, and the field will be zero there. For 

the points of the other ones,  will have several real values, and the field can be determined in the 

manner that was just described.  Finally, on the envelope itself, the equation in  will have a double 

root for which BM will be zero, and the field will have an infinite intensity. We seek the order of 

magnitude of D and H for points that are infinitely close to the envelope. 

 Develop equation (14) into a Taylor series: 
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2

0 0 02 ( )( ) ( )x x x x x x   − − + −   = 
2 2 22V V  + . 

Moreover: 

x0 = − ux  + 21
2 xw   + …, 

 

so upon making that replacement, one will get: 

 
22 21 1

0 2 2
2 ( )( ) ( )x x x xx x x u w x u w     − + − + + −   = 

2 2 22V V  + , 

 

or rather, since BM = 2

0

1
[ ( )]xV u x x

V
 − −  is zero: 

 
221

0 2
2 ( )( ) ( )xx x x w x  − − + +   = 2 2V  . 

 

 That shows that 
2  has the same order as x, y, z, or rather that  is infinitely small of 

order 1/2 for a point that its located at a distance from the envelope that is infinitely small of order 

one. Moreover, one easily sees that BM, which is zero on the envelope, has the same order as  

in its neighborhood. Therefore, D and H, whose expressions contain (BM)3 in their denominators, 

will be infinitely large of order 3/2. As a result, the integrals: 

 

2 2 2 22 ( )V f g h d + + ,  2 2 21
( )

8
d   


+ + , 

 

which represent the electric and magnetic energy, resp., will be infinite, and one must expend an 

infinite amount of work in order to give the charge a velocity that is greater than or equal to V. 

 However, it should be noted that the energy is already infinite due to another reason, even 

when the velocity is less than V. Indeed, in the neighborhood of the charge (which we have 

supposed to be reduced to a point), D and H are infinitely large of order two. We must then examine 

the case of a charge that is distributed throughout a certain volume and see if the energy will again 

be infinite for a velocity that is greater than V if we are to decide whether or not it is possible to 

give a charged body a velocity that is greater or equal to V. 

 One can do that in two ways: Either one treats the problem directly by means of equations (5) 

and (6) or one decomposes the volume  of the body into infinitely-small elements d and 

calculates the field intensities that are produced by the charges in each of those elements d, which 

are supposed to be reduced to a point, and then take the sum. That is what we shall examine in a 

later article.  

 
 (to be continued) 

  A. LIÉNARD, 
  Professor at the School of Mines 

  in Saint-Étienne. 

___________ 
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(continuation, pp. 106-112)(1) 

 

 We shall examine the case of a charge that is distributed in a certain volume and see whether 

the energy will again be infinite for a value that is greater than V. 

 We begin with the second of the indicated processes. 

 

 1. Let P (, , ) be an arbitrary point of the body, around which we consider an element d, 

and as always, let M be the point where we would like to evaluate the field. Each position of the 

point P in the interior of  will correspond to an envelope E with the equation: 

 

f (x, y, z, , , ) = 0 .      (26) 

 

 There is good reason to introduce the coordinates , ,  of the point P in the equation for the 

envelope, since each position of P will correspond to a particular envelope. If one considers all of 

the possible positions of P inside of the electrified body  then the set of corresponding envelopes 

will occupy a region C of space. If the point M is outside of C then the values of D and H at that 

point will be represented by integrals such as A d  , where  is the electrical density, and the 

function A , which represents (up to sign) the factor of e in the right-hand sides of equations (17) 

or (18), will never be infinite. The integral itself will then be finite. 

 On the contrary, let the point M (x, y, z) be in the region C. There will exist positions of the 

point P inside of  for which (BM) is zero, and those points will obviously be on the surface (26), 

when one now considers x, y, z to be given and , ,  to be running coordinates. Let  be that 

surface. An argument that is analogous to the one that was made above will show that for the 

positions of P that are close to , (BM) will be infinitely small of order 1/2, and as a result, A  will 

be infinitely large of order 3/2, i.e., greater than 1. The integral A d   is then infinite, and it 

will seem that the field has an infinite intensity in the entire region C. 

 Instead of seeking the values of D and H, we seek those of  and F, G, H. Here, the functions 

to be integrated are 1 / (BM), ux / (BM), etc., which will only be infinitely large of order 1/2. As a 

result, the integrals will be finite, and the functions , F, G, H will be finite and well-defined in 

all of space (2). However, f, g, h, , , , as they are determined from equations (9) and (10), will 

be themselves finite and well-defined. 

 The apparent contradiction between the two results is analogous to the peculiarity that is 

presented by the determination of the force inside of a magnet. 

 Let a magnet have a moment M = (Mx, My, Mz). At a point at a distance r, the magnetic potential 

will have the value: 

V = 
3

x y zx M y M z M

r

+ +
, 

 
 (1) See L’Éclairage Électrique on 2 and 9 July, pp. 5 and 53. 

 (2) Unless, however, there is a point of  that corresponds to an infinite value of , because BM will then have 

order one. (Cf. infra)  
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and the components of the magnetic force will be: 

 

 = 
2 2

5

3
x

x r
M

r

−
+  = − 

dV

dx
,  = …,   = …, 

 

upon supposing that the magnet is zero-dimensional and is situated at the coordinate origin. 

 Now let a magnet be finite-dimensional. In order to calculate the magnetic potential and the 

magnetic force at a point, one takes the integral of the elementary values that are due to each part 

of the magnet. One knows that the potential will always have a well-defined value for an interior 

point of the magnet, although the function to be integrated will become infinite in the domain of 

integration and admit derivatives. However, the magnetic force will be indeterminate, and will no 

longer be equal to the derivative of a potential, as a result. 

 The same thing is true here. The values of f, g, h, , ,  that are calculated by integration are 

infinite or indeterminate, whereas the functions , F, G, H will remain finite and admit derivatives. 

However, from the manner by which they were obtained, equations (9) and (10) are certainly 

applicable in all cases, even interior to the electrified body, whereas formulas (18) and (19) are the 

results of transformations of the calculations that were made by always supposing that (MB) is 

non-zero, so it is no wonder that those formulas will lead to incorrect results when (BM) becomes 

zero in the domain of integration. 

 Finally, we see that D  and H  remain finite and that, as a result, nothing stands in the way of 

assigning a velocity greater than V to an electrified body. 

 Before passing on to the second method, we further point out that BM can also be infinitely 

small in the domain of integration in another case, namely, when the point M is interior to the body 

 and one takes a point P that is infinitely close to M. However, (A M) and (P0 M) are also infinitely 

small, in such a way that the function A considered before will have order of magnitude two, and 

since it is only in the neighborhood of a point, and not a surface, the integral will be no less finite. 

 

 2. The other process will permit us to go deeper into the question a little more completely. 

 Consider equation (7). Upon traversing the surface of the electrified body,  will pass sharply 

from the value 0 to a finite value. Consequently,  is a discontinuous function of x, y, z, t. Now,  

enters into (7) by way of its derivatives 
2

2

d

dx


, 

2

2

d

dy


, 

2

2

d

dz


, 

2

2

d

dt


. Those second-order derivatives 

can then be discontinuous, but those of first order 
d

dx


, 

d

dy


, 

d

dz


, 

d

dt


 must be well-defined and 

continuous, while those of second order can be infinite. Similar statements are true for F, G, H. 

Therefore, f, g, h, , , , whose expressions contain only the first-order derivatives of , F, G, H 

are finite and continuous functions of x, y, z, t. 

 We should not be content with that proof, a priori, but study the continuity of  using the 

solved equation, i.e., (12). The results obtained will extend immediately to the functions F, G, H. 



Liénard – Electric and magnetic field an electric charge in motion.  31 
 

We then see that the preceding result is not always exact, due to the fact that the expression 
2

2

2

d
V

dt


 
 − 

 
 can remain finite, even for infinite values of 

2

2
,

d

dx


 etc. 

 We saw that the domain of integration in the expression (12) was determined in the following 

manner: M (Fig. 6) is the point where one can evaluate the value of  at the instant t, so we can 

describe M as the center of a sphere S of radius V , and we seek the part AB of that sphere that is 

situated inside of the electrified body when it is taken in its position at the instant t – . The region 

swept out by AB when  varies from 0 to  will constitute the domain of integration. 

 
 If that domain of integration is finite then  will be finite. Indeed, the right-hand side of 

equation (12) represents the ordinary electrostatic potential of a certain electric distribution of 

finite density that is spread over the domain of integration, and the potential is always finite and 

well-defined, even when the point M is inside of the domain. 

 On the contrary, if the domain of integration extends to infinity then since  remains finite, the 

potential will be infinite. 

 We must then find only the cases in which the domain of integration extends up to infinity. 

 If the velocities of each point of the electrified charge are different from V for t = −  (in one 

sense or another), while pointing in well-defined directions, then as  increases indefinitely, all 

points of  will conclude by being found in either the interior or exterior of the sphere of radius V 

, and the domain of integration will not extend out to infinity.  will be finite and well-defined 

for all points in space. 

 On the contrary, suppose that the velocities for t = −  are equal to V and have a well-defined 

direction. In the limit, the velocity of dilatation of the sphere will then be equal to that of , and 

for convenient positions of the point M the intersection AB will remain real for infinite , and  

will be infinite. In particular, if one supposes that the body is animated with a permanent, uniform 

motion of velocity V then  will be infinite for all points of space that are found between the 

extreme tangent planes to the position of  at the instant t, which are planes that are drawn normal 

to V. 

 Larmor and Searle confined themselves to the study of permanent motions. In that case, one 

must reach the conclusion that the domain will become infinite for a velocity of the body that is 

equal to V, so it would be impossible for it to have that velocity. However, the result pertains solely 

M 
 

 

 

 

A 

B 
 

Figure 6. 
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to the consideration of permanent motions, so that will oblige one to suppose that the body is 

animated with the velocity V after an infinite time. 

 On the contrary, in order to conform to reality, one must suppose that the motion has a 

beginning, and it will result from the foregoing that under those conditions  will be finite and 

well-defined for all points of space. 

 It remains to be seen whether  is continuous in time, as it is in space, and admits well-defined 

derivatives. 

 Let M   be another point in space. In order to get the corresponding value of   , we proceed 

as before. For each value of , the two spheres S and S   that have M and M  , resp., for their 

centers will have the same radius. We displace S   by a quantity that is equal and parallel to M M  

in such a manner as to make it coincide with S, and apply the same displacement to , which will 

take it to  , where   plays the same role with respect to M that  does with respect to M  , 

and we will get the value of    by proceeding with   as we did with . 

 That value will differ from  for two reasons: On the one hand, the domain of integration will 

be different, since it will be the space that swept out by, not only AB, but also A B  , where A B   

is the potion of S that is interior to  . On the other hand, the density will have varied at each 

point. 

 If MM   is infinitely small and equal to ds then the variation of the density at a point will be 

equal to (d / ds) ds, and the corresponding variation of  will be: 

 

/d ds
ds d

r


  . 

 

 That variation is infinitely small of the same order as ds, and its quotient by ds is finite and 

well-defined (1). 

 In order for  to be continuous and admit a derivative, it will then suffice that the difference 

between the two domains of integration is also infinitely small of the same order as ds and that its 

quotient by ds is finite and well-defined. 

 First consider a value of  for which S is not tangent to the surfaces  and   of  and  , 

resp., i.e., it cuts those surfaces at finite angles. The zone of S between AB and A B   will be 

infinitely small and proportional to ds, and if the preceding condition is satisfied between the 

values 1 and 2 of  then the corresponding difference between the domains of integration will be 

itself proportional to ds. 

 Now let a sphere S cut  and   at infinitely-small angles, and as a result, they will be 

essentially tangent to those two surfaces. Draw two spheres T, T   that are concentrated at S and 

tangent to the surfaces  and   at the points Q and Q , resp. If h and h  are the differences 

between the radii of T and T  , resp., and S then h and h  will represent the distances from  and 

 , resp., to S. 

 
 (1) The argument supposes that d / ds is finite, and as a result, that  is continuous in all of the interior of . If 

one has discontinuity surfaces then those surfaces will divide  into several regions, and one makes the same study 

for each of them that one did for . 
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 Two cases can present themselves: 

 

 1. The spheres T and T   touch the surfaces  and  , resp., without intersecting them at real 

points. 

 

 2. The intersections will be real and present a double point at Q or Q . 

 

 Under the second hypothesis, the intersections of S with  and   will also be real, and the 

spherical area of S that is found between the two will have the order of magnitude h − h , which 

itself has the same order as ds. There is once more nothing special about this case. 

 On the contrary, under the first hypothesis, the intersections of S with  and   can be real or 

imaginary in the vicinities of the points Q and Q . 

 

 1. The two intersections are imaginary: The surface S will play no role in the determination 

of the domain of integration. 

 

 2. The two intersections are real and differ slightly by small spherical ellipses: If R1 and R2 

are the radii of curvature of  at Q, and R is that of S then the ellipse AB will have the value: 

 

1 2

1 2

2
( )( )

R R
h R

R R R R


− −
 , 

while that of A B   will be: 

1 2

1 2

2
( )( )

R R
h R

R R R R


 


 − −
 . 

 

1R and 2R  are relative to   and the point Q , and the difference will have the same order of 

magnitude as h − h . The volume that is swept out by the difference between the areas AB and 

A B   will then be once more infinitely small and proportional to ds, which will neither introduce 

a discontinuity in  nor any indeterminacy in its derivative. 

 
 3. One of the two intersections (the one with S, for example) is real and the other is imaginary 

(Fig. 7). h and h  will then have opposite signs. The area A B   will not exist, and the area AB will 

have the preceding value that is proportional to h. Now h and h  have opposite signs, so h will be 

S 

A 
 

Q 
B  

 

Figure 7. 
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smaller in absolute values than h − h , which is proportional to ds. The area AB will then be 

infinitely small at the same time as ds, but it will no longer be proportional to it, and the same 

thing will be true for the volume that is generated by AB. 

 If the normal velocities to the points Q and Q  are different from V then the values of  between 

which S can cut  without cutting  (or conversely) will be infinitely close, and the corresponding 

volume that is swept out by AB will be infinitely small of order two, and one can neglect it. 

 However, if those normal velocities are equal to V during a finite time, in such a way that the 

peculiarity been studied exists in a finite interval of the variation of  then the volume generated 

by AB will not be negligible, and since it is infinitely small at the same time as ds without being 

proportional to it, the derivative of V will be indeterminate. 

 Let M   be taken along MM   in such a manner that the corresponding position of  is tangent 

to S. Up to higher-order infinitesimals, one will obviously have the relation: 

 

MM

h


 = 

M M

h

 

−
. 

 

 For two points that are located between M and M  , the intersections that correspond to AB 

will be real, and the differences between the values of the potential at those points will be 

proportional to the distance between them. The same thing will be true for two points that are 

located on the other side of M  . On the contrary, if the points considered are on one side and the 

other of M   then there will no longer be any proportionality. The derivative of V will then be 

discontinuous at the point M  . 

 In summary, one sees that the function V is always continuous. Its derivatives are also well-

defined, in general, but can be discontinuous for the points such that a sphere of radius V that 

describes one of those points as its center will remain tangent to the boundary surface of the electric 

charge without intersecting it during a finite time interval when that charge is taken for each value 

of  in its position at the instant t – . 

 In particular, there will be a discontinuity in the derivative upon traversing the boundary 

surface of the charge if that surface remains animated with a normal velocity that is equal to V 

during a finite time interval. 

 However, if the velocity just passes through that value without maintaining it then no 

discontinuity will result. 

 In order to study the continuity of the function  at a point with respect to time, instead of 

considering two spheres S and S   with the same radius and different centers, on the contrary, one 

considers two concentric spheres with radii that differ by V dt, which amounts to comparing the 

values of the potential at two instants that differ by dt. 

 The results will be the same as before, and the points of discontinuity of the derivatives with 

respect to space will also be ones for the derivatives with respect to time. Moreover, a moment of 

reflection will suffice for one to see that this is true. 

 The results that we just obtained for the continuity of the function  and its derivatives are 

immediately applicable to the functions F, G, H, as we have pointed out already. 
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 Now, the quantities , , V , f, g, h are expressed linearly by means of the derivatives of those 

four functions. Therefore, the magnetic force and the electric displacement will always be finite 

and generally continuous, except at the points that were defined above. The energy of the field is 

not infinite then, and it will be possible to assign a velocity that is greater than or equal to V to the 

charge. 

 

 Remark I. – In the foregoing, we considered the functions y, F, G, H to be sufficiently defined 

by the equations (7) and (8) without taking into account the condition (11). We have that right, 

because that equation (11) expresses only the principle of the conservation of electricity, and is 

necessarily satisfied as a result. Indeed, we can write: 

 
2

2

2

d d dF dG dH
V

dt dt dx dy dz

   
 − + + +   

  
 = − 2

( )( ) ( )
4

yx z
d ud u d ud

V
dt dx dy dz

 


 
+ + + 

 
, 

 

and the bracketed expression on the right-hand side is zero, from the principle of the conservation 

of electricity. 

 In the first question that was treated, we can therefore also dispense with verifying that the 

condition (11) is indeed satisfied. 

 

 Remark II. – In the preceding analysis, we omitted one case, namely, the one in which the 

surfaces  and  differ very slightly over a noticeable portion of their extent by spheres that have 

their centers at the point M, and the sphere S is included between them. In that case, one of the two 

areas AB or A B   will have to be zero and the other one will have to be finite, in such a way that 

if such conditions had been satisfied for a series of values of  that form a finite time interval then 

the difference between the potential at the points M and M   would have been finite, and the 

derivative infinite. However, that is a very special case that demands, moreover, that the volume 

of  must be deformable in order for a portion of its surface to appreciably preserve the point M 

as the center of curvature during a finite time interval. 

 

 Remark III. – If one studies the case of a charge that is spread over a surface , instead of a 

volume, then the results will be different. The functions , F, G, H will then be continuous or 

discontinuous in the case where their derivatives can become infinite, and the same will be true 

for the magnetic force and displacement. In that case, it will be impossible to assign a normal 

velocity that is equal to V to an electrified surface, and the normal velocity must always remain 

either less than or greater than V. 

 

 Remark IV. – If the magnetic force and the displacement are generally continuous upon 

traversing a boundary surface of an electrified body then the same thing will not be true of their 

derivatives, which are always discontinuous, as was shown by equations (1) to (4). 

 Let M be a point of the surface  whose inward-pointing normal we take to be the x-axis, while 

the y and z-axes are in the tangent plane that the surface  agrees with in the neighborhood of the 

point M. 
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 Only the derivatives with respect to x can then be discontinuous, and if I let 
df

dx
  represent 

the discontinuity in the derivative 
df

dx
 then equations (3) will immediately give: 

 

df

dx
  =  ,  

d

dx


  = 0 .    (27) 

 

 is indeed equal to , and the  of 
dg

dy
, 

dh

dz
, 

d

dy


, 

d

dz


, are zero. 

 Let M   be a point of Mx whose abscissa is ux dt. At a time dt later, it will be found on the 

surface  since it will be displaced in the direction Mx by the quantity MM  . The difference 

between the values of f at M   and M at time t will be: 

 

x

df df
u dt

dx dx

 
+  

 
 . 

 

df / dx refers to the point M, but on the exterior face of . 

 During dt, f will increase by 
df

dt
dt

 at M and by 
df df

dt
dx dx

 
+  

 
 at M  , in such a way that the 

original difference will become: 

x x

df df df
u u dt

dx dx dt

 
+  +  

 
 . 

 

 On the other hand, at the end of the time dt, MM   will be found to be completely exterior to 

, so the difference between the values of f must become: 

 
2

x

df d f
dt u dt

dx dx dt

 
+ 

 
 . 

 

 Equating those two values while neglecting the higher-order infinitesimals will give: 

 

df

dt
  = − x

df
u

dx
 .      (28) 

 

One will have five identical relations for g, h, , , . 

 Upon taking the  of each term in equations (1) and (2) and neglecting the ones that are zero, 

one will easily find that: 
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 If one takes equations (27), (28) into account, along with the analogues to the latter, then one 

will see that the first equations in (29) and (30) are satisfied identically, and the other ones will 

become: 
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so one will infer that: 
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 In order for 2

xu  to be equal to 
2V , the  of 

dg

dx
, 

dh

dx
, 

d

dx


, 

d

dx


, will become infinite, and g, h, 

,  will become discontinuous, but not f and . 

 The normal components of the magnetic force and displacement will therefore always remain 

continuous, and only the tangential components will be discontinuous in the case that was 

previously studied. 

  A. LIÉNARD, 
  Professor at the School of Mines 

  in Saint-Étienne. 
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